1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Overview: 4 * This is the generic MTD driver for NAND flash devices. It should be 5 * capable of working with almost all NAND chips currently available. 6 * 7 * Additional technical information is available on 8 * http://www.linux-mtd.infradead.org/doc/nand.html 9 * 10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 12 * 13 * Credits: 14 * David Woodhouse for adding multichip support 15 * 16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 17 * rework for 2K page size chips 18 * 19 * TODO: 20 * Enable cached programming for 2k page size chips 21 * Check, if mtd->ecctype should be set to MTD_ECC_HW 22 * if we have HW ECC support. 23 * BBT table is not serialized, has to be fixed 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/module.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/sched.h> 33 #include <linux/slab.h> 34 #include <linux/mm.h> 35 #include <linux/types.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/nand.h> 38 #include <linux/mtd/nand-ecc-sw-hamming.h> 39 #include <linux/mtd/nand-ecc-sw-bch.h> 40 #include <linux/interrupt.h> 41 #include <linux/bitops.h> 42 #include <linux/io.h> 43 #include <linux/mtd/partitions.h> 44 #include <linux/of.h> 45 #include <linux/of_gpio.h> 46 #include <linux/gpio/consumer.h> 47 48 #include "internals.h" 49 50 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page, 51 struct mtd_pairing_info *info) 52 { 53 int lastpage = (mtd->erasesize / mtd->writesize) - 1; 54 int dist = 3; 55 56 if (page == lastpage) 57 dist = 2; 58 59 if (!page || (page & 1)) { 60 info->group = 0; 61 info->pair = (page + 1) / 2; 62 } else { 63 info->group = 1; 64 info->pair = (page + 1 - dist) / 2; 65 } 66 67 return 0; 68 } 69 70 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd, 71 const struct mtd_pairing_info *info) 72 { 73 int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2; 74 int page = info->pair * 2; 75 int dist = 3; 76 77 if (!info->group && !info->pair) 78 return 0; 79 80 if (info->pair == lastpair && info->group) 81 dist = 2; 82 83 if (!info->group) 84 page--; 85 else if (info->pair) 86 page += dist - 1; 87 88 if (page >= mtd->erasesize / mtd->writesize) 89 return -EINVAL; 90 91 return page; 92 } 93 94 const struct mtd_pairing_scheme dist3_pairing_scheme = { 95 .ngroups = 2, 96 .get_info = nand_pairing_dist3_get_info, 97 .get_wunit = nand_pairing_dist3_get_wunit, 98 }; 99 100 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) 101 { 102 int ret = 0; 103 104 /* Start address must align on block boundary */ 105 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 106 pr_debug("%s: unaligned address\n", __func__); 107 ret = -EINVAL; 108 } 109 110 /* Length must align on block boundary */ 111 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 112 pr_debug("%s: length not block aligned\n", __func__); 113 ret = -EINVAL; 114 } 115 116 return ret; 117 } 118 119 /** 120 * nand_extract_bits - Copy unaligned bits from one buffer to another one 121 * @dst: destination buffer 122 * @dst_off: bit offset at which the writing starts 123 * @src: source buffer 124 * @src_off: bit offset at which the reading starts 125 * @nbits: number of bits to copy from @src to @dst 126 * 127 * Copy bits from one memory region to another (overlap authorized). 128 */ 129 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, 130 unsigned int src_off, unsigned int nbits) 131 { 132 unsigned int tmp, n; 133 134 dst += dst_off / 8; 135 dst_off %= 8; 136 src += src_off / 8; 137 src_off %= 8; 138 139 while (nbits) { 140 n = min3(8 - dst_off, 8 - src_off, nbits); 141 142 tmp = (*src >> src_off) & GENMASK(n - 1, 0); 143 *dst &= ~GENMASK(n - 1 + dst_off, dst_off); 144 *dst |= tmp << dst_off; 145 146 dst_off += n; 147 if (dst_off >= 8) { 148 dst++; 149 dst_off -= 8; 150 } 151 152 src_off += n; 153 if (src_off >= 8) { 154 src++; 155 src_off -= 8; 156 } 157 158 nbits -= n; 159 } 160 } 161 EXPORT_SYMBOL_GPL(nand_extract_bits); 162 163 /** 164 * nand_select_target() - Select a NAND target (A.K.A. die) 165 * @chip: NAND chip object 166 * @cs: the CS line to select. Note that this CS id is always from the chip 167 * PoV, not the controller one 168 * 169 * Select a NAND target so that further operations executed on @chip go to the 170 * selected NAND target. 171 */ 172 void nand_select_target(struct nand_chip *chip, unsigned int cs) 173 { 174 /* 175 * cs should always lie between 0 and nanddev_ntargets(), when that's 176 * not the case it's a bug and the caller should be fixed. 177 */ 178 if (WARN_ON(cs > nanddev_ntargets(&chip->base))) 179 return; 180 181 chip->cur_cs = cs; 182 183 if (chip->legacy.select_chip) 184 chip->legacy.select_chip(chip, cs); 185 } 186 EXPORT_SYMBOL_GPL(nand_select_target); 187 188 /** 189 * nand_deselect_target() - Deselect the currently selected target 190 * @chip: NAND chip object 191 * 192 * Deselect the currently selected NAND target. The result of operations 193 * executed on @chip after the target has been deselected is undefined. 194 */ 195 void nand_deselect_target(struct nand_chip *chip) 196 { 197 if (chip->legacy.select_chip) 198 chip->legacy.select_chip(chip, -1); 199 200 chip->cur_cs = -1; 201 } 202 EXPORT_SYMBOL_GPL(nand_deselect_target); 203 204 /** 205 * nand_release_device - [GENERIC] release chip 206 * @chip: NAND chip object 207 * 208 * Release chip lock and wake up anyone waiting on the device. 209 */ 210 static void nand_release_device(struct nand_chip *chip) 211 { 212 /* Release the controller and the chip */ 213 mutex_unlock(&chip->controller->lock); 214 mutex_unlock(&chip->lock); 215 } 216 217 /** 218 * nand_bbm_get_next_page - Get the next page for bad block markers 219 * @chip: NAND chip object 220 * @page: First page to start checking for bad block marker usage 221 * 222 * Returns an integer that corresponds to the page offset within a block, for 223 * a page that is used to store bad block markers. If no more pages are 224 * available, -EINVAL is returned. 225 */ 226 int nand_bbm_get_next_page(struct nand_chip *chip, int page) 227 { 228 struct mtd_info *mtd = nand_to_mtd(chip); 229 int last_page = ((mtd->erasesize - mtd->writesize) >> 230 chip->page_shift) & chip->pagemask; 231 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE 232 | NAND_BBM_LASTPAGE; 233 234 if (page == 0 && !(chip->options & bbm_flags)) 235 return 0; 236 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) 237 return 0; 238 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) 239 return 1; 240 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) 241 return last_page; 242 243 return -EINVAL; 244 } 245 246 /** 247 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 248 * @chip: NAND chip object 249 * @ofs: offset from device start 250 * 251 * Check, if the block is bad. 252 */ 253 static int nand_block_bad(struct nand_chip *chip, loff_t ofs) 254 { 255 int first_page, page_offset; 256 int res; 257 u8 bad; 258 259 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; 260 page_offset = nand_bbm_get_next_page(chip, 0); 261 262 while (page_offset >= 0) { 263 res = chip->ecc.read_oob(chip, first_page + page_offset); 264 if (res < 0) 265 return res; 266 267 bad = chip->oob_poi[chip->badblockpos]; 268 269 if (likely(chip->badblockbits == 8)) 270 res = bad != 0xFF; 271 else 272 res = hweight8(bad) < chip->badblockbits; 273 if (res) 274 return res; 275 276 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 277 } 278 279 return 0; 280 } 281 282 /** 283 * nand_region_is_secured() - Check if the region is secured 284 * @chip: NAND chip object 285 * @offset: Offset of the region to check 286 * @size: Size of the region to check 287 * 288 * Checks if the region is secured by comparing the offset and size with the 289 * list of secure regions obtained from DT. Returns true if the region is 290 * secured else false. 291 */ 292 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size) 293 { 294 int i; 295 296 /* Skip touching the secure regions if present */ 297 for (i = 0; i < chip->nr_secure_regions; i++) { 298 const struct nand_secure_region *region = &chip->secure_regions[i]; 299 300 if (offset + size <= region->offset || 301 offset >= region->offset + region->size) 302 continue; 303 304 pr_debug("%s: Region 0x%llx - 0x%llx is secured!", 305 __func__, offset, offset + size); 306 307 return true; 308 } 309 310 return false; 311 } 312 313 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) 314 { 315 struct mtd_info *mtd = nand_to_mtd(chip); 316 317 if (chip->options & NAND_NO_BBM_QUIRK) 318 return 0; 319 320 /* Check if the region is secured */ 321 if (nand_region_is_secured(chip, ofs, mtd->erasesize)) 322 return -EIO; 323 324 if (mtd_check_expert_analysis_mode()) 325 return 0; 326 327 if (chip->legacy.block_bad) 328 return chip->legacy.block_bad(chip, ofs); 329 330 return nand_block_bad(chip, ofs); 331 } 332 333 /** 334 * nand_get_device - [GENERIC] Get chip for selected access 335 * @chip: NAND chip structure 336 * 337 * Lock the device and its controller for exclusive access 338 */ 339 static void nand_get_device(struct nand_chip *chip) 340 { 341 /* Wait until the device is resumed. */ 342 while (1) { 343 mutex_lock(&chip->lock); 344 if (!chip->suspended) { 345 mutex_lock(&chip->controller->lock); 346 return; 347 } 348 mutex_unlock(&chip->lock); 349 350 wait_event(chip->resume_wq, !chip->suspended); 351 } 352 } 353 354 /** 355 * nand_check_wp - [GENERIC] check if the chip is write protected 356 * @chip: NAND chip object 357 * 358 * Check, if the device is write protected. The function expects, that the 359 * device is already selected. 360 */ 361 static int nand_check_wp(struct nand_chip *chip) 362 { 363 u8 status; 364 int ret; 365 366 /* Broken xD cards report WP despite being writable */ 367 if (chip->options & NAND_BROKEN_XD) 368 return 0; 369 370 /* Check the WP bit */ 371 ret = nand_status_op(chip, &status); 372 if (ret) 373 return ret; 374 375 return status & NAND_STATUS_WP ? 0 : 1; 376 } 377 378 /** 379 * nand_fill_oob - [INTERN] Transfer client buffer to oob 380 * @chip: NAND chip object 381 * @oob: oob data buffer 382 * @len: oob data write length 383 * @ops: oob ops structure 384 */ 385 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, 386 struct mtd_oob_ops *ops) 387 { 388 struct mtd_info *mtd = nand_to_mtd(chip); 389 int ret; 390 391 /* 392 * Initialise to all 0xFF, to avoid the possibility of left over OOB 393 * data from a previous OOB read. 394 */ 395 memset(chip->oob_poi, 0xff, mtd->oobsize); 396 397 switch (ops->mode) { 398 399 case MTD_OPS_PLACE_OOB: 400 case MTD_OPS_RAW: 401 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 402 return oob + len; 403 404 case MTD_OPS_AUTO_OOB: 405 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 406 ops->ooboffs, len); 407 BUG_ON(ret); 408 return oob + len; 409 410 default: 411 BUG(); 412 } 413 return NULL; 414 } 415 416 /** 417 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 418 * @chip: NAND chip object 419 * @to: offset to write to 420 * @ops: oob operation description structure 421 * 422 * NAND write out-of-band. 423 */ 424 static int nand_do_write_oob(struct nand_chip *chip, loff_t to, 425 struct mtd_oob_ops *ops) 426 { 427 struct mtd_info *mtd = nand_to_mtd(chip); 428 int chipnr, page, status, len, ret; 429 430 pr_debug("%s: to = 0x%08x, len = %i\n", 431 __func__, (unsigned int)to, (int)ops->ooblen); 432 433 len = mtd_oobavail(mtd, ops); 434 435 /* Do not allow write past end of page */ 436 if ((ops->ooboffs + ops->ooblen) > len) { 437 pr_debug("%s: attempt to write past end of page\n", 438 __func__); 439 return -EINVAL; 440 } 441 442 /* Check if the region is secured */ 443 if (nand_region_is_secured(chip, to, ops->ooblen)) 444 return -EIO; 445 446 chipnr = (int)(to >> chip->chip_shift); 447 448 /* 449 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 450 * of my DiskOnChip 2000 test units) will clear the whole data page too 451 * if we don't do this. I have no clue why, but I seem to have 'fixed' 452 * it in the doc2000 driver in August 1999. dwmw2. 453 */ 454 ret = nand_reset(chip, chipnr); 455 if (ret) 456 return ret; 457 458 nand_select_target(chip, chipnr); 459 460 /* Shift to get page */ 461 page = (int)(to >> chip->page_shift); 462 463 /* Check, if it is write protected */ 464 if (nand_check_wp(chip)) { 465 nand_deselect_target(chip); 466 return -EROFS; 467 } 468 469 /* Invalidate the page cache, if we write to the cached page */ 470 if (page == chip->pagecache.page) 471 chip->pagecache.page = -1; 472 473 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); 474 475 if (ops->mode == MTD_OPS_RAW) 476 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); 477 else 478 status = chip->ecc.write_oob(chip, page & chip->pagemask); 479 480 nand_deselect_target(chip); 481 482 if (status) 483 return status; 484 485 ops->oobretlen = ops->ooblen; 486 487 return 0; 488 } 489 490 /** 491 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 492 * @chip: NAND chip object 493 * @ofs: offset from device start 494 * 495 * This is the default implementation, which can be overridden by a hardware 496 * specific driver. It provides the details for writing a bad block marker to a 497 * block. 498 */ 499 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) 500 { 501 struct mtd_info *mtd = nand_to_mtd(chip); 502 struct mtd_oob_ops ops; 503 uint8_t buf[2] = { 0, 0 }; 504 int ret = 0, res, page_offset; 505 506 memset(&ops, 0, sizeof(ops)); 507 ops.oobbuf = buf; 508 ops.ooboffs = chip->badblockpos; 509 if (chip->options & NAND_BUSWIDTH_16) { 510 ops.ooboffs &= ~0x01; 511 ops.len = ops.ooblen = 2; 512 } else { 513 ops.len = ops.ooblen = 1; 514 } 515 ops.mode = MTD_OPS_PLACE_OOB; 516 517 page_offset = nand_bbm_get_next_page(chip, 0); 518 519 while (page_offset >= 0) { 520 res = nand_do_write_oob(chip, 521 ofs + (page_offset * mtd->writesize), 522 &ops); 523 524 if (!ret) 525 ret = res; 526 527 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 528 } 529 530 return ret; 531 } 532 533 /** 534 * nand_markbad_bbm - mark a block by updating the BBM 535 * @chip: NAND chip object 536 * @ofs: offset of the block to mark bad 537 */ 538 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) 539 { 540 if (chip->legacy.block_markbad) 541 return chip->legacy.block_markbad(chip, ofs); 542 543 return nand_default_block_markbad(chip, ofs); 544 } 545 546 /** 547 * nand_block_markbad_lowlevel - mark a block bad 548 * @chip: NAND chip object 549 * @ofs: offset from device start 550 * 551 * This function performs the generic NAND bad block marking steps (i.e., bad 552 * block table(s) and/or marker(s)). We only allow the hardware driver to 553 * specify how to write bad block markers to OOB (chip->legacy.block_markbad). 554 * 555 * We try operations in the following order: 556 * 557 * (1) erase the affected block, to allow OOB marker to be written cleanly 558 * (2) write bad block marker to OOB area of affected block (unless flag 559 * NAND_BBT_NO_OOB_BBM is present) 560 * (3) update the BBT 561 * 562 * Note that we retain the first error encountered in (2) or (3), finish the 563 * procedures, and dump the error in the end. 564 */ 565 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) 566 { 567 struct mtd_info *mtd = nand_to_mtd(chip); 568 int res, ret = 0; 569 570 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 571 struct erase_info einfo; 572 573 /* Attempt erase before marking OOB */ 574 memset(&einfo, 0, sizeof(einfo)); 575 einfo.addr = ofs; 576 einfo.len = 1ULL << chip->phys_erase_shift; 577 nand_erase_nand(chip, &einfo, 0); 578 579 /* Write bad block marker to OOB */ 580 nand_get_device(chip); 581 582 ret = nand_markbad_bbm(chip, ofs); 583 nand_release_device(chip); 584 } 585 586 /* Mark block bad in BBT */ 587 if (chip->bbt) { 588 res = nand_markbad_bbt(chip, ofs); 589 if (!ret) 590 ret = res; 591 } 592 593 if (!ret) 594 mtd->ecc_stats.badblocks++; 595 596 return ret; 597 } 598 599 /** 600 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 601 * @mtd: MTD device structure 602 * @ofs: offset from device start 603 * 604 * Check if the block is marked as reserved. 605 */ 606 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 607 { 608 struct nand_chip *chip = mtd_to_nand(mtd); 609 610 if (!chip->bbt) 611 return 0; 612 /* Return info from the table */ 613 return nand_isreserved_bbt(chip, ofs); 614 } 615 616 /** 617 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 618 * @chip: NAND chip object 619 * @ofs: offset from device start 620 * @allowbbt: 1, if its allowed to access the bbt area 621 * 622 * Check, if the block is bad. Either by reading the bad block table or 623 * calling of the scan function. 624 */ 625 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) 626 { 627 /* Return info from the table */ 628 if (chip->bbt) 629 return nand_isbad_bbt(chip, ofs, allowbbt); 630 631 return nand_isbad_bbm(chip, ofs); 632 } 633 634 /** 635 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 636 * @chip: NAND chip structure 637 * @timeout_ms: Timeout in ms 638 * 639 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 640 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 641 * returned. 642 * 643 * This helper is intended to be used when the controller does not have access 644 * to the NAND R/B pin. 645 * 646 * Be aware that calling this helper from an ->exec_op() implementation means 647 * ->exec_op() must be re-entrant. 648 * 649 * Return 0 if the NAND chip is ready, a negative error otherwise. 650 */ 651 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 652 { 653 const struct nand_interface_config *conf; 654 u8 status = 0; 655 int ret; 656 657 if (!nand_has_exec_op(chip)) 658 return -ENOTSUPP; 659 660 /* Wait tWB before polling the STATUS reg. */ 661 conf = nand_get_interface_config(chip); 662 ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max)); 663 664 ret = nand_status_op(chip, NULL); 665 if (ret) 666 return ret; 667 668 /* 669 * +1 below is necessary because if we are now in the last fraction 670 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 671 * small jiffy fraction - possibly leading to false timeout 672 */ 673 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 674 do { 675 ret = nand_read_data_op(chip, &status, sizeof(status), true, 676 false); 677 if (ret) 678 break; 679 680 if (status & NAND_STATUS_READY) 681 break; 682 683 /* 684 * Typical lowest execution time for a tR on most NANDs is 10us, 685 * use this as polling delay before doing something smarter (ie. 686 * deriving a delay from the timeout value, timeout_ms/ratio). 687 */ 688 udelay(10); 689 } while (time_before(jiffies, timeout_ms)); 690 691 /* 692 * We have to exit READ_STATUS mode in order to read real data on the 693 * bus in case the WAITRDY instruction is preceding a DATA_IN 694 * instruction. 695 */ 696 nand_exit_status_op(chip); 697 698 if (ret) 699 return ret; 700 701 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 702 }; 703 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 704 705 /** 706 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready 707 * @chip: NAND chip structure 708 * @gpiod: GPIO descriptor of R/B pin 709 * @timeout_ms: Timeout in ms 710 * 711 * Poll the R/B GPIO pin until it becomes ready. If that does not happen 712 * whitin the specified timeout, -ETIMEDOUT is returned. 713 * 714 * This helper is intended to be used when the controller has access to the 715 * NAND R/B pin over GPIO. 716 * 717 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. 718 */ 719 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 720 unsigned long timeout_ms) 721 { 722 723 /* 724 * Wait until R/B pin indicates chip is ready or timeout occurs. 725 * +1 below is necessary because if we are now in the last fraction 726 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 727 * small jiffy fraction - possibly leading to false timeout. 728 */ 729 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 730 do { 731 if (gpiod_get_value_cansleep(gpiod)) 732 return 0; 733 734 cond_resched(); 735 } while (time_before(jiffies, timeout_ms)); 736 737 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; 738 }; 739 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); 740 741 /** 742 * panic_nand_wait - [GENERIC] wait until the command is done 743 * @chip: NAND chip structure 744 * @timeo: timeout 745 * 746 * Wait for command done. This is a helper function for nand_wait used when 747 * we are in interrupt context. May happen when in panic and trying to write 748 * an oops through mtdoops. 749 */ 750 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) 751 { 752 int i; 753 for (i = 0; i < timeo; i++) { 754 if (chip->legacy.dev_ready) { 755 if (chip->legacy.dev_ready(chip)) 756 break; 757 } else { 758 int ret; 759 u8 status; 760 761 ret = nand_read_data_op(chip, &status, sizeof(status), 762 true, false); 763 if (ret) 764 return; 765 766 if (status & NAND_STATUS_READY) 767 break; 768 } 769 mdelay(1); 770 } 771 } 772 773 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 774 { 775 return (chip->parameters.supports_set_get_features && 776 test_bit(addr, chip->parameters.get_feature_list)); 777 } 778 779 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 780 { 781 return (chip->parameters.supports_set_get_features && 782 test_bit(addr, chip->parameters.set_feature_list)); 783 } 784 785 /** 786 * nand_reset_interface - Reset data interface and timings 787 * @chip: The NAND chip 788 * @chipnr: Internal die id 789 * 790 * Reset the Data interface and timings to ONFI mode 0. 791 * 792 * Returns 0 for success or negative error code otherwise. 793 */ 794 static int nand_reset_interface(struct nand_chip *chip, int chipnr) 795 { 796 const struct nand_controller_ops *ops = chip->controller->ops; 797 int ret; 798 799 if (!nand_controller_can_setup_interface(chip)) 800 return 0; 801 802 /* 803 * The ONFI specification says: 804 * " 805 * To transition from NV-DDR or NV-DDR2 to the SDR data 806 * interface, the host shall use the Reset (FFh) command 807 * using SDR timing mode 0. A device in any timing mode is 808 * required to recognize Reset (FFh) command issued in SDR 809 * timing mode 0. 810 * " 811 * 812 * Configure the data interface in SDR mode and set the 813 * timings to timing mode 0. 814 */ 815 816 chip->current_interface_config = nand_get_reset_interface_config(); 817 ret = ops->setup_interface(chip, chipnr, 818 chip->current_interface_config); 819 if (ret) 820 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 821 822 return ret; 823 } 824 825 /** 826 * nand_setup_interface - Setup the best data interface and timings 827 * @chip: The NAND chip 828 * @chipnr: Internal die id 829 * 830 * Configure what has been reported to be the best data interface and NAND 831 * timings supported by the chip and the driver. 832 * 833 * Returns 0 for success or negative error code otherwise. 