xref: /openbmc/linux/drivers/mtd/nand/raw/nand_base.c (revision a1dff44b354c0e2721aeae075a287d07daf1c76b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/gpio/consumer.h>
46 
47 #include "internals.h"
48 
49 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
50 				       struct mtd_pairing_info *info)
51 {
52 	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
53 	int dist = 3;
54 
55 	if (page == lastpage)
56 		dist = 2;
57 
58 	if (!page || (page & 1)) {
59 		info->group = 0;
60 		info->pair = (page + 1) / 2;
61 	} else {
62 		info->group = 1;
63 		info->pair = (page + 1 - dist) / 2;
64 	}
65 
66 	return 0;
67 }
68 
69 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
70 					const struct mtd_pairing_info *info)
71 {
72 	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
73 	int page = info->pair * 2;
74 	int dist = 3;
75 
76 	if (!info->group && !info->pair)
77 		return 0;
78 
79 	if (info->pair == lastpair && info->group)
80 		dist = 2;
81 
82 	if (!info->group)
83 		page--;
84 	else if (info->pair)
85 		page += dist - 1;
86 
87 	if (page >= mtd->erasesize / mtd->writesize)
88 		return -EINVAL;
89 
90 	return page;
91 }
92 
93 const struct mtd_pairing_scheme dist3_pairing_scheme = {
94 	.ngroups = 2,
95 	.get_info = nand_pairing_dist3_get_info,
96 	.get_wunit = nand_pairing_dist3_get_wunit,
97 };
98 
99 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
100 {
101 	int ret = 0;
102 
103 	/* Start address must align on block boundary */
104 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
105 		pr_debug("%s: unaligned address\n", __func__);
106 		ret = -EINVAL;
107 	}
108 
109 	/* Length must align on block boundary */
110 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
111 		pr_debug("%s: length not block aligned\n", __func__);
112 		ret = -EINVAL;
113 	}
114 
115 	return ret;
116 }
117 
118 /**
119  * nand_extract_bits - Copy unaligned bits from one buffer to another one
120  * @dst: destination buffer
121  * @dst_off: bit offset at which the writing starts
122  * @src: source buffer
123  * @src_off: bit offset at which the reading starts
124  * @nbits: number of bits to copy from @src to @dst
125  *
126  * Copy bits from one memory region to another (overlap authorized).
127  */
128 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
129 		       unsigned int src_off, unsigned int nbits)
130 {
131 	unsigned int tmp, n;
132 
133 	dst += dst_off / 8;
134 	dst_off %= 8;
135 	src += src_off / 8;
136 	src_off %= 8;
137 
138 	while (nbits) {
139 		n = min3(8 - dst_off, 8 - src_off, nbits);
140 
141 		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
142 		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
143 		*dst |= tmp << dst_off;
144 
145 		dst_off += n;
146 		if (dst_off >= 8) {
147 			dst++;
148 			dst_off -= 8;
149 		}
150 
151 		src_off += n;
152 		if (src_off >= 8) {
153 			src++;
154 			src_off -= 8;
155 		}
156 
157 		nbits -= n;
158 	}
159 }
160 EXPORT_SYMBOL_GPL(nand_extract_bits);
161 
162 /**
163  * nand_select_target() - Select a NAND target (A.K.A. die)
164  * @chip: NAND chip object
165  * @cs: the CS line to select. Note that this CS id is always from the chip
166  *	PoV, not the controller one
167  *
168  * Select a NAND target so that further operations executed on @chip go to the
169  * selected NAND target.
170  */
171 void nand_select_target(struct nand_chip *chip, unsigned int cs)
172 {
173 	/*
174 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
175 	 * not the case it's a bug and the caller should be fixed.
176 	 */
177 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
178 		return;
179 
180 	chip->cur_cs = cs;
181 
182 	if (chip->legacy.select_chip)
183 		chip->legacy.select_chip(chip, cs);
184 }
185 EXPORT_SYMBOL_GPL(nand_select_target);
186 
187 /**
188  * nand_deselect_target() - Deselect the currently selected target
189  * @chip: NAND chip object
190  *
191  * Deselect the currently selected NAND target. The result of operations
192  * executed on @chip after the target has been deselected is undefined.
193  */
194 void nand_deselect_target(struct nand_chip *chip)
195 {
196 	if (chip->legacy.select_chip)
197 		chip->legacy.select_chip(chip, -1);
198 
199 	chip->cur_cs = -1;
200 }
201 EXPORT_SYMBOL_GPL(nand_deselect_target);
202 
203 /**
204  * nand_release_device - [GENERIC] release chip
205  * @chip: NAND chip object
206  *
207  * Release chip lock and wake up anyone waiting on the device.
208  */
209 static void nand_release_device(struct nand_chip *chip)
210 {
211 	/* Release the controller and the chip */
212 	mutex_unlock(&chip->controller->lock);
213 	mutex_unlock(&chip->lock);
214 }
215 
216 /**
217  * nand_bbm_get_next_page - Get the next page for bad block markers
218  * @chip: NAND chip object
219  * @page: First page to start checking for bad block marker usage
220  *
221  * Returns an integer that corresponds to the page offset within a block, for
222  * a page that is used to store bad block markers. If no more pages are
223  * available, -EINVAL is returned.
224  */
225 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
226 {
227 	struct mtd_info *mtd = nand_to_mtd(chip);
228 	int last_page = ((mtd->erasesize - mtd->writesize) >>
229 			 chip->page_shift) & chip->pagemask;
230 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
231 		| NAND_BBM_LASTPAGE;
232 
233 	if (page == 0 && !(chip->options & bbm_flags))
234 		return 0;
235 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
236 		return 0;
237 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
238 		return 1;
239 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
240 		return last_page;
241 
242 	return -EINVAL;
243 }
244 
245 /**
246  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
247  * @chip: NAND chip object
248  * @ofs: offset from device start
249  *
250  * Check, if the block is bad.
251  */
252 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
253 {
254 	int first_page, page_offset;
255 	int res;
256 	u8 bad;
257 
258 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
259 	page_offset = nand_bbm_get_next_page(chip, 0);
260 
261 	while (page_offset >= 0) {
262 		res = chip->ecc.read_oob(chip, first_page + page_offset);
263 		if (res < 0)
264 			return res;
265 
266 		bad = chip->oob_poi[chip->badblockpos];
267 
268 		if (likely(chip->badblockbits == 8))
269 			res = bad != 0xFF;
270 		else
271 			res = hweight8(bad) < chip->badblockbits;
272 		if (res)
273 			return res;
274 
275 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
276 	}
277 
278 	return 0;
279 }
280 
281 /**
282  * nand_region_is_secured() - Check if the region is secured
283  * @chip: NAND chip object
284  * @offset: Offset of the region to check
285  * @size: Size of the region to check
286  *
287  * Checks if the region is secured by comparing the offset and size with the
288  * list of secure regions obtained from DT. Returns true if the region is
289  * secured else false.
290  */
291 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
292 {
293 	int i;
294 
295 	/* Skip touching the secure regions if present */
296 	for (i = 0; i < chip->nr_secure_regions; i++) {
297 		const struct nand_secure_region *region = &chip->secure_regions[i];
298 
299 		if (offset + size <= region->offset ||
300 		    offset >= region->offset + region->size)
301 			continue;
302 
303 		pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
304 			 __func__, offset, offset + size);
305 
306 		return true;
307 	}
308 
309 	return false;
310 }
311 
312 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
313 {
314 	struct mtd_info *mtd = nand_to_mtd(chip);
315 
316 	if (chip->options & NAND_NO_BBM_QUIRK)
317 		return 0;
318 
319 	/* Check if the region is secured */
320 	if (nand_region_is_secured(chip, ofs, mtd->erasesize))
321 		return -EIO;
322 
323 	if (chip->legacy.block_bad)
324 		return chip->legacy.block_bad(chip, ofs);
325 
326 	return nand_block_bad(chip, ofs);
327 }
328 
329 /**
330  * nand_get_device - [GENERIC] Get chip for selected access
331  * @chip: NAND chip structure
332  *
333  * Lock the device and its controller for exclusive access
334  *
335  * Return: -EBUSY if the chip has been suspended, 0 otherwise
336  */
337 static int nand_get_device(struct nand_chip *chip)
338 {
339 	mutex_lock(&chip->lock);
340 	if (chip->suspended) {
341 		mutex_unlock(&chip->lock);
342 		return -EBUSY;
343 	}
344 	mutex_lock(&chip->controller->lock);
345 
346 	return 0;
347 }
348 
349 /**
350  * nand_check_wp - [GENERIC] check if the chip is write protected
351  * @chip: NAND chip object
352  *
353  * Check, if the device is write protected. The function expects, that the
354  * device is already selected.
355  */
356 static int nand_check_wp(struct nand_chip *chip)
357 {
358 	u8 status;
359 	int ret;
360 
361 	/* Broken xD cards report WP despite being writable */
362 	if (chip->options & NAND_BROKEN_XD)
363 		return 0;
364 
365 	/* Check the WP bit */
366 	ret = nand_status_op(chip, &status);
367 	if (ret)
368 		return ret;
369 
370 	return status & NAND_STATUS_WP ? 0 : 1;
371 }
372 
373 /**
374  * nand_fill_oob - [INTERN] Transfer client buffer to oob
375  * @chip: NAND chip object
376  * @oob: oob data buffer
377  * @len: oob data write length
378  * @ops: oob ops structure
379  */
380 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
381 			      struct mtd_oob_ops *ops)
382 {
383 	struct mtd_info *mtd = nand_to_mtd(chip);
384 	int ret;
385 
386 	/*
387 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
388 	 * data from a previous OOB read.
389 	 */
390 	memset(chip->oob_poi, 0xff, mtd->oobsize);
391 
392 	switch (ops->mode) {
393 
394 	case MTD_OPS_PLACE_OOB:
395 	case MTD_OPS_RAW:
396 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
397 		return oob + len;
398 
399 	case MTD_OPS_AUTO_OOB:
400 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
401 						  ops->ooboffs, len);
402 		BUG_ON(ret);
403 		return oob + len;
404 
405 	default:
406 		BUG();
407 	}
408 	return NULL;
409 }
410 
411 /**
412  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
413  * @chip: NAND chip object
414  * @to: offset to write to
415  * @ops: oob operation description structure
416  *
417  * NAND write out-of-band.
418  */
419 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
420 			     struct mtd_oob_ops *ops)
421 {
422 	struct mtd_info *mtd = nand_to_mtd(chip);
423 	int chipnr, page, status, len, ret;
424 
425 	pr_debug("%s: to = 0x%08x, len = %i\n",
426 			 __func__, (unsigned int)to, (int)ops->ooblen);
427 
428 	len = mtd_oobavail(mtd, ops);
429 
430 	/* Do not allow write past end of page */
431 	if ((ops->ooboffs + ops->ooblen) > len) {
432 		pr_debug("%s: attempt to write past end of page\n",
433 				__func__);
434 		return -EINVAL;
435 	}
436 
437 	/* Check if the region is secured */
438 	if (nand_region_is_secured(chip, to, ops->ooblen))
439 		return -EIO;
440 
441 	chipnr = (int)(to >> chip->chip_shift);
442 
443 	/*
444 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
445 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
446 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
447 	 * it in the doc2000 driver in August 1999.  dwmw2.
448 	 */
449 	ret = nand_reset(chip, chipnr);
450 	if (ret)
451 		return ret;
452 
453 	nand_select_target(chip, chipnr);
454 
455 	/* Shift to get page */
456 	page = (int)(to >> chip->page_shift);
457 
458 	/* Check, if it is write protected */
459 	if (nand_check_wp(chip)) {
460 		nand_deselect_target(chip);
461 		return -EROFS;
462 	}
463 
464 	/* Invalidate the page cache, if we write to the cached page */
465 	if (page == chip->pagecache.page)
466 		chip->pagecache.page = -1;
467 
468 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
469 
470 	if (ops->mode == MTD_OPS_RAW)
471 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
472 	else
473 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
474 
475 	nand_deselect_target(chip);
476 
477 	if (status)
478 		return status;
479 
480 	ops->oobretlen = ops->ooblen;
481 
482 	return 0;
483 }
484 
485 /**
486  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
487  * @chip: NAND chip object
488  * @ofs: offset from device start
489  *
490  * This is the default implementation, which can be overridden by a hardware
491  * specific driver. It provides the details for writing a bad block marker to a
492  * block.
493  */
494 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
495 {
496 	struct mtd_info *mtd = nand_to_mtd(chip);
497 	struct mtd_oob_ops ops;
498 	uint8_t buf[2] = { 0, 0 };
499 	int ret = 0, res, page_offset;
500 
501 	memset(&ops, 0, sizeof(ops));
502 	ops.oobbuf = buf;
503 	ops.ooboffs = chip->badblockpos;
504 	if (chip->options & NAND_BUSWIDTH_16) {
505 		ops.ooboffs &= ~0x01;
506 		ops.len = ops.ooblen = 2;
507 	} else {
508 		ops.len = ops.ooblen = 1;
509 	}
510 	ops.mode = MTD_OPS_PLACE_OOB;
511 
512 	page_offset = nand_bbm_get_next_page(chip, 0);
513 
514 	while (page_offset >= 0) {
515 		res = nand_do_write_oob(chip,
516 					ofs + (page_offset * mtd->writesize),
517 					&ops);
518 
519 		if (!ret)
520 			ret = res;
521 
522 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
523 	}
524 
525 	return ret;
526 }
527 
528 /**
529  * nand_markbad_bbm - mark a block by updating the BBM
530  * @chip: NAND chip object
531  * @ofs: offset of the block to mark bad
532  */
533 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
534 {
535 	if (chip->legacy.block_markbad)
536 		return chip->legacy.block_markbad(chip, ofs);
537 
538 	return nand_default_block_markbad(chip, ofs);
539 }
540 
541 /**
542  * nand_block_markbad_lowlevel - mark a block bad
543  * @chip: NAND chip object
544  * @ofs: offset from device start
545  *
546  * This function performs the generic NAND bad block marking steps (i.e., bad
547  * block table(s) and/or marker(s)). We only allow the hardware driver to
548  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
549  *
550  * We try operations in the following order:
551  *
552  *  (1) erase the affected block, to allow OOB marker to be written cleanly
553  *  (2) write bad block marker to OOB area of affected block (unless flag
554  *      NAND_BBT_NO_OOB_BBM is present)
555  *  (3) update the BBT
556  *
557  * Note that we retain the first error encountered in (2) or (3), finish the
558  * procedures, and dump the error in the end.
559 */
560 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
561 {
562 	struct mtd_info *mtd = nand_to_mtd(chip);
563 	int res, ret = 0;
564 
565 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
566 		struct erase_info einfo;
567 
568 		/* Attempt erase before marking OOB */
569 		memset(&einfo, 0, sizeof(einfo));
570 		einfo.addr = ofs;
571 		einfo.len = 1ULL << chip->phys_erase_shift;
572 		nand_erase_nand(chip, &einfo, 0);
573 
574 		/* Write bad block marker to OOB */
575 		ret = nand_get_device(chip);
576 		if (ret)
577 			return ret;
578 
579 		ret = nand_markbad_bbm(chip, ofs);
580 		nand_release_device(chip);
581 	}
582 
583 	/* Mark block bad in BBT */
584 	if (chip->bbt) {
585 		res = nand_markbad_bbt(chip, ofs);
586 		if (!ret)
587 			ret = res;
588 	}
589 
590 	if (!ret)
591 		mtd->ecc_stats.badblocks++;
592 
593 	return ret;
594 }
595 
596 /**
597  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
598  * @mtd: MTD device structure
599  * @ofs: offset from device start
600  *
601  * Check if the block is marked as reserved.
602  */
603 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
604 {
605 	struct nand_chip *chip = mtd_to_nand(mtd);
606 
607 	if (!chip->bbt)
608 		return 0;
609 	/* Return info from the table */
610 	return nand_isreserved_bbt(chip, ofs);
611 }
612 
613 /**
614  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
615  * @chip: NAND chip object
616  * @ofs: offset from device start
617  * @allowbbt: 1, if its allowed to access the bbt area
618  *
619  * Check, if the block is bad. Either by reading the bad block table or
620  * calling of the scan function.
621  */
622 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
623 {
624 	/* Return info from the table */
625 	if (chip->bbt)
626 		return nand_isbad_bbt(chip, ofs, allowbbt);
627 
628 	return nand_isbad_bbm(chip, ofs);
629 }
630 
631 /**
632  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
633  * @chip: NAND chip structure
634  * @timeout_ms: Timeout in ms
635  *
636  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
637  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
638  * returned.
639  *
640  * This helper is intended to be used when the controller does not have access
641  * to the NAND R/B pin.
642  *
643  * Be aware that calling this helper from an ->exec_op() implementation means
644  * ->exec_op() must be re-entrant.
645  *
646  * Return 0 if the NAND chip is ready, a negative error otherwise.
647  */
648 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
649 {
650 	const struct nand_sdr_timings *timings;
651 	u8 status = 0;
652 	int ret;
653 
654 	if (!nand_has_exec_op(chip))
655 		return -ENOTSUPP;
656 
657 	/* Wait tWB before polling the STATUS reg. */
658 	timings = nand_get_sdr_timings(nand_get_interface_config(chip));
659 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
660 
661 	ret = nand_status_op(chip, NULL);
662 	if (ret)
663 		return ret;
664 
665 	/*
666 	 * +1 below is necessary because if we are now in the last fraction
667 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
668 	 * small jiffy fraction - possibly leading to false timeout
669 	 */
670 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
671 	do {
672 		ret = nand_read_data_op(chip, &status, sizeof(status), true,
673 					false);
674 		if (ret)
675 			break;
676 
677 		if (status & NAND_STATUS_READY)
678 			break;
679 
680 		/*
681 		 * Typical lowest execution time for a tR on most NANDs is 10us,
682 		 * use this as polling delay before doing something smarter (ie.
683 		 * deriving a delay from the timeout value, timeout_ms/ratio).
684 		 */
685 		udelay(10);
686 	} while	(time_before(jiffies, timeout_ms));
687 
688 	/*
689 	 * We have to exit READ_STATUS mode in order to read real data on the
690 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
691 	 * instruction.
692 	 */
693 	nand_exit_status_op(chip);
694 
695 	if (ret)
696 		return ret;
697 
698 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
699 };
700 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
701 
702 /**
703  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
704  * @chip: NAND chip structure
705  * @gpiod: GPIO descriptor of R/B pin
706  * @timeout_ms: Timeout in ms
707  *
708  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
709  * whitin the specified timeout, -ETIMEDOUT is returned.
710  *
711  * This helper is intended to be used when the controller has access to the
712  * NAND R/B pin over GPIO.
713  *
714  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
715  */
716 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
717 		      unsigned long timeout_ms)
718 {
719 
720 	/*
721 	 * Wait until R/B pin indicates chip is ready or timeout occurs.
722 	 * +1 below is necessary because if we are now in the last fraction
723 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
724 	 * small jiffy fraction - possibly leading to false timeout.
725 	 */
726 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
727 	do {
728 		if (gpiod_get_value_cansleep(gpiod))
729 			return 0;
730 
731 		cond_resched();
732 	} while	(time_before(jiffies, timeout_ms));
733 
734 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
735 };
736 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
737 
738 /**
739  * panic_nand_wait - [GENERIC] wait until the command is done
740  * @chip: NAND chip structure
741  * @timeo: timeout
742  *
743  * Wait for command done. This is a helper function for nand_wait used when
744  * we are in interrupt context. May happen when in panic and trying to write
745  * an oops through mtdoops.
746  */
747 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
748 {
749 	int i;
750 	for (i = 0; i < timeo; i++) {
751 		if (chip->legacy.dev_ready) {
752 			if (chip->legacy.dev_ready(chip))
753 				break;
754 		} else {
755 			int ret;
756 			u8 status;
757 
758 			ret = nand_read_data_op(chip, &status, sizeof(status),
759 						true, false);
760 			if (ret)
761 				return;
762 
763 			if (status & NAND_STATUS_READY)
764 				break;
765 		}
766 		mdelay(1);
767 	}
768 }
769 
770 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
771 {
772 	return (chip->parameters.supports_set_get_features &&
773 		test_bit(addr, chip->parameters.get_feature_list));
774 }
775 
776 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
777 {
778 	return (chip->parameters.supports_set_get_features &&
779 		test_bit(addr, chip->parameters.set_feature_list));
780 }
781 
782 /**
783  * nand_reset_interface - Reset data interface and timings
784  * @chip: The NAND chip
785  * @chipnr: Internal die id
786  *
787  * Reset the Data interface and timings to ONFI mode 0.
788  *
789  * Returns 0 for success or negative error code otherwise.
790  */
791 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
792 {
793 	const struct nand_controller_ops *ops = chip->controller->ops;
794 	int ret;
795 
796 	if (!nand_controller_can_setup_interface(chip))
797 		return 0;
798 
799 	/*
800 	 * The ONFI specification says:
801 	 * "
802 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
803 	 * interface, the host shall use the Reset (FFh) command
804 	 * using SDR timing mode 0. A device in any timing mode is
805 	 * required to recognize Reset (FFh) command issued in SDR
806 	 * timing mode 0.
807 	 * "
808 	 *
809 	 * Configure the data interface in SDR mode and set the
810 	 * timings to timing mode 0.
811 	 */
812 
813 	chip->current_interface_config = nand_get_reset_interface_config();
814 	ret = ops->setup_interface(chip, chipnr,
815 				   chip->current_interface_config);
816 	if (ret)
817 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
818 
819 	return ret;
820 }
821 
822 /**
823  * nand_setup_interface - Setup the best data interface and timings
824  * @chip: The NAND chip
825  * @chipnr: Internal die id
826  *
827  * Configure what has been reported to be the best data interface and NAND
828  * timings supported by the chip and the driver.
829  *
830  * Returns 0 for success or negative error code otherwise.
831  */
832 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
833 {
834 	const struct nand_controller_ops *ops = chip->controller->ops;
835 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { };
836 	int ret;
837 
838 	if (!nand_controller_can_setup_interface(chip))
839 		return 0;
840 
841 	/*
842 	 * A nand_reset_interface() put both the NAND chip and the NAND
843 	 * controller in timings mode 0. If the default mode for this chip is
844 	 * also 0, no need to proceed to the change again. Plus, at probe time,
845 	 * nand_setup_interface() uses ->set/get_features() which would
846 	 * fail anyway as the parameter page is not available yet.
847 	 */
848 	if (!chip->best_interface_config)
849 		return 0;
850 
851 	tmode_param[0] = chip->best_interface_config->timings.mode;
852 
853 	/* Change the mode on the chip side (if supported by the NAND chip) */
854 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
855 		nand_select_target(chip, chipnr);
856 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
857 					tmode_param);
858 		nand_deselect_target(chip);
859 		if (ret)
860 			return ret;
861 	}
862 
863 	/* Change the mode on the controller side */
864 	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
865 	if (ret)
866 		return ret;
867 
868 	/* Check the mode has been accepted by the chip, if supported */
869 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
870 		goto update_interface_config;
871 
872 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
873 	nand_select_target(chip, chipnr);
874 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
875 				tmode_param);
876 	nand_deselect_target(chip);
877 	if (ret)
878 		goto err_reset_chip;
879 
880 	if (tmode_param[0] != chip->best_interface_config->timings.mode) {
881 		pr_warn("timing mode %d not acknowledged by the NAND chip\n",
882 			chip->best_interface_config->timings.mode);
883 		goto err_reset_chip;
884 	}
885 
886 update_interface_config:
887 	chip->current_interface_config = chip->best_interface_config;
888 
889 	return 0;
890 
891 err_reset_chip:
892 	/*
893 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
894 	 * timing mode.
