1 /* 2 * Overview: 3 * This is the generic MTD driver for NAND flash devices. It should be 4 * capable of working with almost all NAND chips currently available. 5 * 6 * Additional technical information is available on 7 * http://www.linux-mtd.infradead.org/doc/nand.html 8 * 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 11 * 12 * Credits: 13 * David Woodhouse for adding multichip support 14 * 15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 16 * rework for 2K page size chips 17 * 18 * TODO: 19 * Enable cached programming for 2k page size chips 20 * Check, if mtd->ecctype should be set to MTD_ECC_HW 21 * if we have HW ECC support. 22 * BBT table is not serialized, has to be fixed 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License version 2 as 26 * published by the Free Software Foundation. 27 * 28 */ 29 30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 31 32 #include <linux/module.h> 33 #include <linux/delay.h> 34 #include <linux/errno.h> 35 #include <linux/err.h> 36 #include <linux/sched.h> 37 #include <linux/slab.h> 38 #include <linux/mm.h> 39 #include <linux/types.h> 40 #include <linux/mtd/mtd.h> 41 #include <linux/mtd/nand_ecc.h> 42 #include <linux/mtd/nand_bch.h> 43 #include <linux/interrupt.h> 44 #include <linux/bitops.h> 45 #include <linux/io.h> 46 #include <linux/mtd/partitions.h> 47 #include <linux/of.h> 48 49 #include "internals.h" 50 51 static int nand_get_device(struct mtd_info *mtd, int new_state); 52 53 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, 54 struct mtd_oob_ops *ops); 55 56 /* Define default oob placement schemes for large and small page devices */ 57 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, 58 struct mtd_oob_region *oobregion) 59 { 60 struct nand_chip *chip = mtd_to_nand(mtd); 61 struct nand_ecc_ctrl *ecc = &chip->ecc; 62 63 if (section > 1) 64 return -ERANGE; 65 66 if (!section) { 67 oobregion->offset = 0; 68 if (mtd->oobsize == 16) 69 oobregion->length = 4; 70 else 71 oobregion->length = 3; 72 } else { 73 if (mtd->oobsize == 8) 74 return -ERANGE; 75 76 oobregion->offset = 6; 77 oobregion->length = ecc->total - 4; 78 } 79 80 return 0; 81 } 82 83 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, 84 struct mtd_oob_region *oobregion) 85 { 86 if (section > 1) 87 return -ERANGE; 88 89 if (mtd->oobsize == 16) { 90 if (section) 91 return -ERANGE; 92 93 oobregion->length = 8; 94 oobregion->offset = 8; 95 } else { 96 oobregion->length = 2; 97 if (!section) 98 oobregion->offset = 3; 99 else 100 oobregion->offset = 6; 101 } 102 103 return 0; 104 } 105 106 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { 107 .ecc = nand_ooblayout_ecc_sp, 108 .free = nand_ooblayout_free_sp, 109 }; 110 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); 111 112 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, 113 struct mtd_oob_region *oobregion) 114 { 115 struct nand_chip *chip = mtd_to_nand(mtd); 116 struct nand_ecc_ctrl *ecc = &chip->ecc; 117 118 if (section || !ecc->total) 119 return -ERANGE; 120 121 oobregion->length = ecc->total; 122 oobregion->offset = mtd->oobsize - oobregion->length; 123 124 return 0; 125 } 126 127 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, 128 struct mtd_oob_region *oobregion) 129 { 130 struct nand_chip *chip = mtd_to_nand(mtd); 131 struct nand_ecc_ctrl *ecc = &chip->ecc; 132 133 if (section) 134 return -ERANGE; 135 136 oobregion->length = mtd->oobsize - ecc->total - 2; 137 oobregion->offset = 2; 138 139 return 0; 140 } 141 142 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { 143 .ecc = nand_ooblayout_ecc_lp, 144 .free = nand_ooblayout_free_lp, 145 }; 146 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); 147 148 /* 149 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC 150 * are placed at a fixed offset. 151 */ 152 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, 153 struct mtd_oob_region *oobregion) 154 { 155 struct nand_chip *chip = mtd_to_nand(mtd); 156 struct nand_ecc_ctrl *ecc = &chip->ecc; 157 158 if (section) 159 return -ERANGE; 160 161 switch (mtd->oobsize) { 162 case 64: 163 oobregion->offset = 40; 164 break; 165 case 128: 166 oobregion->offset = 80; 167 break; 168 default: 169 return -EINVAL; 170 } 171 172 oobregion->length = ecc->total; 173 if (oobregion->offset + oobregion->length > mtd->oobsize) 174 return -ERANGE; 175 176 return 0; 177 } 178 179 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, 180 struct mtd_oob_region *oobregion) 181 { 182 struct nand_chip *chip = mtd_to_nand(mtd); 183 struct nand_ecc_ctrl *ecc = &chip->ecc; 184 int ecc_offset = 0; 185 186 if (section < 0 || section > 1) 187 return -ERANGE; 188 189 switch (mtd->oobsize) { 190 case 64: 191 ecc_offset = 40; 192 break; 193 case 128: 194 ecc_offset = 80; 195 break; 196 default: 197 return -EINVAL; 198 } 199 200 if (section == 0) { 201 oobregion->offset = 2; 202 oobregion->length = ecc_offset - 2; 203 } else { 204 oobregion->offset = ecc_offset + ecc->total; 205 oobregion->length = mtd->oobsize - oobregion->offset; 206 } 207 208 return 0; 209 } 210 211 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { 212 .ecc = nand_ooblayout_ecc_lp_hamming, 213 .free = nand_ooblayout_free_lp_hamming, 214 }; 215 216 static int check_offs_len(struct mtd_info *mtd, 217 loff_t ofs, uint64_t len) 218 { 219 struct nand_chip *chip = mtd_to_nand(mtd); 220 int ret = 0; 221 222 /* Start address must align on block boundary */ 223 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 224 pr_debug("%s: unaligned address\n", __func__); 225 ret = -EINVAL; 226 } 227 228 /* Length must align on block boundary */ 229 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 230 pr_debug("%s: length not block aligned\n", __func__); 231 ret = -EINVAL; 232 } 233 234 return ret; 235 } 236 237 /** 238 * nand_release_device - [GENERIC] release chip 239 * @mtd: MTD device structure 240 * 241 * Release chip lock and wake up anyone waiting on the device. 242 */ 243 static void nand_release_device(struct mtd_info *mtd) 244 { 245 struct nand_chip *chip = mtd_to_nand(mtd); 246 247 /* Release the controller and the chip */ 248 spin_lock(&chip->controller->lock); 249 chip->controller->active = NULL; 250 chip->state = FL_READY; 251 wake_up(&chip->controller->wq); 252 spin_unlock(&chip->controller->lock); 253 } 254 255 /** 256 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 257 * @chip: NAND chip object 258 * @ofs: offset from device start 259 * 260 * Check, if the block is bad. 261 */ 262 static int nand_block_bad(struct nand_chip *chip, loff_t ofs) 263 { 264 struct mtd_info *mtd = nand_to_mtd(chip); 265 int page, page_end, res; 266 u8 bad; 267 268 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) 269 ofs += mtd->erasesize - mtd->writesize; 270 271 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 272 page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1); 273 274 for (; page < page_end; page++) { 275 res = chip->ecc.read_oob(chip, page); 276 if (res < 0) 277 return res; 278 279 bad = chip->oob_poi[chip->badblockpos]; 280 281 if (likely(chip->badblockbits == 8)) 282 res = bad != 0xFF; 283 else 284 res = hweight8(bad) < chip->badblockbits; 285 if (res) 286 return res; 287 } 288 289 return 0; 290 } 291 292 /** 293 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 294 * @chip: NAND chip object 295 * @ofs: offset from device start 296 * 297 * This is the default implementation, which can be overridden by a hardware 298 * specific driver. It provides the details for writing a bad block marker to a 299 * block. 300 */ 301 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) 302 { 303 struct mtd_info *mtd = nand_to_mtd(chip); 304 struct mtd_oob_ops ops; 305 uint8_t buf[2] = { 0, 0 }; 306 int ret = 0, res, i = 0; 307 308 memset(&ops, 0, sizeof(ops)); 309 ops.oobbuf = buf; 310 ops.ooboffs = chip->badblockpos; 311 if (chip->options & NAND_BUSWIDTH_16) { 312 ops.ooboffs &= ~0x01; 313 ops.len = ops.ooblen = 2; 314 } else { 315 ops.len = ops.ooblen = 1; 316 } 317 ops.mode = MTD_OPS_PLACE_OOB; 318 319 /* Write to first/last page(s) if necessary */ 320 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) 321 ofs += mtd->erasesize - mtd->writesize; 322 do { 323 res = nand_do_write_oob(mtd, ofs, &ops); 324 if (!ret) 325 ret = res; 326 327 i++; 328 ofs += mtd->writesize; 329 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); 330 331 return ret; 332 } 333 334 /** 335 * nand_markbad_bbm - mark a block by updating the BBM 336 * @chip: NAND chip object 337 * @ofs: offset of the block to mark bad 338 */ 339 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) 340 { 341 if (chip->legacy.block_markbad) 342 return chip->legacy.block_markbad(chip, ofs); 343 344 return nand_default_block_markbad(chip, ofs); 345 } 346 347 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) 348 { 349 if (chip->legacy.block_bad) 350 return chip->legacy.block_bad(chip, ofs); 351 352 return nand_block_bad(chip, ofs); 353 } 354 355 /** 356 * nand_block_markbad_lowlevel - mark a block bad 357 * @mtd: MTD device structure 358 * @ofs: offset from device start 359 * 360 * This function performs the generic NAND bad block marking steps (i.e., bad 361 * block table(s) and/or marker(s)). We only allow the hardware driver to 362 * specify how to write bad block markers to OOB (chip->legacy.block_markbad). 363 * 364 * We try operations in the following order: 365 * 366 * (1) erase the affected block, to allow OOB marker to be written cleanly 367 * (2) write bad block marker to OOB area of affected block (unless flag 368 * NAND_BBT_NO_OOB_BBM is present) 369 * (3) update the BBT 370 * 371 * Note that we retain the first error encountered in (2) or (3), finish the 372 * procedures, and dump the error in the end. 373 */ 374 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs) 375 { 376 struct nand_chip *chip = mtd_to_nand(mtd); 377 int res, ret = 0; 378 379 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 380 struct erase_info einfo; 381 382 /* Attempt erase before marking OOB */ 383 memset(&einfo, 0, sizeof(einfo)); 384 einfo.addr = ofs; 385 einfo.len = 1ULL << chip->phys_erase_shift; 386 nand_erase_nand(chip, &einfo, 0); 387 388 /* Write bad block marker to OOB */ 389 nand_get_device(mtd, FL_WRITING); 390 ret = nand_markbad_bbm(chip, ofs); 391 nand_release_device(mtd); 392 } 393 394 /* Mark block bad in BBT */ 395 if (chip->bbt) { 396 res = nand_markbad_bbt(chip, ofs); 397 if (!ret) 398 ret = res; 399 } 400 401 if (!ret) 402 mtd->ecc_stats.badblocks++; 403 404 return ret; 405 } 406 407 /** 408 * nand_check_wp - [GENERIC] check if the chip is write protected 409 * @mtd: MTD device structure 410 * 411 * Check, if the device is write protected. The function expects, that the 412 * device is already selected. 413 */ 414 static int nand_check_wp(struct mtd_info *mtd) 415 { 416 struct nand_chip *chip = mtd_to_nand(mtd); 417 u8 status; 418 int ret; 419 420 /* Broken xD cards report WP despite being writable */ 421 if (chip->options & NAND_BROKEN_XD) 422 return 0; 423 424 /* Check the WP bit */ 425 ret = nand_status_op(chip, &status); 426 if (ret) 427 return ret; 428 429 return status & NAND_STATUS_WP ? 0 : 1; 430 } 431 432 /** 433 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 434 * @mtd: MTD device structure 435 * @ofs: offset from device start 436 * 437 * Check if the block is marked as reserved. 438 */ 439 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 440 { 441 struct nand_chip *chip = mtd_to_nand(mtd); 442 443 if (!chip->bbt) 444 return 0; 445 /* Return info from the table */ 446 return nand_isreserved_bbt(chip, ofs); 447 } 448 449 /** 450 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 451 * @mtd: MTD device structure 452 * @ofs: offset from device start 453 * @allowbbt: 1, if its allowed to access the bbt area 454 * 455 * Check, if the block is bad. Either by reading the bad block table or 456 * calling of the scan function. 457 */ 458 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt) 459 { 460 struct nand_chip *chip = mtd_to_nand(mtd); 461 462 /* Return info from the table */ 463 if (chip->bbt) 464 return nand_isbad_bbt(chip, ofs, allowbbt); 465 466 return nand_isbad_bbm(chip, ofs); 467 } 468 469 /** 470 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 471 * @chip: NAND chip structure 472 * @timeout_ms: Timeout in ms 473 * 474 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 475 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 476 * returned. 477 * 478 * This helper is intended to be used when the controller does not have access 479 * to the NAND R/B pin. 480 * 481 * Be aware that calling this helper from an ->exec_op() implementation means 482 * ->exec_op() must be re-entrant. 483 * 484 * Return 0 if the NAND chip is ready, a negative error otherwise. 485 */ 486 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 487 { 488 const struct nand_sdr_timings *timings; 489 u8 status = 0; 490 int ret; 491 492 if (!chip->exec_op) 493 return -ENOTSUPP; 494 495 /* Wait tWB before polling the STATUS reg. */ 496 timings = nand_get_sdr_timings(&chip->data_interface); 497 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 498 499 ret = nand_status_op(chip, NULL); 500 if (ret) 501 return ret; 502 503 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); 504 do { 505 ret = nand_read_data_op(chip, &status, sizeof(status), true); 506 if (ret) 507 break; 508 509 if (status & NAND_STATUS_READY) 510 break; 511 512 /* 513 * Typical lowest execution time for a tR on most NANDs is 10us, 514 * use this as polling delay before doing something smarter (ie. 515 * deriving a delay from the timeout value, timeout_ms/ratio). 516 */ 517 udelay(10); 518 } while (time_before(jiffies, timeout_ms)); 519 520 /* 521 * We have to exit READ_STATUS mode in order to read real data on the 522 * bus in case the WAITRDY instruction is preceding a DATA_IN 523 * instruction. 524 */ 525 nand_exit_status_op(chip); 526 527 if (ret) 528 return ret; 529 530 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 531 }; 532 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 533 534 /** 535 * panic_nand_get_device - [GENERIC] Get chip for selected access 536 * @chip: the nand chip descriptor 537 * @mtd: MTD device structure 538 * @new_state: the state which is requested 539 * 540 * Used when in panic, no locks are taken. 