834 */ 835 static int nand_setup_interface(struct nand_chip *chip, int chipnr) 836 { 837 const struct nand_controller_ops *ops = chip->controller->ops; 838 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request; 839 int ret; 840 841 if (!nand_controller_can_setup_interface(chip)) 842 return 0; 843 844 /* 845 * A nand_reset_interface() put both the NAND chip and the NAND 846 * controller in timings mode 0. If the default mode for this chip is 847 * also 0, no need to proceed to the change again. Plus, at probe time, 848 * nand_setup_interface() uses ->set/get_features() which would 849 * fail anyway as the parameter page is not available yet. 850 */ 851 if (!chip->best_interface_config) 852 return 0; 853 854 request = chip->best_interface_config->timings.mode; 855 if (nand_interface_is_sdr(chip->best_interface_config)) 856 request |= ONFI_DATA_INTERFACE_SDR; 857 else 858 request |= ONFI_DATA_INTERFACE_NVDDR; 859 tmode_param[0] = request; 860 861 /* Change the mode on the chip side (if supported by the NAND chip) */ 862 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 863 nand_select_target(chip, chipnr); 864 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 865 tmode_param); 866 nand_deselect_target(chip); 867 if (ret) 868 return ret; 869 } 870 871 /* Change the mode on the controller side */ 872 ret = ops->setup_interface(chip, chipnr, chip->best_interface_config); 873 if (ret) 874 return ret; 875 876 /* Check the mode has been accepted by the chip, if supported */ 877 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 878 goto update_interface_config; 879 880 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 881 nand_select_target(chip, chipnr); 882 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 883 tmode_param); 884 nand_deselect_target(chip); 885 if (ret) 886 goto err_reset_chip; 887 888 if (request != tmode_param[0]) { 889 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n", 890 nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR", 891 chip->best_interface_config->timings.mode); 892 pr_debug("NAND chip would work in %s timing mode %d\n", 893 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR", 894 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0])); 895 goto err_reset_chip; 896 } 897 898 update_interface_config: 899 chip->current_interface_config = chip->best_interface_config; 900 901 return 0; 902 903 err_reset_chip: 904 /* 905 * Fallback to mode 0 if the chip explicitly did not ack the chosen 906 * timing mode. 907 */ 908 nand_reset_interface(chip, chipnr); 909 nand_select_target(chip, chipnr); 910 nand_reset_op(chip); 911 nand_deselect_target(chip); 912 913 return ret; 914 } 915 916 /** 917 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the 918 * NAND controller and the NAND chip support 919 * @chip: the NAND chip 920 * @iface: the interface configuration (can eventually be updated) 921 * @spec_timings: specific timings, when not fitting the ONFI specification 922 * 923 * If specific timings are provided, use them. Otherwise, retrieve supported 924 * timing modes from ONFI information. 925 */ 926 int nand_choose_best_sdr_timings(struct nand_chip *chip, 927 struct nand_interface_config *iface, 928 struct nand_sdr_timings *spec_timings) 929 { 930 const struct nand_controller_ops *ops = chip->controller->ops; 931 int best_mode = 0, mode, ret = -EOPNOTSUPP; 932 933 iface->type = NAND_SDR_IFACE; 934 935 if (spec_timings) { 936 iface->timings.sdr = *spec_timings; 937 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings); 938 939 /* Verify the controller supports the requested interface */ 940 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 941 iface); 942 if (!ret) { 943 chip->best_interface_config = iface; 944 return ret; 945 } 946 947 /* Fallback to slower modes */ 948 best_mode = iface->timings.mode; 949 } else if (chip->parameters.onfi) { 950 best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1; 951 } 952 953 for (mode = best_mode; mode >= 0; mode--) { 954 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode); 955 956 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 957 iface); 958 if (!ret) { 959 chip->best_interface_config = iface; 960 break; 961 } 962 } 963 964 return ret; 965 } 966 967 /** 968 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the 969 * NAND controller and the NAND chip support 970 * @chip: the NAND chip 971 * @iface: the interface configuration (can eventually be updated) 972 * @spec_timings: specific timings, when not fitting the ONFI specification 973 * 974 * If specific timings are provided, use them. Otherwise, retrieve supported 975 * timing modes from ONFI information. 976 */ 977 int nand_choose_best_nvddr_timings(struct nand_chip *chip, 978 struct nand_interface_config *iface, 979 struct nand_nvddr_timings *spec_timings) 980 { 981 const struct nand_controller_ops *ops = chip->controller->ops; 982 int best_mode = 0, mode, ret = -EOPNOTSUPP; 983 984 iface->type = NAND_NVDDR_IFACE; 985 986 if (spec_timings) { 987 iface->timings.nvddr = *spec_timings; 988 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings); 989 990 /* Verify the controller supports the requested interface */ 991 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 992 iface); 993 if (!ret) { 994 chip->best_interface_config = iface; 995 return ret; 996 } 997 998 /* Fallback to slower modes */ 999 best_mode = iface->timings.mode; 1000 } else if (chip->parameters.onfi) { 1001 best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1; 1002 } 1003 1004 for (mode = best_mode; mode >= 0; mode--) { 1005 onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode); 1006 1007 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 1008 iface); 1009 if (!ret) { 1010 chip->best_interface_config = iface; 1011 break; 1012 } 1013 } 1014 1015 return ret; 1016 } 1017 1018 /** 1019 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both 1020 * NAND controller and the NAND chip support 1021 * @chip: the NAND chip 1022 * @iface: the interface configuration (can eventually be updated) 1023 * 1024 * If specific timings are provided, use them. Otherwise, retrieve supported 1025 * timing modes from ONFI information. 1026 */ 1027 static int nand_choose_best_timings(struct nand_chip *chip, 1028 struct nand_interface_config *iface) 1029 { 1030 int ret; 1031 1032 /* Try the fastest timings: NV-DDR */ 1033 ret = nand_choose_best_nvddr_timings(chip, iface, NULL); 1034 if (!ret) 1035 return 0; 1036 1037 /* Fallback to SDR timings otherwise */ 1038 return nand_choose_best_sdr_timings(chip, iface, NULL); 1039 } 1040 1041 /** 1042 * nand_choose_interface_config - find the best data interface and timings 1043 * @chip: The NAND chip 1044 * 1045 * Find the best data interface and NAND timings supported by the chip 1046 * and the driver. Eventually let the NAND manufacturer driver propose his own 1047 * set of timings. 1048 * 1049 * After this function nand_chip->interface_config is initialized with the best 1050 * timing mode available. 1051 * 1052 * Returns 0 for success or negative error code otherwise. 1053 */ 1054 static int nand_choose_interface_config(struct nand_chip *chip) 1055 { 1056 struct nand_interface_config *iface; 1057 int ret; 1058 1059 if (!nand_controller_can_setup_interface(chip)) 1060 return 0; 1061 1062 iface = kzalloc(sizeof(*iface), GFP_KERNEL); 1063 if (!iface) 1064 return -ENOMEM; 1065 1066 if (chip->ops.choose_interface_config) 1067 ret = chip->ops.choose_interface_config(chip, iface); 1068 else 1069 ret = nand_choose_best_timings(chip, iface); 1070 1071 if (ret) 1072 kfree(iface); 1073 1074 return ret; 1075 } 1076 1077 /** 1078 * nand_fill_column_cycles - fill the column cycles of an address 1079 * @chip: The NAND chip 1080 * @addrs: Array of address cycles to fill 1081 * @offset_in_page: The offset in the page 1082 * 1083 * Fills the first or the first two bytes of the @addrs field depending 1084 * on the NAND bus width and the page size. 1085 * 1086 * Returns the number of cycles needed to encode the column, or a negative 1087 * error code in case one of the arguments is invalid. 1088 */ 1089 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 1090 unsigned int offset_in_page) 1091 { 1092 struct mtd_info *mtd = nand_to_mtd(chip); 1093 1094 /* Make sure the offset is less than the actual page size. */ 1095 if (offset_in_page > mtd->writesize + mtd->oobsize) 1096 return -EINVAL; 1097 1098 /* 1099 * On small page NANDs, there's a dedicated command to access the OOB 1100 * area, and the column address is relative to the start of the OOB 1101 * area, not the start of the page. Asjust the address accordingly. 1102 */ 1103 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 1104 offset_in_page -= mtd->writesize; 1105 1106 /* 1107 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 1108 * wide, then it must be divided by 2. 1109 */ 1110 if (chip->options & NAND_BUSWIDTH_16) { 1111 if (WARN_ON(offset_in_page % 2)) 1112 return -EINVAL; 1113 1114 offset_in_page /= 2; 1115 } 1116 1117 addrs[0] = offset_in_page; 1118 1119 /* 1120 * Small page NANDs use 1 cycle for the columns, while large page NANDs 1121 * need 2 1122 */ 1123 if (mtd->writesize <= 512) 1124 return 1; 1125 1126 addrs[1] = offset_in_page >> 8; 1127 1128 return 2; 1129 } 1130 1131 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1132 unsigned int offset_in_page, void *buf, 1133 unsigned int len) 1134 { 1135 const struct nand_interface_config *conf = 1136 nand_get_interface_config(chip); 1137 struct mtd_info *mtd = nand_to_mtd(chip); 1138 u8 addrs[4]; 1139 struct nand_op_instr instrs[] = { 1140 NAND_OP_CMD(NAND_CMD_READ0, 0), 1141 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1142 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1143 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1144 NAND_OP_DATA_IN(len, buf, 0), 1145 }; 1146 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1147 int ret; 1148 1149 /* Drop the DATA_IN instruction if len is set to 0. */ 1150 if (!len) 1151 op.ninstrs--; 1152 1153 if (offset_in_page >= mtd->writesize) 1154 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1155 else if (offset_in_page >= 256 && 1156 !(chip->options & NAND_BUSWIDTH_16)) 1157 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1158 1159 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1160 if (ret < 0) 1161 return ret; 1162 1163 addrs[1] = page; 1164 addrs[2] = page >> 8; 1165 1166 if (chip->options & NAND_ROW_ADDR_3) { 1167 addrs[3] = page >> 16; 1168 instrs[1].ctx.addr.naddrs++; 1169 } 1170 1171 return nand_exec_op(chip, &op); 1172 } 1173 1174 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1175 unsigned int offset_in_page, void *buf, 1176 unsigned int len) 1177 { 1178 const struct nand_interface_config *conf = 1179 nand_get_interface_config(chip); 1180 u8 addrs[5]; 1181 struct nand_op_instr instrs[] = { 1182 NAND_OP_CMD(NAND_CMD_READ0, 0), 1183 NAND_OP_ADDR(4, addrs, 0), 1184 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1185 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1186 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1187 NAND_OP_DATA_IN(len, buf, 0), 1188 }; 1189 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1190 int ret; 1191 1192 /* Drop the DATA_IN instruction if len is set to 0. */ 1193 if (!len) 1194 op.ninstrs--; 1195 1196 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1197 if (ret < 0) 1198 return ret; 1199 1200 addrs[2] = page; 1201 addrs[3] = page >> 8; 1202 1203 if (chip->options & NAND_ROW_ADDR_3) { 1204 addrs[4] = page >> 16; 1205 instrs[1].ctx.addr.naddrs++; 1206 } 1207 1208 return nand_exec_op(chip, &op); 1209 } 1210 1211 /** 1212 * nand_read_page_op - Do a READ PAGE operation 1213 * @chip: The NAND chip 1214 * @page: page to read 1215 * @offset_in_page: offset within the page 1216 * @buf: buffer used to store the data 1217 * @len: length of the buffer 1218 * 1219 * This function issues a READ PAGE operation. 1220 * This function does not select/unselect the CS line. 1221 * 1222 * Returns 0 on success, a negative error code otherwise. 1223 */ 1224 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1225 unsigned int offset_in_page, void *buf, unsigned int len) 1226 { 1227 struct mtd_info *mtd = nand_to_mtd(chip); 1228 1229 if (len && !buf) 1230 return -EINVAL; 1231 1232 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1233 return -EINVAL; 1234 1235 if (nand_has_exec_op(chip)) { 1236 if (mtd->writesize > 512) 1237 return nand_lp_exec_read_page_op(chip, page, 1238 offset_in_page, buf, 1239 len); 1240 1241 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1242 buf, len); 1243 } 1244 1245 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); 1246 if (len) 1247 chip->legacy.read_buf(chip, buf, len); 1248 1249 return 0; 1250 } 1251 EXPORT_SYMBOL_GPL(nand_read_page_op); 1252 1253 /** 1254 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1255 * @chip: The NAND chip 1256 * @page: parameter page to read 1257 * @buf: buffer used to store the data 1258 * @len: length of the buffer 1259 * 1260 * This function issues a READ PARAMETER PAGE operation. 1261 * This function does not select/unselect the CS line. 1262 * 1263 * Returns 0 on success, a negative error code otherwise. 1264 */ 1265 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1266 unsigned int len) 1267 { 1268 unsigned int i; 1269 u8 *p = buf; 1270 1271 if (len && !buf) 1272 return -EINVAL; 1273 1274 if (nand_has_exec_op(chip)) { 1275 const struct nand_interface_config *conf = 1276 nand_get_interface_config(chip); 1277 struct nand_op_instr instrs[] = { 1278 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1279 NAND_OP_ADDR(1, &page, 1280 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1281 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1282 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1283 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1284 }; 1285 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1286 1287 /* Drop the DATA_IN instruction if len is set to 0. */ 1288 if (!len) 1289 op.ninstrs--; 1290 1291 return nand_exec_op(chip, &op); 1292 } 1293 1294 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); 1295 for (i = 0; i < len; i++) 1296 p[i] = chip->legacy.read_byte(chip); 1297 1298 return 0; 1299 } 1300 1301 /** 1302 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1303 * @chip: The NAND chip 1304 * @offset_in_page: offset within the page 1305 * @buf: buffer used to store the data 1306 * @len: length of the buffer 1307 * @force_8bit: force 8-bit bus access 1308 * 1309 * This function issues a CHANGE READ COLUMN operation. 1310 * This function does not select/unselect the CS line. 1311 * 1312 * Returns 0 on success, a negative error code otherwise. 1313 */ 1314 int nand_change_read_column_op(struct nand_chip *chip, 1315 unsigned int offset_in_page, void *buf, 1316 unsigned int len, bool force_8bit) 1317 { 1318 struct mtd_info *mtd = nand_to_mtd(chip); 1319 1320 if (len && !buf) 1321 return -EINVAL; 1322 1323 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1324 return -EINVAL; 1325 1326 /* Small page NANDs do not support column change. */ 1327 if (mtd->writesize <= 512) 1328 return -ENOTSUPP; 1329 1330 if (nand_has_exec_op(chip)) { 1331 const struct nand_interface_config *conf = 1332 nand_get_interface_config(chip); 1333 u8 addrs[2] = {}; 1334 struct nand_op_instr instrs[] = { 1335 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1336 NAND_OP_ADDR(2, addrs, 0), 1337 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1338 NAND_COMMON_TIMING_NS(conf, tCCS_min)), 1339 NAND_OP_DATA_IN(len, buf, 0), 1340 }; 1341 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1342 int ret; 1343 1344 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1345 if (ret < 0) 1346 return ret; 1347 1348 /* Drop the DATA_IN instruction if len is set to 0. */ 1349 if (!len) 1350 op.ninstrs--; 1351 1352 instrs[3].ctx.data.force_8bit = force_8bit; 1353 1354 return nand_exec_op(chip, &op); 1355 } 1356 1357 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); 1358 if (len) 1359 chip->legacy.read_buf(chip, buf, len); 1360 1361 return 0; 1362 } 1363 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1364 1365 /** 1366 * nand_read_oob_op - Do a READ OOB operation 1367 * @chip: The NAND chip 1368 * @page: page to read 1369 * @offset_in_oob: offset within the OOB area 1370 * @buf: buffer used to store the data 1371 * @len: length of the buffer 1372 * 1373 * This function issues a READ OOB operation. 1374 * This function does not select/unselect the CS line. 1375 * 1376 * Returns 0 on success, a negative error code otherwise. 1377 */ 1378 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1379 unsigned int offset_in_oob, void *buf, unsigned int len) 1380 { 1381 struct mtd_info *mtd = nand_to_mtd(chip); 1382 1383 if (len && !buf) 1384 return -EINVAL; 1385 1386 if (offset_in_oob + len > mtd->oobsize) 1387 return -EINVAL; 1388 1389 if (nand_has_exec_op(chip)) 1390 return nand_read_page_op(chip, page, 1391 mtd->writesize + offset_in_oob, 1392 buf, len); 1393 1394 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); 1395 if (len) 1396 chip->legacy.read_buf(chip, buf, len); 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1401 1402 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1403 unsigned int offset_in_page, const void *buf, 1404 unsigned int len, bool prog) 1405 { 1406 const struct nand_interface_config *conf = 1407 nand_get_interface_config(chip); 1408 struct mtd_info *mtd = nand_to_mtd(chip); 1409 u8 addrs[5] = {}; 1410 struct nand_op_instr instrs[] = { 1411 /* 1412 * The first instruction will be dropped if we're dealing 1413 * with a large page NAND and adjusted if we're dealing 1414 * with a small page NAND and the page offset is > 255. 1415 */ 1416 NAND_OP_CMD(NAND_CMD_READ0, 0), 1417 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1418 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)), 1419 NAND_OP_DATA_OUT(len, buf, 0), 1420 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1421 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1422 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0), 1423 }; 1424 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1425 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1426 1427 if (naddrs < 0) 1428 return naddrs; 1429 1430 addrs[naddrs++] = page; 1431 addrs[naddrs++] = page >> 8; 1432 if (chip->options & NAND_ROW_ADDR_3) 1433 addrs[naddrs++] = page >> 16; 1434 1435 instrs[2].ctx.addr.naddrs = naddrs; 1436 1437 /* Drop the last two instructions if we're not programming the page. */ 1438 if (!prog) { 1439 op.ninstrs -= 2; 1440 /* Also drop the DATA_OUT instruction if empty. */ 1441 if (!len) 1442 op.ninstrs--; 1443 } 1444 1445 if (mtd->writesize <= 512) { 1446 /* 1447 * Small pages need some more tweaking: we have to adjust the 1448 * first instruction depending on the page offset we're trying 1449 * to access. 1450 */ 1451 if (offset_in_page >= mtd->writesize) 1452 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1453 else if (offset_in_page >= 256 && 1454 !(chip->options & NAND_BUSWIDTH_16)) 1455 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1456 } else { 1457 /* 1458 * Drop the first command if we're dealing with a large page 1459 * NAND. 1460 */ 1461 op.instrs++; 1462 op.ninstrs--; 1463 } 1464 1465 return nand_exec_op(chip, &op); 1466 } 1467 1468 /** 1469 * nand_prog_page_begin_op - starts a PROG PAGE operation 1470 * @chip: The NAND chip 1471 * @page: page to write 1472 * @offset_in_page: offset within the page 1473 * @buf: buffer containing the data to write to the page 1474 * @len: length of the buffer 1475 * 1476 * This function issues the first half of a PROG PAGE operation. 1477 * This function does not select/unselect the CS line. 1478 * 1479 * Returns 0 on success, a negative error code otherwise. 1480 */ 1481 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1482 unsigned int offset_in_page, const void *buf, 1483 unsigned int len) 1484 { 1485 struct mtd_info *mtd = nand_to_mtd(chip); 1486 1487 if (len && !buf) 1488 return -EINVAL; 1489 1490 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1491 return -EINVAL; 1492 1493 if (nand_has_exec_op(chip)) 1494 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1495 len, false); 1496 1497 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); 1498 1499 if (buf) 1500 chip->legacy.write_buf(chip, buf, len); 1501 1502 return 0; 1503 } 1504 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1505 1506 /** 1507 * nand_prog_page_end_op - ends a PROG PAGE operation 1508 * @chip: The NAND chip 1509 * 1510 * This function issues the second half of a PROG PAGE operation. 1511 * This function does not select/unselect the CS line. 1512 * 1513 * Returns 0 on success, a negative error code otherwise. 1514 */ 1515 int nand_prog_page_end_op(struct nand_chip *chip) 1516 { 1517 int ret; 1518 u8 status; 1519 1520 if (nand_has_exec_op(chip)) { 1521 const struct nand_interface_config *conf = 1522 nand_get_interface_config(chip); 1523 struct nand_op_instr instrs[] = { 1524 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1525 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1526 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 1527 0), 1528 }; 1529 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1530 1531 ret = nand_exec_op(chip, &op); 1532 if (ret) 1533 return ret; 1534 1535 ret = nand_status_op(chip, &status); 1536 if (ret) 1537 return ret; 1538 } else { 1539 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1540 ret = chip->legacy.waitfunc(chip); 1541 if (ret < 0) 1542 return ret; 1543 1544 status = ret; 1545 } 1546 1547 if (status & NAND_STATUS_FAIL) 1548 return -EIO; 1549 1550 return 0; 1551 } 1552 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1553 1554 /** 1555 * nand_prog_page_op - Do a full PROG PAGE operation 1556 * @chip: The NAND chip 1557 * @page: page to write 1558 * @offset_in_page: offset within the page 1559 * @buf: buffer containing the data to write to the page 1560 * @len: length of the buffer 1561 * 1562 * This function issues a full PROG PAGE operation. 1563 * This function does not select/unselect the CS line. 1564 * 1565 * Returns 0 on success, a negative error code otherwise. 1566 */ 1567 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1568 unsigned int offset_in_page, const void *buf, 1569 unsigned int len) 1570 { 1571 struct mtd_info *mtd = nand_to_mtd(chip); 1572 u8 status; 1573 int ret; 1574 1575 if (!len || !buf) 1576 return -EINVAL; 1577 1578 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1579 return -EINVAL; 1580 1581 if (nand_has_exec_op(chip)) { 1582 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1583 len, true); 1584 if (ret) 1585 return ret; 1586 1587 ret = nand_status_op(chip, &status); 1588 if (ret) 1589 return ret; 1590 } else { 1591 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, 1592 page); 1593 chip->legacy.write_buf(chip, buf, len); 1594 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1595 ret = chip->legacy.waitfunc(chip); 1596 if (ret < 0) 1597 return ret; 1598 1599 status = ret; 1600 } 1601 1602 if (status & NAND_STATUS_FAIL) 1603 return -EIO; 1604 1605 return 0; 1606 } 1607 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1608 1609 /** 1610 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1611 * @chip: The NAND chip 1612 * @offset_in_page: offset within the page 1613 * @buf: buffer containing the data to send to the NAND 1614 * @len: length of the buffer 1615 * @force_8bit: force 8-bit bus access 1616 * 1617 * This function issues a CHANGE WRITE COLUMN operation. 1618 * This function does not select/unselect the CS line. 1619 * 1620 * Returns 0 on success, a negative error code otherwise. 