895 	 */
896 	nand_reset_interface(chip, chipnr);
897 	nand_select_target(chip, chipnr);
898 	nand_reset_op(chip);
899 	nand_deselect_target(chip);
900 
901 	return ret;
902 }
903 
904 /**
905  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
906  *                                NAND controller and the NAND chip support
907  * @chip: the NAND chip
908  * @iface: the interface configuration (can eventually be updated)
909  * @spec_timings: specific timings, when not fitting the ONFI specification
910  *
911  * If specific timings are provided, use them. Otherwise, retrieve supported
912  * timing modes from ONFI information.
913  */
914 int nand_choose_best_sdr_timings(struct nand_chip *chip,
915 				 struct nand_interface_config *iface,
916 				 struct nand_sdr_timings *spec_timings)
917 {
918 	const struct nand_controller_ops *ops = chip->controller->ops;
919 	int best_mode = 0, mode, ret;
920 
921 	iface->type = NAND_SDR_IFACE;
922 
923 	if (spec_timings) {
924 		iface->timings.sdr = *spec_timings;
925 		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
926 
927 		/* Verify the controller supports the requested interface */
928 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
929 					   iface);
930 		if (!ret) {
931 			chip->best_interface_config = iface;
932 			return ret;
933 		}
934 
935 		/* Fallback to slower modes */
936 		best_mode = iface->timings.mode;
937 	} else if (chip->parameters.onfi) {
938 		best_mode = fls(chip->parameters.onfi->async_timing_mode) - 1;
939 	}
940 
941 	for (mode = best_mode; mode >= 0; mode--) {
942 		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
943 
944 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
945 					   iface);
946 		if (!ret)
947 			break;
948 	}
949 
950 	chip->best_interface_config = iface;
951 
952 	return 0;
953 }
954 
955 /**
956  * nand_choose_interface_config - find the best data interface and timings
957  * @chip: The NAND chip
958  *
959  * Find the best data interface and NAND timings supported by the chip
960  * and the driver. Eventually let the NAND manufacturer driver propose his own
961  * set of timings.
962  *
963  * After this function nand_chip->interface_config is initialized with the best
964  * timing mode available.
965  *
966  * Returns 0 for success or negative error code otherwise.
967  */
968 static int nand_choose_interface_config(struct nand_chip *chip)
969 {
970 	struct nand_interface_config *iface;
971 	int ret;
972 
973 	if (!nand_controller_can_setup_interface(chip))
974 		return 0;
975 
976 	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
977 	if (!iface)
978 		return -ENOMEM;
979 
980 	if (chip->ops.choose_interface_config)
981 		ret = chip->ops.choose_interface_config(chip, iface);
982 	else
983 		ret = nand_choose_best_sdr_timings(chip, iface, NULL);
984 
985 	if (ret)
986 		kfree(iface);
987 
988 	return ret;
989 }
990 
991 /**
992  * nand_fill_column_cycles - fill the column cycles of an address
993  * @chip: The NAND chip
994  * @addrs: Array of address cycles to fill
995  * @offset_in_page: The offset in the page
996  *
997  * Fills the first or the first two bytes of the @addrs field depending
998  * on the NAND bus width and the page size.
999  *
1000  * Returns the number of cycles needed to encode the column, or a negative
1001  * error code in case one of the arguments is invalid.
1002  */
1003 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1004 				   unsigned int offset_in_page)
1005 {
1006 	struct mtd_info *mtd = nand_to_mtd(chip);
1007 
1008 	/* Make sure the offset is less than the actual page size. */
1009 	if (offset_in_page > mtd->writesize + mtd->oobsize)
1010 		return -EINVAL;
1011 
1012 	/*
1013 	 * On small page NANDs, there's a dedicated command to access the OOB
1014 	 * area, and the column address is relative to the start of the OOB
1015 	 * area, not the start of the page. Asjust the address accordingly.
1016 	 */
1017 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1018 		offset_in_page -= mtd->writesize;
1019 
1020 	/*
1021 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1022 	 * wide, then it must be divided by 2.
1023 	 */
1024 	if (chip->options & NAND_BUSWIDTH_16) {
1025 		if (WARN_ON(offset_in_page % 2))
1026 			return -EINVAL;
1027 
1028 		offset_in_page /= 2;
1029 	}
1030 
1031 	addrs[0] = offset_in_page;
1032 
1033 	/*
1034 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1035 	 * need 2
1036 	 */
1037 	if (mtd->writesize <= 512)
1038 		return 1;
1039 
1040 	addrs[1] = offset_in_page >> 8;
1041 
1042 	return 2;
1043 }
1044 
1045 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1046 				     unsigned int offset_in_page, void *buf,
1047 				     unsigned int len)
1048 {
1049 	const struct nand_sdr_timings *sdr =
1050 		nand_get_sdr_timings(nand_get_interface_config(chip));
1051 	struct mtd_info *mtd = nand_to_mtd(chip);
1052 	u8 addrs[4];
1053 	struct nand_op_instr instrs[] = {
1054 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1055 		NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1056 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1057 				 PSEC_TO_NSEC(sdr->tRR_min)),
1058 		NAND_OP_DATA_IN(len, buf, 0),
1059 	};
1060 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1061 	int ret;
1062 
1063 	/* Drop the DATA_IN instruction if len is set to 0. */
1064 	if (!len)
1065 		op.ninstrs--;
1066 
1067 	if (offset_in_page >= mtd->writesize)
1068 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1069 	else if (offset_in_page >= 256 &&
1070 		 !(chip->options & NAND_BUSWIDTH_16))
1071 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1072 
1073 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1074 	if (ret < 0)
1075 		return ret;
1076 
1077 	addrs[1] = page;
1078 	addrs[2] = page >> 8;
1079 
1080 	if (chip->options & NAND_ROW_ADDR_3) {
1081 		addrs[3] = page >> 16;
1082 		instrs[1].ctx.addr.naddrs++;
1083 	}
1084 
1085 	return nand_exec_op(chip, &op);
1086 }
1087 
1088 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1089 				     unsigned int offset_in_page, void *buf,
1090 				     unsigned int len)
1091 {
1092 	const struct nand_sdr_timings *sdr =
1093 		nand_get_sdr_timings(nand_get_interface_config(chip));
1094 	u8 addrs[5];
1095 	struct nand_op_instr instrs[] = {
1096 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1097 		NAND_OP_ADDR(4, addrs, 0),
1098 		NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1099 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1100 				 PSEC_TO_NSEC(sdr->tRR_min)),
1101 		NAND_OP_DATA_IN(len, buf, 0),
1102 	};
1103 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1104 	int ret;
1105 
1106 	/* Drop the DATA_IN instruction if len is set to 0. */
1107 	if (!len)
1108 		op.ninstrs--;
1109 
1110 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1111 	if (ret < 0)
1112 		return ret;
1113 
1114 	addrs[2] = page;
1115 	addrs[3] = page >> 8;
1116 
1117 	if (chip->options & NAND_ROW_ADDR_3) {
1118 		addrs[4] = page >> 16;
1119 		instrs[1].ctx.addr.naddrs++;
1120 	}
1121 
1122 	return nand_exec_op(chip, &op);
1123 }
1124 
1125 /**
1126  * nand_read_page_op - Do a READ PAGE operation
1127  * @chip: The NAND chip
1128  * @page: page to read
1129  * @offset_in_page: offset within the page
1130  * @buf: buffer used to store the data
1131  * @len: length of the buffer
1132  *
1133  * This function issues a READ PAGE operation.
1134  * This function does not select/unselect the CS line.
1135  *
1136  * Returns 0 on success, a negative error code otherwise.
1137  */
1138 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1139 		      unsigned int offset_in_page, void *buf, unsigned int len)
1140 {
1141 	struct mtd_info *mtd = nand_to_mtd(chip);
1142 
1143 	if (len && !buf)
1144 		return -EINVAL;
1145 
1146 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1147 		return -EINVAL;
1148 
1149 	if (nand_has_exec_op(chip)) {
1150 		if (mtd->writesize > 512)
1151 			return nand_lp_exec_read_page_op(chip, page,
1152 							 offset_in_page, buf,
1153 							 len);
1154 
1155 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1156 						 buf, len);
1157 	}
1158 
1159 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1160 	if (len)
1161 		chip->legacy.read_buf(chip, buf, len);
1162 
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL_GPL(nand_read_page_op);
1166 
1167 /**
1168  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1169  * @chip: The NAND chip
1170  * @page: parameter page to read
1171  * @buf: buffer used to store the data
1172  * @len: length of the buffer
1173  *
1174  * This function issues a READ PARAMETER PAGE operation.
1175  * This function does not select/unselect the CS line.
1176  *
1177  * Returns 0 on success, a negative error code otherwise.
1178  */
1179 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1180 			    unsigned int len)
1181 {
1182 	unsigned int i;
1183 	u8 *p = buf;
1184 
1185 	if (len && !buf)
1186 		return -EINVAL;
1187 
1188 	if (nand_has_exec_op(chip)) {
1189 		const struct nand_sdr_timings *sdr =
1190 			nand_get_sdr_timings(nand_get_interface_config(chip));
1191 		struct nand_op_instr instrs[] = {
1192 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1193 			NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1194 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1195 					 PSEC_TO_NSEC(sdr->tRR_min)),
1196 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1197 		};
1198 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1199 
1200 		/* Drop the DATA_IN instruction if len is set to 0. */
1201 		if (!len)
1202 			op.ninstrs--;
1203 
1204 		return nand_exec_op(chip, &op);
1205 	}
1206 
1207 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1208 	for (i = 0; i < len; i++)
1209 		p[i] = chip->legacy.read_byte(chip);
1210 
1211 	return 0;
1212 }
1213 
1214 /**
1215  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1216  * @chip: The NAND chip
1217  * @offset_in_page: offset within the page
1218  * @buf: buffer used to store the data
1219  * @len: length of the buffer
1220  * @force_8bit: force 8-bit bus access
1221  *
1222  * This function issues a CHANGE READ COLUMN operation.
1223  * This function does not select/unselect the CS line.
1224  *
1225  * Returns 0 on success, a negative error code otherwise.
1226  */
1227 int nand_change_read_column_op(struct nand_chip *chip,
1228 			       unsigned int offset_in_page, void *buf,
1229 			       unsigned int len, bool force_8bit)
1230 {
1231 	struct mtd_info *mtd = nand_to_mtd(chip);
1232 
1233 	if (len && !buf)
1234 		return -EINVAL;
1235 
1236 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1237 		return -EINVAL;
1238 
1239 	/* Small page NANDs do not support column change. */
1240 	if (mtd->writesize <= 512)
1241 		return -ENOTSUPP;
1242 
1243 	if (nand_has_exec_op(chip)) {
1244 		const struct nand_sdr_timings *sdr =
1245 			nand_get_sdr_timings(nand_get_interface_config(chip));
1246 		u8 addrs[2] = {};
1247 		struct nand_op_instr instrs[] = {
1248 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1249 			NAND_OP_ADDR(2, addrs, 0),
1250 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1251 				    PSEC_TO_NSEC(sdr->tCCS_min)),
1252 			NAND_OP_DATA_IN(len, buf, 0),
1253 		};
1254 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1255 		int ret;
1256 
1257 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1258 		if (ret < 0)
1259 			return ret;
1260 
1261 		/* Drop the DATA_IN instruction if len is set to 0. */
1262 		if (!len)
1263 			op.ninstrs--;
1264 
1265 		instrs[3].ctx.data.force_8bit = force_8bit;
1266 
1267 		return nand_exec_op(chip, &op);
1268 	}
1269 
1270 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1271 	if (len)
1272 		chip->legacy.read_buf(chip, buf, len);
1273 
1274 	return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1277 
1278 /**
1279  * nand_read_oob_op - Do a READ OOB operation
1280  * @chip: The NAND chip
1281  * @page: page to read
1282  * @offset_in_oob: offset within the OOB area
1283  * @buf: buffer used to store the data
1284  * @len: length of the buffer
1285  *
1286  * This function issues a READ OOB operation.
1287  * This function does not select/unselect the CS line.
1288  *
1289  * Returns 0 on success, a negative error code otherwise.
1290  */
1291 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1292 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1293 {
1294 	struct mtd_info *mtd = nand_to_mtd(chip);
1295 
1296 	if (len && !buf)
1297 		return -EINVAL;
1298 
1299 	if (offset_in_oob + len > mtd->oobsize)
1300 		return -EINVAL;
1301 
1302 	if (nand_has_exec_op(chip))
1303 		return nand_read_page_op(chip, page,
1304 					 mtd->writesize + offset_in_oob,
1305 					 buf, len);
1306 
1307 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1308 	if (len)
1309 		chip->legacy.read_buf(chip, buf, len);
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1314 
1315 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1316 				  unsigned int offset_in_page, const void *buf,
1317 				  unsigned int len, bool prog)
1318 {
1319 	const struct nand_sdr_timings *sdr =
1320 		nand_get_sdr_timings(nand_get_interface_config(chip));
1321 	struct mtd_info *mtd = nand_to_mtd(chip);
1322 	u8 addrs[5] = {};
1323 	struct nand_op_instr instrs[] = {
1324 		/*
1325 		 * The first instruction will be dropped if we're dealing
1326 		 * with a large page NAND and adjusted if we're dealing
1327 		 * with a small page NAND and the page offset is > 255.
1328 		 */
1329 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1330 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1331 		NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1332 		NAND_OP_DATA_OUT(len, buf, 0),
1333 		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1334 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1335 	};
1336 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1337 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1338 
1339 	if (naddrs < 0)
1340 		return naddrs;
1341 
1342 	addrs[naddrs++] = page;
1343 	addrs[naddrs++] = page >> 8;
1344 	if (chip->options & NAND_ROW_ADDR_3)
1345 		addrs[naddrs++] = page >> 16;
1346 
1347 	instrs[2].ctx.addr.naddrs = naddrs;
1348 
1349 	/* Drop the last two instructions if we're not programming the page. */
1350 	if (!prog) {
1351 		op.ninstrs -= 2;
1352 		/* Also drop the DATA_OUT instruction if empty. */
1353 		if (!len)
1354 			op.ninstrs--;
1355 	}
1356 
1357 	if (mtd->writesize <= 512) {
1358 		/*
1359 		 * Small pages need some more tweaking: we have to adjust the
1360 		 * first instruction depending on the page offset we're trying
1361 		 * to access.
1362 		 */
1363 		if (offset_in_page >= mtd->writesize)
1364 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1365 		else if (offset_in_page >= 256 &&
1366 			 !(chip->options & NAND_BUSWIDTH_16))
1367 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1368 	} else {
1369 		/*
1370 		 * Drop the first command if we're dealing with a large page
1371 		 * NAND.
1372 		 */
1373 		op.instrs++;
1374 		op.ninstrs--;
1375 	}
1376 
1377 	return nand_exec_op(chip, &op);
1378 }
1379 
1380 /**
1381  * nand_prog_page_begin_op - starts a PROG PAGE operation
1382  * @chip: The NAND chip
1383  * @page: page to write
1384  * @offset_in_page: offset within the page
1385  * @buf: buffer containing the data to write to the page
1386  * @len: length of the buffer
1387  *
1388  * This function issues the first half of a PROG PAGE operation.
1389  * This function does not select/unselect the CS line.
1390  *
1391  * Returns 0 on success, a negative error code otherwise.
1392  */
1393 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1394 			    unsigned int offset_in_page, const void *buf,
1395 			    unsigned int len)
1396 {
1397 	struct mtd_info *mtd = nand_to_mtd(chip);
1398 
1399 	if (len && !buf)
1400 		return -EINVAL;
1401 
1402 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1403 		return -EINVAL;
1404 
1405 	if (nand_has_exec_op(chip))
1406 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1407 					      len, false);
1408 
1409 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1410 
1411 	if (buf)
1412 		chip->legacy.write_buf(chip, buf, len);
1413 
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1417 
1418 /**
1419  * nand_prog_page_end_op - ends a PROG PAGE operation
1420  * @chip: The NAND chip
1421  *
1422  * This function issues the second half of a PROG PAGE operation.
1423  * This function does not select/unselect the CS line.
1424  *
1425  * Returns 0 on success, a negative error code otherwise.
1426  */
1427 int nand_prog_page_end_op(struct nand_chip *chip)
1428 {
1429 	int ret;
1430 	u8 status;
1431 
1432 	if (nand_has_exec_op(chip)) {
1433 		const struct nand_sdr_timings *sdr =
1434 			nand_get_sdr_timings(nand_get_interface_config(chip));
1435 		struct nand_op_instr instrs[] = {
1436 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1437 				    PSEC_TO_NSEC(sdr->tWB_max)),
1438 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1439 		};
1440 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1441 
1442 		ret = nand_exec_op(chip, &op);
1443 		if (ret)
1444 			return ret;
1445 
1446 		ret = nand_status_op(chip, &status);
1447 		if (ret)
1448 			return ret;
1449 	} else {
1450 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1451 		ret = chip->legacy.waitfunc(chip);
1452 		if (ret < 0)
1453 			return ret;
1454 
1455 		status = ret;
1456 	}
1457 
1458 	if (status & NAND_STATUS_FAIL)
1459 		return -EIO;
1460 
1461 	return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1464 
1465 /**
1466  * nand_prog_page_op - Do a full PROG PAGE operation
1467  * @chip: The NAND chip
1468  * @page: page to write
1469  * @offset_in_page: offset within the page
1470  * @buf: buffer containing the data to write to the page
1471  * @len: length of the buffer
1472  *
1473  * This function issues a full PROG PAGE operation.
1474  * This function does not select/unselect the CS line.
1475  *
1476  * Returns 0 on success, a negative error code otherwise.
1477  */
1478 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1479 		      unsigned int offset_in_page, const void *buf,
1480 		      unsigned int len)
1481 {
1482 	struct mtd_info *mtd = nand_to_mtd(chip);
1483 	u8 status;
1484 	int ret;
1485 
1486 	if (!len || !buf)
1487 		return -EINVAL;
1488 
1489 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1490 		return -EINVAL;
1491 
1492 	if (nand_has_exec_op(chip)) {
1493 		ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1494 						len, true);
1495 		if (ret)
1496 			return ret;
1497 
1498 		ret = nand_status_op(chip, &status);
1499 		if (ret)
1500 			return ret;
1501 	} else {
1502 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1503 				     page);
1504 		chip->legacy.write_buf(chip, buf, len);
1505 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1506 		ret = chip->legacy.waitfunc(chip);
1507 		if (ret < 0)
1508 			return ret;
1509 
1510 		status = ret;
1511 	}
1512 
1513 	if (status & NAND_STATUS_FAIL)
1514 		return -EIO;
1515 
1516 	return 0;
1517 }
1518 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1519 
1520 /**
1521  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1522  * @chip: The NAND chip
1523  * @offset_in_page: offset within the page
1524  * @buf: buffer containing the data to send to the NAND
1525  * @len: length of the buffer
1526  * @force_8bit: force 8-bit bus access
1527  *
1528  * This function issues a CHANGE WRITE COLUMN operation.
1529  * This function does not select/unselect the CS line.
1530  *
1531  * Returns 0 on success, a negative error code otherwise.
1532  */
1533 int nand_change_write_column_op(struct nand_chip *chip,
1534 				unsigned int offset_in_page,
1535 				const void *buf, unsigned int len,
1536 				bool force_8bit)
1537 {
1538 	struct mtd_info *mtd = nand_to_mtd(chip);
1539 
1540 	if (len && !buf)
1541 		return -EINVAL;
1542 
1543 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1544 		return -EINVAL;
1545 
1546 	/* Small page NANDs do not support column change. */
1547 	if (mtd->writesize <= 512)
1548 		return -ENOTSUPP;
1549 
1550 	if (nand_has_exec_op(chip)) {
1551 		const struct nand_sdr_timings *sdr =
1552 			nand_get_sdr_timings(nand_get_interface_config(chip));
1553 		u8 addrs[2];
1554 		struct nand_op_instr instrs[] = {
1555 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1556 			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1557 			NAND_OP_DATA_OUT(len, buf, 0),
1558 		};
1559 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1560 		int ret;
1561 
1562 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1563 		if (ret < 0)
1564 			return ret;
1565 
1566 		instrs[2].ctx.data.force_8bit = force_8bit;
1567 
1568 		/* Drop the DATA_OUT instruction if len is set to 0. */
1569 		if (!len)
1570 			op.ninstrs--;
1571 
1572 		return nand_exec_op(chip, &op);
1573 	}
1574 
1575 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1576 	if (len)
1577 		chip->legacy.write_buf(chip, buf, len);
1578 
1579 	return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1582 
1583 /**
1584  * nand_readid_op - Do a READID operation
1585  * @chip: The NAND chip
1586  * @addr: address cycle to pass after the READID command
1587  * @buf: buffer used to store the ID
1588  * @len: length of the buffer
1589  *
1590  * This function sends a READID command and reads back the ID returned by the
1591  * NAND.
1592  * This function does not select/unselect the CS line.
1593  *
1594  * Returns 0 on success, a negative error code otherwise.
1595  */
1596 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1597 		   unsigned int len)
1598 {
1599 	unsigned int i;
1600 	u8 *id = buf;
1601 
1602 	if (len && !buf)
1603 		return -EINVAL;
1604 
1605 	if (nand_has_exec_op(chip)) {
1606 		const struct nand_sdr_timings *sdr =
1607 			nand_get_sdr_timings(nand_get_interface_config(chip));
1608 		struct nand_op_instr instrs[] = {
1609 			NAND_OP_CMD(NAND_CMD_READID, 0),
1610 			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1611 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1612 		};
1613 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1614 
1615 		/* Drop the DATA_IN instruction if len is set to 0. */
1616 		if (!len)
1617 			op.ninstrs--;
1618 
1619 		return nand_exec_op(chip, &op);
1620 	}
1621 
1622 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1623 
1624 	for (i = 0; i < len; i++)
1625 		id[i] = chip->legacy.read_byte(chip);
1626 
1627 	return 0;
1628 }
1629 EXPORT_SYMBOL_GPL(nand_readid_op);
1630 
1631 /**
1632  * nand_status_op - Do a STATUS operation
1633  * @chip: The NAND chip
1634  * @status: out variable to store the NAND status
1635  *
1636  * This function sends a STATUS command and reads back the status returned by
1637  * the NAND.
1638  * This function does not select/unselect the CS line.
1639  *
1640  * Returns 0 on success, a negative error code otherwise.
1641  */
1642 int nand_status_op(struct nand_chip *chip, u8 *status)
1643 {
1644 	if (nand_has_exec_op(chip)) {
1645 		const struct nand_sdr_timings *sdr =
1646 			nand_get_sdr_timings(nand_get_interface_config(chip));
1647 		struct nand_op_instr instrs[] = {
1648 			NAND_OP_CMD(NAND_CMD_STATUS,
1649 				    PSEC_TO_NSEC(sdr->tADL_min)),
1650 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1651 		};
1652 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1653 
1654 		if (!status)
1655 			op.ninstrs--;
1656 
1657 		return nand_exec_op(chip, &op);
1658 	}
1659 
1660 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1661 	if (status)
1662 		*status = chip->legacy.read_byte(chip);
1663 
1664 	return 0;
1665 }
1666 EXPORT_SYMBOL_GPL(nand_status_op);
1667 
1668 /**
1669  * nand_exit_status_op - Exit a STATUS operation
1670  * @chip: The NAND chip
1671  *
1672  * This function sends a READ0 command to cancel the effect of the STATUS
1673  * command to avoid reading only the status until a new read command is sent.
