xref: /openbmc/linux/drivers/mtd/nand/raw/nand_base.c (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand_ecc.h>
38 #include <linux/mtd/nand_bch.h>
39 #include <linux/interrupt.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/of.h>
44 #include <linux/gpio/consumer.h>
45 
46 #include "internals.h"
47 
48 /* Define default oob placement schemes for large and small page devices */
49 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
50 				 struct mtd_oob_region *oobregion)
51 {
52 	struct nand_chip *chip = mtd_to_nand(mtd);
53 	struct nand_ecc_ctrl *ecc = &chip->ecc;
54 
55 	if (section > 1)
56 		return -ERANGE;
57 
58 	if (!section) {
59 		oobregion->offset = 0;
60 		if (mtd->oobsize == 16)
61 			oobregion->length = 4;
62 		else
63 			oobregion->length = 3;
64 	} else {
65 		if (mtd->oobsize == 8)
66 			return -ERANGE;
67 
68 		oobregion->offset = 6;
69 		oobregion->length = ecc->total - 4;
70 	}
71 
72 	return 0;
73 }
74 
75 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
76 				  struct mtd_oob_region *oobregion)
77 {
78 	if (section > 1)
79 		return -ERANGE;
80 
81 	if (mtd->oobsize == 16) {
82 		if (section)
83 			return -ERANGE;
84 
85 		oobregion->length = 8;
86 		oobregion->offset = 8;
87 	} else {
88 		oobregion->length = 2;
89 		if (!section)
90 			oobregion->offset = 3;
91 		else
92 			oobregion->offset = 6;
93 	}
94 
95 	return 0;
96 }
97 
98 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
99 	.ecc = nand_ooblayout_ecc_sp,
100 	.free = nand_ooblayout_free_sp,
101 };
102 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
103 
104 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
105 				 struct mtd_oob_region *oobregion)
106 {
107 	struct nand_chip *chip = mtd_to_nand(mtd);
108 	struct nand_ecc_ctrl *ecc = &chip->ecc;
109 
110 	if (section || !ecc->total)
111 		return -ERANGE;
112 
113 	oobregion->length = ecc->total;
114 	oobregion->offset = mtd->oobsize - oobregion->length;
115 
116 	return 0;
117 }
118 
119 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
120 				  struct mtd_oob_region *oobregion)
121 {
122 	struct nand_chip *chip = mtd_to_nand(mtd);
123 	struct nand_ecc_ctrl *ecc = &chip->ecc;
124 
125 	if (section)
126 		return -ERANGE;
127 
128 	oobregion->length = mtd->oobsize - ecc->total - 2;
129 	oobregion->offset = 2;
130 
131 	return 0;
132 }
133 
134 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
135 	.ecc = nand_ooblayout_ecc_lp,
136 	.free = nand_ooblayout_free_lp,
137 };
138 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
139 
140 /*
141  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
142  * are placed at a fixed offset.
143  */
144 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
145 					 struct mtd_oob_region *oobregion)
146 {
147 	struct nand_chip *chip = mtd_to_nand(mtd);
148 	struct nand_ecc_ctrl *ecc = &chip->ecc;
149 
150 	if (section)
151 		return -ERANGE;
152 
153 	switch (mtd->oobsize) {
154 	case 64:
155 		oobregion->offset = 40;
156 		break;
157 	case 128:
158 		oobregion->offset = 80;
159 		break;
160 	default:
161 		return -EINVAL;
162 	}
163 
164 	oobregion->length = ecc->total;
165 	if (oobregion->offset + oobregion->length > mtd->oobsize)
166 		return -ERANGE;
167 
168 	return 0;
169 }
170 
171 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
172 					  struct mtd_oob_region *oobregion)
173 {
174 	struct nand_chip *chip = mtd_to_nand(mtd);
175 	struct nand_ecc_ctrl *ecc = &chip->ecc;
176 	int ecc_offset = 0;
177 
178 	if (section < 0 || section > 1)
179 		return -ERANGE;
180 
181 	switch (mtd->oobsize) {
182 	case 64:
183 		ecc_offset = 40;
184 		break;
185 	case 128:
186 		ecc_offset = 80;
187 		break;
188 	default:
189 		return -EINVAL;
190 	}
191 
192 	if (section == 0) {
193 		oobregion->offset = 2;
194 		oobregion->length = ecc_offset - 2;
195 	} else {
196 		oobregion->offset = ecc_offset + ecc->total;
197 		oobregion->length = mtd->oobsize - oobregion->offset;
198 	}
199 
200 	return 0;
201 }
202 
203 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
204 	.ecc = nand_ooblayout_ecc_lp_hamming,
205 	.free = nand_ooblayout_free_lp_hamming,
206 };
207 
208 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
209 {
210 	int ret = 0;
211 
212 	/* Start address must align on block boundary */
213 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
214 		pr_debug("%s: unaligned address\n", __func__);
215 		ret = -EINVAL;
216 	}
217 
218 	/* Length must align on block boundary */
219 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
220 		pr_debug("%s: length not block aligned\n", __func__);
221 		ret = -EINVAL;
222 	}
223 
224 	return ret;
225 }
226 
227 /**
228  * nand_select_target() - Select a NAND target (A.K.A. die)
229  * @chip: NAND chip object
230  * @cs: the CS line to select. Note that this CS id is always from the chip
231  *	PoV, not the controller one
232  *
233  * Select a NAND target so that further operations executed on @chip go to the
234  * selected NAND target.
235  */
236 void nand_select_target(struct nand_chip *chip, unsigned int cs)
237 {
238 	/*
239 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
240 	 * not the case it's a bug and the caller should be fixed.
241 	 */
242 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
243 		return;
244 
245 	chip->cur_cs = cs;
246 
247 	if (chip->legacy.select_chip)
248 		chip->legacy.select_chip(chip, cs);
249 }
250 EXPORT_SYMBOL_GPL(nand_select_target);
251 
252 /**
253  * nand_deselect_target() - Deselect the currently selected target
254  * @chip: NAND chip object
255  *
256  * Deselect the currently selected NAND target. The result of operations
257  * executed on @chip after the target has been deselected is undefined.
258  */
259 void nand_deselect_target(struct nand_chip *chip)
260 {
261 	if (chip->legacy.select_chip)
262 		chip->legacy.select_chip(chip, -1);
263 
264 	chip->cur_cs = -1;
265 }
266 EXPORT_SYMBOL_GPL(nand_deselect_target);
267 
268 /**
269  * nand_release_device - [GENERIC] release chip
270  * @chip: NAND chip object
271  *
272  * Release chip lock and wake up anyone waiting on the device.
273  */
274 static void nand_release_device(struct nand_chip *chip)
275 {
276 	/* Release the controller and the chip */
277 	mutex_unlock(&chip->controller->lock);
278 	mutex_unlock(&chip->lock);
279 }
280 
281 /**
282  * nand_bbm_get_next_page - Get the next page for bad block markers
283  * @chip: NAND chip object
284  * @page: First page to start checking for bad block marker usage
285  *
286  * Returns an integer that corresponds to the page offset within a block, for
287  * a page that is used to store bad block markers. If no more pages are
288  * available, -EINVAL is returned.
289  */
290 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
291 {
292 	struct mtd_info *mtd = nand_to_mtd(chip);
293 	int last_page = ((mtd->erasesize - mtd->writesize) >>
294 			 chip->page_shift) & chip->pagemask;
295 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
296 		| NAND_BBM_LASTPAGE;
297 
298 	if (page == 0 && !(chip->options & bbm_flags))
299 		return 0;
300 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
301 		return 0;
302 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
303 		return 1;
304 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
305 		return last_page;
306 
307 	return -EINVAL;
308 }
309 
310 /**
311  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
312  * @chip: NAND chip object
313  * @ofs: offset from device start
314  *
315  * Check, if the block is bad.
316  */
317 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
318 {
319 	int first_page, page_offset;
320 	int res;
321 	u8 bad;
322 
323 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
324 	page_offset = nand_bbm_get_next_page(chip, 0);
325 
326 	while (page_offset >= 0) {
327 		res = chip->ecc.read_oob(chip, first_page + page_offset);
328 		if (res < 0)
329 			return res;
330 
331 		bad = chip->oob_poi[chip->badblockpos];
332 
333 		if (likely(chip->badblockbits == 8))
334 			res = bad != 0xFF;
335 		else
336 			res = hweight8(bad) < chip->badblockbits;
337 		if (res)
338 			return res;
339 
340 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
341 	}
342 
343 	return 0;
344 }
345 
346 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
347 {
348 	if (chip->legacy.block_bad)
349 		return chip->legacy.block_bad(chip, ofs);
350 
351 	return nand_block_bad(chip, ofs);
352 }
353 
354 /**
355  * nand_get_device - [GENERIC] Get chip for selected access
356  * @chip: NAND chip structure
357  *
358  * Lock the device and its controller for exclusive access
359  *
360  * Return: -EBUSY if the chip has been suspended, 0 otherwise
361  */
362 static int nand_get_device(struct nand_chip *chip)
363 {
364 	mutex_lock(&chip->lock);
365 	if (chip->suspended) {
366 		mutex_unlock(&chip->lock);
367 		return -EBUSY;
368 	}
369 	mutex_lock(&chip->controller->lock);
370 
371 	return 0;
372 }
373 
374 /**
375  * nand_check_wp - [GENERIC] check if the chip is write protected
376  * @chip: NAND chip object
377  *
378  * Check, if the device is write protected. The function expects, that the
379  * device is already selected.
380  */
381 static int nand_check_wp(struct nand_chip *chip)
382 {
383 	u8 status;
384 	int ret;
385 
386 	/* Broken xD cards report WP despite being writable */
387 	if (chip->options & NAND_BROKEN_XD)
388 		return 0;
389 
390 	/* Check the WP bit */
391 	ret = nand_status_op(chip, &status);
392 	if (ret)
393 		return ret;
394 
395 	return status & NAND_STATUS_WP ? 0 : 1;
396 }
397 
398 /**
399  * nand_fill_oob - [INTERN] Transfer client buffer to oob
400  * @chip: NAND chip object
401  * @oob: oob data buffer
402  * @len: oob data write length
403  * @ops: oob ops structure
404  */
405 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
406 			      struct mtd_oob_ops *ops)
407 {
408 	struct mtd_info *mtd = nand_to_mtd(chip);
409 	int ret;
410 
411 	/*
412 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
413 	 * data from a previous OOB read.
414 	 */
415 	memset(chip->oob_poi, 0xff, mtd->oobsize);
416 
417 	switch (ops->mode) {
418 
419 	case MTD_OPS_PLACE_OOB:
420 	case MTD_OPS_RAW:
421 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
422 		return oob + len;
423 
424 	case MTD_OPS_AUTO_OOB:
425 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
426 						  ops->ooboffs, len);
427 		BUG_ON(ret);
428 		return oob + len;
429 
430 	default:
431 		BUG();
432 	}
433 	return NULL;
434 }
435 
436 /**
437  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
438  * @chip: NAND chip object
439  * @to: offset to write to
440  * @ops: oob operation description structure
441  *
442  * NAND write out-of-band.
443  */
444 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
445 			     struct mtd_oob_ops *ops)
446 {
447 	struct mtd_info *mtd = nand_to_mtd(chip);
448 	int chipnr, page, status, len, ret;
449 
450 	pr_debug("%s: to = 0x%08x, len = %i\n",
451 			 __func__, (unsigned int)to, (int)ops->ooblen);
452 
453 	len = mtd_oobavail(mtd, ops);
454 
455 	/* Do not allow write past end of page */
456 	if ((ops->ooboffs + ops->ooblen) > len) {
457 		pr_debug("%s: attempt to write past end of page\n",
458 				__func__);
459 		return -EINVAL;
460 	}
461 
462 	chipnr = (int)(to >> chip->chip_shift);
463 
464 	/*
465 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
466 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
467 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
468 	 * it in the doc2000 driver in August 1999.  dwmw2.
469 	 */
470 	ret = nand_reset(chip, chipnr);
471 	if (ret)
472 		return ret;
473 
474 	nand_select_target(chip, chipnr);
475 
476 	/* Shift to get page */
477 	page = (int)(to >> chip->page_shift);
478 
479 	/* Check, if it is write protected */
480 	if (nand_check_wp(chip)) {
481 		nand_deselect_target(chip);
482 		return -EROFS;
483 	}
484 
485 	/* Invalidate the page cache, if we write to the cached page */
486 	if (page == chip->pagecache.page)
487 		chip->pagecache.page = -1;
488 
489 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
490 
491 	if (ops->mode == MTD_OPS_RAW)
492 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
493 	else
494 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
495 
496 	nand_deselect_target(chip);
497 
498 	if (status)
499 		return status;
500 
501 	ops->oobretlen = ops->ooblen;
502 
503 	return 0;
504 }
505 
506 /**
507  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
508  * @chip: NAND chip object
509  * @ofs: offset from device start
510  *
511  * This is the default implementation, which can be overridden by a hardware
512  * specific driver. It provides the details for writing a bad block marker to a
513  * block.
514  */
515 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
516 {
517 	struct mtd_info *mtd = nand_to_mtd(chip);
518 	struct mtd_oob_ops ops;
519 	uint8_t buf[2] = { 0, 0 };
520 	int ret = 0, res, page_offset;
521 
522 	memset(&ops, 0, sizeof(ops));
523 	ops.oobbuf = buf;
524 	ops.ooboffs = chip->badblockpos;
525 	if (chip->options & NAND_BUSWIDTH_16) {
526 		ops.ooboffs &= ~0x01;
527 		ops.len = ops.ooblen = 2;
528 	} else {
529 		ops.len = ops.ooblen = 1;
530 	}
531 	ops.mode = MTD_OPS_PLACE_OOB;
532 
533 	page_offset = nand_bbm_get_next_page(chip, 0);
534 
535 	while (page_offset >= 0) {
536 		res = nand_do_write_oob(chip,
537 					ofs + (page_offset * mtd->writesize),
538 					&ops);
539 
540 		if (!ret)
541 			ret = res;
542 
543 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
544 	}
545 
546 	return ret;
547 }
548 
549 /**
550  * nand_markbad_bbm - mark a block by updating the BBM
551  * @chip: NAND chip object
552  * @ofs: offset of the block to mark bad
553  */
554 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
555 {
556 	if (chip->legacy.block_markbad)
557 		return chip->legacy.block_markbad(chip, ofs);
558 
559 	return nand_default_block_markbad(chip, ofs);
560 }
561 
562 /**
563  * nand_block_markbad_lowlevel - mark a block bad
564  * @chip: NAND chip object
565  * @ofs: offset from device start
566  *
567  * This function performs the generic NAND bad block marking steps (i.e., bad
568  * block table(s) and/or marker(s)). We only allow the hardware driver to
569  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
570  *
571  * We try operations in the following order:
572  *
573  *  (1) erase the affected block, to allow OOB marker to be written cleanly
574  *  (2) write bad block marker to OOB area of affected block (unless flag
575  *      NAND_BBT_NO_OOB_BBM is present)
576  *  (3) update the BBT
577  *
578  * Note that we retain the first error encountered in (2) or (3), finish the
579  * procedures, and dump the error in the end.
580 */
581 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
582 {
583 	struct mtd_info *mtd = nand_to_mtd(chip);
584 	int res, ret = 0;
585 
586 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
587 		struct erase_info einfo;
588 
589 		/* Attempt erase before marking OOB */
590 		memset(&einfo, 0, sizeof(einfo));
591 		einfo.addr = ofs;
592 		einfo.len = 1ULL << chip->phys_erase_shift;
593 		nand_erase_nand(chip, &einfo, 0);
594 
595 		/* Write bad block marker to OOB */
596 		ret = nand_get_device(chip);
597 		if (ret)
598 			return ret;
599 
600 		ret = nand_markbad_bbm(chip, ofs);
601 		nand_release_device(chip);
602 	}
603 
604 	/* Mark block bad in BBT */
605 	if (chip->bbt) {
606 		res = nand_markbad_bbt(chip, ofs);
607 		if (!ret)
608 			ret = res;
609 	}
610 
611 	if (!ret)
612 		mtd->ecc_stats.badblocks++;
613 
614 	return ret;
615 }
616 
617 /**
618  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
619  * @mtd: MTD device structure
620  * @ofs: offset from device start
621  *
622  * Check if the block is marked as reserved.
623  */
624 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
625 {
626 	struct nand_chip *chip = mtd_to_nand(mtd);
627 
628 	if (!chip->bbt)
629 		return 0;
630 	/* Return info from the table */
631 	return nand_isreserved_bbt(chip, ofs);
632 }
633 
634 /**
635  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
636  * @chip: NAND chip object
637  * @ofs: offset from device start
638  * @allowbbt: 1, if its allowed to access the bbt area
639  *
640  * Check, if the block is bad. Either by reading the bad block table or
641  * calling of the scan function.
642  */
643 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
644 {
645 	/* Return info from the table */
646 	if (chip->bbt)
647 		return nand_isbad_bbt(chip, ofs, allowbbt);
648 
649 	return nand_isbad_bbm(chip, ofs);
650 }
651 
652 /**
653  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
654  * @chip: NAND chip structure
655  * @timeout_ms: Timeout in ms
656  *
657  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
658  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
659  * returned.
660  *
661  * This helper is intended to be used when the controller does not have access
662  * to the NAND R/B pin.
663  *
664  * Be aware that calling this helper from an ->exec_op() implementation means
665  * ->exec_op() must be re-entrant.
666  *
667  * Return 0 if the NAND chip is ready, a negative error otherwise.
668  */
669 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
670 {
671 	const struct nand_sdr_timings *timings;
672 	u8 status = 0;
673 	int ret;
674 
675 	if (!nand_has_exec_op(chip))
676 		return -ENOTSUPP;
677 
678 	/* Wait tWB before polling the STATUS reg. */
679 	timings = nand_get_sdr_timings(&chip->data_interface);
680 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
681 
682 	ret = nand_status_op(chip, NULL);
683 	if (ret)
684 		return ret;
685 
686 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
687 	do {
688 		ret = nand_read_data_op(chip, &status, sizeof(status), true);
689 		if (ret)
690 			break;
691 
692 		if (status & NAND_STATUS_READY)
693 			break;
694 
695 		/*
696 		 * Typical lowest execution time for a tR on most NANDs is 10us,
697 		 * use this as polling delay before doing something smarter (ie.
698 		 * deriving a delay from the timeout value, timeout_ms/ratio).
699 		 */
700 		udelay(10);
701 	} while	(time_before(jiffies, timeout_ms));
702 
703 	/*
704 	 * We have to exit READ_STATUS mode in order to read real data on the
705 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
706 	 * instruction.
707 	 */
708 	nand_exit_status_op(chip);
709 
710 	if (ret)
711 		return ret;
712 
713 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
714 };
715 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
716 
717 /**
718  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
719  * @chip: NAND chip structure
720  * @gpiod: GPIO descriptor of R/B pin
721  * @timeout_ms: Timeout in ms
722  *
723  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
724  * whitin the specified timeout, -ETIMEDOUT is returned.
725  *
726  * This helper is intended to be used when the controller has access to the
727  * NAND R/B pin over GPIO.
728  *
729  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
730  */
731 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
732 		      unsigned long timeout_ms)
733 {
734 	/* Wait until R/B pin indicates chip is ready or timeout occurs */
735 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
736 	do {
737 		if (gpiod_get_value_cansleep(gpiod))
738 			return 0;
739 
740 		cond_resched();
741 	} while	(time_before(jiffies, timeout_ms));
742 
743 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
744 };
745 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
746 
747 /**
748  * panic_nand_wait - [GENERIC] wait until the command is done
749  * @chip: NAND chip structure
750  * @timeo: timeout
751  *
752  * Wait for command done. This is a helper function for nand_wait used when
753  * we are in interrupt context. May happen when in panic and trying to write
754  * an oops through mtdoops.
755  */
756 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
757 {
758 	int i;
759 	for (i = 0; i < timeo; i++) {
760 		if (chip->legacy.dev_ready) {
761 			if (chip->legacy.dev_ready(chip))
762 				break;
763 		} else {
764 			int ret;
765 			u8 status;
766 
767 			ret = nand_read_data_op(chip, &status, sizeof(status),
768 						true);
769 			if (ret)
770 				return;
771 
772 			if (status & NAND_STATUS_READY)
773 				break;
774 		}
775 		mdelay(1);
776 	}
777 }
778 
779 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
780 {
781 	return (chip->parameters.supports_set_get_features &&
782 		test_bit(addr, chip->parameters.get_feature_list));
783 }
784 
785 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
786 {
787 	return (chip->parameters.supports_set_get_features &&
788 		test_bit(addr, chip->parameters.set_feature_list));
789 }
790 
791 /**
792  * nand_reset_data_interface - Reset data interface and timings
793  * @chip: The NAND chip
794  * @chipnr: Internal die id
795  *
796  * Reset the Data interface and timings to ONFI mode 0.
797  *
798  * Returns 0 for success or negative error code otherwise.
799  */
800 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
801 {
802 	int ret;
803 
804 	if (!nand_has_setup_data_iface(chip))
805 		return 0;
806 
807 	/*
808 	 * The ONFI specification says:
809 	 * "
810 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
811 	 * interface, the host shall use the Reset (FFh) command
812 	 * using SDR timing mode 0. A device in any timing mode is
813 	 * required to recognize Reset (FFh) command issued in SDR
814 	 * timing mode 0.
815 	 * "
816 	 *
817 	 * Configure the data interface in SDR mode and set the
818 	 * timings to timing mode 0.
819 	 */
820 
821 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
822 	ret = chip->controller->ops->setup_data_interface(chip, chipnr,
823 							&chip->data_interface);
824 	if (ret)
825 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
826 
827 	return ret;
828 }
829 
830 /**
831  * nand_setup_data_interface - Setup the best data interface and timings
832  * @chip: The NAND chip
833  * @chipnr: Internal die id
834  *
835  * Find and configure the best data interface and NAND timings supported by
836  * the chip and the driver.
837  * First tries to retrieve supported timing modes from ONFI information,
838  * and if the NAND chip does not support ONFI, relies on the
839  * ->onfi_timing_mode_default specified in the nand_ids table.
840  *
841  * Returns 0 for success or negative error code otherwise.