1621 */ 1622 int nand_change_write_column_op(struct nand_chip *chip, 1623 unsigned int offset_in_page, 1624 const void *buf, unsigned int len, 1625 bool force_8bit) 1626 { 1627 struct mtd_info *mtd = nand_to_mtd(chip); 1628 1629 if (len && !buf) 1630 return -EINVAL; 1631 1632 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1633 return -EINVAL; 1634 1635 /* Small page NANDs do not support column change. */ 1636 if (mtd->writesize <= 512) 1637 return -ENOTSUPP; 1638 1639 if (nand_has_exec_op(chip)) { 1640 const struct nand_interface_config *conf = 1641 nand_get_interface_config(chip); 1642 u8 addrs[2]; 1643 struct nand_op_instr instrs[] = { 1644 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1645 NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)), 1646 NAND_OP_DATA_OUT(len, buf, 0), 1647 }; 1648 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1649 int ret; 1650 1651 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1652 if (ret < 0) 1653 return ret; 1654 1655 instrs[2].ctx.data.force_8bit = force_8bit; 1656 1657 /* Drop the DATA_OUT instruction if len is set to 0. */ 1658 if (!len) 1659 op.ninstrs--; 1660 1661 return nand_exec_op(chip, &op); 1662 } 1663 1664 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); 1665 if (len) 1666 chip->legacy.write_buf(chip, buf, len); 1667 1668 return 0; 1669 } 1670 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1671 1672 /** 1673 * nand_readid_op - Do a READID operation 1674 * @chip: The NAND chip 1675 * @addr: address cycle to pass after the READID command 1676 * @buf: buffer used to store the ID 1677 * @len: length of the buffer 1678 * 1679 * This function sends a READID command and reads back the ID returned by the 1680 * NAND. 1681 * This function does not select/unselect the CS line. 1682 * 1683 * Returns 0 on success, a negative error code otherwise. 1684 */ 1685 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1686 unsigned int len) 1687 { 1688 unsigned int i; 1689 u8 *id = buf, *ddrbuf = NULL; 1690 1691 if (len && !buf) 1692 return -EINVAL; 1693 1694 if (nand_has_exec_op(chip)) { 1695 const struct nand_interface_config *conf = 1696 nand_get_interface_config(chip); 1697 struct nand_op_instr instrs[] = { 1698 NAND_OP_CMD(NAND_CMD_READID, 0), 1699 NAND_OP_ADDR(1, &addr, 1700 NAND_COMMON_TIMING_NS(conf, tADL_min)), 1701 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1702 }; 1703 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1704 int ret; 1705 1706 /* READ_ID data bytes are received twice in NV-DDR mode */ 1707 if (len && nand_interface_is_nvddr(conf)) { 1708 ddrbuf = kzalloc(len * 2, GFP_KERNEL); 1709 if (!ddrbuf) 1710 return -ENOMEM; 1711 1712 instrs[2].ctx.data.len *= 2; 1713 instrs[2].ctx.data.buf.in = ddrbuf; 1714 } 1715 1716 /* Drop the DATA_IN instruction if len is set to 0. */ 1717 if (!len) 1718 op.ninstrs--; 1719 1720 ret = nand_exec_op(chip, &op); 1721 if (!ret && len && nand_interface_is_nvddr(conf)) { 1722 for (i = 0; i < len; i++) 1723 id[i] = ddrbuf[i * 2]; 1724 } 1725 1726 kfree(ddrbuf); 1727 1728 return ret; 1729 } 1730 1731 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); 1732 1733 for (i = 0; i < len; i++) 1734 id[i] = chip->legacy.read_byte(chip); 1735 1736 return 0; 1737 } 1738 EXPORT_SYMBOL_GPL(nand_readid_op); 1739 1740 /** 1741 * nand_status_op - Do a STATUS operation 1742 * @chip: The NAND chip 1743 * @status: out variable to store the NAND status 1744 * 1745 * This function sends a STATUS command and reads back the status returned by 1746 * the NAND. 1747 * This function does not select/unselect the CS line. 1748 * 1749 * Returns 0 on success, a negative error code otherwise. 1750 */ 1751 int nand_status_op(struct nand_chip *chip, u8 *status) 1752 { 1753 if (nand_has_exec_op(chip)) { 1754 const struct nand_interface_config *conf = 1755 nand_get_interface_config(chip); 1756 u8 ddrstatus[2]; 1757 struct nand_op_instr instrs[] = { 1758 NAND_OP_CMD(NAND_CMD_STATUS, 1759 NAND_COMMON_TIMING_NS(conf, tADL_min)), 1760 NAND_OP_8BIT_DATA_IN(1, status, 0), 1761 }; 1762 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1763 int ret; 1764 1765 /* The status data byte will be received twice in NV-DDR mode */ 1766 if (status && nand_interface_is_nvddr(conf)) { 1767 instrs[1].ctx.data.len *= 2; 1768 instrs[1].ctx.data.buf.in = ddrstatus; 1769 } 1770 1771 if (!status) 1772 op.ninstrs--; 1773 1774 ret = nand_exec_op(chip, &op); 1775 if (!ret && status && nand_interface_is_nvddr(conf)) 1776 *status = ddrstatus[0]; 1777 1778 return ret; 1779 } 1780 1781 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); 1782 if (status) 1783 *status = chip->legacy.read_byte(chip); 1784 1785 return 0; 1786 } 1787 EXPORT_SYMBOL_GPL(nand_status_op); 1788 1789 /** 1790 * nand_exit_status_op - Exit a STATUS operation 1791 * @chip: The NAND chip 1792 * 1793 * This function sends a READ0 command to cancel the effect of the STATUS 1794 * command to avoid reading only the status until a new read command is sent. 1795 * 1796 * This function does not select/unselect the CS line. 1797 * 1798 * Returns 0 on success, a negative error code otherwise. 1799 */ 1800 int nand_exit_status_op(struct nand_chip *chip) 1801 { 1802 if (nand_has_exec_op(chip)) { 1803 struct nand_op_instr instrs[] = { 1804 NAND_OP_CMD(NAND_CMD_READ0, 0), 1805 }; 1806 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1807 1808 return nand_exec_op(chip, &op); 1809 } 1810 1811 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); 1812 1813 return 0; 1814 } 1815 1816 /** 1817 * nand_erase_op - Do an erase operation 1818 * @chip: The NAND chip 1819 * @eraseblock: block to erase 1820 * 1821 * This function sends an ERASE command and waits for the NAND to be ready 1822 * before returning. 1823 * This function does not select/unselect the CS line. 1824 * 1825 * Returns 0 on success, a negative error code otherwise. 1826 */ 1827 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 1828 { 1829 unsigned int page = eraseblock << 1830 (chip->phys_erase_shift - chip->page_shift); 1831 int ret; 1832 u8 status; 1833 1834 if (nand_has_exec_op(chip)) { 1835 const struct nand_interface_config *conf = 1836 nand_get_interface_config(chip); 1837 u8 addrs[3] = { page, page >> 8, page >> 16 }; 1838 struct nand_op_instr instrs[] = { 1839 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 1840 NAND_OP_ADDR(2, addrs, 0), 1841 NAND_OP_CMD(NAND_CMD_ERASE2, 1842 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1843 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max), 1844 0), 1845 }; 1846 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1847 1848 if (chip->options & NAND_ROW_ADDR_3) 1849 instrs[1].ctx.addr.naddrs++; 1850 1851 ret = nand_exec_op(chip, &op); 1852 if (ret) 1853 return ret; 1854 1855 ret = nand_status_op(chip, &status); 1856 if (ret) 1857 return ret; 1858 } else { 1859 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); 1860 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); 1861 1862 ret = chip->legacy.waitfunc(chip); 1863 if (ret < 0) 1864 return ret; 1865 1866 status = ret; 1867 } 1868 1869 if (status & NAND_STATUS_FAIL) 1870 return -EIO; 1871 1872 return 0; 1873 } 1874 EXPORT_SYMBOL_GPL(nand_erase_op); 1875 1876 /** 1877 * nand_set_features_op - Do a SET FEATURES operation 1878 * @chip: The NAND chip 1879 * @feature: feature id 1880 * @data: 4 bytes of data 1881 * 1882 * This function sends a SET FEATURES command and waits for the NAND to be 1883 * ready before returning. 1884 * This function does not select/unselect the CS line. 1885 * 1886 * Returns 0 on success, a negative error code otherwise. 1887 */ 1888 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 1889 const void *data) 1890 { 1891 const u8 *params = data; 1892 int i, ret; 1893 1894 if (nand_has_exec_op(chip)) { 1895 const struct nand_interface_config *conf = 1896 nand_get_interface_config(chip); 1897 struct nand_op_instr instrs[] = { 1898 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 1899 NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf, 1900 tADL_min)), 1901 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 1902 NAND_COMMON_TIMING_NS(conf, 1903 tWB_max)), 1904 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), 1905 0), 1906 }; 1907 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1908 1909 return nand_exec_op(chip, &op); 1910 } 1911 1912 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); 1913 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1914 chip->legacy.write_byte(chip, params[i]); 1915 1916 ret = chip->legacy.waitfunc(chip); 1917 if (ret < 0) 1918 return ret; 1919 1920 if (ret & NAND_STATUS_FAIL) 1921 return -EIO; 1922 1923 return 0; 1924 } 1925 1926 /** 1927 * nand_get_features_op - Do a GET FEATURES operation 1928 * @chip: The NAND chip 1929 * @feature: feature id 1930 * @data: 4 bytes of data 1931 * 1932 * This function sends a GET FEATURES command and waits for the NAND to be 1933 * ready before returning. 1934 * This function does not select/unselect the CS line. 1935 * 1936 * Returns 0 on success, a negative error code otherwise. 1937 */ 1938 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 1939 void *data) 1940 { 1941 u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2]; 1942 int i; 1943 1944 if (nand_has_exec_op(chip)) { 1945 const struct nand_interface_config *conf = 1946 nand_get_interface_config(chip); 1947 struct nand_op_instr instrs[] = { 1948 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 1949 NAND_OP_ADDR(1, &feature, 1950 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1951 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), 1952 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1953 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 1954 data, 0), 1955 }; 1956 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1957 int ret; 1958 1959 /* GET_FEATURE data bytes are received twice in NV-DDR mode */ 1960 if (nand_interface_is_nvddr(conf)) { 1961 instrs[3].ctx.data.len *= 2; 1962 instrs[3].ctx.data.buf.in = ddrbuf; 1963 } 1964 1965 ret = nand_exec_op(chip, &op); 1966 if (nand_interface_is_nvddr(conf)) { 1967 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++) 1968 params[i] = ddrbuf[i * 2]; 1969 } 1970 1971 return ret; 1972 } 1973 1974 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); 1975 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1976 params[i] = chip->legacy.read_byte(chip); 1977 1978 return 0; 1979 } 1980 1981 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, 1982 unsigned int delay_ns) 1983 { 1984 if (nand_has_exec_op(chip)) { 1985 struct nand_op_instr instrs[] = { 1986 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), 1987 PSEC_TO_NSEC(delay_ns)), 1988 }; 1989 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1990 1991 return nand_exec_op(chip, &op); 1992 } 1993 1994 /* Apply delay or wait for ready/busy pin */ 1995 if (!chip->legacy.dev_ready) 1996 udelay(chip->legacy.chip_delay); 1997 else 1998 nand_wait_ready(chip); 1999 2000 return 0; 2001 } 2002 2003 /** 2004 * nand_reset_op - Do a reset operation 2005 * @chip: The NAND chip 2006 * 2007 * This function sends a RESET command and waits for the NAND to be ready 2008 * before returning. 2009 * This function does not select/unselect the CS line. 2010 * 2011 * Returns 0 on success, a negative error code otherwise. 2012 */ 2013 int nand_reset_op(struct nand_chip *chip) 2014 { 2015 if (nand_has_exec_op(chip)) { 2016 const struct nand_interface_config *conf = 2017 nand_get_interface_config(chip); 2018 struct nand_op_instr instrs[] = { 2019 NAND_OP_CMD(NAND_CMD_RESET, 2020 NAND_COMMON_TIMING_NS(conf, tWB_max)), 2021 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max), 2022 0), 2023 }; 2024 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2025 2026 return nand_exec_op(chip, &op); 2027 } 2028 2029 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); 2030 2031 return 0; 2032 } 2033 EXPORT_SYMBOL_GPL(nand_reset_op); 2034 2035 /** 2036 * nand_read_data_op - Read data from the NAND 2037 * @chip: The NAND chip 2038 * @buf: buffer used to store the data 2039 * @len: length of the buffer 2040 * @force_8bit: force 8-bit bus access 2041 * @check_only: do not actually run the command, only checks if the 2042 * controller driver supports it 2043 * 2044 * This function does a raw data read on the bus. Usually used after launching 2045 * another NAND operation like nand_read_page_op(). 2046 * This function does not select/unselect the CS line. 2047 * 2048 * Returns 0 on success, a negative error code otherwise. 2049 */ 2050 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 2051 bool force_8bit, bool check_only) 2052 { 2053 if (!len || !buf) 2054 return -EINVAL; 2055 2056 if (nand_has_exec_op(chip)) { 2057 const struct nand_interface_config *conf = 2058 nand_get_interface_config(chip); 2059 struct nand_op_instr instrs[] = { 2060 NAND_OP_DATA_IN(len, buf, 0), 2061 }; 2062 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2063 u8 *ddrbuf = NULL; 2064 int ret, i; 2065 2066 instrs[0].ctx.data.force_8bit = force_8bit; 2067 2068 /* 2069 * Parameter payloads (ID, status, features, etc) do not go 2070 * through the same pipeline as regular data, hence the 2071 * force_8bit flag must be set and this also indicates that in 2072 * case NV-DDR timings are being used the data will be received 2073 * twice. 2074 */ 2075 if (force_8bit && nand_interface_is_nvddr(conf)) { 2076 ddrbuf = kzalloc(len * 2, GFP_KERNEL); 2077 if (!ddrbuf) 2078 return -ENOMEM; 2079 2080 instrs[0].ctx.data.len *= 2; 2081 instrs[0].ctx.data.buf.in = ddrbuf; 2082 } 2083 2084 if (check_only) { 2085 ret = nand_check_op(chip, &op); 2086 kfree(ddrbuf); 2087 return ret; 2088 } 2089 2090 ret = nand_exec_op(chip, &op); 2091 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) { 2092 u8 *dst = buf; 2093 2094 for (i = 0; i < len; i++) 2095 dst[i] = ddrbuf[i * 2]; 2096 } 2097 2098 kfree(ddrbuf); 2099 2100 return ret; 2101 } 2102 2103 if (check_only) 2104 return 0; 2105 2106 if (force_8bit) { 2107 u8 *p = buf; 2108 unsigned int i; 2109 2110 for (i = 0; i < len; i++) 2111 p[i] = chip->legacy.read_byte(chip); 2112 } else { 2113 chip->legacy.read_buf(chip, buf, len); 2114 } 2115 2116 return 0; 2117 } 2118 EXPORT_SYMBOL_GPL(nand_read_data_op); 2119 2120 /** 2121 * nand_write_data_op - Write data from the NAND 2122 * @chip: The NAND chip 2123 * @buf: buffer containing the data to send on the bus 2124 * @len: length of the buffer 2125 * @force_8bit: force 8-bit bus access 2126 * 2127 * This function does a raw data write on the bus. Usually used after launching 2128 * another NAND operation like nand_write_page_begin_op(). 2129 * This function does not select/unselect the CS line. 2130 * 2131 * Returns 0 on success, a negative error code otherwise. 2132 */ 2133 int nand_write_data_op(struct nand_chip *chip, const void *buf, 2134 unsigned int len, bool force_8bit) 2135 { 2136 if (!len || !buf) 2137 return -EINVAL; 2138 2139 if (nand_has_exec_op(chip)) { 2140 struct nand_op_instr instrs[] = { 2141 NAND_OP_DATA_OUT(len, buf, 0), 2142 }; 2143 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2144 2145 instrs[0].ctx.data.force_8bit = force_8bit; 2146 2147 return nand_exec_op(chip, &op); 2148 } 2149 2150 if (force_8bit) { 2151 const u8 *p = buf; 2152 unsigned int i; 2153 2154 for (i = 0; i < len; i++) 2155 chip->legacy.write_byte(chip, p[i]); 2156 } else { 2157 chip->legacy.write_buf(chip, buf, len); 2158 } 2159 2160 return 0; 2161 } 2162 EXPORT_SYMBOL_GPL(nand_write_data_op); 2163 2164 /** 2165 * struct nand_op_parser_ctx - Context used by the parser 2166 * @instrs: array of all the instructions that must be addressed 2167 * @ninstrs: length of the @instrs array 2168 * @subop: Sub-operation to be passed to the NAND controller 2169 * 2170 * This structure is used by the core to split NAND operations into 2171 * sub-operations that can be handled by the NAND controller. 2172 */ 2173 struct nand_op_parser_ctx { 2174 const struct nand_op_instr *instrs; 2175 unsigned int ninstrs; 2176 struct nand_subop subop; 2177 }; 2178 2179 /** 2180 * nand_op_parser_must_split_instr - Checks if an instruction must be split 2181 * @pat: the parser pattern element that matches @instr 2182 * @instr: pointer to the instruction to check 2183 * @start_offset: this is an in/out parameter. If @instr has already been 2184 * split, then @start_offset is the offset from which to start 2185 * (either an address cycle or an offset in the data buffer). 2186 * Conversely, if the function returns true (ie. instr must be 2187 * split), this parameter is updated to point to the first 2188 * data/address cycle that has not been taken care of. 2189 * 2190 * Some NAND controllers are limited and cannot send X address cycles with a 2191 * unique operation, or cannot read/write more than Y bytes at the same time. 2192 * In this case, split the instruction that does not fit in a single 2193 * controller-operation into two or more chunks. 2194 * 2195 * Returns true if the instruction must be split, false otherwise. 2196 * The @start_offset parameter is also updated to the offset at which the next 2197 * bundle of instruction must start (if an address or a data instruction). 2198 */ 2199 static bool 2200 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 2201 const struct nand_op_instr *instr, 2202 unsigned int *start_offset) 2203 { 2204 switch (pat->type) { 2205 case NAND_OP_ADDR_INSTR: 2206 if (!pat->ctx.addr.maxcycles) 2207 break; 2208 2209 if (instr->ctx.addr.naddrs - *start_offset > 2210 pat->ctx.addr.maxcycles) { 2211 *start_offset += pat->ctx.addr.maxcycles; 2212 return true; 2213 } 2214 break; 2215 2216 case NAND_OP_DATA_IN_INSTR: 2217 case NAND_OP_DATA_OUT_INSTR: 2218 if (!pat->ctx.data.maxlen) 2219 break; 2220 2221 if (instr->ctx.data.len - *start_offset > 2222 pat->ctx.data.maxlen) { 2223 *start_offset += pat->ctx.data.maxlen; 2224 return true; 2225 } 2226 break; 2227 2228 default: 2229 break; 2230 } 2231 2232 return false; 2233 } 2234 2235 /** 2236 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2237 * remaining in the parser context 2238 * @pat: the pattern to test 2239 * @ctx: the parser context structure to match with the pattern @pat 2240 * 2241 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2242 * Returns true if this is the case, false ortherwise. When true is returned, 2243 * @ctx->subop is updated with the set of instructions to be passed to the 2244 * controller driver. 2245 */ 2246 static bool 2247 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2248 struct nand_op_parser_ctx *ctx) 2249 { 2250 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2251 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2252 const struct nand_op_instr *instr = ctx->subop.instrs; 2253 unsigned int i, ninstrs; 2254 2255 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2256 /* 2257 * The pattern instruction does not match the operation 2258 * instruction. If the instruction is marked optional in the 2259 * pattern definition, we skip the pattern element and continue 2260 * to the next one. If the element is mandatory, there's no 2261 * match and we can return false directly. 2262 */ 2263 if (instr->type != pat->elems[i].type) { 2264 if (!pat->elems[i].optional) 2265 return false; 2266 2267 continue; 2268 } 2269 2270 /* 2271 * Now check the pattern element constraints. If the pattern is 2272 * not able to handle the whole instruction in a single step, 2273 * we have to split it. 2274 * The last_instr_end_off value comes back updated to point to 2275 * the position where we have to split the instruction (the 2276 * start of the next subop chunk). 2277 */ 2278 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2279 &instr_offset)) { 2280 ninstrs++; 2281 i++; 2282 break; 2283 } 2284 2285 instr++; 2286 ninstrs++; 2287 instr_offset = 0; 2288 } 2289 2290 /* 2291 * This can happen if all instructions of a pattern are optional. 2292 * Still, if there's not at least one instruction handled by this 2293 * pattern, this is not a match, and we should try the next one (if 2294 * any). 2295 */ 2296 if (!ninstrs) 2297 return false; 2298 2299 /* 2300 * We had a match on the pattern head, but the pattern may be longer 2301 * than the instructions we're asked to execute. We need to make sure 2302 * there's no mandatory elements in the pattern tail. 2303 */ 2304 for (; i < pat->nelems; i++) { 2305 if (!pat->elems[i].optional) 2306 return false; 2307 } 2308 2309 /* 2310 * We have a match: update the subop structure accordingly and return 2311 * true. 2312 */ 2313 ctx->subop.ninstrs = ninstrs; 2314 ctx->subop.last_instr_end_off = instr_offset; 2315 2316 return true; 2317 } 2318 2319 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2320 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2321 { 2322 const struct nand_op_instr *instr; 2323 char *prefix = " "; 2324 unsigned int i; 2325 2326 pr_debug("executing subop (CS%d):\n", ctx->subop.cs); 2327 2328 for (i = 0; i < ctx->ninstrs; i++) { 2329 instr = &ctx->instrs[i]; 2330 2331 if (instr == &ctx->subop.instrs[0]) 2332 prefix = " ->"; 2333 2334 nand_op_trace(prefix, instr); 2335 2336 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2337 prefix = " "; 2338 } 2339 } 2340 #else 2341 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2342 { 2343 /* NOP */ 2344 } 2345 #endif 2346 2347 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, 2348 const struct nand_op_parser_ctx *b) 2349 { 2350 if (a->subop.ninstrs < b->subop.ninstrs) 2351 return -1; 2352 else if (a->subop.ninstrs > b->subop.ninstrs) 2353 return 1; 2354 2355 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) 2356 return -1; 2357 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) 2358 return 1; 2359 2360 return 0; 2361 } 2362 2363 /** 2364 * nand_op_parser_exec_op - exec_op parser 2365 * @chip: the NAND chip 2366 * @parser: patterns description provided by the controller driver 2367 * @op: the NAND operation to address 2368 * @check_only: when true, the function only checks if @op can be handled but 2369 * does not execute the operation 2370 * 2371 * Helper function designed to ease integration of NAND controller drivers that 2372 * only support a limited set of instruction sequences. The supported sequences 2373 * are described in @parser, and the framework takes care of splitting @op into 2374 * multiple sub-operations (if required) and pass them back to the ->exec() 2375 * callback of the matching pattern if @check_only is set to false. 2376 * 2377 * NAND controller drivers should call this function from their own ->exec_op() 2378 * implementation. 2379 * 2380 * Returns 0 on success, a negative error code otherwise. A failure can be 2381 * caused by an unsupported operation (none of the supported patterns is able 2382 * to handle the requested operation), or an error returned by one of the 2383 * matching pattern->exec() hook. 2384 */ 2385 int nand_op_parser_exec_op(struct nand_chip *chip, 2386 const struct nand_op_parser *parser, 2387 const struct nand_operation *op, bool check_only) 2388 { 2389 struct nand_op_parser_ctx ctx = { 2390 .subop.cs = op->cs, 2391 .subop.instrs = op->instrs, 2392 .instrs = op->instrs, 2393 .ninstrs = op->ninstrs, 2394 }; 2395 unsigned int i; 2396 2397 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2398 const struct nand_op_parser_pattern *pattern; 2399 struct nand_op_parser_ctx best_ctx; 2400 int ret, best_pattern = -1; 2401 2402 for (i = 0; i < parser->npatterns; i++) { 2403 struct nand_op_parser_ctx test_ctx = ctx; 2404 2405 pattern = &parser->patterns[i]; 2406 if (!nand_op_parser_match_pat(pattern, &test_ctx)) 2407 continue; 2408 2409 if (best_pattern >= 0 && 2410 nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) 2411 continue; 2412 2413 best_pattern = i; 2414 best_ctx = test_ctx; 2415 } 2416 2417 if (best_pattern < 0) { 2418 pr_debug("->exec_op() parser: pattern not found!\n"); 2419 return -ENOTSUPP; 2420 } 2421 2422 ctx = best_ctx; 2423 nand_op_parser_trace(&ctx); 2424 2425 if (!check_only) { 2426 pattern = &parser->patterns[best_pattern]; 2427 ret = pattern->exec(chip, &ctx.subop); 2428 if (ret) 2429 return ret; 2430 } 2431 2432 /* 2433 * Update the context structure by pointing to the start of the 2434 * next subop. 