xref: /openbmc/linux/drivers/mtd/nand/raw/nand_base.c (revision adb19164)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/of_gpio.h>
46 #include <linux/gpio/consumer.h>
47 
48 #include "internals.h"
49 
50 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
51 				       struct mtd_pairing_info *info)
52 {
53 	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
54 	int dist = 3;
55 
56 	if (page == lastpage)
57 		dist = 2;
58 
59 	if (!page || (page & 1)) {
60 		info->group = 0;
61 		info->pair = (page + 1) / 2;
62 	} else {
63 		info->group = 1;
64 		info->pair = (page + 1 - dist) / 2;
65 	}
66 
67 	return 0;
68 }
69 
70 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
71 					const struct mtd_pairing_info *info)
72 {
73 	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
74 	int page = info->pair * 2;
75 	int dist = 3;
76 
77 	if (!info->group && !info->pair)
78 		return 0;
79 
80 	if (info->pair == lastpair && info->group)
81 		dist = 2;
82 
83 	if (!info->group)
84 		page--;
85 	else if (info->pair)
86 		page += dist - 1;
87 
88 	if (page >= mtd->erasesize / mtd->writesize)
89 		return -EINVAL;
90 
91 	return page;
92 }
93 
94 const struct mtd_pairing_scheme dist3_pairing_scheme = {
95 	.ngroups = 2,
96 	.get_info = nand_pairing_dist3_get_info,
97 	.get_wunit = nand_pairing_dist3_get_wunit,
98 };
99 
100 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
101 {
102 	int ret = 0;
103 
104 	/* Start address must align on block boundary */
105 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
106 		pr_debug("%s: unaligned address\n", __func__);
107 		ret = -EINVAL;
108 	}
109 
110 	/* Length must align on block boundary */
111 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
112 		pr_debug("%s: length not block aligned\n", __func__);
113 		ret = -EINVAL;
114 	}
115 
116 	return ret;
117 }
118 
119 /**
120  * nand_extract_bits - Copy unaligned bits from one buffer to another one
121  * @dst: destination buffer
122  * @dst_off: bit offset at which the writing starts
123  * @src: source buffer
124  * @src_off: bit offset at which the reading starts
125  * @nbits: number of bits to copy from @src to @dst
126  *
127  * Copy bits from one memory region to another (overlap authorized).
128  */
129 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
130 		       unsigned int src_off, unsigned int nbits)
131 {
132 	unsigned int tmp, n;
133 
134 	dst += dst_off / 8;
135 	dst_off %= 8;
136 	src += src_off / 8;
137 	src_off %= 8;
138 
139 	while (nbits) {
140 		n = min3(8 - dst_off, 8 - src_off, nbits);
141 
142 		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
143 		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
144 		*dst |= tmp << dst_off;
145 
146 		dst_off += n;
147 		if (dst_off >= 8) {
148 			dst++;
149 			dst_off -= 8;
150 		}
151 
152 		src_off += n;
153 		if (src_off >= 8) {
154 			src++;
155 			src_off -= 8;
156 		}
157 
158 		nbits -= n;
159 	}
160 }
161 EXPORT_SYMBOL_GPL(nand_extract_bits);
162 
163 /**
164  * nand_select_target() - Select a NAND target (A.K.A. die)
165  * @chip: NAND chip object
166  * @cs: the CS line to select. Note that this CS id is always from the chip
167  *	PoV, not the controller one
168  *
169  * Select a NAND target so that further operations executed on @chip go to the
170  * selected NAND target.
171  */
172 void nand_select_target(struct nand_chip *chip, unsigned int cs)
173 {
174 	/*
175 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
176 	 * not the case it's a bug and the caller should be fixed.
177 	 */
178 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
179 		return;
180 
181 	chip->cur_cs = cs;
182 
183 	if (chip->legacy.select_chip)
184 		chip->legacy.select_chip(chip, cs);
185 }
186 EXPORT_SYMBOL_GPL(nand_select_target);
187 
188 /**
189  * nand_deselect_target() - Deselect the currently selected target
190  * @chip: NAND chip object
191  *
192  * Deselect the currently selected NAND target. The result of operations
193  * executed on @chip after the target has been deselected is undefined.
194  */
195 void nand_deselect_target(struct nand_chip *chip)
196 {
197 	if (chip->legacy.select_chip)
198 		chip->legacy.select_chip(chip, -1);
199 
200 	chip->cur_cs = -1;
201 }
202 EXPORT_SYMBOL_GPL(nand_deselect_target);
203 
204 /**
205  * nand_release_device - [GENERIC] release chip
206  * @chip: NAND chip object
207  *
208  * Release chip lock and wake up anyone waiting on the device.
209  */
210 static void nand_release_device(struct nand_chip *chip)
211 {
212 	/* Release the controller and the chip */
213 	mutex_unlock(&chip->controller->lock);
214 	mutex_unlock(&chip->lock);
215 }
216 
217 /**
218  * nand_bbm_get_next_page - Get the next page for bad block markers
219  * @chip: NAND chip object
220  * @page: First page to start checking for bad block marker usage
221  *
222  * Returns an integer that corresponds to the page offset within a block, for
223  * a page that is used to store bad block markers. If no more pages are
224  * available, -EINVAL is returned.
225  */
226 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
227 {
228 	struct mtd_info *mtd = nand_to_mtd(chip);
229 	int last_page = ((mtd->erasesize - mtd->writesize) >>
230 			 chip->page_shift) & chip->pagemask;
231 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
232 		| NAND_BBM_LASTPAGE;
233 
234 	if (page == 0 && !(chip->options & bbm_flags))
235 		return 0;
236 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
237 		return 0;
238 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
239 		return 1;
240 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
241 		return last_page;
242 
243 	return -EINVAL;
244 }
245 
246 /**
247  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
248  * @chip: NAND chip object
249  * @ofs: offset from device start
250  *
251  * Check, if the block is bad.
252  */
253 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
254 {
255 	int first_page, page_offset;
256 	int res;
257 	u8 bad;
258 
259 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
260 	page_offset = nand_bbm_get_next_page(chip, 0);
261 
262 	while (page_offset >= 0) {
263 		res = chip->ecc.read_oob(chip, first_page + page_offset);
264 		if (res < 0)
265 			return res;
266 
267 		bad = chip->oob_poi[chip->badblockpos];
268 
269 		if (likely(chip->badblockbits == 8))
270 			res = bad != 0xFF;
271 		else
272 			res = hweight8(bad) < chip->badblockbits;
273 		if (res)
274 			return res;
275 
276 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
277 	}
278 
279 	return 0;
280 }
281 
282 /**
283  * nand_region_is_secured() - Check if the region is secured
284  * @chip: NAND chip object
285  * @offset: Offset of the region to check
286  * @size: Size of the region to check
287  *
288  * Checks if the region is secured by comparing the offset and size with the
289  * list of secure regions obtained from DT. Returns true if the region is
290  * secured else false.
291  */
292 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
293 {
294 	int i;
295 
296 	/* Skip touching the secure regions if present */
297 	for (i = 0; i < chip->nr_secure_regions; i++) {
298 		const struct nand_secure_region *region = &chip->secure_regions[i];
299 
300 		if (offset + size <= region->offset ||
301 		    offset >= region->offset + region->size)
302 			continue;
303 
304 		pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
305 			 __func__, offset, offset + size);
306 
307 		return true;
308 	}
309 
310 	return false;
311 }
312 
313 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
314 {
315 	struct mtd_info *mtd = nand_to_mtd(chip);
316 
317 	if (chip->options & NAND_NO_BBM_QUIRK)
318 		return 0;
319 
320 	/* Check if the region is secured */
321 	if (nand_region_is_secured(chip, ofs, mtd->erasesize))
322 		return -EIO;
323 
324 	if (mtd_check_expert_analysis_mode())
325 		return 0;
326 
327 	if (chip->legacy.block_bad)
328 		return chip->legacy.block_bad(chip, ofs);
329 
330 	return nand_block_bad(chip, ofs);
331 }
332 
333 /**
334  * nand_get_device - [GENERIC] Get chip for selected access
335  * @chip: NAND chip structure
336  *
337  * Lock the device and its controller for exclusive access
338  */
339 static void nand_get_device(struct nand_chip *chip)
340 {
341 	/* Wait until the device is resumed. */
342 	while (1) {
343 		mutex_lock(&chip->lock);
344 		if (!chip->suspended) {
345 			mutex_lock(&chip->controller->lock);
346 			return;
347 		}
348 		mutex_unlock(&chip->lock);
349 
350 		wait_event(chip->resume_wq, !chip->suspended);
351 	}
352 }
353 
354 /**
355  * nand_check_wp - [GENERIC] check if the chip is write protected
356  * @chip: NAND chip object
357  *
358  * Check, if the device is write protected. The function expects, that the
359  * device is already selected.
360  */
361 static int nand_check_wp(struct nand_chip *chip)
362 {
363 	u8 status;
364 	int ret;
365 
366 	/* Broken xD cards report WP despite being writable */
367 	if (chip->options & NAND_BROKEN_XD)
368 		return 0;
369 
370 	/* Check the WP bit */
371 	ret = nand_status_op(chip, &status);
372 	if (ret)
373 		return ret;
374 
375 	return status & NAND_STATUS_WP ? 0 : 1;
376 }
377 
378 /**
379  * nand_fill_oob - [INTERN] Transfer client buffer to oob
380  * @chip: NAND chip object
381  * @oob: oob data buffer
382  * @len: oob data write length
383  * @ops: oob ops structure
384  */
385 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
386 			      struct mtd_oob_ops *ops)
387 {
388 	struct mtd_info *mtd = nand_to_mtd(chip);
389 	int ret;
390 
391 	/*
392 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
393 	 * data from a previous OOB read.
394 	 */
395 	memset(chip->oob_poi, 0xff, mtd->oobsize);
396 
397 	switch (ops->mode) {
398 
399 	case MTD_OPS_PLACE_OOB:
400 	case MTD_OPS_RAW:
401 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
402 		return oob + len;
403 
404 	case MTD_OPS_AUTO_OOB:
405 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
406 						  ops->ooboffs, len);
407 		BUG_ON(ret);
408 		return oob + len;
409 
410 	default:
411 		BUG();
412 	}
413 	return NULL;
414 }
415 
416 /**
417  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
418  * @chip: NAND chip object
419  * @to: offset to write to
420  * @ops: oob operation description structure
421  *
422  * NAND write out-of-band.
423  */
424 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
425 			     struct mtd_oob_ops *ops)
426 {
427 	struct mtd_info *mtd = nand_to_mtd(chip);
428 	int chipnr, page, status, len, ret;
429 
430 	pr_debug("%s: to = 0x%08x, len = %i\n",
431 			 __func__, (unsigned int)to, (int)ops->ooblen);
432 
433 	len = mtd_oobavail(mtd, ops);
434 
435 	/* Do not allow write past end of page */
436 	if ((ops->ooboffs + ops->ooblen) > len) {
437 		pr_debug("%s: attempt to write past end of page\n",
438 				__func__);
439 		return -EINVAL;
440 	}
441 
442 	/* Check if the region is secured */
443 	if (nand_region_is_secured(chip, to, ops->ooblen))
444 		return -EIO;
445 
446 	chipnr = (int)(to >> chip->chip_shift);
447 
448 	/*
449 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
450 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
451 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
452 	 * it in the doc2000 driver in August 1999.  dwmw2.
453 	 */
454 	ret = nand_reset(chip, chipnr);
455 	if (ret)
456 		return ret;
457 
458 	nand_select_target(chip, chipnr);
459 
460 	/* Shift to get page */
461 	page = (int)(to >> chip->page_shift);
462 
463 	/* Check, if it is write protected */
464 	if (nand_check_wp(chip)) {
465 		nand_deselect_target(chip);
466 		return -EROFS;
467 	}
468 
469 	/* Invalidate the page cache, if we write to the cached page */
470 	if (page == chip->pagecache.page)
471 		chip->pagecache.page = -1;
472 
473 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
474 
475 	if (ops->mode == MTD_OPS_RAW)
476 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
477 	else
478 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
479 
480 	nand_deselect_target(chip);
481 
482 	if (status)
483 		return status;
484 
485 	ops->oobretlen = ops->ooblen;
486 
487 	return 0;
488 }
489 
490 /**
491  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
492  * @chip: NAND chip object
493  * @ofs: offset from device start
494  *
495  * This is the default implementation, which can be overridden by a hardware
496  * specific driver. It provides the details for writing a bad block marker to a
497  * block.
498  */
499 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
500 {
501 	struct mtd_info *mtd = nand_to_mtd(chip);
502 	struct mtd_oob_ops ops;
503 	uint8_t buf[2] = { 0, 0 };
504 	int ret = 0, res, page_offset;
505 
506 	memset(&ops, 0, sizeof(ops));
507 	ops.oobbuf = buf;
508 	ops.ooboffs = chip->badblockpos;
509 	if (chip->options & NAND_BUSWIDTH_16) {
510 		ops.ooboffs &= ~0x01;
511 		ops.len = ops.ooblen = 2;
512 	} else {
513 		ops.len = ops.ooblen = 1;
514 	}
515 	ops.mode = MTD_OPS_PLACE_OOB;
516 
517 	page_offset = nand_bbm_get_next_page(chip, 0);
518 
519 	while (page_offset >= 0) {
520 		res = nand_do_write_oob(chip,
521 					ofs + (page_offset * mtd->writesize),
522 					&ops);
523 
524 		if (!ret)
525 			ret = res;
526 
527 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
528 	}
529 
530 	return ret;
531 }
532 
533 /**
534  * nand_markbad_bbm - mark a block by updating the BBM
535  * @chip: NAND chip object
536  * @ofs: offset of the block to mark bad
537  */
538 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
539 {
540 	if (chip->legacy.block_markbad)
541 		return chip->legacy.block_markbad(chip, ofs);
542 
543 	return nand_default_block_markbad(chip, ofs);
544 }
545 
546 /**
547  * nand_block_markbad_lowlevel - mark a block bad
548  * @chip: NAND chip object
549  * @ofs: offset from device start
550  *
551  * This function performs the generic NAND bad block marking steps (i.e., bad
552  * block table(s) and/or marker(s)). We only allow the hardware driver to
553  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
554  *
555  * We try operations in the following order:
556  *
557  *  (1) erase the affected block, to allow OOB marker to be written cleanly
558  *  (2) write bad block marker to OOB area of affected block (unless flag
559  *      NAND_BBT_NO_OOB_BBM is present)
560  *  (3) update the BBT
561  *
562  * Note that we retain the first error encountered in (2) or (3), finish the
563  * procedures, and dump the error in the end.
564 */
565 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
566 {
567 	struct mtd_info *mtd = nand_to_mtd(chip);
568 	int res, ret = 0;
569 
570 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
571 		struct erase_info einfo;
572 
573 		/* Attempt erase before marking OOB */
574 		memset(&einfo, 0, sizeof(einfo));
575 		einfo.addr = ofs;
576 		einfo.len = 1ULL << chip->phys_erase_shift;
577 		nand_erase_nand(chip, &einfo, 0);
578 
579 		/* Write bad block marker to OOB */
580 		nand_get_device(chip);
581 
582 		ret = nand_markbad_bbm(chip, ofs);
583 		nand_release_device(chip);
584 	}
585 
586 	/* Mark block bad in BBT */
587 	if (chip->bbt) {
588 		res = nand_markbad_bbt(chip, ofs);
589 		if (!ret)
590 			ret = res;
591 	}
592 
593 	if (!ret)
594 		mtd->ecc_stats.badblocks++;
595 
596 	return ret;
597 }
598 
599 /**
600  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
601  * @mtd: MTD device structure
602  * @ofs: offset from device start
603  *
604  * Check if the block is marked as reserved.
605  */
606 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
607 {
608 	struct nand_chip *chip = mtd_to_nand(mtd);
609 
610 	if (!chip->bbt)
611 		return 0;
612 	/* Return info from the table */
613 	return nand_isreserved_bbt(chip, ofs);
614 }
615 
616 /**
617  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
618  * @chip: NAND chip object
619  * @ofs: offset from device start
620  * @allowbbt: 1, if its allowed to access the bbt area
621  *
622  * Check, if the block is bad. Either by reading the bad block table or
623  * calling of the scan function.
624  */
625 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
626 {
627 	/* Return info from the table */
628 	if (chip->bbt)
629 		return nand_isbad_bbt(chip, ofs, allowbbt);
630 
631 	return nand_isbad_bbm(chip, ofs);
632 }
633 
634 /**
635  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
636  * @chip: NAND chip structure
637  * @timeout_ms: Timeout in ms
638  *
639  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
640  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
641  * returned.
642  *
643  * This helper is intended to be used when the controller does not have access
644  * to the NAND R/B pin.
645  *
646  * Be aware that calling this helper from an ->exec_op() implementation means
647  * ->exec_op() must be re-entrant.
648  *
649  * Return 0 if the NAND chip is ready, a negative error otherwise.
650  */
651 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
652 {
653 	const struct nand_interface_config *conf;
654 	u8 status = 0;
655 	int ret;
656 
657 	if (!nand_has_exec_op(chip))
658 		return -ENOTSUPP;
659 
660 	/* Wait tWB before polling the STATUS reg. */
661 	conf = nand_get_interface_config(chip);
662 	ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
663 
664 	ret = nand_status_op(chip, NULL);
665 	if (ret)
666 		return ret;
667 
668 	/*
669 	 * +1 below is necessary because if we are now in the last fraction
670 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
671 	 * small jiffy fraction - possibly leading to false timeout
672 	 */
673 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
674 	do {
675 		ret = nand_read_data_op(chip, &status, sizeof(status), true,
676 					false);
677 		if (ret)
678 			break;
679 
680 		if (status & NAND_STATUS_READY)
681 			break;
682 
683 		/*
684 		 * Typical lowest execution time for a tR on most NANDs is 10us,
685 		 * use this as polling delay before doing something smarter (ie.
686 		 * deriving a delay from the timeout value, timeout_ms/ratio).
687 		 */
688 		udelay(10);
689 	} while	(time_before(jiffies, timeout_ms));
690 
691 	/*
692 	 * We have to exit READ_STATUS mode in order to read real data on the
693 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
694 	 * instruction.
695 	 */
696 	nand_exit_status_op(chip);
697 
698 	if (ret)
699 		return ret;
700 
701 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
702 };
703 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
704 
705 /**
706  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
707  * @chip: NAND chip structure
708  * @gpiod: GPIO descriptor of R/B pin
709  * @timeout_ms: Timeout in ms
710  *
711  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
712  * whitin the specified timeout, -ETIMEDOUT is returned.
713  *
714  * This helper is intended to be used when the controller has access to the
715  * NAND R/B pin over GPIO.
716  *
717  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
718  */
719 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
720 		      unsigned long timeout_ms)
721 {
722 
723 	/*
724 	 * Wait until R/B pin indicates chip is ready or timeout occurs.
725 	 * +1 below is necessary because if we are now in the last fraction
726 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
727 	 * small jiffy fraction - possibly leading to false timeout.
728 	 */
729 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
730 	do {
731 		if (gpiod_get_value_cansleep(gpiod))
732 			return 0;
733 
734 		cond_resched();
735 	} while	(time_before(jiffies, timeout_ms));
736 
737 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
738 };
739 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
740 
741 /**
742  * panic_nand_wait - [GENERIC] wait until the command is done
743  * @chip: NAND chip structure
744  * @timeo: timeout
745  *
746  * Wait for command done. This is a helper function for nand_wait used when
747  * we are in interrupt context. May happen when in panic and trying to write
748  * an oops through mtdoops.
749  */
750 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
751 {
752 	int i;
753 	for (i = 0; i < timeo; i++) {
754 		if (chip->legacy.dev_ready) {
755 			if (chip->legacy.dev_ready(chip))
756 				break;
757 		} else {
758 			int ret;
759 			u8 status;
760 
761 			ret = nand_read_data_op(chip, &status, sizeof(status),
762 						true, false);
763 			if (ret)
764 				return;
765 
766 			if (status & NAND_STATUS_READY)
767 				break;
768 		}
769 		mdelay(1);
770 	}
771 }
772 
773 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
774 {
775 	return (chip->parameters.supports_set_get_features &&
776 		test_bit(addr, chip->parameters.get_feature_list));
777 }
778 
779 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
780 {
781 	return (chip->parameters.supports_set_get_features &&
782 		test_bit(addr, chip->parameters.set_feature_list));
783 }
784 
785 /**
786  * nand_reset_interface - Reset data interface and timings
787  * @chip: The NAND chip
788  * @chipnr: Internal die id
789  *
790  * Reset the Data interface and timings to ONFI mode 0.
791  *
792  * Returns 0 for success or negative error code otherwise.
793  */
794 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
795 {
796 	const struct nand_controller_ops *ops = chip->controller->ops;
797 	int ret;
798 
799 	if (!nand_controller_can_setup_interface(chip))
800 		return 0;
801 
802 	/*
803 	 * The ONFI specification says:
804 	 * "
805 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
806 	 * interface, the host shall use the Reset (FFh) command
807 	 * using SDR timing mode 0. A device in any timing mode is
808 	 * required to recognize Reset (FFh) command issued in SDR
809 	 * timing mode 0.
810 	 * "
811 	 *
812 	 * Configure the data interface in SDR mode and set the
813 	 * timings to timing mode 0.
814 	 */
815 
816 	chip->current_interface_config = nand_get_reset_interface_config();
817 	ret = ops->setup_interface(chip, chipnr,
818 				   chip->current_interface_config);
819 	if (ret)
820 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
821 
822 	return ret;
823 }
824 
825 /**
826  * nand_setup_interface - Setup the best data interface and timings
827  * @chip: The NAND chip
828  * @chipnr: Internal die id
829  *
830  * Configure what has been reported to be the best data interface and NAND
831  * timings supported by the chip and the driver.
832  *
833  * Returns 0 for success or negative error code otherwise.
834  */
835 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
836 {
837 	const struct nand_controller_ops *ops = chip->controller->ops;
838 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
839 	int ret;
840 
841 	if (!nand_controller_can_setup_interface(chip))
842 		return 0;
843 
844 	/*
845 	 * A nand_reset_interface() put both the NAND chip and the NAND
846 	 * controller in timings mode 0. If the default mode for this chip is
847 	 * also 0, no need to proceed to the change again. Plus, at probe time,
848 	 * nand_setup_interface() uses ->set/get_features() which would
849 	 * fail anyway as the parameter page is not available yet.
850 	 */
851 	if (!chip->best_interface_config)
852 		return 0;
853 
854 	request = chip->best_interface_config->timings.mode;
855 	if (nand_interface_is_sdr(chip->best_interface_config))
856 		request |= ONFI_DATA_INTERFACE_SDR;
857 	else
858 		request |= ONFI_DATA_INTERFACE_NVDDR;
859 	tmode_param[0] = request;
860 
861 	/* Change the mode on the chip side (if supported by the NAND chip) */
862 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
863 		nand_select_target(chip, chipnr);
864 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
865 					tmode_param);
866 		nand_deselect_target(chip);
867 		if (ret)
868 			return ret;
869 	}
870 
871 	/* Change the mode on the controller side */
872 	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
873 	if (ret)
874 		return ret;
875 
876 	/* Check the mode has been accepted by the chip, if supported */
877 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
878 		goto update_interface_config;
879 
880 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
881 	nand_select_target(chip, chipnr);
882 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
883 				tmode_param);
884 	nand_deselect_target(chip);
885 	if (ret)
886 		goto err_reset_chip;
887 
888 	if (request != tmode_param[0]) {
889 		pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
890 			nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
891 			chip->best_interface_config->timings.mode);
892 		pr_debug("NAND chip would work in %s timing mode %d\n",
893 			 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
894 			 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
895 		goto err_reset_chip;
896 	}
897 
898 update_interface_config:
899 	chip->current_interface_config = chip->best_interface_config;
900 
901 	return 0;
902 
903 err_reset_chip:
904 	/*
905 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
906 	 * timing mode.
907 	 */
908 	nand_reset_interface(chip, chipnr);
909 	nand_select_target(chip, chipnr);
910 	nand_reset_op(chip);
911 	nand_deselect_target(chip);
912 
913 	return ret;
914 }
915 
916 /**
917  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
918  *                                NAND controller and the NAND chip support
919  * @chip: the NAND chip
920  * @iface: the interface configuration (can eventually be updated)
921  * @spec_timings: specific timings, when not fitting the ONFI specification
922  *
923  * If specific timings are provided, use them. Otherwise, retrieve supported
924  * timing modes from ONFI information.
925  */
926 int nand_choose_best_sdr_timings(struct nand_chip *chip,
927 				 struct nand_interface_config *iface,
928 				 struct nand_sdr_timings *spec_timings)
929 {
930 	const struct nand_controller_ops *ops = chip->controller->ops;
931 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
932 
933 	iface->type = NAND_SDR_IFACE;
934 
935 	if (spec_timings) {
936 		iface->timings.sdr = *spec_timings;
937 		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
938 
939 		/* Verify the controller supports the requested interface */
940 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
941 					   iface);
942 		if (!ret) {
943 			chip->best_interface_config = iface;
944 			return ret;
945 		}
946 
947 		/* Fallback to slower modes */
948 		best_mode = iface->timings.mode;
949 	} else if (chip->parameters.onfi) {
950 		best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
951 	}
952 
953 	for (mode = best_mode; mode >= 0; mode--) {
954 		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
955 
956 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
957 					   iface);
958 		if (!ret) {
959 			chip->best_interface_config = iface;
960 			break;
961 		}
962 	}
963 
964 	return ret;
965 }
966 
967 /**
968  * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
969  *                                  NAND controller and the NAND chip support
970  * @chip: the NAND chip
971  * @iface: the interface configuration (can eventually be updated)
972  * @spec_timings: specific timings, when not fitting the ONFI specification
973  *
974  * If specific timings are provided, use them. Otherwise, retrieve supported
975  * timing modes from ONFI information.