842  */
843 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
844 {
845 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
846 		chip->onfi_timing_mode_default,
847 	};
848 	int ret;
849 
850 	if (!nand_has_setup_data_iface(chip))
851 		return 0;
852 
853 	/* Change the mode on the chip side (if supported by the NAND chip) */
854 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
855 		nand_select_target(chip, chipnr);
856 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
857 					tmode_param);
858 		nand_deselect_target(chip);
859 		if (ret)
860 			return ret;
861 	}
862 
863 	/* Change the mode on the controller side */
864 	ret = chip->controller->ops->setup_data_interface(chip, chipnr,
865 							&chip->data_interface);
866 	if (ret)
867 		return ret;
868 
869 	/* Check the mode has been accepted by the chip, if supported */
870 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
871 		return 0;
872 
873 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
874 	nand_select_target(chip, chipnr);
875 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
876 				tmode_param);
877 	nand_deselect_target(chip);
878 	if (ret)
879 		goto err_reset_chip;
880 
881 	if (tmode_param[0] != chip->onfi_timing_mode_default) {
882 		pr_warn("timing mode %d not acknowledged by the NAND chip\n",
883 			chip->onfi_timing_mode_default);
884 		goto err_reset_chip;
885 	}
886 
887 	return 0;
888 
889 err_reset_chip:
890 	/*
891 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
892 	 * timing mode.
893 	 */
894 	nand_reset_data_interface(chip, chipnr);
895 	nand_select_target(chip, chipnr);
896 	nand_reset_op(chip);
897 	nand_deselect_target(chip);
898 
899 	return ret;
900 }
901 
902 /**
903  * nand_init_data_interface - find the best data interface and timings
904  * @chip: The NAND chip
905  *
906  * Find the best data interface and NAND timings supported by the chip
907  * and the driver.
908  * First tries to retrieve supported timing modes from ONFI information,
909  * and if the NAND chip does not support ONFI, relies on the
910  * ->onfi_timing_mode_default specified in the nand_ids table. After this
911  * function nand_chip->data_interface is initialized with the best timing mode
912  * available.
913  *
914  * Returns 0 for success or negative error code otherwise.
915  */
916 static int nand_init_data_interface(struct nand_chip *chip)
917 {
918 	int modes, mode, ret;
919 
920 	if (!nand_has_setup_data_iface(chip))
921 		return 0;
922 
923 	/*
924 	 * First try to identify the best timings from ONFI parameters and
925 	 * if the NAND does not support ONFI, fallback to the default ONFI
926 	 * timing mode.
927 	 */
928 	if (chip->parameters.onfi) {
929 		modes = chip->parameters.onfi->async_timing_mode;
930 	} else {
931 		if (!chip->onfi_timing_mode_default)
932 			return 0;
933 
934 		modes = GENMASK(chip->onfi_timing_mode_default, 0);
935 	}
936 
937 	for (mode = fls(modes) - 1; mode >= 0; mode--) {
938 		ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
939 		if (ret)
940 			continue;
941 
942 		/*
943 		 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
944 		 * controller supports the requested timings.
945 		 */
946 		ret = chip->controller->ops->setup_data_interface(chip,
947 						 NAND_DATA_IFACE_CHECK_ONLY,
948 						 &chip->data_interface);
949 		if (!ret) {
950 			chip->onfi_timing_mode_default = mode;
951 			break;
952 		}
953 	}
954 
955 	return 0;
956 }
957 
958 /**
959  * nand_fill_column_cycles - fill the column cycles of an address
960  * @chip: The NAND chip
961  * @addrs: Array of address cycles to fill
962  * @offset_in_page: The offset in the page
963  *
964  * Fills the first or the first two bytes of the @addrs field depending
965  * on the NAND bus width and the page size.
966  *
967  * Returns the number of cycles needed to encode the column, or a negative
968  * error code in case one of the arguments is invalid.
969  */
970 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
971 				   unsigned int offset_in_page)
972 {
973 	struct mtd_info *mtd = nand_to_mtd(chip);
974 
975 	/* Make sure the offset is less than the actual page size. */
976 	if (offset_in_page > mtd->writesize + mtd->oobsize)
977 		return -EINVAL;
978 
979 	/*
980 	 * On small page NANDs, there's a dedicated command to access the OOB
981 	 * area, and the column address is relative to the start of the OOB
982 	 * area, not the start of the page. Asjust the address accordingly.
983 	 */
984 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
985 		offset_in_page -= mtd->writesize;
986 
987 	/*
988 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
989 	 * wide, then it must be divided by 2.
990 	 */
991 	if (chip->options & NAND_BUSWIDTH_16) {
992 		if (WARN_ON(offset_in_page % 2))
993 			return -EINVAL;
994 
995 		offset_in_page /= 2;
996 	}
997 
998 	addrs[0] = offset_in_page;
999 
1000 	/*
1001 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1002 	 * need 2
1003 	 */
1004 	if (mtd->writesize <= 512)
1005 		return 1;
1006 
1007 	addrs[1] = offset_in_page >> 8;
1008 
1009 	return 2;
1010 }
1011 
1012 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1013 				     unsigned int offset_in_page, void *buf,
1014 				     unsigned int len)
1015 {
1016 	struct mtd_info *mtd = nand_to_mtd(chip);
1017 	const struct nand_sdr_timings *sdr =
1018 		nand_get_sdr_timings(&chip->data_interface);
1019 	u8 addrs[4];
1020 	struct nand_op_instr instrs[] = {
1021 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1022 		NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1023 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1024 				 PSEC_TO_NSEC(sdr->tRR_min)),
1025 		NAND_OP_DATA_IN(len, buf, 0),
1026 	};
1027 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1028 	int ret;
1029 
1030 	/* Drop the DATA_IN instruction if len is set to 0. */
1031 	if (!len)
1032 		op.ninstrs--;
1033 
1034 	if (offset_in_page >= mtd->writesize)
1035 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1036 	else if (offset_in_page >= 256 &&
1037 		 !(chip->options & NAND_BUSWIDTH_16))
1038 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1039 
1040 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1041 	if (ret < 0)
1042 		return ret;
1043 
1044 	addrs[1] = page;
1045 	addrs[2] = page >> 8;
1046 
1047 	if (chip->options & NAND_ROW_ADDR_3) {
1048 		addrs[3] = page >> 16;
1049 		instrs[1].ctx.addr.naddrs++;
1050 	}
1051 
1052 	return nand_exec_op(chip, &op);
1053 }
1054 
1055 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1056 				     unsigned int offset_in_page, void *buf,
1057 				     unsigned int len)
1058 {
1059 	const struct nand_sdr_timings *sdr =
1060 		nand_get_sdr_timings(&chip->data_interface);
1061 	u8 addrs[5];
1062 	struct nand_op_instr instrs[] = {
1063 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1064 		NAND_OP_ADDR(4, addrs, 0),
1065 		NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1066 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1067 				 PSEC_TO_NSEC(sdr->tRR_min)),
1068 		NAND_OP_DATA_IN(len, buf, 0),
1069 	};
1070 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1071 	int ret;
1072 
1073 	/* Drop the DATA_IN instruction if len is set to 0. */
1074 	if (!len)
1075 		op.ninstrs--;
1076 
1077 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1078 	if (ret < 0)
1079 		return ret;
1080 
1081 	addrs[2] = page;
1082 	addrs[3] = page >> 8;
1083 
1084 	if (chip->options & NAND_ROW_ADDR_3) {
1085 		addrs[4] = page >> 16;
1086 		instrs[1].ctx.addr.naddrs++;
1087 	}
1088 
1089 	return nand_exec_op(chip, &op);
1090 }
1091 
1092 /**
1093  * nand_read_page_op - Do a READ PAGE operation
1094  * @chip: The NAND chip
1095  * @page: page to read
1096  * @offset_in_page: offset within the page
1097  * @buf: buffer used to store the data
1098  * @len: length of the buffer
1099  *
1100  * This function issues a READ PAGE operation.
1101  * This function does not select/unselect the CS line.
1102  *
1103  * Returns 0 on success, a negative error code otherwise.
1104  */
1105 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1106 		      unsigned int offset_in_page, void *buf, unsigned int len)
1107 {
1108 	struct mtd_info *mtd = nand_to_mtd(chip);
1109 
1110 	if (len && !buf)
1111 		return -EINVAL;
1112 
1113 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1114 		return -EINVAL;
1115 
1116 	if (nand_has_exec_op(chip)) {
1117 		if (mtd->writesize > 512)
1118 			return nand_lp_exec_read_page_op(chip, page,
1119 							 offset_in_page, buf,
1120 							 len);
1121 
1122 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1123 						 buf, len);
1124 	}
1125 
1126 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1127 	if (len)
1128 		chip->legacy.read_buf(chip, buf, len);
1129 
1130 	return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(nand_read_page_op);
1133 
1134 /**
1135  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1136  * @chip: The NAND chip
1137  * @page: parameter page to read
1138  * @buf: buffer used to store the data
1139  * @len: length of the buffer
1140  *
1141  * This function issues a READ PARAMETER PAGE operation.
1142  * This function does not select/unselect the CS line.
1143  *
1144  * Returns 0 on success, a negative error code otherwise.
1145  */
1146 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1147 			    unsigned int len)
1148 {
1149 	unsigned int i;
1150 	u8 *p = buf;
1151 
1152 	if (len && !buf)
1153 		return -EINVAL;
1154 
1155 	if (nand_has_exec_op(chip)) {
1156 		const struct nand_sdr_timings *sdr =
1157 			nand_get_sdr_timings(&chip->data_interface);
1158 		struct nand_op_instr instrs[] = {
1159 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1160 			NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1161 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1162 					 PSEC_TO_NSEC(sdr->tRR_min)),
1163 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1164 		};
1165 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1166 
1167 		/* Drop the DATA_IN instruction if len is set to 0. */
1168 		if (!len)
1169 			op.ninstrs--;
1170 
1171 		return nand_exec_op(chip, &op);
1172 	}
1173 
1174 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1175 	for (i = 0; i < len; i++)
1176 		p[i] = chip->legacy.read_byte(chip);
1177 
1178 	return 0;
1179 }
1180 
1181 /**
1182  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1183  * @chip: The NAND chip
1184  * @offset_in_page: offset within the page
1185  * @buf: buffer used to store the data
1186  * @len: length of the buffer
1187  * @force_8bit: force 8-bit bus access
1188  *
1189  * This function issues a CHANGE READ COLUMN operation.
1190  * This function does not select/unselect the CS line.
1191  *
1192  * Returns 0 on success, a negative error code otherwise.
1193  */
1194 int nand_change_read_column_op(struct nand_chip *chip,
1195 			       unsigned int offset_in_page, void *buf,
1196 			       unsigned int len, bool force_8bit)
1197 {
1198 	struct mtd_info *mtd = nand_to_mtd(chip);
1199 
1200 	if (len && !buf)
1201 		return -EINVAL;
1202 
1203 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1204 		return -EINVAL;
1205 
1206 	/* Small page NANDs do not support column change. */
1207 	if (mtd->writesize <= 512)
1208 		return -ENOTSUPP;
1209 
1210 	if (nand_has_exec_op(chip)) {
1211 		const struct nand_sdr_timings *sdr =
1212 			nand_get_sdr_timings(&chip->data_interface);
1213 		u8 addrs[2] = {};
1214 		struct nand_op_instr instrs[] = {
1215 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1216 			NAND_OP_ADDR(2, addrs, 0),
1217 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1218 				    PSEC_TO_NSEC(sdr->tCCS_min)),
1219 			NAND_OP_DATA_IN(len, buf, 0),
1220 		};
1221 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1222 		int ret;
1223 
1224 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1225 		if (ret < 0)
1226 			return ret;
1227 
1228 		/* Drop the DATA_IN instruction if len is set to 0. */
1229 		if (!len)
1230 			op.ninstrs--;
1231 
1232 		instrs[3].ctx.data.force_8bit = force_8bit;
1233 
1234 		return nand_exec_op(chip, &op);
1235 	}
1236 
1237 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1238 	if (len)
1239 		chip->legacy.read_buf(chip, buf, len);
1240 
1241 	return 0;
1242 }
1243 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1244 
1245 /**
1246  * nand_read_oob_op - Do a READ OOB operation
1247  * @chip: The NAND chip
1248  * @page: page to read
1249  * @offset_in_oob: offset within the OOB area
1250  * @buf: buffer used to store the data
1251  * @len: length of the buffer
1252  *
1253  * This function issues a READ OOB operation.
1254  * This function does not select/unselect the CS line.
1255  *
1256  * Returns 0 on success, a negative error code otherwise.
1257  */
1258 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1259 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1260 {
1261 	struct mtd_info *mtd = nand_to_mtd(chip);
1262 
1263 	if (len && !buf)
1264 		return -EINVAL;
1265 
1266 	if (offset_in_oob + len > mtd->oobsize)
1267 		return -EINVAL;
1268 
1269 	if (nand_has_exec_op(chip))
1270 		return nand_read_page_op(chip, page,
1271 					 mtd->writesize + offset_in_oob,
1272 					 buf, len);
1273 
1274 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1275 	if (len)
1276 		chip->legacy.read_buf(chip, buf, len);
1277 
1278 	return 0;
1279 }
1280 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1281 
1282 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1283 				  unsigned int offset_in_page, const void *buf,
1284 				  unsigned int len, bool prog)
1285 {
1286 	struct mtd_info *mtd = nand_to_mtd(chip);
1287 	const struct nand_sdr_timings *sdr =
1288 		nand_get_sdr_timings(&chip->data_interface);
1289 	u8 addrs[5] = {};
1290 	struct nand_op_instr instrs[] = {
1291 		/*
1292 		 * The first instruction will be dropped if we're dealing
1293 		 * with a large page NAND and adjusted if we're dealing
1294 		 * with a small page NAND and the page offset is > 255.
1295 		 */
1296 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1297 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1298 		NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1299 		NAND_OP_DATA_OUT(len, buf, 0),
1300 		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1301 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1302 	};
1303 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1304 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1305 	int ret;
1306 	u8 status;
1307 
1308 	if (naddrs < 0)
1309 		return naddrs;
1310 
1311 	addrs[naddrs++] = page;
1312 	addrs[naddrs++] = page >> 8;
1313 	if (chip->options & NAND_ROW_ADDR_3)
1314 		addrs[naddrs++] = page >> 16;
1315 
1316 	instrs[2].ctx.addr.naddrs = naddrs;
1317 
1318 	/* Drop the last two instructions if we're not programming the page. */
1319 	if (!prog) {
1320 		op.ninstrs -= 2;
1321 		/* Also drop the DATA_OUT instruction if empty. */
1322 		if (!len)
1323 			op.ninstrs--;
1324 	}
1325 
1326 	if (mtd->writesize <= 512) {
1327 		/*
1328 		 * Small pages need some more tweaking: we have to adjust the
1329 		 * first instruction depending on the page offset we're trying
1330 		 * to access.
1331 		 */
1332 		if (offset_in_page >= mtd->writesize)
1333 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1334 		else if (offset_in_page >= 256 &&
1335 			 !(chip->options & NAND_BUSWIDTH_16))
1336 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1337 	} else {
1338 		/*
1339 		 * Drop the first command if we're dealing with a large page
1340 		 * NAND.
1341 		 */
1342 		op.instrs++;
1343 		op.ninstrs--;
1344 	}
1345 
1346 	ret = nand_exec_op(chip, &op);
1347 	if (!prog || ret)
1348 		return ret;
1349 
1350 	ret = nand_status_op(chip, &status);
1351 	if (ret)
1352 		return ret;
1353 
1354 	return status;
1355 }
1356 
1357 /**
1358  * nand_prog_page_begin_op - starts a PROG PAGE operation
1359  * @chip: The NAND chip
1360  * @page: page to write
1361  * @offset_in_page: offset within the page
1362  * @buf: buffer containing the data to write to the page
1363  * @len: length of the buffer
1364  *
1365  * This function issues the first half of a PROG PAGE operation.
1366  * This function does not select/unselect the CS line.
1367  *
1368  * Returns 0 on success, a negative error code otherwise.
1369  */
1370 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1371 			    unsigned int offset_in_page, const void *buf,
1372 			    unsigned int len)
1373 {
1374 	struct mtd_info *mtd = nand_to_mtd(chip);
1375 
1376 	if (len && !buf)
1377 		return -EINVAL;
1378 
1379 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1380 		return -EINVAL;
1381 
1382 	if (nand_has_exec_op(chip))
1383 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1384 					      len, false);
1385 
1386 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1387 
1388 	if (buf)
1389 		chip->legacy.write_buf(chip, buf, len);
1390 
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1394 
1395 /**
1396  * nand_prog_page_end_op - ends a PROG PAGE operation
1397  * @chip: The NAND chip
1398  *
1399  * This function issues the second half of a PROG PAGE operation.
1400  * This function does not select/unselect the CS line.
1401  *
1402  * Returns 0 on success, a negative error code otherwise.
1403  */
1404 int nand_prog_page_end_op(struct nand_chip *chip)
1405 {
1406 	int ret;
1407 	u8 status;
1408 
1409 	if (nand_has_exec_op(chip)) {
1410 		const struct nand_sdr_timings *sdr =
1411 			nand_get_sdr_timings(&chip->data_interface);
1412 		struct nand_op_instr instrs[] = {
1413 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1414 				    PSEC_TO_NSEC(sdr->tWB_max)),
1415 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1416 		};
1417 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1418 
1419 		ret = nand_exec_op(chip, &op);
1420 		if (ret)
1421 			return ret;
1422 
1423 		ret = nand_status_op(chip, &status);
1424 		if (ret)
1425 			return ret;
1426 	} else {
1427 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1428 		ret = chip->legacy.waitfunc(chip);
1429 		if (ret < 0)
1430 			return ret;
1431 
1432 		status = ret;
1433 	}
1434 
1435 	if (status & NAND_STATUS_FAIL)
1436 		return -EIO;
1437 
1438 	return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1441 
1442 /**
1443  * nand_prog_page_op - Do a full PROG PAGE operation
1444  * @chip: The NAND chip
1445  * @page: page to write
1446  * @offset_in_page: offset within the page
1447  * @buf: buffer containing the data to write to the page
1448  * @len: length of the buffer
1449  *
1450  * This function issues a full PROG PAGE operation.
1451  * This function does not select/unselect the CS line.
1452  *
1453  * Returns 0 on success, a negative error code otherwise.
1454  */
1455 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1456 		      unsigned int offset_in_page, const void *buf,
1457 		      unsigned int len)
1458 {
1459 	struct mtd_info *mtd = nand_to_mtd(chip);
1460 	int status;
1461 
1462 	if (!len || !buf)
1463 		return -EINVAL;
1464 
1465 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1466 		return -EINVAL;
1467 
1468 	if (nand_has_exec_op(chip)) {
1469 		status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1470 						len, true);
1471 	} else {
1472 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1473 				     page);
1474 		chip->legacy.write_buf(chip, buf, len);
1475 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1476 		status = chip->legacy.waitfunc(chip);
1477 	}
1478 
1479 	if (status & NAND_STATUS_FAIL)
1480 		return -EIO;
1481 
1482 	return 0;
1483 }
1484 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1485 
1486 /**
1487  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1488  * @chip: The NAND chip
1489  * @offset_in_page: offset within the page
1490  * @buf: buffer containing the data to send to the NAND
1491  * @len: length of the buffer
1492  * @force_8bit: force 8-bit bus access
1493  *
1494  * This function issues a CHANGE WRITE COLUMN operation.
1495  * This function does not select/unselect the CS line.
1496  *
1497  * Returns 0 on success, a negative error code otherwise.
1498  */
1499 int nand_change_write_column_op(struct nand_chip *chip,
1500 				unsigned int offset_in_page,
1501 				const void *buf, unsigned int len,
1502 				bool force_8bit)
1503 {
1504 	struct mtd_info *mtd = nand_to_mtd(chip);
1505 
1506 	if (len && !buf)
1507 		return -EINVAL;
1508 
1509 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1510 		return -EINVAL;
1511 
1512 	/* Small page NANDs do not support column change. */
1513 	if (mtd->writesize <= 512)
1514 		return -ENOTSUPP;
1515 
1516 	if (nand_has_exec_op(chip)) {
1517 		const struct nand_sdr_timings *sdr =
1518 			nand_get_sdr_timings(&chip->data_interface);
1519 		u8 addrs[2];
1520 		struct nand_op_instr instrs[] = {
1521 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1522 			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1523 			NAND_OP_DATA_OUT(len, buf, 0),
1524 		};
1525 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1526 		int ret;
1527 
1528 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1529 		if (ret < 0)
1530 			return ret;
1531 
1532 		instrs[2].ctx.data.force_8bit = force_8bit;
1533 
1534 		/* Drop the DATA_OUT instruction if len is set to 0. */
1535 		if (!len)
1536 			op.ninstrs--;
1537 
1538 		return nand_exec_op(chip, &op);
1539 	}
1540 
1541 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1542 	if (len)
1543 		chip->legacy.write_buf(chip, buf, len);
1544 
1545 	return 0;
1546 }
1547 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1548 
1549 /**
1550  * nand_readid_op - Do a READID operation
1551  * @chip: The NAND chip
1552  * @addr: address cycle to pass after the READID command
1553  * @buf: buffer used to store the ID
1554  * @len: length of the buffer
1555  *
1556  * This function sends a READID command and reads back the ID returned by the
1557  * NAND.
1558  * This function does not select/unselect the CS line.
1559  *
1560  * Returns 0 on success, a negative error code otherwise.
1561  */
1562 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1563 		   unsigned int len)
1564 {
1565 	unsigned int i;
1566 	u8 *id = buf;
1567 
1568 	if (len && !buf)
1569 		return -EINVAL;
1570 
1571 	if (nand_has_exec_op(chip)) {
1572 		const struct nand_sdr_timings *sdr =
1573 			nand_get_sdr_timings(&chip->data_interface);
1574 		struct nand_op_instr instrs[] = {
1575 			NAND_OP_CMD(NAND_CMD_READID, 0),
1576 			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1577 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1578 		};
1579 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1580 
1581 		/* Drop the DATA_IN instruction if len is set to 0. */
1582 		if (!len)
1583 			op.ninstrs--;
1584 
1585 		return nand_exec_op(chip, &op);
1586 	}
1587 
1588 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1589 
1590 	for (i = 0; i < len; i++)
1591 		id[i] = chip->legacy.read_byte(chip);
1592 
1593 	return 0;
1594 }
1595 EXPORT_SYMBOL_GPL(nand_readid_op);
1596 
1597 /**
1598  * nand_status_op - Do a STATUS operation
1599  * @chip: The NAND chip
1600  * @status: out variable to store the NAND status
1601  *
1602  * This function sends a STATUS command and reads back the status returned by
1603  * the NAND.
1604  * This function does not select/unselect the CS line.
1605  *
1606  * Returns 0 on success, a negative error code otherwise.