2435 */ 2436 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2437 if (ctx.subop.last_instr_end_off) 2438 ctx.subop.instrs -= 1; 2439 2440 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2441 } 2442 2443 return 0; 2444 } 2445 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2446 2447 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2448 { 2449 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2450 instr->type == NAND_OP_DATA_OUT_INSTR); 2451 } 2452 2453 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2454 unsigned int instr_idx) 2455 { 2456 return subop && instr_idx < subop->ninstrs; 2457 } 2458 2459 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2460 unsigned int instr_idx) 2461 { 2462 if (instr_idx) 2463 return 0; 2464 2465 return subop->first_instr_start_off; 2466 } 2467 2468 /** 2469 * nand_subop_get_addr_start_off - Get the start offset in an address array 2470 * @subop: The entire sub-operation 2471 * @instr_idx: Index of the instruction inside the sub-operation 2472 * 2473 * During driver development, one could be tempted to directly use the 2474 * ->addr.addrs field of address instructions. This is wrong as address 2475 * instructions might be split. 2476 * 2477 * Given an address instruction, returns the offset of the first cycle to issue. 2478 */ 2479 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2480 unsigned int instr_idx) 2481 { 2482 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2483 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2484 return 0; 2485 2486 return nand_subop_get_start_off(subop, instr_idx); 2487 } 2488 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2489 2490 /** 2491 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2492 * @subop: The entire sub-operation 2493 * @instr_idx: Index of the instruction inside the sub-operation 2494 * 2495 * During driver development, one could be tempted to directly use the 2496 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2497 * might be split. 2498 * 2499 * Given an address instruction, returns the number of address cycle to issue. 2500 */ 2501 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2502 unsigned int instr_idx) 2503 { 2504 int start_off, end_off; 2505 2506 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2507 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2508 return 0; 2509 2510 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2511 2512 if (instr_idx == subop->ninstrs - 1 && 2513 subop->last_instr_end_off) 2514 end_off = subop->last_instr_end_off; 2515 else 2516 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2517 2518 return end_off - start_off; 2519 } 2520 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2521 2522 /** 2523 * nand_subop_get_data_start_off - Get the start offset in a data array 2524 * @subop: The entire sub-operation 2525 * @instr_idx: Index of the instruction inside the sub-operation 2526 * 2527 * During driver development, one could be tempted to directly use the 2528 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2529 * instructions might be split. 2530 * 2531 * Given a data instruction, returns the offset to start from. 2532 */ 2533 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2534 unsigned int instr_idx) 2535 { 2536 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2537 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2538 return 0; 2539 2540 return nand_subop_get_start_off(subop, instr_idx); 2541 } 2542 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2543 2544 /** 2545 * nand_subop_get_data_len - Get the number of bytes to retrieve 2546 * @subop: The entire sub-operation 2547 * @instr_idx: Index of the instruction inside the sub-operation 2548 * 2549 * During driver development, one could be tempted to directly use the 2550 * ->data->len field of a data instruction. This is wrong as data instructions 2551 * might be split. 2552 * 2553 * Returns the length of the chunk of data to send/receive. 2554 */ 2555 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2556 unsigned int instr_idx) 2557 { 2558 int start_off = 0, end_off; 2559 2560 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2561 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2562 return 0; 2563 2564 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2565 2566 if (instr_idx == subop->ninstrs - 1 && 2567 subop->last_instr_end_off) 2568 end_off = subop->last_instr_end_off; 2569 else 2570 end_off = subop->instrs[instr_idx].ctx.data.len; 2571 2572 return end_off - start_off; 2573 } 2574 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2575 2576 /** 2577 * nand_reset - Reset and initialize a NAND device 2578 * @chip: The NAND chip 2579 * @chipnr: Internal die id 2580 * 2581 * Save the timings data structure, then apply SDR timings mode 0 (see 2582 * nand_reset_interface for details), do the reset operation, and apply 2583 * back the previous timings. 2584 * 2585 * Returns 0 on success, a negative error code otherwise. 2586 */ 2587 int nand_reset(struct nand_chip *chip, int chipnr) 2588 { 2589 int ret; 2590 2591 ret = nand_reset_interface(chip, chipnr); 2592 if (ret) 2593 return ret; 2594 2595 /* 2596 * The CS line has to be released before we can apply the new NAND 2597 * interface settings, hence this weird nand_select_target() 2598 * nand_deselect_target() dance. 2599 */ 2600 nand_select_target(chip, chipnr); 2601 ret = nand_reset_op(chip); 2602 nand_deselect_target(chip); 2603 if (ret) 2604 return ret; 2605 2606 ret = nand_setup_interface(chip, chipnr); 2607 if (ret) 2608 return ret; 2609 2610 return 0; 2611 } 2612 EXPORT_SYMBOL_GPL(nand_reset); 2613 2614 /** 2615 * nand_get_features - wrapper to perform a GET_FEATURE 2616 * @chip: NAND chip info structure 2617 * @addr: feature address 2618 * @subfeature_param: the subfeature parameters, a four bytes array 2619 * 2620 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2621 * operation cannot be handled. 2622 */ 2623 int nand_get_features(struct nand_chip *chip, int addr, 2624 u8 *subfeature_param) 2625 { 2626 if (!nand_supports_get_features(chip, addr)) 2627 return -ENOTSUPP; 2628 2629 if (chip->legacy.get_features) 2630 return chip->legacy.get_features(chip, addr, subfeature_param); 2631 2632 return nand_get_features_op(chip, addr, subfeature_param); 2633 } 2634 2635 /** 2636 * nand_set_features - wrapper to perform a SET_FEATURE 2637 * @chip: NAND chip info structure 2638 * @addr: feature address 2639 * @subfeature_param: the subfeature parameters, a four bytes array 2640 * 2641 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2642 * operation cannot be handled. 2643 */ 2644 int nand_set_features(struct nand_chip *chip, int addr, 2645 u8 *subfeature_param) 2646 { 2647 if (!nand_supports_set_features(chip, addr)) 2648 return -ENOTSUPP; 2649 2650 if (chip->legacy.set_features) 2651 return chip->legacy.set_features(chip, addr, subfeature_param); 2652 2653 return nand_set_features_op(chip, addr, subfeature_param); 2654 } 2655 2656 /** 2657 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2658 * @buf: buffer to test 2659 * @len: buffer length 2660 * @bitflips_threshold: maximum number of bitflips 2661 * 2662 * Check if a buffer contains only 0xff, which means the underlying region 2663 * has been erased and is ready to be programmed. 2664 * The bitflips_threshold specify the maximum number of bitflips before 2665 * considering the region is not erased. 2666 * Note: The logic of this function has been extracted from the memweight 2667 * implementation, except that nand_check_erased_buf function exit before 2668 * testing the whole buffer if the number of bitflips exceed the 2669 * bitflips_threshold value. 2670 * 2671 * Returns a positive number of bitflips less than or equal to 2672 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2673 * threshold. 2674 */ 2675 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2676 { 2677 const unsigned char *bitmap = buf; 2678 int bitflips = 0; 2679 int weight; 2680 2681 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2682 len--, bitmap++) { 2683 weight = hweight8(*bitmap); 2684 bitflips += BITS_PER_BYTE - weight; 2685 if (unlikely(bitflips > bitflips_threshold)) 2686 return -EBADMSG; 2687 } 2688 2689 for (; len >= sizeof(long); 2690 len -= sizeof(long), bitmap += sizeof(long)) { 2691 unsigned long d = *((unsigned long *)bitmap); 2692 if (d == ~0UL) 2693 continue; 2694 weight = hweight_long(d); 2695 bitflips += BITS_PER_LONG - weight; 2696 if (unlikely(bitflips > bitflips_threshold)) 2697 return -EBADMSG; 2698 } 2699 2700 for (; len > 0; len--, bitmap++) { 2701 weight = hweight8(*bitmap); 2702 bitflips += BITS_PER_BYTE - weight; 2703 if (unlikely(bitflips > bitflips_threshold)) 2704 return -EBADMSG; 2705 } 2706 2707 return bitflips; 2708 } 2709 2710 /** 2711 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2712 * 0xff data 2713 * @data: data buffer to test 2714 * @datalen: data length 2715 * @ecc: ECC buffer 2716 * @ecclen: ECC length 2717 * @extraoob: extra OOB buffer 2718 * @extraooblen: extra OOB length 2719 * @bitflips_threshold: maximum number of bitflips 2720 * 2721 * Check if a data buffer and its associated ECC and OOB data contains only 2722 * 0xff pattern, which means the underlying region has been erased and is 2723 * ready to be programmed. 2724 * The bitflips_threshold specify the maximum number of bitflips before 2725 * considering the region as not erased. 2726 * 2727 * Note: 2728 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2729 * different from the NAND page size. When fixing bitflips, ECC engines will 2730 * report the number of errors per chunk, and the NAND core infrastructure 2731 * expect you to return the maximum number of bitflips for the whole page. 2732 * This is why you should always use this function on a single chunk and 2733 * not on the whole page. After checking each chunk you should update your 2734 * max_bitflips value accordingly. 2735 * 2/ When checking for bitflips in erased pages you should not only check 2736 * the payload data but also their associated ECC data, because a user might 2737 * have programmed almost all bits to 1 but a few. In this case, we 2738 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2739 * this case. 2740 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2741 * data are protected by the ECC engine. 2742 * It could also be used if you support subpages and want to attach some 2743 * extra OOB data to an ECC chunk. 2744 * 2745 * Returns a positive number of bitflips less than or equal to 2746 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2747 * threshold. In case of success, the passed buffers are filled with 0xff. 2748 */ 2749 int nand_check_erased_ecc_chunk(void *data, int datalen, 2750 void *ecc, int ecclen, 2751 void *extraoob, int extraooblen, 2752 int bitflips_threshold) 2753 { 2754 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2755 2756 data_bitflips = nand_check_erased_buf(data, datalen, 2757 bitflips_threshold); 2758 if (data_bitflips < 0) 2759 return data_bitflips; 2760 2761 bitflips_threshold -= data_bitflips; 2762 2763 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2764 if (ecc_bitflips < 0) 2765 return ecc_bitflips; 2766 2767 bitflips_threshold -= ecc_bitflips; 2768 2769 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2770 bitflips_threshold); 2771 if (extraoob_bitflips < 0) 2772 return extraoob_bitflips; 2773 2774 if (data_bitflips) 2775 memset(data, 0xff, datalen); 2776 2777 if (ecc_bitflips) 2778 memset(ecc, 0xff, ecclen); 2779 2780 if (extraoob_bitflips) 2781 memset(extraoob, 0xff, extraooblen); 2782 2783 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2784 } 2785 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2786 2787 /** 2788 * nand_read_page_raw_notsupp - dummy read raw page function 2789 * @chip: nand chip info structure 2790 * @buf: buffer to store read data 2791 * @oob_required: caller requires OOB data read to chip->oob_poi 2792 * @page: page number to read 2793 * 2794 * Returns -ENOTSUPP unconditionally. 2795 */ 2796 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, 2797 int oob_required, int page) 2798 { 2799 return -ENOTSUPP; 2800 } 2801 2802 /** 2803 * nand_read_page_raw - [INTERN] read raw page data without ecc 2804 * @chip: nand chip info structure 2805 * @buf: buffer to store read data 2806 * @oob_required: caller requires OOB data read to chip->oob_poi 2807 * @page: page number to read 2808 * 2809 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2810 */ 2811 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 2812 int page) 2813 { 2814 struct mtd_info *mtd = nand_to_mtd(chip); 2815 int ret; 2816 2817 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2818 if (ret) 2819 return ret; 2820 2821 if (oob_required) { 2822 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2823 false, false); 2824 if (ret) 2825 return ret; 2826 } 2827 2828 return 0; 2829 } 2830 EXPORT_SYMBOL(nand_read_page_raw); 2831 2832 /** 2833 * nand_monolithic_read_page_raw - Monolithic page read in raw mode 2834 * @chip: NAND chip info structure 2835 * @buf: buffer to store read data 2836 * @oob_required: caller requires OOB data read to chip->oob_poi 2837 * @page: page number to read 2838 * 2839 * This is a raw page read, ie. without any error detection/correction. 2840 * Monolithic means we are requesting all the relevant data (main plus 2841 * eventually OOB) to be loaded in the NAND cache and sent over the 2842 * bus (from the NAND chip to the NAND controller) in a single 2843 * operation. This is an alternative to nand_read_page_raw(), which 2844 * first reads the main data, and if the OOB data is requested too, 2845 * then reads more data on the bus. 2846 */ 2847 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf, 2848 int oob_required, int page) 2849 { 2850 struct mtd_info *mtd = nand_to_mtd(chip); 2851 unsigned int size = mtd->writesize; 2852 u8 *read_buf = buf; 2853 int ret; 2854 2855 if (oob_required) { 2856 size += mtd->oobsize; 2857 2858 if (buf != chip->data_buf) 2859 read_buf = nand_get_data_buf(chip); 2860 } 2861 2862 ret = nand_read_page_op(chip, page, 0, read_buf, size); 2863 if (ret) 2864 return ret; 2865 2866 if (buf != chip->data_buf) 2867 memcpy(buf, read_buf, mtd->writesize); 2868 2869 return 0; 2870 } 2871 EXPORT_SYMBOL(nand_monolithic_read_page_raw); 2872 2873 /** 2874 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 2875 * @chip: nand chip info structure 2876 * @buf: buffer to store read data 2877 * @oob_required: caller requires OOB data read to chip->oob_poi 2878 * @page: page number to read 2879 * 2880 * We need a special oob layout and handling even when OOB isn't used. 2881 */ 2882 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, 2883 int oob_required, int page) 2884 { 2885 struct mtd_info *mtd = nand_to_mtd(chip); 2886 int eccsize = chip->ecc.size; 2887 int eccbytes = chip->ecc.bytes; 2888 uint8_t *oob = chip->oob_poi; 2889 int steps, size, ret; 2890 2891 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2892 if (ret) 2893 return ret; 2894 2895 for (steps = chip->ecc.steps; steps > 0; steps--) { 2896 ret = nand_read_data_op(chip, buf, eccsize, false, false); 2897 if (ret) 2898 return ret; 2899 2900 buf += eccsize; 2901 2902 if (chip->ecc.prepad) { 2903 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 2904 false, false); 2905 if (ret) 2906 return ret; 2907 2908 oob += chip->ecc.prepad; 2909 } 2910 2911 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 2912 if (ret) 2913 return ret; 2914 2915 oob += eccbytes; 2916 2917 if (chip->ecc.postpad) { 2918 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 2919 false, false); 2920 if (ret) 2921 return ret; 2922 2923 oob += chip->ecc.postpad; 2924 } 2925 } 2926 2927 size = mtd->oobsize - (oob - chip->oob_poi); 2928 if (size) { 2929 ret = nand_read_data_op(chip, oob, size, false, false); 2930 if (ret) 2931 return ret; 2932 } 2933 2934 return 0; 2935 } 2936 2937 /** 2938 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 2939 * @chip: nand chip info structure 2940 * @buf: buffer to store read data 2941 * @oob_required: caller requires OOB data read to chip->oob_poi 2942 * @page: page number to read 2943 */ 2944 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, 2945 int oob_required, int page) 2946 { 2947 struct mtd_info *mtd = nand_to_mtd(chip); 2948 int i, eccsize = chip->ecc.size, ret; 2949 int eccbytes = chip->ecc.bytes; 2950 int eccsteps = chip->ecc.steps; 2951 uint8_t *p = buf; 2952 uint8_t *ecc_calc = chip->ecc.calc_buf; 2953 uint8_t *ecc_code = chip->ecc.code_buf; 2954 unsigned int max_bitflips = 0; 2955 2956 chip->ecc.read_page_raw(chip, buf, 1, page); 2957 2958 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 2959 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2960 2961 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2962 chip->ecc.total); 2963 if (ret) 2964 return ret; 2965 2966 eccsteps = chip->ecc.steps; 2967 p = buf; 2968 2969 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2970 int stat; 2971 2972 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2973 if (stat < 0) { 2974 mtd->ecc_stats.failed++; 2975 } else { 2976 mtd->ecc_stats.corrected += stat; 2977 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2978 } 2979 } 2980 return max_bitflips; 2981 } 2982 2983 /** 2984 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 2985 * @chip: nand chip info structure 2986 * @data_offs: offset of requested data within the page 2987 * @readlen: data length 2988 * @bufpoi: buffer to store read data 2989 * @page: page number to read 2990 */ 2991 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, 2992 uint32_t readlen, uint8_t *bufpoi, int page) 2993 { 2994 struct mtd_info *mtd = nand_to_mtd(chip); 2995 int start_step, end_step, num_steps, ret; 2996 uint8_t *p; 2997 int data_col_addr, i, gaps = 0; 2998 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 2999 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 3000 int index, section = 0; 3001 unsigned int max_bitflips = 0; 3002 struct mtd_oob_region oobregion = { }; 3003 3004 /* Column address within the page aligned to ECC size (256bytes) */ 3005 start_step = data_offs / chip->ecc.size; 3006 end_step = (data_offs + readlen - 1) / chip->ecc.size; 3007 num_steps = end_step - start_step + 1; 3008 index = start_step * chip->ecc.bytes; 3009 3010 /* Data size aligned to ECC ecc.size */ 3011 datafrag_len = num_steps * chip->ecc.size; 3012 eccfrag_len = num_steps * chip->ecc.bytes; 3013 3014 data_col_addr = start_step * chip->ecc.size; 3015 /* If we read not a page aligned data */ 3016 p = bufpoi + data_col_addr; 3017 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 3018 if (ret) 3019 return ret; 3020 3021 /* Calculate ECC */ 3022 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 3023 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); 3024 3025 /* 3026 * The performance is faster if we position offsets according to 3027 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 3028 */ 3029 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 3030 if (ret) 3031 return ret; 3032 3033 if (oobregion.length < eccfrag_len) 3034 gaps = 1; 3035 3036 if (gaps) { 3037 ret = nand_change_read_column_op(chip, mtd->writesize, 3038 chip->oob_poi, mtd->oobsize, 3039 false); 3040 if (ret) 3041 return ret; 3042 } else { 3043 /* 3044 * Send the command to read the particular ECC bytes take care 3045 * about buswidth alignment in read_buf. 3046 */ 3047 aligned_pos = oobregion.offset & ~(busw - 1); 3048 aligned_len = eccfrag_len; 3049 if (oobregion.offset & (busw - 1)) 3050 aligned_len++; 3051 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 3052 (busw - 1)) 3053 aligned_len++; 3054 3055 ret = nand_change_read_column_op(chip, 3056 mtd->writesize + aligned_pos, 3057 &chip->oob_poi[aligned_pos], 3058 aligned_len, false); 3059 if (ret) 3060 return ret; 3061 } 3062 3063 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 3064 chip->oob_poi, index, eccfrag_len); 3065 if (ret) 3066 return ret; 3067 3068 p = bufpoi + data_col_addr; 3069 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 3070 int stat; 3071 3072 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], 3073 &chip->ecc.calc_buf[i]); 3074 if (stat == -EBADMSG && 3075 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3076 /* check for empty pages with bitflips */ 3077 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3078 &chip->ecc.code_buf[i], 3079 chip->ecc.bytes, 3080 NULL, 0, 3081 chip->ecc.strength); 3082 } 3083 3084 if (stat < 0) { 3085 mtd->ecc_stats.failed++; 3086 } else { 3087 mtd->ecc_stats.corrected += stat; 3088 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3089 } 3090 } 3091 return max_bitflips; 3092 } 3093 3094 /** 3095 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 3096 * @chip: nand chip info structure 3097 * @buf: buffer to store read data 3098 * @oob_required: caller requires OOB data read to chip->oob_poi 3099 * @page: page number to read 3100 * 3101 * Not for syndrome calculating ECC controllers which need a special oob layout. 3102 */ 3103 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, 3104 int oob_required, int page) 3105 { 3106 struct mtd_info *mtd = nand_to_mtd(chip); 3107 int i, eccsize = chip->ecc.size, ret; 3108 int eccbytes = chip->ecc.bytes; 3109 int eccsteps = chip->ecc.steps; 3110 uint8_t *p = buf; 3111 uint8_t *ecc_calc = chip->ecc.calc_buf; 3112 uint8_t *ecc_code = chip->ecc.code_buf; 3113 unsigned int max_bitflips = 0; 3114 3115 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3116 if (ret) 3117 return ret; 3118 3119 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3120 chip->ecc.hwctl(chip, NAND_ECC_READ); 3121 3122 ret = nand_read_data_op(chip, p, eccsize, false, false); 3123 if (ret) 3124 return ret; 3125 3126 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3127 } 3128 3129 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, 3130 false); 3131 if (ret) 3132 return ret; 3133 3134 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3135 chip->ecc.total); 3136 if (ret) 3137 return ret; 3138 3139 eccsteps = chip->ecc.steps; 3140 p = buf; 3141 3142 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3143 int stat; 3144 3145 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 3146 if (stat == -EBADMSG && 3147 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3148 /* check for empty pages with bitflips */ 3149 stat = nand_check_erased_ecc_chunk(p, eccsize, 3150 &ecc_code[i], eccbytes, 3151 NULL, 0, 3152 chip->ecc.strength); 3153 } 3154 3155 if (stat < 0) { 3156 mtd->ecc_stats.failed++; 3157 } else { 3158 mtd->ecc_stats.corrected += stat; 3159 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3160 } 3161 } 3162 return max_bitflips; 3163 } 3164 3165 /** 3166 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC 3167 * data read from OOB area 3168 * @chip: nand chip info structure 3169 * @buf: buffer to store read data 3170 * @oob_required: caller requires OOB data read to chip->oob_poi 3171 * @page: page number to read 3172 * 3173 * Hardware ECC for large page chips, which requires the ECC data to be 3174 * extracted from the OOB before the actual data is read. 3175 */ 3176 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, 3177 int oob_required, int page) 3178 { 3179 struct mtd_info *mtd = nand_to_mtd(chip); 3180 int i, eccsize = chip->ecc.size, ret; 3181 int eccbytes = chip->ecc.bytes; 3182 int eccsteps = chip->ecc.steps; 3183 uint8_t *p = buf; 3184 uint8_t *ecc_code = chip->ecc.code_buf; 3185 unsigned int max_bitflips = 0; 3186 3187 /* Read the OOB area first */ 3188 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3189 if (ret) 3190 return ret; 3191 3192 /* Move read cursor to start of page */ 3193 ret = nand_change_read_column_op(chip, 0, NULL, 0, false); 3194 if (ret) 3195 return ret; 3196 3197 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3198 chip->ecc.total); 3199 if (ret) 3200 return ret; 3201 3202 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3203 int stat; 3204 3205 chip->ecc.hwctl(chip, NAND_ECC_READ); 3206 3207 ret = nand_read_data_op(chip, p, eccsize, false, false); 3208 if (ret) 3209 return ret; 3210 3211 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); 3212 if (stat == -EBADMSG && 3213 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3214 /* check for empty pages with bitflips */ 3215 stat = nand_check_erased_ecc_chunk(p, eccsize, 3216 &ecc_code[i], 3217 eccbytes, NULL, 0, 3218 chip->ecc.strength); 3219 } 3220 3221 if (stat < 0) { 3222 mtd->ecc_stats.failed++; 3223 } else { 3224 mtd->ecc_stats.corrected += stat; 3225 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3226 } 3227 } 3228 return max_bitflips; 3229 } 3230 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first); 3231 3232 /** 3233 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 3234 * @chip: nand chip info structure 3235 * @buf: buffer to store read data 3236 * @oob_required: caller requires OOB data read to chip->oob_poi 3237 * @page: page number to read 3238 * 3239 * The hw generator calculates the error syndrome automatically. Therefore we 3240 * need a special oob layout and handling. 