1674  *
1675  * This function does not select/unselect the CS line.
1676  *
1677  * Returns 0 on success, a negative error code otherwise.
1678  */
1679 int nand_exit_status_op(struct nand_chip *chip)
1680 {
1681 	if (nand_has_exec_op(chip)) {
1682 		struct nand_op_instr instrs[] = {
1683 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1684 		};
1685 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1686 
1687 		return nand_exec_op(chip, &op);
1688 	}
1689 
1690 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1691 
1692 	return 0;
1693 }
1694 
1695 /**
1696  * nand_erase_op - Do an erase operation
1697  * @chip: The NAND chip
1698  * @eraseblock: block to erase
1699  *
1700  * This function sends an ERASE command and waits for the NAND to be ready
1701  * before returning.
1702  * This function does not select/unselect the CS line.
1703  *
1704  * Returns 0 on success, a negative error code otherwise.
1705  */
1706 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1707 {
1708 	unsigned int page = eraseblock <<
1709 			    (chip->phys_erase_shift - chip->page_shift);
1710 	int ret;
1711 	u8 status;
1712 
1713 	if (nand_has_exec_op(chip)) {
1714 		const struct nand_sdr_timings *sdr =
1715 			nand_get_sdr_timings(nand_get_interface_config(chip));
1716 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1717 		struct nand_op_instr instrs[] = {
1718 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1719 			NAND_OP_ADDR(2, addrs, 0),
1720 			NAND_OP_CMD(NAND_CMD_ERASE2,
1721 				    PSEC_TO_MSEC(sdr->tWB_max)),
1722 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1723 		};
1724 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1725 
1726 		if (chip->options & NAND_ROW_ADDR_3)
1727 			instrs[1].ctx.addr.naddrs++;
1728 
1729 		ret = nand_exec_op(chip, &op);
1730 		if (ret)
1731 			return ret;
1732 
1733 		ret = nand_status_op(chip, &status);
1734 		if (ret)
1735 			return ret;
1736 	} else {
1737 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1738 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1739 
1740 		ret = chip->legacy.waitfunc(chip);
1741 		if (ret < 0)
1742 			return ret;
1743 
1744 		status = ret;
1745 	}
1746 
1747 	if (status & NAND_STATUS_FAIL)
1748 		return -EIO;
1749 
1750 	return 0;
1751 }
1752 EXPORT_SYMBOL_GPL(nand_erase_op);
1753 
1754 /**
1755  * nand_set_features_op - Do a SET FEATURES operation
1756  * @chip: The NAND chip
1757  * @feature: feature id
1758  * @data: 4 bytes of data
1759  *
1760  * This function sends a SET FEATURES command and waits for the NAND to be
1761  * ready before returning.
1762  * This function does not select/unselect the CS line.
1763  *
1764  * Returns 0 on success, a negative error code otherwise.
1765  */
1766 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1767 				const void *data)
1768 {
1769 	const u8 *params = data;
1770 	int i, ret;
1771 
1772 	if (nand_has_exec_op(chip)) {
1773 		const struct nand_sdr_timings *sdr =
1774 			nand_get_sdr_timings(nand_get_interface_config(chip));
1775 		struct nand_op_instr instrs[] = {
1776 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1777 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1778 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1779 					      PSEC_TO_NSEC(sdr->tWB_max)),
1780 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1781 		};
1782 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1783 
1784 		return nand_exec_op(chip, &op);
1785 	}
1786 
1787 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1788 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1789 		chip->legacy.write_byte(chip, params[i]);
1790 
1791 	ret = chip->legacy.waitfunc(chip);
1792 	if (ret < 0)
1793 		return ret;
1794 
1795 	if (ret & NAND_STATUS_FAIL)
1796 		return -EIO;
1797 
1798 	return 0;
1799 }
1800 
1801 /**
1802  * nand_get_features_op - Do a GET FEATURES operation
1803  * @chip: The NAND chip
1804  * @feature: feature id
1805  * @data: 4 bytes of data
1806  *
1807  * This function sends a GET FEATURES command and waits for the NAND to be
1808  * ready before returning.
1809  * This function does not select/unselect the CS line.
1810  *
1811  * Returns 0 on success, a negative error code otherwise.
1812  */
1813 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1814 				void *data)
1815 {
1816 	u8 *params = data;
1817 	int i;
1818 
1819 	if (nand_has_exec_op(chip)) {
1820 		const struct nand_sdr_timings *sdr =
1821 			nand_get_sdr_timings(nand_get_interface_config(chip));
1822 		struct nand_op_instr instrs[] = {
1823 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1824 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1825 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1826 					 PSEC_TO_NSEC(sdr->tRR_min)),
1827 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1828 					     data, 0),
1829 		};
1830 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1831 
1832 		return nand_exec_op(chip, &op);
1833 	}
1834 
1835 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1836 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1837 		params[i] = chip->legacy.read_byte(chip);
1838 
1839 	return 0;
1840 }
1841 
1842 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1843 			    unsigned int delay_ns)
1844 {
1845 	if (nand_has_exec_op(chip)) {
1846 		struct nand_op_instr instrs[] = {
1847 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1848 					 PSEC_TO_NSEC(delay_ns)),
1849 		};
1850 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1851 
1852 		return nand_exec_op(chip, &op);
1853 	}
1854 
1855 	/* Apply delay or wait for ready/busy pin */
1856 	if (!chip->legacy.dev_ready)
1857 		udelay(chip->legacy.chip_delay);
1858 	else
1859 		nand_wait_ready(chip);
1860 
1861 	return 0;
1862 }
1863 
1864 /**
1865  * nand_reset_op - Do a reset operation
1866  * @chip: The NAND chip
1867  *
1868  * This function sends a RESET command and waits for the NAND to be ready
1869  * before returning.
1870  * This function does not select/unselect the CS line.
1871  *
1872  * Returns 0 on success, a negative error code otherwise.
1873  */
1874 int nand_reset_op(struct nand_chip *chip)
1875 {
1876 	if (nand_has_exec_op(chip)) {
1877 		const struct nand_sdr_timings *sdr =
1878 			nand_get_sdr_timings(nand_get_interface_config(chip));
1879 		struct nand_op_instr instrs[] = {
1880 			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1881 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1882 		};
1883 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1884 
1885 		return nand_exec_op(chip, &op);
1886 	}
1887 
1888 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
1889 
1890 	return 0;
1891 }
1892 EXPORT_SYMBOL_GPL(nand_reset_op);
1893 
1894 /**
1895  * nand_read_data_op - Read data from the NAND
1896  * @chip: The NAND chip
1897  * @buf: buffer used to store the data
1898  * @len: length of the buffer
1899  * @force_8bit: force 8-bit bus access
1900  * @check_only: do not actually run the command, only checks if the
1901  *              controller driver supports it
1902  *
1903  * This function does a raw data read on the bus. Usually used after launching
1904  * another NAND operation like nand_read_page_op().
1905  * This function does not select/unselect the CS line.
1906  *
1907  * Returns 0 on success, a negative error code otherwise.
1908  */
1909 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1910 		      bool force_8bit, bool check_only)
1911 {
1912 	if (!len || !buf)
1913 		return -EINVAL;
1914 
1915 	if (nand_has_exec_op(chip)) {
1916 		struct nand_op_instr instrs[] = {
1917 			NAND_OP_DATA_IN(len, buf, 0),
1918 		};
1919 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1920 
1921 		instrs[0].ctx.data.force_8bit = force_8bit;
1922 
1923 		if (check_only)
1924 			return nand_check_op(chip, &op);
1925 
1926 		return nand_exec_op(chip, &op);
1927 	}
1928 
1929 	if (check_only)
1930 		return 0;
1931 
1932 	if (force_8bit) {
1933 		u8 *p = buf;
1934 		unsigned int i;
1935 
1936 		for (i = 0; i < len; i++)
1937 			p[i] = chip->legacy.read_byte(chip);
1938 	} else {
1939 		chip->legacy.read_buf(chip, buf, len);
1940 	}
1941 
1942 	return 0;
1943 }
1944 EXPORT_SYMBOL_GPL(nand_read_data_op);
1945 
1946 /**
1947  * nand_write_data_op - Write data from the NAND
1948  * @chip: The NAND chip
1949  * @buf: buffer containing the data to send on the bus
1950  * @len: length of the buffer
1951  * @force_8bit: force 8-bit bus access
1952  *
1953  * This function does a raw data write on the bus. Usually used after launching
1954  * another NAND operation like nand_write_page_begin_op().
1955  * This function does not select/unselect the CS line.
1956  *
1957  * Returns 0 on success, a negative error code otherwise.
1958  */
1959 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1960 		       unsigned int len, bool force_8bit)
1961 {
1962 	if (!len || !buf)
1963 		return -EINVAL;
1964 
1965 	if (nand_has_exec_op(chip)) {
1966 		struct nand_op_instr instrs[] = {
1967 			NAND_OP_DATA_OUT(len, buf, 0),
1968 		};
1969 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1970 
1971 		instrs[0].ctx.data.force_8bit = force_8bit;
1972 
1973 		return nand_exec_op(chip, &op);
1974 	}
1975 
1976 	if (force_8bit) {
1977 		const u8 *p = buf;
1978 		unsigned int i;
1979 
1980 		for (i = 0; i < len; i++)
1981 			chip->legacy.write_byte(chip, p[i]);
1982 	} else {
1983 		chip->legacy.write_buf(chip, buf, len);
1984 	}
1985 
1986 	return 0;
1987 }
1988 EXPORT_SYMBOL_GPL(nand_write_data_op);
1989 
1990 /**
1991  * struct nand_op_parser_ctx - Context used by the parser
1992  * @instrs: array of all the instructions that must be addressed
1993  * @ninstrs: length of the @instrs array
1994  * @subop: Sub-operation to be passed to the NAND controller
1995  *
1996  * This structure is used by the core to split NAND operations into
1997  * sub-operations that can be handled by the NAND controller.
1998  */
1999 struct nand_op_parser_ctx {
2000 	const struct nand_op_instr *instrs;
2001 	unsigned int ninstrs;
2002 	struct nand_subop subop;
2003 };
2004 
2005 /**
2006  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2007  * @pat: the parser pattern element that matches @instr
2008  * @instr: pointer to the instruction to check
2009  * @start_offset: this is an in/out parameter. If @instr has already been
2010  *		  split, then @start_offset is the offset from which to start
2011  *		  (either an address cycle or an offset in the data buffer).
2012  *		  Conversely, if the function returns true (ie. instr must be
2013  *		  split), this parameter is updated to point to the first
2014  *		  data/address cycle that has not been taken care of.
2015  *
2016  * Some NAND controllers are limited and cannot send X address cycles with a
2017  * unique operation, or cannot read/write more than Y bytes at the same time.
2018  * In this case, split the instruction that does not fit in a single
2019  * controller-operation into two or more chunks.
2020  *
2021  * Returns true if the instruction must be split, false otherwise.
2022  * The @start_offset parameter is also updated to the offset at which the next
2023  * bundle of instruction must start (if an address or a data instruction).
2024  */
2025 static bool
2026 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2027 				const struct nand_op_instr *instr,
2028 				unsigned int *start_offset)
2029 {
2030 	switch (pat->type) {
2031 	case NAND_OP_ADDR_INSTR:
2032 		if (!pat->ctx.addr.maxcycles)
2033 			break;
2034 
2035 		if (instr->ctx.addr.naddrs - *start_offset >
2036 		    pat->ctx.addr.maxcycles) {
2037 			*start_offset += pat->ctx.addr.maxcycles;
2038 			return true;
2039 		}
2040 		break;
2041 
2042 	case NAND_OP_DATA_IN_INSTR:
2043 	case NAND_OP_DATA_OUT_INSTR:
2044 		if (!pat->ctx.data.maxlen)
2045 			break;
2046 
2047 		if (instr->ctx.data.len - *start_offset >
2048 		    pat->ctx.data.maxlen) {
2049 			*start_offset += pat->ctx.data.maxlen;
2050 			return true;
2051 		}
2052 		break;
2053 
2054 	default:
2055 		break;
2056 	}
2057 
2058 	return false;
2059 }
2060 
2061 /**
2062  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2063  *			      remaining in the parser context
2064  * @pat: the pattern to test
2065  * @ctx: the parser context structure to match with the pattern @pat
2066  *
2067  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2068  * Returns true if this is the case, false ortherwise. When true is returned,
2069  * @ctx->subop is updated with the set of instructions to be passed to the
2070  * controller driver.
2071  */
2072 static bool
2073 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2074 			 struct nand_op_parser_ctx *ctx)
2075 {
2076 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2077 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2078 	const struct nand_op_instr *instr = ctx->subop.instrs;
2079 	unsigned int i, ninstrs;
2080 
2081 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2082 		/*
2083 		 * The pattern instruction does not match the operation
2084 		 * instruction. If the instruction is marked optional in the
2085 		 * pattern definition, we skip the pattern element and continue
2086 		 * to the next one. If the element is mandatory, there's no
2087 		 * match and we can return false directly.
2088 		 */
2089 		if (instr->type != pat->elems[i].type) {
2090 			if (!pat->elems[i].optional)
2091 				return false;
2092 
2093 			continue;
2094 		}
2095 
2096 		/*
2097 		 * Now check the pattern element constraints. If the pattern is
2098 		 * not able to handle the whole instruction in a single step,
2099 		 * we have to split it.
2100 		 * The last_instr_end_off value comes back updated to point to
2101 		 * the position where we have to split the instruction (the
2102 		 * start of the next subop chunk).
2103 		 */
2104 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2105 						    &instr_offset)) {
2106 			ninstrs++;
2107 			i++;
2108 			break;
2109 		}
2110 
2111 		instr++;
2112 		ninstrs++;
2113 		instr_offset = 0;
2114 	}
2115 
2116 	/*
2117 	 * This can happen if all instructions of a pattern are optional.
2118 	 * Still, if there's not at least one instruction handled by this
2119 	 * pattern, this is not a match, and we should try the next one (if
2120 	 * any).
2121 	 */
2122 	if (!ninstrs)
2123 		return false;
2124 
2125 	/*
2126 	 * We had a match on the pattern head, but the pattern may be longer
2127 	 * than the instructions we're asked to execute. We need to make sure
2128 	 * there's no mandatory elements in the pattern tail.
2129 	 */
2130 	for (; i < pat->nelems; i++) {
2131 		if (!pat->elems[i].optional)
2132 			return false;
2133 	}
2134 
2135 	/*
2136 	 * We have a match: update the subop structure accordingly and return
2137 	 * true.
2138 	 */
2139 	ctx->subop.ninstrs = ninstrs;
2140 	ctx->subop.last_instr_end_off = instr_offset;
2141 
2142 	return true;
2143 }
2144 
2145 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2146 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2147 {
2148 	const struct nand_op_instr *instr;
2149 	char *prefix = "      ";
2150 	unsigned int i;
2151 
2152 	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2153 
2154 	for (i = 0; i < ctx->ninstrs; i++) {
2155 		instr = &ctx->instrs[i];
2156 
2157 		if (instr == &ctx->subop.instrs[0])
2158 			prefix = "    ->";
2159 
2160 		nand_op_trace(prefix, instr);
2161 
2162 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2163 			prefix = "      ";
2164 	}
2165 }
2166 #else
2167 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2168 {
2169 	/* NOP */
2170 }
2171 #endif
2172 
2173 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2174 				  const struct nand_op_parser_ctx *b)
2175 {
2176 	if (a->subop.ninstrs < b->subop.ninstrs)
2177 		return -1;
2178 	else if (a->subop.ninstrs > b->subop.ninstrs)
2179 		return 1;
2180 
2181 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2182 		return -1;
2183 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2184 		return 1;
2185 
2186 	return 0;
2187 }
2188 
2189 /**
2190  * nand_op_parser_exec_op - exec_op parser
2191  * @chip: the NAND chip
2192  * @parser: patterns description provided by the controller driver
2193  * @op: the NAND operation to address
2194  * @check_only: when true, the function only checks if @op can be handled but
2195  *		does not execute the operation
2196  *
2197  * Helper function designed to ease integration of NAND controller drivers that
2198  * only support a limited set of instruction sequences. The supported sequences
2199  * are described in @parser, and the framework takes care of splitting @op into
2200  * multiple sub-operations (if required) and pass them back to the ->exec()
2201  * callback of the matching pattern if @check_only is set to false.
2202  *
2203  * NAND controller drivers should call this function from their own ->exec_op()
2204  * implementation.
2205  *
2206  * Returns 0 on success, a negative error code otherwise. A failure can be
2207  * caused by an unsupported operation (none of the supported patterns is able
2208  * to handle the requested operation), or an error returned by one of the
2209  * matching pattern->exec() hook.
2210  */
2211 int nand_op_parser_exec_op(struct nand_chip *chip,
2212 			   const struct nand_op_parser *parser,
2213 			   const struct nand_operation *op, bool check_only)
2214 {
2215 	struct nand_op_parser_ctx ctx = {
2216 		.subop.cs = op->cs,
2217 		.subop.instrs = op->instrs,
2218 		.instrs = op->instrs,
2219 		.ninstrs = op->ninstrs,
2220 	};
2221 	unsigned int i;
2222 
2223 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2224 		const struct nand_op_parser_pattern *pattern;
2225 		struct nand_op_parser_ctx best_ctx;
2226 		int ret, best_pattern = -1;
2227 
2228 		for (i = 0; i < parser->npatterns; i++) {
2229 			struct nand_op_parser_ctx test_ctx = ctx;
2230 
2231 			pattern = &parser->patterns[i];
2232 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2233 				continue;
2234 
2235 			if (best_pattern >= 0 &&
2236 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2237 				continue;
2238 
2239 			best_pattern = i;
2240 			best_ctx = test_ctx;
2241 		}
2242 
2243 		if (best_pattern < 0) {
2244 			pr_debug("->exec_op() parser: pattern not found!\n");
2245 			return -ENOTSUPP;
2246 		}
2247 
2248 		ctx = best_ctx;
2249 		nand_op_parser_trace(&ctx);
2250 
2251 		if (!check_only) {
2252 			pattern = &parser->patterns[best_pattern];
2253 			ret = pattern->exec(chip, &ctx.subop);
2254 			if (ret)
2255 				return ret;
2256 		}
2257 
2258 		/*
2259 		 * Update the context structure by pointing to the start of the
2260 		 * next subop.
2261 		 */
2262 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2263 		if (ctx.subop.last_instr_end_off)
2264 			ctx.subop.instrs -= 1;
2265 
2266 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2267 	}
2268 
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2272 
2273 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2274 {
2275 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2276 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2277 }
2278 
2279 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2280 				      unsigned int instr_idx)
2281 {
2282 	return subop && instr_idx < subop->ninstrs;
2283 }
2284 
2285 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2286 					     unsigned int instr_idx)
2287 {
2288 	if (instr_idx)
2289 		return 0;
2290 
2291 	return subop->first_instr_start_off;
2292 }
2293 
2294 /**
2295  * nand_subop_get_addr_start_off - Get the start offset in an address array
2296  * @subop: The entire sub-operation
2297  * @instr_idx: Index of the instruction inside the sub-operation
2298  *
2299  * During driver development, one could be tempted to directly use the
2300  * ->addr.addrs field of address instructions. This is wrong as address
2301  * instructions might be split.
2302  *
2303  * Given an address instruction, returns the offset of the first cycle to issue.
2304  */
2305 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2306 					   unsigned int instr_idx)
2307 {
2308 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2309 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2310 		return 0;
2311 
2312 	return nand_subop_get_start_off(subop, instr_idx);
2313 }
2314 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2315 
2316 /**
2317  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2318  * @subop: The entire sub-operation
2319  * @instr_idx: Index of the instruction inside the sub-operation
2320  *
2321  * During driver development, one could be tempted to directly use the
2322  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2323  * might be split.
2324  *
2325  * Given an address instruction, returns the number of address cycle to issue.
2326  */
2327 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2328 					 unsigned int instr_idx)
2329 {
2330 	int start_off, end_off;
2331 
2332 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2333 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2334 		return 0;
2335 
2336 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2337 
2338 	if (instr_idx == subop->ninstrs - 1 &&
2339 	    subop->last_instr_end_off)
2340 		end_off = subop->last_instr_end_off;
2341 	else
2342 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2343 
2344 	return end_off - start_off;
2345 }
2346 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2347 
2348 /**
2349  * nand_subop_get_data_start_off - Get the start offset in a data array
2350  * @subop: The entire sub-operation
2351  * @instr_idx: Index of the instruction inside the sub-operation
2352  *
2353  * During driver development, one could be tempted to directly use the
2354  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2355  * instructions might be split.
2356  *
2357  * Given a data instruction, returns the offset to start from.
2358  */
2359 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2360 					   unsigned int instr_idx)
2361 {
2362 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2363 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2364 		return 0;
2365 
2366 	return nand_subop_get_start_off(subop, instr_idx);
2367 }
2368 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2369 
2370 /**
2371  * nand_subop_get_data_len - Get the number of bytes to retrieve
2372  * @subop: The entire sub-operation
2373  * @instr_idx: Index of the instruction inside the sub-operation
2374  *
2375  * During driver development, one could be tempted to directly use the
2376  * ->data->len field of a data instruction. This is wrong as data instructions
2377  * might be split.
2378  *
2379  * Returns the length of the chunk of data to send/receive.
2380  */
2381 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2382 				     unsigned int instr_idx)
2383 {
2384 	int start_off = 0, end_off;
2385 
2386 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2387 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2388 		return 0;
2389 
2390 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2391 
2392 	if (instr_idx == subop->ninstrs - 1 &&
2393 	    subop->last_instr_end_off)
2394 		end_off = subop->last_instr_end_off;
2395 	else
2396 		end_off = subop->instrs[instr_idx].ctx.data.len;
2397 
2398 	return end_off - start_off;
2399 }
2400 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2401 
2402 /**
2403  * nand_reset - Reset and initialize a NAND device
2404  * @chip: The NAND chip
2405  * @chipnr: Internal die id
2406  *
2407  * Save the timings data structure, then apply SDR timings mode 0 (see
2408  * nand_reset_interface for details), do the reset operation, and apply
2409  * back the previous timings.
2410  *
2411  * Returns 0 on success, a negative error code otherwise.
2412  */
2413 int nand_reset(struct nand_chip *chip, int chipnr)
2414 {
2415 	int ret;
2416 
2417 	ret = nand_reset_interface(chip, chipnr);
2418 	if (ret)
2419 		return ret;
2420 
2421 	/*
2422 	 * The CS line has to be released before we can apply the new NAND
2423 	 * interface settings, hence this weird nand_select_target()
2424 	 * nand_deselect_target() dance.
2425 	 */
2426 	nand_select_target(chip, chipnr);
2427 	ret = nand_reset_op(chip);
2428 	nand_deselect_target(chip);
2429 	if (ret)
2430 		return ret;
2431 
2432 	ret = nand_setup_interface(chip, chipnr);
2433 	if (ret)
2434 		return ret;
2435 
2436 	return 0;
2437 }
2438 EXPORT_SYMBOL_GPL(nand_reset);
2439 
2440 /**
2441  * nand_get_features - wrapper to perform a GET_FEATURE
2442  * @chip: NAND chip info structure
2443  * @addr: feature address
2444  * @subfeature_param: the subfeature parameters, a four bytes array
2445  *
2446  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2447  * operation cannot be handled.