1607  */
1608 int nand_status_op(struct nand_chip *chip, u8 *status)
1609 {
1610 	if (nand_has_exec_op(chip)) {
1611 		const struct nand_sdr_timings *sdr =
1612 			nand_get_sdr_timings(&chip->data_interface);
1613 		struct nand_op_instr instrs[] = {
1614 			NAND_OP_CMD(NAND_CMD_STATUS,
1615 				    PSEC_TO_NSEC(sdr->tADL_min)),
1616 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1617 		};
1618 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1619 
1620 		if (!status)
1621 			op.ninstrs--;
1622 
1623 		return nand_exec_op(chip, &op);
1624 	}
1625 
1626 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1627 	if (status)
1628 		*status = chip->legacy.read_byte(chip);
1629 
1630 	return 0;
1631 }
1632 EXPORT_SYMBOL_GPL(nand_status_op);
1633 
1634 /**
1635  * nand_exit_status_op - Exit a STATUS operation
1636  * @chip: The NAND chip
1637  *
1638  * This function sends a READ0 command to cancel the effect of the STATUS
1639  * command to avoid reading only the status until a new read command is sent.
1640  *
1641  * This function does not select/unselect the CS line.
1642  *
1643  * Returns 0 on success, a negative error code otherwise.
1644  */
1645 int nand_exit_status_op(struct nand_chip *chip)
1646 {
1647 	if (nand_has_exec_op(chip)) {
1648 		struct nand_op_instr instrs[] = {
1649 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1650 		};
1651 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1652 
1653 		return nand_exec_op(chip, &op);
1654 	}
1655 
1656 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1657 
1658 	return 0;
1659 }
1660 
1661 /**
1662  * nand_erase_op - Do an erase operation
1663  * @chip: The NAND chip
1664  * @eraseblock: block to erase
1665  *
1666  * This function sends an ERASE command and waits for the NAND to be ready
1667  * before returning.
1668  * This function does not select/unselect the CS line.
1669  *
1670  * Returns 0 on success, a negative error code otherwise.
1671  */
1672 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1673 {
1674 	unsigned int page = eraseblock <<
1675 			    (chip->phys_erase_shift - chip->page_shift);
1676 	int ret;
1677 	u8 status;
1678 
1679 	if (nand_has_exec_op(chip)) {
1680 		const struct nand_sdr_timings *sdr =
1681 			nand_get_sdr_timings(&chip->data_interface);
1682 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1683 		struct nand_op_instr instrs[] = {
1684 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1685 			NAND_OP_ADDR(2, addrs, 0),
1686 			NAND_OP_CMD(NAND_CMD_ERASE2,
1687 				    PSEC_TO_MSEC(sdr->tWB_max)),
1688 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1689 		};
1690 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1691 
1692 		if (chip->options & NAND_ROW_ADDR_3)
1693 			instrs[1].ctx.addr.naddrs++;
1694 
1695 		ret = nand_exec_op(chip, &op);
1696 		if (ret)
1697 			return ret;
1698 
1699 		ret = nand_status_op(chip, &status);
1700 		if (ret)
1701 			return ret;
1702 	} else {
1703 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1704 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1705 
1706 		ret = chip->legacy.waitfunc(chip);
1707 		if (ret < 0)
1708 			return ret;
1709 
1710 		status = ret;
1711 	}
1712 
1713 	if (status & NAND_STATUS_FAIL)
1714 		return -EIO;
1715 
1716 	return 0;
1717 }
1718 EXPORT_SYMBOL_GPL(nand_erase_op);
1719 
1720 /**
1721  * nand_set_features_op - Do a SET FEATURES operation
1722  * @chip: The NAND chip
1723  * @feature: feature id
1724  * @data: 4 bytes of data
1725  *
1726  * This function sends a SET FEATURES command and waits for the NAND to be
1727  * ready before returning.
1728  * This function does not select/unselect the CS line.
1729  *
1730  * Returns 0 on success, a negative error code otherwise.
1731  */
1732 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1733 				const void *data)
1734 {
1735 	const u8 *params = data;
1736 	int i, ret;
1737 
1738 	if (nand_has_exec_op(chip)) {
1739 		const struct nand_sdr_timings *sdr =
1740 			nand_get_sdr_timings(&chip->data_interface);
1741 		struct nand_op_instr instrs[] = {
1742 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1743 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1744 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1745 					      PSEC_TO_NSEC(sdr->tWB_max)),
1746 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1747 		};
1748 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1749 
1750 		return nand_exec_op(chip, &op);
1751 	}
1752 
1753 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1754 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1755 		chip->legacy.write_byte(chip, params[i]);
1756 
1757 	ret = chip->legacy.waitfunc(chip);
1758 	if (ret < 0)
1759 		return ret;
1760 
1761 	if (ret & NAND_STATUS_FAIL)
1762 		return -EIO;
1763 
1764 	return 0;
1765 }
1766 
1767 /**
1768  * nand_get_features_op - Do a GET FEATURES operation
1769  * @chip: The NAND chip
1770  * @feature: feature id
1771  * @data: 4 bytes of data
1772  *
1773  * This function sends a GET FEATURES command and waits for the NAND to be
1774  * ready before returning.
1775  * This function does not select/unselect the CS line.
1776  *
1777  * Returns 0 on success, a negative error code otherwise.
1778  */
1779 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1780 				void *data)
1781 {
1782 	u8 *params = data;
1783 	int i;
1784 
1785 	if (nand_has_exec_op(chip)) {
1786 		const struct nand_sdr_timings *sdr =
1787 			nand_get_sdr_timings(&chip->data_interface);
1788 		struct nand_op_instr instrs[] = {
1789 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1790 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1791 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1792 					 PSEC_TO_NSEC(sdr->tRR_min)),
1793 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1794 					     data, 0),
1795 		};
1796 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1797 
1798 		return nand_exec_op(chip, &op);
1799 	}
1800 
1801 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1802 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1803 		params[i] = chip->legacy.read_byte(chip);
1804 
1805 	return 0;
1806 }
1807 
1808 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1809 			    unsigned int delay_ns)
1810 {
1811 	if (nand_has_exec_op(chip)) {
1812 		struct nand_op_instr instrs[] = {
1813 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1814 					 PSEC_TO_NSEC(delay_ns)),
1815 		};
1816 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1817 
1818 		return nand_exec_op(chip, &op);
1819 	}
1820 
1821 	/* Apply delay or wait for ready/busy pin */
1822 	if (!chip->legacy.dev_ready)
1823 		udelay(chip->legacy.chip_delay);
1824 	else
1825 		nand_wait_ready(chip);
1826 
1827 	return 0;
1828 }
1829 
1830 /**
1831  * nand_reset_op - Do a reset operation
1832  * @chip: The NAND chip
1833  *
1834  * This function sends a RESET command and waits for the NAND to be ready
1835  * before returning.
1836  * This function does not select/unselect the CS line.
1837  *
1838  * Returns 0 on success, a negative error code otherwise.
1839  */
1840 int nand_reset_op(struct nand_chip *chip)
1841 {
1842 	if (nand_has_exec_op(chip)) {
1843 		const struct nand_sdr_timings *sdr =
1844 			nand_get_sdr_timings(&chip->data_interface);
1845 		struct nand_op_instr instrs[] = {
1846 			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1847 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1848 		};
1849 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1850 
1851 		return nand_exec_op(chip, &op);
1852 	}
1853 
1854 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
1855 
1856 	return 0;
1857 }
1858 EXPORT_SYMBOL_GPL(nand_reset_op);
1859 
1860 /**
1861  * nand_read_data_op - Read data from the NAND
1862  * @chip: The NAND chip
1863  * @buf: buffer used to store the data
1864  * @len: length of the buffer
1865  * @force_8bit: force 8-bit bus access
1866  *
1867  * This function does a raw data read on the bus. Usually used after launching
1868  * another NAND operation like nand_read_page_op().
1869  * This function does not select/unselect the CS line.
1870  *
1871  * Returns 0 on success, a negative error code otherwise.
1872  */
1873 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1874 		      bool force_8bit)
1875 {
1876 	if (!len || !buf)
1877 		return -EINVAL;
1878 
1879 	if (nand_has_exec_op(chip)) {
1880 		struct nand_op_instr instrs[] = {
1881 			NAND_OP_DATA_IN(len, buf, 0),
1882 		};
1883 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1884 
1885 		instrs[0].ctx.data.force_8bit = force_8bit;
1886 
1887 		return nand_exec_op(chip, &op);
1888 	}
1889 
1890 	if (force_8bit) {
1891 		u8 *p = buf;
1892 		unsigned int i;
1893 
1894 		for (i = 0; i < len; i++)
1895 			p[i] = chip->legacy.read_byte(chip);
1896 	} else {
1897 		chip->legacy.read_buf(chip, buf, len);
1898 	}
1899 
1900 	return 0;
1901 }
1902 EXPORT_SYMBOL_GPL(nand_read_data_op);
1903 
1904 /**
1905  * nand_write_data_op - Write data from the NAND
1906  * @chip: The NAND chip
1907  * @buf: buffer containing the data to send on the bus
1908  * @len: length of the buffer
1909  * @force_8bit: force 8-bit bus access
1910  *
1911  * This function does a raw data write on the bus. Usually used after launching
1912  * another NAND operation like nand_write_page_begin_op().
1913  * This function does not select/unselect the CS line.
1914  *
1915  * Returns 0 on success, a negative error code otherwise.
1916  */
1917 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1918 		       unsigned int len, bool force_8bit)
1919 {
1920 	if (!len || !buf)
1921 		return -EINVAL;
1922 
1923 	if (nand_has_exec_op(chip)) {
1924 		struct nand_op_instr instrs[] = {
1925 			NAND_OP_DATA_OUT(len, buf, 0),
1926 		};
1927 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1928 
1929 		instrs[0].ctx.data.force_8bit = force_8bit;
1930 
1931 		return nand_exec_op(chip, &op);
1932 	}
1933 
1934 	if (force_8bit) {
1935 		const u8 *p = buf;
1936 		unsigned int i;
1937 
1938 		for (i = 0; i < len; i++)
1939 			chip->legacy.write_byte(chip, p[i]);
1940 	} else {
1941 		chip->legacy.write_buf(chip, buf, len);
1942 	}
1943 
1944 	return 0;
1945 }
1946 EXPORT_SYMBOL_GPL(nand_write_data_op);
1947 
1948 /**
1949  * struct nand_op_parser_ctx - Context used by the parser
1950  * @instrs: array of all the instructions that must be addressed
1951  * @ninstrs: length of the @instrs array
1952  * @subop: Sub-operation to be passed to the NAND controller
1953  *
1954  * This structure is used by the core to split NAND operations into
1955  * sub-operations that can be handled by the NAND controller.
1956  */
1957 struct nand_op_parser_ctx {
1958 	const struct nand_op_instr *instrs;
1959 	unsigned int ninstrs;
1960 	struct nand_subop subop;
1961 };
1962 
1963 /**
1964  * nand_op_parser_must_split_instr - Checks if an instruction must be split
1965  * @pat: the parser pattern element that matches @instr
1966  * @instr: pointer to the instruction to check
1967  * @start_offset: this is an in/out parameter. If @instr has already been
1968  *		  split, then @start_offset is the offset from which to start
1969  *		  (either an address cycle or an offset in the data buffer).
1970  *		  Conversely, if the function returns true (ie. instr must be
1971  *		  split), this parameter is updated to point to the first
1972  *		  data/address cycle that has not been taken care of.
1973  *
1974  * Some NAND controllers are limited and cannot send X address cycles with a
1975  * unique operation, or cannot read/write more than Y bytes at the same time.
1976  * In this case, split the instruction that does not fit in a single
1977  * controller-operation into two or more chunks.
1978  *
1979  * Returns true if the instruction must be split, false otherwise.
1980  * The @start_offset parameter is also updated to the offset at which the next
1981  * bundle of instruction must start (if an address or a data instruction).
1982  */
1983 static bool
1984 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
1985 				const struct nand_op_instr *instr,
1986 				unsigned int *start_offset)
1987 {
1988 	switch (pat->type) {
1989 	case NAND_OP_ADDR_INSTR:
1990 		if (!pat->ctx.addr.maxcycles)
1991 			break;
1992 
1993 		if (instr->ctx.addr.naddrs - *start_offset >
1994 		    pat->ctx.addr.maxcycles) {
1995 			*start_offset += pat->ctx.addr.maxcycles;
1996 			return true;
1997 		}
1998 		break;
1999 
2000 	case NAND_OP_DATA_IN_INSTR:
2001 	case NAND_OP_DATA_OUT_INSTR:
2002 		if (!pat->ctx.data.maxlen)
2003 			break;
2004 
2005 		if (instr->ctx.data.len - *start_offset >
2006 		    pat->ctx.data.maxlen) {
2007 			*start_offset += pat->ctx.data.maxlen;
2008 			return true;
2009 		}
2010 		break;
2011 
2012 	default:
2013 		break;
2014 	}
2015 
2016 	return false;
2017 }
2018 
2019 /**
2020  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2021  *			      remaining in the parser context
2022  * @pat: the pattern to test
2023  * @ctx: the parser context structure to match with the pattern @pat
2024  *
2025  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2026  * Returns true if this is the case, false ortherwise. When true is returned,
2027  * @ctx->subop is updated with the set of instructions to be passed to the
2028  * controller driver.
2029  */
2030 static bool
2031 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2032 			 struct nand_op_parser_ctx *ctx)
2033 {
2034 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2035 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2036 	const struct nand_op_instr *instr = ctx->subop.instrs;
2037 	unsigned int i, ninstrs;
2038 
2039 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2040 		/*
2041 		 * The pattern instruction does not match the operation
2042 		 * instruction. If the instruction is marked optional in the
2043 		 * pattern definition, we skip the pattern element and continue
2044 		 * to the next one. If the element is mandatory, there's no
2045 		 * match and we can return false directly.
2046 		 */
2047 		if (instr->type != pat->elems[i].type) {
2048 			if (!pat->elems[i].optional)
2049 				return false;
2050 
2051 			continue;
2052 		}
2053 
2054 		/*
2055 		 * Now check the pattern element constraints. If the pattern is
2056 		 * not able to handle the whole instruction in a single step,
2057 		 * we have to split it.
2058 		 * The last_instr_end_off value comes back updated to point to
2059 		 * the position where we have to split the instruction (the
2060 		 * start of the next subop chunk).
2061 		 */
2062 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2063 						    &instr_offset)) {
2064 			ninstrs++;
2065 			i++;
2066 			break;
2067 		}
2068 
2069 		instr++;
2070 		ninstrs++;
2071 		instr_offset = 0;
2072 	}
2073 
2074 	/*
2075 	 * This can happen if all instructions of a pattern are optional.
2076 	 * Still, if there's not at least one instruction handled by this
2077 	 * pattern, this is not a match, and we should try the next one (if
2078 	 * any).
2079 	 */
2080 	if (!ninstrs)
2081 		return false;
2082 
2083 	/*
2084 	 * We had a match on the pattern head, but the pattern may be longer
2085 	 * than the instructions we're asked to execute. We need to make sure
2086 	 * there's no mandatory elements in the pattern tail.
2087 	 */
2088 	for (; i < pat->nelems; i++) {
2089 		if (!pat->elems[i].optional)
2090 			return false;
2091 	}
2092 
2093 	/*
2094 	 * We have a match: update the subop structure accordingly and return
2095 	 * true.
2096 	 */
2097 	ctx->subop.ninstrs = ninstrs;
2098 	ctx->subop.last_instr_end_off = instr_offset;
2099 
2100 	return true;
2101 }
2102 
2103 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2104 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2105 {
2106 	const struct nand_op_instr *instr;
2107 	char *prefix = "      ";
2108 	unsigned int i;
2109 
2110 	pr_debug("executing subop:\n");
2111 
2112 	for (i = 0; i < ctx->ninstrs; i++) {
2113 		instr = &ctx->instrs[i];
2114 
2115 		if (instr == &ctx->subop.instrs[0])
2116 			prefix = "    ->";
2117 
2118 		nand_op_trace(prefix, instr);
2119 
2120 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2121 			prefix = "      ";
2122 	}
2123 }
2124 #else
2125 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2126 {
2127 	/* NOP */
2128 }
2129 #endif
2130 
2131 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2132 				  const struct nand_op_parser_ctx *b)
2133 {
2134 	if (a->subop.ninstrs < b->subop.ninstrs)
2135 		return -1;
2136 	else if (a->subop.ninstrs > b->subop.ninstrs)
2137 		return 1;
2138 
2139 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2140 		return -1;
2141 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2142 		return 1;
2143 
2144 	return 0;
2145 }
2146 
2147 /**
2148  * nand_op_parser_exec_op - exec_op parser
2149  * @chip: the NAND chip
2150  * @parser: patterns description provided by the controller driver
2151  * @op: the NAND operation to address
2152  * @check_only: when true, the function only checks if @op can be handled but
2153  *		does not execute the operation
2154  *
2155  * Helper function designed to ease integration of NAND controller drivers that
2156  * only support a limited set of instruction sequences. The supported sequences
2157  * are described in @parser, and the framework takes care of splitting @op into
2158  * multiple sub-operations (if required) and pass them back to the ->exec()
2159  * callback of the matching pattern if @check_only is set to false.
2160  *
2161  * NAND controller drivers should call this function from their own ->exec_op()
2162  * implementation.
2163  *
2164  * Returns 0 on success, a negative error code otherwise. A failure can be
2165  * caused by an unsupported operation (none of the supported patterns is able
2166  * to handle the requested operation), or an error returned by one of the
2167  * matching pattern->exec() hook.
2168  */
2169 int nand_op_parser_exec_op(struct nand_chip *chip,
2170 			   const struct nand_op_parser *parser,
2171 			   const struct nand_operation *op, bool check_only)
2172 {
2173 	struct nand_op_parser_ctx ctx = {
2174 		.subop.instrs = op->instrs,
2175 		.instrs = op->instrs,
2176 		.ninstrs = op->ninstrs,
2177 	};
2178 	unsigned int i;
2179 
2180 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2181 		const struct nand_op_parser_pattern *pattern;
2182 		struct nand_op_parser_ctx best_ctx;
2183 		int ret, best_pattern = -1;
2184 
2185 		for (i = 0; i < parser->npatterns; i++) {
2186 			struct nand_op_parser_ctx test_ctx = ctx;
2187 
2188 			pattern = &parser->patterns[i];
2189 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2190 				continue;
2191 
2192 			if (best_pattern >= 0 &&
2193 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2194 				continue;
2195 
2196 			best_pattern = i;
2197 			best_ctx = test_ctx;
2198 		}
2199 
2200 		if (best_pattern < 0) {
2201 			pr_debug("->exec_op() parser: pattern not found!\n");
2202 			return -ENOTSUPP;
2203 		}
2204 
2205 		ctx = best_ctx;
2206 		nand_op_parser_trace(&ctx);
2207 
2208 		if (!check_only) {
2209 			pattern = &parser->patterns[best_pattern];
2210 			ret = pattern->exec(chip, &ctx.subop);
2211 			if (ret)
2212 				return ret;
2213 		}
2214 
2215 		/*
2216 		 * Update the context structure by pointing to the start of the
2217 		 * next subop.
2218 		 */
2219 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2220 		if (ctx.subop.last_instr_end_off)
2221 			ctx.subop.instrs -= 1;
2222 
2223 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2224 	}
2225 
2226 	return 0;
2227 }
2228 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2229 
2230 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2231 {
2232 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2233 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2234 }
2235 
2236 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2237 				      unsigned int instr_idx)
2238 {
2239 	return subop && instr_idx < subop->ninstrs;
2240 }
2241 
2242 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2243 					     unsigned int instr_idx)
2244 {
2245 	if (instr_idx)
2246 		return 0;
2247 
2248 	return subop->first_instr_start_off;
2249 }
2250 
2251 /**
2252  * nand_subop_get_addr_start_off - Get the start offset in an address array
2253  * @subop: The entire sub-operation
2254  * @instr_idx: Index of the instruction inside the sub-operation
2255  *
2256  * During driver development, one could be tempted to directly use the
2257  * ->addr.addrs field of address instructions. This is wrong as address
2258  * instructions might be split.
2259  *
2260  * Given an address instruction, returns the offset of the first cycle to issue.
2261  */
2262 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2263 					   unsigned int instr_idx)
2264 {
2265 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2266 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2267 		return 0;
2268 
2269 	return nand_subop_get_start_off(subop, instr_idx);
2270 }
2271 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2272 
2273 /**
2274  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2275  * @subop: The entire sub-operation
2276  * @instr_idx: Index of the instruction inside the sub-operation
2277  *
2278  * During driver development, one could be tempted to directly use the
2279  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2280  * might be split.
2281  *
2282  * Given an address instruction, returns the number of address cycle to issue.
2283  */
2284 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2285 					 unsigned int instr_idx)
2286 {
2287 	int start_off, end_off;
2288 
2289 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2290 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2291 		return 0;
2292 
2293 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2294 
2295 	if (instr_idx == subop->ninstrs - 1 &&
2296 	    subop->last_instr_end_off)
2297 		end_off = subop->last_instr_end_off;
2298 	else
2299 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2300 
2301 	return end_off - start_off;
2302 }
2303 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2304 
2305 /**
2306  * nand_subop_get_data_start_off - Get the start offset in a data array
2307  * @subop: The entire sub-operation
2308  * @instr_idx: Index of the instruction inside the sub-operation
2309  *
2310  * During driver development, one could be tempted to directly use the
2311  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2312  * instructions might be split.
2313  *
2314  * Given a data instruction, returns the offset to start from.
2315  */
2316 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2317 					   unsigned int instr_idx)
2318 {
2319 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2320 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2321 		return 0;
2322 
2323 	return nand_subop_get_start_off(subop, instr_idx);
2324 }
2325 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2326 
2327 /**
2328  * nand_subop_get_data_len - Get the number of bytes to retrieve
2329  * @subop: The entire sub-operation
2330  * @instr_idx: Index of the instruction inside the sub-operation
2331  *
2332  * During driver development, one could be tempted to directly use the
2333  * ->data->len field of a data instruction. This is wrong as data instructions
2334  * might be split.
2335  *
2336  * Returns the length of the chunk of data to send/receive.
2337  */
2338 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2339 				     unsigned int instr_idx)
2340 {
2341 	int start_off = 0, end_off;
2342 
2343 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2344 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2345 		return 0;
2346 
2347 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2348 
2349 	if (instr_idx == subop->ninstrs - 1 &&
2350 	    subop->last_instr_end_off)
2351 		end_off = subop->last_instr_end_off;
2352 	else
2353 		end_off = subop->instrs[instr_idx].ctx.data.len;
2354 
2355 	return end_off - start_off;
2356 }
2357 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2358 
2359 /**
2360  * nand_reset - Reset and initialize a NAND device
2361  * @chip: The NAND chip
2362  * @chipnr: Internal die id
2363  *
2364  * Save the timings data structure, then apply SDR timings mode 0 (see
2365  * nand_reset_data_interface for details), do the reset operation, and
2366  * apply back the previous timings.