3241 */ 3242 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 3243 int oob_required, int page) 3244 { 3245 struct mtd_info *mtd = nand_to_mtd(chip); 3246 int ret, i, eccsize = chip->ecc.size; 3247 int eccbytes = chip->ecc.bytes; 3248 int eccsteps = chip->ecc.steps; 3249 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 3250 uint8_t *p = buf; 3251 uint8_t *oob = chip->oob_poi; 3252 unsigned int max_bitflips = 0; 3253 3254 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3255 if (ret) 3256 return ret; 3257 3258 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3259 int stat; 3260 3261 chip->ecc.hwctl(chip, NAND_ECC_READ); 3262 3263 ret = nand_read_data_op(chip, p, eccsize, false, false); 3264 if (ret) 3265 return ret; 3266 3267 if (chip->ecc.prepad) { 3268 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3269 false, false); 3270 if (ret) 3271 return ret; 3272 3273 oob += chip->ecc.prepad; 3274 } 3275 3276 chip->ecc.hwctl(chip, NAND_ECC_READSYN); 3277 3278 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 3279 if (ret) 3280 return ret; 3281 3282 stat = chip->ecc.correct(chip, p, oob, NULL); 3283 3284 oob += eccbytes; 3285 3286 if (chip->ecc.postpad) { 3287 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3288 false, false); 3289 if (ret) 3290 return ret; 3291 3292 oob += chip->ecc.postpad; 3293 } 3294 3295 if (stat == -EBADMSG && 3296 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3297 /* check for empty pages with bitflips */ 3298 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3299 oob - eccpadbytes, 3300 eccpadbytes, 3301 NULL, 0, 3302 chip->ecc.strength); 3303 } 3304 3305 if (stat < 0) { 3306 mtd->ecc_stats.failed++; 3307 } else { 3308 mtd->ecc_stats.corrected += stat; 3309 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3310 } 3311 } 3312 3313 /* Calculate remaining oob bytes */ 3314 i = mtd->oobsize - (oob - chip->oob_poi); 3315 if (i) { 3316 ret = nand_read_data_op(chip, oob, i, false, false); 3317 if (ret) 3318 return ret; 3319 } 3320 3321 return max_bitflips; 3322 } 3323 3324 /** 3325 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3326 * @chip: NAND chip object 3327 * @oob: oob destination address 3328 * @ops: oob ops structure 3329 * @len: size of oob to transfer 3330 */ 3331 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, 3332 struct mtd_oob_ops *ops, size_t len) 3333 { 3334 struct mtd_info *mtd = nand_to_mtd(chip); 3335 int ret; 3336 3337 switch (ops->mode) { 3338 3339 case MTD_OPS_PLACE_OOB: 3340 case MTD_OPS_RAW: 3341 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3342 return oob + len; 3343 3344 case MTD_OPS_AUTO_OOB: 3345 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3346 ops->ooboffs, len); 3347 BUG_ON(ret); 3348 return oob + len; 3349 3350 default: 3351 BUG(); 3352 } 3353 return NULL; 3354 } 3355 3356 /** 3357 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3358 * @chip: NAND chip object 3359 * @retry_mode: the retry mode to use 3360 * 3361 * Some vendors supply a special command to shift the Vt threshold, to be used 3362 * when there are too many bitflips in a page (i.e., ECC error). After setting 3363 * a new threshold, the host should retry reading the page. 3364 */ 3365 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) 3366 { 3367 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3368 3369 if (retry_mode >= chip->read_retries) 3370 return -EINVAL; 3371 3372 if (!chip->ops.setup_read_retry) 3373 return -EOPNOTSUPP; 3374 3375 return chip->ops.setup_read_retry(chip, retry_mode); 3376 } 3377 3378 static void nand_wait_readrdy(struct nand_chip *chip) 3379 { 3380 const struct nand_interface_config *conf; 3381 3382 if (!(chip->options & NAND_NEED_READRDY)) 3383 return; 3384 3385 conf = nand_get_interface_config(chip); 3386 WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0)); 3387 } 3388 3389 /** 3390 * nand_do_read_ops - [INTERN] Read data with ECC 3391 * @chip: NAND chip object 3392 * @from: offset to read from 3393 * @ops: oob ops structure 3394 * 3395 * Internal function. Called with chip held. 3396 */ 3397 static int nand_do_read_ops(struct nand_chip *chip, loff_t from, 3398 struct mtd_oob_ops *ops) 3399 { 3400 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3401 struct mtd_info *mtd = nand_to_mtd(chip); 3402 int ret = 0; 3403 uint32_t readlen = ops->len; 3404 uint32_t oobreadlen = ops->ooblen; 3405 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3406 3407 uint8_t *bufpoi, *oob, *buf; 3408 int use_bounce_buf; 3409 unsigned int max_bitflips = 0; 3410 int retry_mode = 0; 3411 bool ecc_fail = false; 3412 3413 /* Check if the region is secured */ 3414 if (nand_region_is_secured(chip, from, readlen)) 3415 return -EIO; 3416 3417 chipnr = (int)(from >> chip->chip_shift); 3418 nand_select_target(chip, chipnr); 3419 3420 realpage = (int)(from >> chip->page_shift); 3421 page = realpage & chip->pagemask; 3422 3423 col = (int)(from & (mtd->writesize - 1)); 3424 3425 buf = ops->datbuf; 3426 oob = ops->oobbuf; 3427 oob_required = oob ? 1 : 0; 3428 3429 while (1) { 3430 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats; 3431 3432 bytes = min(mtd->writesize - col, readlen); 3433 aligned = (bytes == mtd->writesize); 3434 3435 if (!aligned) 3436 use_bounce_buf = 1; 3437 else if (chip->options & NAND_USES_DMA) 3438 use_bounce_buf = !virt_addr_valid(buf) || 3439 !IS_ALIGNED((unsigned long)buf, 3440 chip->buf_align); 3441 else 3442 use_bounce_buf = 0; 3443 3444 /* Is the current page in the buffer? */ 3445 if (realpage != chip->pagecache.page || oob) { 3446 bufpoi = use_bounce_buf ? chip->data_buf : buf; 3447 3448 if (use_bounce_buf && aligned) 3449 pr_debug("%s: using read bounce buffer for buf@%p\n", 3450 __func__, buf); 3451 3452 read_retry: 3453 /* 3454 * Now read the page into the buffer. Absent an error, 3455 * the read methods return max bitflips per ecc step. 3456 */ 3457 if (unlikely(ops->mode == MTD_OPS_RAW)) 3458 ret = chip->ecc.read_page_raw(chip, bufpoi, 3459 oob_required, 3460 page); 3461 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3462 !oob) 3463 ret = chip->ecc.read_subpage(chip, col, bytes, 3464 bufpoi, page); 3465 else 3466 ret = chip->ecc.read_page(chip, bufpoi, 3467 oob_required, page); 3468 if (ret < 0) { 3469 if (use_bounce_buf) 3470 /* Invalidate page cache */ 3471 chip->pagecache.page = -1; 3472 break; 3473 } 3474 3475 /* 3476 * Copy back the data in the initial buffer when reading 3477 * partial pages or when a bounce buffer is required. 3478 */ 3479 if (use_bounce_buf) { 3480 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3481 !(mtd->ecc_stats.failed - ecc_stats.failed) && 3482 (ops->mode != MTD_OPS_RAW)) { 3483 chip->pagecache.page = realpage; 3484 chip->pagecache.bitflips = ret; 3485 } else { 3486 /* Invalidate page cache */ 3487 chip->pagecache.page = -1; 3488 } 3489 memcpy(buf, bufpoi + col, bytes); 3490 } 3491 3492 if (unlikely(oob)) { 3493 int toread = min(oobreadlen, max_oobsize); 3494 3495 if (toread) { 3496 oob = nand_transfer_oob(chip, oob, ops, 3497 toread); 3498 oobreadlen -= toread; 3499 } 3500 } 3501 3502 nand_wait_readrdy(chip); 3503 3504 if (mtd->ecc_stats.failed - ecc_stats.failed) { 3505 if (retry_mode + 1 < chip->read_retries) { 3506 retry_mode++; 3507 ret = nand_setup_read_retry(chip, 3508 retry_mode); 3509 if (ret < 0) 3510 break; 3511 3512 /* Reset ecc_stats; retry */ 3513 mtd->ecc_stats = ecc_stats; 3514 goto read_retry; 3515 } else { 3516 /* No more retry modes; real failure */ 3517 ecc_fail = true; 3518 } 3519 } 3520 3521 buf += bytes; 3522 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3523 } else { 3524 memcpy(buf, chip->data_buf + col, bytes); 3525 buf += bytes; 3526 max_bitflips = max_t(unsigned int, max_bitflips, 3527 chip->pagecache.bitflips); 3528 } 3529 3530 readlen -= bytes; 3531 3532 /* Reset to retry mode 0 */ 3533 if (retry_mode) { 3534 ret = nand_setup_read_retry(chip, 0); 3535 if (ret < 0) 3536 break; 3537 retry_mode = 0; 3538 } 3539 3540 if (!readlen) 3541 break; 3542 3543 /* For subsequent reads align to page boundary */ 3544 col = 0; 3545 /* Increment page address */ 3546 realpage++; 3547 3548 page = realpage & chip->pagemask; 3549 /* Check, if we cross a chip boundary */ 3550 if (!page) { 3551 chipnr++; 3552 nand_deselect_target(chip); 3553 nand_select_target(chip, chipnr); 3554 } 3555 } 3556 nand_deselect_target(chip); 3557 3558 ops->retlen = ops->len - (size_t) readlen; 3559 if (oob) 3560 ops->oobretlen = ops->ooblen - oobreadlen; 3561 3562 if (ret < 0) 3563 return ret; 3564 3565 if (ecc_fail) 3566 return -EBADMSG; 3567 3568 return max_bitflips; 3569 } 3570 3571 /** 3572 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3573 * @chip: nand chip info structure 3574 * @page: page number to read 3575 */ 3576 int nand_read_oob_std(struct nand_chip *chip, int page) 3577 { 3578 struct mtd_info *mtd = nand_to_mtd(chip); 3579 3580 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3581 } 3582 EXPORT_SYMBOL(nand_read_oob_std); 3583 3584 /** 3585 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3586 * with syndromes 3587 * @chip: nand chip info structure 3588 * @page: page number to read 3589 */ 3590 static int nand_read_oob_syndrome(struct nand_chip *chip, int page) 3591 { 3592 struct mtd_info *mtd = nand_to_mtd(chip); 3593 int length = mtd->oobsize; 3594 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3595 int eccsize = chip->ecc.size; 3596 uint8_t *bufpoi = chip->oob_poi; 3597 int i, toread, sndrnd = 0, pos, ret; 3598 3599 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3600 if (ret) 3601 return ret; 3602 3603 for (i = 0; i < chip->ecc.steps; i++) { 3604 if (sndrnd) { 3605 int ret; 3606 3607 pos = eccsize + i * (eccsize + chunk); 3608 if (mtd->writesize > 512) 3609 ret = nand_change_read_column_op(chip, pos, 3610 NULL, 0, 3611 false); 3612 else 3613 ret = nand_read_page_op(chip, page, pos, NULL, 3614 0); 3615 3616 if (ret) 3617 return ret; 3618 } else 3619 sndrnd = 1; 3620 toread = min_t(int, length, chunk); 3621 3622 ret = nand_read_data_op(chip, bufpoi, toread, false, false); 3623 if (ret) 3624 return ret; 3625 3626 bufpoi += toread; 3627 length -= toread; 3628 } 3629 if (length > 0) { 3630 ret = nand_read_data_op(chip, bufpoi, length, false, false); 3631 if (ret) 3632 return ret; 3633 } 3634 3635 return 0; 3636 } 3637 3638 /** 3639 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3640 * @chip: nand chip info structure 3641 * @page: page number to write 3642 */ 3643 int nand_write_oob_std(struct nand_chip *chip, int page) 3644 { 3645 struct mtd_info *mtd = nand_to_mtd(chip); 3646 3647 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3648 mtd->oobsize); 3649 } 3650 EXPORT_SYMBOL(nand_write_oob_std); 3651 3652 /** 3653 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3654 * with syndrome - only for large page flash 3655 * @chip: nand chip info structure 3656 * @page: page number to write 3657 */ 3658 static int nand_write_oob_syndrome(struct nand_chip *chip, int page) 3659 { 3660 struct mtd_info *mtd = nand_to_mtd(chip); 3661 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3662 int eccsize = chip->ecc.size, length = mtd->oobsize; 3663 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3664 const uint8_t *bufpoi = chip->oob_poi; 3665 3666 /* 3667 * data-ecc-data-ecc ... ecc-oob 3668 * or 3669 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3670 */ 3671 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3672 pos = steps * (eccsize + chunk); 3673 steps = 0; 3674 } else 3675 pos = eccsize; 3676 3677 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3678 if (ret) 3679 return ret; 3680 3681 for (i = 0; i < steps; i++) { 3682 if (sndcmd) { 3683 if (mtd->writesize <= 512) { 3684 uint32_t fill = 0xFFFFFFFF; 3685 3686 len = eccsize; 3687 while (len > 0) { 3688 int num = min_t(int, len, 4); 3689 3690 ret = nand_write_data_op(chip, &fill, 3691 num, false); 3692 if (ret) 3693 return ret; 3694 3695 len -= num; 3696 } 3697 } else { 3698 pos = eccsize + i * (eccsize + chunk); 3699 ret = nand_change_write_column_op(chip, pos, 3700 NULL, 0, 3701 false); 3702 if (ret) 3703 return ret; 3704 } 3705 } else 3706 sndcmd = 1; 3707 len = min_t(int, length, chunk); 3708 3709 ret = nand_write_data_op(chip, bufpoi, len, false); 3710 if (ret) 3711 return ret; 3712 3713 bufpoi += len; 3714 length -= len; 3715 } 3716 if (length > 0) { 3717 ret = nand_write_data_op(chip, bufpoi, length, false); 3718 if (ret) 3719 return ret; 3720 } 3721 3722 return nand_prog_page_end_op(chip); 3723 } 3724 3725 /** 3726 * nand_do_read_oob - [INTERN] NAND read out-of-band 3727 * @chip: NAND chip object 3728 * @from: offset to read from 3729 * @ops: oob operations description structure 3730 * 3731 * NAND read out-of-band data from the spare area. 3732 */ 3733 static int nand_do_read_oob(struct nand_chip *chip, loff_t from, 3734 struct mtd_oob_ops *ops) 3735 { 3736 struct mtd_info *mtd = nand_to_mtd(chip); 3737 unsigned int max_bitflips = 0; 3738 int page, realpage, chipnr; 3739 struct mtd_ecc_stats stats; 3740 int readlen = ops->ooblen; 3741 int len; 3742 uint8_t *buf = ops->oobbuf; 3743 int ret = 0; 3744 3745 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3746 __func__, (unsigned long long)from, readlen); 3747 3748 /* Check if the region is secured */ 3749 if (nand_region_is_secured(chip, from, readlen)) 3750 return -EIO; 3751 3752 stats = mtd->ecc_stats; 3753 3754 len = mtd_oobavail(mtd, ops); 3755 3756 chipnr = (int)(from >> chip->chip_shift); 3757 nand_select_target(chip, chipnr); 3758 3759 /* Shift to get page */ 3760 realpage = (int)(from >> chip->page_shift); 3761 page = realpage & chip->pagemask; 3762 3763 while (1) { 3764 if (ops->mode == MTD_OPS_RAW) 3765 ret = chip->ecc.read_oob_raw(chip, page); 3766 else 3767 ret = chip->ecc.read_oob(chip, page); 3768 3769 if (ret < 0) 3770 break; 3771 3772 len = min(len, readlen); 3773 buf = nand_transfer_oob(chip, buf, ops, len); 3774 3775 nand_wait_readrdy(chip); 3776 3777 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3778 3779 readlen -= len; 3780 if (!readlen) 3781 break; 3782 3783 /* Increment page address */ 3784 realpage++; 3785 3786 page = realpage & chip->pagemask; 3787 /* Check, if we cross a chip boundary */ 3788 if (!page) { 3789 chipnr++; 3790 nand_deselect_target(chip); 3791 nand_select_target(chip, chipnr); 3792 } 3793 } 3794 nand_deselect_target(chip); 3795 3796 ops->oobretlen = ops->ooblen - readlen; 3797 3798 if (ret < 0) 3799 return ret; 3800 3801 if (mtd->ecc_stats.failed - stats.failed) 3802 return -EBADMSG; 3803 3804 return max_bitflips; 3805 } 3806 3807 /** 3808 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3809 * @mtd: MTD device structure 3810 * @from: offset to read from 3811 * @ops: oob operation description structure 3812 * 3813 * NAND read data and/or out-of-band data. 3814 */ 3815 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3816 struct mtd_oob_ops *ops) 3817 { 3818 struct nand_chip *chip = mtd_to_nand(mtd); 3819 struct mtd_ecc_stats old_stats; 3820 int ret; 3821 3822 ops->retlen = 0; 3823 3824 if (ops->mode != MTD_OPS_PLACE_OOB && 3825 ops->mode != MTD_OPS_AUTO_OOB && 3826 ops->mode != MTD_OPS_RAW) 3827 return -ENOTSUPP; 3828 3829 nand_get_device(chip); 3830 3831 old_stats = mtd->ecc_stats; 3832 3833 if (!ops->datbuf) 3834 ret = nand_do_read_oob(chip, from, ops); 3835 else 3836 ret = nand_do_read_ops(chip, from, ops); 3837 3838 if (ops->stats) { 3839 ops->stats->uncorrectable_errors += 3840 mtd->ecc_stats.failed - old_stats.failed; 3841 ops->stats->corrected_bitflips += 3842 mtd->ecc_stats.corrected - old_stats.corrected; 3843 } 3844 3845 nand_release_device(chip); 3846 return ret; 3847 } 3848 3849 /** 3850 * nand_write_page_raw_notsupp - dummy raw page write function 3851 * @chip: nand chip info structure 3852 * @buf: data buffer 3853 * @oob_required: must write chip->oob_poi to OOB 3854 * @page: page number to write 3855 * 3856 * Returns -ENOTSUPP unconditionally. 3857 */ 3858 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, 3859 int oob_required, int page) 3860 { 3861 return -ENOTSUPP; 3862 } 3863 3864 /** 3865 * nand_write_page_raw - [INTERN] raw page write function 3866 * @chip: nand chip info structure 3867 * @buf: data buffer 3868 * @oob_required: must write chip->oob_poi to OOB 3869 * @page: page number to write 3870 * 3871 * Not for syndrome calculating ECC controllers, which use a special oob layout. 3872 */ 3873 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 3874 int oob_required, int page) 3875 { 3876 struct mtd_info *mtd = nand_to_mtd(chip); 3877 int ret; 3878 3879 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 3880 if (ret) 3881 return ret; 3882 3883 if (oob_required) { 3884 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 3885 false); 3886 if (ret) 3887 return ret; 3888 } 3889 3890 return nand_prog_page_end_op(chip); 3891 } 3892 EXPORT_SYMBOL(nand_write_page_raw); 3893 3894 /** 3895 * nand_monolithic_write_page_raw - Monolithic page write in raw mode 3896 * @chip: NAND chip info structure 3897 * @buf: data buffer to write 3898 * @oob_required: must write chip->oob_poi to OOB 3899 * @page: page number to write 3900 * 3901 * This is a raw page write, ie. without any error detection/correction. 3902 * Monolithic means we are requesting all the relevant data (main plus 3903 * eventually OOB) to be sent over the bus and effectively programmed 3904 * into the NAND chip arrays in a single operation. This is an 3905 * alternative to nand_write_page_raw(), which first sends the main 3906 * data, then eventually send the OOB data by latching more data 3907 * cycles on the NAND bus, and finally sends the program command to 3908 * synchronyze the NAND chip cache. 3909 */ 3910 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf, 3911 int oob_required, int page) 3912 { 3913 struct mtd_info *mtd = nand_to_mtd(chip); 3914 unsigned int size = mtd->writesize; 3915 u8 *write_buf = (u8 *)buf; 3916 3917 if (oob_required) { 3918 size += mtd->oobsize; 3919 3920 if (buf != chip->data_buf) { 3921 write_buf = nand_get_data_buf(chip); 3922 memcpy(write_buf, buf, mtd->writesize); 3923 } 3924 } 3925 3926 return nand_prog_page_op(chip, page, 0, write_buf, size); 3927 } 3928 EXPORT_SYMBOL(nand_monolithic_write_page_raw); 3929 3930 /** 3931 * nand_write_page_raw_syndrome - [INTERN] raw page write function 3932 * @chip: nand chip info structure 3933 * @buf: data buffer 3934 * @oob_required: must write chip->oob_poi to OOB 3935 * @page: page number to write 3936 * 3937 * We need a special oob layout and handling even when ECC isn't checked. 3938 */ 3939 static int nand_write_page_raw_syndrome(struct nand_chip *chip, 3940 const uint8_t *buf, int oob_required, 3941 int page) 3942 { 3943 struct mtd_info *mtd = nand_to_mtd(chip); 3944 int eccsize = chip->ecc.size; 3945 int eccbytes = chip->ecc.bytes; 3946 uint8_t *oob = chip->oob_poi; 3947 int steps, size, ret; 3948 3949 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3950 if (ret) 3951 return ret; 3952 3953 for (steps = chip->ecc.steps; steps > 0; steps--) { 3954 ret = nand_write_data_op(chip, buf, eccsize, false); 3955 if (ret) 3956 return ret; 3957 3958 buf += eccsize; 3959 3960 if (chip->ecc.prepad) { 3961 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3962 false); 3963 if (ret) 3964 return ret; 3965 3966 oob += chip->ecc.prepad; 3967 } 3968 3969 ret = nand_write_data_op(chip, oob, eccbytes, false); 3970 if (ret) 3971 return ret; 3972 3973 oob += eccbytes; 3974 3975 if (chip->ecc.postpad) { 3976 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3977 false); 3978 if (ret) 3979 return ret; 3980 3981 oob += chip->ecc.postpad; 3982 } 3983 } 3984 3985 size = mtd->oobsize - (oob - chip->oob_poi); 3986 if (size) { 3987 ret = nand_write_data_op(chip, oob, size, false); 3988 if (ret) 3989 return ret; 3990 } 3991 3992 return nand_prog_page_end_op(chip); 3993 } 3994 /** 3995 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 3996 * @chip: nand chip info structure 3997 * @buf: data buffer 3998 * @oob_required: must write chip->oob_poi to OOB 3999 * @page: page number to write 4000 */ 4001 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, 4002 int oob_required, int page) 4003 { 4004 struct mtd_info *mtd = nand_to_mtd(chip); 4005 int i, eccsize = chip->ecc.size, ret; 4006 int eccbytes = chip->ecc.bytes; 4007 int eccsteps = chip->ecc.steps; 4008 uint8_t *ecc_calc = chip->ecc.calc_buf; 4009 const uint8_t *p = buf; 4010 4011 /* Software ECC calculation */ 4012 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 4013 chip->ecc.calculate(chip, p, &ecc_calc[i]); 4014 4015 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4016 chip->ecc.total); 4017 if (ret) 4018 return ret; 4019 4020 return chip->ecc.write_page_raw(chip, buf, 1, page); 4021 } 4022 4023 /** 4024 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 4025 * @chip: nand chip info structure 4026 * @buf: data buffer 4027 * @oob_required: must write chip->oob_poi to OOB 4028 * @page: page number to write 4029 */ 4030 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, 4031 int oob_required, int page) 4032 { 4033 struct mtd_info *mtd = nand_to_mtd(chip); 4034 int i, eccsize = chip->ecc.size, ret; 4035 int eccbytes = chip->ecc.bytes; 4036 int eccsteps = chip->ecc.steps; 4037 uint8_t *ecc_calc = chip->ecc.calc_buf; 4038 const uint8_t *p = buf; 4039 4040 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4041 if (ret) 4042 return ret; 4043 4044 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4045 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4046 4047 ret = nand_write_data_op(chip, p, eccsize, false); 4048 if (ret) 4049 return ret; 4050 4051 chip->ecc.calculate(chip, p, &ecc_calc[i]); 4052 } 4053 4054 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4055 chip->ecc.total); 4056 if (ret) 4057 return ret; 4058 4059 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4060 if (ret) 4061 return ret; 4062 4063 return nand_prog_page_end_op(chip); 4064 } 4065 4066 4067 /** 4068 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 4069 * @chip: nand chip info structure 4070 * @offset: column address of subpage within the page 4071 * @data_len: data length 4072 * @buf: data buffer 4073 * @oob_required: must write chip->oob_poi to OOB 4074 * @page: page number to write 4075 */ 4076 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, 4077 uint32_t data_len, const uint8_t *buf, 4078 int oob_required, int page) 4079 { 4080 struct mtd_info *mtd = nand_to_mtd(chip); 4081 uint8_t *oob_buf = chip->oob_poi; 4082 uint8_t *ecc_calc = chip->ecc.calc_buf; 4083 int ecc_size = chip->ecc.size; 4084 int ecc_bytes = chip->ecc.bytes; 4085 int ecc_steps = chip->ecc.steps; 4086 uint32_t start_step = offset / ecc_size; 4087 uint32_t end_step = (offset + data_len - 1) / ecc_size; 4088 int oob_bytes = mtd->oobsize / ecc_steps; 4089 int step, ret; 4090 4091 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4092 if (ret) 4093 return ret; 4094 4095 for (step = 0; step < ecc_steps; step++) { 4096 /* configure controller for WRITE access */ 4097 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4098 4099 /* write data (untouched subpages already masked by 0xFF) */ 4100 ret = nand_write_data_op(chip, buf, ecc_size, false); 4101 if (ret) 4102 return ret; 4103 4104 /* mask ECC of un-touched subpages by padding 0xFF */ 4105 if ((step < start_step) || (step > end_step)) 4106 memset(ecc_calc, 0xff, ecc_bytes); 4107 else 4108 chip->ecc.calculate(chip, buf, ecc_calc); 4109 4110 /* mask OOB of un-touched subpages by padding 0xFF */ 4111 /* if oob_required, preserve OOB metadata of written subpage */ 4112 if (!oob_required || (step < start_step) || (step > end_step)) 4113 memset(oob_buf, 0xff, oob_bytes); 4114 4115 buf += ecc_size; 4116 ecc_calc += ecc_bytes; 4117 oob_buf += oob_bytes; 4118 } 4119 4120 /* copy calculated ECC for whole page to chip->buffer->oob */ 4121 /* this include masked-value(0xFF) for unwritten subpages */ 4122 ecc_calc = chip->ecc.calc_buf; 4123 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4124 chip->ecc.total); 4125 if (ret) 4126 return ret; 4127 4128 /* write OOB buffer to NAND device */ 4129 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4130 if (ret) 4131 return ret; 4132 4133 return nand_prog_page_end_op(chip); 4134 } 4135 4136 4137 /** 4138 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 4139 * @chip: nand chip info structure 4140 * @buf: data buffer 4141 * @oob_required: must write chip->oob_poi to OOB 4142 * @page: page number to write 4143 * 4144 * The hw generator calculates the error syndrome automatically. Therefore we 4145 * need a special oob layout and handling. 