541 */ 542 static void panic_nand_get_device(struct nand_chip *chip, 543 struct mtd_info *mtd, int new_state) 544 { 545 /* Hardware controller shared among independent devices */ 546 chip->controller->active = chip; 547 chip->state = new_state; 548 } 549 550 /** 551 * nand_get_device - [GENERIC] Get chip for selected access 552 * @mtd: MTD device structure 553 * @new_state: the state which is requested 554 * 555 * Get the device and lock it for exclusive access 556 */ 557 static int 558 nand_get_device(struct mtd_info *mtd, int new_state) 559 { 560 struct nand_chip *chip = mtd_to_nand(mtd); 561 spinlock_t *lock = &chip->controller->lock; 562 wait_queue_head_t *wq = &chip->controller->wq; 563 DECLARE_WAITQUEUE(wait, current); 564 retry: 565 spin_lock(lock); 566 567 /* Hardware controller shared among independent devices */ 568 if (!chip->controller->active) 569 chip->controller->active = chip; 570 571 if (chip->controller->active == chip && chip->state == FL_READY) { 572 chip->state = new_state; 573 spin_unlock(lock); 574 return 0; 575 } 576 if (new_state == FL_PM_SUSPENDED) { 577 if (chip->controller->active->state == FL_PM_SUSPENDED) { 578 chip->state = FL_PM_SUSPENDED; 579 spin_unlock(lock); 580 return 0; 581 } 582 } 583 set_current_state(TASK_UNINTERRUPTIBLE); 584 add_wait_queue(wq, &wait); 585 spin_unlock(lock); 586 schedule(); 587 remove_wait_queue(wq, &wait); 588 goto retry; 589 } 590 591 /** 592 * panic_nand_wait - [GENERIC] wait until the command is done 593 * @mtd: MTD device structure 594 * @chip: NAND chip structure 595 * @timeo: timeout 596 * 597 * Wait for command done. This is a helper function for nand_wait used when 598 * we are in interrupt context. May happen when in panic and trying to write 599 * an oops through mtdoops. 600 */ 601 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) 602 { 603 int i; 604 for (i = 0; i < timeo; i++) { 605 if (chip->legacy.dev_ready) { 606 if (chip->legacy.dev_ready(chip)) 607 break; 608 } else { 609 int ret; 610 u8 status; 611 612 ret = nand_read_data_op(chip, &status, sizeof(status), 613 true); 614 if (ret) 615 return; 616 617 if (status & NAND_STATUS_READY) 618 break; 619 } 620 mdelay(1); 621 } 622 } 623 624 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 625 { 626 return (chip->parameters.supports_set_get_features && 627 test_bit(addr, chip->parameters.get_feature_list)); 628 } 629 630 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 631 { 632 return (chip->parameters.supports_set_get_features && 633 test_bit(addr, chip->parameters.set_feature_list)); 634 } 635 636 /** 637 * nand_reset_data_interface - Reset data interface and timings 638 * @chip: The NAND chip 639 * @chipnr: Internal die id 640 * 641 * Reset the Data interface and timings to ONFI mode 0. 642 * 643 * Returns 0 for success or negative error code otherwise. 644 */ 645 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) 646 { 647 int ret; 648 649 if (!chip->setup_data_interface) 650 return 0; 651 652 /* 653 * The ONFI specification says: 654 * " 655 * To transition from NV-DDR or NV-DDR2 to the SDR data 656 * interface, the host shall use the Reset (FFh) command 657 * using SDR timing mode 0. A device in any timing mode is 658 * required to recognize Reset (FFh) command issued in SDR 659 * timing mode 0. 660 * " 661 * 662 * Configure the data interface in SDR mode and set the 663 * timings to timing mode 0. 664 */ 665 666 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 667 ret = chip->setup_data_interface(chip, chipnr, &chip->data_interface); 668 if (ret) 669 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 670 671 return ret; 672 } 673 674 /** 675 * nand_setup_data_interface - Setup the best data interface and timings 676 * @chip: The NAND chip 677 * @chipnr: Internal die id 678 * 679 * Find and configure the best data interface and NAND timings supported by 680 * the chip and the driver. 681 * First tries to retrieve supported timing modes from ONFI information, 682 * and if the NAND chip does not support ONFI, relies on the 683 * ->onfi_timing_mode_default specified in the nand_ids table. 684 * 685 * Returns 0 for success or negative error code otherwise. 686 */ 687 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) 688 { 689 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { 690 chip->onfi_timing_mode_default, 691 }; 692 int ret; 693 694 if (!chip->setup_data_interface) 695 return 0; 696 697 /* Change the mode on the chip side (if supported by the NAND chip) */ 698 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 699 chip->select_chip(chip, chipnr); 700 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 701 tmode_param); 702 chip->select_chip(chip, -1); 703 if (ret) 704 return ret; 705 } 706 707 /* Change the mode on the controller side */ 708 ret = chip->setup_data_interface(chip, chipnr, &chip->data_interface); 709 if (ret) 710 return ret; 711 712 /* Check the mode has been accepted by the chip, if supported */ 713 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 714 return 0; 715 716 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 717 chip->select_chip(chip, chipnr); 718 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 719 tmode_param); 720 chip->select_chip(chip, -1); 721 if (ret) 722 goto err_reset_chip; 723 724 if (tmode_param[0] != chip->onfi_timing_mode_default) { 725 pr_warn("timing mode %d not acknowledged by the NAND chip\n", 726 chip->onfi_timing_mode_default); 727 goto err_reset_chip; 728 } 729 730 return 0; 731 732 err_reset_chip: 733 /* 734 * Fallback to mode 0 if the chip explicitly did not ack the chosen 735 * timing mode. 736 */ 737 nand_reset_data_interface(chip, chipnr); 738 chip->select_chip(chip, chipnr); 739 nand_reset_op(chip); 740 chip->select_chip(chip, -1); 741 742 return ret; 743 } 744 745 /** 746 * nand_init_data_interface - find the best data interface and timings 747 * @chip: The NAND chip 748 * 749 * Find the best data interface and NAND timings supported by the chip 750 * and the driver. 751 * First tries to retrieve supported timing modes from ONFI information, 752 * and if the NAND chip does not support ONFI, relies on the 753 * ->onfi_timing_mode_default specified in the nand_ids table. After this 754 * function nand_chip->data_interface is initialized with the best timing mode 755 * available. 756 * 757 * Returns 0 for success or negative error code otherwise. 758 */ 759 static int nand_init_data_interface(struct nand_chip *chip) 760 { 761 int modes, mode, ret; 762 763 if (!chip->setup_data_interface) 764 return 0; 765 766 /* 767 * First try to identify the best timings from ONFI parameters and 768 * if the NAND does not support ONFI, fallback to the default ONFI 769 * timing mode. 770 */ 771 if (chip->parameters.onfi) { 772 modes = chip->parameters.onfi->async_timing_mode; 773 } else { 774 if (!chip->onfi_timing_mode_default) 775 return 0; 776 777 modes = GENMASK(chip->onfi_timing_mode_default, 0); 778 } 779 780 for (mode = fls(modes) - 1; mode >= 0; mode--) { 781 ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode); 782 if (ret) 783 continue; 784 785 /* 786 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the 787 * controller supports the requested timings. 788 */ 789 ret = chip->setup_data_interface(chip, 790 NAND_DATA_IFACE_CHECK_ONLY, 791 &chip->data_interface); 792 if (!ret) { 793 chip->onfi_timing_mode_default = mode; 794 break; 795 } 796 } 797 798 return 0; 799 } 800 801 /** 802 * nand_fill_column_cycles - fill the column cycles of an address 803 * @chip: The NAND chip 804 * @addrs: Array of address cycles to fill 805 * @offset_in_page: The offset in the page 806 * 807 * Fills the first or the first two bytes of the @addrs field depending 808 * on the NAND bus width and the page size. 809 * 810 * Returns the number of cycles needed to encode the column, or a negative 811 * error code in case one of the arguments is invalid. 812 */ 813 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 814 unsigned int offset_in_page) 815 { 816 struct mtd_info *mtd = nand_to_mtd(chip); 817 818 /* Make sure the offset is less than the actual page size. */ 819 if (offset_in_page > mtd->writesize + mtd->oobsize) 820 return -EINVAL; 821 822 /* 823 * On small page NANDs, there's a dedicated command to access the OOB 824 * area, and the column address is relative to the start of the OOB 825 * area, not the start of the page. Asjust the address accordingly. 826 */ 827 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 828 offset_in_page -= mtd->writesize; 829 830 /* 831 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 832 * wide, then it must be divided by 2. 833 */ 834 if (chip->options & NAND_BUSWIDTH_16) { 835 if (WARN_ON(offset_in_page % 2)) 836 return -EINVAL; 837 838 offset_in_page /= 2; 839 } 840 841 addrs[0] = offset_in_page; 842 843 /* 844 * Small page NANDs use 1 cycle for the columns, while large page NANDs 845 * need 2 846 */ 847 if (mtd->writesize <= 512) 848 return 1; 849 850 addrs[1] = offset_in_page >> 8; 851 852 return 2; 853 } 854 855 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 856 unsigned int offset_in_page, void *buf, 857 unsigned int len) 858 { 859 struct mtd_info *mtd = nand_to_mtd(chip); 860 const struct nand_sdr_timings *sdr = 861 nand_get_sdr_timings(&chip->data_interface); 862 u8 addrs[4]; 863 struct nand_op_instr instrs[] = { 864 NAND_OP_CMD(NAND_CMD_READ0, 0), 865 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), 866 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 867 PSEC_TO_NSEC(sdr->tRR_min)), 868 NAND_OP_DATA_IN(len, buf, 0), 869 }; 870 struct nand_operation op = NAND_OPERATION(instrs); 871 int ret; 872 873 /* Drop the DATA_IN instruction if len is set to 0. */ 874 if (!len) 875 op.ninstrs--; 876 877 if (offset_in_page >= mtd->writesize) 878 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 879 else if (offset_in_page >= 256 && 880 !(chip->options & NAND_BUSWIDTH_16)) 881 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 882 883 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 884 if (ret < 0) 885 return ret; 886 887 addrs[1] = page; 888 addrs[2] = page >> 8; 889 890 if (chip->options & NAND_ROW_ADDR_3) { 891 addrs[3] = page >> 16; 892 instrs[1].ctx.addr.naddrs++; 893 } 894 895 return nand_exec_op(chip, &op); 896 } 897 898 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 899 unsigned int offset_in_page, void *buf, 900 unsigned int len) 901 { 902 const struct nand_sdr_timings *sdr = 903 nand_get_sdr_timings(&chip->data_interface); 904 u8 addrs[5]; 905 struct nand_op_instr instrs[] = { 906 NAND_OP_CMD(NAND_CMD_READ0, 0), 907 NAND_OP_ADDR(4, addrs, 0), 908 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), 909 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 910 PSEC_TO_NSEC(sdr->tRR_min)), 911 NAND_OP_DATA_IN(len, buf, 0), 912 }; 913 struct nand_operation op = NAND_OPERATION(instrs); 914 int ret; 915 916 /* Drop the DATA_IN instruction if len is set to 0. */ 917 if (!len) 918 op.ninstrs--; 919 920 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 921 if (ret < 0) 922 return ret; 923 924 addrs[2] = page; 925 addrs[3] = page >> 8; 926 927 if (chip->options & NAND_ROW_ADDR_3) { 928 addrs[4] = page >> 16; 929 instrs[1].ctx.addr.naddrs++; 930 } 931 932 return nand_exec_op(chip, &op); 933 } 934 935 /** 936 * nand_read_page_op - Do a READ PAGE operation 937 * @chip: The NAND chip 938 * @page: page to read 939 * @offset_in_page: offset within the page 940 * @buf: buffer used to store the data 941 * @len: length of the buffer 942 * 943 * This function issues a READ PAGE operation. 944 * This function does not select/unselect the CS line. 945 * 946 * Returns 0 on success, a negative error code otherwise. 947 */ 948 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 949 unsigned int offset_in_page, void *buf, unsigned int len) 950 { 951 struct mtd_info *mtd = nand_to_mtd(chip); 952 953 if (len && !buf) 954 return -EINVAL; 955 956 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 957 return -EINVAL; 958 959 if (chip->exec_op) { 960 if (mtd->writesize > 512) 961 return nand_lp_exec_read_page_op(chip, page, 962 offset_in_page, buf, 963 len); 964 965 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 966 buf, len); 967 } 968 969 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); 970 if (len) 971 chip->legacy.read_buf(chip, buf, len); 972 973 return 0; 974 } 975 EXPORT_SYMBOL_GPL(nand_read_page_op); 976 977 /** 978 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 979 * @chip: The NAND chip 980 * @page: parameter page to read 981 * @buf: buffer used to store the data 982 * @len: length of the buffer 983 * 984 * This function issues a READ PARAMETER PAGE operation. 985 * This function does not select/unselect the CS line. 986 * 987 * Returns 0 on success, a negative error code otherwise. 988 */ 989 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 990 unsigned int len) 991 { 992 unsigned int i; 993 u8 *p = buf; 994 995 if (len && !buf) 996 return -EINVAL; 997 998 if (chip->exec_op) { 999 const struct nand_sdr_timings *sdr = 1000 nand_get_sdr_timings(&chip->data_interface); 1001 struct nand_op_instr instrs[] = { 1002 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1003 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), 1004 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1005 PSEC_TO_NSEC(sdr->tRR_min)), 1006 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1007 }; 1008 struct nand_operation op = NAND_OPERATION(instrs); 1009 1010 /* Drop the DATA_IN instruction if len is set to 0. */ 1011 if (!len) 1012 op.ninstrs--; 1013 1014 return nand_exec_op(chip, &op); 1015 } 1016 1017 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); 1018 for (i = 0; i < len; i++) 1019 p[i] = chip->legacy.read_byte(chip); 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1026 * @chip: The NAND chip 1027 * @offset_in_page: offset within the page 1028 * @buf: buffer used to store the data 1029 * @len: length of the buffer 1030 * @force_8bit: force 8-bit bus access 1031 * 1032 * This function issues a CHANGE READ COLUMN operation. 1033 * This function does not select/unselect the CS line. 1034 * 1035 * Returns 0 on success, a negative error code otherwise. 1036 */ 1037 int nand_change_read_column_op(struct nand_chip *chip, 1038 unsigned int offset_in_page, void *buf, 1039 unsigned int len, bool force_8bit) 1040 { 1041 struct mtd_info *mtd = nand_to_mtd(chip); 1042 1043 if (len && !buf) 1044 return -EINVAL; 1045 1046 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1047 return -EINVAL; 1048 1049 /* Small page NANDs do not support column change. */ 1050 if (mtd->writesize <= 512) 1051 return -ENOTSUPP; 1052 1053 if (chip->exec_op) { 1054 const struct nand_sdr_timings *sdr = 1055 nand_get_sdr_timings(&chip->data_interface); 1056 u8 addrs[2] = {}; 1057 struct nand_op_instr instrs[] = { 1058 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1059 NAND_OP_ADDR(2, addrs, 0), 1060 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1061 PSEC_TO_NSEC(sdr->tCCS_min)), 1062 NAND_OP_DATA_IN(len, buf, 0), 1063 }; 1064 struct nand_operation op = NAND_OPERATION(instrs); 1065 int ret; 1066 1067 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1068 if (ret < 0) 1069 return ret; 1070 1071 /* Drop the DATA_IN instruction if len is set to 0. */ 1072 if (!len) 1073 op.ninstrs--; 1074 1075 instrs[3].ctx.data.force_8bit = force_8bit; 1076 1077 return nand_exec_op(chip, &op); 1078 } 1079 1080 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); 1081 if (len) 1082 chip->legacy.read_buf(chip, buf, len); 1083 1084 return 0; 1085 } 1086 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1087 1088 /** 1089 * nand_read_oob_op - Do a READ OOB operation 1090 * @chip: The NAND chip 1091 * @page: page to read 1092 * @offset_in_oob: offset within the OOB area 1093 * @buf: buffer used to store the data 1094 * @len: length of the buffer 1095 * 1096 * This function issues a READ OOB operation. 1097 * This function does not select/unselect the CS line. 1098 * 1099 * Returns 0 on success, a negative error code otherwise. 