2367  *
2368  * Returns 0 on success, a negative error code otherwise.
2369  */
2370 int nand_reset(struct nand_chip *chip, int chipnr)
2371 {
2372 	struct nand_data_interface saved_data_intf = chip->data_interface;
2373 	int ret;
2374 
2375 	ret = nand_reset_data_interface(chip, chipnr);
2376 	if (ret)
2377 		return ret;
2378 
2379 	/*
2380 	 * The CS line has to be released before we can apply the new NAND
2381 	 * interface settings, hence this weird nand_select_target()
2382 	 * nand_deselect_target() dance.
2383 	 */
2384 	nand_select_target(chip, chipnr);
2385 	ret = nand_reset_op(chip);
2386 	nand_deselect_target(chip);
2387 	if (ret)
2388 		return ret;
2389 
2390 	/*
2391 	 * A nand_reset_data_interface() put both the NAND chip and the NAND
2392 	 * controller in timings mode 0. If the default mode for this chip is
2393 	 * also 0, no need to proceed to the change again. Plus, at probe time,
2394 	 * nand_setup_data_interface() uses ->set/get_features() which would
2395 	 * fail anyway as the parameter page is not available yet.
2396 	 */
2397 	if (!chip->onfi_timing_mode_default)
2398 		return 0;
2399 
2400 	chip->data_interface = saved_data_intf;
2401 	ret = nand_setup_data_interface(chip, chipnr);
2402 	if (ret)
2403 		return ret;
2404 
2405 	return 0;
2406 }
2407 EXPORT_SYMBOL_GPL(nand_reset);
2408 
2409 /**
2410  * nand_get_features - wrapper to perform a GET_FEATURE
2411  * @chip: NAND chip info structure
2412  * @addr: feature address
2413  * @subfeature_param: the subfeature parameters, a four bytes array
2414  *
2415  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2416  * operation cannot be handled.
2417  */
2418 int nand_get_features(struct nand_chip *chip, int addr,
2419 		      u8 *subfeature_param)
2420 {
2421 	if (!nand_supports_get_features(chip, addr))
2422 		return -ENOTSUPP;
2423 
2424 	if (chip->legacy.get_features)
2425 		return chip->legacy.get_features(chip, addr, subfeature_param);
2426 
2427 	return nand_get_features_op(chip, addr, subfeature_param);
2428 }
2429 
2430 /**
2431  * nand_set_features - wrapper to perform a SET_FEATURE
2432  * @chip: NAND chip info structure
2433  * @addr: feature address
2434  * @subfeature_param: the subfeature parameters, a four bytes array
2435  *
2436  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2437  * operation cannot be handled.
2438  */
2439 int nand_set_features(struct nand_chip *chip, int addr,
2440 		      u8 *subfeature_param)
2441 {
2442 	if (!nand_supports_set_features(chip, addr))
2443 		return -ENOTSUPP;
2444 
2445 	if (chip->legacy.set_features)
2446 		return chip->legacy.set_features(chip, addr, subfeature_param);
2447 
2448 	return nand_set_features_op(chip, addr, subfeature_param);
2449 }
2450 
2451 /**
2452  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2453  * @buf: buffer to test
2454  * @len: buffer length
2455  * @bitflips_threshold: maximum number of bitflips
2456  *
2457  * Check if a buffer contains only 0xff, which means the underlying region
2458  * has been erased and is ready to be programmed.
2459  * The bitflips_threshold specify the maximum number of bitflips before
2460  * considering the region is not erased.
2461  * Note: The logic of this function has been extracted from the memweight
2462  * implementation, except that nand_check_erased_buf function exit before
2463  * testing the whole buffer if the number of bitflips exceed the
2464  * bitflips_threshold value.
2465  *
2466  * Returns a positive number of bitflips less than or equal to
2467  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2468  * threshold.
2469  */
2470 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2471 {
2472 	const unsigned char *bitmap = buf;
2473 	int bitflips = 0;
2474 	int weight;
2475 
2476 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2477 	     len--, bitmap++) {
2478 		weight = hweight8(*bitmap);
2479 		bitflips += BITS_PER_BYTE - weight;
2480 		if (unlikely(bitflips > bitflips_threshold))
2481 			return -EBADMSG;
2482 	}
2483 
2484 	for (; len >= sizeof(long);
2485 	     len -= sizeof(long), bitmap += sizeof(long)) {
2486 		unsigned long d = *((unsigned long *)bitmap);
2487 		if (d == ~0UL)
2488 			continue;
2489 		weight = hweight_long(d);
2490 		bitflips += BITS_PER_LONG - weight;
2491 		if (unlikely(bitflips > bitflips_threshold))
2492 			return -EBADMSG;
2493 	}
2494 
2495 	for (; len > 0; len--, bitmap++) {
2496 		weight = hweight8(*bitmap);
2497 		bitflips += BITS_PER_BYTE - weight;
2498 		if (unlikely(bitflips > bitflips_threshold))
2499 			return -EBADMSG;
2500 	}
2501 
2502 	return bitflips;
2503 }
2504 
2505 /**
2506  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2507  *				 0xff data
2508  * @data: data buffer to test
2509  * @datalen: data length
2510  * @ecc: ECC buffer
2511  * @ecclen: ECC length
2512  * @extraoob: extra OOB buffer
2513  * @extraooblen: extra OOB length
2514  * @bitflips_threshold: maximum number of bitflips
2515  *
2516  * Check if a data buffer and its associated ECC and OOB data contains only
2517  * 0xff pattern, which means the underlying region has been erased and is
2518  * ready to be programmed.
2519  * The bitflips_threshold specify the maximum number of bitflips before
2520  * considering the region as not erased.
2521  *
2522  * Note:
2523  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2524  *    different from the NAND page size. When fixing bitflips, ECC engines will
2525  *    report the number of errors per chunk, and the NAND core infrastructure
2526  *    expect you to return the maximum number of bitflips for the whole page.
2527  *    This is why you should always use this function on a single chunk and
2528  *    not on the whole page. After checking each chunk you should update your
2529  *    max_bitflips value accordingly.
2530  * 2/ When checking for bitflips in erased pages you should not only check
2531  *    the payload data but also their associated ECC data, because a user might
2532  *    have programmed almost all bits to 1 but a few. In this case, we
2533  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2534  *    this case.
2535  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2536  *    data are protected by the ECC engine.
2537  *    It could also be used if you support subpages and want to attach some
2538  *    extra OOB data to an ECC chunk.
2539  *
2540  * Returns a positive number of bitflips less than or equal to
2541  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2542  * threshold. In case of success, the passed buffers are filled with 0xff.
2543  */
2544 int nand_check_erased_ecc_chunk(void *data, int datalen,
2545 				void *ecc, int ecclen,
2546 				void *extraoob, int extraooblen,
2547 				int bitflips_threshold)
2548 {
2549 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2550 
2551 	data_bitflips = nand_check_erased_buf(data, datalen,
2552 					      bitflips_threshold);
2553 	if (data_bitflips < 0)
2554 		return data_bitflips;
2555 
2556 	bitflips_threshold -= data_bitflips;
2557 
2558 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2559 	if (ecc_bitflips < 0)
2560 		return ecc_bitflips;
2561 
2562 	bitflips_threshold -= ecc_bitflips;
2563 
2564 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2565 						  bitflips_threshold);
2566 	if (extraoob_bitflips < 0)
2567 		return extraoob_bitflips;
2568 
2569 	if (data_bitflips)
2570 		memset(data, 0xff, datalen);
2571 
2572 	if (ecc_bitflips)
2573 		memset(ecc, 0xff, ecclen);
2574 
2575 	if (extraoob_bitflips)
2576 		memset(extraoob, 0xff, extraooblen);
2577 
2578 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2579 }
2580 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2581 
2582 /**
2583  * nand_read_page_raw_notsupp - dummy read raw page function
2584  * @chip: nand chip info structure
2585  * @buf: buffer to store read data
2586  * @oob_required: caller requires OOB data read to chip->oob_poi
2587  * @page: page number to read
2588  *
2589  * Returns -ENOTSUPP unconditionally.
2590  */
2591 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2592 			       int oob_required, int page)
2593 {
2594 	return -ENOTSUPP;
2595 }
2596 
2597 /**
2598  * nand_read_page_raw - [INTERN] read raw page data without ecc
2599  * @chip: nand chip info structure
2600  * @buf: buffer to store read data
2601  * @oob_required: caller requires OOB data read to chip->oob_poi
2602  * @page: page number to read
2603  *
2604  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2605  */
2606 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2607 		       int page)
2608 {
2609 	struct mtd_info *mtd = nand_to_mtd(chip);
2610 	int ret;
2611 
2612 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2613 	if (ret)
2614 		return ret;
2615 
2616 	if (oob_required) {
2617 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2618 					false);
2619 		if (ret)
2620 			return ret;
2621 	}
2622 
2623 	return 0;
2624 }
2625 EXPORT_SYMBOL(nand_read_page_raw);
2626 
2627 /**
2628  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2629  * @chip: nand chip info structure
2630  * @buf: buffer to store read data
2631  * @oob_required: caller requires OOB data read to chip->oob_poi
2632  * @page: page number to read
2633  *
2634  * We need a special oob layout and handling even when OOB isn't used.
2635  */
2636 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2637 				       int oob_required, int page)
2638 {
2639 	struct mtd_info *mtd = nand_to_mtd(chip);
2640 	int eccsize = chip->ecc.size;
2641 	int eccbytes = chip->ecc.bytes;
2642 	uint8_t *oob = chip->oob_poi;
2643 	int steps, size, ret;
2644 
2645 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2646 	if (ret)
2647 		return ret;
2648 
2649 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2650 		ret = nand_read_data_op(chip, buf, eccsize, false);
2651 		if (ret)
2652 			return ret;
2653 
2654 		buf += eccsize;
2655 
2656 		if (chip->ecc.prepad) {
2657 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2658 						false);
2659 			if (ret)
2660 				return ret;
2661 
2662 			oob += chip->ecc.prepad;
2663 		}
2664 
2665 		ret = nand_read_data_op(chip, oob, eccbytes, false);
2666 		if (ret)
2667 			return ret;
2668 
2669 		oob += eccbytes;
2670 
2671 		if (chip->ecc.postpad) {
2672 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2673 						false);
2674 			if (ret)
2675 				return ret;
2676 
2677 			oob += chip->ecc.postpad;
2678 		}
2679 	}
2680 
2681 	size = mtd->oobsize - (oob - chip->oob_poi);
2682 	if (size) {
2683 		ret = nand_read_data_op(chip, oob, size, false);
2684 		if (ret)
2685 			return ret;
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 /**
2692  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2693  * @chip: nand chip info structure
2694  * @buf: buffer to store read data
2695  * @oob_required: caller requires OOB data read to chip->oob_poi
2696  * @page: page number to read
2697  */
2698 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2699 				int oob_required, int page)
2700 {
2701 	struct mtd_info *mtd = nand_to_mtd(chip);
2702 	int i, eccsize = chip->ecc.size, ret;
2703 	int eccbytes = chip->ecc.bytes;
2704 	int eccsteps = chip->ecc.steps;
2705 	uint8_t *p = buf;
2706 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2707 	uint8_t *ecc_code = chip->ecc.code_buf;
2708 	unsigned int max_bitflips = 0;
2709 
2710 	chip->ecc.read_page_raw(chip, buf, 1, page);
2711 
2712 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2713 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2714 
2715 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2716 					 chip->ecc.total);
2717 	if (ret)
2718 		return ret;
2719 
2720 	eccsteps = chip->ecc.steps;
2721 	p = buf;
2722 
2723 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2724 		int stat;
2725 
2726 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2727 		if (stat < 0) {
2728 			mtd->ecc_stats.failed++;
2729 		} else {
2730 			mtd->ecc_stats.corrected += stat;
2731 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2732 		}
2733 	}
2734 	return max_bitflips;
2735 }
2736 
2737 /**
2738  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2739  * @chip: nand chip info structure
2740  * @data_offs: offset of requested data within the page
2741  * @readlen: data length
2742  * @bufpoi: buffer to store read data
2743  * @page: page number to read
2744  */
2745 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2746 			     uint32_t readlen, uint8_t *bufpoi, int page)
2747 {
2748 	struct mtd_info *mtd = nand_to_mtd(chip);
2749 	int start_step, end_step, num_steps, ret;
2750 	uint8_t *p;
2751 	int data_col_addr, i, gaps = 0;
2752 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2753 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2754 	int index, section = 0;
2755 	unsigned int max_bitflips = 0;
2756 	struct mtd_oob_region oobregion = { };
2757 
2758 	/* Column address within the page aligned to ECC size (256bytes) */
2759 	start_step = data_offs / chip->ecc.size;
2760 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
2761 	num_steps = end_step - start_step + 1;
2762 	index = start_step * chip->ecc.bytes;
2763 
2764 	/* Data size aligned to ECC ecc.size */
2765 	datafrag_len = num_steps * chip->ecc.size;
2766 	eccfrag_len = num_steps * chip->ecc.bytes;
2767 
2768 	data_col_addr = start_step * chip->ecc.size;
2769 	/* If we read not a page aligned data */
2770 	p = bufpoi + data_col_addr;
2771 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2772 	if (ret)
2773 		return ret;
2774 
2775 	/* Calculate ECC */
2776 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2777 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2778 
2779 	/*
2780 	 * The performance is faster if we position offsets according to
2781 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2782 	 */
2783 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2784 	if (ret)
2785 		return ret;
2786 
2787 	if (oobregion.length < eccfrag_len)
2788 		gaps = 1;
2789 
2790 	if (gaps) {
2791 		ret = nand_change_read_column_op(chip, mtd->writesize,
2792 						 chip->oob_poi, mtd->oobsize,
2793 						 false);
2794 		if (ret)
2795 			return ret;
2796 	} else {
2797 		/*
2798 		 * Send the command to read the particular ECC bytes take care
2799 		 * about buswidth alignment in read_buf.
2800 		 */
2801 		aligned_pos = oobregion.offset & ~(busw - 1);
2802 		aligned_len = eccfrag_len;
2803 		if (oobregion.offset & (busw - 1))
2804 			aligned_len++;
2805 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2806 		    (busw - 1))
2807 			aligned_len++;
2808 
2809 		ret = nand_change_read_column_op(chip,
2810 						 mtd->writesize + aligned_pos,
2811 						 &chip->oob_poi[aligned_pos],
2812 						 aligned_len, false);
2813 		if (ret)
2814 			return ret;
2815 	}
2816 
2817 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
2818 					 chip->oob_poi, index, eccfrag_len);
2819 	if (ret)
2820 		return ret;
2821 
2822 	p = bufpoi + data_col_addr;
2823 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
2824 		int stat;
2825 
2826 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
2827 					 &chip->ecc.calc_buf[i]);
2828 		if (stat == -EBADMSG &&
2829 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2830 			/* check for empty pages with bitflips */
2831 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2832 						&chip->ecc.code_buf[i],
2833 						chip->ecc.bytes,
2834 						NULL, 0,
2835 						chip->ecc.strength);
2836 		}
2837 
2838 		if (stat < 0) {
2839 			mtd->ecc_stats.failed++;
2840 		} else {
2841 			mtd->ecc_stats.corrected += stat;
2842 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2843 		}
2844 	}
2845 	return max_bitflips;
2846 }
2847 
2848 /**
2849  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2850  * @chip: nand chip info structure
2851  * @buf: buffer to store read data
2852  * @oob_required: caller requires OOB data read to chip->oob_poi
2853  * @page: page number to read
2854  *
2855  * Not for syndrome calculating ECC controllers which need a special oob layout.
2856  */
2857 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
2858 				int oob_required, int page)
2859 {
2860 	struct mtd_info *mtd = nand_to_mtd(chip);
2861 	int i, eccsize = chip->ecc.size, ret;
2862 	int eccbytes = chip->ecc.bytes;
2863 	int eccsteps = chip->ecc.steps;
2864 	uint8_t *p = buf;
2865 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2866 	uint8_t *ecc_code = chip->ecc.code_buf;
2867 	unsigned int max_bitflips = 0;
2868 
2869 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2870 	if (ret)
2871 		return ret;
2872 
2873 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2874 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2875 
2876 		ret = nand_read_data_op(chip, p, eccsize, false);
2877 		if (ret)
2878 			return ret;
2879 
2880 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2881 	}
2882 
2883 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
2884 	if (ret)
2885 		return ret;
2886 
2887 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2888 					 chip->ecc.total);
2889 	if (ret)
2890 		return ret;
2891 
2892 	eccsteps = chip->ecc.steps;
2893 	p = buf;
2894 
2895 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2896 		int stat;
2897 
2898 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2899 		if (stat == -EBADMSG &&
2900 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2901 			/* check for empty pages with bitflips */
2902 			stat = nand_check_erased_ecc_chunk(p, eccsize,
2903 						&ecc_code[i], eccbytes,
2904 						NULL, 0,
2905 						chip->ecc.strength);
2906 		}
2907 
2908 		if (stat < 0) {
2909 			mtd->ecc_stats.failed++;
2910 		} else {
2911 			mtd->ecc_stats.corrected += stat;
2912 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2913 		}
2914 	}
2915 	return max_bitflips;
2916 }
2917 
2918 /**
2919  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
2920  * @chip: nand chip info structure
2921  * @buf: buffer to store read data
2922  * @oob_required: caller requires OOB data read to chip->oob_poi
2923  * @page: page number to read
2924  *
2925  * Hardware ECC for large page chips, require OOB to be read first. For this
2926  * ECC mode, the write_page method is re-used from ECC_HW. These methods
2927  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
2928  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
2929  * the data area, by overwriting the NAND manufacturer bad block markings.
2930  */
2931 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
2932 					  int oob_required, int page)
2933 {
2934 	struct mtd_info *mtd = nand_to_mtd(chip);
2935 	int i, eccsize = chip->ecc.size, ret;
2936 	int eccbytes = chip->ecc.bytes;
2937 	int eccsteps = chip->ecc.steps;
2938 	uint8_t *p = buf;
2939 	uint8_t *ecc_code = chip->ecc.code_buf;
2940 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2941 	unsigned int max_bitflips = 0;
2942 
2943 	/* Read the OOB area first */
2944 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
2945 	if (ret)
2946 		return ret;
2947 
2948 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2949 	if (ret)
2950 		return ret;
2951 
2952 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2953 					 chip->ecc.total);
2954 	if (ret)
2955 		return ret;
2956 
2957 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2958 		int stat;
2959 
2960 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2961 
2962 		ret = nand_read_data_op(chip, p, eccsize, false);
2963 		if (ret)
2964 			return ret;
2965 
2966 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2967 
2968 		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
2969 		if (stat == -EBADMSG &&
2970 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2971 			/* check for empty pages with bitflips */
2972 			stat = nand_check_erased_ecc_chunk(p, eccsize,
2973 						&ecc_code[i], eccbytes,
2974 						NULL, 0,
2975 						chip->ecc.strength);
2976 		}
2977 
2978 		if (stat < 0) {
2979 			mtd->ecc_stats.failed++;
2980 		} else {
2981 			mtd->ecc_stats.corrected += stat;
2982 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2983 		}
2984 	}
2985 	return max_bitflips;
2986 }
2987 
2988 /**
2989  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
2990  * @chip: nand chip info structure
2991  * @buf: buffer to store read data
2992  * @oob_required: caller requires OOB data read to chip->oob_poi
2993  * @page: page number to read
2994  *
2995  * The hw generator calculates the error syndrome automatically. Therefore we
2996  * need a special oob layout and handling.
2997  */
2998 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
2999 				   int oob_required, int page)
3000 {
3001 	struct mtd_info *mtd = nand_to_mtd(chip);
3002 	int ret, i, eccsize = chip->ecc.size;
3003 	int eccbytes = chip->ecc.bytes;
3004 	int eccsteps = chip->ecc.steps;
3005 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3006 	uint8_t *p = buf;
3007 	uint8_t *oob = chip->oob_poi;
3008 	unsigned int max_bitflips = 0;
3009 
3010 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3011 	if (ret)
3012 		return ret;
3013 
3014 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3015 		int stat;
3016 
3017 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3018 
3019 		ret = nand_read_data_op(chip, p, eccsize, false);
3020 		if (ret)
3021 			return ret;
3022 
3023 		if (chip->ecc.prepad) {
3024 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3025 						false);
3026 			if (ret)
3027 				return ret;
3028 
3029 			oob += chip->ecc.prepad;
3030 		}
3031 
3032 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3033 
3034 		ret = nand_read_data_op(chip, oob, eccbytes, false);
3035 		if (ret)
3036 			return ret;
3037 
3038 		stat = chip->ecc.correct(chip, p, oob, NULL);
3039 
3040 		oob += eccbytes;
3041 
3042 		if (chip->ecc.postpad) {
3043 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3044 						false);
3045 			if (ret)
3046 				return ret;
3047 
3048 			oob += chip->ecc.postpad;
3049 		}
3050 
3051 		if (stat == -EBADMSG &&
3052 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3053 			/* check for empty pages with bitflips */
3054 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3055 							   oob - eccpadbytes,
3056 							   eccpadbytes,
3057 							   NULL, 0,
3058 							   chip->ecc.strength);
3059 		}
3060 
3061 		if (stat < 0) {
3062 			mtd->ecc_stats.failed++;
3063 		} else {
3064 			mtd->ecc_stats.corrected += stat;
3065 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3066 		}
3067 	}
3068 
3069 	/* Calculate remaining oob bytes */
3070 	i = mtd->oobsize - (oob - chip->oob_poi);
3071 	if (i) {
3072 		ret = nand_read_data_op(chip, oob, i, false);
3073 		if (ret)
3074 			return ret;
3075 	}
3076 
3077 	return max_bitflips;
3078 }
3079 
3080 /**
3081  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3082  * @chip: NAND chip object
3083  * @oob: oob destination address
3084  * @ops: oob ops structure
3085  * @len: size of oob to transfer
3086  */
3087 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3088 				  struct mtd_oob_ops *ops, size_t len)
3089 {
3090 	struct mtd_info *mtd = nand_to_mtd(chip);
3091 	int ret;
3092 
3093 	switch (ops->mode) {
3094 
3095 	case MTD_OPS_PLACE_OOB:
3096 	case MTD_OPS_RAW:
3097 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3098 		return oob + len;
3099 
3100 	case MTD_OPS_AUTO_OOB:
3101 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3102 						  ops->ooboffs, len);
3103 		BUG_ON(ret);
3104 		return oob + len;
3105 
3106 	default:
3107 		BUG();
3108 	}
3109 	return NULL;
3110 }
3111 
3112 /**
3113  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3114  * @chip: NAND chip object
3115  * @retry_mode: the retry mode to use
3116  *
3117  * Some vendors supply a special command to shift the Vt threshold, to be used
3118  * when there are too many bitflips in a page (i.e., ECC error). After setting
3119  * a new threshold, the host should retry reading the page.