4146 */ 4147 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, 4148 int oob_required, int page) 4149 { 4150 struct mtd_info *mtd = nand_to_mtd(chip); 4151 int i, eccsize = chip->ecc.size; 4152 int eccbytes = chip->ecc.bytes; 4153 int eccsteps = chip->ecc.steps; 4154 const uint8_t *p = buf; 4155 uint8_t *oob = chip->oob_poi; 4156 int ret; 4157 4158 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4159 if (ret) 4160 return ret; 4161 4162 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4163 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4164 4165 ret = nand_write_data_op(chip, p, eccsize, false); 4166 if (ret) 4167 return ret; 4168 4169 if (chip->ecc.prepad) { 4170 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4171 false); 4172 if (ret) 4173 return ret; 4174 4175 oob += chip->ecc.prepad; 4176 } 4177 4178 chip->ecc.calculate(chip, p, oob); 4179 4180 ret = nand_write_data_op(chip, oob, eccbytes, false); 4181 if (ret) 4182 return ret; 4183 4184 oob += eccbytes; 4185 4186 if (chip->ecc.postpad) { 4187 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4188 false); 4189 if (ret) 4190 return ret; 4191 4192 oob += chip->ecc.postpad; 4193 } 4194 } 4195 4196 /* Calculate remaining oob bytes */ 4197 i = mtd->oobsize - (oob - chip->oob_poi); 4198 if (i) { 4199 ret = nand_write_data_op(chip, oob, i, false); 4200 if (ret) 4201 return ret; 4202 } 4203 4204 return nand_prog_page_end_op(chip); 4205 } 4206 4207 /** 4208 * nand_write_page - write one page 4209 * @chip: NAND chip descriptor 4210 * @offset: address offset within the page 4211 * @data_len: length of actual data to be written 4212 * @buf: the data to write 4213 * @oob_required: must write chip->oob_poi to OOB 4214 * @page: page number to write 4215 * @raw: use _raw version of write_page 4216 */ 4217 static int nand_write_page(struct nand_chip *chip, uint32_t offset, 4218 int data_len, const uint8_t *buf, int oob_required, 4219 int page, int raw) 4220 { 4221 struct mtd_info *mtd = nand_to_mtd(chip); 4222 int status, subpage; 4223 4224 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 4225 chip->ecc.write_subpage) 4226 subpage = offset || (data_len < mtd->writesize); 4227 else 4228 subpage = 0; 4229 4230 if (unlikely(raw)) 4231 status = chip->ecc.write_page_raw(chip, buf, oob_required, 4232 page); 4233 else if (subpage) 4234 status = chip->ecc.write_subpage(chip, offset, data_len, buf, 4235 oob_required, page); 4236 else 4237 status = chip->ecc.write_page(chip, buf, oob_required, page); 4238 4239 if (status < 0) 4240 return status; 4241 4242 return 0; 4243 } 4244 4245 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 4246 4247 /** 4248 * nand_do_write_ops - [INTERN] NAND write with ECC 4249 * @chip: NAND chip object 4250 * @to: offset to write to 4251 * @ops: oob operations description structure 4252 * 4253 * NAND write with ECC. 4254 */ 4255 static int nand_do_write_ops(struct nand_chip *chip, loff_t to, 4256 struct mtd_oob_ops *ops) 4257 { 4258 struct mtd_info *mtd = nand_to_mtd(chip); 4259 int chipnr, realpage, page, column; 4260 uint32_t writelen = ops->len; 4261 4262 uint32_t oobwritelen = ops->ooblen; 4263 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 4264 4265 uint8_t *oob = ops->oobbuf; 4266 uint8_t *buf = ops->datbuf; 4267 int ret; 4268 int oob_required = oob ? 1 : 0; 4269 4270 ops->retlen = 0; 4271 if (!writelen) 4272 return 0; 4273 4274 /* Reject writes, which are not page aligned */ 4275 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 4276 pr_notice("%s: attempt to write non page aligned data\n", 4277 __func__); 4278 return -EINVAL; 4279 } 4280 4281 /* Check if the region is secured */ 4282 if (nand_region_is_secured(chip, to, writelen)) 4283 return -EIO; 4284 4285 column = to & (mtd->writesize - 1); 4286 4287 chipnr = (int)(to >> chip->chip_shift); 4288 nand_select_target(chip, chipnr); 4289 4290 /* Check, if it is write protected */ 4291 if (nand_check_wp(chip)) { 4292 ret = -EIO; 4293 goto err_out; 4294 } 4295 4296 realpage = (int)(to >> chip->page_shift); 4297 page = realpage & chip->pagemask; 4298 4299 /* Invalidate the page cache, when we write to the cached page */ 4300 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && 4301 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) 4302 chip->pagecache.page = -1; 4303 4304 /* Don't allow multipage oob writes with offset */ 4305 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4306 ret = -EINVAL; 4307 goto err_out; 4308 } 4309 4310 while (1) { 4311 int bytes = mtd->writesize; 4312 uint8_t *wbuf = buf; 4313 int use_bounce_buf; 4314 int part_pagewr = (column || writelen < mtd->writesize); 4315 4316 if (part_pagewr) 4317 use_bounce_buf = 1; 4318 else if (chip->options & NAND_USES_DMA) 4319 use_bounce_buf = !virt_addr_valid(buf) || 4320 !IS_ALIGNED((unsigned long)buf, 4321 chip->buf_align); 4322 else 4323 use_bounce_buf = 0; 4324 4325 /* 4326 * Copy the data from the initial buffer when doing partial page 4327 * writes or when a bounce buffer is required. 4328 */ 4329 if (use_bounce_buf) { 4330 pr_debug("%s: using write bounce buffer for buf@%p\n", 4331 __func__, buf); 4332 if (part_pagewr) 4333 bytes = min_t(int, bytes - column, writelen); 4334 wbuf = nand_get_data_buf(chip); 4335 memset(wbuf, 0xff, mtd->writesize); 4336 memcpy(&wbuf[column], buf, bytes); 4337 } 4338 4339 if (unlikely(oob)) { 4340 size_t len = min(oobwritelen, oobmaxlen); 4341 oob = nand_fill_oob(chip, oob, len, ops); 4342 oobwritelen -= len; 4343 } else { 4344 /* We still need to erase leftover OOB data */ 4345 memset(chip->oob_poi, 0xff, mtd->oobsize); 4346 } 4347 4348 ret = nand_write_page(chip, column, bytes, wbuf, 4349 oob_required, page, 4350 (ops->mode == MTD_OPS_RAW)); 4351 if (ret) 4352 break; 4353 4354 writelen -= bytes; 4355 if (!writelen) 4356 break; 4357 4358 column = 0; 4359 buf += bytes; 4360 realpage++; 4361 4362 page = realpage & chip->pagemask; 4363 /* Check, if we cross a chip boundary */ 4364 if (!page) { 4365 chipnr++; 4366 nand_deselect_target(chip); 4367 nand_select_target(chip, chipnr); 4368 } 4369 } 4370 4371 ops->retlen = ops->len - writelen; 4372 if (unlikely(oob)) 4373 ops->oobretlen = ops->ooblen; 4374 4375 err_out: 4376 nand_deselect_target(chip); 4377 return ret; 4378 } 4379 4380 /** 4381 * panic_nand_write - [MTD Interface] NAND write with ECC 4382 * @mtd: MTD device structure 4383 * @to: offset to write to 4384 * @len: number of bytes to write 4385 * @retlen: pointer to variable to store the number of written bytes 4386 * @buf: the data to write 4387 * 4388 * NAND write with ECC. Used when performing writes in interrupt context, this 4389 * may for example be called by mtdoops when writing an oops while in panic. 4390 */ 4391 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4392 size_t *retlen, const uint8_t *buf) 4393 { 4394 struct nand_chip *chip = mtd_to_nand(mtd); 4395 int chipnr = (int)(to >> chip->chip_shift); 4396 struct mtd_oob_ops ops; 4397 int ret; 4398 4399 nand_select_target(chip, chipnr); 4400 4401 /* Wait for the device to get ready */ 4402 panic_nand_wait(chip, 400); 4403 4404 memset(&ops, 0, sizeof(ops)); 4405 ops.len = len; 4406 ops.datbuf = (uint8_t *)buf; 4407 ops.mode = MTD_OPS_PLACE_OOB; 4408 4409 ret = nand_do_write_ops(chip, to, &ops); 4410 4411 *retlen = ops.retlen; 4412 return ret; 4413 } 4414 4415 /** 4416 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4417 * @mtd: MTD device structure 4418 * @to: offset to write to 4419 * @ops: oob operation description structure 4420 */ 4421 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4422 struct mtd_oob_ops *ops) 4423 { 4424 struct nand_chip *chip = mtd_to_nand(mtd); 4425 int ret = 0; 4426 4427 ops->retlen = 0; 4428 4429 nand_get_device(chip); 4430 4431 switch (ops->mode) { 4432 case MTD_OPS_PLACE_OOB: 4433 case MTD_OPS_AUTO_OOB: 4434 case MTD_OPS_RAW: 4435 break; 4436 4437 default: 4438 goto out; 4439 } 4440 4441 if (!ops->datbuf) 4442 ret = nand_do_write_oob(chip, to, ops); 4443 else 4444 ret = nand_do_write_ops(chip, to, ops); 4445 4446 out: 4447 nand_release_device(chip); 4448 return ret; 4449 } 4450 4451 /** 4452 * nand_erase - [MTD Interface] erase block(s) 4453 * @mtd: MTD device structure 4454 * @instr: erase instruction 4455 * 4456 * Erase one ore more blocks. 4457 */ 4458 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4459 { 4460 return nand_erase_nand(mtd_to_nand(mtd), instr, 0); 4461 } 4462 4463 /** 4464 * nand_erase_nand - [INTERN] erase block(s) 4465 * @chip: NAND chip object 4466 * @instr: erase instruction 4467 * @allowbbt: allow erasing the bbt area 4468 * 4469 * Erase one ore more blocks. 4470 */ 4471 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, 4472 int allowbbt) 4473 { 4474 int page, pages_per_block, ret, chipnr; 4475 loff_t len; 4476 4477 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4478 __func__, (unsigned long long)instr->addr, 4479 (unsigned long long)instr->len); 4480 4481 if (check_offs_len(chip, instr->addr, instr->len)) 4482 return -EINVAL; 4483 4484 /* Check if the region is secured */ 4485 if (nand_region_is_secured(chip, instr->addr, instr->len)) 4486 return -EIO; 4487 4488 /* Grab the lock and see if the device is available */ 4489 nand_get_device(chip); 4490 4491 /* Shift to get first page */ 4492 page = (int)(instr->addr >> chip->page_shift); 4493 chipnr = (int)(instr->addr >> chip->chip_shift); 4494 4495 /* Calculate pages in each block */ 4496 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4497 4498 /* Select the NAND device */ 4499 nand_select_target(chip, chipnr); 4500 4501 /* Check, if it is write protected */ 4502 if (nand_check_wp(chip)) { 4503 pr_debug("%s: device is write protected!\n", 4504 __func__); 4505 ret = -EIO; 4506 goto erase_exit; 4507 } 4508 4509 /* Loop through the pages */ 4510 len = instr->len; 4511 4512 while (len) { 4513 loff_t ofs = (loff_t)page << chip->page_shift; 4514 4515 /* Check if we have a bad block, we do not erase bad blocks! */ 4516 if (nand_block_checkbad(chip, ((loff_t) page) << 4517 chip->page_shift, allowbbt)) { 4518 pr_warn("%s: attempt to erase a bad block at 0x%08llx\n", 4519 __func__, (unsigned long long)ofs); 4520 ret = -EIO; 4521 goto erase_exit; 4522 } 4523 4524 /* 4525 * Invalidate the page cache, if we erase the block which 4526 * contains the current cached page. 4527 */ 4528 if (page <= chip->pagecache.page && chip->pagecache.page < 4529 (page + pages_per_block)) 4530 chip->pagecache.page = -1; 4531 4532 ret = nand_erase_op(chip, (page & chip->pagemask) >> 4533 (chip->phys_erase_shift - chip->page_shift)); 4534 if (ret) { 4535 pr_debug("%s: failed erase, page 0x%08x\n", 4536 __func__, page); 4537 instr->fail_addr = ofs; 4538 goto erase_exit; 4539 } 4540 4541 /* Increment page address and decrement length */ 4542 len -= (1ULL << chip->phys_erase_shift); 4543 page += pages_per_block; 4544 4545 /* Check, if we cross a chip boundary */ 4546 if (len && !(page & chip->pagemask)) { 4547 chipnr++; 4548 nand_deselect_target(chip); 4549 nand_select_target(chip, chipnr); 4550 } 4551 } 4552 4553 ret = 0; 4554 erase_exit: 4555 4556 /* Deselect and wake up anyone waiting on the device */ 4557 nand_deselect_target(chip); 4558 nand_release_device(chip); 4559 4560 /* Return more or less happy */ 4561 return ret; 4562 } 4563 4564 /** 4565 * nand_sync - [MTD Interface] sync 4566 * @mtd: MTD device structure 4567 * 4568 * Sync is actually a wait for chip ready function. 4569 */ 4570 static void nand_sync(struct mtd_info *mtd) 4571 { 4572 struct nand_chip *chip = mtd_to_nand(mtd); 4573 4574 pr_debug("%s: called\n", __func__); 4575 4576 /* Grab the lock and see if the device is available */ 4577 nand_get_device(chip); 4578 /* Release it and go back */ 4579 nand_release_device(chip); 4580 } 4581 4582 /** 4583 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4584 * @mtd: MTD device structure 4585 * @offs: offset relative to mtd start 4586 */ 4587 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4588 { 4589 struct nand_chip *chip = mtd_to_nand(mtd); 4590 int chipnr = (int)(offs >> chip->chip_shift); 4591 int ret; 4592 4593 /* Select the NAND device */ 4594 nand_get_device(chip); 4595 4596 nand_select_target(chip, chipnr); 4597 4598 ret = nand_block_checkbad(chip, offs, 0); 4599 4600 nand_deselect_target(chip); 4601 nand_release_device(chip); 4602 4603 return ret; 4604 } 4605 4606 /** 4607 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4608 * @mtd: MTD device structure 4609 * @ofs: offset relative to mtd start 4610 */ 4611 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4612 { 4613 int ret; 4614 4615 ret = nand_block_isbad(mtd, ofs); 4616 if (ret) { 4617 /* If it was bad already, return success and do nothing */ 4618 if (ret > 0) 4619 return 0; 4620 return ret; 4621 } 4622 4623 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); 4624 } 4625 4626 /** 4627 * nand_suspend - [MTD Interface] Suspend the NAND flash 4628 * @mtd: MTD device structure 4629 * 4630 * Returns 0 for success or negative error code otherwise. 4631 */ 4632 static int nand_suspend(struct mtd_info *mtd) 4633 { 4634 struct nand_chip *chip = mtd_to_nand(mtd); 4635 int ret = 0; 4636 4637 mutex_lock(&chip->lock); 4638 if (chip->ops.suspend) 4639 ret = chip->ops.suspend(chip); 4640 if (!ret) 4641 chip->suspended = 1; 4642 mutex_unlock(&chip->lock); 4643 4644 return ret; 4645 } 4646 4647 /** 4648 * nand_resume - [MTD Interface] Resume the NAND flash 4649 * @mtd: MTD device structure 4650 */ 4651 static void nand_resume(struct mtd_info *mtd) 4652 { 4653 struct nand_chip *chip = mtd_to_nand(mtd); 4654 4655 mutex_lock(&chip->lock); 4656 if (chip->suspended) { 4657 if (chip->ops.resume) 4658 chip->ops.resume(chip); 4659 chip->suspended = 0; 4660 } else { 4661 pr_err("%s called for a chip which is not in suspended state\n", 4662 __func__); 4663 } 4664 mutex_unlock(&chip->lock); 4665 4666 wake_up_all(&chip->resume_wq); 4667 } 4668 4669 /** 4670 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4671 * prevent further operations 4672 * @mtd: MTD device structure 4673 */ 4674 static void nand_shutdown(struct mtd_info *mtd) 4675 { 4676 nand_suspend(mtd); 4677 } 4678 4679 /** 4680 * nand_lock - [MTD Interface] Lock the NAND flash 4681 * @mtd: MTD device structure 4682 * @ofs: offset byte address 4683 * @len: number of bytes to lock (must be a multiple of block/page size) 4684 */ 4685 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4686 { 4687 struct nand_chip *chip = mtd_to_nand(mtd); 4688 4689 if (!chip->ops.lock_area) 4690 return -ENOTSUPP; 4691 4692 return chip->ops.lock_area(chip, ofs, len); 4693 } 4694 4695 /** 4696 * nand_unlock - [MTD Interface] Unlock the NAND flash 4697 * @mtd: MTD device structure 4698 * @ofs: offset byte address 4699 * @len: number of bytes to unlock (must be a multiple of block/page size) 4700 */ 4701 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4702 { 4703 struct nand_chip *chip = mtd_to_nand(mtd); 4704 4705 if (!chip->ops.unlock_area) 4706 return -ENOTSUPP; 4707 4708 return chip->ops.unlock_area(chip, ofs, len); 4709 } 4710 4711 /* Set default functions */ 4712 static void nand_set_defaults(struct nand_chip *chip) 4713 { 4714 /* If no controller is provided, use the dummy, legacy one. */ 4715 if (!chip->controller) { 4716 chip->controller = &chip->legacy.dummy_controller; 4717 nand_controller_init(chip->controller); 4718 } 4719 4720 nand_legacy_set_defaults(chip); 4721 4722 if (!chip->buf_align) 4723 chip->buf_align = 1; 4724 } 4725 4726 /* Sanitize ONFI strings so we can safely print them */ 4727 void sanitize_string(uint8_t *s, size_t len) 4728 { 4729 ssize_t i; 4730 4731 /* Null terminate */ 4732 s[len - 1] = 0; 4733 4734 /* Remove non printable chars */ 4735 for (i = 0; i < len - 1; i++) { 4736 if (s[i] < ' ' || s[i] > 127) 4737 s[i] = '?'; 4738 } 4739 4740 /* Remove trailing spaces */ 4741 strim(s); 4742 } 4743 4744 /* 4745 * nand_id_has_period - Check if an ID string has a given wraparound period 4746 * @id_data: the ID string 4747 * @arrlen: the length of the @id_data array 4748 * @period: the period of repitition 4749 * 4750 * Check if an ID string is repeated within a given sequence of bytes at 4751 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 4752 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 4753 * if the repetition has a period of @period; otherwise, returns zero. 4754 */ 4755 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 4756 { 4757 int i, j; 4758 for (i = 0; i < period; i++) 4759 for (j = i + period; j < arrlen; j += period) 4760 if (id_data[i] != id_data[j]) 4761 return 0; 4762 return 1; 4763 } 4764 4765 /* 4766 * nand_id_len - Get the length of an ID string returned by CMD_READID 4767 * @id_data: the ID string 4768 * @arrlen: the length of the @id_data array 4769 4770 * Returns the length of the ID string, according to known wraparound/trailing 4771 * zero patterns. If no pattern exists, returns the length of the array. 4772 */ 4773 static int nand_id_len(u8 *id_data, int arrlen) 4774 { 4775 int last_nonzero, period; 4776 4777 /* Find last non-zero byte */ 4778 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 4779 if (id_data[last_nonzero]) 4780 break; 4781 4782 /* All zeros */ 4783 if (last_nonzero < 0) 4784 return 0; 4785 4786 /* Calculate wraparound period */ 4787 for (period = 1; period < arrlen; period++) 4788 if (nand_id_has_period(id_data, arrlen, period)) 4789 break; 4790 4791 /* There's a repeated pattern */ 4792 if (period < arrlen) 4793 return period; 4794 4795 /* There are trailing zeros */ 4796 if (last_nonzero < arrlen - 1) 4797 return last_nonzero + 1; 4798 4799 /* No pattern detected */ 4800 return arrlen; 4801 } 4802 4803 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 4804 static int nand_get_bits_per_cell(u8 cellinfo) 4805 { 4806 int bits; 4807 4808 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 4809 bits >>= NAND_CI_CELLTYPE_SHIFT; 4810 return bits + 1; 4811 } 4812 4813 /* 4814 * Many new NAND share similar device ID codes, which represent the size of the 4815 * chip. The rest of the parameters must be decoded according to generic or 4816 * manufacturer-specific "extended ID" decoding patterns. 4817 */ 4818 void nand_decode_ext_id(struct nand_chip *chip) 4819 { 4820 struct nand_memory_organization *memorg; 4821 struct mtd_info *mtd = nand_to_mtd(chip); 4822 int extid; 4823 u8 *id_data = chip->id.data; 4824 4825 memorg = nanddev_get_memorg(&chip->base); 4826 4827 /* The 3rd id byte holds MLC / multichip data */ 4828 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4829 /* The 4th id byte is the important one */ 4830 extid = id_data[3]; 4831 4832 /* Calc pagesize */ 4833 memorg->pagesize = 1024 << (extid & 0x03); 4834 mtd->writesize = memorg->pagesize; 4835 extid >>= 2; 4836 /* Calc oobsize */ 4837 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 4838 mtd->oobsize = memorg->oobsize; 4839 extid >>= 2; 4840 /* Calc blocksize. Blocksize is multiples of 64KiB */ 4841 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / 4842 memorg->pagesize; 4843 mtd->erasesize = (64 * 1024) << (extid & 0x03); 4844 extid >>= 2; 4845 /* Get buswidth information */ 4846 if (extid & 0x1) 4847 chip->options |= NAND_BUSWIDTH_16; 4848 } 4849 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 4850 4851 /* 4852 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 4853 * decodes a matching ID table entry and assigns the MTD size parameters for 4854 * the chip. 4855 */ 4856 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 4857 { 4858 struct mtd_info *mtd = nand_to_mtd(chip); 4859 struct nand_memory_organization *memorg; 4860 4861 memorg = nanddev_get_memorg(&chip->base); 4862 4863 memorg->pages_per_eraseblock = type->erasesize / type->pagesize; 4864 mtd->erasesize = type->erasesize; 4865 memorg->pagesize = type->pagesize; 4866 mtd->writesize = memorg->pagesize; 4867 memorg->oobsize = memorg->pagesize / 32; 4868 mtd->oobsize = memorg->oobsize; 4869 4870 /* All legacy ID NAND are small-page, SLC */ 4871 memorg->bits_per_cell = 1; 4872 } 4873 4874 /* 4875 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 4876 * heuristic patterns using various detected parameters (e.g., manufacturer, 4877 * page size, cell-type information). 