1100 */ 1101 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1102 unsigned int offset_in_oob, void *buf, unsigned int len) 1103 { 1104 struct mtd_info *mtd = nand_to_mtd(chip); 1105 1106 if (len && !buf) 1107 return -EINVAL; 1108 1109 if (offset_in_oob + len > mtd->oobsize) 1110 return -EINVAL; 1111 1112 if (chip->exec_op) 1113 return nand_read_page_op(chip, page, 1114 mtd->writesize + offset_in_oob, 1115 buf, len); 1116 1117 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); 1118 if (len) 1119 chip->legacy.read_buf(chip, buf, len); 1120 1121 return 0; 1122 } 1123 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1124 1125 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1126 unsigned int offset_in_page, const void *buf, 1127 unsigned int len, bool prog) 1128 { 1129 struct mtd_info *mtd = nand_to_mtd(chip); 1130 const struct nand_sdr_timings *sdr = 1131 nand_get_sdr_timings(&chip->data_interface); 1132 u8 addrs[5] = {}; 1133 struct nand_op_instr instrs[] = { 1134 /* 1135 * The first instruction will be dropped if we're dealing 1136 * with a large page NAND and adjusted if we're dealing 1137 * with a small page NAND and the page offset is > 255. 1138 */ 1139 NAND_OP_CMD(NAND_CMD_READ0, 0), 1140 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1141 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), 1142 NAND_OP_DATA_OUT(len, buf, 0), 1143 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), 1144 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1145 }; 1146 struct nand_operation op = NAND_OPERATION(instrs); 1147 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1148 int ret; 1149 u8 status; 1150 1151 if (naddrs < 0) 1152 return naddrs; 1153 1154 addrs[naddrs++] = page; 1155 addrs[naddrs++] = page >> 8; 1156 if (chip->options & NAND_ROW_ADDR_3) 1157 addrs[naddrs++] = page >> 16; 1158 1159 instrs[2].ctx.addr.naddrs = naddrs; 1160 1161 /* Drop the last two instructions if we're not programming the page. */ 1162 if (!prog) { 1163 op.ninstrs -= 2; 1164 /* Also drop the DATA_OUT instruction if empty. */ 1165 if (!len) 1166 op.ninstrs--; 1167 } 1168 1169 if (mtd->writesize <= 512) { 1170 /* 1171 * Small pages need some more tweaking: we have to adjust the 1172 * first instruction depending on the page offset we're trying 1173 * to access. 1174 */ 1175 if (offset_in_page >= mtd->writesize) 1176 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1177 else if (offset_in_page >= 256 && 1178 !(chip->options & NAND_BUSWIDTH_16)) 1179 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1180 } else { 1181 /* 1182 * Drop the first command if we're dealing with a large page 1183 * NAND. 1184 */ 1185 op.instrs++; 1186 op.ninstrs--; 1187 } 1188 1189 ret = nand_exec_op(chip, &op); 1190 if (!prog || ret) 1191 return ret; 1192 1193 ret = nand_status_op(chip, &status); 1194 if (ret) 1195 return ret; 1196 1197 return status; 1198 } 1199 1200 /** 1201 * nand_prog_page_begin_op - starts a PROG PAGE operation 1202 * @chip: The NAND chip 1203 * @page: page to write 1204 * @offset_in_page: offset within the page 1205 * @buf: buffer containing the data to write to the page 1206 * @len: length of the buffer 1207 * 1208 * This function issues the first half of a PROG PAGE operation. 1209 * This function does not select/unselect the CS line. 1210 * 1211 * Returns 0 on success, a negative error code otherwise. 1212 */ 1213 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1214 unsigned int offset_in_page, const void *buf, 1215 unsigned int len) 1216 { 1217 struct mtd_info *mtd = nand_to_mtd(chip); 1218 1219 if (len && !buf) 1220 return -EINVAL; 1221 1222 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1223 return -EINVAL; 1224 1225 if (chip->exec_op) 1226 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1227 len, false); 1228 1229 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); 1230 1231 if (buf) 1232 chip->legacy.write_buf(chip, buf, len); 1233 1234 return 0; 1235 } 1236 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1237 1238 /** 1239 * nand_prog_page_end_op - ends a PROG PAGE operation 1240 * @chip: The NAND chip 1241 * 1242 * This function issues the second half of a PROG PAGE operation. 1243 * This function does not select/unselect the CS line. 1244 * 1245 * Returns 0 on success, a negative error code otherwise. 1246 */ 1247 int nand_prog_page_end_op(struct nand_chip *chip) 1248 { 1249 int ret; 1250 u8 status; 1251 1252 if (chip->exec_op) { 1253 const struct nand_sdr_timings *sdr = 1254 nand_get_sdr_timings(&chip->data_interface); 1255 struct nand_op_instr instrs[] = { 1256 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1257 PSEC_TO_NSEC(sdr->tWB_max)), 1258 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1259 }; 1260 struct nand_operation op = NAND_OPERATION(instrs); 1261 1262 ret = nand_exec_op(chip, &op); 1263 if (ret) 1264 return ret; 1265 1266 ret = nand_status_op(chip, &status); 1267 if (ret) 1268 return ret; 1269 } else { 1270 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1271 ret = chip->legacy.waitfunc(chip); 1272 if (ret < 0) 1273 return ret; 1274 1275 status = ret; 1276 } 1277 1278 if (status & NAND_STATUS_FAIL) 1279 return -EIO; 1280 1281 return 0; 1282 } 1283 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1284 1285 /** 1286 * nand_prog_page_op - Do a full PROG PAGE operation 1287 * @chip: The NAND chip 1288 * @page: page to write 1289 * @offset_in_page: offset within the page 1290 * @buf: buffer containing the data to write to the page 1291 * @len: length of the buffer 1292 * 1293 * This function issues a full PROG PAGE operation. 1294 * This function does not select/unselect the CS line. 1295 * 1296 * Returns 0 on success, a negative error code otherwise. 1297 */ 1298 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1299 unsigned int offset_in_page, const void *buf, 1300 unsigned int len) 1301 { 1302 struct mtd_info *mtd = nand_to_mtd(chip); 1303 int status; 1304 1305 if (!len || !buf) 1306 return -EINVAL; 1307 1308 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1309 return -EINVAL; 1310 1311 if (chip->exec_op) { 1312 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1313 len, true); 1314 } else { 1315 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, 1316 page); 1317 chip->legacy.write_buf(chip, buf, len); 1318 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1319 status = chip->legacy.waitfunc(chip); 1320 } 1321 1322 if (status & NAND_STATUS_FAIL) 1323 return -EIO; 1324 1325 return 0; 1326 } 1327 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1328 1329 /** 1330 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1331 * @chip: The NAND chip 1332 * @offset_in_page: offset within the page 1333 * @buf: buffer containing the data to send to the NAND 1334 * @len: length of the buffer 1335 * @force_8bit: force 8-bit bus access 1336 * 1337 * This function issues a CHANGE WRITE COLUMN operation. 1338 * This function does not select/unselect the CS line. 1339 * 1340 * Returns 0 on success, a negative error code otherwise. 1341 */ 1342 int nand_change_write_column_op(struct nand_chip *chip, 1343 unsigned int offset_in_page, 1344 const void *buf, unsigned int len, 1345 bool force_8bit) 1346 { 1347 struct mtd_info *mtd = nand_to_mtd(chip); 1348 1349 if (len && !buf) 1350 return -EINVAL; 1351 1352 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1353 return -EINVAL; 1354 1355 /* Small page NANDs do not support column change. */ 1356 if (mtd->writesize <= 512) 1357 return -ENOTSUPP; 1358 1359 if (chip->exec_op) { 1360 const struct nand_sdr_timings *sdr = 1361 nand_get_sdr_timings(&chip->data_interface); 1362 u8 addrs[2]; 1363 struct nand_op_instr instrs[] = { 1364 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1365 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), 1366 NAND_OP_DATA_OUT(len, buf, 0), 1367 }; 1368 struct nand_operation op = NAND_OPERATION(instrs); 1369 int ret; 1370 1371 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1372 if (ret < 0) 1373 return ret; 1374 1375 instrs[2].ctx.data.force_8bit = force_8bit; 1376 1377 /* Drop the DATA_OUT instruction if len is set to 0. */ 1378 if (!len) 1379 op.ninstrs--; 1380 1381 return nand_exec_op(chip, &op); 1382 } 1383 1384 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); 1385 if (len) 1386 chip->legacy.write_buf(chip, buf, len); 1387 1388 return 0; 1389 } 1390 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1391 1392 /** 1393 * nand_readid_op - Do a READID operation 1394 * @chip: The NAND chip 1395 * @addr: address cycle to pass after the READID command 1396 * @buf: buffer used to store the ID 1397 * @len: length of the buffer 1398 * 1399 * This function sends a READID command and reads back the ID returned by the 1400 * NAND. 1401 * This function does not select/unselect the CS line. 1402 * 1403 * Returns 0 on success, a negative error code otherwise. 1404 */ 1405 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1406 unsigned int len) 1407 { 1408 unsigned int i; 1409 u8 *id = buf; 1410 1411 if (len && !buf) 1412 return -EINVAL; 1413 1414 if (chip->exec_op) { 1415 const struct nand_sdr_timings *sdr = 1416 nand_get_sdr_timings(&chip->data_interface); 1417 struct nand_op_instr instrs[] = { 1418 NAND_OP_CMD(NAND_CMD_READID, 0), 1419 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), 1420 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1421 }; 1422 struct nand_operation op = NAND_OPERATION(instrs); 1423 1424 /* Drop the DATA_IN instruction if len is set to 0. */ 1425 if (!len) 1426 op.ninstrs--; 1427 1428 return nand_exec_op(chip, &op); 1429 } 1430 1431 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); 1432 1433 for (i = 0; i < len; i++) 1434 id[i] = chip->legacy.read_byte(chip); 1435 1436 return 0; 1437 } 1438 EXPORT_SYMBOL_GPL(nand_readid_op); 1439 1440 /** 1441 * nand_status_op - Do a STATUS operation 1442 * @chip: The NAND chip 1443 * @status: out variable to store the NAND status 1444 * 1445 * This function sends a STATUS command and reads back the status returned by 1446 * the NAND. 1447 * This function does not select/unselect the CS line. 1448 * 1449 * Returns 0 on success, a negative error code otherwise. 1450 */ 1451 int nand_status_op(struct nand_chip *chip, u8 *status) 1452 { 1453 if (chip->exec_op) { 1454 const struct nand_sdr_timings *sdr = 1455 nand_get_sdr_timings(&chip->data_interface); 1456 struct nand_op_instr instrs[] = { 1457 NAND_OP_CMD(NAND_CMD_STATUS, 1458 PSEC_TO_NSEC(sdr->tADL_min)), 1459 NAND_OP_8BIT_DATA_IN(1, status, 0), 1460 }; 1461 struct nand_operation op = NAND_OPERATION(instrs); 1462 1463 if (!status) 1464 op.ninstrs--; 1465 1466 return nand_exec_op(chip, &op); 1467 } 1468 1469 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); 1470 if (status) 1471 *status = chip->legacy.read_byte(chip); 1472 1473 return 0; 1474 } 1475 EXPORT_SYMBOL_GPL(nand_status_op); 1476 1477 /** 1478 * nand_exit_status_op - Exit a STATUS operation 1479 * @chip: The NAND chip 1480 * 1481 * This function sends a READ0 command to cancel the effect of the STATUS 1482 * command to avoid reading only the status until a new read command is sent. 1483 * 1484 * This function does not select/unselect the CS line. 1485 * 1486 * Returns 0 on success, a negative error code otherwise. 1487 */ 1488 int nand_exit_status_op(struct nand_chip *chip) 1489 { 1490 if (chip->exec_op) { 1491 struct nand_op_instr instrs[] = { 1492 NAND_OP_CMD(NAND_CMD_READ0, 0), 1493 }; 1494 struct nand_operation op = NAND_OPERATION(instrs); 1495 1496 return nand_exec_op(chip, &op); 1497 } 1498 1499 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); 1500 1501 return 0; 1502 } 1503 1504 /** 1505 * nand_erase_op - Do an erase operation 1506 * @chip: The NAND chip 1507 * @eraseblock: block to erase 1508 * 1509 * This function sends an ERASE command and waits for the NAND to be ready 1510 * before returning. 1511 * This function does not select/unselect the CS line. 1512 * 1513 * Returns 0 on success, a negative error code otherwise. 1514 */ 1515 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 1516 { 1517 unsigned int page = eraseblock << 1518 (chip->phys_erase_shift - chip->page_shift); 1519 int ret; 1520 u8 status; 1521 1522 if (chip->exec_op) { 1523 const struct nand_sdr_timings *sdr = 1524 nand_get_sdr_timings(&chip->data_interface); 1525 u8 addrs[3] = { page, page >> 8, page >> 16 }; 1526 struct nand_op_instr instrs[] = { 1527 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 1528 NAND_OP_ADDR(2, addrs, 0), 1529 NAND_OP_CMD(NAND_CMD_ERASE2, 1530 PSEC_TO_MSEC(sdr->tWB_max)), 1531 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), 1532 }; 1533 struct nand_operation op = NAND_OPERATION(instrs); 1534 1535 if (chip->options & NAND_ROW_ADDR_3) 1536 instrs[1].ctx.addr.naddrs++; 1537 1538 ret = nand_exec_op(chip, &op); 1539 if (ret) 1540 return ret; 1541 1542 ret = nand_status_op(chip, &status); 1543 if (ret) 1544 return ret; 1545 } else { 1546 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); 1547 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); 1548 1549 ret = chip->legacy.waitfunc(chip); 1550 if (ret < 0) 1551 return ret; 1552 1553 status = ret; 1554 } 1555 1556 if (status & NAND_STATUS_FAIL) 1557 return -EIO; 1558 1559 return 0; 1560 } 1561 EXPORT_SYMBOL_GPL(nand_erase_op); 1562 1563 /** 1564 * nand_set_features_op - Do a SET FEATURES operation 1565 * @chip: The NAND chip 1566 * @feature: feature id 1567 * @data: 4 bytes of data 1568 * 1569 * This function sends a SET FEATURES command and waits for the NAND to be 1570 * ready before returning. 1571 * This function does not select/unselect the CS line. 1572 * 1573 * Returns 0 on success, a negative error code otherwise. 1574 */ 1575 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 1576 const void *data) 1577 { 1578 const u8 *params = data; 1579 int i, ret; 1580 1581 if (chip->exec_op) { 1582 const struct nand_sdr_timings *sdr = 1583 nand_get_sdr_timings(&chip->data_interface); 1584 struct nand_op_instr instrs[] = { 1585 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 1586 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), 1587 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 1588 PSEC_TO_NSEC(sdr->tWB_max)), 1589 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), 1590 }; 1591 struct nand_operation op = NAND_OPERATION(instrs); 1592 1593 return nand_exec_op(chip, &op); 1594 } 1595 1596 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); 1597 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1598 chip->legacy.write_byte(chip, params[i]); 1599 1600 ret = chip->legacy.waitfunc(chip); 1601 if (ret < 0) 1602 return ret; 1603 1604 if (ret & NAND_STATUS_FAIL) 1605 return -EIO; 1606 1607 return 0; 1608 } 1609 1610 /** 1611 * nand_get_features_op - Do a GET FEATURES operation 1612 * @chip: The NAND chip 1613 * @feature: feature id 1614 * @data: 4 bytes of data 1615 * 1616 * This function sends a GET FEATURES command and waits for the NAND to be 1617 * ready before returning. 1618 * This function does not select/unselect the CS line. 1619 * 1620 * Returns 0 on success, a negative error code otherwise. 