3120  */
3121 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3122 {
3123 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3124 
3125 	if (retry_mode >= chip->read_retries)
3126 		return -EINVAL;
3127 
3128 	if (!chip->setup_read_retry)
3129 		return -EOPNOTSUPP;
3130 
3131 	return chip->setup_read_retry(chip, retry_mode);
3132 }
3133 
3134 static void nand_wait_readrdy(struct nand_chip *chip)
3135 {
3136 	const struct nand_sdr_timings *sdr;
3137 
3138 	if (!(chip->options & NAND_NEED_READRDY))
3139 		return;
3140 
3141 	sdr = nand_get_sdr_timings(&chip->data_interface);
3142 	WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
3143 }
3144 
3145 /**
3146  * nand_do_read_ops - [INTERN] Read data with ECC
3147  * @chip: NAND chip object
3148  * @from: offset to read from
3149  * @ops: oob ops structure
3150  *
3151  * Internal function. Called with chip held.
3152  */
3153 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3154 			    struct mtd_oob_ops *ops)
3155 {
3156 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3157 	struct mtd_info *mtd = nand_to_mtd(chip);
3158 	int ret = 0;
3159 	uint32_t readlen = ops->len;
3160 	uint32_t oobreadlen = ops->ooblen;
3161 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3162 
3163 	uint8_t *bufpoi, *oob, *buf;
3164 	int use_bufpoi;
3165 	unsigned int max_bitflips = 0;
3166 	int retry_mode = 0;
3167 	bool ecc_fail = false;
3168 
3169 	chipnr = (int)(from >> chip->chip_shift);
3170 	nand_select_target(chip, chipnr);
3171 
3172 	realpage = (int)(from >> chip->page_shift);
3173 	page = realpage & chip->pagemask;
3174 
3175 	col = (int)(from & (mtd->writesize - 1));
3176 
3177 	buf = ops->datbuf;
3178 	oob = ops->oobbuf;
3179 	oob_required = oob ? 1 : 0;
3180 
3181 	while (1) {
3182 		unsigned int ecc_failures = mtd->ecc_stats.failed;
3183 
3184 		bytes = min(mtd->writesize - col, readlen);
3185 		aligned = (bytes == mtd->writesize);
3186 
3187 		if (!aligned)
3188 			use_bufpoi = 1;
3189 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3190 			use_bufpoi = !virt_addr_valid(buf) ||
3191 				     !IS_ALIGNED((unsigned long)buf,
3192 						 chip->buf_align);
3193 		else
3194 			use_bufpoi = 0;
3195 
3196 		/* Is the current page in the buffer? */
3197 		if (realpage != chip->pagecache.page || oob) {
3198 			bufpoi = use_bufpoi ? chip->data_buf : buf;
3199 
3200 			if (use_bufpoi && aligned)
3201 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3202 						 __func__, buf);
3203 
3204 read_retry:
3205 			/*
3206 			 * Now read the page into the buffer.  Absent an error,
3207 			 * the read methods return max bitflips per ecc step.
3208 			 */
3209 			if (unlikely(ops->mode == MTD_OPS_RAW))
3210 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3211 							      oob_required,
3212 							      page);
3213 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3214 				 !oob)
3215 				ret = chip->ecc.read_subpage(chip, col, bytes,
3216 							     bufpoi, page);
3217 			else
3218 				ret = chip->ecc.read_page(chip, bufpoi,
3219 							  oob_required, page);
3220 			if (ret < 0) {
3221 				if (use_bufpoi)
3222 					/* Invalidate page cache */
3223 					chip->pagecache.page = -1;
3224 				break;
3225 			}
3226 
3227 			/* Transfer not aligned data */
3228 			if (use_bufpoi) {
3229 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3230 				    !(mtd->ecc_stats.failed - ecc_failures) &&
3231 				    (ops->mode != MTD_OPS_RAW)) {
3232 					chip->pagecache.page = realpage;
3233 					chip->pagecache.bitflips = ret;
3234 				} else {
3235 					/* Invalidate page cache */
3236 					chip->pagecache.page = -1;
3237 				}
3238 				memcpy(buf, chip->data_buf + col, bytes);
3239 			}
3240 
3241 			if (unlikely(oob)) {
3242 				int toread = min(oobreadlen, max_oobsize);
3243 
3244 				if (toread) {
3245 					oob = nand_transfer_oob(chip, oob, ops,
3246 								toread);
3247 					oobreadlen -= toread;
3248 				}
3249 			}
3250 
3251 			nand_wait_readrdy(chip);
3252 
3253 			if (mtd->ecc_stats.failed - ecc_failures) {
3254 				if (retry_mode + 1 < chip->read_retries) {
3255 					retry_mode++;
3256 					ret = nand_setup_read_retry(chip,
3257 							retry_mode);
3258 					if (ret < 0)
3259 						break;
3260 
3261 					/* Reset failures; retry */
3262 					mtd->ecc_stats.failed = ecc_failures;
3263 					goto read_retry;
3264 				} else {
3265 					/* No more retry modes; real failure */
3266 					ecc_fail = true;
3267 				}
3268 			}
3269 
3270 			buf += bytes;
3271 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3272 		} else {
3273 			memcpy(buf, chip->data_buf + col, bytes);
3274 			buf += bytes;
3275 			max_bitflips = max_t(unsigned int, max_bitflips,
3276 					     chip->pagecache.bitflips);
3277 		}
3278 
3279 		readlen -= bytes;
3280 
3281 		/* Reset to retry mode 0 */
3282 		if (retry_mode) {
3283 			ret = nand_setup_read_retry(chip, 0);
3284 			if (ret < 0)
3285 				break;
3286 			retry_mode = 0;
3287 		}
3288 
3289 		if (!readlen)
3290 			break;
3291 
3292 		/* For subsequent reads align to page boundary */
3293 		col = 0;
3294 		/* Increment page address */
3295 		realpage++;
3296 
3297 		page = realpage & chip->pagemask;
3298 		/* Check, if we cross a chip boundary */
3299 		if (!page) {
3300 			chipnr++;
3301 			nand_deselect_target(chip);
3302 			nand_select_target(chip, chipnr);
3303 		}
3304 	}
3305 	nand_deselect_target(chip);
3306 
3307 	ops->retlen = ops->len - (size_t) readlen;
3308 	if (oob)
3309 		ops->oobretlen = ops->ooblen - oobreadlen;
3310 
3311 	if (ret < 0)
3312 		return ret;
3313 
3314 	if (ecc_fail)
3315 		return -EBADMSG;
3316 
3317 	return max_bitflips;
3318 }
3319 
3320 /**
3321  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3322  * @chip: nand chip info structure
3323  * @page: page number to read
3324  */
3325 int nand_read_oob_std(struct nand_chip *chip, int page)
3326 {
3327 	struct mtd_info *mtd = nand_to_mtd(chip);
3328 
3329 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3330 }
3331 EXPORT_SYMBOL(nand_read_oob_std);
3332 
3333 /**
3334  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3335  *			    with syndromes
3336  * @chip: nand chip info structure
3337  * @page: page number to read
3338  */
3339 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3340 {
3341 	struct mtd_info *mtd = nand_to_mtd(chip);
3342 	int length = mtd->oobsize;
3343 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3344 	int eccsize = chip->ecc.size;
3345 	uint8_t *bufpoi = chip->oob_poi;
3346 	int i, toread, sndrnd = 0, pos, ret;
3347 
3348 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3349 	if (ret)
3350 		return ret;
3351 
3352 	for (i = 0; i < chip->ecc.steps; i++) {
3353 		if (sndrnd) {
3354 			int ret;
3355 
3356 			pos = eccsize + i * (eccsize + chunk);
3357 			if (mtd->writesize > 512)
3358 				ret = nand_change_read_column_op(chip, pos,
3359 								 NULL, 0,
3360 								 false);
3361 			else
3362 				ret = nand_read_page_op(chip, page, pos, NULL,
3363 							0);
3364 
3365 			if (ret)
3366 				return ret;
3367 		} else
3368 			sndrnd = 1;
3369 		toread = min_t(int, length, chunk);
3370 
3371 		ret = nand_read_data_op(chip, bufpoi, toread, false);
3372 		if (ret)
3373 			return ret;
3374 
3375 		bufpoi += toread;
3376 		length -= toread;
3377 	}
3378 	if (length > 0) {
3379 		ret = nand_read_data_op(chip, bufpoi, length, false);
3380 		if (ret)
3381 			return ret;
3382 	}
3383 
3384 	return 0;
3385 }
3386 
3387 /**
3388  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3389  * @chip: nand chip info structure
3390  * @page: page number to write
3391  */
3392 int nand_write_oob_std(struct nand_chip *chip, int page)
3393 {
3394 	struct mtd_info *mtd = nand_to_mtd(chip);
3395 
3396 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3397 				 mtd->oobsize);
3398 }
3399 EXPORT_SYMBOL(nand_write_oob_std);
3400 
3401 /**
3402  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3403  *			     with syndrome - only for large page flash
3404  * @chip: nand chip info structure
3405  * @page: page number to write
3406  */
3407 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3408 {
3409 	struct mtd_info *mtd = nand_to_mtd(chip);
3410 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3411 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3412 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3413 	const uint8_t *bufpoi = chip->oob_poi;
3414 
3415 	/*
3416 	 * data-ecc-data-ecc ... ecc-oob
3417 	 * or
3418 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3419 	 */
3420 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3421 		pos = steps * (eccsize + chunk);
3422 		steps = 0;
3423 	} else
3424 		pos = eccsize;
3425 
3426 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3427 	if (ret)
3428 		return ret;
3429 
3430 	for (i = 0; i < steps; i++) {
3431 		if (sndcmd) {
3432 			if (mtd->writesize <= 512) {
3433 				uint32_t fill = 0xFFFFFFFF;
3434 
3435 				len = eccsize;
3436 				while (len > 0) {
3437 					int num = min_t(int, len, 4);
3438 
3439 					ret = nand_write_data_op(chip, &fill,
3440 								 num, false);
3441 					if (ret)
3442 						return ret;
3443 
3444 					len -= num;
3445 				}
3446 			} else {
3447 				pos = eccsize + i * (eccsize + chunk);
3448 				ret = nand_change_write_column_op(chip, pos,
3449 								  NULL, 0,
3450 								  false);
3451 				if (ret)
3452 					return ret;
3453 			}
3454 		} else
3455 			sndcmd = 1;
3456 		len = min_t(int, length, chunk);
3457 
3458 		ret = nand_write_data_op(chip, bufpoi, len, false);
3459 		if (ret)
3460 			return ret;
3461 
3462 		bufpoi += len;
3463 		length -= len;
3464 	}
3465 	if (length > 0) {
3466 		ret = nand_write_data_op(chip, bufpoi, length, false);
3467 		if (ret)
3468 			return ret;
3469 	}
3470 
3471 	return nand_prog_page_end_op(chip);
3472 }
3473 
3474 /**
3475  * nand_do_read_oob - [INTERN] NAND read out-of-band
3476  * @chip: NAND chip object
3477  * @from: offset to read from
3478  * @ops: oob operations description structure
3479  *
3480  * NAND read out-of-band data from the spare area.
3481  */
3482 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3483 			    struct mtd_oob_ops *ops)
3484 {
3485 	struct mtd_info *mtd = nand_to_mtd(chip);
3486 	unsigned int max_bitflips = 0;
3487 	int page, realpage, chipnr;
3488 	struct mtd_ecc_stats stats;
3489 	int readlen = ops->ooblen;
3490 	int len;
3491 	uint8_t *buf = ops->oobbuf;
3492 	int ret = 0;
3493 
3494 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3495 			__func__, (unsigned long long)from, readlen);
3496 
3497 	stats = mtd->ecc_stats;
3498 
3499 	len = mtd_oobavail(mtd, ops);
3500 
3501 	chipnr = (int)(from >> chip->chip_shift);
3502 	nand_select_target(chip, chipnr);
3503 
3504 	/* Shift to get page */
3505 	realpage = (int)(from >> chip->page_shift);
3506 	page = realpage & chip->pagemask;
3507 
3508 	while (1) {
3509 		if (ops->mode == MTD_OPS_RAW)
3510 			ret = chip->ecc.read_oob_raw(chip, page);
3511 		else
3512 			ret = chip->ecc.read_oob(chip, page);
3513 
3514 		if (ret < 0)
3515 			break;
3516 
3517 		len = min(len, readlen);
3518 		buf = nand_transfer_oob(chip, buf, ops, len);
3519 
3520 		nand_wait_readrdy(chip);
3521 
3522 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3523 
3524 		readlen -= len;
3525 		if (!readlen)
3526 			break;
3527 
3528 		/* Increment page address */
3529 		realpage++;
3530 
3531 		page = realpage & chip->pagemask;
3532 		/* Check, if we cross a chip boundary */
3533 		if (!page) {
3534 			chipnr++;
3535 			nand_deselect_target(chip);
3536 			nand_select_target(chip, chipnr);
3537 		}
3538 	}
3539 	nand_deselect_target(chip);
3540 
3541 	ops->oobretlen = ops->ooblen - readlen;
3542 
3543 	if (ret < 0)
3544 		return ret;
3545 
3546 	if (mtd->ecc_stats.failed - stats.failed)
3547 		return -EBADMSG;
3548 
3549 	return max_bitflips;
3550 }
3551 
3552 /**
3553  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3554  * @mtd: MTD device structure
3555  * @from: offset to read from
3556  * @ops: oob operation description structure
3557  *
3558  * NAND read data and/or out-of-band data.
3559  */
3560 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3561 			 struct mtd_oob_ops *ops)
3562 {
3563 	struct nand_chip *chip = mtd_to_nand(mtd);
3564 	int ret;
3565 
3566 	ops->retlen = 0;
3567 
3568 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3569 	    ops->mode != MTD_OPS_AUTO_OOB &&
3570 	    ops->mode != MTD_OPS_RAW)
3571 		return -ENOTSUPP;
3572 
3573 	ret = nand_get_device(chip);
3574 	if (ret)
3575 		return ret;
3576 
3577 	if (!ops->datbuf)
3578 		ret = nand_do_read_oob(chip, from, ops);
3579 	else
3580 		ret = nand_do_read_ops(chip, from, ops);
3581 
3582 	nand_release_device(chip);
3583 	return ret;
3584 }
3585 
3586 /**
3587  * nand_write_page_raw_notsupp - dummy raw page write function
3588  * @chip: nand chip info structure
3589  * @buf: data buffer
3590  * @oob_required: must write chip->oob_poi to OOB
3591  * @page: page number to write
3592  *
3593  * Returns -ENOTSUPP unconditionally.
3594  */
3595 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3596 				int oob_required, int page)
3597 {
3598 	return -ENOTSUPP;
3599 }
3600 
3601 /**
3602  * nand_write_page_raw - [INTERN] raw page write function
3603  * @chip: nand chip info structure
3604  * @buf: data buffer
3605  * @oob_required: must write chip->oob_poi to OOB
3606  * @page: page number to write
3607  *
3608  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3609  */
3610 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3611 			int oob_required, int page)
3612 {
3613 	struct mtd_info *mtd = nand_to_mtd(chip);
3614 	int ret;
3615 
3616 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3617 	if (ret)
3618 		return ret;
3619 
3620 	if (oob_required) {
3621 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3622 					 false);
3623 		if (ret)
3624 			return ret;
3625 	}
3626 
3627 	return nand_prog_page_end_op(chip);
3628 }
3629 EXPORT_SYMBOL(nand_write_page_raw);
3630 
3631 /**
3632  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3633  * @chip: nand chip info structure
3634  * @buf: data buffer
3635  * @oob_required: must write chip->oob_poi to OOB
3636  * @page: page number to write
3637  *
3638  * We need a special oob layout and handling even when ECC isn't checked.
3639  */
3640 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3641 					const uint8_t *buf, int oob_required,
3642 					int page)
3643 {
3644 	struct mtd_info *mtd = nand_to_mtd(chip);
3645 	int eccsize = chip->ecc.size;
3646 	int eccbytes = chip->ecc.bytes;
3647 	uint8_t *oob = chip->oob_poi;
3648 	int steps, size, ret;
3649 
3650 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3651 	if (ret)
3652 		return ret;
3653 
3654 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3655 		ret = nand_write_data_op(chip, buf, eccsize, false);
3656 		if (ret)
3657 			return ret;
3658 
3659 		buf += eccsize;
3660 
3661 		if (chip->ecc.prepad) {
3662 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3663 						 false);
3664 			if (ret)
3665 				return ret;
3666 
3667 			oob += chip->ecc.prepad;
3668 		}
3669 
3670 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3671 		if (ret)
3672 			return ret;
3673 
3674 		oob += eccbytes;
3675 
3676 		if (chip->ecc.postpad) {
3677 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3678 						 false);
3679 			if (ret)
3680 				return ret;
3681 
3682 			oob += chip->ecc.postpad;
3683 		}
3684 	}
3685 
3686 	size = mtd->oobsize - (oob - chip->oob_poi);
3687 	if (size) {
3688 		ret = nand_write_data_op(chip, oob, size, false);
3689 		if (ret)
3690 			return ret;
3691 	}
3692 
3693 	return nand_prog_page_end_op(chip);
3694 }
3695 /**
3696  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3697  * @chip: nand chip info structure
3698  * @buf: data buffer
3699  * @oob_required: must write chip->oob_poi to OOB
3700  * @page: page number to write
3701  */
3702 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3703 				 int oob_required, int page)
3704 {
3705 	struct mtd_info *mtd = nand_to_mtd(chip);
3706 	int i, eccsize = chip->ecc.size, ret;
3707 	int eccbytes = chip->ecc.bytes;
3708 	int eccsteps = chip->ecc.steps;
3709 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3710 	const uint8_t *p = buf;
3711 
3712 	/* Software ECC calculation */
3713 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3714 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3715 
3716 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3717 					 chip->ecc.total);
3718 	if (ret)
3719 		return ret;
3720 
3721 	return chip->ecc.write_page_raw(chip, buf, 1, page);
3722 }
3723 
3724 /**
3725  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3726  * @chip: nand chip info structure
3727  * @buf: data buffer
3728  * @oob_required: must write chip->oob_poi to OOB
3729  * @page: page number to write
3730  */
3731 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3732 				 int oob_required, int page)
3733 {
3734 	struct mtd_info *mtd = nand_to_mtd(chip);
3735 	int i, eccsize = chip->ecc.size, ret;
3736 	int eccbytes = chip->ecc.bytes;
3737 	int eccsteps = chip->ecc.steps;
3738 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3739 	const uint8_t *p = buf;
3740 
3741 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3742 	if (ret)
3743 		return ret;
3744 
3745 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3746 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3747 
3748 		ret = nand_write_data_op(chip, p, eccsize, false);
3749 		if (ret)
3750 			return ret;
3751 
3752 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3753 	}
3754 
3755 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3756 					 chip->ecc.total);
3757 	if (ret)
3758 		return ret;
3759 
3760 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3761 	if (ret)
3762 		return ret;
3763 
3764 	return nand_prog_page_end_op(chip);
3765 }
3766 
3767 
3768 /**
3769  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3770  * @chip:	nand chip info structure
3771  * @offset:	column address of subpage within the page
3772  * @data_len:	data length
3773  * @buf:	data buffer
3774  * @oob_required: must write chip->oob_poi to OOB
3775  * @page: page number to write
3776  */
3777 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3778 				    uint32_t data_len, const uint8_t *buf,
3779 				    int oob_required, int page)
3780 {
3781 	struct mtd_info *mtd = nand_to_mtd(chip);
3782 	uint8_t *oob_buf  = chip->oob_poi;
3783 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3784 	int ecc_size      = chip->ecc.size;
3785 	int ecc_bytes     = chip->ecc.bytes;
3786 	int ecc_steps     = chip->ecc.steps;
3787 	uint32_t start_step = offset / ecc_size;
3788 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
3789 	int oob_bytes       = mtd->oobsize / ecc_steps;
3790 	int step, ret;
3791 
3792 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3793 	if (ret)
3794 		return ret;
3795 
3796 	for (step = 0; step < ecc_steps; step++) {
3797 		/* configure controller for WRITE access */
3798 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3799 
3800 		/* write data (untouched subpages already masked by 0xFF) */
3801 		ret = nand_write_data_op(chip, buf, ecc_size, false);
3802 		if (ret)
3803 			return ret;
3804 
3805 		/* mask ECC of un-touched subpages by padding 0xFF */
3806 		if ((step < start_step) || (step > end_step))
3807 			memset(ecc_calc, 0xff, ecc_bytes);
3808 		else
3809 			chip->ecc.calculate(chip, buf, ecc_calc);
3810 
3811 		/* mask OOB of un-touched subpages by padding 0xFF */
3812 		/* if oob_required, preserve OOB metadata of written subpage */
3813 		if (!oob_required || (step < start_step) || (step > end_step))
3814 			memset(oob_buf, 0xff, oob_bytes);
3815 
3816 		buf += ecc_size;
3817 		ecc_calc += ecc_bytes;
3818 		oob_buf  += oob_bytes;
3819 	}
3820 
3821 	/* copy calculated ECC for whole page to chip->buffer->oob */
3822 	/* this include masked-value(0xFF) for unwritten subpages */
3823 	ecc_calc = chip->ecc.calc_buf;
3824 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3825 					 chip->ecc.total);
3826 	if (ret)
3827 		return ret;
3828 
3829 	/* write OOB buffer to NAND device */
3830 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3831 	if (ret)
3832 		return ret;
3833 
3834 	return nand_prog_page_end_op(chip);
3835 }
3836 
3837 
3838 /**
3839  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3840  * @chip: nand chip info structure
3841  * @buf: data buffer
3842  * @oob_required: must write chip->oob_poi to OOB
3843  * @page: page number to write
3844  *
3845  * The hw generator calculates the error syndrome automatically. Therefore we
3846  * need a special oob layout and handling.