976  */
977 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
978 				   struct nand_interface_config *iface,
979 				   struct nand_nvddr_timings *spec_timings)
980 {
981 	const struct nand_controller_ops *ops = chip->controller->ops;
982 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
983 
984 	iface->type = NAND_NVDDR_IFACE;
985 
986 	if (spec_timings) {
987 		iface->timings.nvddr = *spec_timings;
988 		iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
989 
990 		/* Verify the controller supports the requested interface */
991 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
992 					   iface);
993 		if (!ret) {
994 			chip->best_interface_config = iface;
995 			return ret;
996 		}
997 
998 		/* Fallback to slower modes */
999 		best_mode = iface->timings.mode;
1000 	} else if (chip->parameters.onfi) {
1001 		best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1002 	}
1003 
1004 	for (mode = best_mode; mode >= 0; mode--) {
1005 		onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1006 
1007 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1008 					   iface);
1009 		if (!ret) {
1010 			chip->best_interface_config = iface;
1011 			break;
1012 		}
1013 	}
1014 
1015 	return ret;
1016 }
1017 
1018 /**
1019  * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1020  *                            NAND controller and the NAND chip support
1021  * @chip: the NAND chip
1022  * @iface: the interface configuration (can eventually be updated)
1023  *
1024  * If specific timings are provided, use them. Otherwise, retrieve supported
1025  * timing modes from ONFI information.
1026  */
1027 static int nand_choose_best_timings(struct nand_chip *chip,
1028 				    struct nand_interface_config *iface)
1029 {
1030 	int ret;
1031 
1032 	/* Try the fastest timings: NV-DDR */
1033 	ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1034 	if (!ret)
1035 		return 0;
1036 
1037 	/* Fallback to SDR timings otherwise */
1038 	return nand_choose_best_sdr_timings(chip, iface, NULL);
1039 }
1040 
1041 /**
1042  * nand_choose_interface_config - find the best data interface and timings
1043  * @chip: The NAND chip
1044  *
1045  * Find the best data interface and NAND timings supported by the chip
1046  * and the driver. Eventually let the NAND manufacturer driver propose his own
1047  * set of timings.
1048  *
1049  * After this function nand_chip->interface_config is initialized with the best
1050  * timing mode available.
1051  *
1052  * Returns 0 for success or negative error code otherwise.
1053  */
1054 static int nand_choose_interface_config(struct nand_chip *chip)
1055 {
1056 	struct nand_interface_config *iface;
1057 	int ret;
1058 
1059 	if (!nand_controller_can_setup_interface(chip))
1060 		return 0;
1061 
1062 	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1063 	if (!iface)
1064 		return -ENOMEM;
1065 
1066 	if (chip->ops.choose_interface_config)
1067 		ret = chip->ops.choose_interface_config(chip, iface);
1068 	else
1069 		ret = nand_choose_best_timings(chip, iface);
1070 
1071 	if (ret)
1072 		kfree(iface);
1073 
1074 	return ret;
1075 }
1076 
1077 /**
1078  * nand_fill_column_cycles - fill the column cycles of an address
1079  * @chip: The NAND chip
1080  * @addrs: Array of address cycles to fill
1081  * @offset_in_page: The offset in the page
1082  *
1083  * Fills the first or the first two bytes of the @addrs field depending
1084  * on the NAND bus width and the page size.
1085  *
1086  * Returns the number of cycles needed to encode the column, or a negative
1087  * error code in case one of the arguments is invalid.
1088  */
1089 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1090 				   unsigned int offset_in_page)
1091 {
1092 	struct mtd_info *mtd = nand_to_mtd(chip);
1093 
1094 	/* Make sure the offset is less than the actual page size. */
1095 	if (offset_in_page > mtd->writesize + mtd->oobsize)
1096 		return -EINVAL;
1097 
1098 	/*
1099 	 * On small page NANDs, there's a dedicated command to access the OOB
1100 	 * area, and the column address is relative to the start of the OOB
1101 	 * area, not the start of the page. Asjust the address accordingly.
1102 	 */
1103 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1104 		offset_in_page -= mtd->writesize;
1105 
1106 	/*
1107 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1108 	 * wide, then it must be divided by 2.
1109 	 */
1110 	if (chip->options & NAND_BUSWIDTH_16) {
1111 		if (WARN_ON(offset_in_page % 2))
1112 			return -EINVAL;
1113 
1114 		offset_in_page /= 2;
1115 	}
1116 
1117 	addrs[0] = offset_in_page;
1118 
1119 	/*
1120 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1121 	 * need 2
1122 	 */
1123 	if (mtd->writesize <= 512)
1124 		return 1;
1125 
1126 	addrs[1] = offset_in_page >> 8;
1127 
1128 	return 2;
1129 }
1130 
1131 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1132 				     unsigned int offset_in_page, void *buf,
1133 				     unsigned int len)
1134 {
1135 	const struct nand_interface_config *conf =
1136 		nand_get_interface_config(chip);
1137 	struct mtd_info *mtd = nand_to_mtd(chip);
1138 	u8 addrs[4];
1139 	struct nand_op_instr instrs[] = {
1140 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1141 		NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1142 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1143 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1144 		NAND_OP_DATA_IN(len, buf, 0),
1145 	};
1146 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1147 	int ret;
1148 
1149 	/* Drop the DATA_IN instruction if len is set to 0. */
1150 	if (!len)
1151 		op.ninstrs--;
1152 
1153 	if (offset_in_page >= mtd->writesize)
1154 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1155 	else if (offset_in_page >= 256 &&
1156 		 !(chip->options & NAND_BUSWIDTH_16))
1157 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1158 
1159 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1160 	if (ret < 0)
1161 		return ret;
1162 
1163 	addrs[1] = page;
1164 	addrs[2] = page >> 8;
1165 
1166 	if (chip->options & NAND_ROW_ADDR_3) {
1167 		addrs[3] = page >> 16;
1168 		instrs[1].ctx.addr.naddrs++;
1169 	}
1170 
1171 	return nand_exec_op(chip, &op);
1172 }
1173 
1174 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1175 				     unsigned int offset_in_page, void *buf,
1176 				     unsigned int len)
1177 {
1178 	const struct nand_interface_config *conf =
1179 		nand_get_interface_config(chip);
1180 	u8 addrs[5];
1181 	struct nand_op_instr instrs[] = {
1182 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1183 		NAND_OP_ADDR(4, addrs, 0),
1184 		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1185 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1186 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1187 		NAND_OP_DATA_IN(len, buf, 0),
1188 	};
1189 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1190 	int ret;
1191 
1192 	/* Drop the DATA_IN instruction if len is set to 0. */
1193 	if (!len)
1194 		op.ninstrs--;
1195 
1196 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1197 	if (ret < 0)
1198 		return ret;
1199 
1200 	addrs[2] = page;
1201 	addrs[3] = page >> 8;
1202 
1203 	if (chip->options & NAND_ROW_ADDR_3) {
1204 		addrs[4] = page >> 16;
1205 		instrs[1].ctx.addr.naddrs++;
1206 	}
1207 
1208 	return nand_exec_op(chip, &op);
1209 }
1210 
1211 static void rawnand_cap_cont_reads(struct nand_chip *chip)
1212 {
1213 	struct nand_memory_organization *memorg;
1214 	unsigned int pages_per_lun, first_lun, last_lun;
1215 
1216 	memorg = nanddev_get_memorg(&chip->base);
1217 	pages_per_lun = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
1218 	first_lun = chip->cont_read.first_page / pages_per_lun;
1219 	last_lun = chip->cont_read.last_page / pages_per_lun;
1220 
1221 	/* Prevent sequential cache reads across LUN boundaries */
1222 	if (first_lun != last_lun)
1223 		chip->cont_read.pause_page = first_lun * pages_per_lun + pages_per_lun - 1;
1224 	else
1225 		chip->cont_read.pause_page = chip->cont_read.last_page;
1226 }
1227 
1228 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1229 					  unsigned int offset_in_page, void *buf,
1230 					  unsigned int len, bool check_only)
1231 {
1232 	const struct nand_interface_config *conf =
1233 		nand_get_interface_config(chip);
1234 	u8 addrs[5];
1235 	struct nand_op_instr start_instrs[] = {
1236 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1237 		NAND_OP_ADDR(4, addrs, 0),
1238 		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1239 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1240 		NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1241 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1242 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1243 		NAND_OP_DATA_IN(len, buf, 0),
1244 	};
1245 	struct nand_op_instr cont_instrs[] = {
1246 		NAND_OP_CMD(page == chip->cont_read.pause_page ?
1247 			    NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1248 			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1249 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1250 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1251 		NAND_OP_DATA_IN(len, buf, 0),
1252 	};
1253 	struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1254 	struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1255 	int ret;
1256 
1257 	if (!len) {
1258 		start_op.ninstrs--;
1259 		cont_op.ninstrs--;
1260 	}
1261 
1262 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1263 	if (ret < 0)
1264 		return ret;
1265 
1266 	addrs[2] = page;
1267 	addrs[3] = page >> 8;
1268 
1269 	if (chip->options & NAND_ROW_ADDR_3) {
1270 		addrs[4] = page >> 16;
1271 		start_instrs[1].ctx.addr.naddrs++;
1272 	}
1273 
1274 	/* Check if cache reads are supported */
1275 	if (check_only) {
1276 		if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1277 			return -EOPNOTSUPP;
1278 
1279 		return 0;
1280 	}
1281 
1282 	if (page == chip->cont_read.first_page)
1283 		ret = nand_exec_op(chip, &start_op);
1284 	else
1285 		ret = nand_exec_op(chip, &cont_op);
1286 	if (ret)
1287 		return ret;
1288 
1289 	if (!chip->cont_read.ongoing)
1290 		return 0;
1291 
1292 	if (page == chip->cont_read.pause_page &&
1293 	    page != chip->cont_read.last_page) {
1294 		chip->cont_read.first_page = chip->cont_read.pause_page + 1;
1295 		rawnand_cap_cont_reads(chip);
1296 	} else if (page == chip->cont_read.last_page) {
1297 		chip->cont_read.ongoing = false;
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1304 {
1305 	return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
1306 }
1307 
1308 /**
1309  * nand_read_page_op - Do a READ PAGE operation
1310  * @chip: The NAND chip
1311  * @page: page to read
1312  * @offset_in_page: offset within the page
1313  * @buf: buffer used to store the data
1314  * @len: length of the buffer
1315  *
1316  * This function issues a READ PAGE operation.
1317  * This function does not select/unselect the CS line.
1318  *
1319  * Returns 0 on success, a negative error code otherwise.
1320  */
1321 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1322 		      unsigned int offset_in_page, void *buf, unsigned int len)
1323 {
1324 	struct mtd_info *mtd = nand_to_mtd(chip);
1325 
1326 	if (len && !buf)
1327 		return -EINVAL;
1328 
1329 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1330 		return -EINVAL;
1331 
1332 	if (nand_has_exec_op(chip)) {
1333 		if (mtd->writesize > 512) {
1334 			if (rawnand_cont_read_ongoing(chip, page))
1335 				return nand_lp_exec_cont_read_page_op(chip, page,
1336 								      offset_in_page,
1337 								      buf, len, false);
1338 			else
1339 				return nand_lp_exec_read_page_op(chip, page,
1340 								 offset_in_page, buf,
1341 								 len);
1342 		}
1343 
1344 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1345 						 buf, len);
1346 	}
1347 
1348 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1349 	if (len)
1350 		chip->legacy.read_buf(chip, buf, len);
1351 
1352 	return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(nand_read_page_op);
1355 
1356 /**
1357  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1358  * @chip: The NAND chip
1359  * @page: parameter page to read
1360  * @buf: buffer used to store the data
1361  * @len: length of the buffer
1362  *
1363  * This function issues a READ PARAMETER PAGE operation.
1364  * This function does not select/unselect the CS line.
1365  *
1366  * Returns 0 on success, a negative error code otherwise.
1367  */
1368 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1369 			    unsigned int len)
1370 {
1371 	unsigned int i;
1372 	u8 *p = buf;
1373 
1374 	if (len && !buf)
1375 		return -EINVAL;
1376 
1377 	if (nand_has_exec_op(chip)) {
1378 		const struct nand_interface_config *conf =
1379 			nand_get_interface_config(chip);
1380 		struct nand_op_instr instrs[] = {
1381 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1382 			NAND_OP_ADDR(1, &page,
1383 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1384 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1385 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1386 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1387 		};
1388 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1389 
1390 		/* Drop the DATA_IN instruction if len is set to 0. */
1391 		if (!len)
1392 			op.ninstrs--;
1393 
1394 		return nand_exec_op(chip, &op);
1395 	}
1396 
1397 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1398 	for (i = 0; i < len; i++)
1399 		p[i] = chip->legacy.read_byte(chip);
1400 
1401 	return 0;
1402 }
1403 
1404 /**
1405  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1406  * @chip: The NAND chip
1407  * @offset_in_page: offset within the page
1408  * @buf: buffer used to store the data
1409  * @len: length of the buffer
1410  * @force_8bit: force 8-bit bus access
1411  *
1412  * This function issues a CHANGE READ COLUMN operation.
1413  * This function does not select/unselect the CS line.
1414  *
1415  * Returns 0 on success, a negative error code otherwise.
1416  */
1417 int nand_change_read_column_op(struct nand_chip *chip,
1418 			       unsigned int offset_in_page, void *buf,
1419 			       unsigned int len, bool force_8bit)
1420 {
1421 	struct mtd_info *mtd = nand_to_mtd(chip);
1422 
1423 	if (len && !buf)
1424 		return -EINVAL;
1425 
1426 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1427 		return -EINVAL;
1428 
1429 	/* Small page NANDs do not support column change. */
1430 	if (mtd->writesize <= 512)
1431 		return -ENOTSUPP;
1432 
1433 	if (nand_has_exec_op(chip)) {
1434 		const struct nand_interface_config *conf =
1435 			nand_get_interface_config(chip);
1436 		u8 addrs[2] = {};
1437 		struct nand_op_instr instrs[] = {
1438 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1439 			NAND_OP_ADDR(2, addrs, 0),
1440 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1441 				    NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1442 			NAND_OP_DATA_IN(len, buf, 0),
1443 		};
1444 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1445 		int ret;
1446 
1447 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1448 		if (ret < 0)
1449 			return ret;
1450 
1451 		/* Drop the DATA_IN instruction if len is set to 0. */
1452 		if (!len)
1453 			op.ninstrs--;
1454 
1455 		instrs[3].ctx.data.force_8bit = force_8bit;
1456 
1457 		return nand_exec_op(chip, &op);
1458 	}
1459 
1460 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1461 	if (len)
1462 		chip->legacy.read_buf(chip, buf, len);
1463 
1464 	return 0;
1465 }
1466 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1467 
1468 /**
1469  * nand_read_oob_op - Do a READ OOB operation
1470  * @chip: The NAND chip
1471  * @page: page to read
1472  * @offset_in_oob: offset within the OOB area
1473  * @buf: buffer used to store the data
1474  * @len: length of the buffer
1475  *
1476  * This function issues a READ OOB operation.
1477  * This function does not select/unselect the CS line.
1478  *
1479  * Returns 0 on success, a negative error code otherwise.
1480  */
1481 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1482 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1483 {
1484 	struct mtd_info *mtd = nand_to_mtd(chip);
1485 
1486 	if (len && !buf)
1487 		return -EINVAL;
1488 
1489 	if (offset_in_oob + len > mtd->oobsize)
1490 		return -EINVAL;
1491 
1492 	if (nand_has_exec_op(chip))
1493 		return nand_read_page_op(chip, page,
1494 					 mtd->writesize + offset_in_oob,
1495 					 buf, len);
1496 
1497 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1498 	if (len)
1499 		chip->legacy.read_buf(chip, buf, len);
1500 
1501 	return 0;
1502 }
1503 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1504 
1505 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1506 				  unsigned int offset_in_page, const void *buf,
1507 				  unsigned int len, bool prog)
1508 {
1509 	const struct nand_interface_config *conf =
1510 		nand_get_interface_config(chip);
1511 	struct mtd_info *mtd = nand_to_mtd(chip);
1512 	u8 addrs[5] = {};
1513 	struct nand_op_instr instrs[] = {
1514 		/*
1515 		 * The first instruction will be dropped if we're dealing
1516 		 * with a large page NAND and adjusted if we're dealing
1517 		 * with a small page NAND and the page offset is > 255.
1518 		 */
1519 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1520 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1521 		NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1522 		NAND_OP_DATA_OUT(len, buf, 0),
1523 		NAND_OP_CMD(NAND_CMD_PAGEPROG,
1524 			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1525 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1526 	};
1527 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1528 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1529 
1530 	if (naddrs < 0)
1531 		return naddrs;
1532 
1533 	addrs[naddrs++] = page;
1534 	addrs[naddrs++] = page >> 8;
1535 	if (chip->options & NAND_ROW_ADDR_3)
1536 		addrs[naddrs++] = page >> 16;
1537 
1538 	instrs[2].ctx.addr.naddrs = naddrs;
1539 
1540 	/* Drop the last two instructions if we're not programming the page. */
1541 	if (!prog) {
1542 		op.ninstrs -= 2;
1543 		/* Also drop the DATA_OUT instruction if empty. */
1544 		if (!len)
1545 			op.ninstrs--;
1546 	}
1547 
1548 	if (mtd->writesize <= 512) {
1549 		/*
1550 		 * Small pages need some more tweaking: we have to adjust the
1551 		 * first instruction depending on the page offset we're trying
1552 		 * to access.
1553 		 */
1554 		if (offset_in_page >= mtd->writesize)
1555 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1556 		else if (offset_in_page >= 256 &&
1557 			 !(chip->options & NAND_BUSWIDTH_16))
1558 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1559 	} else {
1560 		/*
1561 		 * Drop the first command if we're dealing with a large page
1562 		 * NAND.
1563 		 */
1564 		op.instrs++;
1565 		op.ninstrs--;
1566 	}
1567 
1568 	return nand_exec_op(chip, &op);
1569 }
1570 
1571 /**
1572  * nand_prog_page_begin_op - starts a PROG PAGE operation
1573  * @chip: The NAND chip
1574  * @page: page to write
1575  * @offset_in_page: offset within the page
1576  * @buf: buffer containing the data to write to the page
1577  * @len: length of the buffer
1578  *
1579  * This function issues the first half of a PROG PAGE operation.
1580  * This function does not select/unselect the CS line.
1581  *
1582  * Returns 0 on success, a negative error code otherwise.
1583  */
1584 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1585 			    unsigned int offset_in_page, const void *buf,
1586 			    unsigned int len)
1587 {
1588 	struct mtd_info *mtd = nand_to_mtd(chip);
1589 
1590 	if (len && !buf)
1591 		return -EINVAL;
1592 
1593 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1594 		return -EINVAL;
1595 
1596 	if (nand_has_exec_op(chip))
1597 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1598 					      len, false);
1599 
1600 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1601 
1602 	if (buf)
1603 		chip->legacy.write_buf(chip, buf, len);
1604 
1605 	return 0;
1606 }
1607 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1608 
1609 /**
1610  * nand_prog_page_end_op - ends a PROG PAGE operation
1611  * @chip: The NAND chip
1612  *
1613  * This function issues the second half of a PROG PAGE operation.
1614  * This function does not select/unselect the CS line.
1615  *
1616  * Returns 0 on success, a negative error code otherwise.
1617  */
1618 int nand_prog_page_end_op(struct nand_chip *chip)
1619 {
1620 	int ret;
1621 	u8 status;
1622 
1623 	if (nand_has_exec_op(chip)) {
1624 		const struct nand_interface_config *conf =
1625 			nand_get_interface_config(chip);
1626 		struct nand_op_instr instrs[] = {
1627 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1628 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1629 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1630 					 0),
1631 		};
1632 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1633 
1634 		ret = nand_exec_op(chip, &op);
1635 		if (ret)
1636 			return ret;
1637 
1638 		ret = nand_status_op(chip, &status);
1639 		if (ret)
1640 			return ret;
1641 	} else {
1642 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1643 		ret = chip->legacy.waitfunc(chip);
1644 		if (ret < 0)
1645 			return ret;
1646 
1647 		status = ret;
1648 	}
1649 
1650 	if (status & NAND_STATUS_FAIL)
1651 		return -EIO;
1652 
1653 	return 0;
1654 }
1655 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1656 
1657 /**
1658  * nand_prog_page_op - Do a full PROG PAGE operation
1659  * @chip: The NAND chip
1660  * @page: page to write
1661  * @offset_in_page: offset within the page
1662  * @buf: buffer containing the data to write to the page
1663  * @len: length of the buffer
1664  *
1665  * This function issues a full PROG PAGE operation.
1666  * This function does not select/unselect the CS line.
1667  *
1668  * Returns 0 on success, a negative error code otherwise.
1669  */
1670 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1671 		      unsigned int offset_in_page, const void *buf,
1672 		      unsigned int len)
1673 {
1674 	struct mtd_info *mtd = nand_to_mtd(chip);
1675 	u8 status;
1676 	int ret;
1677 
1678 	if (!len || !buf)
1679 		return -EINVAL;
1680 
1681 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1682 		return -EINVAL;
1683 
1684 	if (nand_has_exec_op(chip)) {
1685 		ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1686 						len, true);
1687 		if (ret)
1688 			return ret;
1689 
1690 		ret = nand_status_op(chip, &status);
1691 		if (ret)
1692 			return ret;
1693 	} else {
1694 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1695 				     page);
1696 		chip->legacy.write_buf(chip, buf, len);
1697 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1698 		ret = chip->legacy.waitfunc(chip);
1699 		if (ret < 0)
1700 			return ret;
1701 
1702 		status = ret;
1703 	}
1704 
1705 	if (status & NAND_STATUS_FAIL)
1706 		return -EIO;
1707 
1708 	return 0;
1709 }
1710 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1711 
1712 /**
1713  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1714  * @chip: The NAND chip
1715  * @offset_in_page: offset within the page
1716  * @buf: buffer containing the data to send to the NAND
1717  * @len: length of the buffer
1718  * @force_8bit: force 8-bit bus access
1719  *
1720  * This function issues a CHANGE WRITE COLUMN operation.
1721  * This function does not select/unselect the CS line.
1722  *
1723  * Returns 0 on success, a negative error code otherwise.
1724  */
1725 int nand_change_write_column_op(struct nand_chip *chip,
1726 				unsigned int offset_in_page,
1727 				const void *buf, unsigned int len,
1728 				bool force_8bit)
1729 {
1730 	struct mtd_info *mtd = nand_to_mtd(chip);
1731 
1732 	if (len && !buf)
1733 		return -EINVAL;
1734 
1735 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1736 		return -EINVAL;
1737 
1738 	/* Small page NANDs do not support column change. */
1739 	if (mtd->writesize <= 512)
1740 		return -ENOTSUPP;
1741 
1742 	if (nand_has_exec_op(chip)) {
1743 		const struct nand_interface_config *conf =
1744 			nand_get_interface_config(chip);
1745 		u8 addrs[2];
1746 		struct nand_op_instr instrs[] = {
1747 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1748 			NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1749 			NAND_OP_DATA_OUT(len, buf, 0),
1750 		};
1751 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1752 		int ret;
1753 
1754 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1755 		if (ret < 0)
1756 			return ret;
1757 
1758 		instrs[2].ctx.data.force_8bit = force_8bit;
1759 
1760 		/* Drop the DATA_OUT instruction if len is set to 0. */
1761 		if (!len)
1762 			op.ninstrs--;
1763 
1764 		return nand_exec_op(chip, &op);
1765 	}
1766 
1767 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1768 	if (len)
1769 		chip->legacy.write_buf(chip, buf, len);
1770 
1771 	return 0;
1772 }
1773 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1774 
1775 /**
1776  * nand_readid_op - Do a READID operation
1777  * @chip: The NAND chip
1778  * @addr: address cycle to pass after the READID command
1779  * @buf: buffer used to store the ID
1780  * @len: length of the buffer
1781  *
1782  * This function sends a READID command and reads back the ID returned by the
1783  * NAND.
1784  * This function does not select/unselect the CS line.
1785  *
1786  * Returns 0 on success, a negative error code otherwise.