1621 */ 1622 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 1623 void *data) 1624 { 1625 u8 *params = data; 1626 int i; 1627 1628 if (chip->exec_op) { 1629 const struct nand_sdr_timings *sdr = 1630 nand_get_sdr_timings(&chip->data_interface); 1631 struct nand_op_instr instrs[] = { 1632 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 1633 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), 1634 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 1635 PSEC_TO_NSEC(sdr->tRR_min)), 1636 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 1637 data, 0), 1638 }; 1639 struct nand_operation op = NAND_OPERATION(instrs); 1640 1641 return nand_exec_op(chip, &op); 1642 } 1643 1644 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); 1645 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1646 params[i] = chip->legacy.read_byte(chip); 1647 1648 return 0; 1649 } 1650 1651 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, 1652 unsigned int delay_ns) 1653 { 1654 if (chip->exec_op) { 1655 struct nand_op_instr instrs[] = { 1656 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), 1657 PSEC_TO_NSEC(delay_ns)), 1658 }; 1659 struct nand_operation op = NAND_OPERATION(instrs); 1660 1661 return nand_exec_op(chip, &op); 1662 } 1663 1664 /* Apply delay or wait for ready/busy pin */ 1665 if (!chip->legacy.dev_ready) 1666 udelay(chip->legacy.chip_delay); 1667 else 1668 nand_wait_ready(chip); 1669 1670 return 0; 1671 } 1672 1673 /** 1674 * nand_reset_op - Do a reset operation 1675 * @chip: The NAND chip 1676 * 1677 * This function sends a RESET command and waits for the NAND to be ready 1678 * before returning. 1679 * This function does not select/unselect the CS line. 1680 * 1681 * Returns 0 on success, a negative error code otherwise. 1682 */ 1683 int nand_reset_op(struct nand_chip *chip) 1684 { 1685 if (chip->exec_op) { 1686 const struct nand_sdr_timings *sdr = 1687 nand_get_sdr_timings(&chip->data_interface); 1688 struct nand_op_instr instrs[] = { 1689 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), 1690 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), 1691 }; 1692 struct nand_operation op = NAND_OPERATION(instrs); 1693 1694 return nand_exec_op(chip, &op); 1695 } 1696 1697 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); 1698 1699 return 0; 1700 } 1701 EXPORT_SYMBOL_GPL(nand_reset_op); 1702 1703 /** 1704 * nand_read_data_op - Read data from the NAND 1705 * @chip: The NAND chip 1706 * @buf: buffer used to store the data 1707 * @len: length of the buffer 1708 * @force_8bit: force 8-bit bus access 1709 * 1710 * This function does a raw data read on the bus. Usually used after launching 1711 * another NAND operation like nand_read_page_op(). 1712 * This function does not select/unselect the CS line. 1713 * 1714 * Returns 0 on success, a negative error code otherwise. 1715 */ 1716 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1717 bool force_8bit) 1718 { 1719 if (!len || !buf) 1720 return -EINVAL; 1721 1722 if (chip->exec_op) { 1723 struct nand_op_instr instrs[] = { 1724 NAND_OP_DATA_IN(len, buf, 0), 1725 }; 1726 struct nand_operation op = NAND_OPERATION(instrs); 1727 1728 instrs[0].ctx.data.force_8bit = force_8bit; 1729 1730 return nand_exec_op(chip, &op); 1731 } 1732 1733 if (force_8bit) { 1734 u8 *p = buf; 1735 unsigned int i; 1736 1737 for (i = 0; i < len; i++) 1738 p[i] = chip->legacy.read_byte(chip); 1739 } else { 1740 chip->legacy.read_buf(chip, buf, len); 1741 } 1742 1743 return 0; 1744 } 1745 EXPORT_SYMBOL_GPL(nand_read_data_op); 1746 1747 /** 1748 * nand_write_data_op - Write data from the NAND 1749 * @chip: The NAND chip 1750 * @buf: buffer containing the data to send on the bus 1751 * @len: length of the buffer 1752 * @force_8bit: force 8-bit bus access 1753 * 1754 * This function does a raw data write on the bus. Usually used after launching 1755 * another NAND operation like nand_write_page_begin_op(). 1756 * This function does not select/unselect the CS line. 1757 * 1758 * Returns 0 on success, a negative error code otherwise. 1759 */ 1760 int nand_write_data_op(struct nand_chip *chip, const void *buf, 1761 unsigned int len, bool force_8bit) 1762 { 1763 if (!len || !buf) 1764 return -EINVAL; 1765 1766 if (chip->exec_op) { 1767 struct nand_op_instr instrs[] = { 1768 NAND_OP_DATA_OUT(len, buf, 0), 1769 }; 1770 struct nand_operation op = NAND_OPERATION(instrs); 1771 1772 instrs[0].ctx.data.force_8bit = force_8bit; 1773 1774 return nand_exec_op(chip, &op); 1775 } 1776 1777 if (force_8bit) { 1778 const u8 *p = buf; 1779 unsigned int i; 1780 1781 for (i = 0; i < len; i++) 1782 chip->legacy.write_byte(chip, p[i]); 1783 } else { 1784 chip->legacy.write_buf(chip, buf, len); 1785 } 1786 1787 return 0; 1788 } 1789 EXPORT_SYMBOL_GPL(nand_write_data_op); 1790 1791 /** 1792 * struct nand_op_parser_ctx - Context used by the parser 1793 * @instrs: array of all the instructions that must be addressed 1794 * @ninstrs: length of the @instrs array 1795 * @subop: Sub-operation to be passed to the NAND controller 1796 * 1797 * This structure is used by the core to split NAND operations into 1798 * sub-operations that can be handled by the NAND controller. 1799 */ 1800 struct nand_op_parser_ctx { 1801 const struct nand_op_instr *instrs; 1802 unsigned int ninstrs; 1803 struct nand_subop subop; 1804 }; 1805 1806 /** 1807 * nand_op_parser_must_split_instr - Checks if an instruction must be split 1808 * @pat: the parser pattern element that matches @instr 1809 * @instr: pointer to the instruction to check 1810 * @start_offset: this is an in/out parameter. If @instr has already been 1811 * split, then @start_offset is the offset from which to start 1812 * (either an address cycle or an offset in the data buffer). 1813 * Conversely, if the function returns true (ie. instr must be 1814 * split), this parameter is updated to point to the first 1815 * data/address cycle that has not been taken care of. 1816 * 1817 * Some NAND controllers are limited and cannot send X address cycles with a 1818 * unique operation, or cannot read/write more than Y bytes at the same time. 1819 * In this case, split the instruction that does not fit in a single 1820 * controller-operation into two or more chunks. 1821 * 1822 * Returns true if the instruction must be split, false otherwise. 1823 * The @start_offset parameter is also updated to the offset at which the next 1824 * bundle of instruction must start (if an address or a data instruction). 1825 */ 1826 static bool 1827 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 1828 const struct nand_op_instr *instr, 1829 unsigned int *start_offset) 1830 { 1831 switch (pat->type) { 1832 case NAND_OP_ADDR_INSTR: 1833 if (!pat->ctx.addr.maxcycles) 1834 break; 1835 1836 if (instr->ctx.addr.naddrs - *start_offset > 1837 pat->ctx.addr.maxcycles) { 1838 *start_offset += pat->ctx.addr.maxcycles; 1839 return true; 1840 } 1841 break; 1842 1843 case NAND_OP_DATA_IN_INSTR: 1844 case NAND_OP_DATA_OUT_INSTR: 1845 if (!pat->ctx.data.maxlen) 1846 break; 1847 1848 if (instr->ctx.data.len - *start_offset > 1849 pat->ctx.data.maxlen) { 1850 *start_offset += pat->ctx.data.maxlen; 1851 return true; 1852 } 1853 break; 1854 1855 default: 1856 break; 1857 } 1858 1859 return false; 1860 } 1861 1862 /** 1863 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 1864 * remaining in the parser context 1865 * @pat: the pattern to test 1866 * @ctx: the parser context structure to match with the pattern @pat 1867 * 1868 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 1869 * Returns true if this is the case, false ortherwise. When true is returned, 1870 * @ctx->subop is updated with the set of instructions to be passed to the 1871 * controller driver. 1872 */ 1873 static bool 1874 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 1875 struct nand_op_parser_ctx *ctx) 1876 { 1877 unsigned int instr_offset = ctx->subop.first_instr_start_off; 1878 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 1879 const struct nand_op_instr *instr = ctx->subop.instrs; 1880 unsigned int i, ninstrs; 1881 1882 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 1883 /* 1884 * The pattern instruction does not match the operation 1885 * instruction. If the instruction is marked optional in the 1886 * pattern definition, we skip the pattern element and continue 1887 * to the next one. If the element is mandatory, there's no 1888 * match and we can return false directly. 1889 */ 1890 if (instr->type != pat->elems[i].type) { 1891 if (!pat->elems[i].optional) 1892 return false; 1893 1894 continue; 1895 } 1896 1897 /* 1898 * Now check the pattern element constraints. If the pattern is 1899 * not able to handle the whole instruction in a single step, 1900 * we have to split it. 1901 * The last_instr_end_off value comes back updated to point to 1902 * the position where we have to split the instruction (the 1903 * start of the next subop chunk). 1904 */ 1905 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 1906 &instr_offset)) { 1907 ninstrs++; 1908 i++; 1909 break; 1910 } 1911 1912 instr++; 1913 ninstrs++; 1914 instr_offset = 0; 1915 } 1916 1917 /* 1918 * This can happen if all instructions of a pattern are optional. 1919 * Still, if there's not at least one instruction handled by this 1920 * pattern, this is not a match, and we should try the next one (if 1921 * any). 1922 */ 1923 if (!ninstrs) 1924 return false; 1925 1926 /* 1927 * We had a match on the pattern head, but the pattern may be longer 1928 * than the instructions we're asked to execute. We need to make sure 1929 * there's no mandatory elements in the pattern tail. 1930 */ 1931 for (; i < pat->nelems; i++) { 1932 if (!pat->elems[i].optional) 1933 return false; 1934 } 1935 1936 /* 1937 * We have a match: update the subop structure accordingly and return 1938 * true. 1939 */ 1940 ctx->subop.ninstrs = ninstrs; 1941 ctx->subop.last_instr_end_off = instr_offset; 1942 1943 return true; 1944 } 1945 1946 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 1947 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 1948 { 1949 const struct nand_op_instr *instr; 1950 char *prefix = " "; 1951 unsigned int i; 1952 1953 pr_debug("executing subop:\n"); 1954 1955 for (i = 0; i < ctx->ninstrs; i++) { 1956 instr = &ctx->instrs[i]; 1957 1958 if (instr == &ctx->subop.instrs[0]) 1959 prefix = " ->"; 1960 1961 switch (instr->type) { 1962 case NAND_OP_CMD_INSTR: 1963 pr_debug("%sCMD [0x%02x]\n", prefix, 1964 instr->ctx.cmd.opcode); 1965 break; 1966 case NAND_OP_ADDR_INSTR: 1967 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, 1968 instr->ctx.addr.naddrs, 1969 instr->ctx.addr.naddrs < 64 ? 1970 instr->ctx.addr.naddrs : 64, 1971 instr->ctx.addr.addrs); 1972 break; 1973 case NAND_OP_DATA_IN_INSTR: 1974 pr_debug("%sDATA_IN [%d B%s]\n", prefix, 1975 instr->ctx.data.len, 1976 instr->ctx.data.force_8bit ? 1977 ", force 8-bit" : ""); 1978 break; 1979 case NAND_OP_DATA_OUT_INSTR: 1980 pr_debug("%sDATA_OUT [%d B%s]\n", prefix, 1981 instr->ctx.data.len, 1982 instr->ctx.data.force_8bit ? 1983 ", force 8-bit" : ""); 1984 break; 1985 case NAND_OP_WAITRDY_INSTR: 1986 pr_debug("%sWAITRDY [max %d ms]\n", prefix, 1987 instr->ctx.waitrdy.timeout_ms); 1988 break; 1989 } 1990 1991 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 1992 prefix = " "; 1993 } 1994 } 1995 #else 1996 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 1997 { 1998 /* NOP */ 1999 } 2000 #endif 2001 2002 /** 2003 * nand_op_parser_exec_op - exec_op parser 2004 * @chip: the NAND chip 2005 * @parser: patterns description provided by the controller driver 2006 * @op: the NAND operation to address 2007 * @check_only: when true, the function only checks if @op can be handled but 2008 * does not execute the operation 2009 * 2010 * Helper function designed to ease integration of NAND controller drivers that 2011 * only support a limited set of instruction sequences. The supported sequences 2012 * are described in @parser, and the framework takes care of splitting @op into 2013 * multiple sub-operations (if required) and pass them back to the ->exec() 2014 * callback of the matching pattern if @check_only is set to false. 2015 * 2016 * NAND controller drivers should call this function from their own ->exec_op() 2017 * implementation. 2018 * 2019 * Returns 0 on success, a negative error code otherwise. A failure can be 2020 * caused by an unsupported operation (none of the supported patterns is able 2021 * to handle the requested operation), or an error returned by one of the 2022 * matching pattern->exec() hook. 2023 */ 2024 int nand_op_parser_exec_op(struct nand_chip *chip, 2025 const struct nand_op_parser *parser, 2026 const struct nand_operation *op, bool check_only) 2027 { 2028 struct nand_op_parser_ctx ctx = { 2029 .subop.instrs = op->instrs, 2030 .instrs = op->instrs, 2031 .ninstrs = op->ninstrs, 2032 }; 2033 unsigned int i; 2034 2035 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2036 int ret; 2037 2038 for (i = 0; i < parser->npatterns; i++) { 2039 const struct nand_op_parser_pattern *pattern; 2040 2041 pattern = &parser->patterns[i]; 2042 if (!nand_op_parser_match_pat(pattern, &ctx)) 2043 continue; 2044 2045 nand_op_parser_trace(&ctx); 2046 2047 if (check_only) 2048 break; 2049 2050 ret = pattern->exec(chip, &ctx.subop); 2051 if (ret) 2052 return ret; 2053 2054 break; 2055 } 2056 2057 if (i == parser->npatterns) { 2058 pr_debug("->exec_op() parser: pattern not found!\n"); 2059 return -ENOTSUPP; 2060 } 2061 2062 /* 2063 * Update the context structure by pointing to the start of the 2064 * next subop. 2065 */ 2066 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2067 if (ctx.subop.last_instr_end_off) 2068 ctx.subop.instrs -= 1; 2069 2070 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2071 } 2072 2073 return 0; 2074 } 2075 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2076 2077 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2078 { 2079 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2080 instr->type == NAND_OP_DATA_OUT_INSTR); 2081 } 2082 2083 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2084 unsigned int instr_idx) 2085 { 2086 return subop && instr_idx < subop->ninstrs; 2087 } 2088 2089 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2090 unsigned int instr_idx) 2091 { 2092 if (instr_idx) 2093 return 0; 2094 2095 return subop->first_instr_start_off; 2096 } 2097 2098 /** 2099 * nand_subop_get_addr_start_off - Get the start offset in an address array 2100 * @subop: The entire sub-operation 2101 * @instr_idx: Index of the instruction inside the sub-operation 2102 * 2103 * During driver development, one could be tempted to directly use the 2104 * ->addr.addrs field of address instructions. This is wrong as address 2105 * instructions might be split. 2106 * 2107 * Given an address instruction, returns the offset of the first cycle to issue. 2108 */ 2109 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2110 unsigned int instr_idx) 2111 { 2112 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2113 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2114 return 0; 2115 2116 return nand_subop_get_start_off(subop, instr_idx); 2117 } 2118 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2119 2120 /** 2121 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2122 * @subop: The entire sub-operation 2123 * @instr_idx: Index of the instruction inside the sub-operation 2124 * 2125 * During driver development, one could be tempted to directly use the 2126 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2127 * might be split. 