2448  */
2449 int nand_get_features(struct nand_chip *chip, int addr,
2450 		      u8 *subfeature_param)
2451 {
2452 	if (!nand_supports_get_features(chip, addr))
2453 		return -ENOTSUPP;
2454 
2455 	if (chip->legacy.get_features)
2456 		return chip->legacy.get_features(chip, addr, subfeature_param);
2457 
2458 	return nand_get_features_op(chip, addr, subfeature_param);
2459 }
2460 
2461 /**
2462  * nand_set_features - wrapper to perform a SET_FEATURE
2463  * @chip: NAND chip info structure
2464  * @addr: feature address
2465  * @subfeature_param: the subfeature parameters, a four bytes array
2466  *
2467  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2468  * operation cannot be handled.
2469  */
2470 int nand_set_features(struct nand_chip *chip, int addr,
2471 		      u8 *subfeature_param)
2472 {
2473 	if (!nand_supports_set_features(chip, addr))
2474 		return -ENOTSUPP;
2475 
2476 	if (chip->legacy.set_features)
2477 		return chip->legacy.set_features(chip, addr, subfeature_param);
2478 
2479 	return nand_set_features_op(chip, addr, subfeature_param);
2480 }
2481 
2482 /**
2483  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2484  * @buf: buffer to test
2485  * @len: buffer length
2486  * @bitflips_threshold: maximum number of bitflips
2487  *
2488  * Check if a buffer contains only 0xff, which means the underlying region
2489  * has been erased and is ready to be programmed.
2490  * The bitflips_threshold specify the maximum number of bitflips before
2491  * considering the region is not erased.
2492  * Note: The logic of this function has been extracted from the memweight
2493  * implementation, except that nand_check_erased_buf function exit before
2494  * testing the whole buffer if the number of bitflips exceed the
2495  * bitflips_threshold value.
2496  *
2497  * Returns a positive number of bitflips less than or equal to
2498  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2499  * threshold.
2500  */
2501 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2502 {
2503 	const unsigned char *bitmap = buf;
2504 	int bitflips = 0;
2505 	int weight;
2506 
2507 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2508 	     len--, bitmap++) {
2509 		weight = hweight8(*bitmap);
2510 		bitflips += BITS_PER_BYTE - weight;
2511 		if (unlikely(bitflips > bitflips_threshold))
2512 			return -EBADMSG;
2513 	}
2514 
2515 	for (; len >= sizeof(long);
2516 	     len -= sizeof(long), bitmap += sizeof(long)) {
2517 		unsigned long d = *((unsigned long *)bitmap);
2518 		if (d == ~0UL)
2519 			continue;
2520 		weight = hweight_long(d);
2521 		bitflips += BITS_PER_LONG - weight;
2522 		if (unlikely(bitflips > bitflips_threshold))
2523 			return -EBADMSG;
2524 	}
2525 
2526 	for (; len > 0; len--, bitmap++) {
2527 		weight = hweight8(*bitmap);
2528 		bitflips += BITS_PER_BYTE - weight;
2529 		if (unlikely(bitflips > bitflips_threshold))
2530 			return -EBADMSG;
2531 	}
2532 
2533 	return bitflips;
2534 }
2535 
2536 /**
2537  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2538  *				 0xff data
2539  * @data: data buffer to test
2540  * @datalen: data length
2541  * @ecc: ECC buffer
2542  * @ecclen: ECC length
2543  * @extraoob: extra OOB buffer
2544  * @extraooblen: extra OOB length
2545  * @bitflips_threshold: maximum number of bitflips
2546  *
2547  * Check if a data buffer and its associated ECC and OOB data contains only
2548  * 0xff pattern, which means the underlying region has been erased and is
2549  * ready to be programmed.
2550  * The bitflips_threshold specify the maximum number of bitflips before
2551  * considering the region as not erased.
2552  *
2553  * Note:
2554  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2555  *    different from the NAND page size. When fixing bitflips, ECC engines will
2556  *    report the number of errors per chunk, and the NAND core infrastructure
2557  *    expect you to return the maximum number of bitflips for the whole page.
2558  *    This is why you should always use this function on a single chunk and
2559  *    not on the whole page. After checking each chunk you should update your
2560  *    max_bitflips value accordingly.
2561  * 2/ When checking for bitflips in erased pages you should not only check
2562  *    the payload data but also their associated ECC data, because a user might
2563  *    have programmed almost all bits to 1 but a few. In this case, we
2564  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2565  *    this case.
2566  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2567  *    data are protected by the ECC engine.
2568  *    It could also be used if you support subpages and want to attach some
2569  *    extra OOB data to an ECC chunk.
2570  *
2571  * Returns a positive number of bitflips less than or equal to
2572  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2573  * threshold. In case of success, the passed buffers are filled with 0xff.
2574  */
2575 int nand_check_erased_ecc_chunk(void *data, int datalen,
2576 				void *ecc, int ecclen,
2577 				void *extraoob, int extraooblen,
2578 				int bitflips_threshold)
2579 {
2580 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2581 
2582 	data_bitflips = nand_check_erased_buf(data, datalen,
2583 					      bitflips_threshold);
2584 	if (data_bitflips < 0)
2585 		return data_bitflips;
2586 
2587 	bitflips_threshold -= data_bitflips;
2588 
2589 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2590 	if (ecc_bitflips < 0)
2591 		return ecc_bitflips;
2592 
2593 	bitflips_threshold -= ecc_bitflips;
2594 
2595 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2596 						  bitflips_threshold);
2597 	if (extraoob_bitflips < 0)
2598 		return extraoob_bitflips;
2599 
2600 	if (data_bitflips)
2601 		memset(data, 0xff, datalen);
2602 
2603 	if (ecc_bitflips)
2604 		memset(ecc, 0xff, ecclen);
2605 
2606 	if (extraoob_bitflips)
2607 		memset(extraoob, 0xff, extraooblen);
2608 
2609 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2610 }
2611 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2612 
2613 /**
2614  * nand_read_page_raw_notsupp - dummy read raw page function
2615  * @chip: nand chip info structure
2616  * @buf: buffer to store read data
2617  * @oob_required: caller requires OOB data read to chip->oob_poi
2618  * @page: page number to read
2619  *
2620  * Returns -ENOTSUPP unconditionally.
2621  */
2622 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2623 			       int oob_required, int page)
2624 {
2625 	return -ENOTSUPP;
2626 }
2627 
2628 /**
2629  * nand_read_page_raw - [INTERN] read raw page data without ecc
2630  * @chip: nand chip info structure
2631  * @buf: buffer to store read data
2632  * @oob_required: caller requires OOB data read to chip->oob_poi
2633  * @page: page number to read
2634  *
2635  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2636  */
2637 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2638 		       int page)
2639 {
2640 	struct mtd_info *mtd = nand_to_mtd(chip);
2641 	int ret;
2642 
2643 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2644 	if (ret)
2645 		return ret;
2646 
2647 	if (oob_required) {
2648 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2649 					false, false);
2650 		if (ret)
2651 			return ret;
2652 	}
2653 
2654 	return 0;
2655 }
2656 EXPORT_SYMBOL(nand_read_page_raw);
2657 
2658 /**
2659  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2660  * @chip: NAND chip info structure
2661  * @buf: buffer to store read data
2662  * @oob_required: caller requires OOB data read to chip->oob_poi
2663  * @page: page number to read
2664  *
2665  * This is a raw page read, ie. without any error detection/correction.
2666  * Monolithic means we are requesting all the relevant data (main plus
2667  * eventually OOB) to be loaded in the NAND cache and sent over the
2668  * bus (from the NAND chip to the NAND controller) in a single
2669  * operation. This is an alternative to nand_read_page_raw(), which
2670  * first reads the main data, and if the OOB data is requested too,
2671  * then reads more data on the bus.
2672  */
2673 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2674 				  int oob_required, int page)
2675 {
2676 	struct mtd_info *mtd = nand_to_mtd(chip);
2677 	unsigned int size = mtd->writesize;
2678 	u8 *read_buf = buf;
2679 	int ret;
2680 
2681 	if (oob_required) {
2682 		size += mtd->oobsize;
2683 
2684 		if (buf != chip->data_buf)
2685 			read_buf = nand_get_data_buf(chip);
2686 	}
2687 
2688 	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2689 	if (ret)
2690 		return ret;
2691 
2692 	if (buf != chip->data_buf)
2693 		memcpy(buf, read_buf, mtd->writesize);
2694 
2695 	return 0;
2696 }
2697 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2698 
2699 /**
2700  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2701  * @chip: nand chip info structure
2702  * @buf: buffer to store read data
2703  * @oob_required: caller requires OOB data read to chip->oob_poi
2704  * @page: page number to read
2705  *
2706  * We need a special oob layout and handling even when OOB isn't used.
2707  */
2708 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2709 				       int oob_required, int page)
2710 {
2711 	struct mtd_info *mtd = nand_to_mtd(chip);
2712 	int eccsize = chip->ecc.size;
2713 	int eccbytes = chip->ecc.bytes;
2714 	uint8_t *oob = chip->oob_poi;
2715 	int steps, size, ret;
2716 
2717 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2718 	if (ret)
2719 		return ret;
2720 
2721 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2722 		ret = nand_read_data_op(chip, buf, eccsize, false, false);
2723 		if (ret)
2724 			return ret;
2725 
2726 		buf += eccsize;
2727 
2728 		if (chip->ecc.prepad) {
2729 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2730 						false, false);
2731 			if (ret)
2732 				return ret;
2733 
2734 			oob += chip->ecc.prepad;
2735 		}
2736 
2737 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2738 		if (ret)
2739 			return ret;
2740 
2741 		oob += eccbytes;
2742 
2743 		if (chip->ecc.postpad) {
2744 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2745 						false, false);
2746 			if (ret)
2747 				return ret;
2748 
2749 			oob += chip->ecc.postpad;
2750 		}
2751 	}
2752 
2753 	size = mtd->oobsize - (oob - chip->oob_poi);
2754 	if (size) {
2755 		ret = nand_read_data_op(chip, oob, size, false, false);
2756 		if (ret)
2757 			return ret;
2758 	}
2759 
2760 	return 0;
2761 }
2762 
2763 /**
2764  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2765  * @chip: nand chip info structure
2766  * @buf: buffer to store read data
2767  * @oob_required: caller requires OOB data read to chip->oob_poi
2768  * @page: page number to read
2769  */
2770 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2771 				int oob_required, int page)
2772 {
2773 	struct mtd_info *mtd = nand_to_mtd(chip);
2774 	int i, eccsize = chip->ecc.size, ret;
2775 	int eccbytes = chip->ecc.bytes;
2776 	int eccsteps = chip->ecc.steps;
2777 	uint8_t *p = buf;
2778 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2779 	uint8_t *ecc_code = chip->ecc.code_buf;
2780 	unsigned int max_bitflips = 0;
2781 
2782 	chip->ecc.read_page_raw(chip, buf, 1, page);
2783 
2784 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2785 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2786 
2787 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2788 					 chip->ecc.total);
2789 	if (ret)
2790 		return ret;
2791 
2792 	eccsteps = chip->ecc.steps;
2793 	p = buf;
2794 
2795 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2796 		int stat;
2797 
2798 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2799 		if (stat < 0) {
2800 			mtd->ecc_stats.failed++;
2801 		} else {
2802 			mtd->ecc_stats.corrected += stat;
2803 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2804 		}
2805 	}
2806 	return max_bitflips;
2807 }
2808 
2809 /**
2810  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2811  * @chip: nand chip info structure
2812  * @data_offs: offset of requested data within the page
2813  * @readlen: data length
2814  * @bufpoi: buffer to store read data
2815  * @page: page number to read
2816  */
2817 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2818 			     uint32_t readlen, uint8_t *bufpoi, int page)
2819 {
2820 	struct mtd_info *mtd = nand_to_mtd(chip);
2821 	int start_step, end_step, num_steps, ret;
2822 	uint8_t *p;
2823 	int data_col_addr, i, gaps = 0;
2824 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2825 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2826 	int index, section = 0;
2827 	unsigned int max_bitflips = 0;
2828 	struct mtd_oob_region oobregion = { };
2829 
2830 	/* Column address within the page aligned to ECC size (256bytes) */
2831 	start_step = data_offs / chip->ecc.size;
2832 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
2833 	num_steps = end_step - start_step + 1;
2834 	index = start_step * chip->ecc.bytes;
2835 
2836 	/* Data size aligned to ECC ecc.size */
2837 	datafrag_len = num_steps * chip->ecc.size;
2838 	eccfrag_len = num_steps * chip->ecc.bytes;
2839 
2840 	data_col_addr = start_step * chip->ecc.size;
2841 	/* If we read not a page aligned data */
2842 	p = bufpoi + data_col_addr;
2843 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2844 	if (ret)
2845 		return ret;
2846 
2847 	/* Calculate ECC */
2848 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2849 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2850 
2851 	/*
2852 	 * The performance is faster if we position offsets according to
2853 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2854 	 */
2855 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2856 	if (ret)
2857 		return ret;
2858 
2859 	if (oobregion.length < eccfrag_len)
2860 		gaps = 1;
2861 
2862 	if (gaps) {
2863 		ret = nand_change_read_column_op(chip, mtd->writesize,
2864 						 chip->oob_poi, mtd->oobsize,
2865 						 false);
2866 		if (ret)
2867 			return ret;
2868 	} else {
2869 		/*
2870 		 * Send the command to read the particular ECC bytes take care
2871 		 * about buswidth alignment in read_buf.
2872 		 */
2873 		aligned_pos = oobregion.offset & ~(busw - 1);
2874 		aligned_len = eccfrag_len;
2875 		if (oobregion.offset & (busw - 1))
2876 			aligned_len++;
2877 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2878 		    (busw - 1))
2879 			aligned_len++;
2880 
2881 		ret = nand_change_read_column_op(chip,
2882 						 mtd->writesize + aligned_pos,
2883 						 &chip->oob_poi[aligned_pos],
2884 						 aligned_len, false);
2885 		if (ret)
2886 			return ret;
2887 	}
2888 
2889 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
2890 					 chip->oob_poi, index, eccfrag_len);
2891 	if (ret)
2892 		return ret;
2893 
2894 	p = bufpoi + data_col_addr;
2895 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
2896 		int stat;
2897 
2898 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
2899 					 &chip->ecc.calc_buf[i]);
2900 		if (stat == -EBADMSG &&
2901 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2902 			/* check for empty pages with bitflips */
2903 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2904 						&chip->ecc.code_buf[i],
2905 						chip->ecc.bytes,
2906 						NULL, 0,
2907 						chip->ecc.strength);
2908 		}
2909 
2910 		if (stat < 0) {
2911 			mtd->ecc_stats.failed++;
2912 		} else {
2913 			mtd->ecc_stats.corrected += stat;
2914 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2915 		}
2916 	}
2917 	return max_bitflips;
2918 }
2919 
2920 /**
2921  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2922  * @chip: nand chip info structure
2923  * @buf: buffer to store read data
2924  * @oob_required: caller requires OOB data read to chip->oob_poi
2925  * @page: page number to read
2926  *
2927  * Not for syndrome calculating ECC controllers which need a special oob layout.
2928  */
2929 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
2930 				int oob_required, int page)
2931 {
2932 	struct mtd_info *mtd = nand_to_mtd(chip);
2933 	int i, eccsize = chip->ecc.size, ret;
2934 	int eccbytes = chip->ecc.bytes;
2935 	int eccsteps = chip->ecc.steps;
2936 	uint8_t *p = buf;
2937 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2938 	uint8_t *ecc_code = chip->ecc.code_buf;
2939 	unsigned int max_bitflips = 0;
2940 
2941 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2942 	if (ret)
2943 		return ret;
2944 
2945 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2946 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2947 
2948 		ret = nand_read_data_op(chip, p, eccsize, false, false);
2949 		if (ret)
2950 			return ret;
2951 
2952 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2953 	}
2954 
2955 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
2956 				false);
2957 	if (ret)
2958 		return ret;
2959 
2960 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2961 					 chip->ecc.total);
2962 	if (ret)
2963 		return ret;
2964 
2965 	eccsteps = chip->ecc.steps;
2966 	p = buf;
2967 
2968 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2969 		int stat;
2970 
2971 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2972 		if (stat == -EBADMSG &&
2973 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2974 			/* check for empty pages with bitflips */
2975 			stat = nand_check_erased_ecc_chunk(p, eccsize,
2976 						&ecc_code[i], eccbytes,
2977 						NULL, 0,
2978 						chip->ecc.strength);
2979 		}
2980 
2981 		if (stat < 0) {
2982 			mtd->ecc_stats.failed++;
2983 		} else {
2984 			mtd->ecc_stats.corrected += stat;
2985 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2986 		}
2987 	}
2988 	return max_bitflips;
2989 }
2990 
2991 /**
2992  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
2993  * @chip: nand chip info structure
2994  * @buf: buffer to store read data
2995  * @oob_required: caller requires OOB data read to chip->oob_poi
2996  * @page: page number to read
2997  *
2998  * The hw generator calculates the error syndrome automatically. Therefore we
2999  * need a special oob layout and handling.
3000  */
3001 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3002 				   int oob_required, int page)
3003 {
3004 	struct mtd_info *mtd = nand_to_mtd(chip);
3005 	int ret, i, eccsize = chip->ecc.size;
3006 	int eccbytes = chip->ecc.bytes;
3007 	int eccsteps = chip->ecc.steps;
3008 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3009 	uint8_t *p = buf;
3010 	uint8_t *oob = chip->oob_poi;
3011 	unsigned int max_bitflips = 0;
3012 
3013 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3014 	if (ret)
3015 		return ret;
3016 
3017 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3018 		int stat;
3019 
3020 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3021 
3022 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3023 		if (ret)
3024 			return ret;
3025 
3026 		if (chip->ecc.prepad) {
3027 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3028 						false, false);
3029 			if (ret)
3030 				return ret;
3031 
3032 			oob += chip->ecc.prepad;
3033 		}
3034 
3035 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3036 
3037 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3038 		if (ret)
3039 			return ret;
3040 
3041 		stat = chip->ecc.correct(chip, p, oob, NULL);
3042 
3043 		oob += eccbytes;
3044 
3045 		if (chip->ecc.postpad) {
3046 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3047 						false, false);
3048 			if (ret)
3049 				return ret;
3050 
3051 			oob += chip->ecc.postpad;
3052 		}
3053 
3054 		if (stat == -EBADMSG &&
3055 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3056 			/* check for empty pages with bitflips */
3057 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3058 							   oob - eccpadbytes,
3059 							   eccpadbytes,
3060 							   NULL, 0,
3061 							   chip->ecc.strength);
3062 		}
3063 
3064 		if (stat < 0) {
3065 			mtd->ecc_stats.failed++;
3066 		} else {
3067 			mtd->ecc_stats.corrected += stat;
3068 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3069 		}
3070 	}
3071 
3072 	/* Calculate remaining oob bytes */
3073 	i = mtd->oobsize - (oob - chip->oob_poi);
3074 	if (i) {
3075 		ret = nand_read_data_op(chip, oob, i, false, false);
3076 		if (ret)
3077 			return ret;
3078 	}
3079 
3080 	return max_bitflips;
3081 }
3082 
3083 /**
3084  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3085  * @chip: NAND chip object
3086  * @oob: oob destination address
3087  * @ops: oob ops structure
3088  * @len: size of oob to transfer
3089  */
3090 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3091 				  struct mtd_oob_ops *ops, size_t len)
3092 {
3093 	struct mtd_info *mtd = nand_to_mtd(chip);
3094 	int ret;
3095 
3096 	switch (ops->mode) {
3097 
3098 	case MTD_OPS_PLACE_OOB:
3099 	case MTD_OPS_RAW:
3100 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3101 		return oob + len;
3102 
3103 	case MTD_OPS_AUTO_OOB:
3104 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3105 						  ops->ooboffs, len);
3106 		BUG_ON(ret);
3107 		return oob + len;
3108 
3109 	default:
3110 		BUG();
3111 	}
3112 	return NULL;
3113 }
3114 
3115 /**
3116  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3117  * @chip: NAND chip object
3118  * @retry_mode: the retry mode to use
3119  *
3120  * Some vendors supply a special command to shift the Vt threshold, to be used
3121  * when there are too many bitflips in a page (i.e., ECC error). After setting
3122  * a new threshold, the host should retry reading the page.
3123  */
3124 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3125 {
3126 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3127 
3128 	if (retry_mode >= chip->read_retries)
3129 		return -EINVAL;
3130 
3131 	if (!chip->ops.setup_read_retry)
3132 		return -EOPNOTSUPP;
3133 
3134 	return chip->ops.setup_read_retry(chip, retry_mode);
3135 }
3136 
3137 static void nand_wait_readrdy(struct nand_chip *chip)
3138 {
3139 	const struct nand_sdr_timings *sdr;
3140 
3141 	if (!(chip->options & NAND_NEED_READRDY))
3142 		return;
3143 
3144 	sdr = nand_get_sdr_timings(nand_get_interface_config(chip));
3145 	WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
3146 }
3147 
3148 /**
3149  * nand_do_read_ops - [INTERN] Read data with ECC
3150  * @chip: NAND chip object
3151  * @from: offset to read from
3152  * @ops: oob ops structure
3153  *
3154  * Internal function. Called with chip held.
3155  */
3156 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3157 			    struct mtd_oob_ops *ops)
3158 {
3159 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3160 	struct mtd_info *mtd = nand_to_mtd(chip);
3161 	int ret = 0;
3162 	uint32_t readlen = ops->len;
3163 	uint32_t oobreadlen = ops->ooblen;
3164 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3165 
3166 	uint8_t *bufpoi, *oob, *buf;
3167 	int use_bounce_buf;
3168 	unsigned int max_bitflips = 0;
3169 	int retry_mode = 0;
3170 	bool ecc_fail = false;
3171 
3172 	/* Check if the region is secured */
3173 	if (nand_region_is_secured(chip, from, readlen))
3174 		return -EIO;
3175 
3176 	chipnr = (int)(from >> chip->chip_shift);
3177 	nand_select_target(chip, chipnr);
3178 
3179 	realpage = (int)(from >> chip->page_shift);
3180 	page = realpage & chip->pagemask;
3181 
3182 	col = (int)(from & (mtd->writesize - 1));
3183 
3184 	buf = ops->datbuf;
3185 	oob = ops->oobbuf;
3186 	oob_required = oob ? 1 : 0;
3187 
3188 	while (1) {
3189 		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3190 
3191 		bytes = min(mtd->writesize - col, readlen);
3192 		aligned = (bytes == mtd->writesize);
3193 
3194 		if (!aligned)
3195 			use_bounce_buf = 1;
3196 		else if (chip->options & NAND_USES_DMA)
3197 			use_bounce_buf = !virt_addr_valid(buf) ||
3198 					 !IS_ALIGNED((unsigned long)buf,
3199 						     chip->buf_align);
3200 		else
3201 			use_bounce_buf = 0;
3202 
3203 		/* Is the current page in the buffer? */
3204 		if (realpage != chip->pagecache.page || oob) {
3205 			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3206 
3207 			if (use_bounce_buf && aligned)
3208 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3209 						 __func__, buf);
3210 
3211 read_retry:
3212 			/*
3213 			 * Now read the page into the buffer.  Absent an error,
3214 			 * the read methods return max bitflips per ecc step.