1787  */
1788 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1789 		   unsigned int len)
1790 {
1791 	unsigned int i;
1792 	u8 *id = buf, *ddrbuf = NULL;
1793 
1794 	if (len && !buf)
1795 		return -EINVAL;
1796 
1797 	if (nand_has_exec_op(chip)) {
1798 		const struct nand_interface_config *conf =
1799 			nand_get_interface_config(chip);
1800 		struct nand_op_instr instrs[] = {
1801 			NAND_OP_CMD(NAND_CMD_READID, 0),
1802 			NAND_OP_ADDR(1, &addr,
1803 				     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1804 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1805 		};
1806 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1807 		int ret;
1808 
1809 		/* READ_ID data bytes are received twice in NV-DDR mode */
1810 		if (len && nand_interface_is_nvddr(conf)) {
1811 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1812 			if (!ddrbuf)
1813 				return -ENOMEM;
1814 
1815 			instrs[2].ctx.data.len *= 2;
1816 			instrs[2].ctx.data.buf.in = ddrbuf;
1817 		}
1818 
1819 		/* Drop the DATA_IN instruction if len is set to 0. */
1820 		if (!len)
1821 			op.ninstrs--;
1822 
1823 		ret = nand_exec_op(chip, &op);
1824 		if (!ret && len && nand_interface_is_nvddr(conf)) {
1825 			for (i = 0; i < len; i++)
1826 				id[i] = ddrbuf[i * 2];
1827 		}
1828 
1829 		kfree(ddrbuf);
1830 
1831 		return ret;
1832 	}
1833 
1834 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1835 
1836 	for (i = 0; i < len; i++)
1837 		id[i] = chip->legacy.read_byte(chip);
1838 
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(nand_readid_op);
1842 
1843 /**
1844  * nand_status_op - Do a STATUS operation
1845  * @chip: The NAND chip
1846  * @status: out variable to store the NAND status
1847  *
1848  * This function sends a STATUS command and reads back the status returned by
1849  * the NAND.
1850  * This function does not select/unselect the CS line.
1851  *
1852  * Returns 0 on success, a negative error code otherwise.
1853  */
1854 int nand_status_op(struct nand_chip *chip, u8 *status)
1855 {
1856 	if (nand_has_exec_op(chip)) {
1857 		const struct nand_interface_config *conf =
1858 			nand_get_interface_config(chip);
1859 		u8 ddrstatus[2];
1860 		struct nand_op_instr instrs[] = {
1861 			NAND_OP_CMD(NAND_CMD_STATUS,
1862 				    NAND_COMMON_TIMING_NS(conf, tADL_min)),
1863 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1864 		};
1865 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1866 		int ret;
1867 
1868 		/* The status data byte will be received twice in NV-DDR mode */
1869 		if (status && nand_interface_is_nvddr(conf)) {
1870 			instrs[1].ctx.data.len *= 2;
1871 			instrs[1].ctx.data.buf.in = ddrstatus;
1872 		}
1873 
1874 		if (!status)
1875 			op.ninstrs--;
1876 
1877 		ret = nand_exec_op(chip, &op);
1878 		if (!ret && status && nand_interface_is_nvddr(conf))
1879 			*status = ddrstatus[0];
1880 
1881 		return ret;
1882 	}
1883 
1884 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1885 	if (status)
1886 		*status = chip->legacy.read_byte(chip);
1887 
1888 	return 0;
1889 }
1890 EXPORT_SYMBOL_GPL(nand_status_op);
1891 
1892 /**
1893  * nand_exit_status_op - Exit a STATUS operation
1894  * @chip: The NAND chip
1895  *
1896  * This function sends a READ0 command to cancel the effect of the STATUS
1897  * command to avoid reading only the status until a new read command is sent.
1898  *
1899  * This function does not select/unselect the CS line.
1900  *
1901  * Returns 0 on success, a negative error code otherwise.
1902  */
1903 int nand_exit_status_op(struct nand_chip *chip)
1904 {
1905 	if (nand_has_exec_op(chip)) {
1906 		struct nand_op_instr instrs[] = {
1907 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1908 		};
1909 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1910 
1911 		return nand_exec_op(chip, &op);
1912 	}
1913 
1914 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1915 
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1919 
1920 /**
1921  * nand_erase_op - Do an erase operation
1922  * @chip: The NAND chip
1923  * @eraseblock: block to erase
1924  *
1925  * This function sends an ERASE command and waits for the NAND to be ready
1926  * before returning.
1927  * This function does not select/unselect the CS line.
1928  *
1929  * Returns 0 on success, a negative error code otherwise.
1930  */
1931 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1932 {
1933 	unsigned int page = eraseblock <<
1934 			    (chip->phys_erase_shift - chip->page_shift);
1935 	int ret;
1936 	u8 status;
1937 
1938 	if (nand_has_exec_op(chip)) {
1939 		const struct nand_interface_config *conf =
1940 			nand_get_interface_config(chip);
1941 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1942 		struct nand_op_instr instrs[] = {
1943 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1944 			NAND_OP_ADDR(2, addrs, 0),
1945 			NAND_OP_CMD(NAND_CMD_ERASE2,
1946 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1947 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1948 					 0),
1949 		};
1950 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1951 
1952 		if (chip->options & NAND_ROW_ADDR_3)
1953 			instrs[1].ctx.addr.naddrs++;
1954 
1955 		ret = nand_exec_op(chip, &op);
1956 		if (ret)
1957 			return ret;
1958 
1959 		ret = nand_status_op(chip, &status);
1960 		if (ret)
1961 			return ret;
1962 	} else {
1963 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1964 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1965 
1966 		ret = chip->legacy.waitfunc(chip);
1967 		if (ret < 0)
1968 			return ret;
1969 
1970 		status = ret;
1971 	}
1972 
1973 	if (status & NAND_STATUS_FAIL)
1974 		return -EIO;
1975 
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(nand_erase_op);
1979 
1980 /**
1981  * nand_set_features_op - Do a SET FEATURES operation
1982  * @chip: The NAND chip
1983  * @feature: feature id
1984  * @data: 4 bytes of data
1985  *
1986  * This function sends a SET FEATURES command and waits for the NAND to be
1987  * ready before returning.
1988  * This function does not select/unselect the CS line.
1989  *
1990  * Returns 0 on success, a negative error code otherwise.
1991  */
1992 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1993 				const void *data)
1994 {
1995 	const u8 *params = data;
1996 	int i, ret;
1997 
1998 	if (nand_has_exec_op(chip)) {
1999 		const struct nand_interface_config *conf =
2000 			nand_get_interface_config(chip);
2001 		struct nand_op_instr instrs[] = {
2002 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2003 			NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
2004 									tADL_min)),
2005 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2006 					      NAND_COMMON_TIMING_NS(conf,
2007 								    tWB_max)),
2008 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2009 					 0),
2010 		};
2011 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2012 
2013 		return nand_exec_op(chip, &op);
2014 	}
2015 
2016 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
2017 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2018 		chip->legacy.write_byte(chip, params[i]);
2019 
2020 	ret = chip->legacy.waitfunc(chip);
2021 	if (ret < 0)
2022 		return ret;
2023 
2024 	if (ret & NAND_STATUS_FAIL)
2025 		return -EIO;
2026 
2027 	return 0;
2028 }
2029 
2030 /**
2031  * nand_get_features_op - Do a GET FEATURES operation
2032  * @chip: The NAND chip
2033  * @feature: feature id
2034  * @data: 4 bytes of data
2035  *
2036  * This function sends a GET FEATURES command and waits for the NAND to be
2037  * ready before returning.
2038  * This function does not select/unselect the CS line.
2039  *
2040  * Returns 0 on success, a negative error code otherwise.
2041  */
2042 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2043 				void *data)
2044 {
2045 	u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2046 	int i;
2047 
2048 	if (nand_has_exec_op(chip)) {
2049 		const struct nand_interface_config *conf =
2050 			nand_get_interface_config(chip);
2051 		struct nand_op_instr instrs[] = {
2052 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2053 			NAND_OP_ADDR(1, &feature,
2054 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
2055 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2056 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
2057 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2058 					     data, 0),
2059 		};
2060 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2061 		int ret;
2062 
2063 		/* GET_FEATURE data bytes are received twice in NV-DDR mode */
2064 		if (nand_interface_is_nvddr(conf)) {
2065 			instrs[3].ctx.data.len *= 2;
2066 			instrs[3].ctx.data.buf.in = ddrbuf;
2067 		}
2068 
2069 		ret = nand_exec_op(chip, &op);
2070 		if (nand_interface_is_nvddr(conf)) {
2071 			for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2072 				params[i] = ddrbuf[i * 2];
2073 		}
2074 
2075 		return ret;
2076 	}
2077 
2078 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2079 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2080 		params[i] = chip->legacy.read_byte(chip);
2081 
2082 	return 0;
2083 }
2084 
2085 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2086 			    unsigned int delay_ns)
2087 {
2088 	if (nand_has_exec_op(chip)) {
2089 		struct nand_op_instr instrs[] = {
2090 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2091 					 PSEC_TO_NSEC(delay_ns)),
2092 		};
2093 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2094 
2095 		return nand_exec_op(chip, &op);
2096 	}
2097 
2098 	/* Apply delay or wait for ready/busy pin */
2099 	if (!chip->legacy.dev_ready)
2100 		udelay(chip->legacy.chip_delay);
2101 	else
2102 		nand_wait_ready(chip);
2103 
2104 	return 0;
2105 }
2106 
2107 /**
2108  * nand_reset_op - Do a reset operation
2109  * @chip: The NAND chip
2110  *
2111  * This function sends a RESET command and waits for the NAND to be ready
2112  * before returning.
2113  * This function does not select/unselect the CS line.
2114  *
2115  * Returns 0 on success, a negative error code otherwise.
2116  */
2117 int nand_reset_op(struct nand_chip *chip)
2118 {
2119 	if (nand_has_exec_op(chip)) {
2120 		const struct nand_interface_config *conf =
2121 			nand_get_interface_config(chip);
2122 		struct nand_op_instr instrs[] = {
2123 			NAND_OP_CMD(NAND_CMD_RESET,
2124 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
2125 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2126 					 0),
2127 		};
2128 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2129 
2130 		return nand_exec_op(chip, &op);
2131 	}
2132 
2133 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2134 
2135 	return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(nand_reset_op);
2138 
2139 /**
2140  * nand_read_data_op - Read data from the NAND
2141  * @chip: The NAND chip
2142  * @buf: buffer used to store the data
2143  * @len: length of the buffer
2144  * @force_8bit: force 8-bit bus access
2145  * @check_only: do not actually run the command, only checks if the
2146  *              controller driver supports it
2147  *
2148  * This function does a raw data read on the bus. Usually used after launching
2149  * another NAND operation like nand_read_page_op().
2150  * This function does not select/unselect the CS line.
2151  *
2152  * Returns 0 on success, a negative error code otherwise.
2153  */
2154 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2155 		      bool force_8bit, bool check_only)
2156 {
2157 	if (!len || !buf)
2158 		return -EINVAL;
2159 
2160 	if (nand_has_exec_op(chip)) {
2161 		const struct nand_interface_config *conf =
2162 			nand_get_interface_config(chip);
2163 		struct nand_op_instr instrs[] = {
2164 			NAND_OP_DATA_IN(len, buf, 0),
2165 		};
2166 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2167 		u8 *ddrbuf = NULL;
2168 		int ret, i;
2169 
2170 		instrs[0].ctx.data.force_8bit = force_8bit;
2171 
2172 		/*
2173 		 * Parameter payloads (ID, status, features, etc) do not go
2174 		 * through the same pipeline as regular data, hence the
2175 		 * force_8bit flag must be set and this also indicates that in
2176 		 * case NV-DDR timings are being used the data will be received
2177 		 * twice.
2178 		 */
2179 		if (force_8bit && nand_interface_is_nvddr(conf)) {
2180 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2181 			if (!ddrbuf)
2182 				return -ENOMEM;
2183 
2184 			instrs[0].ctx.data.len *= 2;
2185 			instrs[0].ctx.data.buf.in = ddrbuf;
2186 		}
2187 
2188 		if (check_only) {
2189 			ret = nand_check_op(chip, &op);
2190 			kfree(ddrbuf);
2191 			return ret;
2192 		}
2193 
2194 		ret = nand_exec_op(chip, &op);
2195 		if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2196 			u8 *dst = buf;
2197 
2198 			for (i = 0; i < len; i++)
2199 				dst[i] = ddrbuf[i * 2];
2200 		}
2201 
2202 		kfree(ddrbuf);
2203 
2204 		return ret;
2205 	}
2206 
2207 	if (check_only)
2208 		return 0;
2209 
2210 	if (force_8bit) {
2211 		u8 *p = buf;
2212 		unsigned int i;
2213 
2214 		for (i = 0; i < len; i++)
2215 			p[i] = chip->legacy.read_byte(chip);
2216 	} else {
2217 		chip->legacy.read_buf(chip, buf, len);
2218 	}
2219 
2220 	return 0;
2221 }
2222 EXPORT_SYMBOL_GPL(nand_read_data_op);
2223 
2224 /**
2225  * nand_write_data_op - Write data from the NAND
2226  * @chip: The NAND chip
2227  * @buf: buffer containing the data to send on the bus
2228  * @len: length of the buffer
2229  * @force_8bit: force 8-bit bus access
2230  *
2231  * This function does a raw data write on the bus. Usually used after launching
2232  * another NAND operation like nand_write_page_begin_op().
2233  * This function does not select/unselect the CS line.
2234  *
2235  * Returns 0 on success, a negative error code otherwise.
2236  */
2237 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2238 		       unsigned int len, bool force_8bit)
2239 {
2240 	if (!len || !buf)
2241 		return -EINVAL;
2242 
2243 	if (nand_has_exec_op(chip)) {
2244 		struct nand_op_instr instrs[] = {
2245 			NAND_OP_DATA_OUT(len, buf, 0),
2246 		};
2247 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2248 
2249 		instrs[0].ctx.data.force_8bit = force_8bit;
2250 
2251 		return nand_exec_op(chip, &op);
2252 	}
2253 
2254 	if (force_8bit) {
2255 		const u8 *p = buf;
2256 		unsigned int i;
2257 
2258 		for (i = 0; i < len; i++)
2259 			chip->legacy.write_byte(chip, p[i]);
2260 	} else {
2261 		chip->legacy.write_buf(chip, buf, len);
2262 	}
2263 
2264 	return 0;
2265 }
2266 EXPORT_SYMBOL_GPL(nand_write_data_op);
2267 
2268 /**
2269  * struct nand_op_parser_ctx - Context used by the parser
2270  * @instrs: array of all the instructions that must be addressed
2271  * @ninstrs: length of the @instrs array
2272  * @subop: Sub-operation to be passed to the NAND controller
2273  *
2274  * This structure is used by the core to split NAND operations into
2275  * sub-operations that can be handled by the NAND controller.
2276  */
2277 struct nand_op_parser_ctx {
2278 	const struct nand_op_instr *instrs;
2279 	unsigned int ninstrs;
2280 	struct nand_subop subop;
2281 };
2282 
2283 /**
2284  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2285  * @pat: the parser pattern element that matches @instr
2286  * @instr: pointer to the instruction to check
2287  * @start_offset: this is an in/out parameter. If @instr has already been
2288  *		  split, then @start_offset is the offset from which to start
2289  *		  (either an address cycle or an offset in the data buffer).
2290  *		  Conversely, if the function returns true (ie. instr must be
2291  *		  split), this parameter is updated to point to the first
2292  *		  data/address cycle that has not been taken care of.
2293  *
2294  * Some NAND controllers are limited and cannot send X address cycles with a
2295  * unique operation, or cannot read/write more than Y bytes at the same time.
2296  * In this case, split the instruction that does not fit in a single
2297  * controller-operation into two or more chunks.
2298  *
2299  * Returns true if the instruction must be split, false otherwise.
2300  * The @start_offset parameter is also updated to the offset at which the next
2301  * bundle of instruction must start (if an address or a data instruction).
2302  */
2303 static bool
2304 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2305 				const struct nand_op_instr *instr,
2306 				unsigned int *start_offset)
2307 {
2308 	switch (pat->type) {
2309 	case NAND_OP_ADDR_INSTR:
2310 		if (!pat->ctx.addr.maxcycles)
2311 			break;
2312 
2313 		if (instr->ctx.addr.naddrs - *start_offset >
2314 		    pat->ctx.addr.maxcycles) {
2315 			*start_offset += pat->ctx.addr.maxcycles;
2316 			return true;
2317 		}
2318 		break;
2319 
2320 	case NAND_OP_DATA_IN_INSTR:
2321 	case NAND_OP_DATA_OUT_INSTR:
2322 		if (!pat->ctx.data.maxlen)
2323 			break;
2324 
2325 		if (instr->ctx.data.len - *start_offset >
2326 		    pat->ctx.data.maxlen) {
2327 			*start_offset += pat->ctx.data.maxlen;
2328 			return true;
2329 		}
2330 		break;
2331 
2332 	default:
2333 		break;
2334 	}
2335 
2336 	return false;
2337 }
2338 
2339 /**
2340  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2341  *			      remaining in the parser context
2342  * @pat: the pattern to test
2343  * @ctx: the parser context structure to match with the pattern @pat
2344  *
2345  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2346  * Returns true if this is the case, false ortherwise. When true is returned,
2347  * @ctx->subop is updated with the set of instructions to be passed to the
2348  * controller driver.
2349  */
2350 static bool
2351 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2352 			 struct nand_op_parser_ctx *ctx)
2353 {
2354 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2355 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2356 	const struct nand_op_instr *instr = ctx->subop.instrs;
2357 	unsigned int i, ninstrs;
2358 
2359 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2360 		/*
2361 		 * The pattern instruction does not match the operation
2362 		 * instruction. If the instruction is marked optional in the
2363 		 * pattern definition, we skip the pattern element and continue
2364 		 * to the next one. If the element is mandatory, there's no
2365 		 * match and we can return false directly.
2366 		 */
2367 		if (instr->type != pat->elems[i].type) {
2368 			if (!pat->elems[i].optional)
2369 				return false;
2370 
2371 			continue;
2372 		}
2373 
2374 		/*
2375 		 * Now check the pattern element constraints. If the pattern is
2376 		 * not able to handle the whole instruction in a single step,
2377 		 * we have to split it.
2378 		 * The last_instr_end_off value comes back updated to point to
2379 		 * the position where we have to split the instruction (the
2380 		 * start of the next subop chunk).
2381 		 */
2382 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2383 						    &instr_offset)) {
2384 			ninstrs++;
2385 			i++;
2386 			break;
2387 		}
2388 
2389 		instr++;
2390 		ninstrs++;
2391 		instr_offset = 0;
2392 	}
2393 
2394 	/*
2395 	 * This can happen if all instructions of a pattern are optional.
2396 	 * Still, if there's not at least one instruction handled by this
2397 	 * pattern, this is not a match, and we should try the next one (if
2398 	 * any).
2399 	 */
2400 	if (!ninstrs)
2401 		return false;
2402 
2403 	/*
2404 	 * We had a match on the pattern head, but the pattern may be longer
2405 	 * than the instructions we're asked to execute. We need to make sure
2406 	 * there's no mandatory elements in the pattern tail.
2407 	 */
2408 	for (; i < pat->nelems; i++) {
2409 		if (!pat->elems[i].optional)
2410 			return false;
2411 	}
2412 
2413 	/*
2414 	 * We have a match: update the subop structure accordingly and return
2415 	 * true.
2416 	 */
2417 	ctx->subop.ninstrs = ninstrs;
2418 	ctx->subop.last_instr_end_off = instr_offset;
2419 
2420 	return true;
2421 }
2422 
2423 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2424 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2425 {
2426 	const struct nand_op_instr *instr;
2427 	char *prefix = "      ";
2428 	unsigned int i;
2429 
2430 	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2431 
2432 	for (i = 0; i < ctx->ninstrs; i++) {
2433 		instr = &ctx->instrs[i];
2434 
2435 		if (instr == &ctx->subop.instrs[0])
2436 			prefix = "    ->";
2437 
2438 		nand_op_trace(prefix, instr);
2439 
2440 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2441 			prefix = "      ";
2442 	}
2443 }
2444 #else
2445 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2446 {
2447 	/* NOP */
2448 }
2449 #endif
2450 
2451 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2452 				  const struct nand_op_parser_ctx *b)
2453 {
2454 	if (a->subop.ninstrs < b->subop.ninstrs)
2455 		return -1;
2456 	else if (a->subop.ninstrs > b->subop.ninstrs)
2457 		return 1;
2458 
2459 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2460 		return -1;
2461 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2462 		return 1;
2463 
2464 	return 0;
2465 }
2466 
2467 /**
2468  * nand_op_parser_exec_op - exec_op parser
2469  * @chip: the NAND chip
2470  * @parser: patterns description provided by the controller driver
2471  * @op: the NAND operation to address
2472  * @check_only: when true, the function only checks if @op can be handled but
2473  *		does not execute the operation
2474  *
2475  * Helper function designed to ease integration of NAND controller drivers that
2476  * only support a limited set of instruction sequences. The supported sequences
2477  * are described in @parser, and the framework takes care of splitting @op into
2478  * multiple sub-operations (if required) and pass them back to the ->exec()
2479  * callback of the matching pattern if @check_only is set to false.
2480  *
2481  * NAND controller drivers should call this function from their own ->exec_op()
2482  * implementation.
2483  *
2484  * Returns 0 on success, a negative error code otherwise. A failure can be
2485  * caused by an unsupported operation (none of the supported patterns is able
2486  * to handle the requested operation), or an error returned by one of the
2487  * matching pattern->exec() hook.
2488  */
2489 int nand_op_parser_exec_op(struct nand_chip *chip,
2490 			   const struct nand_op_parser *parser,
2491 			   const struct nand_operation *op, bool check_only)
2492 {
2493 	struct nand_op_parser_ctx ctx = {
2494 		.subop.cs = op->cs,
2495 		.subop.instrs = op->instrs,
2496 		.instrs = op->instrs,
2497 		.ninstrs = op->ninstrs,
2498 	};
2499 	unsigned int i;
2500 
2501 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2502 		const struct nand_op_parser_pattern *pattern;
2503 		struct nand_op_parser_ctx best_ctx;
2504 		int ret, best_pattern = -1;
2505 
2506 		for (i = 0; i < parser->npatterns; i++) {
2507 			struct nand_op_parser_ctx test_ctx = ctx;
2508 
2509 			pattern = &parser->patterns[i];
2510 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2511 				continue;
2512 
2513 			if (best_pattern >= 0 &&
2514 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2515 				continue;
2516 
2517 			best_pattern = i;
2518 			best_ctx = test_ctx;
2519 		}
2520 
2521 		if (best_pattern < 0) {
2522 			pr_debug("->exec_op() parser: pattern not found!\n");
2523 			return -ENOTSUPP;
2524 		}
2525 
2526 		ctx = best_ctx;
2527 		nand_op_parser_trace(&ctx);
2528 
2529 		if (!check_only) {
2530 			pattern = &parser->patterns[best_pattern];
2531 			ret = pattern->exec(chip, &ctx.subop);
2532 			if (ret)
2533 				return ret;
2534 		}
2535 
2536 		/*
2537 		 * Update the context structure by pointing to the start of the
2538 		 * next subop.
2539 		 */
2540 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2541 		if (ctx.subop.last_instr_end_off)
2542 			ctx.subop.instrs -= 1;
2543 
2544 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2545 	}
2546 
2547 	return 0;
2548 }
2549 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2550 
2551 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2552 {
2553 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2554 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2555 }
2556 
2557 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2558 				      unsigned int instr_idx)
2559 {
2560 	return subop && instr_idx < subop->ninstrs;
2561 }
2562 
2563 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2564 					     unsigned int instr_idx)
2565 {
2566 	if (instr_idx)
2567 		return 0;
2568 
2569 	return subop->first_instr_start_off;
2570 }
2571 
2572 /**
2573  * nand_subop_get_addr_start_off - Get the start offset in an address array
2574  * @subop: The entire sub-operation
2575  * @instr_idx: Index of the instruction inside the sub-operation
2576  *
2577  * During driver development, one could be tempted to directly use the
2578  * ->addr.addrs field of address instructions. This is wrong as address
2579  * instructions might be split.
2580  *
2581  * Given an address instruction, returns the offset of the first cycle to issue.
2582  */
2583 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2584 					   unsigned int instr_idx)
2585 {
2586 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2587 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2588 		return 0;
2589 
2590 	return nand_subop_get_start_off(subop, instr_idx);
2591 }
2592 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2593 
2594 /**
2595  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2596  * @subop: The entire sub-operation
2597  * @instr_idx: Index of the instruction inside the sub-operation
2598  *
2599  * During driver development, one could be tempted to directly use the
2600  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2601  * might be split.
2602  *
2603  * Given an address instruction, returns the number of address cycle to issue.
2604  */
2605 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2606 					 unsigned int instr_idx)
2607 {
2608 	int start_off, end_off;
2609 
2610 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2611 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2612 		return 0;
2613 
2614 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2615 
2616 	if (instr_idx == subop->ninstrs - 1 &&
2617 	    subop->last_instr_end_off)
2618 		end_off = subop->last_instr_end_off;
2619 	else
2620 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2621 
2622 	return end_off - start_off;
2623 }
2624 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2625 
2626 /**
2627  * nand_subop_get_data_start_off - Get the start offset in a data array
2628  * @subop: The entire sub-operation
2629  * @instr_idx: Index of the instruction inside the sub-operation
2630  *
2631  * During driver development, one could be tempted to directly use the
2632  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2633  * instructions might be split.