2128 * 2129 * Given an address instruction, returns the number of address cycle to issue. 2130 */ 2131 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2132 unsigned int instr_idx) 2133 { 2134 int start_off, end_off; 2135 2136 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2137 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2138 return 0; 2139 2140 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2141 2142 if (instr_idx == subop->ninstrs - 1 && 2143 subop->last_instr_end_off) 2144 end_off = subop->last_instr_end_off; 2145 else 2146 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2147 2148 return end_off - start_off; 2149 } 2150 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2151 2152 /** 2153 * nand_subop_get_data_start_off - Get the start offset in a data array 2154 * @subop: The entire sub-operation 2155 * @instr_idx: Index of the instruction inside the sub-operation 2156 * 2157 * During driver development, one could be tempted to directly use the 2158 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2159 * instructions might be split. 2160 * 2161 * Given a data instruction, returns the offset to start from. 2162 */ 2163 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2164 unsigned int instr_idx) 2165 { 2166 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2167 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2168 return 0; 2169 2170 return nand_subop_get_start_off(subop, instr_idx); 2171 } 2172 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2173 2174 /** 2175 * nand_subop_get_data_len - Get the number of bytes to retrieve 2176 * @subop: The entire sub-operation 2177 * @instr_idx: Index of the instruction inside the sub-operation 2178 * 2179 * During driver development, one could be tempted to directly use the 2180 * ->data->len field of a data instruction. This is wrong as data instructions 2181 * might be split. 2182 * 2183 * Returns the length of the chunk of data to send/receive. 2184 */ 2185 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2186 unsigned int instr_idx) 2187 { 2188 int start_off = 0, end_off; 2189 2190 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2191 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2192 return 0; 2193 2194 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2195 2196 if (instr_idx == subop->ninstrs - 1 && 2197 subop->last_instr_end_off) 2198 end_off = subop->last_instr_end_off; 2199 else 2200 end_off = subop->instrs[instr_idx].ctx.data.len; 2201 2202 return end_off - start_off; 2203 } 2204 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2205 2206 /** 2207 * nand_reset - Reset and initialize a NAND device 2208 * @chip: The NAND chip 2209 * @chipnr: Internal die id 2210 * 2211 * Save the timings data structure, then apply SDR timings mode 0 (see 2212 * nand_reset_data_interface for details), do the reset operation, and 2213 * apply back the previous timings. 2214 * 2215 * Returns 0 on success, a negative error code otherwise. 2216 */ 2217 int nand_reset(struct nand_chip *chip, int chipnr) 2218 { 2219 struct nand_data_interface saved_data_intf = chip->data_interface; 2220 int ret; 2221 2222 ret = nand_reset_data_interface(chip, chipnr); 2223 if (ret) 2224 return ret; 2225 2226 /* 2227 * The CS line has to be released before we can apply the new NAND 2228 * interface settings, hence this weird ->select_chip() dance. 2229 */ 2230 chip->select_chip(chip, chipnr); 2231 ret = nand_reset_op(chip); 2232 chip->select_chip(chip, -1); 2233 if (ret) 2234 return ret; 2235 2236 /* 2237 * A nand_reset_data_interface() put both the NAND chip and the NAND 2238 * controller in timings mode 0. If the default mode for this chip is 2239 * also 0, no need to proceed to the change again. Plus, at probe time, 2240 * nand_setup_data_interface() uses ->set/get_features() which would 2241 * fail anyway as the parameter page is not available yet. 2242 */ 2243 if (!chip->onfi_timing_mode_default) 2244 return 0; 2245 2246 chip->data_interface = saved_data_intf; 2247 ret = nand_setup_data_interface(chip, chipnr); 2248 if (ret) 2249 return ret; 2250 2251 return 0; 2252 } 2253 EXPORT_SYMBOL_GPL(nand_reset); 2254 2255 /** 2256 * nand_get_features - wrapper to perform a GET_FEATURE 2257 * @chip: NAND chip info structure 2258 * @addr: feature address 2259 * @subfeature_param: the subfeature parameters, a four bytes array 2260 * 2261 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2262 * operation cannot be handled. 2263 */ 2264 int nand_get_features(struct nand_chip *chip, int addr, 2265 u8 *subfeature_param) 2266 { 2267 if (!nand_supports_get_features(chip, addr)) 2268 return -ENOTSUPP; 2269 2270 if (chip->legacy.get_features) 2271 return chip->legacy.get_features(chip, addr, subfeature_param); 2272 2273 return nand_get_features_op(chip, addr, subfeature_param); 2274 } 2275 2276 /** 2277 * nand_set_features - wrapper to perform a SET_FEATURE 2278 * @chip: NAND chip info structure 2279 * @addr: feature address 2280 * @subfeature_param: the subfeature parameters, a four bytes array 2281 * 2282 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2283 * operation cannot be handled. 2284 */ 2285 int nand_set_features(struct nand_chip *chip, int addr, 2286 u8 *subfeature_param) 2287 { 2288 if (!nand_supports_set_features(chip, addr)) 2289 return -ENOTSUPP; 2290 2291 if (chip->legacy.set_features) 2292 return chip->legacy.set_features(chip, addr, subfeature_param); 2293 2294 return nand_set_features_op(chip, addr, subfeature_param); 2295 } 2296 2297 /** 2298 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2299 * @buf: buffer to test 2300 * @len: buffer length 2301 * @bitflips_threshold: maximum number of bitflips 2302 * 2303 * Check if a buffer contains only 0xff, which means the underlying region 2304 * has been erased and is ready to be programmed. 2305 * The bitflips_threshold specify the maximum number of bitflips before 2306 * considering the region is not erased. 2307 * Note: The logic of this function has been extracted from the memweight 2308 * implementation, except that nand_check_erased_buf function exit before 2309 * testing the whole buffer if the number of bitflips exceed the 2310 * bitflips_threshold value. 2311 * 2312 * Returns a positive number of bitflips less than or equal to 2313 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2314 * threshold. 2315 */ 2316 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2317 { 2318 const unsigned char *bitmap = buf; 2319 int bitflips = 0; 2320 int weight; 2321 2322 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2323 len--, bitmap++) { 2324 weight = hweight8(*bitmap); 2325 bitflips += BITS_PER_BYTE - weight; 2326 if (unlikely(bitflips > bitflips_threshold)) 2327 return -EBADMSG; 2328 } 2329 2330 for (; len >= sizeof(long); 2331 len -= sizeof(long), bitmap += sizeof(long)) { 2332 unsigned long d = *((unsigned long *)bitmap); 2333 if (d == ~0UL) 2334 continue; 2335 weight = hweight_long(d); 2336 bitflips += BITS_PER_LONG - weight; 2337 if (unlikely(bitflips > bitflips_threshold)) 2338 return -EBADMSG; 2339 } 2340 2341 for (; len > 0; len--, bitmap++) { 2342 weight = hweight8(*bitmap); 2343 bitflips += BITS_PER_BYTE - weight; 2344 if (unlikely(bitflips > bitflips_threshold)) 2345 return -EBADMSG; 2346 } 2347 2348 return bitflips; 2349 } 2350 2351 /** 2352 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2353 * 0xff data 2354 * @data: data buffer to test 2355 * @datalen: data length 2356 * @ecc: ECC buffer 2357 * @ecclen: ECC length 2358 * @extraoob: extra OOB buffer 2359 * @extraooblen: extra OOB length 2360 * @bitflips_threshold: maximum number of bitflips 2361 * 2362 * Check if a data buffer and its associated ECC and OOB data contains only 2363 * 0xff pattern, which means the underlying region has been erased and is 2364 * ready to be programmed. 2365 * The bitflips_threshold specify the maximum number of bitflips before 2366 * considering the region as not erased. 2367 * 2368 * Note: 2369 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2370 * different from the NAND page size. When fixing bitflips, ECC engines will 2371 * report the number of errors per chunk, and the NAND core infrastructure 2372 * expect you to return the maximum number of bitflips for the whole page. 2373 * This is why you should always use this function on a single chunk and 2374 * not on the whole page. After checking each chunk you should update your 2375 * max_bitflips value accordingly. 2376 * 2/ When checking for bitflips in erased pages you should not only check 2377 * the payload data but also their associated ECC data, because a user might 2378 * have programmed almost all bits to 1 but a few. In this case, we 2379 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2380 * this case. 2381 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2382 * data are protected by the ECC engine. 2383 * It could also be used if you support subpages and want to attach some 2384 * extra OOB data to an ECC chunk. 2385 * 2386 * Returns a positive number of bitflips less than or equal to 2387 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2388 * threshold. In case of success, the passed buffers are filled with 0xff. 2389 */ 2390 int nand_check_erased_ecc_chunk(void *data, int datalen, 2391 void *ecc, int ecclen, 2392 void *extraoob, int extraooblen, 2393 int bitflips_threshold) 2394 { 2395 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2396 2397 data_bitflips = nand_check_erased_buf(data, datalen, 2398 bitflips_threshold); 2399 if (data_bitflips < 0) 2400 return data_bitflips; 2401 2402 bitflips_threshold -= data_bitflips; 2403 2404 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2405 if (ecc_bitflips < 0) 2406 return ecc_bitflips; 2407 2408 bitflips_threshold -= ecc_bitflips; 2409 2410 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2411 bitflips_threshold); 2412 if (extraoob_bitflips < 0) 2413 return extraoob_bitflips; 2414 2415 if (data_bitflips) 2416 memset(data, 0xff, datalen); 2417 2418 if (ecc_bitflips) 2419 memset(ecc, 0xff, ecclen); 2420 2421 if (extraoob_bitflips) 2422 memset(extraoob, 0xff, extraooblen); 2423 2424 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2425 } 2426 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2427 2428 /** 2429 * nand_read_page_raw_notsupp - dummy read raw page function 2430 * @chip: nand chip info structure 2431 * @buf: buffer to store read data 2432 * @oob_required: caller requires OOB data read to chip->oob_poi 2433 * @page: page number to read 2434 * 2435 * Returns -ENOTSUPP unconditionally. 2436 */ 2437 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, 2438 int oob_required, int page) 2439 { 2440 return -ENOTSUPP; 2441 } 2442 2443 /** 2444 * nand_read_page_raw - [INTERN] read raw page data without ecc 2445 * @chip: nand chip info structure 2446 * @buf: buffer to store read data 2447 * @oob_required: caller requires OOB data read to chip->oob_poi 2448 * @page: page number to read 2449 * 2450 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2451 */ 2452 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 2453 int page) 2454 { 2455 struct mtd_info *mtd = nand_to_mtd(chip); 2456 int ret; 2457 2458 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2459 if (ret) 2460 return ret; 2461 2462 if (oob_required) { 2463 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2464 false); 2465 if (ret) 2466 return ret; 2467 } 2468 2469 return 0; 2470 } 2471 EXPORT_SYMBOL(nand_read_page_raw); 2472 2473 /** 2474 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 2475 * @chip: nand chip info structure 2476 * @buf: buffer to store read data 2477 * @oob_required: caller requires OOB data read to chip->oob_poi 2478 * @page: page number to read 2479 * 2480 * We need a special oob layout and handling even when OOB isn't used. 2481 */ 2482 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, 2483 int oob_required, int page) 2484 { 2485 struct mtd_info *mtd = nand_to_mtd(chip); 2486 int eccsize = chip->ecc.size; 2487 int eccbytes = chip->ecc.bytes; 2488 uint8_t *oob = chip->oob_poi; 2489 int steps, size, ret; 2490 2491 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2492 if (ret) 2493 return ret; 2494 2495 for (steps = chip->ecc.steps; steps > 0; steps--) { 2496 ret = nand_read_data_op(chip, buf, eccsize, false); 2497 if (ret) 2498 return ret; 2499 2500 buf += eccsize; 2501 2502 if (chip->ecc.prepad) { 2503 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 2504 false); 2505 if (ret) 2506 return ret; 2507 2508 oob += chip->ecc.prepad; 2509 } 2510 2511 ret = nand_read_data_op(chip, oob, eccbytes, false); 2512 if (ret) 2513 return ret; 2514 2515 oob += eccbytes; 2516 2517 if (chip->ecc.postpad) { 2518 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 2519 false); 2520 if (ret) 2521 return ret; 2522 2523 oob += chip->ecc.postpad; 2524 } 2525 } 2526 2527 size = mtd->oobsize - (oob - chip->oob_poi); 2528 if (size) { 2529 ret = nand_read_data_op(chip, oob, size, false); 2530 if (ret) 2531 return ret; 2532 } 2533 2534 return 0; 2535 } 2536 2537 /** 2538 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 2539 * @chip: nand chip info structure 2540 * @buf: buffer to store read data 2541 * @oob_required: caller requires OOB data read to chip->oob_poi 2542 * @page: page number to read 2543 */ 2544 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, 2545 int oob_required, int page) 2546 { 2547 struct mtd_info *mtd = nand_to_mtd(chip); 2548 int i, eccsize = chip->ecc.size, ret; 2549 int eccbytes = chip->ecc.bytes; 2550 int eccsteps = chip->ecc.steps; 2551 uint8_t *p = buf; 2552 uint8_t *ecc_calc = chip->ecc.calc_buf; 2553 uint8_t *ecc_code = chip->ecc.code_buf; 2554 unsigned int max_bitflips = 0; 2555 2556 chip->ecc.read_page_raw(chip, buf, 1, page); 2557 2558 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 2559 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2560 2561 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2562 chip->ecc.total); 2563 if (ret) 2564 return ret; 2565 2566 eccsteps = chip->ecc.steps; 2567 p = buf; 2568 2569 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2570 int stat; 2571 2572 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2573 if (stat < 0) { 2574 mtd->ecc_stats.failed++; 2575 } else { 2576 mtd->ecc_stats.corrected += stat; 2577 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2578 } 2579 } 2580 return max_bitflips; 2581 } 2582 2583 /** 2584 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 2585 * @chip: nand chip info structure 2586 * @data_offs: offset of requested data within the page 2587 * @readlen: data length 2588 * @bufpoi: buffer to store read data 2589 * @page: page number to read 2590 */ 2591 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, 2592 uint32_t readlen, uint8_t *bufpoi, int page) 2593 { 2594 