3847  */
3848 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
3849 				    int oob_required, int page)
3850 {
3851 	struct mtd_info *mtd = nand_to_mtd(chip);
3852 	int i, eccsize = chip->ecc.size;
3853 	int eccbytes = chip->ecc.bytes;
3854 	int eccsteps = chip->ecc.steps;
3855 	const uint8_t *p = buf;
3856 	uint8_t *oob = chip->oob_poi;
3857 	int ret;
3858 
3859 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3860 	if (ret)
3861 		return ret;
3862 
3863 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3864 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3865 
3866 		ret = nand_write_data_op(chip, p, eccsize, false);
3867 		if (ret)
3868 			return ret;
3869 
3870 		if (chip->ecc.prepad) {
3871 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3872 						 false);
3873 			if (ret)
3874 				return ret;
3875 
3876 			oob += chip->ecc.prepad;
3877 		}
3878 
3879 		chip->ecc.calculate(chip, p, oob);
3880 
3881 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3882 		if (ret)
3883 			return ret;
3884 
3885 		oob += eccbytes;
3886 
3887 		if (chip->ecc.postpad) {
3888 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3889 						 false);
3890 			if (ret)
3891 				return ret;
3892 
3893 			oob += chip->ecc.postpad;
3894 		}
3895 	}
3896 
3897 	/* Calculate remaining oob bytes */
3898 	i = mtd->oobsize - (oob - chip->oob_poi);
3899 	if (i) {
3900 		ret = nand_write_data_op(chip, oob, i, false);
3901 		if (ret)
3902 			return ret;
3903 	}
3904 
3905 	return nand_prog_page_end_op(chip);
3906 }
3907 
3908 /**
3909  * nand_write_page - write one page
3910  * @chip: NAND chip descriptor
3911  * @offset: address offset within the page
3912  * @data_len: length of actual data to be written
3913  * @buf: the data to write
3914  * @oob_required: must write chip->oob_poi to OOB
3915  * @page: page number to write
3916  * @raw: use _raw version of write_page
3917  */
3918 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
3919 			   int data_len, const uint8_t *buf, int oob_required,
3920 			   int page, int raw)
3921 {
3922 	struct mtd_info *mtd = nand_to_mtd(chip);
3923 	int status, subpage;
3924 
3925 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3926 		chip->ecc.write_subpage)
3927 		subpage = offset || (data_len < mtd->writesize);
3928 	else
3929 		subpage = 0;
3930 
3931 	if (unlikely(raw))
3932 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
3933 						  page);
3934 	else if (subpage)
3935 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
3936 						 oob_required, page);
3937 	else
3938 		status = chip->ecc.write_page(chip, buf, oob_required, page);
3939 
3940 	if (status < 0)
3941 		return status;
3942 
3943 	return 0;
3944 }
3945 
3946 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
3947 
3948 /**
3949  * nand_do_write_ops - [INTERN] NAND write with ECC
3950  * @chip: NAND chip object
3951  * @to: offset to write to
3952  * @ops: oob operations description structure
3953  *
3954  * NAND write with ECC.
3955  */
3956 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
3957 			     struct mtd_oob_ops *ops)
3958 {
3959 	struct mtd_info *mtd = nand_to_mtd(chip);
3960 	int chipnr, realpage, page, column;
3961 	uint32_t writelen = ops->len;
3962 
3963 	uint32_t oobwritelen = ops->ooblen;
3964 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
3965 
3966 	uint8_t *oob = ops->oobbuf;
3967 	uint8_t *buf = ops->datbuf;
3968 	int ret;
3969 	int oob_required = oob ? 1 : 0;
3970 
3971 	ops->retlen = 0;
3972 	if (!writelen)
3973 		return 0;
3974 
3975 	/* Reject writes, which are not page aligned */
3976 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
3977 		pr_notice("%s: attempt to write non page aligned data\n",
3978 			   __func__);
3979 		return -EINVAL;
3980 	}
3981 
3982 	column = to & (mtd->writesize - 1);
3983 
3984 	chipnr = (int)(to >> chip->chip_shift);
3985 	nand_select_target(chip, chipnr);
3986 
3987 	/* Check, if it is write protected */
3988 	if (nand_check_wp(chip)) {
3989 		ret = -EIO;
3990 		goto err_out;
3991 	}
3992 
3993 	realpage = (int)(to >> chip->page_shift);
3994 	page = realpage & chip->pagemask;
3995 
3996 	/* Invalidate the page cache, when we write to the cached page */
3997 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
3998 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
3999 		chip->pagecache.page = -1;
4000 
4001 	/* Don't allow multipage oob writes with offset */
4002 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4003 		ret = -EINVAL;
4004 		goto err_out;
4005 	}
4006 
4007 	while (1) {
4008 		int bytes = mtd->writesize;
4009 		uint8_t *wbuf = buf;
4010 		int use_bufpoi;
4011 		int part_pagewr = (column || writelen < mtd->writesize);
4012 
4013 		if (part_pagewr)
4014 			use_bufpoi = 1;
4015 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
4016 			use_bufpoi = !virt_addr_valid(buf) ||
4017 				     !IS_ALIGNED((unsigned long)buf,
4018 						 chip->buf_align);
4019 		else
4020 			use_bufpoi = 0;
4021 
4022 		/* Partial page write?, or need to use bounce buffer */
4023 		if (use_bufpoi) {
4024 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4025 					 __func__, buf);
4026 			if (part_pagewr)
4027 				bytes = min_t(int, bytes - column, writelen);
4028 			wbuf = nand_get_data_buf(chip);
4029 			memset(wbuf, 0xff, mtd->writesize);
4030 			memcpy(&wbuf[column], buf, bytes);
4031 		}
4032 
4033 		if (unlikely(oob)) {
4034 			size_t len = min(oobwritelen, oobmaxlen);
4035 			oob = nand_fill_oob(chip, oob, len, ops);
4036 			oobwritelen -= len;
4037 		} else {
4038 			/* We still need to erase leftover OOB data */
4039 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4040 		}
4041 
4042 		ret = nand_write_page(chip, column, bytes, wbuf,
4043 				      oob_required, page,
4044 				      (ops->mode == MTD_OPS_RAW));
4045 		if (ret)
4046 			break;
4047 
4048 		writelen -= bytes;
4049 		if (!writelen)
4050 			break;
4051 
4052 		column = 0;
4053 		buf += bytes;
4054 		realpage++;
4055 
4056 		page = realpage & chip->pagemask;
4057 		/* Check, if we cross a chip boundary */
4058 		if (!page) {
4059 			chipnr++;
4060 			nand_deselect_target(chip);
4061 			nand_select_target(chip, chipnr);
4062 		}
4063 	}
4064 
4065 	ops->retlen = ops->len - writelen;
4066 	if (unlikely(oob))
4067 		ops->oobretlen = ops->ooblen;
4068 
4069 err_out:
4070 	nand_deselect_target(chip);
4071 	return ret;
4072 }
4073 
4074 /**
4075  * panic_nand_write - [MTD Interface] NAND write with ECC
4076  * @mtd: MTD device structure
4077  * @to: offset to write to
4078  * @len: number of bytes to write
4079  * @retlen: pointer to variable to store the number of written bytes
4080  * @buf: the data to write
4081  *
4082  * NAND write with ECC. Used when performing writes in interrupt context, this
4083  * may for example be called by mtdoops when writing an oops while in panic.
4084  */
4085 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4086 			    size_t *retlen, const uint8_t *buf)
4087 {
4088 	struct nand_chip *chip = mtd_to_nand(mtd);
4089 	int chipnr = (int)(to >> chip->chip_shift);
4090 	struct mtd_oob_ops ops;
4091 	int ret;
4092 
4093 	nand_select_target(chip, chipnr);
4094 
4095 	/* Wait for the device to get ready */
4096 	panic_nand_wait(chip, 400);
4097 
4098 	memset(&ops, 0, sizeof(ops));
4099 	ops.len = len;
4100 	ops.datbuf = (uint8_t *)buf;
4101 	ops.mode = MTD_OPS_PLACE_OOB;
4102 
4103 	ret = nand_do_write_ops(chip, to, &ops);
4104 
4105 	*retlen = ops.retlen;
4106 	return ret;
4107 }
4108 
4109 /**
4110  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4111  * @mtd: MTD device structure
4112  * @to: offset to write to
4113  * @ops: oob operation description structure
4114  */
4115 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4116 			  struct mtd_oob_ops *ops)
4117 {
4118 	struct nand_chip *chip = mtd_to_nand(mtd);
4119 	int ret;
4120 
4121 	ops->retlen = 0;
4122 
4123 	ret = nand_get_device(chip);
4124 	if (ret)
4125 		return ret;
4126 
4127 	switch (ops->mode) {
4128 	case MTD_OPS_PLACE_OOB:
4129 	case MTD_OPS_AUTO_OOB:
4130 	case MTD_OPS_RAW:
4131 		break;
4132 
4133 	default:
4134 		goto out;
4135 	}
4136 
4137 	if (!ops->datbuf)
4138 		ret = nand_do_write_oob(chip, to, ops);
4139 	else
4140 		ret = nand_do_write_ops(chip, to, ops);
4141 
4142 out:
4143 	nand_release_device(chip);
4144 	return ret;
4145 }
4146 
4147 /**
4148  * nand_erase - [MTD Interface] erase block(s)
4149  * @mtd: MTD device structure
4150  * @instr: erase instruction
4151  *
4152  * Erase one ore more blocks.
4153  */
4154 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4155 {
4156 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4157 }
4158 
4159 /**
4160  * nand_erase_nand - [INTERN] erase block(s)
4161  * @chip: NAND chip object
4162  * @instr: erase instruction
4163  * @allowbbt: allow erasing the bbt area
4164  *
4165  * Erase one ore more blocks.
4166  */
4167 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4168 		    int allowbbt)
4169 {
4170 	int page, pages_per_block, ret, chipnr;
4171 	loff_t len;
4172 
4173 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4174 			__func__, (unsigned long long)instr->addr,
4175 			(unsigned long long)instr->len);
4176 
4177 	if (check_offs_len(chip, instr->addr, instr->len))
4178 		return -EINVAL;
4179 
4180 	/* Grab the lock and see if the device is available */
4181 	ret = nand_get_device(chip);
4182 	if (ret)
4183 		return ret;
4184 
4185 	/* Shift to get first page */
4186 	page = (int)(instr->addr >> chip->page_shift);
4187 	chipnr = (int)(instr->addr >> chip->chip_shift);
4188 
4189 	/* Calculate pages in each block */
4190 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4191 
4192 	/* Select the NAND device */
4193 	nand_select_target(chip, chipnr);
4194 
4195 	/* Check, if it is write protected */
4196 	if (nand_check_wp(chip)) {
4197 		pr_debug("%s: device is write protected!\n",
4198 				__func__);
4199 		ret = -EIO;
4200 		goto erase_exit;
4201 	}
4202 
4203 	/* Loop through the pages */
4204 	len = instr->len;
4205 
4206 	while (len) {
4207 		/* Check if we have a bad block, we do not erase bad blocks! */
4208 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4209 					chip->page_shift, allowbbt)) {
4210 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4211 				    __func__, page);
4212 			ret = -EIO;
4213 			goto erase_exit;
4214 		}
4215 
4216 		/*
4217 		 * Invalidate the page cache, if we erase the block which
4218 		 * contains the current cached page.
4219 		 */
4220 		if (page <= chip->pagecache.page && chip->pagecache.page <
4221 		    (page + pages_per_block))
4222 			chip->pagecache.page = -1;
4223 
4224 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4225 				    (chip->phys_erase_shift - chip->page_shift));
4226 		if (ret) {
4227 			pr_debug("%s: failed erase, page 0x%08x\n",
4228 					__func__, page);
4229 			instr->fail_addr =
4230 				((loff_t)page << chip->page_shift);
4231 			goto erase_exit;
4232 		}
4233 
4234 		/* Increment page address and decrement length */
4235 		len -= (1ULL << chip->phys_erase_shift);
4236 		page += pages_per_block;
4237 
4238 		/* Check, if we cross a chip boundary */
4239 		if (len && !(page & chip->pagemask)) {
4240 			chipnr++;
4241 			nand_deselect_target(chip);
4242 			nand_select_target(chip, chipnr);
4243 		}
4244 	}
4245 
4246 	ret = 0;
4247 erase_exit:
4248 
4249 	/* Deselect and wake up anyone waiting on the device */
4250 	nand_deselect_target(chip);
4251 	nand_release_device(chip);
4252 
4253 	/* Return more or less happy */
4254 	return ret;
4255 }
4256 
4257 /**
4258  * nand_sync - [MTD Interface] sync
4259  * @mtd: MTD device structure
4260  *
4261  * Sync is actually a wait for chip ready function.
4262  */
4263 static void nand_sync(struct mtd_info *mtd)
4264 {
4265 	struct nand_chip *chip = mtd_to_nand(mtd);
4266 
4267 	pr_debug("%s: called\n", __func__);
4268 
4269 	/* Grab the lock and see if the device is available */
4270 	WARN_ON(nand_get_device(chip));
4271 	/* Release it and go back */
4272 	nand_release_device(chip);
4273 }
4274 
4275 /**
4276  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4277  * @mtd: MTD device structure
4278  * @offs: offset relative to mtd start
4279  */
4280 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4281 {
4282 	struct nand_chip *chip = mtd_to_nand(mtd);
4283 	int chipnr = (int)(offs >> chip->chip_shift);
4284 	int ret;
4285 
4286 	/* Select the NAND device */
4287 	ret = nand_get_device(chip);
4288 	if (ret)
4289 		return ret;
4290 
4291 	nand_select_target(chip, chipnr);
4292 
4293 	ret = nand_block_checkbad(chip, offs, 0);
4294 
4295 	nand_deselect_target(chip);
4296 	nand_release_device(chip);
4297 
4298 	return ret;
4299 }
4300 
4301 /**
4302  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4303  * @mtd: MTD device structure
4304  * @ofs: offset relative to mtd start
4305  */
4306 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4307 {
4308 	int ret;
4309 
4310 	ret = nand_block_isbad(mtd, ofs);
4311 	if (ret) {
4312 		/* If it was bad already, return success and do nothing */
4313 		if (ret > 0)
4314 			return 0;
4315 		return ret;
4316 	}
4317 
4318 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4319 }
4320 
4321 /**
4322  * nand_suspend - [MTD Interface] Suspend the NAND flash
4323  * @mtd: MTD device structure
4324  */
4325 static int nand_suspend(struct mtd_info *mtd)
4326 {
4327 	struct nand_chip *chip = mtd_to_nand(mtd);
4328 
4329 	mutex_lock(&chip->lock);
4330 	chip->suspended = 1;
4331 	mutex_unlock(&chip->lock);
4332 
4333 	return 0;
4334 }
4335 
4336 /**
4337  * nand_resume - [MTD Interface] Resume the NAND flash
4338  * @mtd: MTD device structure
4339  */
4340 static void nand_resume(struct mtd_info *mtd)
4341 {
4342 	struct nand_chip *chip = mtd_to_nand(mtd);
4343 
4344 	mutex_lock(&chip->lock);
4345 	if (chip->suspended)
4346 		chip->suspended = 0;
4347 	else
4348 		pr_err("%s called for a chip which is not in suspended state\n",
4349 			__func__);
4350 	mutex_unlock(&chip->lock);
4351 }
4352 
4353 /**
4354  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4355  *                 prevent further operations
4356  * @mtd: MTD device structure
4357  */
4358 static void nand_shutdown(struct mtd_info *mtd)
4359 {
4360 	nand_suspend(mtd);
4361 }
4362 
4363 /* Set default functions */
4364 static void nand_set_defaults(struct nand_chip *chip)
4365 {
4366 	/* If no controller is provided, use the dummy, legacy one. */
4367 	if (!chip->controller) {
4368 		chip->controller = &chip->legacy.dummy_controller;
4369 		nand_controller_init(chip->controller);
4370 	}
4371 
4372 	nand_legacy_set_defaults(chip);
4373 
4374 	if (!chip->buf_align)
4375 		chip->buf_align = 1;
4376 }
4377 
4378 /* Sanitize ONFI strings so we can safely print them */
4379 void sanitize_string(uint8_t *s, size_t len)
4380 {
4381 	ssize_t i;
4382 
4383 	/* Null terminate */
4384 	s[len - 1] = 0;
4385 
4386 	/* Remove non printable chars */
4387 	for (i = 0; i < len - 1; i++) {
4388 		if (s[i] < ' ' || s[i] > 127)
4389 			s[i] = '?';
4390 	}
4391 
4392 	/* Remove trailing spaces */
4393 	strim(s);
4394 }
4395 
4396 /*
4397  * nand_id_has_period - Check if an ID string has a given wraparound period
4398  * @id_data: the ID string
4399  * @arrlen: the length of the @id_data array
4400  * @period: the period of repitition
4401  *
4402  * Check if an ID string is repeated within a given sequence of bytes at
4403  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4404  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4405  * if the repetition has a period of @period; otherwise, returns zero.
4406  */
4407 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4408 {
4409 	int i, j;
4410 	for (i = 0; i < period; i++)
4411 		for (j = i + period; j < arrlen; j += period)
4412 			if (id_data[i] != id_data[j])
4413 				return 0;
4414 	return 1;
4415 }
4416 
4417 /*
4418  * nand_id_len - Get the length of an ID string returned by CMD_READID
4419  * @id_data: the ID string
4420  * @arrlen: the length of the @id_data array
4421 
4422  * Returns the length of the ID string, according to known wraparound/trailing
4423  * zero patterns. If no pattern exists, returns the length of the array.
4424  */
4425 static int nand_id_len(u8 *id_data, int arrlen)
4426 {
4427 	int last_nonzero, period;
4428 
4429 	/* Find last non-zero byte */
4430 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4431 		if (id_data[last_nonzero])
4432 			break;
4433 
4434 	/* All zeros */
4435 	if (last_nonzero < 0)
4436 		return 0;
4437 
4438 	/* Calculate wraparound period */
4439 	for (period = 1; period < arrlen; period++)
4440 		if (nand_id_has_period(id_data, arrlen, period))
4441 			break;
4442 
4443 	/* There's a repeated pattern */
4444 	if (period < arrlen)
4445 		return period;
4446 
4447 	/* There are trailing zeros */
4448 	if (last_nonzero < arrlen - 1)
4449 		return last_nonzero + 1;
4450 
4451 	/* No pattern detected */
4452 	return arrlen;
4453 }
4454 
4455 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4456 static int nand_get_bits_per_cell(u8 cellinfo)
4457 {
4458 	int bits;
4459 
4460 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4461 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4462 	return bits + 1;
4463 }
4464 
4465 /*
4466  * Many new NAND share similar device ID codes, which represent the size of the
4467  * chip. The rest of the parameters must be decoded according to generic or
4468  * manufacturer-specific "extended ID" decoding patterns.
4469  */
4470 void nand_decode_ext_id(struct nand_chip *chip)
4471 {
4472 	struct nand_memory_organization *memorg;
4473 	struct mtd_info *mtd = nand_to_mtd(chip);
4474 	int extid;
4475 	u8 *id_data = chip->id.data;
4476 
4477 	memorg = nanddev_get_memorg(&chip->base);
4478 
4479 	/* The 3rd id byte holds MLC / multichip data */
4480 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4481 	/* The 4th id byte is the important one */
4482 	extid = id_data[3];
4483 
4484 	/* Calc pagesize */
4485 	memorg->pagesize = 1024 << (extid & 0x03);
4486 	mtd->writesize = memorg->pagesize;
4487 	extid >>= 2;
4488 	/* Calc oobsize */
4489 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4490 	mtd->oobsize = memorg->oobsize;
4491 	extid >>= 2;
4492 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4493 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4494 				       memorg->pagesize;
4495 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4496 	extid >>= 2;
4497 	/* Get buswidth information */
4498 	if (extid & 0x1)
4499 		chip->options |= NAND_BUSWIDTH_16;
4500 }
4501 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4502 
4503 /*
4504  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4505  * decodes a matching ID table entry and assigns the MTD size parameters for
4506  * the chip.
4507  */
4508 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4509 {
4510 	struct mtd_info *mtd = nand_to_mtd(chip);
4511 	struct nand_memory_organization *memorg;
4512 
4513 	memorg = nanddev_get_memorg(&chip->base);
4514 
4515 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4516 	mtd->erasesize = type->erasesize;
4517 	memorg->pagesize = type->pagesize;
4518 	mtd->writesize = memorg->pagesize;
4519 	memorg->oobsize = memorg->pagesize / 32;
4520 	mtd->oobsize = memorg->oobsize;
4521 
4522 	/* All legacy ID NAND are small-page, SLC */
4523 	memorg->bits_per_cell = 1;
4524 }
4525 
4526 /*
4527  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4528  * heuristic patterns using various detected parameters (e.g., manufacturer,
4529  * page size, cell-type information).
4530  */
4531 static void nand_decode_bbm_options(struct nand_chip *chip)
4532 {
4533 	struct mtd_info *mtd = nand_to_mtd(chip);
4534 
4535 	/* Set the bad block position */
4536 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4537 		chip->badblockpos = NAND_BBM_POS_LARGE;
4538 	else
4539 		chip->badblockpos = NAND_BBM_POS_SMALL;
4540 }
4541 
4542 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4543 {
4544 	return type->id_len;
4545 }
4546 
4547 static bool find_full_id_nand(struct nand_chip *chip,
4548 			      struct nand_flash_dev *type)
4549 {
4550 	struct mtd_info *mtd = nand_to_mtd(chip);
4551 	struct nand_memory_organization *memorg;
4552 	u8 *id_data = chip->id.data;
4553 
4554 	memorg = nanddev_get_memorg(&chip->base);
4555 
4556 	if (!strncmp(type->id, id_data, type->id_len)) {
4557 		memorg->pagesize = type->pagesize;
4558 		mtd->writesize = memorg->pagesize;
4559 		memorg->pages_per_eraseblock = type->erasesize /
4560 					       type->pagesize;
4561 		mtd->erasesize = type->erasesize;
4562 		memorg->oobsize = type->oobsize;
4563 		mtd->oobsize = memorg->oobsize;
4564 
4565 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4566 		memorg->eraseblocks_per_lun =
4567 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4568 					   memorg->pagesize *
4569 					   memorg->pages_per_eraseblock);
4570 		chip->options |= type->options;
4571 		chip->base.eccreq.strength = NAND_ECC_STRENGTH(type);
4572 		chip->base.eccreq.step_size = NAND_ECC_STEP(type);
4573 		chip->onfi_timing_mode_default =
4574 					type->onfi_timing_mode_default;
4575 
4576 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4577 		if (!chip->parameters.model)
4578 			return false;
4579 
4580 		return true;
4581 	}
4582 	return false;
4583 }
4584 
4585 /*
4586  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4587  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4588  * table.