2634  *
2635  * Given a data instruction, returns the offset to start from.
2636  */
2637 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2638 					   unsigned int instr_idx)
2639 {
2640 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2641 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2642 		return 0;
2643 
2644 	return nand_subop_get_start_off(subop, instr_idx);
2645 }
2646 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2647 
2648 /**
2649  * nand_subop_get_data_len - Get the number of bytes to retrieve
2650  * @subop: The entire sub-operation
2651  * @instr_idx: Index of the instruction inside the sub-operation
2652  *
2653  * During driver development, one could be tempted to directly use the
2654  * ->data->len field of a data instruction. This is wrong as data instructions
2655  * might be split.
2656  *
2657  * Returns the length of the chunk of data to send/receive.
2658  */
2659 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2660 				     unsigned int instr_idx)
2661 {
2662 	int start_off = 0, end_off;
2663 
2664 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2665 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2666 		return 0;
2667 
2668 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2669 
2670 	if (instr_idx == subop->ninstrs - 1 &&
2671 	    subop->last_instr_end_off)
2672 		end_off = subop->last_instr_end_off;
2673 	else
2674 		end_off = subop->instrs[instr_idx].ctx.data.len;
2675 
2676 	return end_off - start_off;
2677 }
2678 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2679 
2680 /**
2681  * nand_reset - Reset and initialize a NAND device
2682  * @chip: The NAND chip
2683  * @chipnr: Internal die id
2684  *
2685  * Save the timings data structure, then apply SDR timings mode 0 (see
2686  * nand_reset_interface for details), do the reset operation, and apply
2687  * back the previous timings.
2688  *
2689  * Returns 0 on success, a negative error code otherwise.
2690  */
2691 int nand_reset(struct nand_chip *chip, int chipnr)
2692 {
2693 	int ret;
2694 
2695 	ret = nand_reset_interface(chip, chipnr);
2696 	if (ret)
2697 		return ret;
2698 
2699 	/*
2700 	 * The CS line has to be released before we can apply the new NAND
2701 	 * interface settings, hence this weird nand_select_target()
2702 	 * nand_deselect_target() dance.
2703 	 */
2704 	nand_select_target(chip, chipnr);
2705 	ret = nand_reset_op(chip);
2706 	nand_deselect_target(chip);
2707 	if (ret)
2708 		return ret;
2709 
2710 	ret = nand_setup_interface(chip, chipnr);
2711 	if (ret)
2712 		return ret;
2713 
2714 	return 0;
2715 }
2716 EXPORT_SYMBOL_GPL(nand_reset);
2717 
2718 /**
2719  * nand_get_features - wrapper to perform a GET_FEATURE
2720  * @chip: NAND chip info structure
2721  * @addr: feature address
2722  * @subfeature_param: the subfeature parameters, a four bytes array
2723  *
2724  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2725  * operation cannot be handled.
2726  */
2727 int nand_get_features(struct nand_chip *chip, int addr,
2728 		      u8 *subfeature_param)
2729 {
2730 	if (!nand_supports_get_features(chip, addr))
2731 		return -ENOTSUPP;
2732 
2733 	if (chip->legacy.get_features)
2734 		return chip->legacy.get_features(chip, addr, subfeature_param);
2735 
2736 	return nand_get_features_op(chip, addr, subfeature_param);
2737 }
2738 
2739 /**
2740  * nand_set_features - wrapper to perform a SET_FEATURE
2741  * @chip: NAND chip info structure
2742  * @addr: feature address
2743  * @subfeature_param: the subfeature parameters, a four bytes array
2744  *
2745  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2746  * operation cannot be handled.
2747  */
2748 int nand_set_features(struct nand_chip *chip, int addr,
2749 		      u8 *subfeature_param)
2750 {
2751 	if (!nand_supports_set_features(chip, addr))
2752 		return -ENOTSUPP;
2753 
2754 	if (chip->legacy.set_features)
2755 		return chip->legacy.set_features(chip, addr, subfeature_param);
2756 
2757 	return nand_set_features_op(chip, addr, subfeature_param);
2758 }
2759 
2760 /**
2761  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2762  * @buf: buffer to test
2763  * @len: buffer length
2764  * @bitflips_threshold: maximum number of bitflips
2765  *
2766  * Check if a buffer contains only 0xff, which means the underlying region
2767  * has been erased and is ready to be programmed.
2768  * The bitflips_threshold specify the maximum number of bitflips before
2769  * considering the region is not erased.
2770  * Note: The logic of this function has been extracted from the memweight
2771  * implementation, except that nand_check_erased_buf function exit before
2772  * testing the whole buffer if the number of bitflips exceed the
2773  * bitflips_threshold value.
2774  *
2775  * Returns a positive number of bitflips less than or equal to
2776  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2777  * threshold.
2778  */
2779 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2780 {
2781 	const unsigned char *bitmap = buf;
2782 	int bitflips = 0;
2783 	int weight;
2784 
2785 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2786 	     len--, bitmap++) {
2787 		weight = hweight8(*bitmap);
2788 		bitflips += BITS_PER_BYTE - weight;
2789 		if (unlikely(bitflips > bitflips_threshold))
2790 			return -EBADMSG;
2791 	}
2792 
2793 	for (; len >= sizeof(long);
2794 	     len -= sizeof(long), bitmap += sizeof(long)) {
2795 		unsigned long d = *((unsigned long *)bitmap);
2796 		if (d == ~0UL)
2797 			continue;
2798 		weight = hweight_long(d);
2799 		bitflips += BITS_PER_LONG - weight;
2800 		if (unlikely(bitflips > bitflips_threshold))
2801 			return -EBADMSG;
2802 	}
2803 
2804 	for (; len > 0; len--, bitmap++) {
2805 		weight = hweight8(*bitmap);
2806 		bitflips += BITS_PER_BYTE - weight;
2807 		if (unlikely(bitflips > bitflips_threshold))
2808 			return -EBADMSG;
2809 	}
2810 
2811 	return bitflips;
2812 }
2813 
2814 /**
2815  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2816  *				 0xff data
2817  * @data: data buffer to test
2818  * @datalen: data length
2819  * @ecc: ECC buffer
2820  * @ecclen: ECC length
2821  * @extraoob: extra OOB buffer
2822  * @extraooblen: extra OOB length
2823  * @bitflips_threshold: maximum number of bitflips
2824  *
2825  * Check if a data buffer and its associated ECC and OOB data contains only
2826  * 0xff pattern, which means the underlying region has been erased and is
2827  * ready to be programmed.
2828  * The bitflips_threshold specify the maximum number of bitflips before
2829  * considering the region as not erased.
2830  *
2831  * Note:
2832  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2833  *    different from the NAND page size. When fixing bitflips, ECC engines will
2834  *    report the number of errors per chunk, and the NAND core infrastructure
2835  *    expect you to return the maximum number of bitflips for the whole page.
2836  *    This is why you should always use this function on a single chunk and
2837  *    not on the whole page. After checking each chunk you should update your
2838  *    max_bitflips value accordingly.
2839  * 2/ When checking for bitflips in erased pages you should not only check
2840  *    the payload data but also their associated ECC data, because a user might
2841  *    have programmed almost all bits to 1 but a few. In this case, we
2842  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2843  *    this case.
2844  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2845  *    data are protected by the ECC engine.
2846  *    It could also be used if you support subpages and want to attach some
2847  *    extra OOB data to an ECC chunk.
2848  *
2849  * Returns a positive number of bitflips less than or equal to
2850  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2851  * threshold. In case of success, the passed buffers are filled with 0xff.
2852  */
2853 int nand_check_erased_ecc_chunk(void *data, int datalen,
2854 				void *ecc, int ecclen,
2855 				void *extraoob, int extraooblen,
2856 				int bitflips_threshold)
2857 {
2858 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2859 
2860 	data_bitflips = nand_check_erased_buf(data, datalen,
2861 					      bitflips_threshold);
2862 	if (data_bitflips < 0)
2863 		return data_bitflips;
2864 
2865 	bitflips_threshold -= data_bitflips;
2866 
2867 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2868 	if (ecc_bitflips < 0)
2869 		return ecc_bitflips;
2870 
2871 	bitflips_threshold -= ecc_bitflips;
2872 
2873 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2874 						  bitflips_threshold);
2875 	if (extraoob_bitflips < 0)
2876 		return extraoob_bitflips;
2877 
2878 	if (data_bitflips)
2879 		memset(data, 0xff, datalen);
2880 
2881 	if (ecc_bitflips)
2882 		memset(ecc, 0xff, ecclen);
2883 
2884 	if (extraoob_bitflips)
2885 		memset(extraoob, 0xff, extraooblen);
2886 
2887 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2888 }
2889 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2890 
2891 /**
2892  * nand_read_page_raw_notsupp - dummy read raw page function
2893  * @chip: nand chip info structure
2894  * @buf: buffer to store read data
2895  * @oob_required: caller requires OOB data read to chip->oob_poi
2896  * @page: page number to read
2897  *
2898  * Returns -ENOTSUPP unconditionally.
2899  */
2900 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2901 			       int oob_required, int page)
2902 {
2903 	return -ENOTSUPP;
2904 }
2905 
2906 /**
2907  * nand_read_page_raw - [INTERN] read raw page data without ecc
2908  * @chip: nand chip info structure
2909  * @buf: buffer to store read data
2910  * @oob_required: caller requires OOB data read to chip->oob_poi
2911  * @page: page number to read
2912  *
2913  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2914  */
2915 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2916 		       int page)
2917 {
2918 	struct mtd_info *mtd = nand_to_mtd(chip);
2919 	int ret;
2920 
2921 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2922 	if (ret)
2923 		return ret;
2924 
2925 	if (oob_required) {
2926 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2927 					false, false);
2928 		if (ret)
2929 			return ret;
2930 	}
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL(nand_read_page_raw);
2935 
2936 /**
2937  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2938  * @chip: NAND chip info structure
2939  * @buf: buffer to store read data
2940  * @oob_required: caller requires OOB data read to chip->oob_poi
2941  * @page: page number to read
2942  *
2943  * This is a raw page read, ie. without any error detection/correction.
2944  * Monolithic means we are requesting all the relevant data (main plus
2945  * eventually OOB) to be loaded in the NAND cache and sent over the
2946  * bus (from the NAND chip to the NAND controller) in a single
2947  * operation. This is an alternative to nand_read_page_raw(), which
2948  * first reads the main data, and if the OOB data is requested too,
2949  * then reads more data on the bus.
2950  */
2951 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2952 				  int oob_required, int page)
2953 {
2954 	struct mtd_info *mtd = nand_to_mtd(chip);
2955 	unsigned int size = mtd->writesize;
2956 	u8 *read_buf = buf;
2957 	int ret;
2958 
2959 	if (oob_required) {
2960 		size += mtd->oobsize;
2961 
2962 		if (buf != chip->data_buf)
2963 			read_buf = nand_get_data_buf(chip);
2964 	}
2965 
2966 	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2967 	if (ret)
2968 		return ret;
2969 
2970 	if (buf != chip->data_buf)
2971 		memcpy(buf, read_buf, mtd->writesize);
2972 
2973 	return 0;
2974 }
2975 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2976 
2977 /**
2978  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2979  * @chip: nand chip info structure
2980  * @buf: buffer to store read data
2981  * @oob_required: caller requires OOB data read to chip->oob_poi
2982  * @page: page number to read
2983  *
2984  * We need a special oob layout and handling even when OOB isn't used.
2985  */
2986 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2987 				       int oob_required, int page)
2988 {
2989 	struct mtd_info *mtd = nand_to_mtd(chip);
2990 	int eccsize = chip->ecc.size;
2991 	int eccbytes = chip->ecc.bytes;
2992 	uint8_t *oob = chip->oob_poi;
2993 	int steps, size, ret;
2994 
2995 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2996 	if (ret)
2997 		return ret;
2998 
2999 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3000 		ret = nand_read_data_op(chip, buf, eccsize, false, false);
3001 		if (ret)
3002 			return ret;
3003 
3004 		buf += eccsize;
3005 
3006 		if (chip->ecc.prepad) {
3007 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3008 						false, false);
3009 			if (ret)
3010 				return ret;
3011 
3012 			oob += chip->ecc.prepad;
3013 		}
3014 
3015 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3016 		if (ret)
3017 			return ret;
3018 
3019 		oob += eccbytes;
3020 
3021 		if (chip->ecc.postpad) {
3022 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3023 						false, false);
3024 			if (ret)
3025 				return ret;
3026 
3027 			oob += chip->ecc.postpad;
3028 		}
3029 	}
3030 
3031 	size = mtd->oobsize - (oob - chip->oob_poi);
3032 	if (size) {
3033 		ret = nand_read_data_op(chip, oob, size, false, false);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 	return 0;
3039 }
3040 
3041 /**
3042  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3043  * @chip: nand chip info structure
3044  * @buf: buffer to store read data
3045  * @oob_required: caller requires OOB data read to chip->oob_poi
3046  * @page: page number to read
3047  */
3048 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3049 				int oob_required, int page)
3050 {
3051 	struct mtd_info *mtd = nand_to_mtd(chip);
3052 	int i, eccsize = chip->ecc.size, ret;
3053 	int eccbytes = chip->ecc.bytes;
3054 	int eccsteps = chip->ecc.steps;
3055 	uint8_t *p = buf;
3056 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3057 	uint8_t *ecc_code = chip->ecc.code_buf;
3058 	unsigned int max_bitflips = 0;
3059 
3060 	chip->ecc.read_page_raw(chip, buf, 1, page);
3061 
3062 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3063 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3064 
3065 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3066 					 chip->ecc.total);
3067 	if (ret)
3068 		return ret;
3069 
3070 	eccsteps = chip->ecc.steps;
3071 	p = buf;
3072 
3073 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3074 		int stat;
3075 
3076 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3077 		if (stat < 0) {
3078 			mtd->ecc_stats.failed++;
3079 		} else {
3080 			mtd->ecc_stats.corrected += stat;
3081 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3082 		}
3083 	}
3084 	return max_bitflips;
3085 }
3086 
3087 /**
3088  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3089  * @chip: nand chip info structure
3090  * @data_offs: offset of requested data within the page
3091  * @readlen: data length
3092  * @bufpoi: buffer to store read data
3093  * @page: page number to read
3094  */
3095 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3096 			     uint32_t readlen, uint8_t *bufpoi, int page)
3097 {
3098 	struct mtd_info *mtd = nand_to_mtd(chip);
3099 	int start_step, end_step, num_steps, ret;
3100 	uint8_t *p;
3101 	int data_col_addr, i, gaps = 0;
3102 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3103 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3104 	int index, section = 0;
3105 	unsigned int max_bitflips = 0;
3106 	struct mtd_oob_region oobregion = { };
3107 
3108 	/* Column address within the page aligned to ECC size (256bytes) */
3109 	start_step = data_offs / chip->ecc.size;
3110 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
3111 	num_steps = end_step - start_step + 1;
3112 	index = start_step * chip->ecc.bytes;
3113 
3114 	/* Data size aligned to ECC ecc.size */
3115 	datafrag_len = num_steps * chip->ecc.size;
3116 	eccfrag_len = num_steps * chip->ecc.bytes;
3117 
3118 	data_col_addr = start_step * chip->ecc.size;
3119 	/* If we read not a page aligned data */
3120 	p = bufpoi + data_col_addr;
3121 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3122 	if (ret)
3123 		return ret;
3124 
3125 	/* Calculate ECC */
3126 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3127 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3128 
3129 	/*
3130 	 * The performance is faster if we position offsets according to
3131 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3132 	 */
3133 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3134 	if (ret)
3135 		return ret;
3136 
3137 	if (oobregion.length < eccfrag_len)
3138 		gaps = 1;
3139 
3140 	if (gaps) {
3141 		ret = nand_change_read_column_op(chip, mtd->writesize,
3142 						 chip->oob_poi, mtd->oobsize,
3143 						 false);
3144 		if (ret)
3145 			return ret;
3146 	} else {
3147 		/*
3148 		 * Send the command to read the particular ECC bytes take care
3149 		 * about buswidth alignment in read_buf.
3150 		 */
3151 		aligned_pos = oobregion.offset & ~(busw - 1);
3152 		aligned_len = eccfrag_len;
3153 		if (oobregion.offset & (busw - 1))
3154 			aligned_len++;
3155 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3156 		    (busw - 1))
3157 			aligned_len++;
3158 
3159 		ret = nand_change_read_column_op(chip,
3160 						 mtd->writesize + aligned_pos,
3161 						 &chip->oob_poi[aligned_pos],
3162 						 aligned_len, false);
3163 		if (ret)
3164 			return ret;
3165 	}
3166 
3167 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3168 					 chip->oob_poi, index, eccfrag_len);
3169 	if (ret)
3170 		return ret;
3171 
3172 	p = bufpoi + data_col_addr;
3173 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3174 		int stat;
3175 
3176 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3177 					 &chip->ecc.calc_buf[i]);
3178 		if (stat == -EBADMSG &&
3179 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3180 			/* check for empty pages with bitflips */
3181 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3182 						&chip->ecc.code_buf[i],
3183 						chip->ecc.bytes,
3184 						NULL, 0,
3185 						chip->ecc.strength);
3186 		}
3187 
3188 		if (stat < 0) {
3189 			mtd->ecc_stats.failed++;
3190 		} else {
3191 			mtd->ecc_stats.corrected += stat;
3192 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3193 		}
3194 	}
3195 	return max_bitflips;
3196 }
3197 
3198 /**
3199  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3200  * @chip: nand chip info structure
3201  * @buf: buffer to store read data
3202  * @oob_required: caller requires OOB data read to chip->oob_poi
3203  * @page: page number to read
3204  *
3205  * Not for syndrome calculating ECC controllers which need a special oob layout.
3206  */
3207 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3208 				int oob_required, int page)
3209 {
3210 	struct mtd_info *mtd = nand_to_mtd(chip);
3211 	int i, eccsize = chip->ecc.size, ret;
3212 	int eccbytes = chip->ecc.bytes;
3213 	int eccsteps = chip->ecc.steps;
3214 	uint8_t *p = buf;
3215 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3216 	uint8_t *ecc_code = chip->ecc.code_buf;
3217 	unsigned int max_bitflips = 0;
3218 
3219 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3220 	if (ret)
3221 		return ret;
3222 
3223 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3224 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3225 
3226 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3227 		if (ret)
3228 			return ret;
3229 
3230 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3231 	}
3232 
3233 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3234 				false);
3235 	if (ret)
3236 		return ret;
3237 
3238 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3239 					 chip->ecc.total);
3240 	if (ret)
3241 		return ret;
3242 
3243 	eccsteps = chip->ecc.steps;
3244 	p = buf;
3245 
3246 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3247 		int stat;
3248 
3249 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3250 		if (stat == -EBADMSG &&
3251 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3252 			/* check for empty pages with bitflips */
3253 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3254 						&ecc_code[i], eccbytes,
3255 						NULL, 0,
3256 						chip->ecc.strength);
3257 		}
3258 
3259 		if (stat < 0) {
3260 			mtd->ecc_stats.failed++;
3261 		} else {
3262 			mtd->ecc_stats.corrected += stat;
3263 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3264 		}
3265 	}
3266 	return max_bitflips;
3267 }
3268 
3269 /**
3270  * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3271  *                                  data read from OOB area
3272  * @chip: nand chip info structure
3273  * @buf: buffer to store read data
3274  * @oob_required: caller requires OOB data read to chip->oob_poi
3275  * @page: page number to read
3276  *
3277  * Hardware ECC for large page chips, which requires the ECC data to be
3278  * extracted from the OOB before the actual data is read.
3279  */
3280 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3281 				   int oob_required, int page)
3282 {
3283 	struct mtd_info *mtd = nand_to_mtd(chip);
3284 	int i, eccsize = chip->ecc.size, ret;
3285 	int eccbytes = chip->ecc.bytes;
3286 	int eccsteps = chip->ecc.steps;
3287 	uint8_t *p = buf;
3288 	uint8_t *ecc_code = chip->ecc.code_buf;
3289 	unsigned int max_bitflips = 0;
3290 
3291 	/* Read the OOB area first */
3292 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3293 	if (ret)
3294 		return ret;
3295 
3296 	/* Move read cursor to start of page */
3297 	ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3298 	if (ret)
3299 		return ret;
3300 
3301 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3302 					 chip->ecc.total);
3303 	if (ret)
3304 		return ret;
3305 
3306 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3307 		int stat;
3308 
3309 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3310 
3311 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3312 		if (ret)
3313 			return ret;
3314 
3315 		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3316 		if (stat == -EBADMSG &&
3317 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3318 			/* check for empty pages with bitflips */
3319 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3320 							   &ecc_code[i],
3321 							   eccbytes, NULL, 0,
3322 							   chip->ecc.strength);
3323 		}
3324 
3325 		if (stat < 0) {
3326 			mtd->ecc_stats.failed++;
3327 		} else {
3328 			mtd->ecc_stats.corrected += stat;
3329 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3330 		}
3331 	}
3332 	return max_bitflips;
3333 }
3334 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3335 
3336 /**
3337  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3338  * @chip: nand chip info structure
3339  * @buf: buffer to store read data
3340  * @oob_required: caller requires OOB data read to chip->oob_poi
3341  * @page: page number to read
3342  *
3343  * The hw generator calculates the error syndrome automatically. Therefore we
3344  * need a special oob layout and handling.
3345  */
3346 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3347 				   int oob_required, int page)
3348 {
3349 	struct mtd_info *mtd = nand_to_mtd(chip);
3350 	int ret, i, eccsize = chip->ecc.size;
3351 	int eccbytes = chip->ecc.bytes;
3352 	int eccsteps = chip->ecc.steps;
3353 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3354 	uint8_t *p = buf;
3355 	uint8_t *oob = chip->oob_poi;
3356 	unsigned int max_bitflips = 0;
3357 
3358 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3359 	if (ret)
3360 		return ret;
3361 
3362 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3363 		int stat;
3364 
3365 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3366 
3367 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3368 		if (ret)
3369 			return ret;
3370 
3371 		if (chip->ecc.prepad) {
3372 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3373 						false, false);
3374 			if (ret)
3375 				return ret;
3376 
3377 			oob += chip->ecc.prepad;
3378 		}
3379 
3380 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3381 
3382 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3383 		if (ret)
3384 			return ret;
3385 
3386 		stat = chip->ecc.correct(chip, p, oob, NULL);
3387 
3388 		oob += eccbytes;
3389 
3390 		if (chip->ecc.postpad) {
3391 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3392 						false, false);
3393 			if (ret)
3394 				return ret;
3395 
3396 			oob += chip->ecc.postpad;
3397 		}
3398 
3399 		if (stat == -EBADMSG &&
3400 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3401 			/* check for empty pages with bitflips */
3402 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3403 							   oob - eccpadbytes,
3404 							   eccpadbytes,
3405 							   NULL, 0,
3406 							   chip->ecc.strength);
3407 		}
3408 
3409 		if (stat < 0) {
3410 			mtd->ecc_stats.failed++;
3411 		} else {
3412 			mtd->ecc_stats.corrected += stat;
3413 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3414 		}
3415 	}
3416 
3417 	/* Calculate remaining oob bytes */
3418 	i = mtd->oobsize - (oob - chip->oob_poi);
3419 	if (i) {
3420 		ret = nand_read_data_op(chip, oob, i, false, false);
3421 		if (ret)
3422 			return ret;
3423 	}
3424 
3425 	return max_bitflips;
3426 }
3427 
3428 /**
3429  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3430  * @chip: NAND chip object
3431  * @oob: oob destination address
3432  * @ops: oob ops structure
3433  * @len: size of oob to transfer
3434  */
3435 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3436 				  struct mtd_oob_ops *ops, size_t len)
3437 {
3438 	struct mtd_info *mtd = nand_to_mtd(chip);
3439 	int ret;
3440 
3441 	switch (ops->mode) {
3442 
3443 	case MTD_OPS_PLACE_OOB:
3444 	case MTD_OPS_RAW:
3445 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3446 		return oob + len;
3447 
3448 	case MTD_OPS_AUTO_OOB:
3449 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3450 						  ops->ooboffs, len);
3451 		BUG_ON(ret);
3452 		return oob + len;
3453 
3454 	default:
3455 		BUG();
3456 	}
3457 	return NULL;
3458 }
3459 
3460 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3461 				      u32 readlen, int col)
3462 {
3463 	struct mtd_info *mtd = nand_to_mtd(chip);
3464 	unsigned int end_page, end_col;
3465 
3466 	chip->cont_read.ongoing = false;
3467 
3468 	if (!chip->controller->supported_op.cont_read)
3469 		return;
3470 
3471 	end_page = DIV_ROUND_UP(col + readlen, mtd->writesize);
3472 	end_col = (col + readlen) % mtd->writesize;
3473 
3474 	if (col)
3475 		page++;
3476 
3477 	if (end_col && end_page)
3478 		end_page--;
3479 
3480 	if (page + 1 > end_page)
3481 		return;
3482 
3483 	chip->cont_read.first_page = page;
3484 	chip->cont_read.last_page = end_page;
3485 	chip->cont_read.ongoing = true;
3486 
3487 	rawnand_cap_cont_reads(chip);
3488 }
3489 
3490 static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
3491 {
3492 	if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
3493 		return;
3494 
3495 	chip->cont_read.first_page++;
3496 	if (chip->cont_read.first_page == chip->cont_read.pause_page)
3497 		chip->cont_read.first_page++;
3498 	if (chip->cont_read.first_page >= chip->cont_read.last_page)
3499 		chip->cont_read.ongoing = false;
3500 }
3501 
3502 /**
3503  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3504  * @chip: NAND chip object
3505  * @retry_mode: the retry mode to use
3506  *
3507  * Some vendors supply a special command to shift the Vt threshold, to be used
3508  * when there are too many bitflips in a page (i.e., ECC error). After setting
3509  * a new threshold, the host should retry reading the page.