3215 			 */
3216 			if (unlikely(ops->mode == MTD_OPS_RAW))
3217 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3218 							      oob_required,
3219 							      page);
3220 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3221 				 !oob)
3222 				ret = chip->ecc.read_subpage(chip, col, bytes,
3223 							     bufpoi, page);
3224 			else
3225 				ret = chip->ecc.read_page(chip, bufpoi,
3226 							  oob_required, page);
3227 			if (ret < 0) {
3228 				if (use_bounce_buf)
3229 					/* Invalidate page cache */
3230 					chip->pagecache.page = -1;
3231 				break;
3232 			}
3233 
3234 			/*
3235 			 * Copy back the data in the initial buffer when reading
3236 			 * partial pages or when a bounce buffer is required.
3237 			 */
3238 			if (use_bounce_buf) {
3239 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3240 				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3241 				    (ops->mode != MTD_OPS_RAW)) {
3242 					chip->pagecache.page = realpage;
3243 					chip->pagecache.bitflips = ret;
3244 				} else {
3245 					/* Invalidate page cache */
3246 					chip->pagecache.page = -1;
3247 				}
3248 				memcpy(buf, bufpoi + col, bytes);
3249 			}
3250 
3251 			if (unlikely(oob)) {
3252 				int toread = min(oobreadlen, max_oobsize);
3253 
3254 				if (toread) {
3255 					oob = nand_transfer_oob(chip, oob, ops,
3256 								toread);
3257 					oobreadlen -= toread;
3258 				}
3259 			}
3260 
3261 			nand_wait_readrdy(chip);
3262 
3263 			if (mtd->ecc_stats.failed - ecc_stats.failed) {
3264 				if (retry_mode + 1 < chip->read_retries) {
3265 					retry_mode++;
3266 					ret = nand_setup_read_retry(chip,
3267 							retry_mode);
3268 					if (ret < 0)
3269 						break;
3270 
3271 					/* Reset ecc_stats; retry */
3272 					mtd->ecc_stats = ecc_stats;
3273 					goto read_retry;
3274 				} else {
3275 					/* No more retry modes; real failure */
3276 					ecc_fail = true;
3277 				}
3278 			}
3279 
3280 			buf += bytes;
3281 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3282 		} else {
3283 			memcpy(buf, chip->data_buf + col, bytes);
3284 			buf += bytes;
3285 			max_bitflips = max_t(unsigned int, max_bitflips,
3286 					     chip->pagecache.bitflips);
3287 		}
3288 
3289 		readlen -= bytes;
3290 
3291 		/* Reset to retry mode 0 */
3292 		if (retry_mode) {
3293 			ret = nand_setup_read_retry(chip, 0);
3294 			if (ret < 0)
3295 				break;
3296 			retry_mode = 0;
3297 		}
3298 
3299 		if (!readlen)
3300 			break;
3301 
3302 		/* For subsequent reads align to page boundary */
3303 		col = 0;
3304 		/* Increment page address */
3305 		realpage++;
3306 
3307 		page = realpage & chip->pagemask;
3308 		/* Check, if we cross a chip boundary */
3309 		if (!page) {
3310 			chipnr++;
3311 			nand_deselect_target(chip);
3312 			nand_select_target(chip, chipnr);
3313 		}
3314 	}
3315 	nand_deselect_target(chip);
3316 
3317 	ops->retlen = ops->len - (size_t) readlen;
3318 	if (oob)
3319 		ops->oobretlen = ops->ooblen - oobreadlen;
3320 
3321 	if (ret < 0)
3322 		return ret;
3323 
3324 	if (ecc_fail)
3325 		return -EBADMSG;
3326 
3327 	return max_bitflips;
3328 }
3329 
3330 /**
3331  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3332  * @chip: nand chip info structure
3333  * @page: page number to read
3334  */
3335 int nand_read_oob_std(struct nand_chip *chip, int page)
3336 {
3337 	struct mtd_info *mtd = nand_to_mtd(chip);
3338 
3339 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3340 }
3341 EXPORT_SYMBOL(nand_read_oob_std);
3342 
3343 /**
3344  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3345  *			    with syndromes
3346  * @chip: nand chip info structure
3347  * @page: page number to read
3348  */
3349 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3350 {
3351 	struct mtd_info *mtd = nand_to_mtd(chip);
3352 	int length = mtd->oobsize;
3353 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3354 	int eccsize = chip->ecc.size;
3355 	uint8_t *bufpoi = chip->oob_poi;
3356 	int i, toread, sndrnd = 0, pos, ret;
3357 
3358 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3359 	if (ret)
3360 		return ret;
3361 
3362 	for (i = 0; i < chip->ecc.steps; i++) {
3363 		if (sndrnd) {
3364 			int ret;
3365 
3366 			pos = eccsize + i * (eccsize + chunk);
3367 			if (mtd->writesize > 512)
3368 				ret = nand_change_read_column_op(chip, pos,
3369 								 NULL, 0,
3370 								 false);
3371 			else
3372 				ret = nand_read_page_op(chip, page, pos, NULL,
3373 							0);
3374 
3375 			if (ret)
3376 				return ret;
3377 		} else
3378 			sndrnd = 1;
3379 		toread = min_t(int, length, chunk);
3380 
3381 		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3382 		if (ret)
3383 			return ret;
3384 
3385 		bufpoi += toread;
3386 		length -= toread;
3387 	}
3388 	if (length > 0) {
3389 		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3390 		if (ret)
3391 			return ret;
3392 	}
3393 
3394 	return 0;
3395 }
3396 
3397 /**
3398  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3399  * @chip: nand chip info structure
3400  * @page: page number to write
3401  */
3402 int nand_write_oob_std(struct nand_chip *chip, int page)
3403 {
3404 	struct mtd_info *mtd = nand_to_mtd(chip);
3405 
3406 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3407 				 mtd->oobsize);
3408 }
3409 EXPORT_SYMBOL(nand_write_oob_std);
3410 
3411 /**
3412  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3413  *			     with syndrome - only for large page flash
3414  * @chip: nand chip info structure
3415  * @page: page number to write
3416  */
3417 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3418 {
3419 	struct mtd_info *mtd = nand_to_mtd(chip);
3420 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3421 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3422 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3423 	const uint8_t *bufpoi = chip->oob_poi;
3424 
3425 	/*
3426 	 * data-ecc-data-ecc ... ecc-oob
3427 	 * or
3428 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3429 	 */
3430 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3431 		pos = steps * (eccsize + chunk);
3432 		steps = 0;
3433 	} else
3434 		pos = eccsize;
3435 
3436 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3437 	if (ret)
3438 		return ret;
3439 
3440 	for (i = 0; i < steps; i++) {
3441 		if (sndcmd) {
3442 			if (mtd->writesize <= 512) {
3443 				uint32_t fill = 0xFFFFFFFF;
3444 
3445 				len = eccsize;
3446 				while (len > 0) {
3447 					int num = min_t(int, len, 4);
3448 
3449 					ret = nand_write_data_op(chip, &fill,
3450 								 num, false);
3451 					if (ret)
3452 						return ret;
3453 
3454 					len -= num;
3455 				}
3456 			} else {
3457 				pos = eccsize + i * (eccsize + chunk);
3458 				ret = nand_change_write_column_op(chip, pos,
3459 								  NULL, 0,
3460 								  false);
3461 				if (ret)
3462 					return ret;
3463 			}
3464 		} else
3465 			sndcmd = 1;
3466 		len = min_t(int, length, chunk);
3467 
3468 		ret = nand_write_data_op(chip, bufpoi, len, false);
3469 		if (ret)
3470 			return ret;
3471 
3472 		bufpoi += len;
3473 		length -= len;
3474 	}
3475 	if (length > 0) {
3476 		ret = nand_write_data_op(chip, bufpoi, length, false);
3477 		if (ret)
3478 			return ret;
3479 	}
3480 
3481 	return nand_prog_page_end_op(chip);
3482 }
3483 
3484 /**
3485  * nand_do_read_oob - [INTERN] NAND read out-of-band
3486  * @chip: NAND chip object
3487  * @from: offset to read from
3488  * @ops: oob operations description structure
3489  *
3490  * NAND read out-of-band data from the spare area.
3491  */
3492 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3493 			    struct mtd_oob_ops *ops)
3494 {
3495 	struct mtd_info *mtd = nand_to_mtd(chip);
3496 	unsigned int max_bitflips = 0;
3497 	int page, realpage, chipnr;
3498 	struct mtd_ecc_stats stats;
3499 	int readlen = ops->ooblen;
3500 	int len;
3501 	uint8_t *buf = ops->oobbuf;
3502 	int ret = 0;
3503 
3504 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3505 			__func__, (unsigned long long)from, readlen);
3506 
3507 	/* Check if the region is secured */
3508 	if (nand_region_is_secured(chip, from, readlen))
3509 		return -EIO;
3510 
3511 	stats = mtd->ecc_stats;
3512 
3513 	len = mtd_oobavail(mtd, ops);
3514 
3515 	chipnr = (int)(from >> chip->chip_shift);
3516 	nand_select_target(chip, chipnr);
3517 
3518 	/* Shift to get page */
3519 	realpage = (int)(from >> chip->page_shift);
3520 	page = realpage & chip->pagemask;
3521 
3522 	while (1) {
3523 		if (ops->mode == MTD_OPS_RAW)
3524 			ret = chip->ecc.read_oob_raw(chip, page);
3525 		else
3526 			ret = chip->ecc.read_oob(chip, page);
3527 
3528 		if (ret < 0)
3529 			break;
3530 
3531 		len = min(len, readlen);
3532 		buf = nand_transfer_oob(chip, buf, ops, len);
3533 
3534 		nand_wait_readrdy(chip);
3535 
3536 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3537 
3538 		readlen -= len;
3539 		if (!readlen)
3540 			break;
3541 
3542 		/* Increment page address */
3543 		realpage++;
3544 
3545 		page = realpage & chip->pagemask;
3546 		/* Check, if we cross a chip boundary */
3547 		if (!page) {
3548 			chipnr++;
3549 			nand_deselect_target(chip);
3550 			nand_select_target(chip, chipnr);
3551 		}
3552 	}
3553 	nand_deselect_target(chip);
3554 
3555 	ops->oobretlen = ops->ooblen - readlen;
3556 
3557 	if (ret < 0)
3558 		return ret;
3559 
3560 	if (mtd->ecc_stats.failed - stats.failed)
3561 		return -EBADMSG;
3562 
3563 	return max_bitflips;
3564 }
3565 
3566 /**
3567  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3568  * @mtd: MTD device structure
3569  * @from: offset to read from
3570  * @ops: oob operation description structure
3571  *
3572  * NAND read data and/or out-of-band data.
3573  */
3574 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3575 			 struct mtd_oob_ops *ops)
3576 {
3577 	struct nand_chip *chip = mtd_to_nand(mtd);
3578 	int ret;
3579 
3580 	ops->retlen = 0;
3581 
3582 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3583 	    ops->mode != MTD_OPS_AUTO_OOB &&
3584 	    ops->mode != MTD_OPS_RAW)
3585 		return -ENOTSUPP;
3586 
3587 	ret = nand_get_device(chip);
3588 	if (ret)
3589 		return ret;
3590 
3591 	if (!ops->datbuf)
3592 		ret = nand_do_read_oob(chip, from, ops);
3593 	else
3594 		ret = nand_do_read_ops(chip, from, ops);
3595 
3596 	nand_release_device(chip);
3597 	return ret;
3598 }
3599 
3600 /**
3601  * nand_write_page_raw_notsupp - dummy raw page write function
3602  * @chip: nand chip info structure
3603  * @buf: data buffer
3604  * @oob_required: must write chip->oob_poi to OOB
3605  * @page: page number to write
3606  *
3607  * Returns -ENOTSUPP unconditionally.
3608  */
3609 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3610 				int oob_required, int page)
3611 {
3612 	return -ENOTSUPP;
3613 }
3614 
3615 /**
3616  * nand_write_page_raw - [INTERN] raw page write function
3617  * @chip: nand chip info structure
3618  * @buf: data buffer
3619  * @oob_required: must write chip->oob_poi to OOB
3620  * @page: page number to write
3621  *
3622  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3623  */
3624 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3625 			int oob_required, int page)
3626 {
3627 	struct mtd_info *mtd = nand_to_mtd(chip);
3628 	int ret;
3629 
3630 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3631 	if (ret)
3632 		return ret;
3633 
3634 	if (oob_required) {
3635 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3636 					 false);
3637 		if (ret)
3638 			return ret;
3639 	}
3640 
3641 	return nand_prog_page_end_op(chip);
3642 }
3643 EXPORT_SYMBOL(nand_write_page_raw);
3644 
3645 /**
3646  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3647  * @chip: NAND chip info structure
3648  * @buf: data buffer to write
3649  * @oob_required: must write chip->oob_poi to OOB
3650  * @page: page number to write
3651  *
3652  * This is a raw page write, ie. without any error detection/correction.
3653  * Monolithic means we are requesting all the relevant data (main plus
3654  * eventually OOB) to be sent over the bus and effectively programmed
3655  * into the NAND chip arrays in a single operation. This is an
3656  * alternative to nand_write_page_raw(), which first sends the main
3657  * data, then eventually send the OOB data by latching more data
3658  * cycles on the NAND bus, and finally sends the program command to
3659  * synchronyze the NAND chip cache.
3660  */
3661 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
3662 				   int oob_required, int page)
3663 {
3664 	struct mtd_info *mtd = nand_to_mtd(chip);
3665 	unsigned int size = mtd->writesize;
3666 	u8 *write_buf = (u8 *)buf;
3667 
3668 	if (oob_required) {
3669 		size += mtd->oobsize;
3670 
3671 		if (buf != chip->data_buf) {
3672 			write_buf = nand_get_data_buf(chip);
3673 			memcpy(write_buf, buf, mtd->writesize);
3674 		}
3675 	}
3676 
3677 	return nand_prog_page_op(chip, page, 0, write_buf, size);
3678 }
3679 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
3680 
3681 /**
3682  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3683  * @chip: nand chip info structure
3684  * @buf: data buffer
3685  * @oob_required: must write chip->oob_poi to OOB
3686  * @page: page number to write
3687  *
3688  * We need a special oob layout and handling even when ECC isn't checked.
3689  */
3690 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3691 					const uint8_t *buf, int oob_required,
3692 					int page)
3693 {
3694 	struct mtd_info *mtd = nand_to_mtd(chip);
3695 	int eccsize = chip->ecc.size;
3696 	int eccbytes = chip->ecc.bytes;
3697 	uint8_t *oob = chip->oob_poi;
3698 	int steps, size, ret;
3699 
3700 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3701 	if (ret)
3702 		return ret;
3703 
3704 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3705 		ret = nand_write_data_op(chip, buf, eccsize, false);
3706 		if (ret)
3707 			return ret;
3708 
3709 		buf += eccsize;
3710 
3711 		if (chip->ecc.prepad) {
3712 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3713 						 false);
3714 			if (ret)
3715 				return ret;
3716 
3717 			oob += chip->ecc.prepad;
3718 		}
3719 
3720 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3721 		if (ret)
3722 			return ret;
3723 
3724 		oob += eccbytes;
3725 
3726 		if (chip->ecc.postpad) {
3727 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3728 						 false);
3729 			if (ret)
3730 				return ret;
3731 
3732 			oob += chip->ecc.postpad;
3733 		}
3734 	}
3735 
3736 	size = mtd->oobsize - (oob - chip->oob_poi);
3737 	if (size) {
3738 		ret = nand_write_data_op(chip, oob, size, false);
3739 		if (ret)
3740 			return ret;
3741 	}
3742 
3743 	return nand_prog_page_end_op(chip);
3744 }
3745 /**
3746  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3747  * @chip: nand chip info structure
3748  * @buf: data buffer
3749  * @oob_required: must write chip->oob_poi to OOB
3750  * @page: page number to write
3751  */
3752 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3753 				 int oob_required, int page)
3754 {
3755 	struct mtd_info *mtd = nand_to_mtd(chip);
3756 	int i, eccsize = chip->ecc.size, ret;
3757 	int eccbytes = chip->ecc.bytes;
3758 	int eccsteps = chip->ecc.steps;
3759 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3760 	const uint8_t *p = buf;
3761 
3762 	/* Software ECC calculation */
3763 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3764 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3765 
3766 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3767 					 chip->ecc.total);
3768 	if (ret)
3769 		return ret;
3770 
3771 	return chip->ecc.write_page_raw(chip, buf, 1, page);
3772 }
3773 
3774 /**
3775  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3776  * @chip: nand chip info structure
3777  * @buf: data buffer
3778  * @oob_required: must write chip->oob_poi to OOB
3779  * @page: page number to write
3780  */
3781 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3782 				 int oob_required, int page)
3783 {
3784 	struct mtd_info *mtd = nand_to_mtd(chip);
3785 	int i, eccsize = chip->ecc.size, ret;
3786 	int eccbytes = chip->ecc.bytes;
3787 	int eccsteps = chip->ecc.steps;
3788 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3789 	const uint8_t *p = buf;
3790 
3791 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3792 	if (ret)
3793 		return ret;
3794 
3795 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3796 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3797 
3798 		ret = nand_write_data_op(chip, p, eccsize, false);
3799 		if (ret)
3800 			return ret;
3801 
3802 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3803 	}
3804 
3805 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3806 					 chip->ecc.total);
3807 	if (ret)
3808 		return ret;
3809 
3810 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3811 	if (ret)
3812 		return ret;
3813 
3814 	return nand_prog_page_end_op(chip);
3815 }
3816 
3817 
3818 /**
3819  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3820  * @chip:	nand chip info structure
3821  * @offset:	column address of subpage within the page
3822  * @data_len:	data length
3823  * @buf:	data buffer
3824  * @oob_required: must write chip->oob_poi to OOB
3825  * @page: page number to write
3826  */
3827 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3828 				    uint32_t data_len, const uint8_t *buf,
3829 				    int oob_required, int page)
3830 {
3831 	struct mtd_info *mtd = nand_to_mtd(chip);
3832 	uint8_t *oob_buf  = chip->oob_poi;
3833 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3834 	int ecc_size      = chip->ecc.size;
3835 	int ecc_bytes     = chip->ecc.bytes;
3836 	int ecc_steps     = chip->ecc.steps;
3837 	uint32_t start_step = offset / ecc_size;
3838 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
3839 	int oob_bytes       = mtd->oobsize / ecc_steps;
3840 	int step, ret;
3841 
3842 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3843 	if (ret)
3844 		return ret;
3845 
3846 	for (step = 0; step < ecc_steps; step++) {
3847 		/* configure controller for WRITE access */
3848 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3849 
3850 		/* write data (untouched subpages already masked by 0xFF) */
3851 		ret = nand_write_data_op(chip, buf, ecc_size, false);
3852 		if (ret)
3853 			return ret;
3854 
3855 		/* mask ECC of un-touched subpages by padding 0xFF */
3856 		if ((step < start_step) || (step > end_step))
3857 			memset(ecc_calc, 0xff, ecc_bytes);
3858 		else
3859 			chip->ecc.calculate(chip, buf, ecc_calc);
3860 
3861 		/* mask OOB of un-touched subpages by padding 0xFF */
3862 		/* if oob_required, preserve OOB metadata of written subpage */
3863 		if (!oob_required || (step < start_step) || (step > end_step))
3864 			memset(oob_buf, 0xff, oob_bytes);
3865 
3866 		buf += ecc_size;
3867 		ecc_calc += ecc_bytes;
3868 		oob_buf  += oob_bytes;
3869 	}
3870 
3871 	/* copy calculated ECC for whole page to chip->buffer->oob */
3872 	/* this include masked-value(0xFF) for unwritten subpages */
3873 	ecc_calc = chip->ecc.calc_buf;
3874 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3875 					 chip->ecc.total);
3876 	if (ret)
3877 		return ret;
3878 
3879 	/* write OOB buffer to NAND device */
3880 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3881 	if (ret)
3882 		return ret;
3883 
3884 	return nand_prog_page_end_op(chip);
3885 }
3886 
3887 
3888 /**
3889  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3890  * @chip: nand chip info structure
3891  * @buf: data buffer
3892  * @oob_required: must write chip->oob_poi to OOB
3893  * @page: page number to write
3894  *
3895  * The hw generator calculates the error syndrome automatically. Therefore we
3896  * need a special oob layout and handling.
3897  */
3898 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
3899 				    int oob_required, int page)
3900 {
3901 	struct mtd_info *mtd = nand_to_mtd(chip);
3902 	int i, eccsize = chip->ecc.size;
3903 	int eccbytes = chip->ecc.bytes;
3904 	int eccsteps = chip->ecc.steps;
3905 	const uint8_t *p = buf;
3906 	uint8_t *oob = chip->oob_poi;
3907 	int ret;
3908 
3909 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3910 	if (ret)
3911 		return ret;
3912 
3913 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3914 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3915 
3916 		ret = nand_write_data_op(chip, p, eccsize, false);
3917 		if (ret)
3918 			return ret;
3919 
3920 		if (chip->ecc.prepad) {
3921 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3922 						 false);
3923 			if (ret)
3924 				return ret;
3925 
3926 			oob += chip->ecc.prepad;
3927 		}
3928 
3929 		chip->ecc.calculate(chip, p, oob);
3930 
3931 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3932 		if (ret)
3933 			return ret;
3934 
3935 		oob += eccbytes;
3936 
3937 		if (chip->ecc.postpad) {
3938 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3939 						 false);
3940 			if (ret)
3941 				return ret;
3942 
3943 			oob += chip->ecc.postpad;
3944 		}
3945 	}
3946 
3947 	/* Calculate remaining oob bytes */
3948 	i = mtd->oobsize - (oob - chip->oob_poi);
3949 	if (i) {
3950 		ret = nand_write_data_op(chip, oob, i, false);
3951 		if (ret)
3952 			return ret;
3953 	}
3954 
3955 	return nand_prog_page_end_op(chip);
3956 }
3957 
3958 /**
3959  * nand_write_page - write one page
3960  * @chip: NAND chip descriptor
3961  * @offset: address offset within the page
3962  * @data_len: length of actual data to be written
3963  * @buf: the data to write
3964  * @oob_required: must write chip->oob_poi to OOB
3965  * @page: page number to write
3966  * @raw: use _raw version of write_page
3967  */
3968 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
3969 			   int data_len, const uint8_t *buf, int oob_required,
3970 			   int page, int raw)
3971 {
3972 	struct mtd_info *mtd = nand_to_mtd(chip);
3973 	int status, subpage;
3974 
3975 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3976 		chip->ecc.write_subpage)
3977 		subpage = offset || (data_len < mtd->writesize);
3978 	else
3979 		subpage = 0;
3980 
3981 	if (unlikely(raw))
3982 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
3983 						  page);
3984 	else if (subpage)
3985 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
3986 						 oob_required, page);
3987 	else
3988 		status = chip->ecc.write_page(chip, buf, oob_required, page);
3989 
3990 	if (status < 0)
3991 		return status;
3992 
3993 	return 0;
3994 }
3995 
3996 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
3997 
3998 /**
3999  * nand_do_write_ops - [INTERN] NAND write with ECC
4000  * @chip: NAND chip object
4001  * @to: offset to write to
4002  * @ops: oob operations description structure
4003  *
4004  * NAND write with ECC.