4589  */
4590 static void nand_manufacturer_detect(struct nand_chip *chip)
4591 {
4592 	/*
4593 	 * Try manufacturer detection if available and use
4594 	 * nand_decode_ext_id() otherwise.
4595 	 */
4596 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4597 	    chip->manufacturer.desc->ops->detect) {
4598 		struct nand_memory_organization *memorg;
4599 
4600 		memorg = nanddev_get_memorg(&chip->base);
4601 
4602 		/* The 3rd id byte holds MLC / multichip data */
4603 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4604 		chip->manufacturer.desc->ops->detect(chip);
4605 	} else {
4606 		nand_decode_ext_id(chip);
4607 	}
4608 }
4609 
4610 /*
4611  * Manufacturer initialization. This function is called for all NANDs including
4612  * ONFI and JEDEC compliant ones.
4613  * Manufacturer drivers should put all their specific initialization code in
4614  * their ->init() hook.
4615  */
4616 static int nand_manufacturer_init(struct nand_chip *chip)
4617 {
4618 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4619 	    !chip->manufacturer.desc->ops->init)
4620 		return 0;
4621 
4622 	return chip->manufacturer.desc->ops->init(chip);
4623 }
4624 
4625 /*
4626  * Manufacturer cleanup. This function is called for all NANDs including
4627  * ONFI and JEDEC compliant ones.
4628  * Manufacturer drivers should put all their specific cleanup code in their
4629  * ->cleanup() hook.
4630  */
4631 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4632 {
4633 	/* Release manufacturer private data */
4634 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4635 	    chip->manufacturer.desc->ops->cleanup)
4636 		chip->manufacturer.desc->ops->cleanup(chip);
4637 }
4638 
4639 static const char *
4640 nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
4641 {
4642 	return manufacturer ? manufacturer->name : "Unknown";
4643 }
4644 
4645 /*
4646  * Get the flash and manufacturer id and lookup if the type is supported.
4647  */
4648 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4649 {
4650 	const struct nand_manufacturer *manufacturer;
4651 	struct mtd_info *mtd = nand_to_mtd(chip);
4652 	struct nand_memory_organization *memorg;
4653 	int busw, ret;
4654 	u8 *id_data = chip->id.data;
4655 	u8 maf_id, dev_id;
4656 	u64 targetsize;
4657 
4658 	/*
4659 	 * Let's start by initializing memorg fields that might be left
4660 	 * unassigned by the ID-based detection logic.
4661 	 */
4662 	memorg = nanddev_get_memorg(&chip->base);
4663 	memorg->planes_per_lun = 1;
4664 	memorg->luns_per_target = 1;
4665 
4666 	/*
4667 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4668 	 * after power-up.
4669 	 */
4670 	ret = nand_reset(chip, 0);
4671 	if (ret)
4672 		return ret;
4673 
4674 	/* Select the device */
4675 	nand_select_target(chip, 0);
4676 
4677 	/* Send the command for reading device ID */
4678 	ret = nand_readid_op(chip, 0, id_data, 2);
4679 	if (ret)
4680 		return ret;
4681 
4682 	/* Read manufacturer and device IDs */
4683 	maf_id = id_data[0];
4684 	dev_id = id_data[1];
4685 
4686 	/*
4687 	 * Try again to make sure, as some systems the bus-hold or other
4688 	 * interface concerns can cause random data which looks like a
4689 	 * possibly credible NAND flash to appear. If the two results do
4690 	 * not match, ignore the device completely.
4691 	 */
4692 
4693 	/* Read entire ID string */
4694 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4695 	if (ret)
4696 		return ret;
4697 
4698 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
4699 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4700 			maf_id, dev_id, id_data[0], id_data[1]);
4701 		return -ENODEV;
4702 	}
4703 
4704 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4705 
4706 	/* Try to identify manufacturer */
4707 	manufacturer = nand_get_manufacturer(maf_id);
4708 	chip->manufacturer.desc = manufacturer;
4709 
4710 	if (!type)
4711 		type = nand_flash_ids;
4712 
4713 	/*
4714 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4715 	 * override it.
4716 	 * This is required to make sure initial NAND bus width set by the
4717 	 * NAND controller driver is coherent with the real NAND bus width
4718 	 * (extracted by auto-detection code).
4719 	 */
4720 	busw = chip->options & NAND_BUSWIDTH_16;
4721 
4722 	/*
4723 	 * The flag is only set (never cleared), reset it to its default value
4724 	 * before starting auto-detection.
4725 	 */
4726 	chip->options &= ~NAND_BUSWIDTH_16;
4727 
4728 	for (; type->name != NULL; type++) {
4729 		if (is_full_id_nand(type)) {
4730 			if (find_full_id_nand(chip, type))
4731 				goto ident_done;
4732 		} else if (dev_id == type->dev_id) {
4733 			break;
4734 		}
4735 	}
4736 
4737 	if (!type->name || !type->pagesize) {
4738 		/* Check if the chip is ONFI compliant */
4739 		ret = nand_onfi_detect(chip);
4740 		if (ret < 0)
4741 			return ret;
4742 		else if (ret)
4743 			goto ident_done;
4744 
4745 		/* Check if the chip is JEDEC compliant */
4746 		ret = nand_jedec_detect(chip);
4747 		if (ret < 0)
4748 			return ret;
4749 		else if (ret)
4750 			goto ident_done;
4751 	}
4752 
4753 	if (!type->name)
4754 		return -ENODEV;
4755 
4756 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4757 	if (!chip->parameters.model)
4758 		return -ENOMEM;
4759 
4760 	if (!type->pagesize)
4761 		nand_manufacturer_detect(chip);
4762 	else
4763 		nand_decode_id(chip, type);
4764 
4765 	/* Get chip options */
4766 	chip->options |= type->options;
4767 
4768 	memorg->eraseblocks_per_lun =
4769 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4770 					   memorg->pagesize *
4771 					   memorg->pages_per_eraseblock);
4772 
4773 ident_done:
4774 	if (!mtd->name)
4775 		mtd->name = chip->parameters.model;
4776 
4777 	if (chip->options & NAND_BUSWIDTH_AUTO) {
4778 		WARN_ON(busw & NAND_BUSWIDTH_16);
4779 		nand_set_defaults(chip);
4780 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4781 		/*
4782 		 * Check, if buswidth is correct. Hardware drivers should set
4783 		 * chip correct!
4784 		 */
4785 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4786 			maf_id, dev_id);
4787 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4788 			mtd->name);
4789 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4790 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4791 		ret = -EINVAL;
4792 
4793 		goto free_detect_allocation;
4794 	}
4795 
4796 	nand_decode_bbm_options(chip);
4797 
4798 	/* Calculate the address shift from the page size */
4799 	chip->page_shift = ffs(mtd->writesize) - 1;
4800 	/* Convert chipsize to number of pages per chip -1 */
4801 	targetsize = nanddev_target_size(&chip->base);
4802 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
4803 
4804 	chip->bbt_erase_shift = chip->phys_erase_shift =
4805 		ffs(mtd->erasesize) - 1;
4806 	if (targetsize & 0xffffffff)
4807 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
4808 	else {
4809 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
4810 		chip->chip_shift += 32 - 1;
4811 	}
4812 
4813 	if (chip->chip_shift - chip->page_shift > 16)
4814 		chip->options |= NAND_ROW_ADDR_3;
4815 
4816 	chip->badblockbits = 8;
4817 
4818 	nand_legacy_adjust_cmdfunc(chip);
4819 
4820 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4821 		maf_id, dev_id);
4822 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4823 		chip->parameters.model);
4824 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4825 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4826 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4827 	return 0;
4828 
4829 free_detect_allocation:
4830 	kfree(chip->parameters.model);
4831 
4832 	return ret;
4833 }
4834 
4835 static const char * const nand_ecc_modes[] = {
4836 	[NAND_ECC_NONE]		= "none",
4837 	[NAND_ECC_SOFT]		= "soft",
4838 	[NAND_ECC_HW]		= "hw",
4839 	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
4840 	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
4841 	[NAND_ECC_ON_DIE]	= "on-die",
4842 };
4843 
4844 static int of_get_nand_ecc_mode(struct device_node *np)
4845 {
4846 	const char *pm;
4847 	int err, i;
4848 
4849 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4850 	if (err < 0)
4851 		return err;
4852 
4853 	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4854 		if (!strcasecmp(pm, nand_ecc_modes[i]))
4855 			return i;
4856 
4857 	/*
4858 	 * For backward compatibility we support few obsoleted values that don't
4859 	 * have their mappings into nand_ecc_modes_t anymore (they were merged
4860 	 * with other enums).
4861 	 */
4862 	if (!strcasecmp(pm, "soft_bch"))
4863 		return NAND_ECC_SOFT;
4864 
4865 	return -ENODEV;
4866 }
4867 
4868 static const char * const nand_ecc_algos[] = {
4869 	[NAND_ECC_HAMMING]	= "hamming",
4870 	[NAND_ECC_BCH]		= "bch",
4871 	[NAND_ECC_RS]		= "rs",
4872 };
4873 
4874 static int of_get_nand_ecc_algo(struct device_node *np)
4875 {
4876 	const char *pm;
4877 	int err, i;
4878 
4879 	err = of_property_read_string(np, "nand-ecc-algo", &pm);
4880 	if (!err) {
4881 		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4882 			if (!strcasecmp(pm, nand_ecc_algos[i]))
4883 				return i;
4884 		return -ENODEV;
4885 	}
4886 
4887 	/*
4888 	 * For backward compatibility we also read "nand-ecc-mode" checking
4889 	 * for some obsoleted values that were specifying ECC algorithm.
4890 	 */
4891 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4892 	if (err < 0)
4893 		return err;
4894 
4895 	if (!strcasecmp(pm, "soft"))
4896 		return NAND_ECC_HAMMING;
4897 	else if (!strcasecmp(pm, "soft_bch"))
4898 		return NAND_ECC_BCH;
4899 
4900 	return -ENODEV;
4901 }
4902 
4903 static int of_get_nand_ecc_step_size(struct device_node *np)
4904 {
4905 	int ret;
4906 	u32 val;
4907 
4908 	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4909 	return ret ? ret : val;
4910 }
4911 
4912 static int of_get_nand_ecc_strength(struct device_node *np)
4913 {
4914 	int ret;
4915 	u32 val;
4916 
4917 	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4918 	return ret ? ret : val;
4919 }
4920 
4921 static int of_get_nand_bus_width(struct device_node *np)
4922 {
4923 	u32 val;
4924 
4925 	if (of_property_read_u32(np, "nand-bus-width", &val))
4926 		return 8;
4927 
4928 	switch (val) {
4929 	case 8:
4930 	case 16:
4931 		return val;
4932 	default:
4933 		return -EIO;
4934 	}
4935 }
4936 
4937 static bool of_get_nand_on_flash_bbt(struct device_node *np)
4938 {
4939 	return of_property_read_bool(np, "nand-on-flash-bbt");
4940 }
4941 
4942 static int nand_dt_init(struct nand_chip *chip)
4943 {
4944 	struct device_node *dn = nand_get_flash_node(chip);
4945 	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4946 
4947 	if (!dn)
4948 		return 0;
4949 
4950 	if (of_get_nand_bus_width(dn) == 16)
4951 		chip->options |= NAND_BUSWIDTH_16;
4952 
4953 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
4954 		chip->options |= NAND_IS_BOOT_MEDIUM;
4955 
4956 	if (of_get_nand_on_flash_bbt(dn))
4957 		chip->bbt_options |= NAND_BBT_USE_FLASH;
4958 
4959 	ecc_mode = of_get_nand_ecc_mode(dn);
4960 	ecc_algo = of_get_nand_ecc_algo(dn);
4961 	ecc_strength = of_get_nand_ecc_strength(dn);
4962 	ecc_step = of_get_nand_ecc_step_size(dn);
4963 
4964 	if (ecc_mode >= 0)
4965 		chip->ecc.mode = ecc_mode;
4966 
4967 	if (ecc_algo >= 0)
4968 		chip->ecc.algo = ecc_algo;
4969 
4970 	if (ecc_strength >= 0)
4971 		chip->ecc.strength = ecc_strength;
4972 
4973 	if (ecc_step > 0)
4974 		chip->ecc.size = ecc_step;
4975 
4976 	if (of_property_read_bool(dn, "nand-ecc-maximize"))
4977 		chip->ecc.options |= NAND_ECC_MAXIMIZE;
4978 
4979 	return 0;
4980 }
4981 
4982 /**
4983  * nand_scan_ident - Scan for the NAND device
4984  * @chip: NAND chip object
4985  * @maxchips: number of chips to scan for
4986  * @table: alternative NAND ID table
4987  *
4988  * This is the first phase of the normal nand_scan() function. It reads the
4989  * flash ID and sets up MTD fields accordingly.
4990  *
4991  * This helper used to be called directly from controller drivers that needed
4992  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
4993  * prevented dynamic allocations during this phase which was unconvenient and
4994  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
4995  */
4996 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
4997 			   struct nand_flash_dev *table)
4998 {
4999 	struct mtd_info *mtd = nand_to_mtd(chip);
5000 	struct nand_memory_organization *memorg;
5001 	int nand_maf_id, nand_dev_id;
5002 	unsigned int i;
5003 	int ret;
5004 
5005 	memorg = nanddev_get_memorg(&chip->base);
5006 
5007 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5008 	chip->cur_cs = -1;
5009 
5010 	mutex_init(&chip->lock);
5011 
5012 	/* Enforce the right timings for reset/detection */
5013 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5014 
5015 	ret = nand_dt_init(chip);
5016 	if (ret)
5017 		return ret;
5018 
5019 	if (!mtd->name && mtd->dev.parent)
5020 		mtd->name = dev_name(mtd->dev.parent);
5021 
5022 	/* Set the default functions */
5023 	nand_set_defaults(chip);
5024 
5025 	ret = nand_legacy_check_hooks(chip);
5026 	if (ret)
5027 		return ret;
5028 
5029 	memorg->ntargets = maxchips;
5030 
5031 	/* Read the flash type */
5032 	ret = nand_detect(chip, table);
5033 	if (ret) {
5034 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5035 			pr_warn("No NAND device found\n");
5036 		nand_deselect_target(chip);
5037 		return ret;
5038 	}
5039 
5040 	nand_maf_id = chip->id.data[0];
5041 	nand_dev_id = chip->id.data[1];
5042 
5043 	nand_deselect_target(chip);
5044 
5045 	/* Check for a chip array */
5046 	for (i = 1; i < maxchips; i++) {
5047 		u8 id[2];
5048 
5049 		/* See comment in nand_get_flash_type for reset */
5050 		ret = nand_reset(chip, i);
5051 		if (ret)
5052 			break;
5053 
5054 		nand_select_target(chip, i);
5055 		/* Send the command for reading device ID */
5056 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5057 		if (ret)
5058 			break;
5059 		/* Read manufacturer and device IDs */
5060 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5061 			nand_deselect_target(chip);
5062 			break;
5063 		}
5064 		nand_deselect_target(chip);
5065 	}
5066 	if (i > 1)
5067 		pr_info("%d chips detected\n", i);
5068 
5069 	/* Store the number of chips and calc total size for mtd */
5070 	memorg->ntargets = i;
5071 	mtd->size = i * nanddev_target_size(&chip->base);
5072 
5073 	return 0;
5074 }
5075 
5076 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5077 {
5078 	kfree(chip->parameters.model);
5079 	kfree(chip->parameters.onfi);
5080 }
5081 
5082 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5083 {
5084 	struct mtd_info *mtd = nand_to_mtd(chip);
5085 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5086 
5087 	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5088 		return -EINVAL;
5089 
5090 	switch (ecc->algo) {
5091 	case NAND_ECC_HAMMING:
5092 		ecc->calculate = nand_calculate_ecc;
5093 		ecc->correct = nand_correct_data;
5094 		ecc->read_page = nand_read_page_swecc;
5095 		ecc->read_subpage = nand_read_subpage;
5096 		ecc->write_page = nand_write_page_swecc;
5097 		ecc->read_page_raw = nand_read_page_raw;
5098 		ecc->write_page_raw = nand_write_page_raw;
5099 		ecc->read_oob = nand_read_oob_std;
5100 		ecc->write_oob = nand_write_oob_std;
5101 		if (!ecc->size)
5102 			ecc->size = 256;
5103 		ecc->bytes = 3;
5104 		ecc->strength = 1;
5105 
5106 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5107 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5108 
5109 		return 0;
5110 	case NAND_ECC_BCH:
5111 		if (!mtd_nand_has_bch()) {
5112 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5113 			return -EINVAL;
5114 		}
5115 		ecc->calculate = nand_bch_calculate_ecc;
5116 		ecc->correct = nand_bch_correct_data;
5117 		ecc->read_page = nand_read_page_swecc;
5118 		ecc->read_subpage = nand_read_subpage;
5119 		ecc->write_page = nand_write_page_swecc;
5120 		ecc->read_page_raw = nand_read_page_raw;
5121 		ecc->write_page_raw = nand_write_page_raw;
5122 		ecc->read_oob = nand_read_oob_std;
5123 		ecc->write_oob = nand_write_oob_std;
5124 
5125 		/*
5126 		* Board driver should supply ecc.size and ecc.strength
5127 		* values to select how many bits are correctable.
5128 		* Otherwise, default to 4 bits for large page devices.
5129 		*/
5130 		if (!ecc->size && (mtd->oobsize >= 64)) {
5131 			ecc->size = 512;
5132 			ecc->strength = 4;
5133 		}
5134 
5135 		/*
5136 		 * if no ecc placement scheme was provided pickup the default
5137 		 * large page one.
5138 		 */
5139 		if (!mtd->ooblayout) {
5140 			/* handle large page devices only */
5141 			if (mtd->oobsize < 64) {
5142 				WARN(1, "OOB layout is required when using software BCH on small pages\n");
5143 				return -EINVAL;
5144 			}
5145 
5146 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
5147 
5148 		}
5149 
5150 		/*
5151 		 * We can only maximize ECC config when the default layout is
5152 		 * used, otherwise we don't know how many bytes can really be
5153 		 * used.
5154 		 */
5155 		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
5156 		    ecc->options & NAND_ECC_MAXIMIZE) {
5157 			int steps, bytes;
5158 
5159 			/* Always prefer 1k blocks over 512bytes ones */
5160 			ecc->size = 1024;
5161 			steps = mtd->writesize / ecc->size;
5162 
5163 			/* Reserve 2 bytes for the BBM */
5164 			bytes = (mtd->oobsize - 2) / steps;
5165 			ecc->strength = bytes * 8 / fls(8 * ecc->size);
5166 		}
5167 
5168 		/* See nand_bch_init() for details. */
5169 		ecc->bytes = 0;
5170 		ecc->priv = nand_bch_init(mtd);
5171 		if (!ecc->priv) {
5172 			WARN(1, "BCH ECC initialization failed!\n");
5173 			return -EINVAL;
5174 		}
5175 		return 0;
5176 	default:
5177 		WARN(1, "Unsupported ECC algorithm!\n");
5178 		return -EINVAL;
5179 	}
5180 }
5181 
5182 /**
5183  * nand_check_ecc_caps - check the sanity of preset ECC settings
5184  * @chip: nand chip info structure
5185  * @caps: ECC caps info structure
5186  * @oobavail: OOB size that the ECC engine can use
5187  *
5188  * When ECC step size and strength are already set, check if they are supported
5189  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5190  * On success, the calculated ECC bytes is set.
5191  */
5192 static int
5193 nand_check_ecc_caps(struct nand_chip *chip,
5194 		    const struct nand_ecc_caps *caps, int oobavail)
5195 {
5196 	struct mtd_info *mtd = nand_to_mtd(chip);
5197 	const struct nand_ecc_step_info *stepinfo;
5198 	int preset_step = chip->ecc.size;
5199 	int preset_strength = chip->ecc.strength;
5200 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5201 	int i, j;
5202 
5203 	for (i = 0; i < caps->nstepinfos; i++) {
5204 		stepinfo = &caps->stepinfos[i];
5205 
5206 		if (stepinfo->stepsize != preset_step)
5207 			continue;
5208 
5209 		for (j = 0; j < stepinfo->nstrengths; j++) {
5210 			if (stepinfo->strengths[j] != preset_strength)
5211 				continue;
5212 
5213 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
5214 							 preset_strength);
5215 			if (WARN_ON_ONCE(ecc_bytes < 0))
5216 				return ecc_bytes;
5217 
5218 			if (ecc_bytes * nsteps > oobavail) {
5219 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5220 				       preset_step, preset_strength);
5221 				return -ENOSPC;
5222 			}
5223 
5224 			chip->ecc.bytes = ecc_bytes;
5225 
5226 			return 0;
5227 		}
5228 	}
5229 
5230 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5231 	       preset_step, preset_strength);
5232 
5233 	return -ENOTSUPP;
5234 }
5235 
5236 /**
5237  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5238  * @chip: nand chip info structure
5239  * @caps: ECC engine caps info structure
5240  * @oobavail: OOB size that the ECC engine can use
5241  *
5242  * If a chip's ECC requirement is provided, try to meet it with the least
5243  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5244  * On success, the chosen ECC settings are set.
5245  */
5246 static int
5247 nand_match_ecc_req(struct nand_chip *chip,
5248 		   const struct nand_ecc_caps *caps, int oobavail)
5249 {
5250 	struct mtd_info *mtd = nand_to_mtd(chip);
5251 	const struct nand_ecc_step_info *stepinfo;
5252 	int req_step = chip->base.eccreq.step_size;
5253 	int req_strength = chip->base.eccreq.strength;
5254 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5255 	int best_step, best_strength, best_ecc_bytes;
5256 	int best_ecc_bytes_total = INT_MAX;
5257 	int i, j;
5258 
5259 	/* No information provided by the NAND chip */
5260 	if (!req_step || !req_strength)
5261 		return -ENOTSUPP;
5262 
5263 	/* number of correctable bits the chip requires in a page */
5264 	req_corr = mtd->writesize / req_step * req_strength;
5265 
5266 	for (i = 0; i < caps->nstepinfos; i++) {
5267 		stepinfo = &caps->stepinfos[i];
5268 		step_size = stepinfo->stepsize;
5269 
5270 		for (j = 0; j < stepinfo->nstrengths; j++) {
5271 			strength = stepinfo->strengths[j];
5272 
5273 			/*
5274 			 * If both step size and strength are smaller than the
5275 			 * chip's requirement, it is not easy to compare the
5276 			 * resulted reliability.