3510  */
3511 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3512 {
3513 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3514 
3515 	if (retry_mode >= chip->read_retries)
3516 		return -EINVAL;
3517 
3518 	if (!chip->ops.setup_read_retry)
3519 		return -EOPNOTSUPP;
3520 
3521 	return chip->ops.setup_read_retry(chip, retry_mode);
3522 }
3523 
3524 static void nand_wait_readrdy(struct nand_chip *chip)
3525 {
3526 	const struct nand_interface_config *conf;
3527 
3528 	if (!(chip->options & NAND_NEED_READRDY))
3529 		return;
3530 
3531 	conf = nand_get_interface_config(chip);
3532 	WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3533 }
3534 
3535 /**
3536  * nand_do_read_ops - [INTERN] Read data with ECC
3537  * @chip: NAND chip object
3538  * @from: offset to read from
3539  * @ops: oob ops structure
3540  *
3541  * Internal function. Called with chip held.
3542  */
3543 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3544 			    struct mtd_oob_ops *ops)
3545 {
3546 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3547 	struct mtd_info *mtd = nand_to_mtd(chip);
3548 	int ret = 0;
3549 	uint32_t readlen = ops->len;
3550 	uint32_t oobreadlen = ops->ooblen;
3551 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3552 
3553 	uint8_t *bufpoi, *oob, *buf;
3554 	int use_bounce_buf;
3555 	unsigned int max_bitflips = 0;
3556 	int retry_mode = 0;
3557 	bool ecc_fail = false;
3558 
3559 	/* Check if the region is secured */
3560 	if (nand_region_is_secured(chip, from, readlen))
3561 		return -EIO;
3562 
3563 	chipnr = (int)(from >> chip->chip_shift);
3564 	nand_select_target(chip, chipnr);
3565 
3566 	realpage = (int)(from >> chip->page_shift);
3567 	page = realpage & chip->pagemask;
3568 
3569 	col = (int)(from & (mtd->writesize - 1));
3570 
3571 	buf = ops->datbuf;
3572 	oob = ops->oobbuf;
3573 	oob_required = oob ? 1 : 0;
3574 
3575 	rawnand_enable_cont_reads(chip, page, readlen, col);
3576 
3577 	while (1) {
3578 		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3579 
3580 		bytes = min(mtd->writesize - col, readlen);
3581 		aligned = (bytes == mtd->writesize);
3582 
3583 		if (!aligned)
3584 			use_bounce_buf = 1;
3585 		else if (chip->options & NAND_USES_DMA)
3586 			use_bounce_buf = !virt_addr_valid(buf) ||
3587 					 !IS_ALIGNED((unsigned long)buf,
3588 						     chip->buf_align);
3589 		else
3590 			use_bounce_buf = 0;
3591 
3592 		/* Is the current page in the buffer? */
3593 		if (realpage != chip->pagecache.page || oob) {
3594 			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3595 
3596 			if (use_bounce_buf && aligned)
3597 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3598 						 __func__, buf);
3599 
3600 read_retry:
3601 			/*
3602 			 * Now read the page into the buffer.  Absent an error,
3603 			 * the read methods return max bitflips per ecc step.
3604 			 */
3605 			if (unlikely(ops->mode == MTD_OPS_RAW))
3606 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3607 							      oob_required,
3608 							      page);
3609 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3610 				 !oob)
3611 				ret = chip->ecc.read_subpage(chip, col, bytes,
3612 							     bufpoi, page);
3613 			else
3614 				ret = chip->ecc.read_page(chip, bufpoi,
3615 							  oob_required, page);
3616 			if (ret < 0) {
3617 				if (use_bounce_buf)
3618 					/* Invalidate page cache */
3619 					chip->pagecache.page = -1;
3620 				break;
3621 			}
3622 
3623 			/*
3624 			 * Copy back the data in the initial buffer when reading
3625 			 * partial pages or when a bounce buffer is required.
3626 			 */
3627 			if (use_bounce_buf) {
3628 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3629 				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3630 				    (ops->mode != MTD_OPS_RAW)) {
3631 					chip->pagecache.page = realpage;
3632 					chip->pagecache.bitflips = ret;
3633 				} else {
3634 					/* Invalidate page cache */
3635 					chip->pagecache.page = -1;
3636 				}
3637 				memcpy(buf, bufpoi + col, bytes);
3638 			}
3639 
3640 			if (unlikely(oob)) {
3641 				int toread = min(oobreadlen, max_oobsize);
3642 
3643 				if (toread) {
3644 					oob = nand_transfer_oob(chip, oob, ops,
3645 								toread);
3646 					oobreadlen -= toread;
3647 				}
3648 			}
3649 
3650 			nand_wait_readrdy(chip);
3651 
3652 			if (mtd->ecc_stats.failed - ecc_stats.failed) {
3653 				if (retry_mode + 1 < chip->read_retries) {
3654 					retry_mode++;
3655 					ret = nand_setup_read_retry(chip,
3656 							retry_mode);
3657 					if (ret < 0)
3658 						break;
3659 
3660 					/* Reset ecc_stats; retry */
3661 					mtd->ecc_stats = ecc_stats;
3662 					goto read_retry;
3663 				} else {
3664 					/* No more retry modes; real failure */
3665 					ecc_fail = true;
3666 				}
3667 			}
3668 
3669 			buf += bytes;
3670 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3671 		} else {
3672 			memcpy(buf, chip->data_buf + col, bytes);
3673 			buf += bytes;
3674 			max_bitflips = max_t(unsigned int, max_bitflips,
3675 					     chip->pagecache.bitflips);
3676 
3677 			rawnand_cont_read_skip_first_page(chip, page);
3678 		}
3679 
3680 		readlen -= bytes;
3681 
3682 		/* Reset to retry mode 0 */
3683 		if (retry_mode) {
3684 			ret = nand_setup_read_retry(chip, 0);
3685 			if (ret < 0)
3686 				break;
3687 			retry_mode = 0;
3688 		}
3689 
3690 		if (!readlen)
3691 			break;
3692 
3693 		/* For subsequent reads align to page boundary */
3694 		col = 0;
3695 		/* Increment page address */
3696 		realpage++;
3697 
3698 		page = realpage & chip->pagemask;
3699 		/* Check, if we cross a chip boundary */
3700 		if (!page) {
3701 			chipnr++;
3702 			nand_deselect_target(chip);
3703 			nand_select_target(chip, chipnr);
3704 		}
3705 	}
3706 	nand_deselect_target(chip);
3707 
3708 	ops->retlen = ops->len - (size_t) readlen;
3709 	if (oob)
3710 		ops->oobretlen = ops->ooblen - oobreadlen;
3711 
3712 	if (ret < 0)
3713 		return ret;
3714 
3715 	if (ecc_fail)
3716 		return -EBADMSG;
3717 
3718 	return max_bitflips;
3719 }
3720 
3721 /**
3722  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3723  * @chip: nand chip info structure
3724  * @page: page number to read
3725  */
3726 int nand_read_oob_std(struct nand_chip *chip, int page)
3727 {
3728 	struct mtd_info *mtd = nand_to_mtd(chip);
3729 
3730 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3731 }
3732 EXPORT_SYMBOL(nand_read_oob_std);
3733 
3734 /**
3735  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3736  *			    with syndromes
3737  * @chip: nand chip info structure
3738  * @page: page number to read
3739  */
3740 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3741 {
3742 	struct mtd_info *mtd = nand_to_mtd(chip);
3743 	int length = mtd->oobsize;
3744 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3745 	int eccsize = chip->ecc.size;
3746 	uint8_t *bufpoi = chip->oob_poi;
3747 	int i, toread, sndrnd = 0, pos, ret;
3748 
3749 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3750 	if (ret)
3751 		return ret;
3752 
3753 	for (i = 0; i < chip->ecc.steps; i++) {
3754 		if (sndrnd) {
3755 			int ret;
3756 
3757 			pos = eccsize + i * (eccsize + chunk);
3758 			if (mtd->writesize > 512)
3759 				ret = nand_change_read_column_op(chip, pos,
3760 								 NULL, 0,
3761 								 false);
3762 			else
3763 				ret = nand_read_page_op(chip, page, pos, NULL,
3764 							0);
3765 
3766 			if (ret)
3767 				return ret;
3768 		} else
3769 			sndrnd = 1;
3770 		toread = min_t(int, length, chunk);
3771 
3772 		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3773 		if (ret)
3774 			return ret;
3775 
3776 		bufpoi += toread;
3777 		length -= toread;
3778 	}
3779 	if (length > 0) {
3780 		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3781 		if (ret)
3782 			return ret;
3783 	}
3784 
3785 	return 0;
3786 }
3787 
3788 /**
3789  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3790  * @chip: nand chip info structure
3791  * @page: page number to write
3792  */
3793 int nand_write_oob_std(struct nand_chip *chip, int page)
3794 {
3795 	struct mtd_info *mtd = nand_to_mtd(chip);
3796 
3797 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3798 				 mtd->oobsize);
3799 }
3800 EXPORT_SYMBOL(nand_write_oob_std);
3801 
3802 /**
3803  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3804  *			     with syndrome - only for large page flash
3805  * @chip: nand chip info structure
3806  * @page: page number to write
3807  */
3808 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3809 {
3810 	struct mtd_info *mtd = nand_to_mtd(chip);
3811 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3812 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3813 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3814 	const uint8_t *bufpoi = chip->oob_poi;
3815 
3816 	/*
3817 	 * data-ecc-data-ecc ... ecc-oob
3818 	 * or
3819 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3820 	 */
3821 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3822 		pos = steps * (eccsize + chunk);
3823 		steps = 0;
3824 	} else
3825 		pos = eccsize;
3826 
3827 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3828 	if (ret)
3829 		return ret;
3830 
3831 	for (i = 0; i < steps; i++) {
3832 		if (sndcmd) {
3833 			if (mtd->writesize <= 512) {
3834 				uint32_t fill = 0xFFFFFFFF;
3835 
3836 				len = eccsize;
3837 				while (len > 0) {
3838 					int num = min_t(int, len, 4);
3839 
3840 					ret = nand_write_data_op(chip, &fill,
3841 								 num, false);
3842 					if (ret)
3843 						return ret;
3844 
3845 					len -= num;
3846 				}
3847 			} else {
3848 				pos = eccsize + i * (eccsize + chunk);
3849 				ret = nand_change_write_column_op(chip, pos,
3850 								  NULL, 0,
3851 								  false);
3852 				if (ret)
3853 					return ret;
3854 			}
3855 		} else
3856 			sndcmd = 1;
3857 		len = min_t(int, length, chunk);
3858 
3859 		ret = nand_write_data_op(chip, bufpoi, len, false);
3860 		if (ret)
3861 			return ret;
3862 
3863 		bufpoi += len;
3864 		length -= len;
3865 	}
3866 	if (length > 0) {
3867 		ret = nand_write_data_op(chip, bufpoi, length, false);
3868 		if (ret)
3869 			return ret;
3870 	}
3871 
3872 	return nand_prog_page_end_op(chip);
3873 }
3874 
3875 /**
3876  * nand_do_read_oob - [INTERN] NAND read out-of-band
3877  * @chip: NAND chip object
3878  * @from: offset to read from
3879  * @ops: oob operations description structure
3880  *
3881  * NAND read out-of-band data from the spare area.
3882  */
3883 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3884 			    struct mtd_oob_ops *ops)
3885 {
3886 	struct mtd_info *mtd = nand_to_mtd(chip);
3887 	unsigned int max_bitflips = 0;
3888 	int page, realpage, chipnr;
3889 	struct mtd_ecc_stats stats;
3890 	int readlen = ops->ooblen;
3891 	int len;
3892 	uint8_t *buf = ops->oobbuf;
3893 	int ret = 0;
3894 
3895 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3896 			__func__, (unsigned long long)from, readlen);
3897 
3898 	/* Check if the region is secured */
3899 	if (nand_region_is_secured(chip, from, readlen))
3900 		return -EIO;
3901 
3902 	stats = mtd->ecc_stats;
3903 
3904 	len = mtd_oobavail(mtd, ops);
3905 
3906 	chipnr = (int)(from >> chip->chip_shift);
3907 	nand_select_target(chip, chipnr);
3908 
3909 	/* Shift to get page */
3910 	realpage = (int)(from >> chip->page_shift);
3911 	page = realpage & chip->pagemask;
3912 
3913 	while (1) {
3914 		if (ops->mode == MTD_OPS_RAW)
3915 			ret = chip->ecc.read_oob_raw(chip, page);
3916 		else
3917 			ret = chip->ecc.read_oob(chip, page);
3918 
3919 		if (ret < 0)
3920 			break;
3921 
3922 		len = min(len, readlen);
3923 		buf = nand_transfer_oob(chip, buf, ops, len);
3924 
3925 		nand_wait_readrdy(chip);
3926 
3927 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3928 
3929 		readlen -= len;
3930 		if (!readlen)
3931 			break;
3932 
3933 		/* Increment page address */
3934 		realpage++;
3935 
3936 		page = realpage & chip->pagemask;
3937 		/* Check, if we cross a chip boundary */
3938 		if (!page) {
3939 			chipnr++;
3940 			nand_deselect_target(chip);
3941 			nand_select_target(chip, chipnr);
3942 		}
3943 	}
3944 	nand_deselect_target(chip);
3945 
3946 	ops->oobretlen = ops->ooblen - readlen;
3947 
3948 	if (ret < 0)
3949 		return ret;
3950 
3951 	if (mtd->ecc_stats.failed - stats.failed)
3952 		return -EBADMSG;
3953 
3954 	return max_bitflips;
3955 }
3956 
3957 /**
3958  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3959  * @mtd: MTD device structure
3960  * @from: offset to read from
3961  * @ops: oob operation description structure
3962  *
3963  * NAND read data and/or out-of-band data.
3964  */
3965 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3966 			 struct mtd_oob_ops *ops)
3967 {
3968 	struct nand_chip *chip = mtd_to_nand(mtd);
3969 	struct mtd_ecc_stats old_stats;
3970 	int ret;
3971 
3972 	ops->retlen = 0;
3973 
3974 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3975 	    ops->mode != MTD_OPS_AUTO_OOB &&
3976 	    ops->mode != MTD_OPS_RAW)
3977 		return -ENOTSUPP;
3978 
3979 	nand_get_device(chip);
3980 
3981 	old_stats = mtd->ecc_stats;
3982 
3983 	if (!ops->datbuf)
3984 		ret = nand_do_read_oob(chip, from, ops);
3985 	else
3986 		ret = nand_do_read_ops(chip, from, ops);
3987 
3988 	if (ops->stats) {
3989 		ops->stats->uncorrectable_errors +=
3990 			mtd->ecc_stats.failed - old_stats.failed;
3991 		ops->stats->corrected_bitflips +=
3992 			mtd->ecc_stats.corrected - old_stats.corrected;
3993 	}
3994 
3995 	nand_release_device(chip);
3996 	return ret;
3997 }
3998 
3999 /**
4000  * nand_write_page_raw_notsupp - dummy raw page write function
4001  * @chip: nand chip info structure
4002  * @buf: data buffer
4003  * @oob_required: must write chip->oob_poi to OOB
4004  * @page: page number to write
4005  *
4006  * Returns -ENOTSUPP unconditionally.
4007  */
4008 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
4009 				int oob_required, int page)
4010 {
4011 	return -ENOTSUPP;
4012 }
4013 
4014 /**
4015  * nand_write_page_raw - [INTERN] raw page write function
4016  * @chip: nand chip info structure
4017  * @buf: data buffer
4018  * @oob_required: must write chip->oob_poi to OOB
4019  * @page: page number to write
4020  *
4021  * Not for syndrome calculating ECC controllers, which use a special oob layout.
4022  */
4023 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
4024 			int oob_required, int page)
4025 {
4026 	struct mtd_info *mtd = nand_to_mtd(chip);
4027 	int ret;
4028 
4029 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
4030 	if (ret)
4031 		return ret;
4032 
4033 	if (oob_required) {
4034 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
4035 					 false);
4036 		if (ret)
4037 			return ret;
4038 	}
4039 
4040 	return nand_prog_page_end_op(chip);
4041 }
4042 EXPORT_SYMBOL(nand_write_page_raw);
4043 
4044 /**
4045  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
4046  * @chip: NAND chip info structure
4047  * @buf: data buffer to write
4048  * @oob_required: must write chip->oob_poi to OOB
4049  * @page: page number to write
4050  *
4051  * This is a raw page write, ie. without any error detection/correction.
4052  * Monolithic means we are requesting all the relevant data (main plus
4053  * eventually OOB) to be sent over the bus and effectively programmed
4054  * into the NAND chip arrays in a single operation. This is an
4055  * alternative to nand_write_page_raw(), which first sends the main
4056  * data, then eventually send the OOB data by latching more data
4057  * cycles on the NAND bus, and finally sends the program command to
4058  * synchronyze the NAND chip cache.
4059  */
4060 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4061 				   int oob_required, int page)
4062 {
4063 	struct mtd_info *mtd = nand_to_mtd(chip);
4064 	unsigned int size = mtd->writesize;
4065 	u8 *write_buf = (u8 *)buf;
4066 
4067 	if (oob_required) {
4068 		size += mtd->oobsize;
4069 
4070 		if (buf != chip->data_buf) {
4071 			write_buf = nand_get_data_buf(chip);
4072 			memcpy(write_buf, buf, mtd->writesize);
4073 		}
4074 	}
4075 
4076 	return nand_prog_page_op(chip, page, 0, write_buf, size);
4077 }
4078 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4079 
4080 /**
4081  * nand_write_page_raw_syndrome - [INTERN] raw page write function
4082  * @chip: nand chip info structure
4083  * @buf: data buffer
4084  * @oob_required: must write chip->oob_poi to OOB
4085  * @page: page number to write
4086  *
4087  * We need a special oob layout and handling even when ECC isn't checked.
4088  */
4089 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4090 					const uint8_t *buf, int oob_required,
4091 					int page)
4092 {
4093 	struct mtd_info *mtd = nand_to_mtd(chip);
4094 	int eccsize = chip->ecc.size;
4095 	int eccbytes = chip->ecc.bytes;
4096 	uint8_t *oob = chip->oob_poi;
4097 	int steps, size, ret;
4098 
4099 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4100 	if (ret)
4101 		return ret;
4102 
4103 	for (steps = chip->ecc.steps; steps > 0; steps--) {
4104 		ret = nand_write_data_op(chip, buf, eccsize, false);
4105 		if (ret)
4106 			return ret;
4107 
4108 		buf += eccsize;
4109 
4110 		if (chip->ecc.prepad) {
4111 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4112 						 false);
4113 			if (ret)
4114 				return ret;
4115 
4116 			oob += chip->ecc.prepad;
4117 		}
4118 
4119 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4120 		if (ret)
4121 			return ret;
4122 
4123 		oob += eccbytes;
4124 
4125 		if (chip->ecc.postpad) {
4126 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4127 						 false);
4128 			if (ret)
4129 				return ret;
4130 
4131 			oob += chip->ecc.postpad;
4132 		}
4133 	}
4134 
4135 	size = mtd->oobsize - (oob - chip->oob_poi);
4136 	if (size) {
4137 		ret = nand_write_data_op(chip, oob, size, false);
4138 		if (ret)
4139 			return ret;
4140 	}
4141 
4142 	return nand_prog_page_end_op(chip);
4143 }
4144 /**
4145  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4146  * @chip: nand chip info structure
4147  * @buf: data buffer
4148  * @oob_required: must write chip->oob_poi to OOB
4149  * @page: page number to write
4150  */
4151 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4152 				 int oob_required, int page)
4153 {
4154 	struct mtd_info *mtd = nand_to_mtd(chip);
4155 	int i, eccsize = chip->ecc.size, ret;
4156 	int eccbytes = chip->ecc.bytes;
4157 	int eccsteps = chip->ecc.steps;
4158 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4159 	const uint8_t *p = buf;
4160 
4161 	/* Software ECC calculation */
4162 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4163 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4164 
4165 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4166 					 chip->ecc.total);
4167 	if (ret)
4168 		return ret;
4169 
4170 	return chip->ecc.write_page_raw(chip, buf, 1, page);
4171 }
4172 
4173 /**
4174  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4175  * @chip: nand chip info structure
4176  * @buf: data buffer
4177  * @oob_required: must write chip->oob_poi to OOB
4178  * @page: page number to write
4179  */
4180 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4181 				 int oob_required, int page)
4182 {
4183 	struct mtd_info *mtd = nand_to_mtd(chip);
4184 	int i, eccsize = chip->ecc.size, ret;
4185 	int eccbytes = chip->ecc.bytes;
4186 	int eccsteps = chip->ecc.steps;
4187 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4188 	const uint8_t *p = buf;
4189 
4190 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4191 	if (ret)
4192 		return ret;
4193 
4194 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4195 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4196 
4197 		ret = nand_write_data_op(chip, p, eccsize, false);
4198 		if (ret)
4199 			return ret;
4200 
4201 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4202 	}
4203 
4204 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4205 					 chip->ecc.total);
4206 	if (ret)
4207 		return ret;
4208 
4209 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4210 	if (ret)
4211 		return ret;
4212 
4213 	return nand_prog_page_end_op(chip);
4214 }
4215 
4216 
4217 /**
4218  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4219  * @chip:	nand chip info structure
4220  * @offset:	column address of subpage within the page
4221  * @data_len:	data length
4222  * @buf:	data buffer
4223  * @oob_required: must write chip->oob_poi to OOB
4224  * @page: page number to write
4225  */
4226 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4227 				    uint32_t data_len, const uint8_t *buf,
4228 				    int oob_required, int page)
4229 {
4230 	struct mtd_info *mtd = nand_to_mtd(chip);
4231 	uint8_t *oob_buf  = chip->oob_poi;
4232 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4233 	int ecc_size      = chip->ecc.size;
4234 	int ecc_bytes     = chip->ecc.bytes;
4235 	int ecc_steps     = chip->ecc.steps;
4236 	uint32_t start_step = offset / ecc_size;
4237 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4238 	int oob_bytes       = mtd->oobsize / ecc_steps;
4239 	int step, ret;
4240 
4241 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4242 	if (ret)
4243 		return ret;
4244 
4245 	for (step = 0; step < ecc_steps; step++) {
4246 		/* configure controller for WRITE access */
4247 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4248 
4249 		/* write data (untouched subpages already masked by 0xFF) */
4250 		ret = nand_write_data_op(chip, buf, ecc_size, false);
4251 		if (ret)
4252 			return ret;
4253 
4254 		/* mask ECC of un-touched subpages by padding 0xFF */
4255 		if ((step < start_step) || (step > end_step))
4256 			memset(ecc_calc, 0xff, ecc_bytes);
4257 		else
4258 			chip->ecc.calculate(chip, buf, ecc_calc);
4259 
4260 		/* mask OOB of un-touched subpages by padding 0xFF */
4261 		/* if oob_required, preserve OOB metadata of written subpage */
4262 		if (!oob_required || (step < start_step) || (step > end_step))
4263 			memset(oob_buf, 0xff, oob_bytes);
4264 
4265 		buf += ecc_size;
4266 		ecc_calc += ecc_bytes;
4267 		oob_buf  += oob_bytes;
4268 	}
4269 
4270 	/* copy calculated ECC for whole page to chip->buffer->oob */
4271 	/* this include masked-value(0xFF) for unwritten subpages */
4272 	ecc_calc = chip->ecc.calc_buf;
4273 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4274 					 chip->ecc.total);
4275 	if (ret)
4276 		return ret;
4277 
4278 	/* write OOB buffer to NAND device */
4279 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4280 	if (ret)
4281 		return ret;
4282 
4283 	return nand_prog_page_end_op(chip);
4284 }
4285 
4286 
4287 /**
4288  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4289  * @chip: nand chip info structure
4290  * @buf: data buffer
4291  * @oob_required: must write chip->oob_poi to OOB
4292  * @page: page number to write
4293  *
4294  * The hw generator calculates the error syndrome automatically. Therefore we
4295  * need a special oob layout and handling.