struct mtd_info *mtd = nand_to_mtd(chip); 2595 int start_step, end_step, num_steps, ret; 2596 uint8_t *p; 2597 int data_col_addr, i, gaps = 0; 2598 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 2599 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 2600 int index, section = 0; 2601 unsigned int max_bitflips = 0; 2602 struct mtd_oob_region oobregion = { }; 2603 2604 /* Column address within the page aligned to ECC size (256bytes) */ 2605 start_step = data_offs / chip->ecc.size; 2606 end_step = (data_offs + readlen - 1) / chip->ecc.size; 2607 num_steps = end_step - start_step + 1; 2608 index = start_step * chip->ecc.bytes; 2609 2610 /* Data size aligned to ECC ecc.size */ 2611 datafrag_len = num_steps * chip->ecc.size; 2612 eccfrag_len = num_steps * chip->ecc.bytes; 2613 2614 data_col_addr = start_step * chip->ecc.size; 2615 /* If we read not a page aligned data */ 2616 p = bufpoi + data_col_addr; 2617 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 2618 if (ret) 2619 return ret; 2620 2621 /* Calculate ECC */ 2622 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 2623 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); 2624 2625 /* 2626 * The performance is faster if we position offsets according to 2627 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 2628 */ 2629 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 2630 if (ret) 2631 return ret; 2632 2633 if (oobregion.length < eccfrag_len) 2634 gaps = 1; 2635 2636 if (gaps) { 2637 ret = nand_change_read_column_op(chip, mtd->writesize, 2638 chip->oob_poi, mtd->oobsize, 2639 false); 2640 if (ret) 2641 return ret; 2642 } else { 2643 /* 2644 * Send the command to read the particular ECC bytes take care 2645 * about buswidth alignment in read_buf. 2646 */ 2647 aligned_pos = oobregion.offset & ~(busw - 1); 2648 aligned_len = eccfrag_len; 2649 if (oobregion.offset & (busw - 1)) 2650 aligned_len++; 2651 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 2652 (busw - 1)) 2653 aligned_len++; 2654 2655 ret = nand_change_read_column_op(chip, 2656 mtd->writesize + aligned_pos, 2657 &chip->oob_poi[aligned_pos], 2658 aligned_len, false); 2659 if (ret) 2660 return ret; 2661 } 2662 2663 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 2664 chip->oob_poi, index, eccfrag_len); 2665 if (ret) 2666 return ret; 2667 2668 p = bufpoi + data_col_addr; 2669 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 2670 int stat; 2671 2672 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], 2673 &chip->ecc.calc_buf[i]); 2674 if (stat == -EBADMSG && 2675 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2676 /* check for empty pages with bitflips */ 2677 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 2678 &chip->ecc.code_buf[i], 2679 chip->ecc.bytes, 2680 NULL, 0, 2681 chip->ecc.strength); 2682 } 2683 2684 if (stat < 0) { 2685 mtd->ecc_stats.failed++; 2686 } else { 2687 mtd->ecc_stats.corrected += stat; 2688 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2689 } 2690 } 2691 return max_bitflips; 2692 } 2693 2694 /** 2695 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 2696 * @chip: nand chip info structure 2697 * @buf: buffer to store read data 2698 * @oob_required: caller requires OOB data read to chip->oob_poi 2699 * @page: page number to read 2700 * 2701 * Not for syndrome calculating ECC controllers which need a special oob layout. 2702 */ 2703 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, 2704 int oob_required, int page) 2705 { 2706 struct mtd_info *mtd = nand_to_mtd(chip); 2707 int i, eccsize = chip->ecc.size, ret; 2708 int eccbytes = chip->ecc.bytes; 2709 int eccsteps = chip->ecc.steps; 2710 uint8_t *p = buf; 2711 uint8_t *ecc_calc = chip->ecc.calc_buf; 2712 uint8_t *ecc_code = chip->ecc.code_buf; 2713 unsigned int max_bitflips = 0; 2714 2715 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2716 if (ret) 2717 return ret; 2718 2719 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2720 chip->ecc.hwctl(chip, NAND_ECC_READ); 2721 2722 ret = nand_read_data_op(chip, p, eccsize, false); 2723 if (ret) 2724 return ret; 2725 2726 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2727 } 2728 2729 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false); 2730 if (ret) 2731 return ret; 2732 2733 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2734 chip->ecc.total); 2735 if (ret) 2736 return ret; 2737 2738 eccsteps = chip->ecc.steps; 2739 p = buf; 2740 2741 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2742 int stat; 2743 2744 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2745 if (stat == -EBADMSG && 2746 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2747 /* check for empty pages with bitflips */ 2748 stat = nand_check_erased_ecc_chunk(p, eccsize, 2749 &ecc_code[i], eccbytes, 2750 NULL, 0, 2751 chip->ecc.strength); 2752 } 2753 2754 if (stat < 0) { 2755 mtd->ecc_stats.failed++; 2756 } else { 2757 mtd->ecc_stats.corrected += stat; 2758 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2759 } 2760 } 2761 return max_bitflips; 2762 } 2763 2764 /** 2765 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first 2766 * @chip: nand chip info structure 2767 * @buf: buffer to store read data 2768 * @oob_required: caller requires OOB data read to chip->oob_poi 2769 * @page: page number to read 2770 * 2771 * Hardware ECC for large page chips, require OOB to be read first. For this 2772 * ECC mode, the write_page method is re-used from ECC_HW. These methods 2773 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with 2774 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from 2775 * the data area, by overwriting the NAND manufacturer bad block markings. 2776 */ 2777 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, 2778 int oob_required, int page) 2779 { 2780 struct mtd_info *mtd = nand_to_mtd(chip); 2781 int i, eccsize = chip->ecc.size, ret; 2782 int eccbytes = chip->ecc.bytes; 2783 int eccsteps = chip->ecc.steps; 2784 uint8_t *p = buf; 2785 uint8_t *ecc_code = chip->ecc.code_buf; 2786 uint8_t *ecc_calc = chip->ecc.calc_buf; 2787 unsigned int max_bitflips = 0; 2788 2789 /* Read the OOB area first */ 2790 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 2791 if (ret) 2792 return ret; 2793 2794 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2795 if (ret) 2796 return ret; 2797 2798 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2799 chip->ecc.total); 2800 if (ret) 2801 return ret; 2802 2803 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2804 int stat; 2805 2806 chip->ecc.hwctl(chip, NAND_ECC_READ); 2807 2808 ret = nand_read_data_op(chip, p, eccsize, false); 2809 if (ret) 2810 return ret; 2811 2812 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2813 2814 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); 2815 if (stat == -EBADMSG && 2816 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2817 /* check for empty pages with bitflips */ 2818 stat = nand_check_erased_ecc_chunk(p, eccsize, 2819 &ecc_code[i], eccbytes, 2820 NULL, 0, 2821 chip->ecc.strength); 2822 } 2823 2824 if (stat < 0) { 2825 mtd->ecc_stats.failed++; 2826 } else { 2827 mtd->ecc_stats.corrected += stat; 2828 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2829 } 2830 } 2831 return max_bitflips; 2832 } 2833 2834 /** 2835 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 2836 * @chip: nand chip info structure 2837 * @buf: buffer to store read data 2838 * @oob_required: caller requires OOB data read to chip->oob_poi 2839 * @page: page number to read 2840 * 2841 * The hw generator calculates the error syndrome automatically. Therefore we 2842 * need a special oob layout and handling. 2843 */ 2844 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 2845 int oob_required, int page) 2846 { 2847 struct mtd_info *mtd = nand_to_mtd(chip); 2848 int ret, i, eccsize = chip->ecc.size; 2849 int eccbytes = chip->ecc.bytes; 2850 int eccsteps = chip->ecc.steps; 2851 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 2852 uint8_t *p = buf; 2853 uint8_t *oob = chip->oob_poi; 2854 unsigned int max_bitflips = 0; 2855 2856 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2857 if (ret) 2858 return ret; 2859 2860 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2861 int stat; 2862 2863 chip->ecc.hwctl(chip, NAND_ECC_READ); 2864 2865 ret = nand_read_data_op(chip, p, eccsize, false); 2866 if (ret) 2867 return ret; 2868 2869 if (chip->ecc.prepad) { 2870 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 2871 false); 2872 if (ret) 2873 return ret; 2874 2875 oob += chip->ecc.prepad; 2876 } 2877 2878 chip->ecc.hwctl(chip, NAND_ECC_READSYN); 2879 2880 ret = nand_read_data_op(chip, oob, eccbytes, false); 2881 if (ret) 2882 return ret; 2883 2884 stat = chip->ecc.correct(chip, p, oob, NULL); 2885 2886 oob += eccbytes; 2887 2888 if (chip->ecc.postpad) { 2889 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 2890 false); 2891 if (ret) 2892 return ret; 2893 2894 oob += chip->ecc.postpad; 2895 } 2896 2897 if (stat == -EBADMSG && 2898 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2899 /* check for empty pages with bitflips */ 2900 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 2901 oob - eccpadbytes, 2902 eccpadbytes, 2903 NULL, 0, 2904 chip->ecc.strength); 2905 } 2906 2907 if (stat < 0) { 2908 mtd->ecc_stats.failed++; 2909 } else { 2910 mtd->ecc_stats.corrected += stat; 2911 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2912 } 2913 } 2914 2915 /* Calculate remaining oob bytes */ 2916 i = mtd->oobsize - (oob - chip->oob_poi); 2917 if (i) { 2918 ret = nand_read_data_op(chip, oob, i, false); 2919 if (ret) 2920 return ret; 2921 } 2922 2923 return max_bitflips; 2924 } 2925 2926 /** 2927 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 2928 * @mtd: mtd info structure 2929 * @oob: oob destination address 2930 * @ops: oob ops structure 2931 * @len: size of oob to transfer 2932 */ 2933 static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob, 2934 struct mtd_oob_ops *ops, size_t len) 2935 { 2936 struct nand_chip *chip = mtd_to_nand(mtd); 2937 int ret; 2938 2939 switch (ops->mode) { 2940 2941 case MTD_OPS_PLACE_OOB: 2942 case MTD_OPS_RAW: 2943 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 2944 return oob + len; 2945 2946 case MTD_OPS_AUTO_OOB: 2947 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 2948 ops->ooboffs, len); 2949 BUG_ON(ret); 2950 return oob + len; 2951 2952 default: 2953 BUG(); 2954 } 2955 return NULL; 2956 } 2957 2958 /** 2959 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 2960 * @chip: NAND chip object 2961 * @retry_mode: the retry mode to use 2962 * 2963 * Some vendors supply a special command to shift the Vt threshold, to be used 2964 * when there are too many bitflips in a page (i.e., ECC error). After setting 2965 * a new threshold, the host should retry reading the page. 2966 */ 2967 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) 2968 { 2969 pr_debug("setting READ RETRY mode %d\n", retry_mode); 2970 2971 if (retry_mode >= chip->read_retries) 2972 return -EINVAL; 2973 2974 if (!chip->setup_read_retry) 2975 return -EOPNOTSUPP; 2976 2977 return chip->setup_read_retry(chip, retry_mode); 2978 } 2979 2980 static void nand_wait_readrdy(struct nand_chip *chip) 2981 { 2982 const struct nand_sdr_timings *sdr; 2983 2984 if (!(chip->options & NAND_NEED_READRDY)) 2985 return; 2986 2987 sdr = nand_get_sdr_timings(&chip->data_interface); 2988 WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0)); 2989 } 2990 2991 /** 2992 * nand_do_read_ops - [INTERN] Read data with ECC 2993 * @mtd: MTD device structure 2994 * @from: offset to read from 2995 * @ops: oob ops structure 2996 * 2997 * Internal function. Called with chip held. 2998 */ 2999 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, 3000 struct mtd_oob_ops *ops) 3001 { 3002 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3003 struct nand_chip *chip = mtd_to_nand(mtd); 3004 int ret = 0; 3005 uint32_t readlen = ops->len; 3006 uint32_t oobreadlen = ops->ooblen; 3007 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3008 3009 uint8_t *bufpoi, *oob, *buf; 3010 int use_bufpoi; 3011 unsigned int max_bitflips = 0; 3012 int retry_mode = 0; 3013 bool ecc_fail = false; 3014 3015 chipnr = (int)(from >> chip->chip_shift); 3016 chip->select_chip(chip, chipnr); 3017 3018 realpage = (int)(from >> chip->page_shift); 3019 page = realpage & chip->pagemask; 3020 3021 col = (int)(from & (mtd->writesize - 1)); 3022 3023 buf = ops->datbuf; 3024 oob = ops->oobbuf; 3025 oob_required = oob ? 1 : 0; 3026 3027 while (1) { 3028 unsigned int ecc_failures = mtd->ecc_stats.failed; 3029 3030 bytes = min(mtd->writesize - col, readlen); 3031 aligned = (bytes == mtd->writesize); 3032 3033 if (!aligned) 3034 use_bufpoi = 1; 3035 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 3036 use_bufpoi = !virt_addr_valid(buf) || 3037 !IS_ALIGNED((unsigned long)buf, 3038 chip->buf_align); 3039 else 3040 use_bufpoi = 0; 3041 3042 /* Is the current page in the buffer? */ 3043 if (realpage != chip->pagebuf || oob) { 3044 bufpoi = use_bufpoi ? chip->data_buf : buf; 3045 3046 if (use_bufpoi && aligned) 3047 pr_debug("%s: using read bounce buffer for buf@%p\n", 3048 __func__, buf); 3049 3050 read_retry: 3051 /* 3052 * Now read the page into the buffer. Absent an error, 3053 * the read methods return max bitflips per ecc step. 3054 */ 3055 if (unlikely(ops->mode == MTD_OPS_RAW)) 3056 ret = chip->ecc.read_page_raw(chip, bufpoi, 3057 oob_required, 3058 page); 3059 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3060 !oob) 3061 ret = chip->ecc.read_subpage(chip, col, bytes, 3062 bufpoi, page); 3063 else 3064 ret = chip->ecc.read_page(chip, bufpoi, 3065 oob_required, page); 3066 if (ret < 0) { 3067 if (use_bufpoi) 3068 /* Invalidate page cache */ 3069 chip->pagebuf = -1; 3070 break; 3071 } 3072 3073 /* Transfer not aligned data */ 3074 if (use_bufpoi) { 3075 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3076 !