4878 */ 4879 static void nand_decode_bbm_options(struct nand_chip *chip) 4880 { 4881 struct mtd_info *mtd = nand_to_mtd(chip); 4882 4883 /* Set the bad block position */ 4884 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 4885 chip->badblockpos = NAND_BBM_POS_LARGE; 4886 else 4887 chip->badblockpos = NAND_BBM_POS_SMALL; 4888 } 4889 4890 static inline bool is_full_id_nand(struct nand_flash_dev *type) 4891 { 4892 return type->id_len; 4893 } 4894 4895 static bool find_full_id_nand(struct nand_chip *chip, 4896 struct nand_flash_dev *type) 4897 { 4898 struct nand_device *base = &chip->base; 4899 struct nand_ecc_props requirements; 4900 struct mtd_info *mtd = nand_to_mtd(chip); 4901 struct nand_memory_organization *memorg; 4902 u8 *id_data = chip->id.data; 4903 4904 memorg = nanddev_get_memorg(&chip->base); 4905 4906 if (!strncmp(type->id, id_data, type->id_len)) { 4907 memorg->pagesize = type->pagesize; 4908 mtd->writesize = memorg->pagesize; 4909 memorg->pages_per_eraseblock = type->erasesize / 4910 type->pagesize; 4911 mtd->erasesize = type->erasesize; 4912 memorg->oobsize = type->oobsize; 4913 mtd->oobsize = memorg->oobsize; 4914 4915 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4916 memorg->eraseblocks_per_lun = 4917 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 4918 memorg->pagesize * 4919 memorg->pages_per_eraseblock); 4920 chip->options |= type->options; 4921 requirements.strength = NAND_ECC_STRENGTH(type); 4922 requirements.step_size = NAND_ECC_STEP(type); 4923 nanddev_set_ecc_requirements(base, &requirements); 4924 4925 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4926 if (!chip->parameters.model) 4927 return false; 4928 4929 return true; 4930 } 4931 return false; 4932 } 4933 4934 /* 4935 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 4936 * compliant and does not have a full-id or legacy-id entry in the nand_ids 4937 * table. 4938 */ 4939 static void nand_manufacturer_detect(struct nand_chip *chip) 4940 { 4941 /* 4942 * Try manufacturer detection if available and use 4943 * nand_decode_ext_id() otherwise. 4944 */ 4945 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4946 chip->manufacturer.desc->ops->detect) { 4947 struct nand_memory_organization *memorg; 4948 4949 memorg = nanddev_get_memorg(&chip->base); 4950 4951 /* The 3rd id byte holds MLC / multichip data */ 4952 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 4953 chip->manufacturer.desc->ops->detect(chip); 4954 } else { 4955 nand_decode_ext_id(chip); 4956 } 4957 } 4958 4959 /* 4960 * Manufacturer initialization. This function is called for all NANDs including 4961 * ONFI and JEDEC compliant ones. 4962 * Manufacturer drivers should put all their specific initialization code in 4963 * their ->init() hook. 4964 */ 4965 static int nand_manufacturer_init(struct nand_chip *chip) 4966 { 4967 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 4968 !chip->manufacturer.desc->ops->init) 4969 return 0; 4970 4971 return chip->manufacturer.desc->ops->init(chip); 4972 } 4973 4974 /* 4975 * Manufacturer cleanup. This function is called for all NANDs including 4976 * ONFI and JEDEC compliant ones. 4977 * Manufacturer drivers should put all their specific cleanup code in their 4978 * ->cleanup() hook. 4979 */ 4980 static void nand_manufacturer_cleanup(struct nand_chip *chip) 4981 { 4982 /* Release manufacturer private data */ 4983 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4984 chip->manufacturer.desc->ops->cleanup) 4985 chip->manufacturer.desc->ops->cleanup(chip); 4986 } 4987 4988 static const char * 4989 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc) 4990 { 4991 return manufacturer_desc ? manufacturer_desc->name : "Unknown"; 4992 } 4993 4994 /* 4995 * Get the flash and manufacturer id and lookup if the type is supported. 4996 */ 4997 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 4998 { 4999 const struct nand_manufacturer_desc *manufacturer_desc; 5000 struct mtd_info *mtd = nand_to_mtd(chip); 5001 struct nand_memory_organization *memorg; 5002 int busw, ret; 5003 u8 *id_data = chip->id.data; 5004 u8 maf_id, dev_id; 5005 u64 targetsize; 5006 5007 /* 5008 * Let's start by initializing memorg fields that might be left 5009 * unassigned by the ID-based detection logic. 5010 */ 5011 memorg = nanddev_get_memorg(&chip->base); 5012 memorg->planes_per_lun = 1; 5013 memorg->luns_per_target = 1; 5014 5015 /* 5016 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 5017 * after power-up. 5018 */ 5019 ret = nand_reset(chip, 0); 5020 if (ret) 5021 return ret; 5022 5023 /* Select the device */ 5024 nand_select_target(chip, 0); 5025 5026 /* Send the command for reading device ID */ 5027 ret = nand_readid_op(chip, 0, id_data, 2); 5028 if (ret) 5029 return ret; 5030 5031 /* Read manufacturer and device IDs */ 5032 maf_id = id_data[0]; 5033 dev_id = id_data[1]; 5034 5035 /* 5036 * Try again to make sure, as some systems the bus-hold or other 5037 * interface concerns can cause random data which looks like a 5038 * possibly credible NAND flash to appear. If the two results do 5039 * not match, ignore the device completely. 5040 */ 5041 5042 /* Read entire ID string */ 5043 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 5044 if (ret) 5045 return ret; 5046 5047 if (id_data[0] != maf_id || id_data[1] != dev_id) { 5048 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 5049 maf_id, dev_id, id_data[0], id_data[1]); 5050 return -ENODEV; 5051 } 5052 5053 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 5054 5055 /* Try to identify manufacturer */ 5056 manufacturer_desc = nand_get_manufacturer_desc(maf_id); 5057 chip->manufacturer.desc = manufacturer_desc; 5058 5059 if (!type) 5060 type = nand_flash_ids; 5061 5062 /* 5063 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 5064 * override it. 5065 * This is required to make sure initial NAND bus width set by the 5066 * NAND controller driver is coherent with the real NAND bus width 5067 * (extracted by auto-detection code). 5068 */ 5069 busw = chip->options & NAND_BUSWIDTH_16; 5070 5071 /* 5072 * The flag is only set (never cleared), reset it to its default value 5073 * before starting auto-detection. 5074 */ 5075 chip->options &= ~NAND_BUSWIDTH_16; 5076 5077 for (; type->name != NULL; type++) { 5078 if (is_full_id_nand(type)) { 5079 if (find_full_id_nand(chip, type)) 5080 goto ident_done; 5081 } else if (dev_id == type->dev_id) { 5082 break; 5083 } 5084 } 5085 5086 if (!type->name || !type->pagesize) { 5087 /* Check if the chip is ONFI compliant */ 5088 ret = nand_onfi_detect(chip); 5089 if (ret < 0) 5090 return ret; 5091 else if (ret) 5092 goto ident_done; 5093 5094 /* Check if the chip is JEDEC compliant */ 5095 ret = nand_jedec_detect(chip); 5096 if (ret < 0) 5097 return ret; 5098 else if (ret) 5099 goto ident_done; 5100 } 5101 5102 if (!type->name) 5103 return -ENODEV; 5104 5105 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 5106 if (!chip->parameters.model) 5107 return -ENOMEM; 5108 5109 if (!type->pagesize) 5110 nand_manufacturer_detect(chip); 5111 else 5112 nand_decode_id(chip, type); 5113 5114 /* Get chip options */ 5115 chip->options |= type->options; 5116 5117 memorg->eraseblocks_per_lun = 5118 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 5119 memorg->pagesize * 5120 memorg->pages_per_eraseblock); 5121 5122 ident_done: 5123 if (!mtd->name) 5124 mtd->name = chip->parameters.model; 5125 5126 if (chip->options & NAND_BUSWIDTH_AUTO) { 5127 WARN_ON(busw & NAND_BUSWIDTH_16); 5128 nand_set_defaults(chip); 5129 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 5130 /* 5131 * Check, if buswidth is correct. Hardware drivers should set 5132 * chip correct! 5133 */ 5134 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5135 maf_id, dev_id); 5136 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 5137 mtd->name); 5138 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 5139 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 5140 ret = -EINVAL; 5141 5142 goto free_detect_allocation; 5143 } 5144 5145 nand_decode_bbm_options(chip); 5146 5147 /* Calculate the address shift from the page size */ 5148 chip->page_shift = ffs(mtd->writesize) - 1; 5149 /* Convert chipsize to number of pages per chip -1 */ 5150 targetsize = nanddev_target_size(&chip->base); 5151 chip->pagemask = (targetsize >> chip->page_shift) - 1; 5152 5153 chip->bbt_erase_shift = chip->phys_erase_shift = 5154 ffs(mtd->erasesize) - 1; 5155 if (targetsize & 0xffffffff) 5156 chip->chip_shift = ffs((unsigned)targetsize) - 1; 5157 else { 5158 chip->chip_shift = ffs((unsigned)(targetsize >> 32)); 5159 chip->chip_shift += 32 - 1; 5160 } 5161 5162 if (chip->chip_shift - chip->page_shift > 16) 5163 chip->options |= NAND_ROW_ADDR_3; 5164 5165 chip->badblockbits = 8; 5166 5167 nand_legacy_adjust_cmdfunc(chip); 5168 5169 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5170 maf_id, dev_id); 5171 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 5172 chip->parameters.model); 5173 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 5174 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 5175 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 5176 return 0; 5177 5178 free_detect_allocation: 5179 kfree(chip->parameters.model); 5180 5181 return ret; 5182 } 5183 5184 static enum nand_ecc_engine_type 5185 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np) 5186 { 5187 enum nand_ecc_legacy_mode { 5188 NAND_ECC_INVALID, 5189 NAND_ECC_NONE, 5190 NAND_ECC_SOFT, 5191 NAND_ECC_SOFT_BCH, 5192 NAND_ECC_HW, 5193 NAND_ECC_HW_SYNDROME, 5194 NAND_ECC_ON_DIE, 5195 }; 5196 const char * const nand_ecc_legacy_modes[] = { 5197 [NAND_ECC_NONE] = "none", 5198 [NAND_ECC_SOFT] = "soft", 5199 [NAND_ECC_SOFT_BCH] = "soft_bch", 5200 [NAND_ECC_HW] = "hw", 5201 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 5202 [NAND_ECC_ON_DIE] = "on-die", 5203 }; 5204 enum nand_ecc_legacy_mode eng_type; 5205 const char *pm; 5206 int err; 5207 5208 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5209 if (err) 5210 return NAND_ECC_ENGINE_TYPE_INVALID; 5211 5212 for (eng_type = NAND_ECC_NONE; 5213 eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) { 5214 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) { 5215 switch (eng_type) { 5216 case NAND_ECC_NONE: 5217 return NAND_ECC_ENGINE_TYPE_NONE; 5218 case NAND_ECC_SOFT: 5219 case NAND_ECC_SOFT_BCH: 5220 return NAND_ECC_ENGINE_TYPE_SOFT; 5221 case NAND_ECC_HW: 5222 case NAND_ECC_HW_SYNDROME: 5223 return NAND_ECC_ENGINE_TYPE_ON_HOST; 5224 case NAND_ECC_ON_DIE: 5225 return NAND_ECC_ENGINE_TYPE_ON_DIE; 5226 default: 5227 break; 5228 } 5229 } 5230 } 5231 5232 return NAND_ECC_ENGINE_TYPE_INVALID; 5233 } 5234 5235 static enum nand_ecc_placement 5236 of_get_rawnand_ecc_placement_legacy(struct device_node *np) 5237 { 5238 const char *pm; 5239 int err; 5240 5241 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5242 if (!err) { 5243 if (!strcasecmp(pm, "hw_syndrome")) 5244 return NAND_ECC_PLACEMENT_INTERLEAVED; 5245 } 5246 5247 return NAND_ECC_PLACEMENT_UNKNOWN; 5248 } 5249 5250 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np) 5251 { 5252 const char *pm; 5253 int err; 5254 5255 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5256 if (!err) { 5257 if (!strcasecmp(pm, "soft")) 5258 return NAND_ECC_ALGO_HAMMING; 5259 else if (!strcasecmp(pm, "soft_bch")) 5260 return NAND_ECC_ALGO_BCH; 5261 } 5262 5263 return NAND_ECC_ALGO_UNKNOWN; 5264 } 5265 5266 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip) 5267 { 5268 struct device_node *dn = nand_get_flash_node(chip); 5269 struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf; 5270 5271 if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 5272 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn); 5273 5274 if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN) 5275 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn); 5276 5277 if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN) 5278 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn); 5279 } 5280 5281 static int of_get_nand_bus_width(struct nand_chip *chip) 5282 { 5283 struct device_node *dn = nand_get_flash_node(chip); 5284 u32 val; 5285 int ret; 5286 5287 ret = of_property_read_u32(dn, "nand-bus-width", &val); 5288 if (ret == -EINVAL) 5289 /* Buswidth defaults to 8 if the property does not exist .*/ 5290 return 0; 5291 else if (ret) 5292 return ret; 5293 5294 if (val == 16) 5295 chip->options |= NAND_BUSWIDTH_16; 5296 else if (val != 8) 5297 return -EINVAL; 5298 return 0; 5299 } 5300 5301 static int of_get_nand_secure_regions(struct nand_chip *chip) 5302 { 5303 struct device_node *dn = nand_get_flash_node(chip); 5304 struct property *prop; 5305 int nr_elem, i, j; 5306 5307 /* Only proceed if the "secure-regions" property is present in DT */ 5308 prop = of_find_property(dn, "secure-regions", NULL); 5309 if (!prop) 5310 return 0; 5311 5312 nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64)); 5313 if (nr_elem <= 0) 5314 return nr_elem; 5315 5316 chip->nr_secure_regions = nr_elem / 2; 5317 chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions), 5318 GFP_KERNEL); 5319 if (!chip->secure_regions) 5320 return -ENOMEM; 5321 5322 for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) { 5323 of_property_read_u64_index(dn, "secure-regions", j, 5324 &chip->secure_regions[i].offset); 5325 of_property_read_u64_index(dn, "secure-regions", j + 1, 5326 &chip->secure_regions[i].size); 5327 } 5328 5329 return 0; 5330 } 5331 5332 /** 5333 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller 5334 * @dev: Device that will be parsed. Also used for managed allocations. 5335 * @cs_array: Array of GPIO desc pointers allocated on success 5336 * @ncs_array: Number of entries in @cs_array updated on success. 5337 * @return 0 on success, an error otherwise. 5338 */ 5339 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array, 5340 unsigned int *ncs_array) 5341 { 5342 struct gpio_desc **descs; 5343 int ndescs, i; 5344 5345 ndescs = gpiod_count(dev, "cs"); 5346 if (ndescs < 0) { 5347 dev_dbg(dev, "No valid cs-gpios property\n"); 5348 return 0; 5349 } 5350 5351 descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL); 5352 if (!descs) 5353 return -ENOMEM; 5354 5355 for (i = 0; i < ndescs; i++) { 5356 descs[i] = gpiod_get_index_optional(dev, "cs", i, 5357 GPIOD_OUT_HIGH); 5358 if (IS_ERR(descs[i])) 5359 return PTR_ERR(descs[i]); 5360 } 5361 5362 *ncs_array = ndescs; 5363 *cs_array = descs; 5364 5365 return 0; 5366 } 5367 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs); 5368 5369 static int rawnand_dt_init(struct nand_chip *chip) 5370 { 5371 struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip)); 5372 struct device_node *dn = nand_get_flash_node(chip); 5373 int ret; 5374 5375 if (!dn) 5376 return 0; 5377 5378 ret = of_get_nand_bus_width(chip); 5379 if (ret) 5380 return ret; 5381 5382 if (of_property_read_bool(dn, "nand-is-boot-medium")) 5383 chip->options |= NAND_IS_BOOT_MEDIUM; 5384 5385 if (of_property_read_bool(dn, "nand-on-flash-bbt")) 5386 chip->bbt_options |= NAND_BBT_USE_FLASH; 5387 5388 of_get_nand_ecc_user_config(nand); 5389 of_get_nand_ecc_legacy_user_config(chip); 5390 5391 /* 5392 * If neither the user nor the NAND controller have requested a specific 5393 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST. 5394 */ 5395 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 5396 5397 /* 5398 * Use the user requested engine type, unless there is none, in this 5399 * case default to the NAND controller choice, otherwise fallback to 5400 * the raw NAND default one. 5401 */ 5402 if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID) 5403 chip->ecc.engine_type = nand->ecc.user_conf.engine_type; 5404 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 5405 chip->ecc.engine_type = nand->ecc.defaults.engine_type; 5406 5407 chip->ecc.placement = nand->ecc.user_conf.placement; 5408 chip->ecc.algo = nand->ecc.user_conf.algo; 5409 chip->ecc.strength = nand->ecc.user_conf.strength; 5410 chip->ecc.size = nand->ecc.user_conf.step_size; 5411 5412 return 0; 5413 } 5414 5415 /** 5416 * nand_scan_ident - Scan for the NAND device 5417 * @chip: NAND chip object 5418 * @maxchips: number of chips to scan for 5419 * @table: alternative NAND ID table 5420 * 5421 * This is the first phase of the normal nand_scan() function. It reads the 5422 * flash ID and sets up MTD fields accordingly. 5423 * 5424 * This helper used to be called directly from controller drivers that needed 5425 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 5426 * prevented dynamic allocations during this phase which was unconvenient and 5427 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 5428 */ 5429 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, 5430 struct nand_flash_dev *table) 5431 { 5432 struct mtd_info *mtd = nand_to_mtd(chip); 5433 struct nand_memory_organization *memorg; 5434 int nand_maf_id, nand_dev_id; 5435 unsigned int i; 5436 int ret; 5437 5438 memorg = nanddev_get_memorg(&chip->base); 5439 5440 /* Assume all dies are deselected when we enter nand_scan_ident(). */ 5441 chip->cur_cs = -1; 5442 5443 mutex_init(&chip->lock); 5444 init_waitqueue_head(&chip->resume_wq); 5445 5446 /* Enforce the right timings for reset/detection */ 5447 chip->current_interface_config = nand_get_reset_interface_config(); 5448 5449 ret = rawnand_dt_init(chip); 5450 if (ret) 5451 return ret; 5452 5453 if (!mtd->name && mtd->dev.parent) 5454 mtd->name = dev_name(mtd->dev.parent); 5455 5456 /* Set the default functions */ 5457 nand_set_defaults(chip); 5458 5459 ret = nand_legacy_check_hooks(chip); 5460 if (ret) 5461 return ret; 5462 5463 memorg->ntargets = maxchips; 5464 5465 /* Read the flash type */ 5466 ret = nand_detect(chip, table); 5467 if (ret) { 5468 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 5469 pr_warn("No NAND device found\n"); 5470 nand_deselect_target(chip); 5471 return ret; 5472 } 5473 5474 nand_maf_id = chip->id.data[0]; 5475 nand_dev_id = chip->id.data[1]; 5476 5477 nand_deselect_target(chip); 5478 5479 /* Check for a chip array */ 5480 for (i = 1; i < maxchips; i++) { 5481 u8 id[2]; 5482 5483 /* See comment in nand_get_flash_type for reset */ 5484 ret = nand_reset(chip, i); 5485 if (ret) 5486 break; 5487 5488 nand_select_target(chip, i); 5489 /* Send the command for reading device ID */ 5490 ret = nand_readid_op(chip, 0, id, sizeof(id)); 5491 if (ret) 5492 break; 5493 /* Read manufacturer and device IDs */ 5494 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5495 nand_deselect_target(chip); 5496 break; 5497 } 5498 nand_deselect_target(chip); 5499 } 5500 if (i > 1) 5501 pr_info("%d chips detected\n", i); 5502 5503 /* Store the number of chips and calc total size for mtd */ 5504 memorg->ntargets = i; 5505 mtd->size = i * nanddev_target_size(&chip->base); 5506 5507 return 0; 5508 } 5509 5510 static void nand_scan_ident_cleanup(struct nand_chip *chip) 5511 { 5512 kfree(chip->parameters.model); 5513 kfree(chip->parameters.onfi); 5514 } 5515 5516 int rawnand_sw_hamming_init(struct nand_chip *chip) 5517 { 5518 struct nand_ecc_sw_hamming_conf *engine_conf; 5519 struct nand_device *base = &chip->base; 5520 int ret; 5521 5522 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5523 base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING; 5524 base->ecc.user_conf.strength = chip->ecc.strength; 5525 base->ecc.user_conf.step_size = chip->ecc.size; 5526 5527 ret = nand_ecc_sw_hamming_init_ctx(base); 5528 if (ret) 5529 return ret; 5530 5531 engine_conf = base->ecc.ctx.priv; 5532 5533 if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER) 5534 engine_conf->sm_order = true; 5535 5536 chip->ecc.size = base->ecc.ctx.conf.step_size; 5537 chip->ecc.strength = base->ecc.ctx.conf.strength; 5538 chip->ecc.total = base->ecc.ctx.total; 5539 chip->ecc.steps = nanddev_get_ecc_nsteps(base); 5540 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); 5541 5542 return 0; 5543 } 5544 EXPORT_SYMBOL(rawnand_sw_hamming_init); 5545 5546 int rawnand_sw_hamming_calculate(struct nand_chip *chip, 5547 const unsigned char *buf, 5548 unsigned char *code) 5549 { 5550 struct nand_device *base = &chip->base; 5551 5552 return nand_ecc_sw_hamming_calculate(base, buf, code); 5553 } 5554 EXPORT_SYMBOL(rawnand_sw_hamming_calculate); 5555 5556 int rawnand_sw_hamming_correct(struct nand_chip *chip, 5557 unsigned char *buf, 5558 unsigned char *read_ecc, 5559 unsigned char *calc_ecc) 5560 { 5561 struct nand_device *base = &chip->base; 5562 5563 return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc); 5564 } 5565 EXPORT_SYMBOL(rawnand_sw_hamming_correct); 5566 5567 void rawnand_sw_hamming_cleanup(struct nand_chip *chip) 5568 { 5569 struct nand_device *base = &chip->base; 5570 5571 nand_ecc_sw_hamming_cleanup_ctx(base); 5572 } 5573 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup); 5574 5575 int rawnand_sw_bch_init(struct nand_chip *chip) 5576 { 5577 struct nand_device *base = &chip->base; 5578 const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base); 5579 int ret; 5580 5581 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5582 base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH; 5583 base->ecc.user_conf.step_size = chip->ecc.size; 5584 base->ecc.user_conf.strength = chip->ecc.strength; 5585 5586 ret = nand_ecc_sw_bch_init_ctx(base); 5587 if (ret) 5588 return ret; 5589 5590 chip->ecc.size = ecc_conf->step_size; 5591 chip->ecc.strength = ecc_conf->strength; 5592 chip->ecc.total = base->ecc.ctx.total; 5593 chip->ecc.steps = nanddev_get_ecc_nsteps(base); 5594 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); 5595 5596 return 0; 5597 } 5598 EXPORT_SYMBOL(rawnand_sw_bch_init); 5599 5600 static int rawnand_sw_bch_calculate(struct nand_chip *chip, 5601 const unsigned char *buf, 5602 unsigned char *code) 5603 { 5604 struct nand_device *base = &chip->base; 5605 5606 return nand_ecc_sw_bch_calculate(base, buf, code); 5607 } 5608 5609 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf, 5610 unsigned char *read_ecc, unsigned char *calc_ecc) 5611 { 5612 struct nand_device *base = &chip->base; 5613 5614 return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc); 5615 } 5616 EXPORT_SYMBOL(rawnand_sw_bch_correct); 5617 5618 void rawnand_sw_bch_cleanup(struct nand_chip *chip) 5619 { 5620 struct nand_device *base = &chip->base; 5621 5622 nand_ecc_sw_bch_cleanup_ctx(base); 5623 } 5624 EXPORT_SYMBOL(rawnand_sw_bch_cleanup); 5625 5626 static int nand_set_ecc_on_host_ops(struct nand_chip *chip) 5627 { 5628 struct nand_ecc_ctrl *ecc = &chip->ecc; 5629 5630 switch (ecc->placement) { 5631 case NAND_ECC_PLACEMENT_UNKNOWN: 5632 case NAND_ECC_PLACEMENT_OOB: 5633 /* Use standard hwecc read page function? */ 5634 if (!ecc->read_page) 5635 ecc->read_page = nand_read_page_hwecc; 5636 if (!ecc->write_page) 5637 ecc->write_page = nand_write_page_hwecc; 5638 if (!ecc->read_page_raw) 5639 ecc->read_page_raw = nand_read_page_raw; 5640 if (!ecc->write_page_raw) 5641 ecc->write_page_raw = nand_write_page_raw; 5642 if (!ecc->read_oob) 5643 ecc->read_oob = nand_read_oob_std; 5644 if (!ecc->write_oob) 5645 ecc->write_oob = nand_write_oob_std; 5646 if (!ecc->read_subpage) 5647 ecc->read_subpage = nand_read_subpage; 5648 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 5649 ecc->write_subpage = nand_write_subpage_hwecc; 5650 fallthrough; 5651 5652 case NAND_ECC_PLACEMENT_INTERLEAVED: 5653 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 5654 (!ecc->read_page || 5655 ecc->read_page == nand_read_page_hwecc || 5656 !ecc->write_page || 5657 ecc->write_page == nand_write_page_hwecc)) { 5658 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5659 return -EINVAL; 5660 } 5661 /* Use standard syndrome read/write page function? */ 5662 if (!ecc->read_page) 5663 ecc->read_page = nand_read_page_syndrome; 5664 if (!ecc->write_page) 5665 ecc->write_page = nand_write_page_syndrome; 5666 if (!ecc->read_page_raw) 5667 ecc->read_page_raw = nand_read_page_raw_syndrome; 5668 if (!ecc->write_page_raw) 5669 ecc->write_page_raw = nand_write_page_raw_syndrome; 5670 if (!ecc->read_oob) 5671 ecc->read_oob = nand_read_oob_syndrome; 5672 if (!ecc->write_oob) 5673 ecc->write_oob = nand_write_oob_syndrome; 5674 break; 5675 5676 default: 5677 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n", 5678 ecc->placement); 5679 return -EINVAL; 5680 } 5681 5682 return 0; 5683 } 5684 5685 static int nand_set_ecc_soft_ops(struct nand_chip *chip) 5686 { 5687 struct mtd_info *mtd = nand_to_mtd(chip); 5688 struct nand_device *nanddev = mtd_to_nanddev(mtd); 5689 struct nand_ecc_ctrl *ecc = &chip->ecc; 5690 int ret; 5691 5692 if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT)) 5693 return -EINVAL; 5694 5695 switch (ecc->algo) { 5696 case NAND_ECC_ALGO_HAMMING: 5697 ecc->calculate = rawnand_sw_hamming_calculate; 5698 ecc->correct = rawnand_sw_hamming_correct; 5699 ecc->read_page = nand_read_page_swecc; 5700 ecc->read_subpage = nand_read_subpage; 5701 ecc->write_page = nand_write_page_swecc; 5702 if (!ecc->read_page_raw) 5703 ecc->read_page_raw = nand_read_page_raw; 5704 if (!ecc->write_page_raw) 5705 ecc->write_page_raw = nand_write_page_raw; 5706 ecc->read_oob = nand_read_oob_std; 5707 ecc->write_oob = nand_write_oob_std; 5708 if (!ecc->size) 5709 ecc->size = 256; 5710 ecc->bytes = 3; 5711 ecc->strength = 1; 5712 5713 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) 5714 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 5715 5716 ret = rawnand_sw_hamming_init(chip); 5717 if (ret) { 5718 WARN(1, "Hamming ECC initialization failed!