4296  */
4297 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4298 				    int oob_required, int page)
4299 {
4300 	struct mtd_info *mtd = nand_to_mtd(chip);
4301 	int i, eccsize = chip->ecc.size;
4302 	int eccbytes = chip->ecc.bytes;
4303 	int eccsteps = chip->ecc.steps;
4304 	const uint8_t *p = buf;
4305 	uint8_t *oob = chip->oob_poi;
4306 	int ret;
4307 
4308 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4309 	if (ret)
4310 		return ret;
4311 
4312 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4313 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4314 
4315 		ret = nand_write_data_op(chip, p, eccsize, false);
4316 		if (ret)
4317 			return ret;
4318 
4319 		if (chip->ecc.prepad) {
4320 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4321 						 false);
4322 			if (ret)
4323 				return ret;
4324 
4325 			oob += chip->ecc.prepad;
4326 		}
4327 
4328 		chip->ecc.calculate(chip, p, oob);
4329 
4330 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4331 		if (ret)
4332 			return ret;
4333 
4334 		oob += eccbytes;
4335 
4336 		if (chip->ecc.postpad) {
4337 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4338 						 false);
4339 			if (ret)
4340 				return ret;
4341 
4342 			oob += chip->ecc.postpad;
4343 		}
4344 	}
4345 
4346 	/* Calculate remaining oob bytes */
4347 	i = mtd->oobsize - (oob - chip->oob_poi);
4348 	if (i) {
4349 		ret = nand_write_data_op(chip, oob, i, false);
4350 		if (ret)
4351 			return ret;
4352 	}
4353 
4354 	return nand_prog_page_end_op(chip);
4355 }
4356 
4357 /**
4358  * nand_write_page - write one page
4359  * @chip: NAND chip descriptor
4360  * @offset: address offset within the page
4361  * @data_len: length of actual data to be written
4362  * @buf: the data to write
4363  * @oob_required: must write chip->oob_poi to OOB
4364  * @page: page number to write
4365  * @raw: use _raw version of write_page
4366  */
4367 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4368 			   int data_len, const uint8_t *buf, int oob_required,
4369 			   int page, int raw)
4370 {
4371 	struct mtd_info *mtd = nand_to_mtd(chip);
4372 	int status, subpage;
4373 
4374 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4375 		chip->ecc.write_subpage)
4376 		subpage = offset || (data_len < mtd->writesize);
4377 	else
4378 		subpage = 0;
4379 
4380 	if (unlikely(raw))
4381 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
4382 						  page);
4383 	else if (subpage)
4384 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4385 						 oob_required, page);
4386 	else
4387 		status = chip->ecc.write_page(chip, buf, oob_required, page);
4388 
4389 	if (status < 0)
4390 		return status;
4391 
4392 	return 0;
4393 }
4394 
4395 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4396 
4397 /**
4398  * nand_do_write_ops - [INTERN] NAND write with ECC
4399  * @chip: NAND chip object
4400  * @to: offset to write to
4401  * @ops: oob operations description structure
4402  *
4403  * NAND write with ECC.
4404  */
4405 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4406 			     struct mtd_oob_ops *ops)
4407 {
4408 	struct mtd_info *mtd = nand_to_mtd(chip);
4409 	int chipnr, realpage, page, column;
4410 	uint32_t writelen = ops->len;
4411 
4412 	uint32_t oobwritelen = ops->ooblen;
4413 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4414 
4415 	uint8_t *oob = ops->oobbuf;
4416 	uint8_t *buf = ops->datbuf;
4417 	int ret;
4418 	int oob_required = oob ? 1 : 0;
4419 
4420 	ops->retlen = 0;
4421 	if (!writelen)
4422 		return 0;
4423 
4424 	/* Reject writes, which are not page aligned */
4425 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4426 		pr_notice("%s: attempt to write non page aligned data\n",
4427 			   __func__);
4428 		return -EINVAL;
4429 	}
4430 
4431 	/* Check if the region is secured */
4432 	if (nand_region_is_secured(chip, to, writelen))
4433 		return -EIO;
4434 
4435 	column = to & (mtd->writesize - 1);
4436 
4437 	chipnr = (int)(to >> chip->chip_shift);
4438 	nand_select_target(chip, chipnr);
4439 
4440 	/* Check, if it is write protected */
4441 	if (nand_check_wp(chip)) {
4442 		ret = -EIO;
4443 		goto err_out;
4444 	}
4445 
4446 	realpage = (int)(to >> chip->page_shift);
4447 	page = realpage & chip->pagemask;
4448 
4449 	/* Invalidate the page cache, when we write to the cached page */
4450 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4451 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4452 		chip->pagecache.page = -1;
4453 
4454 	/* Don't allow multipage oob writes with offset */
4455 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4456 		ret = -EINVAL;
4457 		goto err_out;
4458 	}
4459 
4460 	while (1) {
4461 		int bytes = mtd->writesize;
4462 		uint8_t *wbuf = buf;
4463 		int use_bounce_buf;
4464 		int part_pagewr = (column || writelen < mtd->writesize);
4465 
4466 		if (part_pagewr)
4467 			use_bounce_buf = 1;
4468 		else if (chip->options & NAND_USES_DMA)
4469 			use_bounce_buf = !virt_addr_valid(buf) ||
4470 					 !IS_ALIGNED((unsigned long)buf,
4471 						     chip->buf_align);
4472 		else
4473 			use_bounce_buf = 0;
4474 
4475 		/*
4476 		 * Copy the data from the initial buffer when doing partial page
4477 		 * writes or when a bounce buffer is required.
4478 		 */
4479 		if (use_bounce_buf) {
4480 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4481 					 __func__, buf);
4482 			if (part_pagewr)
4483 				bytes = min_t(int, bytes - column, writelen);
4484 			wbuf = nand_get_data_buf(chip);
4485 			memset(wbuf, 0xff, mtd->writesize);
4486 			memcpy(&wbuf[column], buf, bytes);
4487 		}
4488 
4489 		if (unlikely(oob)) {
4490 			size_t len = min(oobwritelen, oobmaxlen);
4491 			oob = nand_fill_oob(chip, oob, len, ops);
4492 			oobwritelen -= len;
4493 		} else {
4494 			/* We still need to erase leftover OOB data */
4495 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4496 		}
4497 
4498 		ret = nand_write_page(chip, column, bytes, wbuf,
4499 				      oob_required, page,
4500 				      (ops->mode == MTD_OPS_RAW));
4501 		if (ret)
4502 			break;
4503 
4504 		writelen -= bytes;
4505 		if (!writelen)
4506 			break;
4507 
4508 		column = 0;
4509 		buf += bytes;
4510 		realpage++;
4511 
4512 		page = realpage & chip->pagemask;
4513 		/* Check, if we cross a chip boundary */
4514 		if (!page) {
4515 			chipnr++;
4516 			nand_deselect_target(chip);
4517 			nand_select_target(chip, chipnr);
4518 		}
4519 	}
4520 
4521 	ops->retlen = ops->len - writelen;
4522 	if (unlikely(oob))
4523 		ops->oobretlen = ops->ooblen;
4524 
4525 err_out:
4526 	nand_deselect_target(chip);
4527 	return ret;
4528 }
4529 
4530 /**
4531  * panic_nand_write - [MTD Interface] NAND write with ECC
4532  * @mtd: MTD device structure
4533  * @to: offset to write to
4534  * @len: number of bytes to write
4535  * @retlen: pointer to variable to store the number of written bytes
4536  * @buf: the data to write
4537  *
4538  * NAND write with ECC. Used when performing writes in interrupt context, this
4539  * may for example be called by mtdoops when writing an oops while in panic.
4540  */
4541 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4542 			    size_t *retlen, const uint8_t *buf)
4543 {
4544 	struct nand_chip *chip = mtd_to_nand(mtd);
4545 	int chipnr = (int)(to >> chip->chip_shift);
4546 	struct mtd_oob_ops ops;
4547 	int ret;
4548 
4549 	nand_select_target(chip, chipnr);
4550 
4551 	/* Wait for the device to get ready */
4552 	panic_nand_wait(chip, 400);
4553 
4554 	memset(&ops, 0, sizeof(ops));
4555 	ops.len = len;
4556 	ops.datbuf = (uint8_t *)buf;
4557 	ops.mode = MTD_OPS_PLACE_OOB;
4558 
4559 	ret = nand_do_write_ops(chip, to, &ops);
4560 
4561 	*retlen = ops.retlen;
4562 	return ret;
4563 }
4564 
4565 /**
4566  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4567  * @mtd: MTD device structure
4568  * @to: offset to write to
4569  * @ops: oob operation description structure
4570  */
4571 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4572 			  struct mtd_oob_ops *ops)
4573 {
4574 	struct nand_chip *chip = mtd_to_nand(mtd);
4575 	int ret = 0;
4576 
4577 	ops->retlen = 0;
4578 
4579 	nand_get_device(chip);
4580 
4581 	switch (ops->mode) {
4582 	case MTD_OPS_PLACE_OOB:
4583 	case MTD_OPS_AUTO_OOB:
4584 	case MTD_OPS_RAW:
4585 		break;
4586 
4587 	default:
4588 		goto out;
4589 	}
4590 
4591 	if (!ops->datbuf)
4592 		ret = nand_do_write_oob(chip, to, ops);
4593 	else
4594 		ret = nand_do_write_ops(chip, to, ops);
4595 
4596 out:
4597 	nand_release_device(chip);
4598 	return ret;
4599 }
4600 
4601 /**
4602  * nand_erase - [MTD Interface] erase block(s)
4603  * @mtd: MTD device structure
4604  * @instr: erase instruction
4605  *
4606  * Erase one ore more blocks.
4607  */
4608 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4609 {
4610 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4611 }
4612 
4613 /**
4614  * nand_erase_nand - [INTERN] erase block(s)
4615  * @chip: NAND chip object
4616  * @instr: erase instruction
4617  * @allowbbt: allow erasing the bbt area
4618  *
4619  * Erase one ore more blocks.
4620  */
4621 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4622 		    int allowbbt)
4623 {
4624 	int page, pages_per_block, ret, chipnr;
4625 	loff_t len;
4626 
4627 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4628 			__func__, (unsigned long long)instr->addr,
4629 			(unsigned long long)instr->len);
4630 
4631 	if (check_offs_len(chip, instr->addr, instr->len))
4632 		return -EINVAL;
4633 
4634 	/* Check if the region is secured */
4635 	if (nand_region_is_secured(chip, instr->addr, instr->len))
4636 		return -EIO;
4637 
4638 	/* Grab the lock and see if the device is available */
4639 	nand_get_device(chip);
4640 
4641 	/* Shift to get first page */
4642 	page = (int)(instr->addr >> chip->page_shift);
4643 	chipnr = (int)(instr->addr >> chip->chip_shift);
4644 
4645 	/* Calculate pages in each block */
4646 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4647 
4648 	/* Select the NAND device */
4649 	nand_select_target(chip, chipnr);
4650 
4651 	/* Check, if it is write protected */
4652 	if (nand_check_wp(chip)) {
4653 		pr_debug("%s: device is write protected!\n",
4654 				__func__);
4655 		ret = -EIO;
4656 		goto erase_exit;
4657 	}
4658 
4659 	/* Loop through the pages */
4660 	len = instr->len;
4661 
4662 	while (len) {
4663 		loff_t ofs = (loff_t)page << chip->page_shift;
4664 
4665 		/* Check if we have a bad block, we do not erase bad blocks! */
4666 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4667 					chip->page_shift, allowbbt)) {
4668 			pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4669 				    __func__, (unsigned long long)ofs);
4670 			ret = -EIO;
4671 			goto erase_exit;
4672 		}
4673 
4674 		/*
4675 		 * Invalidate the page cache, if we erase the block which
4676 		 * contains the current cached page.
4677 		 */
4678 		if (page <= chip->pagecache.page && chip->pagecache.page <
4679 		    (page + pages_per_block))
4680 			chip->pagecache.page = -1;
4681 
4682 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4683 				    (chip->phys_erase_shift - chip->page_shift));
4684 		if (ret) {
4685 			pr_debug("%s: failed erase, page 0x%08x\n",
4686 					__func__, page);
4687 			instr->fail_addr = ofs;
4688 			goto erase_exit;
4689 		}
4690 
4691 		/* Increment page address and decrement length */
4692 		len -= (1ULL << chip->phys_erase_shift);
4693 		page += pages_per_block;
4694 
4695 		/* Check, if we cross a chip boundary */
4696 		if (len && !(page & chip->pagemask)) {
4697 			chipnr++;
4698 			nand_deselect_target(chip);
4699 			nand_select_target(chip, chipnr);
4700 		}
4701 	}
4702 
4703 	ret = 0;
4704 erase_exit:
4705 
4706 	/* Deselect and wake up anyone waiting on the device */
4707 	nand_deselect_target(chip);
4708 	nand_release_device(chip);
4709 
4710 	/* Return more or less happy */
4711 	return ret;
4712 }
4713 
4714 /**
4715  * nand_sync - [MTD Interface] sync
4716  * @mtd: MTD device structure
4717  *
4718  * Sync is actually a wait for chip ready function.
4719  */
4720 static void nand_sync(struct mtd_info *mtd)
4721 {
4722 	struct nand_chip *chip = mtd_to_nand(mtd);
4723 
4724 	pr_debug("%s: called\n", __func__);
4725 
4726 	/* Grab the lock and see if the device is available */
4727 	nand_get_device(chip);
4728 	/* Release it and go back */
4729 	nand_release_device(chip);
4730 }
4731 
4732 /**
4733  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4734  * @mtd: MTD device structure
4735  * @offs: offset relative to mtd start
4736  */
4737 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4738 {
4739 	struct nand_chip *chip = mtd_to_nand(mtd);
4740 	int chipnr = (int)(offs >> chip->chip_shift);
4741 	int ret;
4742 
4743 	/* Select the NAND device */
4744 	nand_get_device(chip);
4745 
4746 	nand_select_target(chip, chipnr);
4747 
4748 	ret = nand_block_checkbad(chip, offs, 0);
4749 
4750 	nand_deselect_target(chip);
4751 	nand_release_device(chip);
4752 
4753 	return ret;
4754 }
4755 
4756 /**
4757  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4758  * @mtd: MTD device structure
4759  * @ofs: offset relative to mtd start
4760  */
4761 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4762 {
4763 	int ret;
4764 
4765 	ret = nand_block_isbad(mtd, ofs);
4766 	if (ret) {
4767 		/* If it was bad already, return success and do nothing */
4768 		if (ret > 0)
4769 			return 0;
4770 		return ret;
4771 	}
4772 
4773 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4774 }
4775 
4776 /**
4777  * nand_suspend - [MTD Interface] Suspend the NAND flash
4778  * @mtd: MTD device structure
4779  *
4780  * Returns 0 for success or negative error code otherwise.
4781  */
4782 static int nand_suspend(struct mtd_info *mtd)
4783 {
4784 	struct nand_chip *chip = mtd_to_nand(mtd);
4785 	int ret = 0;
4786 
4787 	mutex_lock(&chip->lock);
4788 	if (chip->ops.suspend)
4789 		ret = chip->ops.suspend(chip);
4790 	if (!ret)
4791 		chip->suspended = 1;
4792 	mutex_unlock(&chip->lock);
4793 
4794 	return ret;
4795 }
4796 
4797 /**
4798  * nand_resume - [MTD Interface] Resume the NAND flash
4799  * @mtd: MTD device structure
4800  */
4801 static void nand_resume(struct mtd_info *mtd)
4802 {
4803 	struct nand_chip *chip = mtd_to_nand(mtd);
4804 
4805 	mutex_lock(&chip->lock);
4806 	if (chip->suspended) {
4807 		if (chip->ops.resume)
4808 			chip->ops.resume(chip);
4809 		chip->suspended = 0;
4810 	} else {
4811 		pr_err("%s called for a chip which is not in suspended state\n",
4812 			__func__);
4813 	}
4814 	mutex_unlock(&chip->lock);
4815 
4816 	wake_up_all(&chip->resume_wq);
4817 }
4818 
4819 /**
4820  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4821  *                 prevent further operations
4822  * @mtd: MTD device structure
4823  */
4824 static void nand_shutdown(struct mtd_info *mtd)
4825 {
4826 	nand_suspend(mtd);
4827 }
4828 
4829 /**
4830  * nand_lock - [MTD Interface] Lock the NAND flash
4831  * @mtd: MTD device structure
4832  * @ofs: offset byte address
4833  * @len: number of bytes to lock (must be a multiple of block/page size)
4834  */
4835 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4836 {
4837 	struct nand_chip *chip = mtd_to_nand(mtd);
4838 
4839 	if (!chip->ops.lock_area)
4840 		return -ENOTSUPP;
4841 
4842 	return chip->ops.lock_area(chip, ofs, len);
4843 }
4844 
4845 /**
4846  * nand_unlock - [MTD Interface] Unlock the NAND flash
4847  * @mtd: MTD device structure
4848  * @ofs: offset byte address
4849  * @len: number of bytes to unlock (must be a multiple of block/page size)
4850  */
4851 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4852 {
4853 	struct nand_chip *chip = mtd_to_nand(mtd);
4854 
4855 	if (!chip->ops.unlock_area)
4856 		return -ENOTSUPP;
4857 
4858 	return chip->ops.unlock_area(chip, ofs, len);
4859 }
4860 
4861 /* Set default functions */
4862 static void nand_set_defaults(struct nand_chip *chip)
4863 {
4864 	/* If no controller is provided, use the dummy, legacy one. */
4865 	if (!chip->controller) {
4866 		chip->controller = &chip->legacy.dummy_controller;
4867 		nand_controller_init(chip->controller);
4868 	}
4869 
4870 	nand_legacy_set_defaults(chip);
4871 
4872 	if (!chip->buf_align)
4873 		chip->buf_align = 1;
4874 }
4875 
4876 /* Sanitize ONFI strings so we can safely print them */
4877 void sanitize_string(uint8_t *s, size_t len)
4878 {
4879 	ssize_t i;
4880 
4881 	/* Null terminate */
4882 	s[len - 1] = 0;
4883 
4884 	/* Remove non printable chars */
4885 	for (i = 0; i < len - 1; i++) {
4886 		if (s[i] < ' ' || s[i] > 127)
4887 			s[i] = '?';
4888 	}
4889 
4890 	/* Remove trailing spaces */
4891 	strim(s);
4892 }
4893 
4894 /*
4895  * nand_id_has_period - Check if an ID string has a given wraparound period
4896  * @id_data: the ID string
4897  * @arrlen: the length of the @id_data array
4898  * @period: the period of repitition
4899  *
4900  * Check if an ID string is repeated within a given sequence of bytes at
4901  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4902  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4903  * if the repetition has a period of @period; otherwise, returns zero.
4904  */
4905 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4906 {
4907 	int i, j;
4908 	for (i = 0; i < period; i++)
4909 		for (j = i + period; j < arrlen; j += period)
4910 			if (id_data[i] != id_data[j])
4911 				return 0;
4912 	return 1;
4913 }
4914 
4915 /*
4916  * nand_id_len - Get the length of an ID string returned by CMD_READID
4917  * @id_data: the ID string
4918  * @arrlen: the length of the @id_data array
4919 
4920  * Returns the length of the ID string, according to known wraparound/trailing
4921  * zero patterns. If no pattern exists, returns the length of the array.
4922  */
4923 static int nand_id_len(u8 *id_data, int arrlen)
4924 {
4925 	int last_nonzero, period;
4926 
4927 	/* Find last non-zero byte */
4928 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4929 		if (id_data[last_nonzero])
4930 			break;
4931 
4932 	/* All zeros */
4933 	if (last_nonzero < 0)
4934 		return 0;
4935 
4936 	/* Calculate wraparound period */
4937 	for (period = 1; period < arrlen; period++)
4938 		if (nand_id_has_period(id_data, arrlen, period))
4939 			break;
4940 
4941 	/* There's a repeated pattern */
4942 	if (period < arrlen)
4943 		return period;
4944 
4945 	/* There are trailing zeros */
4946 	if (last_nonzero < arrlen - 1)
4947 		return last_nonzero + 1;
4948 
4949 	/* No pattern detected */
4950 	return arrlen;
4951 }
4952 
4953 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4954 static int nand_get_bits_per_cell(u8 cellinfo)
4955 {
4956 	int bits;
4957 
4958 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4959 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4960 	return bits + 1;
4961 }
4962 
4963 /*
4964  * Many new NAND share similar device ID codes, which represent the size of the
4965  * chip. The rest of the parameters must be decoded according to generic or
4966  * manufacturer-specific "extended ID" decoding patterns.
4967  */
4968 void nand_decode_ext_id(struct nand_chip *chip)
4969 {
4970 	struct nand_memory_organization *memorg;
4971 	struct mtd_info *mtd = nand_to_mtd(chip);
4972 	int extid;
4973 	u8 *id_data = chip->id.data;
4974 
4975 	memorg = nanddev_get_memorg(&chip->base);
4976 
4977 	/* The 3rd id byte holds MLC / multichip data */
4978 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4979 	/* The 4th id byte is the important one */
4980 	extid = id_data[3];
4981 
4982 	/* Calc pagesize */
4983 	memorg->pagesize = 1024 << (extid & 0x03);
4984 	mtd->writesize = memorg->pagesize;
4985 	extid >>= 2;
4986 	/* Calc oobsize */
4987 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4988 	mtd->oobsize = memorg->oobsize;
4989 	extid >>= 2;
4990 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4991 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4992 				       memorg->pagesize;
4993 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4994 	extid >>= 2;
4995 	/* Get buswidth information */
4996 	if (extid & 0x1)
4997 		chip->options |= NAND_BUSWIDTH_16;
4998 }
4999 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5000 
5001 /*
5002  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5003  * decodes a matching ID table entry and assigns the MTD size parameters for
5004  * the chip.
5005  */
5006 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5007 {
5008 	struct mtd_info *mtd = nand_to_mtd(chip);
5009 	struct nand_memory_organization *memorg;
5010 
5011 	memorg = nanddev_get_memorg(&chip->base);
5012 
5013 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
5014 	mtd->erasesize = type->erasesize;
5015 	memorg->pagesize = type->pagesize;
5016 	mtd->writesize = memorg->pagesize;
5017 	memorg->oobsize = memorg->pagesize / 32;
5018 	mtd->oobsize = memorg->oobsize;
5019 
5020 	/* All legacy ID NAND are small-page, SLC */
5021 	memorg->bits_per_cell = 1;
5022 }
5023 
5024 /*
5025  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5026  * heuristic patterns using various detected parameters (e.g., manufacturer,
5027  * page size, cell-type information).
5028  */
5029 static void nand_decode_bbm_options(struct nand_chip *chip)
5030 {
5031 	struct mtd_info *mtd = nand_to_mtd(chip);
5032 
5033 	/* Set the bad block position */
5034 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5035 		chip->badblockpos = NAND_BBM_POS_LARGE;
5036 	else
5037 		chip->badblockpos = NAND_BBM_POS_SMALL;
5038 }
5039 
5040 static inline bool is_full_id_nand(struct nand_flash_dev *type)
5041 {
5042 	return type->id_len;
5043 }
5044 
5045 static bool find_full_id_nand(struct nand_chip *chip,
5046 			      struct nand_flash_dev *type)
5047 {
5048 	struct nand_device *base = &chip->base;
5049 	struct nand_ecc_props requirements;
5050 	struct mtd_info *mtd = nand_to_mtd(chip);
5051 	struct nand_memory_organization *memorg;
5052 	u8 *id_data = chip->id.data;
5053 
5054 	memorg = nanddev_get_memorg(&chip->base);
5055 
5056 	if (!strncmp(type->id, id_data, type->id_len)) {
5057 		memorg->pagesize = type->pagesize;
5058 		mtd->writesize = memorg->pagesize;
5059 		memorg->pages_per_eraseblock = type->erasesize /
5060 					       type->pagesize;
5061 		mtd->erasesize = type->erasesize;
5062 		memorg->oobsize = type->oobsize;
5063 		mtd->oobsize = memorg->oobsize;
5064 
5065 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5066 		memorg->eraseblocks_per_lun =
5067 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5068 					   memorg->pagesize *
5069 					   memorg->pages_per_eraseblock);
5070 		chip->options |= type->options;
5071 		requirements.strength = NAND_ECC_STRENGTH(type);
5072 		requirements.step_size = NAND_ECC_STEP(type);
5073 		nanddev_set_ecc_requirements(base, &requirements);
5074 
5075 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5076 		if (!chip->parameters.model)
5077 			return false;
5078 
5079 		return true;
5080 	}
5081 	return false;
5082 }
5083 
5084 /*
5085  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5086  * compliant and does not have a full-id or legacy-id entry in the nand_ids
5087  * table.
5088  */
5089 static void nand_manufacturer_detect(struct nand_chip *chip)
5090 {
5091 	/*
5092 	 * Try manufacturer detection if available and use
5093 	 * nand_decode_ext_id() otherwise.
5094 	 */
5095 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5096 	    chip->manufacturer.desc->ops->detect) {
5097 		struct nand_memory_organization *memorg;
5098 
5099 		memorg = nanddev_get_memorg(&chip->base);
5100 
5101 		/* The 3rd id byte holds MLC / multichip data */
5102 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5103 		chip->manufacturer.desc->ops->detect(chip);
5104 	} else {
5105 		nand_decode_ext_id(chip);
5106 	}
5107 }
5108 
5109 /*
5110  * Manufacturer initialization. This function is called for all NANDs including
5111  * ONFI and JEDEC compliant ones.
5112  * Manufacturer drivers should put all their specific initialization code in
5113  * their ->init() hook.