4005  */
4006 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4007 			     struct mtd_oob_ops *ops)
4008 {
4009 	struct mtd_info *mtd = nand_to_mtd(chip);
4010 	int chipnr, realpage, page, column;
4011 	uint32_t writelen = ops->len;
4012 
4013 	uint32_t oobwritelen = ops->ooblen;
4014 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4015 
4016 	uint8_t *oob = ops->oobbuf;
4017 	uint8_t *buf = ops->datbuf;
4018 	int ret;
4019 	int oob_required = oob ? 1 : 0;
4020 
4021 	ops->retlen = 0;
4022 	if (!writelen)
4023 		return 0;
4024 
4025 	/* Reject writes, which are not page aligned */
4026 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4027 		pr_notice("%s: attempt to write non page aligned data\n",
4028 			   __func__);
4029 		return -EINVAL;
4030 	}
4031 
4032 	/* Check if the region is secured */
4033 	if (nand_region_is_secured(chip, to, writelen))
4034 		return -EIO;
4035 
4036 	column = to & (mtd->writesize - 1);
4037 
4038 	chipnr = (int)(to >> chip->chip_shift);
4039 	nand_select_target(chip, chipnr);
4040 
4041 	/* Check, if it is write protected */
4042 	if (nand_check_wp(chip)) {
4043 		ret = -EIO;
4044 		goto err_out;
4045 	}
4046 
4047 	realpage = (int)(to >> chip->page_shift);
4048 	page = realpage & chip->pagemask;
4049 
4050 	/* Invalidate the page cache, when we write to the cached page */
4051 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4052 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4053 		chip->pagecache.page = -1;
4054 
4055 	/* Don't allow multipage oob writes with offset */
4056 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4057 		ret = -EINVAL;
4058 		goto err_out;
4059 	}
4060 
4061 	while (1) {
4062 		int bytes = mtd->writesize;
4063 		uint8_t *wbuf = buf;
4064 		int use_bounce_buf;
4065 		int part_pagewr = (column || writelen < mtd->writesize);
4066 
4067 		if (part_pagewr)
4068 			use_bounce_buf = 1;
4069 		else if (chip->options & NAND_USES_DMA)
4070 			use_bounce_buf = !virt_addr_valid(buf) ||
4071 					 !IS_ALIGNED((unsigned long)buf,
4072 						     chip->buf_align);
4073 		else
4074 			use_bounce_buf = 0;
4075 
4076 		/*
4077 		 * Copy the data from the initial buffer when doing partial page
4078 		 * writes or when a bounce buffer is required.
4079 		 */
4080 		if (use_bounce_buf) {
4081 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4082 					 __func__, buf);
4083 			if (part_pagewr)
4084 				bytes = min_t(int, bytes - column, writelen);
4085 			wbuf = nand_get_data_buf(chip);
4086 			memset(wbuf, 0xff, mtd->writesize);
4087 			memcpy(&wbuf[column], buf, bytes);
4088 		}
4089 
4090 		if (unlikely(oob)) {
4091 			size_t len = min(oobwritelen, oobmaxlen);
4092 			oob = nand_fill_oob(chip, oob, len, ops);
4093 			oobwritelen -= len;
4094 		} else {
4095 			/* We still need to erase leftover OOB data */
4096 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4097 		}
4098 
4099 		ret = nand_write_page(chip, column, bytes, wbuf,
4100 				      oob_required, page,
4101 				      (ops->mode == MTD_OPS_RAW));
4102 		if (ret)
4103 			break;
4104 
4105 		writelen -= bytes;
4106 		if (!writelen)
4107 			break;
4108 
4109 		column = 0;
4110 		buf += bytes;
4111 		realpage++;
4112 
4113 		page = realpage & chip->pagemask;
4114 		/* Check, if we cross a chip boundary */
4115 		if (!page) {
4116 			chipnr++;
4117 			nand_deselect_target(chip);
4118 			nand_select_target(chip, chipnr);
4119 		}
4120 	}
4121 
4122 	ops->retlen = ops->len - writelen;
4123 	if (unlikely(oob))
4124 		ops->oobretlen = ops->ooblen;
4125 
4126 err_out:
4127 	nand_deselect_target(chip);
4128 	return ret;
4129 }
4130 
4131 /**
4132  * panic_nand_write - [MTD Interface] NAND write with ECC
4133  * @mtd: MTD device structure
4134  * @to: offset to write to
4135  * @len: number of bytes to write
4136  * @retlen: pointer to variable to store the number of written bytes
4137  * @buf: the data to write
4138  *
4139  * NAND write with ECC. Used when performing writes in interrupt context, this
4140  * may for example be called by mtdoops when writing an oops while in panic.
4141  */
4142 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4143 			    size_t *retlen, const uint8_t *buf)
4144 {
4145 	struct nand_chip *chip = mtd_to_nand(mtd);
4146 	int chipnr = (int)(to >> chip->chip_shift);
4147 	struct mtd_oob_ops ops;
4148 	int ret;
4149 
4150 	nand_select_target(chip, chipnr);
4151 
4152 	/* Wait for the device to get ready */
4153 	panic_nand_wait(chip, 400);
4154 
4155 	memset(&ops, 0, sizeof(ops));
4156 	ops.len = len;
4157 	ops.datbuf = (uint8_t *)buf;
4158 	ops.mode = MTD_OPS_PLACE_OOB;
4159 
4160 	ret = nand_do_write_ops(chip, to, &ops);
4161 
4162 	*retlen = ops.retlen;
4163 	return ret;
4164 }
4165 
4166 /**
4167  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4168  * @mtd: MTD device structure
4169  * @to: offset to write to
4170  * @ops: oob operation description structure
4171  */
4172 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4173 			  struct mtd_oob_ops *ops)
4174 {
4175 	struct nand_chip *chip = mtd_to_nand(mtd);
4176 	int ret;
4177 
4178 	ops->retlen = 0;
4179 
4180 	ret = nand_get_device(chip);
4181 	if (ret)
4182 		return ret;
4183 
4184 	switch (ops->mode) {
4185 	case MTD_OPS_PLACE_OOB:
4186 	case MTD_OPS_AUTO_OOB:
4187 	case MTD_OPS_RAW:
4188 		break;
4189 
4190 	default:
4191 		goto out;
4192 	}
4193 
4194 	if (!ops->datbuf)
4195 		ret = nand_do_write_oob(chip, to, ops);
4196 	else
4197 		ret = nand_do_write_ops(chip, to, ops);
4198 
4199 out:
4200 	nand_release_device(chip);
4201 	return ret;
4202 }
4203 
4204 /**
4205  * nand_erase - [MTD Interface] erase block(s)
4206  * @mtd: MTD device structure
4207  * @instr: erase instruction
4208  *
4209  * Erase one ore more blocks.
4210  */
4211 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4212 {
4213 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4214 }
4215 
4216 /**
4217  * nand_erase_nand - [INTERN] erase block(s)
4218  * @chip: NAND chip object
4219  * @instr: erase instruction
4220  * @allowbbt: allow erasing the bbt area
4221  *
4222  * Erase one ore more blocks.
4223  */
4224 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4225 		    int allowbbt)
4226 {
4227 	int page, pages_per_block, ret, chipnr;
4228 	loff_t len;
4229 
4230 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4231 			__func__, (unsigned long long)instr->addr,
4232 			(unsigned long long)instr->len);
4233 
4234 	if (check_offs_len(chip, instr->addr, instr->len))
4235 		return -EINVAL;
4236 
4237 	/* Check if the region is secured */
4238 	if (nand_region_is_secured(chip, instr->addr, instr->len))
4239 		return -EIO;
4240 
4241 	/* Grab the lock and see if the device is available */
4242 	ret = nand_get_device(chip);
4243 	if (ret)
4244 		return ret;
4245 
4246 	/* Shift to get first page */
4247 	page = (int)(instr->addr >> chip->page_shift);
4248 	chipnr = (int)(instr->addr >> chip->chip_shift);
4249 
4250 	/* Calculate pages in each block */
4251 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4252 
4253 	/* Select the NAND device */
4254 	nand_select_target(chip, chipnr);
4255 
4256 	/* Check, if it is write protected */
4257 	if (nand_check_wp(chip)) {
4258 		pr_debug("%s: device is write protected!\n",
4259 				__func__);
4260 		ret = -EIO;
4261 		goto erase_exit;
4262 	}
4263 
4264 	/* Loop through the pages */
4265 	len = instr->len;
4266 
4267 	while (len) {
4268 		/* Check if we have a bad block, we do not erase bad blocks! */
4269 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4270 					chip->page_shift, allowbbt)) {
4271 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4272 				    __func__, page);
4273 			ret = -EIO;
4274 			goto erase_exit;
4275 		}
4276 
4277 		/*
4278 		 * Invalidate the page cache, if we erase the block which
4279 		 * contains the current cached page.
4280 		 */
4281 		if (page <= chip->pagecache.page && chip->pagecache.page <
4282 		    (page + pages_per_block))
4283 			chip->pagecache.page = -1;
4284 
4285 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4286 				    (chip->phys_erase_shift - chip->page_shift));
4287 		if (ret) {
4288 			pr_debug("%s: failed erase, page 0x%08x\n",
4289 					__func__, page);
4290 			instr->fail_addr =
4291 				((loff_t)page << chip->page_shift);
4292 			goto erase_exit;
4293 		}
4294 
4295 		/* Increment page address and decrement length */
4296 		len -= (1ULL << chip->phys_erase_shift);
4297 		page += pages_per_block;
4298 
4299 		/* Check, if we cross a chip boundary */
4300 		if (len && !(page & chip->pagemask)) {
4301 			chipnr++;
4302 			nand_deselect_target(chip);
4303 			nand_select_target(chip, chipnr);
4304 		}
4305 	}
4306 
4307 	ret = 0;
4308 erase_exit:
4309 
4310 	/* Deselect and wake up anyone waiting on the device */
4311 	nand_deselect_target(chip);
4312 	nand_release_device(chip);
4313 
4314 	/* Return more or less happy */
4315 	return ret;
4316 }
4317 
4318 /**
4319  * nand_sync - [MTD Interface] sync
4320  * @mtd: MTD device structure
4321  *
4322  * Sync is actually a wait for chip ready function.
4323  */
4324 static void nand_sync(struct mtd_info *mtd)
4325 {
4326 	struct nand_chip *chip = mtd_to_nand(mtd);
4327 
4328 	pr_debug("%s: called\n", __func__);
4329 
4330 	/* Grab the lock and see if the device is available */
4331 	WARN_ON(nand_get_device(chip));
4332 	/* Release it and go back */
4333 	nand_release_device(chip);
4334 }
4335 
4336 /**
4337  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4338  * @mtd: MTD device structure
4339  * @offs: offset relative to mtd start
4340  */
4341 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4342 {
4343 	struct nand_chip *chip = mtd_to_nand(mtd);
4344 	int chipnr = (int)(offs >> chip->chip_shift);
4345 	int ret;
4346 
4347 	/* Select the NAND device */
4348 	ret = nand_get_device(chip);
4349 	if (ret)
4350 		return ret;
4351 
4352 	nand_select_target(chip, chipnr);
4353 
4354 	ret = nand_block_checkbad(chip, offs, 0);
4355 
4356 	nand_deselect_target(chip);
4357 	nand_release_device(chip);
4358 
4359 	return ret;
4360 }
4361 
4362 /**
4363  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4364  * @mtd: MTD device structure
4365  * @ofs: offset relative to mtd start
4366  */
4367 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4368 {
4369 	int ret;
4370 
4371 	ret = nand_block_isbad(mtd, ofs);
4372 	if (ret) {
4373 		/* If it was bad already, return success and do nothing */
4374 		if (ret > 0)
4375 			return 0;
4376 		return ret;
4377 	}
4378 
4379 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4380 }
4381 
4382 /**
4383  * nand_suspend - [MTD Interface] Suspend the NAND flash
4384  * @mtd: MTD device structure
4385  *
4386  * Returns 0 for success or negative error code otherwise.
4387  */
4388 static int nand_suspend(struct mtd_info *mtd)
4389 {
4390 	struct nand_chip *chip = mtd_to_nand(mtd);
4391 	int ret = 0;
4392 
4393 	mutex_lock(&chip->lock);
4394 	if (chip->ops.suspend)
4395 		ret = chip->ops.suspend(chip);
4396 	if (!ret)
4397 		chip->suspended = 1;
4398 	mutex_unlock(&chip->lock);
4399 
4400 	return ret;
4401 }
4402 
4403 /**
4404  * nand_resume - [MTD Interface] Resume the NAND flash
4405  * @mtd: MTD device structure
4406  */
4407 static void nand_resume(struct mtd_info *mtd)
4408 {
4409 	struct nand_chip *chip = mtd_to_nand(mtd);
4410 
4411 	mutex_lock(&chip->lock);
4412 	if (chip->suspended) {
4413 		if (chip->ops.resume)
4414 			chip->ops.resume(chip);
4415 		chip->suspended = 0;
4416 	} else {
4417 		pr_err("%s called for a chip which is not in suspended state\n",
4418 			__func__);
4419 	}
4420 	mutex_unlock(&chip->lock);
4421 }
4422 
4423 /**
4424  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4425  *                 prevent further operations
4426  * @mtd: MTD device structure
4427  */
4428 static void nand_shutdown(struct mtd_info *mtd)
4429 {
4430 	nand_suspend(mtd);
4431 }
4432 
4433 /**
4434  * nand_lock - [MTD Interface] Lock the NAND flash
4435  * @mtd: MTD device structure
4436  * @ofs: offset byte address
4437  * @len: number of bytes to lock (must be a multiple of block/page size)
4438  */
4439 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4440 {
4441 	struct nand_chip *chip = mtd_to_nand(mtd);
4442 
4443 	if (!chip->ops.lock_area)
4444 		return -ENOTSUPP;
4445 
4446 	return chip->ops.lock_area(chip, ofs, len);
4447 }
4448 
4449 /**
4450  * nand_unlock - [MTD Interface] Unlock the NAND flash
4451  * @mtd: MTD device structure
4452  * @ofs: offset byte address
4453  * @len: number of bytes to unlock (must be a multiple of block/page size)
4454  */
4455 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4456 {
4457 	struct nand_chip *chip = mtd_to_nand(mtd);
4458 
4459 	if (!chip->ops.unlock_area)
4460 		return -ENOTSUPP;
4461 
4462 	return chip->ops.unlock_area(chip, ofs, len);
4463 }
4464 
4465 /* Set default functions */
4466 static void nand_set_defaults(struct nand_chip *chip)
4467 {
4468 	/* If no controller is provided, use the dummy, legacy one. */
4469 	if (!chip->controller) {
4470 		chip->controller = &chip->legacy.dummy_controller;
4471 		nand_controller_init(chip->controller);
4472 	}
4473 
4474 	nand_legacy_set_defaults(chip);
4475 
4476 	if (!chip->buf_align)
4477 		chip->buf_align = 1;
4478 }
4479 
4480 /* Sanitize ONFI strings so we can safely print them */
4481 void sanitize_string(uint8_t *s, size_t len)
4482 {
4483 	ssize_t i;
4484 
4485 	/* Null terminate */
4486 	s[len - 1] = 0;
4487 
4488 	/* Remove non printable chars */
4489 	for (i = 0; i < len - 1; i++) {
4490 		if (s[i] < ' ' || s[i] > 127)
4491 			s[i] = '?';
4492 	}
4493 
4494 	/* Remove trailing spaces */
4495 	strim(s);
4496 }
4497 
4498 /*
4499  * nand_id_has_period - Check if an ID string has a given wraparound period
4500  * @id_data: the ID string
4501  * @arrlen: the length of the @id_data array
4502  * @period: the period of repitition
4503  *
4504  * Check if an ID string is repeated within a given sequence of bytes at
4505  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4506  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4507  * if the repetition has a period of @period; otherwise, returns zero.
4508  */
4509 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4510 {
4511 	int i, j;
4512 	for (i = 0; i < period; i++)
4513 		for (j = i + period; j < arrlen; j += period)
4514 			if (id_data[i] != id_data[j])
4515 				return 0;
4516 	return 1;
4517 }
4518 
4519 /*
4520  * nand_id_len - Get the length of an ID string returned by CMD_READID
4521  * @id_data: the ID string
4522  * @arrlen: the length of the @id_data array
4523 
4524  * Returns the length of the ID string, according to known wraparound/trailing
4525  * zero patterns. If no pattern exists, returns the length of the array.
4526  */
4527 static int nand_id_len(u8 *id_data, int arrlen)
4528 {
4529 	int last_nonzero, period;
4530 
4531 	/* Find last non-zero byte */
4532 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4533 		if (id_data[last_nonzero])
4534 			break;
4535 
4536 	/* All zeros */
4537 	if (last_nonzero < 0)
4538 		return 0;
4539 
4540 	/* Calculate wraparound period */
4541 	for (period = 1; period < arrlen; period++)
4542 		if (nand_id_has_period(id_data, arrlen, period))
4543 			break;
4544 
4545 	/* There's a repeated pattern */
4546 	if (period < arrlen)
4547 		return period;
4548 
4549 	/* There are trailing zeros */
4550 	if (last_nonzero < arrlen - 1)
4551 		return last_nonzero + 1;
4552 
4553 	/* No pattern detected */
4554 	return arrlen;
4555 }
4556 
4557 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4558 static int nand_get_bits_per_cell(u8 cellinfo)
4559 {
4560 	int bits;
4561 
4562 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4563 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4564 	return bits + 1;
4565 }
4566 
4567 /*
4568  * Many new NAND share similar device ID codes, which represent the size of the
4569  * chip. The rest of the parameters must be decoded according to generic or
4570  * manufacturer-specific "extended ID" decoding patterns.
4571  */
4572 void nand_decode_ext_id(struct nand_chip *chip)
4573 {
4574 	struct nand_memory_organization *memorg;
4575 	struct mtd_info *mtd = nand_to_mtd(chip);
4576 	int extid;
4577 	u8 *id_data = chip->id.data;
4578 
4579 	memorg = nanddev_get_memorg(&chip->base);
4580 
4581 	/* The 3rd id byte holds MLC / multichip data */
4582 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4583 	/* The 4th id byte is the important one */
4584 	extid = id_data[3];
4585 
4586 	/* Calc pagesize */
4587 	memorg->pagesize = 1024 << (extid & 0x03);
4588 	mtd->writesize = memorg->pagesize;
4589 	extid >>= 2;
4590 	/* Calc oobsize */
4591 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4592 	mtd->oobsize = memorg->oobsize;
4593 	extid >>= 2;
4594 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4595 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4596 				       memorg->pagesize;
4597 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4598 	extid >>= 2;
4599 	/* Get buswidth information */
4600 	if (extid & 0x1)
4601 		chip->options |= NAND_BUSWIDTH_16;
4602 }
4603 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4604 
4605 /*
4606  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4607  * decodes a matching ID table entry and assigns the MTD size parameters for
4608  * the chip.
4609  */
4610 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4611 {
4612 	struct mtd_info *mtd = nand_to_mtd(chip);
4613 	struct nand_memory_organization *memorg;
4614 
4615 	memorg = nanddev_get_memorg(&chip->base);
4616 
4617 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4618 	mtd->erasesize = type->erasesize;
4619 	memorg->pagesize = type->pagesize;
4620 	mtd->writesize = memorg->pagesize;
4621 	memorg->oobsize = memorg->pagesize / 32;
4622 	mtd->oobsize = memorg->oobsize;
4623 
4624 	/* All legacy ID NAND are small-page, SLC */
4625 	memorg->bits_per_cell = 1;
4626 }
4627 
4628 /*
4629  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4630  * heuristic patterns using various detected parameters (e.g., manufacturer,
4631  * page size, cell-type information).
4632  */
4633 static void nand_decode_bbm_options(struct nand_chip *chip)
4634 {
4635 	struct mtd_info *mtd = nand_to_mtd(chip);
4636 
4637 	/* Set the bad block position */
4638 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4639 		chip->badblockpos = NAND_BBM_POS_LARGE;
4640 	else
4641 		chip->badblockpos = NAND_BBM_POS_SMALL;
4642 }
4643 
4644 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4645 {
4646 	return type->id_len;
4647 }
4648 
4649 static bool find_full_id_nand(struct nand_chip *chip,
4650 			      struct nand_flash_dev *type)
4651 {
4652 	struct nand_device *base = &chip->base;
4653 	struct nand_ecc_props requirements;
4654 	struct mtd_info *mtd = nand_to_mtd(chip);
4655 	struct nand_memory_organization *memorg;
4656 	u8 *id_data = chip->id.data;
4657 
4658 	memorg = nanddev_get_memorg(&chip->base);
4659 
4660 	if (!strncmp(type->id, id_data, type->id_len)) {
4661 		memorg->pagesize = type->pagesize;
4662 		mtd->writesize = memorg->pagesize;
4663 		memorg->pages_per_eraseblock = type->erasesize /
4664 					       type->pagesize;
4665 		mtd->erasesize = type->erasesize;
4666 		memorg->oobsize = type->oobsize;
4667 		mtd->oobsize = memorg->oobsize;
4668 
4669 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4670 		memorg->eraseblocks_per_lun =
4671 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4672 					   memorg->pagesize *
4673 					   memorg->pages_per_eraseblock);
4674 		chip->options |= type->options;
4675 		requirements.strength = NAND_ECC_STRENGTH(type);
4676 		requirements.step_size = NAND_ECC_STEP(type);
4677 		nanddev_set_ecc_requirements(base, &requirements);
4678 
4679 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4680 		if (!chip->parameters.model)
4681 			return false;
4682 
4683 		return true;
4684 	}
4685 	return false;
4686 }
4687 
4688 /*
4689  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4690  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4691  * table.
4692  */
4693 static void nand_manufacturer_detect(struct nand_chip *chip)
4694 {
4695 	/*
4696 	 * Try manufacturer detection if available and use
4697 	 * nand_decode_ext_id() otherwise.
4698 	 */
4699 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4700 	    chip->manufacturer.desc->ops->detect) {
4701 		struct nand_memory_organization *memorg;
4702 
4703 		memorg = nanddev_get_memorg(&chip->base);
4704 
4705 		/* The 3rd id byte holds MLC / multichip data */
4706 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4707 		chip->manufacturer.desc->ops->detect(chip);
4708 	} else {
4709 		nand_decode_ext_id(chip);
4710 	}
4711 }
4712 
4713 /*
4714  * Manufacturer initialization. This function is called for all NANDs including
4715  * ONFI and JEDEC compliant ones.
4716  * Manufacturer drivers should put all their specific initialization code in
4717  * their ->init() hook.
4718  */
4719 static int nand_manufacturer_init(struct nand_chip *chip)
4720 {
4721 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4722 	    !chip->manufacturer.desc->ops->init)
4723 		return 0;
4724 
4725 	return chip->manufacturer.desc->ops->init(chip);
4726 }
4727 
4728 /*
4729  * Manufacturer cleanup. This function is called for all NANDs including
4730  * ONFI and JEDEC compliant ones.
4731  * Manufacturer drivers should put all their specific cleanup code in their
4732  * ->cleanup() hook.
4733  */
4734 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4735 {
4736 	/* Release manufacturer private data */
4737 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4738 	    chip->manufacturer.desc->ops->cleanup)
4739 		chip->manufacturer.desc->ops->cleanup(chip);
4740 }
4741 
4742 static const char *
4743 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
4744 {
4745 	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
4746 }
4747 
4748 /*
4749  * Get the flash and manufacturer id and lookup if the type is supported.