(mtd->ecc_stats.failed - ecc_failures) && 3077 (ops->mode != MTD_OPS_RAW)) { 3078 chip->pagebuf = realpage; 3079 chip->pagebuf_bitflips = ret; 3080 } else { 3081 /* Invalidate page cache */ 3082 chip->pagebuf = -1; 3083 } 3084 memcpy(buf, chip->data_buf + col, bytes); 3085 } 3086 3087 if (unlikely(oob)) { 3088 int toread = min(oobreadlen, max_oobsize); 3089 3090 if (toread) { 3091 oob = nand_transfer_oob(mtd, 3092 oob, ops, toread); 3093 oobreadlen -= toread; 3094 } 3095 } 3096 3097 nand_wait_readrdy(chip); 3098 3099 if (mtd->ecc_stats.failed - ecc_failures) { 3100 if (retry_mode + 1 < chip->read_retries) { 3101 retry_mode++; 3102 ret = nand_setup_read_retry(chip, 3103 retry_mode); 3104 if (ret < 0) 3105 break; 3106 3107 /* Reset failures; retry */ 3108 mtd->ecc_stats.failed = ecc_failures; 3109 goto read_retry; 3110 } else { 3111 /* No more retry modes; real failure */ 3112 ecc_fail = true; 3113 } 3114 } 3115 3116 buf += bytes; 3117 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3118 } else { 3119 memcpy(buf, chip->data_buf + col, bytes); 3120 buf += bytes; 3121 max_bitflips = max_t(unsigned int, max_bitflips, 3122 chip->pagebuf_bitflips); 3123 } 3124 3125 readlen -= bytes; 3126 3127 /* Reset to retry mode 0 */ 3128 if (retry_mode) { 3129 ret = nand_setup_read_retry(chip, 0); 3130 if (ret < 0) 3131 break; 3132 retry_mode = 0; 3133 } 3134 3135 if (!readlen) 3136 break; 3137 3138 /* For subsequent reads align to page boundary */ 3139 col = 0; 3140 /* Increment page address */ 3141 realpage++; 3142 3143 page = realpage & chip->pagemask; 3144 /* Check, if we cross a chip boundary */ 3145 if (!page) { 3146 chipnr++; 3147 chip->select_chip(chip, -1); 3148 chip->select_chip(chip, chipnr); 3149 } 3150 } 3151 chip->select_chip(chip, -1); 3152 3153 ops->retlen = ops->len - (size_t) readlen; 3154 if (oob) 3155 ops->oobretlen = ops->ooblen - oobreadlen; 3156 3157 if (ret < 0) 3158 return ret; 3159 3160 if (ecc_fail) 3161 return -EBADMSG; 3162 3163 return max_bitflips; 3164 } 3165 3166 /** 3167 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3168 * @chip: nand chip info structure 3169 * @page: page number to read 3170 */ 3171 int nand_read_oob_std(struct nand_chip *chip, int page) 3172 { 3173 struct mtd_info *mtd = nand_to_mtd(chip); 3174 3175 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3176 } 3177 EXPORT_SYMBOL(nand_read_oob_std); 3178 3179 /** 3180 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3181 * with syndromes 3182 * @chip: nand chip info structure 3183 * @page: page number to read 3184 */ 3185 static int nand_read_oob_syndrome(struct nand_chip *chip, int page) 3186 { 3187 struct mtd_info *mtd = nand_to_mtd(chip); 3188 int length = mtd->oobsize; 3189 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3190 int eccsize = chip->ecc.size; 3191 uint8_t *bufpoi = chip->oob_poi; 3192 int i, toread, sndrnd = 0, pos, ret; 3193 3194 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3195 if (ret) 3196 return ret; 3197 3198 for (i = 0; i < chip->ecc.steps; i++) { 3199 if (sndrnd) { 3200 int ret; 3201 3202 pos = eccsize + i * (eccsize + chunk); 3203 if (mtd->writesize > 512) 3204 ret = nand_change_read_column_op(chip, pos, 3205 NULL, 0, 3206 false); 3207 else 3208 ret = nand_read_page_op(chip, page, pos, NULL, 3209 0); 3210 3211 if (ret) 3212 return ret; 3213 } else 3214 sndrnd = 1; 3215 toread = min_t(int, length, chunk); 3216 3217 ret = nand_read_data_op(chip, bufpoi, toread, false); 3218 if (ret) 3219 return ret; 3220 3221 bufpoi += toread; 3222 length -= toread; 3223 } 3224 if (length > 0) { 3225 ret = nand_read_data_op(chip, bufpoi, length, false); 3226 if (ret) 3227 return ret; 3228 } 3229 3230 return 0; 3231 } 3232 3233 /** 3234 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3235 * @chip: nand chip info structure 3236 * @page: page number to write 3237 */ 3238 int nand_write_oob_std(struct nand_chip *chip, int page) 3239 { 3240 struct mtd_info *mtd = nand_to_mtd(chip); 3241 3242 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3243 mtd->oobsize); 3244 } 3245 EXPORT_SYMBOL(nand_write_oob_std); 3246 3247 /** 3248 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3249 * with syndrome - only for large page flash 3250 * @chip: nand chip info structure 3251 * @page: page number to write 3252 */ 3253 static int nand_write_oob_syndrome(struct nand_chip *chip, int page) 3254 { 3255 struct mtd_info *mtd = nand_to_mtd(chip); 3256 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3257 int eccsize = chip->ecc.size, length = mtd->oobsize; 3258 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3259 const uint8_t *bufpoi = chip->oob_poi; 3260 3261 /* 3262 * data-ecc-data-ecc ... ecc-oob 3263 * or 3264 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3265 */ 3266 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3267 pos = steps * (eccsize + chunk); 3268 steps = 0; 3269 } else 3270 pos = eccsize; 3271 3272 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3273 if (ret) 3274 return ret; 3275 3276 for (i = 0; i < steps; i++) { 3277 if (sndcmd) { 3278 if (mtd->writesize <= 512) { 3279 uint32_t fill = 0xFFFFFFFF; 3280 3281 len = eccsize; 3282 while (len > 0) { 3283 int num = min_t(int, len, 4); 3284 3285 ret = nand_write_data_op(chip, &fill, 3286 num, false); 3287 if (ret) 3288 return ret; 3289 3290 len -= num; 3291 } 3292 } else { 3293 pos = eccsize + i * (eccsize + chunk); 3294 ret = nand_change_write_column_op(chip, pos, 3295 NULL, 0, 3296 false); 3297 if (ret) 3298 return ret; 3299 } 3300 } else 3301 sndcmd = 1; 3302 len = min_t(int, length, chunk); 3303 3304 ret = nand_write_data_op(chip, bufpoi, len, false); 3305 if (ret) 3306 return ret; 3307 3308 bufpoi += len; 3309 length -= len; 3310 } 3311 if (length > 0) { 3312 ret = nand_write_data_op(chip, bufpoi, length, false); 3313 if (ret) 3314 return ret; 3315 } 3316 3317 return nand_prog_page_end_op(chip); 3318 } 3319 3320 /** 3321 * nand_do_read_oob - [INTERN] NAND read out-of-band 3322 * @mtd: MTD device structure 3323 * @from: offset to read from 3324 * @ops: oob operations description structure 3325 * 3326 * NAND read out-of-band data from the spare area. 3327 */ 3328 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, 3329 struct mtd_oob_ops *ops) 3330 { 3331 unsigned int max_bitflips = 0; 3332 int page, realpage, chipnr; 3333 struct nand_chip *chip = mtd_to_nand(mtd); 3334 struct mtd_ecc_stats stats; 3335 int readlen = ops->ooblen; 3336 int len; 3337 uint8_t *buf = ops->oobbuf; 3338 int ret = 0; 3339 3340 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3341 __func__, (unsigned long long)from, readlen); 3342 3343 stats = mtd->ecc_stats; 3344 3345 len = mtd_oobavail(mtd, ops); 3346 3347 chipnr = (int)(from >> chip->chip_shift); 3348 chip->select_chip(chip, chipnr); 3349 3350 /* Shift to get page */ 3351 realpage = (int)(from >> chip->page_shift); 3352 page = realpage & chip->pagemask; 3353 3354 while (1) { 3355 if (ops->mode == MTD_OPS_RAW) 3356 ret = chip->ecc.read_oob_raw(chip, page); 3357 else 3358 ret = chip->ecc.read_oob(chip, page); 3359 3360 if (ret < 0) 3361 break; 3362 3363 len = min(len, readlen); 3364 buf = nand_transfer_oob(mtd, buf, ops, len); 3365 3366 nand_wait_readrdy(chip); 3367 3368 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3369 3370 readlen -= len; 3371 if (!readlen) 3372 break; 3373 3374 /* Increment page address */ 3375 realpage++; 3376 3377 page = realpage & chip->pagemask; 3378 /* Check, if we cross a chip boundary */ 3379 if (!page) { 3380 chipnr++; 3381 chip->select_chip(chip, -1); 3382 chip->select_chip(chip, chipnr); 3383 } 3384 } 3385 chip->select_chip(chip, -1); 3386 3387 ops->oobretlen = ops->ooblen - readlen; 3388 3389 if (ret < 0) 3390 return ret; 3391 3392 if (mtd->ecc_stats.failed - stats.failed) 3393 return -EBADMSG; 3394 3395 return max_bitflips; 3396 } 3397 3398 /** 3399 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3400 * @mtd: MTD device structure 3401 * @from: offset to read from 3402 * @ops: oob operation description structure 3403 * 3404 * NAND read data and/or out-of-band data. 3405 */ 3406 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3407 struct mtd_oob_ops *ops) 3408 { 3409 int ret; 3410 3411 ops->retlen = 0; 3412 3413 if (ops->mode != MTD_OPS_PLACE_OOB && 3414 ops->mode != MTD_OPS_AUTO_OOB && 3415 ops->mode != MTD_OPS_RAW) 3416 return -ENOTSUPP; 3417 3418 nand_get_device(mtd, FL_READING); 3419 3420 if (!ops->datbuf) 3421 ret = nand_do_read_oob(mtd, from, ops); 3422 else 3423 ret = nand_do_read_ops(mtd, from, ops); 3424 3425 nand_release_device(mtd); 3426 return ret; 3427 } 3428 3429 /** 3430 * nand_write_page_raw_notsupp - dummy raw page write function 3431 * @chip: nand chip info structure 3432 * @buf: data buffer 3433 * @oob_required: must write chip->oob_poi to OOB 3434 * @page: page number to write 3435 * 3436 * Returns -ENOTSUPP unconditionally. 3437 */ 3438 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, 3439 int oob_required, int page) 3440 { 3441 return -ENOTSUPP; 3442 } 3443 3444 /** 3445 * nand_write_page_raw - [INTERN] raw page write function 3446 * @chip: nand chip info structure 3447 * @buf: data buffer 3448 * @oob_required: must write chip->oob_poi to OOB 3449 * @page: page number to write 3450 * 3451 * Not for syndrome calculating ECC controllers, which use a special oob layout. 3452 */ 3453 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 3454 int oob_required, int page) 3455 { 3456 struct mtd_info *mtd = nand_to_mtd(chip); 3457 int ret; 3458 3459 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 3460 if (ret) 3461 return ret; 3462 3463 if (oob_required) { 3464 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 3465 false); 3466 if (ret) 3467 return ret; 3468 } 3469 3470 return nand_prog_page_end_op(chip); 3471 } 3472 EXPORT_SYMBOL(nand_write_page_raw); 3473 3474 /** 3475 * nand_write_page_raw_syndrome - [INTERN] raw page write function 3476 * @chip: nand chip info structure 3477 * @buf: data buffer 3478 * @oob_required: must write chip->oob_poi to OOB 3479 * @page: page number to write 3480 * 3481 * We need a special oob layout and handling even when ECC isn't checked. 3482 */ 3483 static int nand_write_page_raw_syndrome(struct nand_chip *chip, 3484 const uint8_t *buf, int oob_required, 3485 int page) 3486 { 3487 struct mtd_info *mtd = nand_to_mtd(chip); 3488 int eccsize = chip->ecc.size; 3489 int eccbytes = chip->ecc.bytes; 3490 uint8_t *oob = chip->oob_poi; 3491 int steps, size, ret; 3492 3493 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3494 if (ret) 3495 return ret; 3496 3497 for (steps = chip->ecc.steps; steps > 0; steps--) { 3498 ret = nand_write_data_op(chip, buf, eccsize, false); 3499 if (ret) 3500 return ret; 3501 3502 buf += eccsize; 3503 3504 if (chip->ecc.prepad) { 3505 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3506 false); 3507 if (ret) 3508 return ret; 3509 3510 oob += chip->ecc.prepad; 3511 } 3512 3513 ret = nand_write_data_op(chip, oob, eccbytes, false); 3514 if (ret) 3515 return ret; 3516 3517 oob += eccbytes; 3518 3519 if (chip->ecc.postpad) { 3520 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3521 false); 3522 if (ret) 3523 return ret; 3524 3525 oob += chip->ecc.postpad; 3526 } 3527 } 3528 3529 size = mtd->oobsize - (oob - chip->oob_poi); 3530 if (size) { 3531 ret = nand_write_data_op(chip, oob, size, false); 3532 if (ret) 3533 return ret; 3534 } 3535 3536 return nand_prog_page_end_op(chip); 3537 } 3538 /** 3539 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 3540 * @chip: nand chip info structure 3541 * @buf: data buffer 3542 * @oob_required: must write chip->oob_poi to OOB 3543 * @page: page number to write 3544 */ 3545 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, 3546 int oob_required, int page) 3547 { 3548 struct mtd_info *mtd = nand_to_mtd(chip); 3549 int i, eccsize = chip->ecc.size, ret; 3550 int eccbytes = chip->ecc.bytes; 3551 int eccsteps = chip->ecc.steps; 3552 uint8_t *ecc_calc = chip->ecc.calc_buf; 3553 const uint8_t *p = buf; 3554 3555 /* Software ECC calculation */ 3556 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3557 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3558 3559 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3560 chip->ecc.total); 3561 if (ret) 3562 return ret; 3563 3564 return chip->ecc.write_page_raw(chip, buf, 1, page); 3565 } 3566 3567 /** 3568 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 3569 * @chip: nand chip info structure 3570 * @buf: data buffer 3571 * @oob_required: must write chip->oob_poi to OOB 3572 * @page: page number to write 3573 */ 3574 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, 3575 int oob_required, int page) 3576 { 3577 struct mtd_info *mtd = nand_to_mtd(chip); 3578 int i, eccsize = chip->ecc.size, ret; 3579 int eccbytes = chip->ecc.bytes; 3580 int eccsteps = chip->ecc.steps; 3581 uint8_t *ecc_calc = chip->ecc.calc_buf; 3582 const uint8_t *p = buf; 3583 3584 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3585 if (ret) 3586 return ret; 3587 3588 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3589 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3590 3591 ret = nand_write_data_op(chip, p, eccsize, false); 3592 if (ret) 3593 return ret; 3594 3595 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3596 } 3597 3598 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3599 chip->ecc.total); 3600 if (ret) 3601 return ret; 3602 3603 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3604 if (ret) 3605 return ret; 3606 3607 return nand_prog_page_end_op(chip); 3608 } 3609 3610 3611 /** 3612 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 3613 * @chip: nand chip info structure 3614 * @offset: column address of subpage within the page 3615 * @data_len: data length 3616 * @buf: data buffer 3617 * @oob_required: must write chip->oob_poi to OOB 3618 * @page: page number to write 3619 */ 3620 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, 3621 uint32_t data_len, const uint8_t *buf, 3622 int oob_required, int page) 3623 { 3624 struct mtd_info *mtd = nand_to_mtd(chip); 3625 uint8_t *oob_buf = chip->oob_poi; 3626 uint8_t *ecc_calc = chip->ecc.calc_buf; 3627 int ecc_size = chip->ecc.size; 3628 int ecc_bytes = chip->ecc.bytes; 3629 int ecc_steps = chip->ecc.steps; 3630 uint32_t start_step = offset / ecc_size; 3631 uint32_t end_step = (offset + data_len - 1) / ecc_size; 3632 int oob_bytes = mtd->oobsize / ecc_steps; 3633 int step, ret; 3634 3635 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3636 if (ret) 3637 return ret; 3638 3639 for (step = 0; step < ecc_steps; step++) { 3640 /* configure controller for WRITE access */ 3641 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3642 3643 /* write data (untouched subpages already masked by 0xFF) */ 3644 ret = nand_write_data_op(chip, buf, ecc_size, false); 3645 if (ret) 3646 return ret; 3647 3648 /* mask ECC of un-touched subpages by padding 0xFF */ 3649 if ((step < start_step) || (step > end_step)) 3650 memset(ecc_calc, 0xff, ecc_bytes); 3651 else 3652 chip->ecc.calculate(chip, buf, ecc_calc); 3653 3654 /* mask OOB of un-touched subpages by padding 0xFF */ 3655 /* if oob_required, preserve OOB metadata of written subpage */ 3656 if (!oob_required || (step < start_step) || (step > end_step)) 3657 memset(oob_buf, 0xff, oob_bytes); 3658 3659 buf += ecc_size; 3660 ecc_calc += ecc_bytes; 3661 oob_buf += oob_bytes; 3662 } 3663 3664 /* copy calculated ECC for whole page to chip->buffer->oob */ 3665 /* this include masked-value(0xFF) for unwritten subpages */ 3666 ecc_calc = chip->ecc.calc_buf; 3667 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3668 chip->ecc.total); 3669 if (ret) 3670 return ret; 3671 3672 /* write OOB buffer to NAND device */ 3673 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3674 if (ret) 3675 return ret; 3676 3677 return nand_prog_page_end_op(chip); 3678 } 3679 3680 3681 /** 3682 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 3683 * @chip: nand chip info structure 3684 * @buf: data buffer 3685 * @oob_required: must write chip->oob_poi to OOB 3686 * @page: page number to write 3687 * 3688 * The hw generator calculates the error syndrome automatically. Therefore we 3689 * need a special oob layout and handling. 