5114  */
5115 static int nand_manufacturer_init(struct nand_chip *chip)
5116 {
5117 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5118 	    !chip->manufacturer.desc->ops->init)
5119 		return 0;
5120 
5121 	return chip->manufacturer.desc->ops->init(chip);
5122 }
5123 
5124 /*
5125  * Manufacturer cleanup. This function is called for all NANDs including
5126  * ONFI and JEDEC compliant ones.
5127  * Manufacturer drivers should put all their specific cleanup code in their
5128  * ->cleanup() hook.
5129  */
5130 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5131 {
5132 	/* Release manufacturer private data */
5133 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5134 	    chip->manufacturer.desc->ops->cleanup)
5135 		chip->manufacturer.desc->ops->cleanup(chip);
5136 }
5137 
5138 static const char *
5139 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5140 {
5141 	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5142 }
5143 
5144 static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5145 {
5146 	/* Use an arbitrary size for the check */
5147 	if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5148 		chip->controller->supported_op.data_only_read = 1;
5149 }
5150 
5151 static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5152 {
5153 	/* The supported_op fields should not be set by individual drivers */
5154 	WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5155 
5156 	if (!nand_has_exec_op(chip))
5157 		return;
5158 
5159 	rawnand_check_data_only_read_support(chip);
5160 }
5161 
5162 static void rawnand_check_cont_read_support(struct nand_chip *chip)
5163 {
5164 	struct mtd_info *mtd = nand_to_mtd(chip);
5165 
5166 	if (!chip->parameters.supports_read_cache)
5167 		return;
5168 
5169 	if (chip->read_retries)
5170 		return;
5171 
5172 	if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5173 					    mtd->writesize, true))
5174 		chip->controller->supported_op.cont_read = 1;
5175 }
5176 
5177 static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5178 {
5179 	/* The supported_op fields should not be set by individual drivers */
5180 	WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5181 
5182 	/*
5183 	 * Too many devices do not support sequential cached reads with on-die
5184 	 * ECC correction enabled, so in this case refuse to perform the
5185 	 * automation.
5186 	 */
5187 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
5188 		return;
5189 
5190 	if (!nand_has_exec_op(chip))
5191 		return;
5192 
5193 	rawnand_check_cont_read_support(chip);
5194 }
5195 
5196 /*
5197  * Get the flash and manufacturer id and lookup if the type is supported.
5198  */
5199 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5200 {
5201 	const struct nand_manufacturer_desc *manufacturer_desc;
5202 	struct mtd_info *mtd = nand_to_mtd(chip);
5203 	struct nand_memory_organization *memorg;
5204 	int busw, ret;
5205 	u8 *id_data = chip->id.data;
5206 	u8 maf_id, dev_id;
5207 	u64 targetsize;
5208 
5209 	/*
5210 	 * Let's start by initializing memorg fields that might be left
5211 	 * unassigned by the ID-based detection logic.
5212 	 */
5213 	memorg = nanddev_get_memorg(&chip->base);
5214 	memorg->planes_per_lun = 1;
5215 	memorg->luns_per_target = 1;
5216 
5217 	/*
5218 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5219 	 * after power-up.
5220 	 */
5221 	ret = nand_reset(chip, 0);
5222 	if (ret)
5223 		return ret;
5224 
5225 	/* Select the device */
5226 	nand_select_target(chip, 0);
5227 
5228 	rawnand_early_check_supported_ops(chip);
5229 
5230 	/* Send the command for reading device ID */
5231 	ret = nand_readid_op(chip, 0, id_data, 2);
5232 	if (ret)
5233 		return ret;
5234 
5235 	/* Read manufacturer and device IDs */
5236 	maf_id = id_data[0];
5237 	dev_id = id_data[1];
5238 
5239 	/*
5240 	 * Try again to make sure, as some systems the bus-hold or other
5241 	 * interface concerns can cause random data which looks like a
5242 	 * possibly credible NAND flash to appear. If the two results do
5243 	 * not match, ignore the device completely.
5244 	 */
5245 
5246 	/* Read entire ID string */
5247 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5248 	if (ret)
5249 		return ret;
5250 
5251 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
5252 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5253 			maf_id, dev_id, id_data[0], id_data[1]);
5254 		return -ENODEV;
5255 	}
5256 
5257 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5258 
5259 	/* Try to identify manufacturer */
5260 	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5261 	chip->manufacturer.desc = manufacturer_desc;
5262 
5263 	if (!type)
5264 		type = nand_flash_ids;
5265 
5266 	/*
5267 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5268 	 * override it.
5269 	 * This is required to make sure initial NAND bus width set by the
5270 	 * NAND controller driver is coherent with the real NAND bus width
5271 	 * (extracted by auto-detection code).
5272 	 */
5273 	busw = chip->options & NAND_BUSWIDTH_16;
5274 
5275 	/*
5276 	 * The flag is only set (never cleared), reset it to its default value
5277 	 * before starting auto-detection.
5278 	 */
5279 	chip->options &= ~NAND_BUSWIDTH_16;
5280 
5281 	for (; type->name != NULL; type++) {
5282 		if (is_full_id_nand(type)) {
5283 			if (find_full_id_nand(chip, type))
5284 				goto ident_done;
5285 		} else if (dev_id == type->dev_id) {
5286 			break;
5287 		}
5288 	}
5289 
5290 	if (!type->name || !type->pagesize) {
5291 		/* Check if the chip is ONFI compliant */
5292 		ret = nand_onfi_detect(chip);
5293 		if (ret < 0)
5294 			return ret;
5295 		else if (ret)
5296 			goto ident_done;
5297 
5298 		/* Check if the chip is JEDEC compliant */
5299 		ret = nand_jedec_detect(chip);
5300 		if (ret < 0)
5301 			return ret;
5302 		else if (ret)
5303 			goto ident_done;
5304 	}
5305 
5306 	if (!type->name)
5307 		return -ENODEV;
5308 
5309 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5310 	if (!chip->parameters.model)
5311 		return -ENOMEM;
5312 
5313 	if (!type->pagesize)
5314 		nand_manufacturer_detect(chip);
5315 	else
5316 		nand_decode_id(chip, type);
5317 
5318 	/* Get chip options */
5319 	chip->options |= type->options;
5320 
5321 	memorg->eraseblocks_per_lun =
5322 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5323 					   memorg->pagesize *
5324 					   memorg->pages_per_eraseblock);
5325 
5326 ident_done:
5327 	if (!mtd->name)
5328 		mtd->name = chip->parameters.model;
5329 
5330 	if (chip->options & NAND_BUSWIDTH_AUTO) {
5331 		WARN_ON(busw & NAND_BUSWIDTH_16);
5332 		nand_set_defaults(chip);
5333 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5334 		/*
5335 		 * Check, if buswidth is correct. Hardware drivers should set
5336 		 * chip correct!
5337 		 */
5338 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5339 			maf_id, dev_id);
5340 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5341 			mtd->name);
5342 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5343 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5344 		ret = -EINVAL;
5345 
5346 		goto free_detect_allocation;
5347 	}
5348 
5349 	nand_decode_bbm_options(chip);
5350 
5351 	/* Calculate the address shift from the page size */
5352 	chip->page_shift = ffs(mtd->writesize) - 1;
5353 	/* Convert chipsize to number of pages per chip -1 */
5354 	targetsize = nanddev_target_size(&chip->base);
5355 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
5356 
5357 	chip->bbt_erase_shift = chip->phys_erase_shift =
5358 		ffs(mtd->erasesize) - 1;
5359 	if (targetsize & 0xffffffff)
5360 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
5361 	else {
5362 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5363 		chip->chip_shift += 32 - 1;
5364 	}
5365 
5366 	if (chip->chip_shift - chip->page_shift > 16)
5367 		chip->options |= NAND_ROW_ADDR_3;
5368 
5369 	chip->badblockbits = 8;
5370 
5371 	nand_legacy_adjust_cmdfunc(chip);
5372 
5373 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5374 		maf_id, dev_id);
5375 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5376 		chip->parameters.model);
5377 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5378 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5379 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5380 	return 0;
5381 
5382 free_detect_allocation:
5383 	kfree(chip->parameters.model);
5384 
5385 	return ret;
5386 }
5387 
5388 static enum nand_ecc_engine_type
5389 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5390 {
5391 	enum nand_ecc_legacy_mode {
5392 		NAND_ECC_INVALID,
5393 		NAND_ECC_NONE,
5394 		NAND_ECC_SOFT,
5395 		NAND_ECC_SOFT_BCH,
5396 		NAND_ECC_HW,
5397 		NAND_ECC_HW_SYNDROME,
5398 		NAND_ECC_ON_DIE,
5399 	};
5400 	const char * const nand_ecc_legacy_modes[] = {
5401 		[NAND_ECC_NONE]		= "none",
5402 		[NAND_ECC_SOFT]		= "soft",
5403 		[NAND_ECC_SOFT_BCH]	= "soft_bch",
5404 		[NAND_ECC_HW]		= "hw",
5405 		[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5406 		[NAND_ECC_ON_DIE]	= "on-die",
5407 	};
5408 	enum nand_ecc_legacy_mode eng_type;
5409 	const char *pm;
5410 	int err;
5411 
5412 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5413 	if (err)
5414 		return NAND_ECC_ENGINE_TYPE_INVALID;
5415 
5416 	for (eng_type = NAND_ECC_NONE;
5417 	     eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5418 		if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5419 			switch (eng_type) {
5420 			case NAND_ECC_NONE:
5421 				return NAND_ECC_ENGINE_TYPE_NONE;
5422 			case NAND_ECC_SOFT:
5423 			case NAND_ECC_SOFT_BCH:
5424 				return NAND_ECC_ENGINE_TYPE_SOFT;
5425 			case NAND_ECC_HW:
5426 			case NAND_ECC_HW_SYNDROME:
5427 				return NAND_ECC_ENGINE_TYPE_ON_HOST;
5428 			case NAND_ECC_ON_DIE:
5429 				return NAND_ECC_ENGINE_TYPE_ON_DIE;
5430 			default:
5431 				break;
5432 			}
5433 		}
5434 	}
5435 
5436 	return NAND_ECC_ENGINE_TYPE_INVALID;
5437 }
5438 
5439 static enum nand_ecc_placement
5440 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5441 {
5442 	const char *pm;
5443 	int err;
5444 
5445 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5446 	if (!err) {
5447 		if (!strcasecmp(pm, "hw_syndrome"))
5448 			return NAND_ECC_PLACEMENT_INTERLEAVED;
5449 	}
5450 
5451 	return NAND_ECC_PLACEMENT_UNKNOWN;
5452 }
5453 
5454 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5455 {
5456 	const char *pm;
5457 	int err;
5458 
5459 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5460 	if (!err) {
5461 		if (!strcasecmp(pm, "soft"))
5462 			return NAND_ECC_ALGO_HAMMING;
5463 		else if (!strcasecmp(pm, "soft_bch"))
5464 			return NAND_ECC_ALGO_BCH;
5465 	}
5466 
5467 	return NAND_ECC_ALGO_UNKNOWN;
5468 }
5469 
5470 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5471 {
5472 	struct device_node *dn = nand_get_flash_node(chip);
5473 	struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5474 
5475 	if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5476 		user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5477 
5478 	if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5479 		user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5480 
5481 	if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5482 		user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5483 }
5484 
5485 static int of_get_nand_bus_width(struct nand_chip *chip)
5486 {
5487 	struct device_node *dn = nand_get_flash_node(chip);
5488 	u32 val;
5489 	int ret;
5490 
5491 	ret = of_property_read_u32(dn, "nand-bus-width", &val);
5492 	if (ret == -EINVAL)
5493 		/* Buswidth defaults to 8 if the property does not exist .*/
5494 		return 0;
5495 	else if (ret)
5496 		return ret;
5497 
5498 	if (val == 16)
5499 		chip->options |= NAND_BUSWIDTH_16;
5500 	else if (val != 8)
5501 		return -EINVAL;
5502 	return 0;
5503 }
5504 
5505 static int of_get_nand_secure_regions(struct nand_chip *chip)
5506 {
5507 	struct device_node *dn = nand_get_flash_node(chip);
5508 	struct property *prop;
5509 	int nr_elem, i, j;
5510 
5511 	/* Only proceed if the "secure-regions" property is present in DT */
5512 	prop = of_find_property(dn, "secure-regions", NULL);
5513 	if (!prop)
5514 		return 0;
5515 
5516 	nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5517 	if (nr_elem <= 0)
5518 		return nr_elem;
5519 
5520 	chip->nr_secure_regions = nr_elem / 2;
5521 	chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5522 				       GFP_KERNEL);
5523 	if (!chip->secure_regions)
5524 		return -ENOMEM;
5525 
5526 	for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5527 		of_property_read_u64_index(dn, "secure-regions", j,
5528 					   &chip->secure_regions[i].offset);
5529 		of_property_read_u64_index(dn, "secure-regions", j + 1,
5530 					   &chip->secure_regions[i].size);
5531 	}
5532 
5533 	return 0;
5534 }
5535 
5536 /**
5537  * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5538  * @dev: Device that will be parsed. Also used for managed allocations.
5539  * @cs_array: Array of GPIO desc pointers allocated on success
5540  * @ncs_array: Number of entries in @cs_array updated on success.
5541  * @return 0 on success, an error otherwise.
5542  */
5543 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5544 			     unsigned int *ncs_array)
5545 {
5546 	struct gpio_desc **descs;
5547 	int ndescs, i;
5548 
5549 	ndescs = gpiod_count(dev, "cs");
5550 	if (ndescs < 0) {
5551 		dev_dbg(dev, "No valid cs-gpios property\n");
5552 		return 0;
5553 	}
5554 
5555 	descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5556 	if (!descs)
5557 		return -ENOMEM;
5558 
5559 	for (i = 0; i < ndescs; i++) {
5560 		descs[i] = gpiod_get_index_optional(dev, "cs", i,
5561 						    GPIOD_OUT_HIGH);
5562 		if (IS_ERR(descs[i]))
5563 			return PTR_ERR(descs[i]);
5564 	}
5565 
5566 	*ncs_array = ndescs;
5567 	*cs_array = descs;
5568 
5569 	return 0;
5570 }
5571 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5572 
5573 static int rawnand_dt_init(struct nand_chip *chip)
5574 {
5575 	struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5576 	struct device_node *dn = nand_get_flash_node(chip);
5577 	int ret;
5578 
5579 	if (!dn)
5580 		return 0;
5581 
5582 	ret = of_get_nand_bus_width(chip);
5583 	if (ret)
5584 		return ret;
5585 
5586 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5587 		chip->options |= NAND_IS_BOOT_MEDIUM;
5588 
5589 	if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5590 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5591 
5592 	of_get_nand_ecc_user_config(nand);
5593 	of_get_nand_ecc_legacy_user_config(chip);
5594 
5595 	/*
5596 	 * If neither the user nor the NAND controller have requested a specific
5597 	 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5598 	 */
5599 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5600 
5601 	/*
5602 	 * Use the user requested engine type, unless there is none, in this
5603 	 * case default to the NAND controller choice, otherwise fallback to
5604 	 * the raw NAND default one.
5605 	 */
5606 	if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5607 		chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5608 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5609 		chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5610 
5611 	chip->ecc.placement = nand->ecc.user_conf.placement;
5612 	chip->ecc.algo = nand->ecc.user_conf.algo;
5613 	chip->ecc.strength = nand->ecc.user_conf.strength;
5614 	chip->ecc.size = nand->ecc.user_conf.step_size;
5615 
5616 	return 0;
5617 }
5618 
5619 /**
5620  * nand_scan_ident - Scan for the NAND device
5621  * @chip: NAND chip object
5622  * @maxchips: number of chips to scan for
5623  * @table: alternative NAND ID table
5624  *
5625  * This is the first phase of the normal nand_scan() function. It reads the
5626  * flash ID and sets up MTD fields accordingly.
5627  *
5628  * This helper used to be called directly from controller drivers that needed
5629  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5630  * prevented dynamic allocations during this phase which was unconvenient and
5631  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5632  */
5633 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5634 			   struct nand_flash_dev *table)
5635 {
5636 	struct mtd_info *mtd = nand_to_mtd(chip);
5637 	struct nand_memory_organization *memorg;
5638 	int nand_maf_id, nand_dev_id;
5639 	unsigned int i;
5640 	int ret;
5641 
5642 	memorg = nanddev_get_memorg(&chip->base);
5643 
5644 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5645 	chip->cur_cs = -1;
5646 
5647 	mutex_init(&chip->lock);
5648 	init_waitqueue_head(&chip->resume_wq);
5649 
5650 	/* Enforce the right timings for reset/detection */
5651 	chip->current_interface_config = nand_get_reset_interface_config();
5652 
5653 	ret = rawnand_dt_init(chip);
5654 	if (ret)
5655 		return ret;
5656 
5657 	if (!mtd->name && mtd->dev.parent)
5658 		mtd->name = dev_name(mtd->dev.parent);
5659 
5660 	/* Set the default functions */
5661 	nand_set_defaults(chip);
5662 
5663 	ret = nand_legacy_check_hooks(chip);
5664 	if (ret)
5665 		return ret;
5666 
5667 	memorg->ntargets = maxchips;
5668 
5669 	/* Read the flash type */
5670 	ret = nand_detect(chip, table);
5671 	if (ret) {
5672 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5673 			pr_warn("No NAND device found\n");
5674 		nand_deselect_target(chip);
5675 		return ret;
5676 	}
5677 
5678 	nand_maf_id = chip->id.data[0];
5679 	nand_dev_id = chip->id.data[1];
5680 
5681 	nand_deselect_target(chip);
5682 
5683 	/* Check for a chip array */
5684 	for (i = 1; i < maxchips; i++) {
5685 		u8 id[2];
5686 
5687 		/* See comment in nand_get_flash_type for reset */
5688 		ret = nand_reset(chip, i);
5689 		if (ret)
5690 			break;
5691 
5692 		nand_select_target(chip, i);
5693 		/* Send the command for reading device ID */
5694 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5695 		if (ret)
5696 			break;
5697 		/* Read manufacturer and device IDs */
5698 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5699 			nand_deselect_target(chip);
5700 			break;
5701 		}
5702 		nand_deselect_target(chip);
5703 	}
5704 	if (i > 1)
5705 		pr_info("%d chips detected\n", i);
5706 
5707 	/* Store the number of chips and calc total size for mtd */
5708 	memorg->ntargets = i;
5709 	mtd->size = i * nanddev_target_size(&chip->base);
5710 
5711 	return 0;
5712 }
5713 
5714 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5715 {
5716 	kfree(chip->parameters.model);
5717 	kfree(chip->parameters.onfi);
5718 }
5719 
5720 int rawnand_sw_hamming_init(struct nand_chip *chip)
5721 {
5722 	struct nand_ecc_sw_hamming_conf *engine_conf;
5723 	struct nand_device *base = &chip->base;
5724 	int ret;
5725 
5726 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5727 	base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5728 	base->ecc.user_conf.strength = chip->ecc.strength;
5729 	base->ecc.user_conf.step_size = chip->ecc.size;
5730 
5731 	ret = nand_ecc_sw_hamming_init_ctx(base);
5732 	if (ret)
5733 		return ret;
5734 
5735 	engine_conf = base->ecc.ctx.priv;
5736 
5737 	if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5738 		engine_conf->sm_order = true;
5739 
5740 	chip->ecc.size = base->ecc.ctx.conf.step_size;
5741 	chip->ecc.strength = base->ecc.ctx.conf.strength;
5742 	chip->ecc.total = base->ecc.ctx.total;
5743 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5744 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5745 
5746 	return 0;
5747 }
5748 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5749 
5750 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5751 				 const unsigned char *buf,
5752 				 unsigned char *code)
5753 {
5754 	struct nand_device *base = &chip->base;
5755 
5756 	return nand_ecc_sw_hamming_calculate(base, buf, code);
5757 }
5758 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5759 
5760 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5761 			       unsigned char *buf,
5762 			       unsigned char *read_ecc,
5763 			       unsigned char *calc_ecc)
5764 {
5765 	struct nand_device *base = &chip->base;
5766 
5767 	return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5768 }
5769 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5770 
5771 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5772 {
5773 	struct nand_device *base = &chip->base;
5774 
5775 	nand_ecc_sw_hamming_cleanup_ctx(base);
5776 }
5777 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5778 
5779 int rawnand_sw_bch_init(struct nand_chip *chip)
5780 {
5781 	struct nand_device *base = &chip->base;
5782 	const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5783 	int ret;
5784 
5785 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5786 	base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5787 	base->ecc.user_conf.step_size = chip->ecc.size;
5788 	base->ecc.user_conf.strength = chip->ecc.strength;
5789 
5790 	ret = nand_ecc_sw_bch_init_ctx(base);
5791 	if (ret)
5792 		return ret;
5793 
5794 	chip->ecc.size = ecc_conf->step_size;
5795 	chip->ecc.strength = ecc_conf->strength;
5796 	chip->ecc.total = base->ecc.ctx.total;
5797 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5798 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5799 
5800 	return 0;
5801 }
5802 EXPORT_SYMBOL(rawnand_sw_bch_init);
5803 
5804 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5805 				    const unsigned char *buf,
5806 				    unsigned char *code)
5807 {
5808 	struct nand_device *base = &chip->base;
5809 
5810 	return nand_ecc_sw_bch_calculate(base, buf, code);
5811 }
5812 
5813 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5814 			   unsigned char *read_ecc, unsigned char *calc_ecc)
5815 {
5816 	struct nand_device *base = &chip->base;
5817 
5818 	return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5819 }
5820 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5821 
5822 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5823 {
5824 	struct nand_device *base = &chip->base;
5825 
5826 	nand_ecc_sw_bch_cleanup_ctx(base);
5827 }
5828 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5829 
5830 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5831 {
5832 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5833 
5834 	switch (ecc->placement) {
5835 	case NAND_ECC_PLACEMENT_UNKNOWN:
5836 	case NAND_ECC_PLACEMENT_OOB:
5837 		/* Use standard hwecc read page function? */
5838 		if (!ecc->read_page)
5839 			ecc->read_page = nand_read_page_hwecc;
5840 		if (!ecc->write_page)
5841 			ecc->write_page = nand_write_page_hwecc;
5842 		if (!ecc->read_page_raw)
5843 			ecc->read_page_raw = nand_read_page_raw;
5844 		if (!ecc->write_page_raw)
5845 			ecc->write_page_raw = nand_write_page_raw;
5846 		if (!ecc->read_oob)
5847 			ecc->read_oob = nand_read_oob_std;
5848 		if (!ecc->write_oob)
5849 			ecc->write_oob = nand_write_oob_std;
5850 		if (!ecc->read_subpage)
5851 			ecc->read_subpage = nand_read_subpage;
5852 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5853 			ecc->write_subpage = nand_write_subpage_hwecc;
5854 		fallthrough;
5855 
5856 	case NAND_ECC_PLACEMENT_INTERLEAVED:
5857 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5858 		    (!ecc->read_page ||
5859 		     ecc->read_page == nand_read_page_hwecc ||
5860 		     !ecc->write_page ||
5861 		     ecc->write_page == nand_write_page_hwecc)) {
5862 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5863 			return -EINVAL;
5864 		}
5865 		/* Use standard syndrome read/write page function? */
5866 		if (!ecc->read_page)
5867 			ecc->read_page = nand_read_page_syndrome;
5868 		if (!ecc->write_page)
5869 			ecc->write_page = nand_write_page_syndrome;
5870 		if (!ecc->read_page_raw)
5871 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5872 		if (!ecc->write_page_raw)
5873 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5874 		if (!ecc->read_oob)
5875 			ecc->read_oob = nand_read_oob_syndrome;
5876 		if (!ecc->write_oob)
5877 			ecc->write_oob = nand_write_oob_syndrome;
5878 		break;
5879 
5880 	default:
5881 		pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5882 			ecc->placement);
5883 		return -EINVAL;
5884 	}
5885 
5886 	return 0;
5887 }
5888 
5889 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5890 {
5891 	struct mtd_info *mtd = nand_to_mtd(chip);
5892 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5893 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5894 	int ret;
5895 
5896 	if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5897 		return -EINVAL;
5898 
5899 	switch (ecc->algo) {
5900 	case NAND_ECC_ALGO_HAMMING:
5901 		ecc->calculate = rawnand_sw_hamming_calculate;
5902 		ecc->correct = rawnand_sw_hamming_correct;
5903 		ecc->read_page = nand_read_page_swecc;
5904 		ecc->read_subpage = nand_read_subpage;
5905 		ecc->write_page = nand_write_page_swecc;
5906 		if (!ecc->read_page_raw)
5907 			ecc->read_page_raw = nand_read_page_raw;
5908 		if (!ecc->write_page_raw)
5909 			ecc->write_page_raw = nand_write_page_raw;
5910 		ecc->read_oob = nand_read_oob_std;
5911 		ecc->write_oob = nand_write_oob_std;
5912 		if (!ecc->size)
5913 			ecc->size = 256;
5914 		ecc->bytes = 3;
5915 		ecc->strength = 1;
5916 
5917 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5918 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5919 
5920 		ret = rawnand_sw_hamming_init(chip);
5921 		if (ret) {
5922 			WARN(1, "Hamming ECC initialization failed!\n");
5923 			return ret;
5924 		}
5925 
5926 		return 0;
5927 	case NAND_ECC_ALGO_BCH:
5928 		if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5929 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5930 			return -EINVAL;
5931 		}
5932 		ecc->calculate = rawnand_sw_bch_calculate;
5933 		ecc->correct = rawnand_sw_bch_correct;
5934 		ecc->read_page = nand_read_page_swecc;
5935 		ecc->read_subpage = nand_read_subpage;
5936 		ecc->write_page = nand_write_page_swecc;
5937 		if (!ecc->read_page_raw)
5938 			ecc->read_page_raw = nand_read_page_raw;
5939 		if (!ecc->write_page_raw)
5940 			ecc->write_page_raw = nand_write_page_raw;
5941 		ecc->read_oob = nand_read_oob_std;
5942 		ecc->write_oob = nand_write_oob_std;
5943 
5944 		/*
5945 		 * We can only maximize ECC config when the default layout is
5946 		 * used, otherwise we don't know how many bytes can really be
5947 		 * used.