4750  */
4751 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4752 {
4753 	const struct nand_manufacturer_desc *manufacturer_desc;
4754 	struct mtd_info *mtd = nand_to_mtd(chip);
4755 	struct nand_memory_organization *memorg;
4756 	int busw, ret;
4757 	u8 *id_data = chip->id.data;
4758 	u8 maf_id, dev_id;
4759 	u64 targetsize;
4760 
4761 	/*
4762 	 * Let's start by initializing memorg fields that might be left
4763 	 * unassigned by the ID-based detection logic.
4764 	 */
4765 	memorg = nanddev_get_memorg(&chip->base);
4766 	memorg->planes_per_lun = 1;
4767 	memorg->luns_per_target = 1;
4768 
4769 	/*
4770 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4771 	 * after power-up.
4772 	 */
4773 	ret = nand_reset(chip, 0);
4774 	if (ret)
4775 		return ret;
4776 
4777 	/* Select the device */
4778 	nand_select_target(chip, 0);
4779 
4780 	/* Send the command for reading device ID */
4781 	ret = nand_readid_op(chip, 0, id_data, 2);
4782 	if (ret)
4783 		return ret;
4784 
4785 	/* Read manufacturer and device IDs */
4786 	maf_id = id_data[0];
4787 	dev_id = id_data[1];
4788 
4789 	/*
4790 	 * Try again to make sure, as some systems the bus-hold or other
4791 	 * interface concerns can cause random data which looks like a
4792 	 * possibly credible NAND flash to appear. If the two results do
4793 	 * not match, ignore the device completely.
4794 	 */
4795 
4796 	/* Read entire ID string */
4797 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4798 	if (ret)
4799 		return ret;
4800 
4801 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
4802 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4803 			maf_id, dev_id, id_data[0], id_data[1]);
4804 		return -ENODEV;
4805 	}
4806 
4807 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4808 
4809 	/* Try to identify manufacturer */
4810 	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
4811 	chip->manufacturer.desc = manufacturer_desc;
4812 
4813 	if (!type)
4814 		type = nand_flash_ids;
4815 
4816 	/*
4817 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4818 	 * override it.
4819 	 * This is required to make sure initial NAND bus width set by the
4820 	 * NAND controller driver is coherent with the real NAND bus width
4821 	 * (extracted by auto-detection code).
4822 	 */
4823 	busw = chip->options & NAND_BUSWIDTH_16;
4824 
4825 	/*
4826 	 * The flag is only set (never cleared), reset it to its default value
4827 	 * before starting auto-detection.
4828 	 */
4829 	chip->options &= ~NAND_BUSWIDTH_16;
4830 
4831 	for (; type->name != NULL; type++) {
4832 		if (is_full_id_nand(type)) {
4833 			if (find_full_id_nand(chip, type))
4834 				goto ident_done;
4835 		} else if (dev_id == type->dev_id) {
4836 			break;
4837 		}
4838 	}
4839 
4840 	if (!type->name || !type->pagesize) {
4841 		/* Check if the chip is ONFI compliant */
4842 		ret = nand_onfi_detect(chip);
4843 		if (ret < 0)
4844 			return ret;
4845 		else if (ret)
4846 			goto ident_done;
4847 
4848 		/* Check if the chip is JEDEC compliant */
4849 		ret = nand_jedec_detect(chip);
4850 		if (ret < 0)
4851 			return ret;
4852 		else if (ret)
4853 			goto ident_done;
4854 	}
4855 
4856 	if (!type->name)
4857 		return -ENODEV;
4858 
4859 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4860 	if (!chip->parameters.model)
4861 		return -ENOMEM;
4862 
4863 	if (!type->pagesize)
4864 		nand_manufacturer_detect(chip);
4865 	else
4866 		nand_decode_id(chip, type);
4867 
4868 	/* Get chip options */
4869 	chip->options |= type->options;
4870 
4871 	memorg->eraseblocks_per_lun =
4872 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4873 					   memorg->pagesize *
4874 					   memorg->pages_per_eraseblock);
4875 
4876 ident_done:
4877 	if (!mtd->name)
4878 		mtd->name = chip->parameters.model;
4879 
4880 	if (chip->options & NAND_BUSWIDTH_AUTO) {
4881 		WARN_ON(busw & NAND_BUSWIDTH_16);
4882 		nand_set_defaults(chip);
4883 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4884 		/*
4885 		 * Check, if buswidth is correct. Hardware drivers should set
4886 		 * chip correct!
4887 		 */
4888 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4889 			maf_id, dev_id);
4890 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
4891 			mtd->name);
4892 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4893 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4894 		ret = -EINVAL;
4895 
4896 		goto free_detect_allocation;
4897 	}
4898 
4899 	nand_decode_bbm_options(chip);
4900 
4901 	/* Calculate the address shift from the page size */
4902 	chip->page_shift = ffs(mtd->writesize) - 1;
4903 	/* Convert chipsize to number of pages per chip -1 */
4904 	targetsize = nanddev_target_size(&chip->base);
4905 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
4906 
4907 	chip->bbt_erase_shift = chip->phys_erase_shift =
4908 		ffs(mtd->erasesize) - 1;
4909 	if (targetsize & 0xffffffff)
4910 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
4911 	else {
4912 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
4913 		chip->chip_shift += 32 - 1;
4914 	}
4915 
4916 	if (chip->chip_shift - chip->page_shift > 16)
4917 		chip->options |= NAND_ROW_ADDR_3;
4918 
4919 	chip->badblockbits = 8;
4920 
4921 	nand_legacy_adjust_cmdfunc(chip);
4922 
4923 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4924 		maf_id, dev_id);
4925 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
4926 		chip->parameters.model);
4927 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4928 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4929 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4930 	return 0;
4931 
4932 free_detect_allocation:
4933 	kfree(chip->parameters.model);
4934 
4935 	return ret;
4936 }
4937 
4938 static enum nand_ecc_engine_type
4939 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
4940 {
4941 	enum nand_ecc_legacy_mode {
4942 		NAND_ECC_INVALID,
4943 		NAND_ECC_NONE,
4944 		NAND_ECC_SOFT,
4945 		NAND_ECC_SOFT_BCH,
4946 		NAND_ECC_HW,
4947 		NAND_ECC_HW_SYNDROME,
4948 		NAND_ECC_ON_DIE,
4949 	};
4950 	const char * const nand_ecc_legacy_modes[] = {
4951 		[NAND_ECC_NONE]		= "none",
4952 		[NAND_ECC_SOFT]		= "soft",
4953 		[NAND_ECC_SOFT_BCH]	= "soft_bch",
4954 		[NAND_ECC_HW]		= "hw",
4955 		[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
4956 		[NAND_ECC_ON_DIE]	= "on-die",
4957 	};
4958 	enum nand_ecc_legacy_mode eng_type;
4959 	const char *pm;
4960 	int err;
4961 
4962 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4963 	if (err)
4964 		return NAND_ECC_ENGINE_TYPE_INVALID;
4965 
4966 	for (eng_type = NAND_ECC_NONE;
4967 	     eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
4968 		if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
4969 			switch (eng_type) {
4970 			case NAND_ECC_NONE:
4971 				return NAND_ECC_ENGINE_TYPE_NONE;
4972 			case NAND_ECC_SOFT:
4973 			case NAND_ECC_SOFT_BCH:
4974 				return NAND_ECC_ENGINE_TYPE_SOFT;
4975 			case NAND_ECC_HW:
4976 			case NAND_ECC_HW_SYNDROME:
4977 				return NAND_ECC_ENGINE_TYPE_ON_HOST;
4978 			case NAND_ECC_ON_DIE:
4979 				return NAND_ECC_ENGINE_TYPE_ON_DIE;
4980 			default:
4981 				break;
4982 			}
4983 		}
4984 	}
4985 
4986 	return NAND_ECC_ENGINE_TYPE_INVALID;
4987 }
4988 
4989 static enum nand_ecc_placement
4990 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
4991 {
4992 	const char *pm;
4993 	int err;
4994 
4995 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4996 	if (!err) {
4997 		if (!strcasecmp(pm, "hw_syndrome"))
4998 			return NAND_ECC_PLACEMENT_INTERLEAVED;
4999 	}
5000 
5001 	return NAND_ECC_PLACEMENT_UNKNOWN;
5002 }
5003 
5004 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5005 {
5006 	const char *pm;
5007 	int err;
5008 
5009 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5010 	if (!err) {
5011 		if (!strcasecmp(pm, "soft"))
5012 			return NAND_ECC_ALGO_HAMMING;
5013 		else if (!strcasecmp(pm, "soft_bch"))
5014 			return NAND_ECC_ALGO_BCH;
5015 	}
5016 
5017 	return NAND_ECC_ALGO_UNKNOWN;
5018 }
5019 
5020 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5021 {
5022 	struct device_node *dn = nand_get_flash_node(chip);
5023 	struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5024 
5025 	if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5026 		user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5027 
5028 	if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5029 		user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5030 
5031 	if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5032 		user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5033 }
5034 
5035 static int of_get_nand_bus_width(struct device_node *np)
5036 {
5037 	u32 val;
5038 
5039 	if (of_property_read_u32(np, "nand-bus-width", &val))
5040 		return 8;
5041 
5042 	switch (val) {
5043 	case 8:
5044 	case 16:
5045 		return val;
5046 	default:
5047 		return -EIO;
5048 	}
5049 }
5050 
5051 static bool of_get_nand_on_flash_bbt(struct device_node *np)
5052 {
5053 	return of_property_read_bool(np, "nand-on-flash-bbt");
5054 }
5055 
5056 static int of_get_nand_secure_regions(struct nand_chip *chip)
5057 {
5058 	struct device_node *dn = nand_get_flash_node(chip);
5059 	int nr_elem, i, j;
5060 
5061 	nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5062 	if (!nr_elem)
5063 		return 0;
5064 
5065 	chip->nr_secure_regions = nr_elem / 2;
5066 	chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5067 				       GFP_KERNEL);
5068 	if (!chip->secure_regions)
5069 		return -ENOMEM;
5070 
5071 	for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5072 		of_property_read_u64_index(dn, "secure-regions", j,
5073 					   &chip->secure_regions[i].offset);
5074 		of_property_read_u64_index(dn, "secure-regions", j + 1,
5075 					   &chip->secure_regions[i].size);
5076 	}
5077 
5078 	return 0;
5079 }
5080 
5081 static int rawnand_dt_init(struct nand_chip *chip)
5082 {
5083 	struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5084 	struct device_node *dn = nand_get_flash_node(chip);
5085 
5086 	if (!dn)
5087 		return 0;
5088 
5089 	if (of_get_nand_bus_width(dn) == 16)
5090 		chip->options |= NAND_BUSWIDTH_16;
5091 
5092 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5093 		chip->options |= NAND_IS_BOOT_MEDIUM;
5094 
5095 	if (of_get_nand_on_flash_bbt(dn))
5096 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5097 
5098 	of_get_nand_ecc_user_config(nand);
5099 	of_get_nand_ecc_legacy_user_config(chip);
5100 
5101 	/*
5102 	 * If neither the user nor the NAND controller have requested a specific
5103 	 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5104 	 */
5105 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5106 
5107 	/*
5108 	 * Use the user requested engine type, unless there is none, in this
5109 	 * case default to the NAND controller choice, otherwise fallback to
5110 	 * the raw NAND default one.
5111 	 */
5112 	if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5113 		chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5114 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5115 		chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5116 
5117 	chip->ecc.placement = nand->ecc.user_conf.placement;
5118 	chip->ecc.algo = nand->ecc.user_conf.algo;
5119 	chip->ecc.strength = nand->ecc.user_conf.strength;
5120 	chip->ecc.size = nand->ecc.user_conf.step_size;
5121 
5122 	return 0;
5123 }
5124 
5125 /**
5126  * nand_scan_ident - Scan for the NAND device
5127  * @chip: NAND chip object
5128  * @maxchips: number of chips to scan for
5129  * @table: alternative NAND ID table
5130  *
5131  * This is the first phase of the normal nand_scan() function. It reads the
5132  * flash ID and sets up MTD fields accordingly.
5133  *
5134  * This helper used to be called directly from controller drivers that needed
5135  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5136  * prevented dynamic allocations during this phase which was unconvenient and
5137  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5138  */
5139 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5140 			   struct nand_flash_dev *table)
5141 {
5142 	struct mtd_info *mtd = nand_to_mtd(chip);
5143 	struct nand_memory_organization *memorg;
5144 	int nand_maf_id, nand_dev_id;
5145 	unsigned int i;
5146 	int ret;
5147 
5148 	memorg = nanddev_get_memorg(&chip->base);
5149 
5150 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5151 	chip->cur_cs = -1;
5152 
5153 	mutex_init(&chip->lock);
5154 
5155 	/* Enforce the right timings for reset/detection */
5156 	chip->current_interface_config = nand_get_reset_interface_config();
5157 
5158 	ret = rawnand_dt_init(chip);
5159 	if (ret)
5160 		return ret;
5161 
5162 	if (!mtd->name && mtd->dev.parent)
5163 		mtd->name = dev_name(mtd->dev.parent);
5164 
5165 	/* Set the default functions */
5166 	nand_set_defaults(chip);
5167 
5168 	ret = nand_legacy_check_hooks(chip);
5169 	if (ret)
5170 		return ret;
5171 
5172 	memorg->ntargets = maxchips;
5173 
5174 	/* Read the flash type */
5175 	ret = nand_detect(chip, table);
5176 	if (ret) {
5177 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5178 			pr_warn("No NAND device found\n");
5179 		nand_deselect_target(chip);
5180 		return ret;
5181 	}
5182 
5183 	nand_maf_id = chip->id.data[0];
5184 	nand_dev_id = chip->id.data[1];
5185 
5186 	nand_deselect_target(chip);
5187 
5188 	/* Check for a chip array */
5189 	for (i = 1; i < maxchips; i++) {
5190 		u8 id[2];
5191 
5192 		/* See comment in nand_get_flash_type for reset */
5193 		ret = nand_reset(chip, i);
5194 		if (ret)
5195 			break;
5196 
5197 		nand_select_target(chip, i);
5198 		/* Send the command for reading device ID */
5199 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5200 		if (ret)
5201 			break;
5202 		/* Read manufacturer and device IDs */
5203 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5204 			nand_deselect_target(chip);
5205 			break;
5206 		}
5207 		nand_deselect_target(chip);
5208 	}
5209 	if (i > 1)
5210 		pr_info("%d chips detected\n", i);
5211 
5212 	/* Store the number of chips and calc total size for mtd */
5213 	memorg->ntargets = i;
5214 	mtd->size = i * nanddev_target_size(&chip->base);
5215 
5216 	return 0;
5217 }
5218 
5219 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5220 {
5221 	kfree(chip->parameters.model);
5222 	kfree(chip->parameters.onfi);
5223 }
5224 
5225 int rawnand_sw_hamming_init(struct nand_chip *chip)
5226 {
5227 	struct nand_ecc_sw_hamming_conf *engine_conf;
5228 	struct nand_device *base = &chip->base;
5229 	int ret;
5230 
5231 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5232 	base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5233 	base->ecc.user_conf.strength = chip->ecc.strength;
5234 	base->ecc.user_conf.step_size = chip->ecc.size;
5235 
5236 	ret = nand_ecc_sw_hamming_init_ctx(base);
5237 	if (ret)
5238 		return ret;
5239 
5240 	engine_conf = base->ecc.ctx.priv;
5241 
5242 	if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5243 		engine_conf->sm_order = true;
5244 
5245 	chip->ecc.size = base->ecc.ctx.conf.step_size;
5246 	chip->ecc.strength = base->ecc.ctx.conf.strength;
5247 	chip->ecc.total = base->ecc.ctx.total;
5248 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5249 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5250 
5251 	return 0;
5252 }
5253 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5254 
5255 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5256 				 const unsigned char *buf,
5257 				 unsigned char *code)
5258 {
5259 	struct nand_device *base = &chip->base;
5260 
5261 	return nand_ecc_sw_hamming_calculate(base, buf, code);
5262 }
5263 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5264 
5265 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5266 			       unsigned char *buf,
5267 			       unsigned char *read_ecc,
5268 			       unsigned char *calc_ecc)
5269 {
5270 	struct nand_device *base = &chip->base;
5271 
5272 	return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5273 }
5274 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5275 
5276 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5277 {
5278 	struct nand_device *base = &chip->base;
5279 
5280 	nand_ecc_sw_hamming_cleanup_ctx(base);
5281 }
5282 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5283 
5284 int rawnand_sw_bch_init(struct nand_chip *chip)
5285 {
5286 	struct nand_device *base = &chip->base;
5287 	const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5288 	int ret;
5289 
5290 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5291 	base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5292 	base->ecc.user_conf.step_size = chip->ecc.size;
5293 	base->ecc.user_conf.strength = chip->ecc.strength;
5294 
5295 	ret = nand_ecc_sw_bch_init_ctx(base);
5296 	if (ret)
5297 		return ret;
5298 
5299 	chip->ecc.size = ecc_conf->step_size;
5300 	chip->ecc.strength = ecc_conf->strength;
5301 	chip->ecc.total = base->ecc.ctx.total;
5302 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5303 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5304 
5305 	return 0;
5306 }
5307 EXPORT_SYMBOL(rawnand_sw_bch_init);
5308 
5309 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5310 				    const unsigned char *buf,
5311 				    unsigned char *code)
5312 {
5313 	struct nand_device *base = &chip->base;
5314 
5315 	return nand_ecc_sw_bch_calculate(base, buf, code);
5316 }
5317 
5318 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5319 			   unsigned char *read_ecc, unsigned char *calc_ecc)
5320 {
5321 	struct nand_device *base = &chip->base;
5322 
5323 	return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5324 }
5325 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5326 
5327 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5328 {
5329 	struct nand_device *base = &chip->base;
5330 
5331 	nand_ecc_sw_bch_cleanup_ctx(base);
5332 }
5333 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5334 
5335 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5336 {
5337 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5338 
5339 	switch (ecc->placement) {
5340 	case NAND_ECC_PLACEMENT_UNKNOWN:
5341 	case NAND_ECC_PLACEMENT_OOB:
5342 		/* Use standard hwecc read page function? */
5343 		if (!ecc->read_page)
5344 			ecc->read_page = nand_read_page_hwecc;
5345 		if (!ecc->write_page)
5346 			ecc->write_page = nand_write_page_hwecc;
5347 		if (!ecc->read_page_raw)
5348 			ecc->read_page_raw = nand_read_page_raw;
5349 		if (!ecc->write_page_raw)
5350 			ecc->write_page_raw = nand_write_page_raw;
5351 		if (!ecc->read_oob)
5352 			ecc->read_oob = nand_read_oob_std;
5353 		if (!ecc->write_oob)
5354 			ecc->write_oob = nand_write_oob_std;
5355 		if (!ecc->read_subpage)
5356 			ecc->read_subpage = nand_read_subpage;
5357 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5358 			ecc->write_subpage = nand_write_subpage_hwecc;
5359 		fallthrough;
5360 
5361 	case NAND_ECC_PLACEMENT_INTERLEAVED:
5362 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5363 		    (!ecc->read_page ||
5364 		     ecc->read_page == nand_read_page_hwecc ||
5365 		     !ecc->write_page ||
5366 		     ecc->write_page == nand_write_page_hwecc)) {
5367 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5368 			return -EINVAL;
5369 		}
5370 		/* Use standard syndrome read/write page function? */
5371 		if (!ecc->read_page)
5372 			ecc->read_page = nand_read_page_syndrome;
5373 		if (!ecc->write_page)
5374 			ecc->write_page = nand_write_page_syndrome;
5375 		if (!ecc->read_page_raw)
5376 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5377 		if (!ecc->write_page_raw)
5378 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5379 		if (!ecc->read_oob)
5380 			ecc->read_oob = nand_read_oob_syndrome;
5381 		if (!ecc->write_oob)
5382 			ecc->write_oob = nand_write_oob_syndrome;
5383 		break;
5384 
5385 	default:
5386 		pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5387 			ecc->placement);
5388 		return -EINVAL;
5389 	}
5390 
5391 	return 0;
5392 }
5393 
5394 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5395 {
5396 	struct mtd_info *mtd = nand_to_mtd(chip);
5397 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5398 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5399 	int ret;
5400 
5401 	if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5402 		return -EINVAL;
5403 
5404 	switch (ecc->algo) {
5405 	case NAND_ECC_ALGO_HAMMING:
5406 		ecc->calculate = rawnand_sw_hamming_calculate;
5407 		ecc->correct = rawnand_sw_hamming_correct;
5408 		ecc->read_page = nand_read_page_swecc;
5409 		ecc->read_subpage = nand_read_subpage;
5410 		ecc->write_page = nand_write_page_swecc;
5411 		if (!ecc->read_page_raw)
5412 			ecc->read_page_raw = nand_read_page_raw;
5413 		if (!ecc->write_page_raw)
5414 			ecc->write_page_raw = nand_write_page_raw;
5415 		ecc->read_oob = nand_read_oob_std;
5416 		ecc->write_oob = nand_write_oob_std;
5417 		if (!ecc->size)
5418 			ecc->size = 256;
5419 		ecc->bytes = 3;
5420 		ecc->strength = 1;
5421 
5422 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5423 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5424 
5425 		ret = rawnand_sw_hamming_init(chip);
5426 		if (ret) {
5427 			WARN(1, "Hamming ECC initialization failed!\n");
5428 			return ret;
5429 		}
5430 
5431 		return 0;
5432 	case NAND_ECC_ALGO_BCH:
5433 		if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5434 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5435 			return -EINVAL;
5436 		}
5437 		ecc->calculate = rawnand_sw_bch_calculate;
5438 		ecc->correct = rawnand_sw_bch_correct;
5439 		ecc->read_page = nand_read_page_swecc;
5440 		ecc->read_subpage = nand_read_subpage;
5441 		ecc->write_page = nand_write_page_swecc;
5442 		if (!ecc->read_page_raw)
5443 			ecc->read_page_raw = nand_read_page_raw;
5444 		if (!ecc->write_page_raw)
5445 			ecc->write_page_raw = nand_write_page_raw;
5446 		ecc->read_oob = nand_read_oob_std;
5447 		ecc->write_oob = nand_write_oob_std;
5448 
5449 		/*
5450 		 * We can only maximize ECC config when the default layout is
5451 		 * used, otherwise we don't know how many bytes can really be
5452 		 * used.
5453 		 */
5454 		if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5455 		    mtd->ooblayout != nand_get_large_page_ooblayout())
5456 			nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5457 
5458 		ret = rawnand_sw_bch_init(chip);
5459 		if (ret) {
5460 			WARN(1, "BCH ECC initialization failed!\n");
5461 			return ret;
5462 		}
5463 
5464 		return 0;
5465 	default:
5466 		WARN(1, "Unsupported ECC algorithm!\n");
5467 		return -EINVAL;
5468 	}
5469 }
5470 
5471 /**
5472  * nand_check_ecc_caps - check the sanity of preset ECC settings
5473  * @chip: nand chip info structure
5474  * @caps: ECC caps info structure
5475  * @oobavail: OOB size that the ECC engine can use
5476  *
5477  * When ECC step size and strength are already set, check if they are supported
5478  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5479  * On success, the calculated ECC bytes is set.