\n"); 5719 return ret; 5720 } 5721 5722 return 0; 5723 case NAND_ECC_ALGO_BCH: 5724 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { 5725 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); 5726 return -EINVAL; 5727 } 5728 ecc->calculate = rawnand_sw_bch_calculate; 5729 ecc->correct = rawnand_sw_bch_correct; 5730 ecc->read_page = nand_read_page_swecc; 5731 ecc->read_subpage = nand_read_subpage; 5732 ecc->write_page = nand_write_page_swecc; 5733 if (!ecc->read_page_raw) 5734 ecc->read_page_raw = nand_read_page_raw; 5735 if (!ecc->write_page_raw) 5736 ecc->write_page_raw = nand_write_page_raw; 5737 ecc->read_oob = nand_read_oob_std; 5738 ecc->write_oob = nand_write_oob_std; 5739 5740 /* 5741 * We can only maximize ECC config when the default layout is 5742 * used, otherwise we don't know how many bytes can really be 5743 * used. 5744 */ 5745 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH && 5746 mtd->ooblayout != nand_get_large_page_ooblayout()) 5747 nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH; 5748 5749 ret = rawnand_sw_bch_init(chip); 5750 if (ret) { 5751 WARN(1, "BCH ECC initialization failed!\n"); 5752 return ret; 5753 } 5754 5755 return 0; 5756 default: 5757 WARN(1, "Unsupported ECC algorithm!\n"); 5758 return -EINVAL; 5759 } 5760 } 5761 5762 /** 5763 * nand_check_ecc_caps - check the sanity of preset ECC settings 5764 * @chip: nand chip info structure 5765 * @caps: ECC caps info structure 5766 * @oobavail: OOB size that the ECC engine can use 5767 * 5768 * When ECC step size and strength are already set, check if they are supported 5769 * by the controller and the calculated ECC bytes fit within the chip's OOB. 5770 * On success, the calculated ECC bytes is set. 5771 */ 5772 static int 5773 nand_check_ecc_caps(struct nand_chip *chip, 5774 const struct nand_ecc_caps *caps, int oobavail) 5775 { 5776 struct mtd_info *mtd = nand_to_mtd(chip); 5777 const struct nand_ecc_step_info *stepinfo; 5778 int preset_step = chip->ecc.size; 5779 int preset_strength = chip->ecc.strength; 5780 int ecc_bytes, nsteps = mtd->writesize / preset_step; 5781 int i, j; 5782 5783 for (i = 0; i < caps->nstepinfos; i++) { 5784 stepinfo = &caps->stepinfos[i]; 5785 5786 if (stepinfo->stepsize != preset_step) 5787 continue; 5788 5789 for (j = 0; j < stepinfo->nstrengths; j++) { 5790 if (stepinfo->strengths[j] != preset_strength) 5791 continue; 5792 5793 ecc_bytes = caps->calc_ecc_bytes(preset_step, 5794 preset_strength); 5795 if (WARN_ON_ONCE(ecc_bytes < 0)) 5796 return ecc_bytes; 5797 5798 if (ecc_bytes * nsteps > oobavail) { 5799 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 5800 preset_step, preset_strength); 5801 return -ENOSPC; 5802 } 5803 5804 chip->ecc.bytes = ecc_bytes; 5805 5806 return 0; 5807 } 5808 } 5809 5810 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 5811 preset_step, preset_strength); 5812 5813 return -ENOTSUPP; 5814 } 5815 5816 /** 5817 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 5818 * @chip: nand chip info structure 5819 * @caps: ECC engine caps info structure 5820 * @oobavail: OOB size that the ECC engine can use 5821 * 5822 * If a chip's ECC requirement is provided, try to meet it with the least 5823 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 5824 * On success, the chosen ECC settings are set. 5825 */ 5826 static int 5827 nand_match_ecc_req(struct nand_chip *chip, 5828 const struct nand_ecc_caps *caps, int oobavail) 5829 { 5830 const struct nand_ecc_props *requirements = 5831 nanddev_get_ecc_requirements(&chip->base); 5832 struct mtd_info *mtd = nand_to_mtd(chip); 5833 const struct nand_ecc_step_info *stepinfo; 5834 int req_step = requirements->step_size; 5835 int req_strength = requirements->strength; 5836 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 5837 int best_step, best_strength, best_ecc_bytes; 5838 int best_ecc_bytes_total = INT_MAX; 5839 int i, j; 5840 5841 /* No information provided by the NAND chip */ 5842 if (!req_step || !req_strength) 5843 return -ENOTSUPP; 5844 5845 /* number of correctable bits the chip requires in a page */ 5846 req_corr = mtd->writesize / req_step * req_strength; 5847 5848 for (i = 0; i < caps->nstepinfos; i++) { 5849 stepinfo = &caps->stepinfos[i]; 5850 step_size = stepinfo->stepsize; 5851 5852 for (j = 0; j < stepinfo->nstrengths; j++) { 5853 strength = stepinfo->strengths[j]; 5854 5855 /* 5856 * If both step size and strength are smaller than the 5857 * chip's requirement, it is not easy to compare the 5858 * resulted reliability. 5859 */ 5860 if (step_size < req_step && strength < req_strength) 5861 continue; 5862 5863 if (mtd->writesize % step_size) 5864 continue; 5865 5866 nsteps = mtd->writesize / step_size; 5867 5868 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5869 if (WARN_ON_ONCE(ecc_bytes < 0)) 5870 continue; 5871 ecc_bytes_total = ecc_bytes * nsteps; 5872 5873 if (ecc_bytes_total > oobavail || 5874 strength * nsteps < req_corr) 5875 continue; 5876 5877 /* 5878 * We assume the best is to meet the chip's requrement 5879 * with the least number of ECC bytes. 5880 */ 5881 if (ecc_bytes_total < best_ecc_bytes_total) { 5882 best_ecc_bytes_total = ecc_bytes_total; 5883 best_step = step_size; 5884 best_strength = strength; 5885 best_ecc_bytes = ecc_bytes; 5886 } 5887 } 5888 } 5889 5890 if (best_ecc_bytes_total == INT_MAX) 5891 return -ENOTSUPP; 5892 5893 chip->ecc.size = best_step; 5894 chip->ecc.strength = best_strength; 5895 chip->ecc.bytes = best_ecc_bytes; 5896 5897 return 0; 5898 } 5899 5900 /** 5901 * nand_maximize_ecc - choose the max ECC strength available 5902 * @chip: nand chip info structure 5903 * @caps: ECC engine caps info structure 5904 * @oobavail: OOB size that the ECC engine can use 5905 * 5906 * Choose the max ECC strength that is supported on the controller, and can fit 5907 * within the chip's OOB. On success, the chosen ECC settings are set. 5908 */ 5909 static int 5910 nand_maximize_ecc(struct nand_chip *chip, 5911 const struct nand_ecc_caps *caps, int oobavail) 5912 { 5913 struct mtd_info *mtd = nand_to_mtd(chip); 5914 const struct nand_ecc_step_info *stepinfo; 5915 int step_size, strength, nsteps, ecc_bytes, corr; 5916 int best_corr = 0; 5917 int best_step = 0; 5918 int best_strength, best_ecc_bytes; 5919 int i, j; 5920 5921 for (i = 0; i < caps->nstepinfos; i++) { 5922 stepinfo = &caps->stepinfos[i]; 5923 step_size = stepinfo->stepsize; 5924 5925 /* If chip->ecc.size is already set, respect it */ 5926 if (chip->ecc.size && step_size != chip->ecc.size) 5927 continue; 5928 5929 for (j = 0; j < stepinfo->nstrengths; j++) { 5930 strength = stepinfo->strengths[j]; 5931 5932 if (mtd->writesize % step_size) 5933 continue; 5934 5935 nsteps = mtd->writesize / step_size; 5936 5937 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5938 if (WARN_ON_ONCE(ecc_bytes < 0)) 5939 continue; 5940 5941 if (ecc_bytes * nsteps > oobavail) 5942 continue; 5943 5944 corr = strength * nsteps; 5945 5946 /* 5947 * If the number of correctable bits is the same, 5948 * bigger step_size has more reliability. 5949 */ 5950 if (corr > best_corr || 5951 (corr == best_corr && step_size > best_step)) { 5952 best_corr = corr; 5953 best_step = step_size; 5954 best_strength = strength; 5955 best_ecc_bytes = ecc_bytes; 5956 } 5957 } 5958 } 5959 5960 if (!best_corr) 5961 return -ENOTSUPP; 5962 5963 chip->ecc.size = best_step; 5964 chip->ecc.strength = best_strength; 5965 chip->ecc.bytes = best_ecc_bytes; 5966 5967 return 0; 5968 } 5969 5970 /** 5971 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 5972 * @chip: nand chip info structure 5973 * @caps: ECC engine caps info structure 5974 * @oobavail: OOB size that the ECC engine can use 5975 * 5976 * Choose the ECC configuration according to following logic. 5977 * 5978 * 1. If both ECC step size and ECC strength are already set (usually by DT) 5979 * then check if it is supported by this controller. 5980 * 2. If the user provided the nand-ecc-maximize property, then select maximum 5981 * ECC strength. 5982 * 3. Otherwise, try to match the ECC step size and ECC strength closest 5983 * to the chip's requirement. If available OOB size can't fit the chip 5984 * requirement then fallback to the maximum ECC step size and ECC strength. 5985 * 5986 * On success, the chosen ECC settings are set. 5987 */ 5988 int nand_ecc_choose_conf(struct nand_chip *chip, 5989 const struct nand_ecc_caps *caps, int oobavail) 5990 { 5991 struct mtd_info *mtd = nand_to_mtd(chip); 5992 struct nand_device *nanddev = mtd_to_nanddev(mtd); 5993 5994 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 5995 return -EINVAL; 5996 5997 if (chip->ecc.size && chip->ecc.strength) 5998 return nand_check_ecc_caps(chip, caps, oobavail); 5999 6000 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) 6001 return nand_maximize_ecc(chip, caps, oobavail); 6002 6003 if (!nand_match_ecc_req(chip, caps, oobavail)) 6004 return 0; 6005 6006 return nand_maximize_ecc(chip, caps, oobavail); 6007 } 6008 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 6009 6010 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) 6011 { 6012 struct nand_chip *chip = container_of(nand, struct nand_chip, 6013 base); 6014 unsigned int eb = nanddev_pos_to_row(nand, pos); 6015 int ret; 6016 6017 eb >>= nand->rowconv.eraseblock_addr_shift; 6018 6019 nand_select_target(chip, pos->target); 6020 ret = nand_erase_op(chip, eb); 6021 nand_deselect_target(chip); 6022 6023 return ret; 6024 } 6025 6026 static int rawnand_markbad(struct nand_device *nand, 6027 const struct nand_pos *pos) 6028 { 6029 struct nand_chip *chip = container_of(nand, struct nand_chip, 6030 base); 6031 6032 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 6033 } 6034 6035 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) 6036 { 6037 struct nand_chip *chip = container_of(nand, struct nand_chip, 6038 base); 6039 int ret; 6040 6041 nand_select_target(chip, pos->target); 6042 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 6043 nand_deselect_target(chip); 6044 6045 return ret; 6046 } 6047 6048 static const struct nand_ops rawnand_ops = { 6049 .erase = rawnand_erase, 6050 .markbad = rawnand_markbad, 6051 .isbad = rawnand_isbad, 6052 }; 6053 6054 /** 6055 * nand_scan_tail - Scan for the NAND device 6056 * @chip: NAND chip object 6057 * 6058 * This is the second phase of the normal nand_scan() function. It fills out 6059 * all the uninitialized function pointers with the defaults and scans for a 6060 * bad block table if appropriate. 6061 */ 6062 static int nand_scan_tail(struct nand_chip *chip) 6063 { 6064 struct mtd_info *mtd = nand_to_mtd(chip); 6065 struct nand_ecc_ctrl *ecc = &chip->ecc; 6066 int ret, i; 6067 6068 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 6069 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 6070 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 6071 return -EINVAL; 6072 } 6073 6074 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 6075 if (!chip->data_buf) 6076 return -ENOMEM; 6077 6078 /* 6079 * FIXME: some NAND manufacturer drivers expect the first die to be 6080 * selected when manufacturer->init() is called. They should be fixed 6081 * to explictly select the relevant die when interacting with the NAND 6082 * chip. 6083 */ 6084 nand_select_target(chip, 0); 6085 ret = nand_manufacturer_init(chip); 6086 nand_deselect_target(chip); 6087 if (ret) 6088 goto err_free_buf; 6089 6090 /* Set the internal oob buffer location, just after the page data */ 6091 chip->oob_poi = chip->data_buf + mtd->writesize; 6092 6093 /* 6094 * If no default placement scheme is given, select an appropriate one. 6095 */ 6096 if (!mtd->ooblayout && 6097 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 6098 ecc->algo == NAND_ECC_ALGO_BCH) && 6099 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 6100 ecc->algo == NAND_ECC_ALGO_HAMMING)) { 6101 switch (mtd->oobsize) { 6102 case 8: 6103 case 16: 6104 mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout()); 6105 break; 6106 case 64: 6107 case 128: 6108 mtd_set_ooblayout(mtd, 6109 nand_get_large_page_hamming_ooblayout()); 6110 break; 6111 default: 6112 /* 6113 * Expose the whole OOB area to users if ECC_NONE 6114 * is passed. We could do that for all kind of 6115 * ->oobsize, but we must keep the old large/small 6116 * page with ECC layout when ->oobsize <= 128 for 6117 * compatibility reasons. 6118 */ 6119 if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) { 6120 mtd_set_ooblayout(mtd, 6121 nand_get_large_page_ooblayout()); 6122 break; 6123 } 6124 6125 WARN(1, "No oob scheme defined for oobsize %d\n", 6126 mtd->oobsize); 6127 ret = -EINVAL; 6128 goto err_nand_manuf_cleanup; 6129 } 6130 } 6131 6132 /* 6133 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 6134 * selected and we have 256 byte pagesize fallback to software ECC 6135 */ 6136 6137 switch (ecc->engine_type) { 6138 case NAND_ECC_ENGINE_TYPE_ON_HOST: 6139 ret = nand_set_ecc_on_host_ops(chip); 6140 if (ret) 6141 goto err_nand_manuf_cleanup; 6142 6143 if (mtd->writesize >= ecc->size) { 6144 if (!ecc->strength) { 6145 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 6146 ret = -EINVAL; 6147 goto err_nand_manuf_cleanup; 6148 } 6149 break; 6150 } 6151 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 6152 ecc->size, mtd->writesize); 6153 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 6154 ecc->algo = NAND_ECC_ALGO_HAMMING; 6155 fallthrough; 6156 6157 case NAND_ECC_ENGINE_TYPE_SOFT: 6158 ret = nand_set_ecc_soft_ops(chip); 6159 if (ret) 6160 goto err_nand_manuf_cleanup; 6161 break; 6162 6163 case NAND_ECC_ENGINE_TYPE_ON_DIE: 6164 if (!ecc->read_page || !ecc->write_page) { 6165 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 6166 ret = -EINVAL; 6167 goto err_nand_manuf_cleanup; 6168 } 6169 if (!ecc->read_oob) 6170 ecc->read_oob = nand_read_oob_std; 6171 if (!ecc->write_oob) 6172 ecc->write_oob = nand_write_oob_std; 6173 break; 6174 6175 case NAND_ECC_ENGINE_TYPE_NONE: 6176 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n"); 6177 ecc->read_page = nand_read_page_raw; 6178 ecc->write_page = nand_write_page_raw; 6179 ecc->read_oob = nand_read_oob_std; 6180 ecc->read_page_raw = nand_read_page_raw; 6181 ecc->write_page_raw = nand_write_page_raw; 6182 ecc->write_oob = nand_write_oob_std; 6183 ecc->size = mtd->writesize; 6184 ecc->bytes = 0; 6185 ecc->strength = 0; 6186 break; 6187 6188 default: 6189 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type); 6190 ret = -EINVAL; 6191 goto err_nand_manuf_cleanup; 6192 } 6193 6194 if (ecc->correct || ecc->calculate) { 6195 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6196 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6197 if (!ecc->calc_buf || !ecc->code_buf) { 6198 ret = -ENOMEM; 6199 goto err_nand_manuf_cleanup; 6200 } 6201 } 6202 6203 /* For many systems, the standard OOB write also works for raw */ 6204 if (!ecc->read_oob_raw) 6205 ecc->read_oob_raw = ecc->read_oob; 6206 if (!ecc->write_oob_raw) 6207 ecc->write_oob_raw = ecc->write_oob; 6208 6209 /* propagate ecc info to mtd_info */ 6210 mtd->ecc_strength = ecc->strength; 6211 mtd->ecc_step_size = ecc->size; 6212 6213 /* 6214 * Set the number of read / write steps for one page depending on ECC 6215 * mode. 6216 */ 6217 if (!ecc->steps) 6218 ecc->steps = mtd->writesize / ecc->size; 6219 if (ecc->steps * ecc->size != mtd->writesize) { 6220 WARN(1, "Invalid ECC parameters\n"); 6221 ret = -EINVAL; 6222 goto err_nand_manuf_cleanup; 6223 } 6224 6225 if (!ecc->total) { 6226 ecc->total = ecc->steps * ecc->bytes; 6227 chip->base.ecc.ctx.total = ecc->total; 6228 } 6229 6230 if (ecc->total > mtd->oobsize) { 6231 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 6232 ret = -EINVAL; 6233 goto err_nand_manuf_cleanup; 6234 } 6235 6236 /* 6237 * The number of bytes available for a client to place data into 6238 * the out of band area. 6239 */ 6240 ret = mtd_ooblayout_count_freebytes(mtd); 6241 if (ret < 0) 6242 ret = 0; 6243 6244 mtd->oobavail = ret; 6245 6246 /* ECC sanity check: warn if it's too weak */ 6247 if (!nand_ecc_is_strong_enough(&chip->base)) 6248 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n", 6249 mtd->name, chip->ecc.strength, chip->ecc.size, 6250 nanddev_get_ecc_requirements(&chip->base)->strength, 6251 nanddev_get_ecc_requirements(&chip->base)->step_size); 6252 6253 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 6254 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 6255 switch (ecc->steps) { 6256 case 2: 6257 mtd->subpage_sft = 1; 6258 break; 6259 case 4: 6260 case 8: 6261 case 16: 6262 mtd->subpage_sft = 2; 6263 break; 6264 } 6265 } 6266 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 6267 6268 /* Invalidate the pagebuffer reference */ 6269 chip->pagecache.page = -1; 6270 6271 /* Large page NAND with SOFT_ECC should support subpage reads */ 6272 switch (ecc->engine_type) { 6273 case NAND_ECC_ENGINE_TYPE_SOFT: 6274 if (chip->page_shift > 9) 6275 chip->options |= NAND_SUBPAGE_READ; 6276 break; 6277 6278 default: 6279 break; 6280 } 6281 6282 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); 6283 if (ret) 6284 goto err_nand_manuf_cleanup; 6285 6286 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ 6287 if (chip->options & NAND_ROM) 6288 mtd->flags = MTD_CAP_ROM; 6289 6290 /* Fill in remaining MTD driver data */ 6291 mtd->_erase = nand_erase; 6292 mtd->_point = NULL; 6293 mtd->_unpoint = NULL; 6294 mtd->_panic_write = panic_nand_write; 6295 mtd->_read_oob = nand_read_oob; 6296 mtd->_write_oob = nand_write_oob; 6297 mtd->_sync = nand_sync; 6298 mtd->_lock = nand_lock; 6299 mtd->_unlock = nand_unlock; 6300 mtd->_suspend = nand_suspend; 6301 mtd->_resume = nand_resume; 6302 mtd->_reboot = nand_shutdown; 6303 mtd->_block_isreserved = nand_block_isreserved; 6304 mtd->_block_isbad = nand_block_isbad; 6305 mtd->_block_markbad = nand_block_markbad; 6306 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; 6307 6308 /* 6309 * Initialize bitflip_threshold to its default prior scan_bbt() call. 6310 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 6311 * properly set. 6312 */ 6313 if (!mtd->bitflip_threshold) 6314 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 6315 6316 /* Find the fastest data interface for this chip */ 6317 ret = nand_choose_interface_config(chip); 6318 if (ret) 6319 goto err_nanddev_cleanup; 6320 6321 /* Enter fastest possible mode on all dies. */ 6322 for (i = 0; i < nanddev_ntargets(&chip->base); i++) { 6323 ret = nand_setup_interface(chip, i); 6324 if (ret) 6325 goto err_free_interface_config; 6326 } 6327 6328 /* 6329 * Look for secure regions in the NAND chip. These regions are supposed 6330 * to be protected by a secure element like Trustzone. So the read/write 6331 * accesses to these regions will be blocked in the runtime by this 6332 * driver. 6333 */ 6334 ret = of_get_nand_secure_regions(chip); 6335 if (ret) 6336 goto err_free_interface_config; 6337 6338 /* Check, if we should skip the bad block table scan */ 6339 if (chip->options & NAND_SKIP_BBTSCAN) 6340 return 0; 6341 6342 /* Build bad block table */ 6343 ret = nand_create_bbt(chip); 6344 if (ret) 6345 goto err_free_secure_regions; 6346 6347 return 0; 6348 6349 err_free_secure_regions: 6350 kfree(chip->secure_regions); 6351 6352 err_free_interface_config: 6353 kfree(chip->best_interface_config); 6354 6355 err_nanddev_cleanup: 6356 nanddev_cleanup(&chip->base); 6357 6358 err_nand_manuf_cleanup: 6359 nand_manufacturer_cleanup(chip); 6360 6361 err_free_buf: 6362 kfree(chip->data_buf); 6363 kfree(ecc->code_buf); 6364 kfree(ecc->calc_buf); 6365 6366 return ret; 6367 } 6368 6369 static int nand_attach(struct nand_chip *chip) 6370 { 6371 if (chip->controller->ops && chip->controller->ops->attach_chip) 6372 return chip->controller->ops->attach_chip(chip); 6373 6374 return 0; 6375 } 6376 6377 static void nand_detach(struct nand_chip *chip) 6378 { 6379 if (chip->controller->ops && chip->controller->ops->detach_chip) 6380 chip->controller->ops->detach_chip(chip); 6381 } 6382 6383 /** 6384 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 6385 * @chip: NAND chip object 6386 * @maxchips: number of chips to scan for. 6387 * @ids: optional flash IDs table 6388 * 6389 * This fills out all the uninitialized function pointers with the defaults. 6390 * The flash ID is read and the mtd/chip structures are filled with the 6391 * appropriate values. 6392 */ 6393 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, 6394 struct nand_flash_dev *ids) 6395 { 6396 int ret; 6397 6398 if (!maxchips) 6399 return -EINVAL; 6400 6401 ret = nand_scan_ident(chip, maxchips, ids); 6402 if (ret) 6403 return ret; 6404 6405 ret = nand_attach(chip); 6406 if (ret) 6407 goto cleanup_ident; 6408 6409 ret = nand_scan_tail(chip); 6410 if (ret) 6411 goto detach_chip; 6412 6413 return 0; 6414 6415 detach_chip: 6416 nand_detach(chip); 6417 cleanup_ident: 6418 nand_scan_ident_cleanup(chip); 6419 6420 return ret; 6421 } 6422 EXPORT_SYMBOL(nand_scan_with_ids); 6423 6424 /** 6425 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 6426 * @chip: NAND chip object 6427 */ 6428 void nand_cleanup(struct nand_chip *chip) 6429 { 6430 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) { 6431 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING) 6432 rawnand_sw_hamming_cleanup(chip); 6433 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 6434 rawnand_sw_bch_cleanup(chip); 6435 } 6436 6437 nanddev_cleanup(&chip->base); 6438 6439 /* Free secure regions data */ 6440 kfree(chip->secure_regions); 6441 6442 /* Free bad block table memory */ 6443 kfree(chip->bbt); 6444 kfree(chip->data_buf); 6445 kfree(chip->ecc.code_buf); 6446 kfree(chip->ecc.calc_buf); 6447 6448 /* Free bad block descriptor memory */ 6449 if (chip->badblock_pattern && chip->badblock_pattern->options 6450 & NAND_BBT_DYNAMICSTRUCT) 6451 kfree(chip->badblock_pattern); 6452 6453 /* Free the data interface */ 6454 kfree(chip->best_interface_config); 6455 6456 /* Free manufacturer priv data. */ 6457 nand_manufacturer_cleanup(chip); 6458 6459 /* Free controller specific allocations after chip identification */ 6460 nand_detach(chip); 6461 6462 /* Free identification phase allocations */ 6463 nand_scan_ident_cleanup(chip); 6464 } 6465 6466 EXPORT_SYMBOL_GPL(nand_cleanup); 6467 6468 MODULE_LICENSE("GPL"); 6469 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 6470 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 6471 MODULE_DESCRIPTION("Generic NAND flash driver code"); 6472