5948 		 */
5949 		if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5950 		    mtd->ooblayout != nand_get_large_page_ooblayout())
5951 			nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5952 
5953 		ret = rawnand_sw_bch_init(chip);
5954 		if (ret) {
5955 			WARN(1, "BCH ECC initialization failed!\n");
5956 			return ret;
5957 		}
5958 
5959 		return 0;
5960 	default:
5961 		WARN(1, "Unsupported ECC algorithm!\n");
5962 		return -EINVAL;
5963 	}
5964 }
5965 
5966 /**
5967  * nand_check_ecc_caps - check the sanity of preset ECC settings
5968  * @chip: nand chip info structure
5969  * @caps: ECC caps info structure
5970  * @oobavail: OOB size that the ECC engine can use
5971  *
5972  * When ECC step size and strength are already set, check if they are supported
5973  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5974  * On success, the calculated ECC bytes is set.
5975  */
5976 static int
5977 nand_check_ecc_caps(struct nand_chip *chip,
5978 		    const struct nand_ecc_caps *caps, int oobavail)
5979 {
5980 	struct mtd_info *mtd = nand_to_mtd(chip);
5981 	const struct nand_ecc_step_info *stepinfo;
5982 	int preset_step = chip->ecc.size;
5983 	int preset_strength = chip->ecc.strength;
5984 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5985 	int i, j;
5986 
5987 	for (i = 0; i < caps->nstepinfos; i++) {
5988 		stepinfo = &caps->stepinfos[i];
5989 
5990 		if (stepinfo->stepsize != preset_step)
5991 			continue;
5992 
5993 		for (j = 0; j < stepinfo->nstrengths; j++) {
5994 			if (stepinfo->strengths[j] != preset_strength)
5995 				continue;
5996 
5997 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
5998 							 preset_strength);
5999 			if (WARN_ON_ONCE(ecc_bytes < 0))
6000 				return ecc_bytes;
6001 
6002 			if (ecc_bytes * nsteps > oobavail) {
6003 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6004 				       preset_step, preset_strength);
6005 				return -ENOSPC;
6006 			}
6007 
6008 			chip->ecc.bytes = ecc_bytes;
6009 
6010 			return 0;
6011 		}
6012 	}
6013 
6014 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6015 	       preset_step, preset_strength);
6016 
6017 	return -ENOTSUPP;
6018 }
6019 
6020 /**
6021  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6022  * @chip: nand chip info structure
6023  * @caps: ECC engine caps info structure
6024  * @oobavail: OOB size that the ECC engine can use
6025  *
6026  * If a chip's ECC requirement is provided, try to meet it with the least
6027  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6028  * On success, the chosen ECC settings are set.
6029  */
6030 static int
6031 nand_match_ecc_req(struct nand_chip *chip,
6032 		   const struct nand_ecc_caps *caps, int oobavail)
6033 {
6034 	const struct nand_ecc_props *requirements =
6035 		nanddev_get_ecc_requirements(&chip->base);
6036 	struct mtd_info *mtd = nand_to_mtd(chip);
6037 	const struct nand_ecc_step_info *stepinfo;
6038 	int req_step = requirements->step_size;
6039 	int req_strength = requirements->strength;
6040 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6041 	int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
6042 	int best_ecc_bytes_total = INT_MAX;
6043 	int i, j;
6044 
6045 	/* No information provided by the NAND chip */
6046 	if (!req_step || !req_strength)
6047 		return -ENOTSUPP;
6048 
6049 	/* number of correctable bits the chip requires in a page */
6050 	req_corr = mtd->writesize / req_step * req_strength;
6051 
6052 	for (i = 0; i < caps->nstepinfos; i++) {
6053 		stepinfo = &caps->stepinfos[i];
6054 		step_size = stepinfo->stepsize;
6055 
6056 		for (j = 0; j < stepinfo->nstrengths; j++) {
6057 			strength = stepinfo->strengths[j];
6058 
6059 			/*
6060 			 * If both step size and strength are smaller than the
6061 			 * chip's requirement, it is not easy to compare the
6062 			 * resulted reliability.
6063 			 */
6064 			if (step_size < req_step && strength < req_strength)
6065 				continue;
6066 
6067 			if (mtd->writesize % step_size)
6068 				continue;
6069 
6070 			nsteps = mtd->writesize / step_size;
6071 
6072 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6073 			if (WARN_ON_ONCE(ecc_bytes < 0))
6074 				continue;
6075 			ecc_bytes_total = ecc_bytes * nsteps;
6076 
6077 			if (ecc_bytes_total > oobavail ||
6078 			    strength * nsteps < req_corr)
6079 				continue;
6080 
6081 			/*
6082 			 * We assume the best is to meet the chip's requrement
6083 			 * with the least number of ECC bytes.
6084 			 */
6085 			if (ecc_bytes_total < best_ecc_bytes_total) {
6086 				best_ecc_bytes_total = ecc_bytes_total;
6087 				best_step = step_size;
6088 				best_strength = strength;
6089 				best_ecc_bytes = ecc_bytes;
6090 			}
6091 		}
6092 	}
6093 
6094 	if (best_ecc_bytes_total == INT_MAX)
6095 		return -ENOTSUPP;
6096 
6097 	chip->ecc.size = best_step;
6098 	chip->ecc.strength = best_strength;
6099 	chip->ecc.bytes = best_ecc_bytes;
6100 
6101 	return 0;
6102 }
6103 
6104 /**
6105  * nand_maximize_ecc - choose the max ECC strength available
6106  * @chip: nand chip info structure
6107  * @caps: ECC engine caps info structure
6108  * @oobavail: OOB size that the ECC engine can use
6109  *
6110  * Choose the max ECC strength that is supported on the controller, and can fit
6111  * within the chip's OOB.  On success, the chosen ECC settings are set.
6112  */
6113 static int
6114 nand_maximize_ecc(struct nand_chip *chip,
6115 		  const struct nand_ecc_caps *caps, int oobavail)
6116 {
6117 	struct mtd_info *mtd = nand_to_mtd(chip);
6118 	const struct nand_ecc_step_info *stepinfo;
6119 	int step_size, strength, nsteps, ecc_bytes, corr;
6120 	int best_corr = 0;
6121 	int best_step = 0;
6122 	int best_strength = 0, best_ecc_bytes = 0;
6123 	int i, j;
6124 
6125 	for (i = 0; i < caps->nstepinfos; i++) {
6126 		stepinfo = &caps->stepinfos[i];
6127 		step_size = stepinfo->stepsize;
6128 
6129 		/* If chip->ecc.size is already set, respect it */
6130 		if (chip->ecc.size && step_size != chip->ecc.size)
6131 			continue;
6132 
6133 		for (j = 0; j < stepinfo->nstrengths; j++) {
6134 			strength = stepinfo->strengths[j];
6135 
6136 			if (mtd->writesize % step_size)
6137 				continue;
6138 
6139 			nsteps = mtd->writesize / step_size;
6140 
6141 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6142 			if (WARN_ON_ONCE(ecc_bytes < 0))
6143 				continue;
6144 
6145 			if (ecc_bytes * nsteps > oobavail)
6146 				continue;
6147 
6148 			corr = strength * nsteps;
6149 
6150 			/*
6151 			 * If the number of correctable bits is the same,
6152 			 * bigger step_size has more reliability.
6153 			 */
6154 			if (corr > best_corr ||
6155 			    (corr == best_corr && step_size > best_step)) {
6156 				best_corr = corr;
6157 				best_step = step_size;
6158 				best_strength = strength;
6159 				best_ecc_bytes = ecc_bytes;
6160 			}
6161 		}
6162 	}
6163 
6164 	if (!best_corr)
6165 		return -ENOTSUPP;
6166 
6167 	chip->ecc.size = best_step;
6168 	chip->ecc.strength = best_strength;
6169 	chip->ecc.bytes = best_ecc_bytes;
6170 
6171 	return 0;
6172 }
6173 
6174 /**
6175  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6176  * @chip: nand chip info structure
6177  * @caps: ECC engine caps info structure
6178  * @oobavail: OOB size that the ECC engine can use
6179  *
6180  * Choose the ECC configuration according to following logic.
6181  *
6182  * 1. If both ECC step size and ECC strength are already set (usually by DT)
6183  *    then check if it is supported by this controller.
6184  * 2. If the user provided the nand-ecc-maximize property, then select maximum
6185  *    ECC strength.
6186  * 3. Otherwise, try to match the ECC step size and ECC strength closest
6187  *    to the chip's requirement. If available OOB size can't fit the chip
6188  *    requirement then fallback to the maximum ECC step size and ECC strength.
6189  *
6190  * On success, the chosen ECC settings are set.
6191  */
6192 int nand_ecc_choose_conf(struct nand_chip *chip,
6193 			 const struct nand_ecc_caps *caps, int oobavail)
6194 {
6195 	struct mtd_info *mtd = nand_to_mtd(chip);
6196 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
6197 
6198 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6199 		return -EINVAL;
6200 
6201 	if (chip->ecc.size && chip->ecc.strength)
6202 		return nand_check_ecc_caps(chip, caps, oobavail);
6203 
6204 	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6205 		return nand_maximize_ecc(chip, caps, oobavail);
6206 
6207 	if (!nand_match_ecc_req(chip, caps, oobavail))
6208 		return 0;
6209 
6210 	return nand_maximize_ecc(chip, caps, oobavail);
6211 }
6212 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6213 
6214 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6215 {
6216 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6217 					      base);
6218 	unsigned int eb = nanddev_pos_to_row(nand, pos);
6219 	int ret;
6220 
6221 	eb >>= nand->rowconv.eraseblock_addr_shift;
6222 
6223 	nand_select_target(chip, pos->target);
6224 	ret = nand_erase_op(chip, eb);
6225 	nand_deselect_target(chip);
6226 
6227 	return ret;
6228 }
6229 
6230 static int rawnand_markbad(struct nand_device *nand,
6231 			   const struct nand_pos *pos)
6232 {
6233 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6234 					      base);
6235 
6236 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6237 }
6238 
6239 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6240 {
6241 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6242 					      base);
6243 	int ret;
6244 
6245 	nand_select_target(chip, pos->target);
6246 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6247 	nand_deselect_target(chip);
6248 
6249 	return ret;
6250 }
6251 
6252 static const struct nand_ops rawnand_ops = {
6253 	.erase = rawnand_erase,
6254 	.markbad = rawnand_markbad,
6255 	.isbad = rawnand_isbad,
6256 };
6257 
6258 /**
6259  * nand_scan_tail - Scan for the NAND device
6260  * @chip: NAND chip object
6261  *
6262  * This is the second phase of the normal nand_scan() function. It fills out
6263  * all the uninitialized function pointers with the defaults and scans for a
6264  * bad block table if appropriate.
6265  */
6266 static int nand_scan_tail(struct nand_chip *chip)
6267 {
6268 	struct mtd_info *mtd = nand_to_mtd(chip);
6269 	struct nand_ecc_ctrl *ecc = &chip->ecc;
6270 	int ret, i;
6271 
6272 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
6273 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6274 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6275 		return -EINVAL;
6276 	}
6277 
6278 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6279 	if (!chip->data_buf)
6280 		return -ENOMEM;
6281 
6282 	/*
6283 	 * FIXME: some NAND manufacturer drivers expect the first die to be
6284 	 * selected when manufacturer->init() is called. They should be fixed
6285 	 * to explictly select the relevant die when interacting with the NAND
6286 	 * chip.
6287 	 */
6288 	nand_select_target(chip, 0);
6289 	ret = nand_manufacturer_init(chip);
6290 	nand_deselect_target(chip);
6291 	if (ret)
6292 		goto err_free_buf;
6293 
6294 	/* Set the internal oob buffer location, just after the page data */
6295 	chip->oob_poi = chip->data_buf + mtd->writesize;
6296 
6297 	/*
6298 	 * If no default placement scheme is given, select an appropriate one.
6299 	 */
6300 	if (!mtd->ooblayout &&
6301 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6302 	      ecc->algo == NAND_ECC_ALGO_BCH) &&
6303 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6304 	      ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6305 		switch (mtd->oobsize) {
6306 		case 8:
6307 		case 16:
6308 			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6309 			break;
6310 		case 64:
6311 		case 128:
6312 			mtd_set_ooblayout(mtd,
6313 					  nand_get_large_page_hamming_ooblayout());
6314 			break;
6315 		default:
6316 			/*
6317 			 * Expose the whole OOB area to users if ECC_NONE
6318 			 * is passed. We could do that for all kind of
6319 			 * ->oobsize, but we must keep the old large/small
6320 			 * page with ECC layout when ->oobsize <= 128 for
6321 			 * compatibility reasons.
6322 			 */
6323 			if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6324 				mtd_set_ooblayout(mtd,
6325 						  nand_get_large_page_ooblayout());
6326 				break;
6327 			}
6328 
6329 			WARN(1, "No oob scheme defined for oobsize %d\n",
6330 				mtd->oobsize);
6331 			ret = -EINVAL;
6332 			goto err_nand_manuf_cleanup;
6333 		}
6334 	}
6335 
6336 	/*
6337 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6338 	 * selected and we have 256 byte pagesize fallback to software ECC
6339 	 */
6340 
6341 	switch (ecc->engine_type) {
6342 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
6343 		ret = nand_set_ecc_on_host_ops(chip);
6344 		if (ret)
6345 			goto err_nand_manuf_cleanup;
6346 
6347 		if (mtd->writesize >= ecc->size) {
6348 			if (!ecc->strength) {
6349 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6350 				ret = -EINVAL;
6351 				goto err_nand_manuf_cleanup;
6352 			}
6353 			break;
6354 		}
6355 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6356 			ecc->size, mtd->writesize);
6357 		ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6358 		ecc->algo = NAND_ECC_ALGO_HAMMING;
6359 		fallthrough;
6360 
6361 	case NAND_ECC_ENGINE_TYPE_SOFT:
6362 		ret = nand_set_ecc_soft_ops(chip);
6363 		if (ret)
6364 			goto err_nand_manuf_cleanup;
6365 		break;
6366 
6367 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
6368 		if (!ecc->read_page || !ecc->write_page) {
6369 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6370 			ret = -EINVAL;
6371 			goto err_nand_manuf_cleanup;
6372 		}
6373 		if (!ecc->read_oob)
6374 			ecc->read_oob = nand_read_oob_std;
6375 		if (!ecc->write_oob)
6376 			ecc->write_oob = nand_write_oob_std;
6377 		break;
6378 
6379 	case NAND_ECC_ENGINE_TYPE_NONE:
6380 		pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6381 		ecc->read_page = nand_read_page_raw;
6382 		ecc->write_page = nand_write_page_raw;
6383 		ecc->read_oob = nand_read_oob_std;
6384 		ecc->read_page_raw = nand_read_page_raw;
6385 		ecc->write_page_raw = nand_write_page_raw;
6386 		ecc->write_oob = nand_write_oob_std;
6387 		ecc->size = mtd->writesize;
6388 		ecc->bytes = 0;
6389 		ecc->strength = 0;
6390 		break;
6391 
6392 	default:
6393 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6394 		ret = -EINVAL;
6395 		goto err_nand_manuf_cleanup;
6396 	}
6397 
6398 	if (ecc->correct || ecc->calculate) {
6399 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6400 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6401 		if (!ecc->calc_buf || !ecc->code_buf) {
6402 			ret = -ENOMEM;
6403 			goto err_nand_manuf_cleanup;
6404 		}
6405 	}
6406 
6407 	/* For many systems, the standard OOB write also works for raw */
6408 	if (!ecc->read_oob_raw)
6409 		ecc->read_oob_raw = ecc->read_oob;
6410 	if (!ecc->write_oob_raw)
6411 		ecc->write_oob_raw = ecc->write_oob;
6412 
6413 	/* propagate ecc info to mtd_info */
6414 	mtd->ecc_strength = ecc->strength;
6415 	mtd->ecc_step_size = ecc->size;
6416 
6417 	/*
6418 	 * Set the number of read / write steps for one page depending on ECC
6419 	 * mode.
6420 	 */
6421 	if (!ecc->steps)
6422 		ecc->steps = mtd->writesize / ecc->size;
6423 	if (ecc->steps * ecc->size != mtd->writesize) {
6424 		WARN(1, "Invalid ECC parameters\n");
6425 		ret = -EINVAL;
6426 		goto err_nand_manuf_cleanup;
6427 	}
6428 
6429 	if (!ecc->total) {
6430 		ecc->total = ecc->steps * ecc->bytes;
6431 		chip->base.ecc.ctx.total = ecc->total;
6432 	}
6433 
6434 	if (ecc->total > mtd->oobsize) {
6435 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6436 		ret = -EINVAL;
6437 		goto err_nand_manuf_cleanup;
6438 	}
6439 
6440 	/*
6441 	 * The number of bytes available for a client to place data into
6442 	 * the out of band area.
6443 	 */
6444 	ret = mtd_ooblayout_count_freebytes(mtd);
6445 	if (ret < 0)
6446 		ret = 0;
6447 
6448 	mtd->oobavail = ret;
6449 
6450 	/* ECC sanity check: warn if it's too weak */
6451 	if (!nand_ecc_is_strong_enough(&chip->base))
6452 		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6453 			mtd->name, chip->ecc.strength, chip->ecc.size,
6454 			nanddev_get_ecc_requirements(&chip->base)->strength,
6455 			nanddev_get_ecc_requirements(&chip->base)->step_size);
6456 
6457 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6458 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6459 		switch (ecc->steps) {
6460 		case 2:
6461 			mtd->subpage_sft = 1;
6462 			break;
6463 		case 4:
6464 		case 8:
6465 		case 16:
6466 			mtd->subpage_sft = 2;
6467 			break;
6468 		}
6469 	}
6470 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6471 
6472 	/* Invalidate the pagebuffer reference */
6473 	chip->pagecache.page = -1;
6474 
6475 	/* Large page NAND with SOFT_ECC should support subpage reads */
6476 	switch (ecc->engine_type) {
6477 	case NAND_ECC_ENGINE_TYPE_SOFT:
6478 		if (chip->page_shift > 9)
6479 			chip->options |= NAND_SUBPAGE_READ;
6480 		break;
6481 
6482 	default:
6483 		break;
6484 	}
6485 
6486 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6487 	if (ret)
6488 		goto err_nand_manuf_cleanup;
6489 
6490 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6491 	if (chip->options & NAND_ROM)
6492 		mtd->flags = MTD_CAP_ROM;
6493 
6494 	/* Fill in remaining MTD driver data */
6495 	mtd->_erase = nand_erase;
6496 	mtd->_point = NULL;
6497 	mtd->_unpoint = NULL;
6498 	mtd->_panic_write = panic_nand_write;
6499 	mtd->_read_oob = nand_read_oob;
6500 	mtd->_write_oob = nand_write_oob;
6501 	mtd->_sync = nand_sync;
6502 	mtd->_lock = nand_lock;
6503 	mtd->_unlock = nand_unlock;
6504 	mtd->_suspend = nand_suspend;
6505 	mtd->_resume = nand_resume;
6506 	mtd->_reboot = nand_shutdown;
6507 	mtd->_block_isreserved = nand_block_isreserved;
6508 	mtd->_block_isbad = nand_block_isbad;
6509 	mtd->_block_markbad = nand_block_markbad;
6510 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6511 
6512 	/*
6513 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6514 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6515 	 * properly set.
6516 	 */
6517 	if (!mtd->bitflip_threshold)
6518 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6519 
6520 	/* Find the fastest data interface for this chip */
6521 	ret = nand_choose_interface_config(chip);
6522 	if (ret)
6523 		goto err_nanddev_cleanup;
6524 
6525 	/* Enter fastest possible mode on all dies. */
6526 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6527 		ret = nand_setup_interface(chip, i);
6528 		if (ret)
6529 			goto err_free_interface_config;
6530 	}
6531 
6532 	rawnand_late_check_supported_ops(chip);
6533 
6534 	/*
6535 	 * Look for secure regions in the NAND chip. These regions are supposed
6536 	 * to be protected by a secure element like Trustzone. So the read/write
6537 	 * accesses to these regions will be blocked in the runtime by this
6538 	 * driver.
6539 	 */
6540 	ret = of_get_nand_secure_regions(chip);
6541 	if (ret)
6542 		goto err_free_interface_config;
6543 
6544 	/* Check, if we should skip the bad block table scan */
6545 	if (chip->options & NAND_SKIP_BBTSCAN)
6546 		return 0;
6547 
6548 	/* Build bad block table */
6549 	ret = nand_create_bbt(chip);
6550 	if (ret)
6551 		goto err_free_secure_regions;
6552 
6553 	return 0;
6554 
6555 err_free_secure_regions:
6556 	kfree(chip->secure_regions);
6557 
6558 err_free_interface_config:
6559 	kfree(chip->best_interface_config);
6560 
6561 err_nanddev_cleanup:
6562 	nanddev_cleanup(&chip->base);
6563 
6564 err_nand_manuf_cleanup:
6565 	nand_manufacturer_cleanup(chip);
6566 
6567 err_free_buf:
6568 	kfree(chip->data_buf);
6569 	kfree(ecc->code_buf);
6570 	kfree(ecc->calc_buf);
6571 
6572 	return ret;
6573 }
6574 
6575 static int nand_attach(struct nand_chip *chip)
6576 {
6577 	if (chip->controller->ops && chip->controller->ops->attach_chip)
6578 		return chip->controller->ops->attach_chip(chip);
6579 
6580 	return 0;
6581 }
6582 
6583 static void nand_detach(struct nand_chip *chip)
6584 {
6585 	if (chip->controller->ops && chip->controller->ops->detach_chip)
6586 		chip->controller->ops->detach_chip(chip);
6587 }
6588 
6589 /**
6590  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6591  * @chip: NAND chip object
6592  * @maxchips: number of chips to scan for.
6593  * @ids: optional flash IDs table
6594  *
6595  * This fills out all the uninitialized function pointers with the defaults.
6596  * The flash ID is read and the mtd/chip structures are filled with the
6597  * appropriate values.
6598  */
6599 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6600 		       struct nand_flash_dev *ids)
6601 {
6602 	int ret;
6603 
6604 	if (!maxchips)
6605 		return -EINVAL;
6606 
6607 	ret = nand_scan_ident(chip, maxchips, ids);
6608 	if (ret)
6609 		return ret;
6610 
6611 	ret = nand_attach(chip);
6612 	if (ret)
6613 		goto cleanup_ident;
6614 
6615 	ret = nand_scan_tail(chip);
6616 	if (ret)
6617 		goto detach_chip;
6618 
6619 	return 0;
6620 
6621 detach_chip:
6622 	nand_detach(chip);
6623 cleanup_ident:
6624 	nand_scan_ident_cleanup(chip);
6625 
6626 	return ret;
6627 }
6628 EXPORT_SYMBOL(nand_scan_with_ids);
6629 
6630 /**
6631  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6632  * @chip: NAND chip object
6633  */
6634 void nand_cleanup(struct nand_chip *chip)
6635 {
6636 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6637 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6638 			rawnand_sw_hamming_cleanup(chip);
6639 		else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6640 			rawnand_sw_bch_cleanup(chip);
6641 	}
6642 
6643 	nanddev_cleanup(&chip->base);
6644 
6645 	/* Free secure regions data */
6646 	kfree(chip->secure_regions);
6647 
6648 	/* Free bad block table memory */
6649 	kfree(chip->bbt);
6650 	kfree(chip->data_buf);
6651 	kfree(chip->ecc.code_buf);
6652 	kfree(chip->ecc.calc_buf);
6653 
6654 	/* Free bad block descriptor memory */
6655 	if (chip->badblock_pattern && chip->badblock_pattern->options
6656 			& NAND_BBT_DYNAMICSTRUCT)
6657 		kfree(chip->badblock_pattern);
6658 
6659 	/* Free the data interface */
6660 	kfree(chip->best_interface_config);
6661 
6662 	/* Free manufacturer priv data. */
6663 	nand_manufacturer_cleanup(chip);
6664 
6665 	/* Free controller specific allocations after chip identification */
6666 	nand_detach(chip);
6667 
6668 	/* Free identification phase allocations */
6669 	nand_scan_ident_cleanup(chip);
6670 }
6671 
6672 EXPORT_SYMBOL_GPL(nand_cleanup);
6673 
6674 MODULE_LICENSE("GPL");
6675 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6676 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6677 MODULE_DESCRIPTION("Generic NAND flash driver code");
6678