5480  */
5481 static int
5482 nand_check_ecc_caps(struct nand_chip *chip,
5483 		    const struct nand_ecc_caps *caps, int oobavail)
5484 {
5485 	struct mtd_info *mtd = nand_to_mtd(chip);
5486 	const struct nand_ecc_step_info *stepinfo;
5487 	int preset_step = chip->ecc.size;
5488 	int preset_strength = chip->ecc.strength;
5489 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5490 	int i, j;
5491 
5492 	for (i = 0; i < caps->nstepinfos; i++) {
5493 		stepinfo = &caps->stepinfos[i];
5494 
5495 		if (stepinfo->stepsize != preset_step)
5496 			continue;
5497 
5498 		for (j = 0; j < stepinfo->nstrengths; j++) {
5499 			if (stepinfo->strengths[j] != preset_strength)
5500 				continue;
5501 
5502 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
5503 							 preset_strength);
5504 			if (WARN_ON_ONCE(ecc_bytes < 0))
5505 				return ecc_bytes;
5506 
5507 			if (ecc_bytes * nsteps > oobavail) {
5508 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5509 				       preset_step, preset_strength);
5510 				return -ENOSPC;
5511 			}
5512 
5513 			chip->ecc.bytes = ecc_bytes;
5514 
5515 			return 0;
5516 		}
5517 	}
5518 
5519 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5520 	       preset_step, preset_strength);
5521 
5522 	return -ENOTSUPP;
5523 }
5524 
5525 /**
5526  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5527  * @chip: nand chip info structure
5528  * @caps: ECC engine caps info structure
5529  * @oobavail: OOB size that the ECC engine can use
5530  *
5531  * If a chip's ECC requirement is provided, try to meet it with the least
5532  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5533  * On success, the chosen ECC settings are set.
5534  */
5535 static int
5536 nand_match_ecc_req(struct nand_chip *chip,
5537 		   const struct nand_ecc_caps *caps, int oobavail)
5538 {
5539 	const struct nand_ecc_props *requirements =
5540 		nanddev_get_ecc_requirements(&chip->base);
5541 	struct mtd_info *mtd = nand_to_mtd(chip);
5542 	const struct nand_ecc_step_info *stepinfo;
5543 	int req_step = requirements->step_size;
5544 	int req_strength = requirements->strength;
5545 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5546 	int best_step, best_strength, best_ecc_bytes;
5547 	int best_ecc_bytes_total = INT_MAX;
5548 	int i, j;
5549 
5550 	/* No information provided by the NAND chip */
5551 	if (!req_step || !req_strength)
5552 		return -ENOTSUPP;
5553 
5554 	/* number of correctable bits the chip requires in a page */
5555 	req_corr = mtd->writesize / req_step * req_strength;
5556 
5557 	for (i = 0; i < caps->nstepinfos; i++) {
5558 		stepinfo = &caps->stepinfos[i];
5559 		step_size = stepinfo->stepsize;
5560 
5561 		for (j = 0; j < stepinfo->nstrengths; j++) {
5562 			strength = stepinfo->strengths[j];
5563 
5564 			/*
5565 			 * If both step size and strength are smaller than the
5566 			 * chip's requirement, it is not easy to compare the
5567 			 * resulted reliability.
5568 			 */
5569 			if (step_size < req_step && strength < req_strength)
5570 				continue;
5571 
5572 			if (mtd->writesize % step_size)
5573 				continue;
5574 
5575 			nsteps = mtd->writesize / step_size;
5576 
5577 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5578 			if (WARN_ON_ONCE(ecc_bytes < 0))
5579 				continue;
5580 			ecc_bytes_total = ecc_bytes * nsteps;
5581 
5582 			if (ecc_bytes_total > oobavail ||
5583 			    strength * nsteps < req_corr)
5584 				continue;
5585 
5586 			/*
5587 			 * We assume the best is to meet the chip's requrement
5588 			 * with the least number of ECC bytes.
5589 			 */
5590 			if (ecc_bytes_total < best_ecc_bytes_total) {
5591 				best_ecc_bytes_total = ecc_bytes_total;
5592 				best_step = step_size;
5593 				best_strength = strength;
5594 				best_ecc_bytes = ecc_bytes;
5595 			}
5596 		}
5597 	}
5598 
5599 	if (best_ecc_bytes_total == INT_MAX)
5600 		return -ENOTSUPP;
5601 
5602 	chip->ecc.size = best_step;
5603 	chip->ecc.strength = best_strength;
5604 	chip->ecc.bytes = best_ecc_bytes;
5605 
5606 	return 0;
5607 }
5608 
5609 /**
5610  * nand_maximize_ecc - choose the max ECC strength available
5611  * @chip: nand chip info structure
5612  * @caps: ECC engine caps info structure
5613  * @oobavail: OOB size that the ECC engine can use
5614  *
5615  * Choose the max ECC strength that is supported on the controller, and can fit
5616  * within the chip's OOB.  On success, the chosen ECC settings are set.
5617  */
5618 static int
5619 nand_maximize_ecc(struct nand_chip *chip,
5620 		  const struct nand_ecc_caps *caps, int oobavail)
5621 {
5622 	struct mtd_info *mtd = nand_to_mtd(chip);
5623 	const struct nand_ecc_step_info *stepinfo;
5624 	int step_size, strength, nsteps, ecc_bytes, corr;
5625 	int best_corr = 0;
5626 	int best_step = 0;
5627 	int best_strength, best_ecc_bytes;
5628 	int i, j;
5629 
5630 	for (i = 0; i < caps->nstepinfos; i++) {
5631 		stepinfo = &caps->stepinfos[i];
5632 		step_size = stepinfo->stepsize;
5633 
5634 		/* If chip->ecc.size is already set, respect it */
5635 		if (chip->ecc.size && step_size != chip->ecc.size)
5636 			continue;
5637 
5638 		for (j = 0; j < stepinfo->nstrengths; j++) {
5639 			strength = stepinfo->strengths[j];
5640 
5641 			if (mtd->writesize % step_size)
5642 				continue;
5643 
5644 			nsteps = mtd->writesize / step_size;
5645 
5646 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5647 			if (WARN_ON_ONCE(ecc_bytes < 0))
5648 				continue;
5649 
5650 			if (ecc_bytes * nsteps > oobavail)
5651 				continue;
5652 
5653 			corr = strength * nsteps;
5654 
5655 			/*
5656 			 * If the number of correctable bits is the same,
5657 			 * bigger step_size has more reliability.
5658 			 */
5659 			if (corr > best_corr ||
5660 			    (corr == best_corr && step_size > best_step)) {
5661 				best_corr = corr;
5662 				best_step = step_size;
5663 				best_strength = strength;
5664 				best_ecc_bytes = ecc_bytes;
5665 			}
5666 		}
5667 	}
5668 
5669 	if (!best_corr)
5670 		return -ENOTSUPP;
5671 
5672 	chip->ecc.size = best_step;
5673 	chip->ecc.strength = best_strength;
5674 	chip->ecc.bytes = best_ecc_bytes;
5675 
5676 	return 0;
5677 }
5678 
5679 /**
5680  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5681  * @chip: nand chip info structure
5682  * @caps: ECC engine caps info structure
5683  * @oobavail: OOB size that the ECC engine can use
5684  *
5685  * Choose the ECC configuration according to following logic.
5686  *
5687  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5688  *    then check if it is supported by this controller.
5689  * 2. If the user provided the nand-ecc-maximize property, then select maximum
5690  *    ECC strength.
5691  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5692  *    to the chip's requirement. If available OOB size can't fit the chip
5693  *    requirement then fallback to the maximum ECC step size and ECC strength.
5694  *
5695  * On success, the chosen ECC settings are set.
5696  */
5697 int nand_ecc_choose_conf(struct nand_chip *chip,
5698 			 const struct nand_ecc_caps *caps, int oobavail)
5699 {
5700 	struct mtd_info *mtd = nand_to_mtd(chip);
5701 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5702 
5703 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5704 		return -EINVAL;
5705 
5706 	if (chip->ecc.size && chip->ecc.strength)
5707 		return nand_check_ecc_caps(chip, caps, oobavail);
5708 
5709 	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
5710 		return nand_maximize_ecc(chip, caps, oobavail);
5711 
5712 	if (!nand_match_ecc_req(chip, caps, oobavail))
5713 		return 0;
5714 
5715 	return nand_maximize_ecc(chip, caps, oobavail);
5716 }
5717 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5718 
5719 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5720 {
5721 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5722 					      base);
5723 	unsigned int eb = nanddev_pos_to_row(nand, pos);
5724 	int ret;
5725 
5726 	eb >>= nand->rowconv.eraseblock_addr_shift;
5727 
5728 	nand_select_target(chip, pos->target);
5729 	ret = nand_erase_op(chip, eb);
5730 	nand_deselect_target(chip);
5731 
5732 	return ret;
5733 }
5734 
5735 static int rawnand_markbad(struct nand_device *nand,
5736 			   const struct nand_pos *pos)
5737 {
5738 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5739 					      base);
5740 
5741 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5742 }
5743 
5744 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
5745 {
5746 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5747 					      base);
5748 	int ret;
5749 
5750 	nand_select_target(chip, pos->target);
5751 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5752 	nand_deselect_target(chip);
5753 
5754 	return ret;
5755 }
5756 
5757 static const struct nand_ops rawnand_ops = {
5758 	.erase = rawnand_erase,
5759 	.markbad = rawnand_markbad,
5760 	.isbad = rawnand_isbad,
5761 };
5762 
5763 /**
5764  * nand_scan_tail - Scan for the NAND device
5765  * @chip: NAND chip object
5766  *
5767  * This is the second phase of the normal nand_scan() function. It fills out
5768  * all the uninitialized function pointers with the defaults and scans for a
5769  * bad block table if appropriate.
5770  */
5771 static int nand_scan_tail(struct nand_chip *chip)
5772 {
5773 	struct mtd_info *mtd = nand_to_mtd(chip);
5774 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5775 	int ret, i;
5776 
5777 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
5778 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5779 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5780 		return -EINVAL;
5781 	}
5782 
5783 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5784 	if (!chip->data_buf)
5785 		return -ENOMEM;
5786 
5787 	/*
5788 	 * FIXME: some NAND manufacturer drivers expect the first die to be
5789 	 * selected when manufacturer->init() is called. They should be fixed
5790 	 * to explictly select the relevant die when interacting with the NAND
5791 	 * chip.
5792 	 */
5793 	nand_select_target(chip, 0);
5794 	ret = nand_manufacturer_init(chip);
5795 	nand_deselect_target(chip);
5796 	if (ret)
5797 		goto err_free_buf;
5798 
5799 	/* Set the internal oob buffer location, just after the page data */
5800 	chip->oob_poi = chip->data_buf + mtd->writesize;
5801 
5802 	/*
5803 	 * If no default placement scheme is given, select an appropriate one.
5804 	 */
5805 	if (!mtd->ooblayout &&
5806 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
5807 	      ecc->algo == NAND_ECC_ALGO_BCH) &&
5808 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
5809 	      ecc->algo == NAND_ECC_ALGO_HAMMING)) {
5810 		switch (mtd->oobsize) {
5811 		case 8:
5812 		case 16:
5813 			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
5814 			break;
5815 		case 64:
5816 		case 128:
5817 			mtd_set_ooblayout(mtd,
5818 					  nand_get_large_page_hamming_ooblayout());
5819 			break;
5820 		default:
5821 			/*
5822 			 * Expose the whole OOB area to users if ECC_NONE
5823 			 * is passed. We could do that for all kind of
5824 			 * ->oobsize, but we must keep the old large/small
5825 			 * page with ECC layout when ->oobsize <= 128 for
5826 			 * compatibility reasons.
5827 			 */
5828 			if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
5829 				mtd_set_ooblayout(mtd,
5830 						  nand_get_large_page_ooblayout());
5831 				break;
5832 			}
5833 
5834 			WARN(1, "No oob scheme defined for oobsize %d\n",
5835 				mtd->oobsize);
5836 			ret = -EINVAL;
5837 			goto err_nand_manuf_cleanup;
5838 		}
5839 	}
5840 
5841 	/*
5842 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5843 	 * selected and we have 256 byte pagesize fallback to software ECC
5844 	 */
5845 
5846 	switch (ecc->engine_type) {
5847 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
5848 		ret = nand_set_ecc_on_host_ops(chip);
5849 		if (ret)
5850 			goto err_nand_manuf_cleanup;
5851 
5852 		if (mtd->writesize >= ecc->size) {
5853 			if (!ecc->strength) {
5854 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5855 				ret = -EINVAL;
5856 				goto err_nand_manuf_cleanup;
5857 			}
5858 			break;
5859 		}
5860 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5861 			ecc->size, mtd->writesize);
5862 		ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5863 		ecc->algo = NAND_ECC_ALGO_HAMMING;
5864 		fallthrough;
5865 
5866 	case NAND_ECC_ENGINE_TYPE_SOFT:
5867 		ret = nand_set_ecc_soft_ops(chip);
5868 		if (ret)
5869 			goto err_nand_manuf_cleanup;
5870 		break;
5871 
5872 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
5873 		if (!ecc->read_page || !ecc->write_page) {
5874 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5875 			ret = -EINVAL;
5876 			goto err_nand_manuf_cleanup;
5877 		}
5878 		if (!ecc->read_oob)
5879 			ecc->read_oob = nand_read_oob_std;
5880 		if (!ecc->write_oob)
5881 			ecc->write_oob = nand_write_oob_std;
5882 		break;
5883 
5884 	case NAND_ECC_ENGINE_TYPE_NONE:
5885 		pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
5886 		ecc->read_page = nand_read_page_raw;
5887 		ecc->write_page = nand_write_page_raw;
5888 		ecc->read_oob = nand_read_oob_std;
5889 		ecc->read_page_raw = nand_read_page_raw;
5890 		ecc->write_page_raw = nand_write_page_raw;
5891 		ecc->write_oob = nand_write_oob_std;
5892 		ecc->size = mtd->writesize;
5893 		ecc->bytes = 0;
5894 		ecc->strength = 0;
5895 		break;
5896 
5897 	default:
5898 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
5899 		ret = -EINVAL;
5900 		goto err_nand_manuf_cleanup;
5901 	}
5902 
5903 	if (ecc->correct || ecc->calculate) {
5904 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5905 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5906 		if (!ecc->calc_buf || !ecc->code_buf) {
5907 			ret = -ENOMEM;
5908 			goto err_nand_manuf_cleanup;
5909 		}
5910 	}
5911 
5912 	/* For many systems, the standard OOB write also works for raw */
5913 	if (!ecc->read_oob_raw)
5914 		ecc->read_oob_raw = ecc->read_oob;
5915 	if (!ecc->write_oob_raw)
5916 		ecc->write_oob_raw = ecc->write_oob;
5917 
5918 	/* propagate ecc info to mtd_info */
5919 	mtd->ecc_strength = ecc->strength;
5920 	mtd->ecc_step_size = ecc->size;
5921 
5922 	/*
5923 	 * Set the number of read / write steps for one page depending on ECC
5924 	 * mode.
5925 	 */
5926 	if (!ecc->steps)
5927 		ecc->steps = mtd->writesize / ecc->size;
5928 	if (ecc->steps * ecc->size != mtd->writesize) {
5929 		WARN(1, "Invalid ECC parameters\n");
5930 		ret = -EINVAL;
5931 		goto err_nand_manuf_cleanup;
5932 	}
5933 
5934 	if (!ecc->total) {
5935 		ecc->total = ecc->steps * ecc->bytes;
5936 		chip->base.ecc.ctx.total = ecc->total;
5937 	}
5938 
5939 	if (ecc->total > mtd->oobsize) {
5940 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5941 		ret = -EINVAL;
5942 		goto err_nand_manuf_cleanup;
5943 	}
5944 
5945 	/*
5946 	 * The number of bytes available for a client to place data into
5947 	 * the out of band area.
5948 	 */
5949 	ret = mtd_ooblayout_count_freebytes(mtd);
5950 	if (ret < 0)
5951 		ret = 0;
5952 
5953 	mtd->oobavail = ret;
5954 
5955 	/* ECC sanity check: warn if it's too weak */
5956 	if (!nand_ecc_is_strong_enough(&chip->base))
5957 		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
5958 			mtd->name, chip->ecc.strength, chip->ecc.size,
5959 			nanddev_get_ecc_requirements(&chip->base)->strength,
5960 			nanddev_get_ecc_requirements(&chip->base)->step_size);
5961 
5962 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5963 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5964 		switch (ecc->steps) {
5965 		case 2:
5966 			mtd->subpage_sft = 1;
5967 			break;
5968 		case 4:
5969 		case 8:
5970 		case 16:
5971 			mtd->subpage_sft = 2;
5972 			break;
5973 		}
5974 	}
5975 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5976 
5977 	/* Invalidate the pagebuffer reference */
5978 	chip->pagecache.page = -1;
5979 
5980 	/* Large page NAND with SOFT_ECC should support subpage reads */
5981 	switch (ecc->engine_type) {
5982 	case NAND_ECC_ENGINE_TYPE_SOFT:
5983 		if (chip->page_shift > 9)
5984 			chip->options |= NAND_SUBPAGE_READ;
5985 		break;
5986 
5987 	default:
5988 		break;
5989 	}
5990 
5991 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
5992 	if (ret)
5993 		goto err_nand_manuf_cleanup;
5994 
5995 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
5996 	if (chip->options & NAND_ROM)
5997 		mtd->flags = MTD_CAP_ROM;
5998 
5999 	/* Fill in remaining MTD driver data */
6000 	mtd->_erase = nand_erase;
6001 	mtd->_point = NULL;
6002 	mtd->_unpoint = NULL;
6003 	mtd->_panic_write = panic_nand_write;
6004 	mtd->_read_oob = nand_read_oob;
6005 	mtd->_write_oob = nand_write_oob;
6006 	mtd->_sync = nand_sync;
6007 	mtd->_lock = nand_lock;
6008 	mtd->_unlock = nand_unlock;
6009 	mtd->_suspend = nand_suspend;
6010 	mtd->_resume = nand_resume;
6011 	mtd->_reboot = nand_shutdown;
6012 	mtd->_block_isreserved = nand_block_isreserved;
6013 	mtd->_block_isbad = nand_block_isbad;
6014 	mtd->_block_markbad = nand_block_markbad;
6015 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6016 
6017 	/*
6018 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6019 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6020 	 * properly set.
6021 	 */
6022 	if (!mtd->bitflip_threshold)
6023 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6024 
6025 	/* Find the fastest data interface for this chip */
6026 	ret = nand_choose_interface_config(chip);
6027 	if (ret)
6028 		goto err_nanddev_cleanup;
6029 
6030 	/* Enter fastest possible mode on all dies. */
6031 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6032 		ret = nand_setup_interface(chip, i);
6033 		if (ret)
6034 			goto err_free_interface_config;
6035 	}
6036 
6037 	/*
6038 	 * Look for secure regions in the NAND chip. These regions are supposed
6039 	 * to be protected by a secure element like Trustzone. So the read/write
6040 	 * accesses to these regions will be blocked in the runtime by this
6041 	 * driver.
6042 	 */
6043 	ret = of_get_nand_secure_regions(chip);
6044 	if (ret)
6045 		goto err_free_interface_config;
6046 
6047 	/* Check, if we should skip the bad block table scan */
6048 	if (chip->options & NAND_SKIP_BBTSCAN)
6049 		return 0;
6050 
6051 	/* Build bad block table */
6052 	ret = nand_create_bbt(chip);
6053 	if (ret)
6054 		goto err_free_secure_regions;
6055 
6056 	return 0;
6057 
6058 err_free_secure_regions:
6059 	kfree(chip->secure_regions);
6060 
6061 err_free_interface_config:
6062 	kfree(chip->best_interface_config);
6063 
6064 err_nanddev_cleanup:
6065 	nanddev_cleanup(&chip->base);
6066 
6067 err_nand_manuf_cleanup:
6068 	nand_manufacturer_cleanup(chip);
6069 
6070 err_free_buf:
6071 	kfree(chip->data_buf);
6072 	kfree(ecc->code_buf);
6073 	kfree(ecc->calc_buf);
6074 
6075 	return ret;
6076 }
6077 
6078 static int nand_attach(struct nand_chip *chip)
6079 {
6080 	if (chip->controller->ops && chip->controller->ops->attach_chip)
6081 		return chip->controller->ops->attach_chip(chip);
6082 
6083 	return 0;
6084 }
6085 
6086 static void nand_detach(struct nand_chip *chip)
6087 {
6088 	if (chip->controller->ops && chip->controller->ops->detach_chip)
6089 		chip->controller->ops->detach_chip(chip);
6090 }
6091 
6092 /**
6093  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6094  * @chip: NAND chip object
6095  * @maxchips: number of chips to scan for.
6096  * @ids: optional flash IDs table
6097  *
6098  * This fills out all the uninitialized function pointers with the defaults.
6099  * The flash ID is read and the mtd/chip structures are filled with the
6100  * appropriate values.
6101  */
6102 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6103 		       struct nand_flash_dev *ids)
6104 {
6105 	int ret;
6106 
6107 	if (!maxchips)
6108 		return -EINVAL;
6109 
6110 	ret = nand_scan_ident(chip, maxchips, ids);
6111 	if (ret)
6112 		return ret;
6113 
6114 	ret = nand_attach(chip);
6115 	if (ret)
6116 		goto cleanup_ident;
6117 
6118 	ret = nand_scan_tail(chip);
6119 	if (ret)
6120 		goto detach_chip;
6121 
6122 	return 0;
6123 
6124 detach_chip:
6125 	nand_detach(chip);
6126 cleanup_ident:
6127 	nand_scan_ident_cleanup(chip);
6128 
6129 	return ret;
6130 }
6131 EXPORT_SYMBOL(nand_scan_with_ids);
6132 
6133 /**
6134  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6135  * @chip: NAND chip object
6136  */
6137 void nand_cleanup(struct nand_chip *chip)
6138 {
6139 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6140 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6141 			rawnand_sw_hamming_cleanup(chip);
6142 		else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6143 			rawnand_sw_bch_cleanup(chip);
6144 	}
6145 
6146 	nanddev_cleanup(&chip->base);
6147 
6148 	/* Free secure regions data */
6149 	kfree(chip->secure_regions);
6150 
6151 	/* Free bad block table memory */
6152 	kfree(chip->bbt);
6153 	kfree(chip->data_buf);
6154 	kfree(chip->ecc.code_buf);
6155 	kfree(chip->ecc.calc_buf);
6156 
6157 	/* Free bad block descriptor memory */
6158 	if (chip->badblock_pattern && chip->badblock_pattern->options
6159 			& NAND_BBT_DYNAMICSTRUCT)
6160 		kfree(chip->badblock_pattern);
6161 
6162 	/* Free the data interface */
6163 	kfree(chip->best_interface_config);
6164 
6165 	/* Free manufacturer priv data. */
6166 	nand_manufacturer_cleanup(chip);
6167 
6168 	/* Free controller specific allocations after chip identification */
6169 	nand_detach(chip);
6170 
6171 	/* Free identification phase allocations */
6172 	nand_scan_ident_cleanup(chip);
6173 }
6174 
6175 EXPORT_SYMBOL_GPL(nand_cleanup);
6176 
6177 MODULE_LICENSE("GPL");
6178 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6179 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6180 MODULE_DESCRIPTION("Generic NAND flash driver code");
6181