5277 			 */
5278 			if (step_size < req_step && strength < req_strength)
5279 				continue;
5280 
5281 			if (mtd->writesize % step_size)
5282 				continue;
5283 
5284 			nsteps = mtd->writesize / step_size;
5285 
5286 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5287 			if (WARN_ON_ONCE(ecc_bytes < 0))
5288 				continue;
5289 			ecc_bytes_total = ecc_bytes * nsteps;
5290 
5291 			if (ecc_bytes_total > oobavail ||
5292 			    strength * nsteps < req_corr)
5293 				continue;
5294 
5295 			/*
5296 			 * We assume the best is to meet the chip's requrement
5297 			 * with the least number of ECC bytes.
5298 			 */
5299 			if (ecc_bytes_total < best_ecc_bytes_total) {
5300 				best_ecc_bytes_total = ecc_bytes_total;
5301 				best_step = step_size;
5302 				best_strength = strength;
5303 				best_ecc_bytes = ecc_bytes;
5304 			}
5305 		}
5306 	}
5307 
5308 	if (best_ecc_bytes_total == INT_MAX)
5309 		return -ENOTSUPP;
5310 
5311 	chip->ecc.size = best_step;
5312 	chip->ecc.strength = best_strength;
5313 	chip->ecc.bytes = best_ecc_bytes;
5314 
5315 	return 0;
5316 }
5317 
5318 /**
5319  * nand_maximize_ecc - choose the max ECC strength available
5320  * @chip: nand chip info structure
5321  * @caps: ECC engine caps info structure
5322  * @oobavail: OOB size that the ECC engine can use
5323  *
5324  * Choose the max ECC strength that is supported on the controller, and can fit
5325  * within the chip's OOB.  On success, the chosen ECC settings are set.
5326  */
5327 static int
5328 nand_maximize_ecc(struct nand_chip *chip,
5329 		  const struct nand_ecc_caps *caps, int oobavail)
5330 {
5331 	struct mtd_info *mtd = nand_to_mtd(chip);
5332 	const struct nand_ecc_step_info *stepinfo;
5333 	int step_size, strength, nsteps, ecc_bytes, corr;
5334 	int best_corr = 0;
5335 	int best_step = 0;
5336 	int best_strength, best_ecc_bytes;
5337 	int i, j;
5338 
5339 	for (i = 0; i < caps->nstepinfos; i++) {
5340 		stepinfo = &caps->stepinfos[i];
5341 		step_size = stepinfo->stepsize;
5342 
5343 		/* If chip->ecc.size is already set, respect it */
5344 		if (chip->ecc.size && step_size != chip->ecc.size)
5345 			continue;
5346 
5347 		for (j = 0; j < stepinfo->nstrengths; j++) {
5348 			strength = stepinfo->strengths[j];
5349 
5350 			if (mtd->writesize % step_size)
5351 				continue;
5352 
5353 			nsteps = mtd->writesize / step_size;
5354 
5355 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5356 			if (WARN_ON_ONCE(ecc_bytes < 0))
5357 				continue;
5358 
5359 			if (ecc_bytes * nsteps > oobavail)
5360 				continue;
5361 
5362 			corr = strength * nsteps;
5363 
5364 			/*
5365 			 * If the number of correctable bits is the same,
5366 			 * bigger step_size has more reliability.
5367 			 */
5368 			if (corr > best_corr ||
5369 			    (corr == best_corr && step_size > best_step)) {
5370 				best_corr = corr;
5371 				best_step = step_size;
5372 				best_strength = strength;
5373 				best_ecc_bytes = ecc_bytes;
5374 			}
5375 		}
5376 	}
5377 
5378 	if (!best_corr)
5379 		return -ENOTSUPP;
5380 
5381 	chip->ecc.size = best_step;
5382 	chip->ecc.strength = best_strength;
5383 	chip->ecc.bytes = best_ecc_bytes;
5384 
5385 	return 0;
5386 }
5387 
5388 /**
5389  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5390  * @chip: nand chip info structure
5391  * @caps: ECC engine caps info structure
5392  * @oobavail: OOB size that the ECC engine can use
5393  *
5394  * Choose the ECC configuration according to following logic
5395  *
5396  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5397  *    then check if it is supported by this controller.
5398  * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
5399  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5400  *    to the chip's requirement. If available OOB size can't fit the chip
5401  *    requirement then fallback to the maximum ECC step size and ECC strength.
5402  *
5403  * On success, the chosen ECC settings are set.
5404  */
5405 int nand_ecc_choose_conf(struct nand_chip *chip,
5406 			 const struct nand_ecc_caps *caps, int oobavail)
5407 {
5408 	struct mtd_info *mtd = nand_to_mtd(chip);
5409 
5410 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5411 		return -EINVAL;
5412 
5413 	if (chip->ecc.size && chip->ecc.strength)
5414 		return nand_check_ecc_caps(chip, caps, oobavail);
5415 
5416 	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
5417 		return nand_maximize_ecc(chip, caps, oobavail);
5418 
5419 	if (!nand_match_ecc_req(chip, caps, oobavail))
5420 		return 0;
5421 
5422 	return nand_maximize_ecc(chip, caps, oobavail);
5423 }
5424 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5425 
5426 /*
5427  * Check if the chip configuration meet the datasheet requirements.
5428 
5429  * If our configuration corrects A bits per B bytes and the minimum
5430  * required correction level is X bits per Y bytes, then we must ensure
5431  * both of the following are true:
5432  *
5433  * (1) A / B >= X / Y
5434  * (2) A >= X
5435  *
5436  * Requirement (1) ensures we can correct for the required bitflip density.
5437  * Requirement (2) ensures we can correct even when all bitflips are clumped
5438  * in the same sector.
5439  */
5440 static bool nand_ecc_strength_good(struct nand_chip *chip)
5441 {
5442 	struct mtd_info *mtd = nand_to_mtd(chip);
5443 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5444 	int corr, ds_corr;
5445 
5446 	if (ecc->size == 0 || chip->base.eccreq.step_size == 0)
5447 		/* Not enough information */
5448 		return true;
5449 
5450 	/*
5451 	 * We get the number of corrected bits per page to compare
5452 	 * the correction density.
5453 	 */
5454 	corr = (mtd->writesize * ecc->strength) / ecc->size;
5455 	ds_corr = (mtd->writesize * chip->base.eccreq.strength) /
5456 		  chip->base.eccreq.step_size;
5457 
5458 	return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength;
5459 }
5460 
5461 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5462 {
5463 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5464 					      base);
5465 	unsigned int eb = nanddev_pos_to_row(nand, pos);
5466 	int ret;
5467 
5468 	eb >>= nand->rowconv.eraseblock_addr_shift;
5469 
5470 	nand_select_target(chip, pos->target);
5471 	ret = nand_erase_op(chip, eb);
5472 	nand_deselect_target(chip);
5473 
5474 	return ret;
5475 }
5476 
5477 static int rawnand_markbad(struct nand_device *nand,
5478 			   const struct nand_pos *pos)
5479 {
5480 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5481 					      base);
5482 
5483 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5484 }
5485 
5486 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
5487 {
5488 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5489 					      base);
5490 	int ret;
5491 
5492 	nand_select_target(chip, pos->target);
5493 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5494 	nand_deselect_target(chip);
5495 
5496 	return ret;
5497 }
5498 
5499 static const struct nand_ops rawnand_ops = {
5500 	.erase = rawnand_erase,
5501 	.markbad = rawnand_markbad,
5502 	.isbad = rawnand_isbad,
5503 };
5504 
5505 /**
5506  * nand_scan_tail - Scan for the NAND device
5507  * @chip: NAND chip object
5508  *
5509  * This is the second phase of the normal nand_scan() function. It fills out
5510  * all the uninitialized function pointers with the defaults and scans for a
5511  * bad block table if appropriate.
5512  */
5513 static int nand_scan_tail(struct nand_chip *chip)
5514 {
5515 	struct mtd_info *mtd = nand_to_mtd(chip);
5516 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5517 	int ret, i;
5518 
5519 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
5520 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5521 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5522 		return -EINVAL;
5523 	}
5524 
5525 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5526 	if (!chip->data_buf)
5527 		return -ENOMEM;
5528 
5529 	/*
5530 	 * FIXME: some NAND manufacturer drivers expect the first die to be
5531 	 * selected when manufacturer->init() is called. They should be fixed
5532 	 * to explictly select the relevant die when interacting with the NAND
5533 	 * chip.
5534 	 */
5535 	nand_select_target(chip, 0);
5536 	ret = nand_manufacturer_init(chip);
5537 	nand_deselect_target(chip);
5538 	if (ret)
5539 		goto err_free_buf;
5540 
5541 	/* Set the internal oob buffer location, just after the page data */
5542 	chip->oob_poi = chip->data_buf + mtd->writesize;
5543 
5544 	/*
5545 	 * If no default placement scheme is given, select an appropriate one.
5546 	 */
5547 	if (!mtd->ooblayout &&
5548 	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
5549 		switch (mtd->oobsize) {
5550 		case 8:
5551 		case 16:
5552 			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
5553 			break;
5554 		case 64:
5555 		case 128:
5556 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
5557 			break;
5558 		default:
5559 			/*
5560 			 * Expose the whole OOB area to users if ECC_NONE
5561 			 * is passed. We could do that for all kind of
5562 			 * ->oobsize, but we must keep the old large/small
5563 			 * page with ECC layout when ->oobsize <= 128 for
5564 			 * compatibility reasons.
5565 			 */
5566 			if (ecc->mode == NAND_ECC_NONE) {
5567 				mtd_set_ooblayout(mtd,
5568 						&nand_ooblayout_lp_ops);
5569 				break;
5570 			}
5571 
5572 			WARN(1, "No oob scheme defined for oobsize %d\n",
5573 				mtd->oobsize);
5574 			ret = -EINVAL;
5575 			goto err_nand_manuf_cleanup;
5576 		}
5577 	}
5578 
5579 	/*
5580 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5581 	 * selected and we have 256 byte pagesize fallback to software ECC
5582 	 */
5583 
5584 	switch (ecc->mode) {
5585 	case NAND_ECC_HW_OOB_FIRST:
5586 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
5587 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
5588 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5589 			ret = -EINVAL;
5590 			goto err_nand_manuf_cleanup;
5591 		}
5592 		if (!ecc->read_page)
5593 			ecc->read_page = nand_read_page_hwecc_oob_first;
5594 		/* fall through */
5595 
5596 	case NAND_ECC_HW:
5597 		/* Use standard hwecc read page function? */
5598 		if (!ecc->read_page)
5599 			ecc->read_page = nand_read_page_hwecc;
5600 		if (!ecc->write_page)
5601 			ecc->write_page = nand_write_page_hwecc;
5602 		if (!ecc->read_page_raw)
5603 			ecc->read_page_raw = nand_read_page_raw;
5604 		if (!ecc->write_page_raw)
5605 			ecc->write_page_raw = nand_write_page_raw;
5606 		if (!ecc->read_oob)
5607 			ecc->read_oob = nand_read_oob_std;
5608 		if (!ecc->write_oob)
5609 			ecc->write_oob = nand_write_oob_std;
5610 		if (!ecc->read_subpage)
5611 			ecc->read_subpage = nand_read_subpage;
5612 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5613 			ecc->write_subpage = nand_write_subpage_hwecc;
5614 		/* fall through */
5615 
5616 	case NAND_ECC_HW_SYNDROME:
5617 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5618 		    (!ecc->read_page ||
5619 		     ecc->read_page == nand_read_page_hwecc ||
5620 		     !ecc->write_page ||
5621 		     ecc->write_page == nand_write_page_hwecc)) {
5622 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5623 			ret = -EINVAL;
5624 			goto err_nand_manuf_cleanup;
5625 		}
5626 		/* Use standard syndrome read/write page function? */
5627 		if (!ecc->read_page)
5628 			ecc->read_page = nand_read_page_syndrome;
5629 		if (!ecc->write_page)
5630 			ecc->write_page = nand_write_page_syndrome;
5631 		if (!ecc->read_page_raw)
5632 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5633 		if (!ecc->write_page_raw)
5634 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5635 		if (!ecc->read_oob)
5636 			ecc->read_oob = nand_read_oob_syndrome;
5637 		if (!ecc->write_oob)
5638 			ecc->write_oob = nand_write_oob_syndrome;
5639 
5640 		if (mtd->writesize >= ecc->size) {
5641 			if (!ecc->strength) {
5642 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5643 				ret = -EINVAL;
5644 				goto err_nand_manuf_cleanup;
5645 			}
5646 			break;
5647 		}
5648 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5649 			ecc->size, mtd->writesize);
5650 		ecc->mode = NAND_ECC_SOFT;
5651 		ecc->algo = NAND_ECC_HAMMING;
5652 		/* fall through */
5653 
5654 	case NAND_ECC_SOFT:
5655 		ret = nand_set_ecc_soft_ops(chip);
5656 		if (ret) {
5657 			ret = -EINVAL;
5658 			goto err_nand_manuf_cleanup;
5659 		}
5660 		break;
5661 
5662 	case NAND_ECC_ON_DIE:
5663 		if (!ecc->read_page || !ecc->write_page) {
5664 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5665 			ret = -EINVAL;
5666 			goto err_nand_manuf_cleanup;
5667 		}
5668 		if (!ecc->read_oob)
5669 			ecc->read_oob = nand_read_oob_std;
5670 		if (!ecc->write_oob)
5671 			ecc->write_oob = nand_write_oob_std;
5672 		break;
5673 
5674 	case NAND_ECC_NONE:
5675 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5676 		ecc->read_page = nand_read_page_raw;
5677 		ecc->write_page = nand_write_page_raw;
5678 		ecc->read_oob = nand_read_oob_std;
5679 		ecc->read_page_raw = nand_read_page_raw;
5680 		ecc->write_page_raw = nand_write_page_raw;
5681 		ecc->write_oob = nand_write_oob_std;
5682 		ecc->size = mtd->writesize;
5683 		ecc->bytes = 0;
5684 		ecc->strength = 0;
5685 		break;
5686 
5687 	default:
5688 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5689 		ret = -EINVAL;
5690 		goto err_nand_manuf_cleanup;
5691 	}
5692 
5693 	if (ecc->correct || ecc->calculate) {
5694 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5695 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5696 		if (!ecc->calc_buf || !ecc->code_buf) {
5697 			ret = -ENOMEM;
5698 			goto err_nand_manuf_cleanup;
5699 		}
5700 	}
5701 
5702 	/* For many systems, the standard OOB write also works for raw */
5703 	if (!ecc->read_oob_raw)
5704 		ecc->read_oob_raw = ecc->read_oob;
5705 	if (!ecc->write_oob_raw)
5706 		ecc->write_oob_raw = ecc->write_oob;
5707 
5708 	/* propagate ecc info to mtd_info */
5709 	mtd->ecc_strength = ecc->strength;
5710 	mtd->ecc_step_size = ecc->size;
5711 
5712 	/*
5713 	 * Set the number of read / write steps for one page depending on ECC
5714 	 * mode.
5715 	 */
5716 	ecc->steps = mtd->writesize / ecc->size;
5717 	if (ecc->steps * ecc->size != mtd->writesize) {
5718 		WARN(1, "Invalid ECC parameters\n");
5719 		ret = -EINVAL;
5720 		goto err_nand_manuf_cleanup;
5721 	}
5722 	ecc->total = ecc->steps * ecc->bytes;
5723 	if (ecc->total > mtd->oobsize) {
5724 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5725 		ret = -EINVAL;
5726 		goto err_nand_manuf_cleanup;
5727 	}
5728 
5729 	/*
5730 	 * The number of bytes available for a client to place data into
5731 	 * the out of band area.
5732 	 */
5733 	ret = mtd_ooblayout_count_freebytes(mtd);
5734 	if (ret < 0)
5735 		ret = 0;
5736 
5737 	mtd->oobavail = ret;
5738 
5739 	/* ECC sanity check: warn if it's too weak */
5740 	if (!nand_ecc_strength_good(chip))
5741 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
5742 			mtd->name);
5743 
5744 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5745 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5746 		switch (ecc->steps) {
5747 		case 2:
5748 			mtd->subpage_sft = 1;
5749 			break;
5750 		case 4:
5751 		case 8:
5752 		case 16:
5753 			mtd->subpage_sft = 2;
5754 			break;
5755 		}
5756 	}
5757 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5758 
5759 	/* Invalidate the pagebuffer reference */
5760 	chip->pagecache.page = -1;
5761 
5762 	/* Large page NAND with SOFT_ECC should support subpage reads */
5763 	switch (ecc->mode) {
5764 	case NAND_ECC_SOFT:
5765 		if (chip->page_shift > 9)
5766 			chip->options |= NAND_SUBPAGE_READ;
5767 		break;
5768 
5769 	default:
5770 		break;
5771 	}
5772 
5773 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
5774 	if (ret)
5775 		goto err_nand_manuf_cleanup;
5776 
5777 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
5778 	if (chip->options & NAND_ROM)
5779 		mtd->flags = MTD_CAP_ROM;
5780 
5781 	/* Fill in remaining MTD driver data */
5782 	mtd->_erase = nand_erase;
5783 	mtd->_point = NULL;
5784 	mtd->_unpoint = NULL;
5785 	mtd->_panic_write = panic_nand_write;
5786 	mtd->_read_oob = nand_read_oob;
5787 	mtd->_write_oob = nand_write_oob;
5788 	mtd->_sync = nand_sync;
5789 	mtd->_lock = NULL;
5790 	mtd->_unlock = NULL;
5791 	mtd->_suspend = nand_suspend;
5792 	mtd->_resume = nand_resume;
5793 	mtd->_reboot = nand_shutdown;
5794 	mtd->_block_isreserved = nand_block_isreserved;
5795 	mtd->_block_isbad = nand_block_isbad;
5796 	mtd->_block_markbad = nand_block_markbad;
5797 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
5798 
5799 	/*
5800 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
5801 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5802 	 * properly set.
5803 	 */
5804 	if (!mtd->bitflip_threshold)
5805 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5806 
5807 	/* Initialize the ->data_interface field. */
5808 	ret = nand_init_data_interface(chip);
5809 	if (ret)
5810 		goto err_nanddev_cleanup;
5811 
5812 	/* Enter fastest possible mode on all dies. */
5813 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
5814 		ret = nand_setup_data_interface(chip, i);
5815 		if (ret)
5816 			goto err_nanddev_cleanup;
5817 	}
5818 
5819 	/* Check, if we should skip the bad block table scan */
5820 	if (chip->options & NAND_SKIP_BBTSCAN)
5821 		return 0;
5822 
5823 	/* Build bad block table */
5824 	ret = nand_create_bbt(chip);
5825 	if (ret)
5826 		goto err_nanddev_cleanup;
5827 
5828 	return 0;
5829 
5830 
5831 err_nanddev_cleanup:
5832 	nanddev_cleanup(&chip->base);
5833 
5834 err_nand_manuf_cleanup:
5835 	nand_manufacturer_cleanup(chip);
5836 
5837 err_free_buf:
5838 	kfree(chip->data_buf);
5839 	kfree(ecc->code_buf);
5840 	kfree(ecc->calc_buf);
5841 
5842 	return ret;
5843 }
5844 
5845 static int nand_attach(struct nand_chip *chip)
5846 {
5847 	if (chip->controller->ops && chip->controller->ops->attach_chip)
5848 		return chip->controller->ops->attach_chip(chip);
5849 
5850 	return 0;
5851 }
5852 
5853 static void nand_detach(struct nand_chip *chip)
5854 {
5855 	if (chip->controller->ops && chip->controller->ops->detach_chip)
5856 		chip->controller->ops->detach_chip(chip);
5857 }
5858 
5859 /**
5860  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
5861  * @chip: NAND chip object
5862  * @maxchips: number of chips to scan for.
5863  * @ids: optional flash IDs table
5864  *
5865  * This fills out all the uninitialized function pointers with the defaults.
5866  * The flash ID is read and the mtd/chip structures are filled with the
5867  * appropriate values.
5868  */
5869 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
5870 		       struct nand_flash_dev *ids)
5871 {
5872 	int ret;
5873 
5874 	if (!maxchips)
5875 		return -EINVAL;
5876 
5877 	ret = nand_scan_ident(chip, maxchips, ids);
5878 	if (ret)
5879 		return ret;
5880 
5881 	ret = nand_attach(chip);
5882 	if (ret)
5883 		goto cleanup_ident;
5884 
5885 	ret = nand_scan_tail(chip);
5886 	if (ret)
5887 		goto detach_chip;
5888 
5889 	return 0;
5890 
5891 detach_chip:
5892 	nand_detach(chip);
5893 cleanup_ident:
5894 	nand_scan_ident_cleanup(chip);
5895 
5896 	return ret;
5897 }
5898 EXPORT_SYMBOL(nand_scan_with_ids);
5899 
5900 /**
5901  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
5902  * @chip: NAND chip object
5903  */
5904 void nand_cleanup(struct nand_chip *chip)
5905 {
5906 	if (chip->ecc.mode == NAND_ECC_SOFT &&
5907 	    chip->ecc.algo == NAND_ECC_BCH)
5908 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
5909 
5910 	/* Free bad block table memory */
5911 	kfree(chip->bbt);
5912 	kfree(chip->data_buf);
5913 	kfree(chip->ecc.code_buf);
5914 	kfree(chip->ecc.calc_buf);
5915 
5916 	/* Free bad block descriptor memory */
5917 	if (chip->badblock_pattern && chip->badblock_pattern->options
5918 			& NAND_BBT_DYNAMICSTRUCT)
5919 		kfree(chip->badblock_pattern);
5920 
5921 	/* Free manufacturer priv data. */
5922 	nand_manufacturer_cleanup(chip);
5923 
5924 	/* Free controller specific allocations after chip identification */
5925 	nand_detach(chip);
5926 
5927 	/* Free identification phase allocations */
5928 	nand_scan_ident_cleanup(chip);
5929 }
5930 
5931 EXPORT_SYMBOL_GPL(nand_cleanup);
5932 
5933 /**
5934  * nand_release - [NAND Interface] Unregister the MTD device and free resources
5935  *		  held by the NAND device
5936  * @chip: NAND chip object
5937  */
5938 void nand_release(struct nand_chip *chip)
5939 {
5940 	mtd_device_unregister(nand_to_mtd(chip));
5941 	nand_cleanup(chip);
5942 }
5943 EXPORT_SYMBOL_GPL(nand_release);
5944 
5945 MODULE_LICENSE("GPL");
5946 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5947 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
5948 MODULE_DESCRIPTION("Generic NAND flash driver code");
5949