3690 */ 3691 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, 3692 int oob_required, int page) 3693 { 3694 struct mtd_info *mtd = nand_to_mtd(chip); 3695 int i, eccsize = chip->ecc.size; 3696 int eccbytes = chip->ecc.bytes; 3697 int eccsteps = chip->ecc.steps; 3698 const uint8_t *p = buf; 3699 uint8_t *oob = chip->oob_poi; 3700 int ret; 3701 3702 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3703 if (ret) 3704 return ret; 3705 3706 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3707 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3708 3709 ret = nand_write_data_op(chip, p, eccsize, false); 3710 if (ret) 3711 return ret; 3712 3713 if (chip->ecc.prepad) { 3714 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3715 false); 3716 if (ret) 3717 return ret; 3718 3719 oob += chip->ecc.prepad; 3720 } 3721 3722 chip->ecc.calculate(chip, p, oob); 3723 3724 ret = nand_write_data_op(chip, oob, eccbytes, false); 3725 if (ret) 3726 return ret; 3727 3728 oob += eccbytes; 3729 3730 if (chip->ecc.postpad) { 3731 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3732 false); 3733 if (ret) 3734 return ret; 3735 3736 oob += chip->ecc.postpad; 3737 } 3738 } 3739 3740 /* Calculate remaining oob bytes */ 3741 i = mtd->oobsize - (oob - chip->oob_poi); 3742 if (i) { 3743 ret = nand_write_data_op(chip, oob, i, false); 3744 if (ret) 3745 return ret; 3746 } 3747 3748 return nand_prog_page_end_op(chip); 3749 } 3750 3751 /** 3752 * nand_write_page - write one page 3753 * @mtd: MTD device structure 3754 * @chip: NAND chip descriptor 3755 * @offset: address offset within the page 3756 * @data_len: length of actual data to be written 3757 * @buf: the data to write 3758 * @oob_required: must write chip->oob_poi to OOB 3759 * @page: page number to write 3760 * @raw: use _raw version of write_page 3761 */ 3762 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, 3763 uint32_t offset, int data_len, const uint8_t *buf, 3764 int oob_required, int page, int raw) 3765 { 3766 int status, subpage; 3767 3768 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 3769 chip->ecc.write_subpage) 3770 subpage = offset || (data_len < mtd->writesize); 3771 else 3772 subpage = 0; 3773 3774 if (unlikely(raw)) 3775 status = chip->ecc.write_page_raw(chip, buf, oob_required, 3776 page); 3777 else if (subpage) 3778 status = chip->ecc.write_subpage(chip, offset, data_len, buf, 3779 oob_required, page); 3780 else 3781 status = chip->ecc.write_page(chip, buf, oob_required, page); 3782 3783 if (status < 0) 3784 return status; 3785 3786 return 0; 3787 } 3788 3789 /** 3790 * nand_fill_oob - [INTERN] Transfer client buffer to oob 3791 * @mtd: MTD device structure 3792 * @oob: oob data buffer 3793 * @len: oob data write length 3794 * @ops: oob ops structure 3795 */ 3796 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, 3797 struct mtd_oob_ops *ops) 3798 { 3799 struct nand_chip *chip = mtd_to_nand(mtd); 3800 int ret; 3801 3802 /* 3803 * Initialise to all 0xFF, to avoid the possibility of left over OOB 3804 * data from a previous OOB read. 3805 */ 3806 memset(chip->oob_poi, 0xff, mtd->oobsize); 3807 3808 switch (ops->mode) { 3809 3810 case MTD_OPS_PLACE_OOB: 3811 case MTD_OPS_RAW: 3812 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 3813 return oob + len; 3814 3815 case MTD_OPS_AUTO_OOB: 3816 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 3817 ops->ooboffs, len); 3818 BUG_ON(ret); 3819 return oob + len; 3820 3821 default: 3822 BUG(); 3823 } 3824 return NULL; 3825 } 3826 3827 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 3828 3829 /** 3830 * nand_do_write_ops - [INTERN] NAND write with ECC 3831 * @mtd: MTD device structure 3832 * @to: offset to write to 3833 * @ops: oob operations description structure 3834 * 3835 * NAND write with ECC. 3836 */ 3837 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, 3838 struct mtd_oob_ops *ops) 3839 { 3840 int chipnr, realpage, page, column; 3841 struct nand_chip *chip = mtd_to_nand(mtd); 3842 uint32_t writelen = ops->len; 3843 3844 uint32_t oobwritelen = ops->ooblen; 3845 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 3846 3847 uint8_t *oob = ops->oobbuf; 3848 uint8_t *buf = ops->datbuf; 3849 int ret; 3850 int oob_required = oob ? 1 : 0; 3851 3852 ops->retlen = 0; 3853 if (!writelen) 3854 return 0; 3855 3856 /* Reject writes, which are not page aligned */ 3857 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 3858 pr_notice("%s: attempt to write non page aligned data\n", 3859 __func__); 3860 return -EINVAL; 3861 } 3862 3863 column = to & (mtd->writesize - 1); 3864 3865 chipnr = (int)(to >> chip->chip_shift); 3866 chip->select_chip(chip, chipnr); 3867 3868 /* Check, if it is write protected */ 3869 if (nand_check_wp(mtd)) { 3870 ret = -EIO; 3871 goto err_out; 3872 } 3873 3874 realpage = (int)(to >> chip->page_shift); 3875 page = realpage & chip->pagemask; 3876 3877 /* Invalidate the page cache, when we write to the cached page */ 3878 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) && 3879 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len)) 3880 chip->pagebuf = -1; 3881 3882 /* Don't allow multipage oob writes with offset */ 3883 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 3884 ret = -EINVAL; 3885 goto err_out; 3886 } 3887 3888 while (1) { 3889 int bytes = mtd->writesize; 3890 uint8_t *wbuf = buf; 3891 int use_bufpoi; 3892 int part_pagewr = (column || writelen < mtd->writesize); 3893 3894 if (part_pagewr) 3895 use_bufpoi = 1; 3896 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 3897 use_bufpoi = !virt_addr_valid(buf) || 3898 !IS_ALIGNED((unsigned long)buf, 3899 chip->buf_align); 3900 else 3901 use_bufpoi = 0; 3902 3903 /* Partial page write?, or need to use bounce buffer */ 3904 if (use_bufpoi) { 3905 pr_debug("%s: using write bounce buffer for buf@%p\n", 3906 __func__, buf); 3907 if (part_pagewr) 3908 bytes = min_t(int, bytes - column, writelen); 3909 chip->pagebuf = -1; 3910 memset(chip->data_buf, 0xff, mtd->writesize); 3911 memcpy(&chip->data_buf[column], buf, bytes); 3912 wbuf = chip->data_buf; 3913 } 3914 3915 if (unlikely(oob)) { 3916 size_t len = min(oobwritelen, oobmaxlen); 3917 oob = nand_fill_oob(mtd, oob, len, ops); 3918 oobwritelen -= len; 3919 } else { 3920 /* We still need to erase leftover OOB data */ 3921 memset(chip->oob_poi, 0xff, mtd->oobsize); 3922 } 3923 3924 ret = nand_write_page(mtd, chip, column, bytes, wbuf, 3925 oob_required, page, 3926 (ops->mode == MTD_OPS_RAW)); 3927 if (ret) 3928 break; 3929 3930 writelen -= bytes; 3931 if (!writelen) 3932 break; 3933 3934 column = 0; 3935 buf += bytes; 3936 realpage++; 3937 3938 page = realpage & chip->pagemask; 3939 /* Check, if we cross a chip boundary */ 3940 if (!page) { 3941 chipnr++; 3942 chip->select_chip(chip, -1); 3943 chip->select_chip(chip, chipnr); 3944 } 3945 } 3946 3947 ops->retlen = ops->len - writelen; 3948 if (unlikely(oob)) 3949 ops->oobretlen = ops->ooblen; 3950 3951 err_out: 3952 chip->select_chip(chip, -1); 3953 return ret; 3954 } 3955 3956 /** 3957 * panic_nand_write - [MTD Interface] NAND write with ECC 3958 * @mtd: MTD device structure 3959 * @to: offset to write to 3960 * @len: number of bytes to write 3961 * @retlen: pointer to variable to store the number of written bytes 3962 * @buf: the data to write 3963 * 3964 * NAND write with ECC. Used when performing writes in interrupt context, this 3965 * may for example be called by mtdoops when writing an oops while in panic. 3966 */ 3967 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 3968 size_t *retlen, const uint8_t *buf) 3969 { 3970 struct nand_chip *chip = mtd_to_nand(mtd); 3971 int chipnr = (int)(to >> chip->chip_shift); 3972 struct mtd_oob_ops ops; 3973 int ret; 3974 3975 /* Grab the device */ 3976 panic_nand_get_device(chip, mtd, FL_WRITING); 3977 3978 chip->select_chip(chip, chipnr); 3979 3980 /* Wait for the device to get ready */ 3981 panic_nand_wait(chip, 400); 3982 3983 memset(&ops, 0, sizeof(ops)); 3984 ops.len = len; 3985 ops.datbuf = (uint8_t *)buf; 3986 ops.mode = MTD_OPS_PLACE_OOB; 3987 3988 ret = nand_do_write_ops(mtd, to, &ops); 3989 3990 *retlen = ops.retlen; 3991 return ret; 3992 } 3993 3994 /** 3995 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 3996 * @mtd: MTD device structure 3997 * @to: offset to write to 3998 * @ops: oob operation description structure 3999 * 4000 * NAND write out-of-band. 4001 */ 4002 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, 4003 struct mtd_oob_ops *ops) 4004 { 4005 int chipnr, page, status, len; 4006 struct nand_chip *chip = mtd_to_nand(mtd); 4007 4008 pr_debug("%s: to = 0x%08x, len = %i\n", 4009 __func__, (unsigned int)to, (int)ops->ooblen); 4010 4011 len = mtd_oobavail(mtd, ops); 4012 4013 /* Do not allow write past end of page */ 4014 if ((ops->ooboffs + ops->ooblen) > len) { 4015 pr_debug("%s: attempt to write past end of page\n", 4016 __func__); 4017 return -EINVAL; 4018 } 4019 4020 chipnr = (int)(to >> chip->chip_shift); 4021 4022 /* 4023 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 4024 * of my DiskOnChip 2000 test units) will clear the whole data page too 4025 * if we don't do this. I have no clue why, but I seem to have 'fixed' 4026 * it in the doc2000 driver in August 1999. dwmw2. 4027 */ 4028 nand_reset(chip, chipnr); 4029 4030 chip->select_chip(chip, chipnr); 4031 4032 /* Shift to get page */ 4033 page = (int)(to >> chip->page_shift); 4034 4035 /* Check, if it is write protected */ 4036 if (nand_check_wp(mtd)) { 4037 chip->select_chip(chip, -1); 4038 return -EROFS; 4039 } 4040 4041 /* Invalidate the page cache, if we write to the cached page */ 4042 if (page == chip->pagebuf) 4043 chip->pagebuf = -1; 4044 4045 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); 4046 4047 if (ops->mode == MTD_OPS_RAW) 4048 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); 4049 else 4050 status = chip->ecc.write_oob(chip, page & chip->pagemask); 4051 4052 chip->select_chip(chip, -1); 4053 4054 if (status) 4055 return status; 4056 4057 ops->oobretlen = ops->ooblen; 4058 4059 return 0; 4060 } 4061 4062 /** 4063 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4064 * @mtd: MTD device structure 4065 * @to: offset to write to 4066 * @ops: oob operation description structure 4067 */ 4068 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4069 struct mtd_oob_ops *ops) 4070 { 4071 int ret = -ENOTSUPP; 4072 4073 ops->retlen = 0; 4074 4075 nand_get_device(mtd, FL_WRITING); 4076 4077 switch (ops->mode) { 4078 case MTD_OPS_PLACE_OOB: 4079 case MTD_OPS_AUTO_OOB: 4080 case MTD_OPS_RAW: 4081 break; 4082 4083 default: 4084 goto out; 4085 } 4086 4087 if (!ops->datbuf) 4088 ret = nand_do_write_oob(mtd, to, ops); 4089 else 4090 ret = nand_do_write_ops(mtd, to, ops); 4091 4092 out: 4093 nand_release_device(mtd); 4094 return ret; 4095 } 4096 4097 /** 4098 * single_erase - [GENERIC] NAND standard block erase command function 4099 * @chip: NAND chip object 4100 * @page: the page address of the block which will be erased 4101 * 4102 * Standard erase command for NAND chips. Returns NAND status. 4103 */ 4104 static int single_erase(struct nand_chip *chip, int page) 4105 { 4106 unsigned int eraseblock; 4107 4108 /* Send commands to erase a block */ 4109 eraseblock = page >> (chip->phys_erase_shift - chip->page_shift); 4110 4111 return nand_erase_op(chip, eraseblock); 4112 } 4113 4114 /** 4115 * nand_erase - [MTD Interface] erase block(s) 4116 * @mtd: MTD device structure 4117 * @instr: erase instruction 4118 * 4119 * Erase one ore more blocks. 4120 */ 4121 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4122 { 4123 return nand_erase_nand(mtd_to_nand(mtd), instr, 0); 4124 } 4125 4126 /** 4127 * nand_erase_nand - [INTERN] erase block(s) 4128 * @chip: NAND chip object 4129 * @instr: erase instruction 4130 * @allowbbt: allow erasing the bbt area 4131 * 4132 * Erase one ore more blocks. 4133 */ 4134 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, 4135 int allowbbt) 4136 { 4137 struct mtd_info *mtd = nand_to_mtd(chip); 4138 int page, status, pages_per_block, ret, chipnr; 4139 loff_t len; 4140 4141 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4142 __func__, (unsigned long long)instr->addr, 4143 (unsigned long long)instr->len); 4144 4145 if (check_offs_len(mtd, instr->addr, instr->len)) 4146 return -EINVAL; 4147 4148 /* Grab the lock and see if the device is available */ 4149 nand_get_device(mtd, FL_ERASING); 4150 4151 /* Shift to get first page */ 4152 page = (int)(instr->addr >> chip->page_shift); 4153 chipnr = (int)(instr->addr >> chip->chip_shift); 4154 4155 /* Calculate pages in each block */ 4156 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4157 4158 /* Select the NAND device */ 4159 chip->select_chip(chip, chipnr); 4160 4161 /* Check, if it is write protected */ 4162 if (nand_check_wp(mtd)) { 4163 pr_debug("%s: device is write protected!\n", 4164 __func__); 4165 ret = -EIO; 4166 goto erase_exit; 4167 } 4168 4169 /* Loop through the pages */ 4170 len = instr->len; 4171 4172 while (len) { 4173 /* Check if we have a bad block, we do not erase bad blocks! */ 4174 if (nand_block_checkbad(mtd, ((loff_t) page) << 4175 chip->page_shift, allowbbt)) { 4176 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", 4177 __func__, page); 4178 ret = -EIO; 4179 goto erase_exit; 4180 } 4181 4182 /* 4183 * Invalidate the page cache, if we erase the block which 4184 * contains the current cached page. 4185 */ 4186 if (page <= chip->pagebuf && chip->pagebuf < 4187 (page + pages_per_block)) 4188 chip->pagebuf = -1; 4189 4190 if (chip->legacy.erase) 4191 status = chip->legacy.erase(chip, 4192 page & chip->pagemask); 4193 else 4194 status = single_erase(chip, page & chip->pagemask); 4195 4196 /* See if block erase succeeded */ 4197 if (status) { 4198 pr_debug("%s: failed erase, page 0x%08x\n", 4199 __func__, page); 4200 ret = -EIO; 4201 instr->fail_addr = 4202 ((loff_t)page << chip->page_shift); 4203 goto erase_exit; 4204 } 4205 4206 /* Increment page address and decrement length */ 4207 len -= (1ULL << chip->phys_erase_shift); 4208 page += pages_per_block; 4209 4210 /* Check, if we cross a chip boundary */ 4211 if (len && !(page & chip->pagemask)) { 4212 chipnr++; 4213 chip->select_chip(chip, -1); 4214 chip->select_chip(chip, chipnr); 4215 } 4216 } 4217 4218 ret = 0; 4219 erase_exit: 4220 4221 /* Deselect and wake up anyone waiting on the device */ 4222 chip->select_chip(chip, -1); 4223 nand_release_device(mtd); 4224 4225 /* Return more or less happy */ 4226 return ret; 4227 } 4228 4229 /** 4230 * nand_sync - [MTD Interface] sync 4231 * @mtd: MTD device structure 4232 * 4233 * Sync is actually a wait for chip ready function. 4234 */ 4235 static void nand_sync(struct mtd_info *mtd) 4236 { 4237 pr_debug("%s: called\n", __func__); 4238 4239 /* Grab the lock and see if the device is available */ 4240 nand_get_device(mtd, FL_SYNCING); 4241 /* Release it and go back */ 4242 nand_release_device(mtd); 4243 } 4244 4245 /** 4246 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4247 * @mtd: MTD device structure 4248 * @offs: offset relative to mtd start 4249 */ 4250 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4251 { 4252 struct nand_chip *chip = mtd_to_nand(mtd); 4253 int chipnr = (int)(offs >> chip->chip_shift); 4254 int ret; 4255 4256 /* Select the NAND device */ 4257 nand_get_device(mtd, FL_READING); 4258 chip->select_chip(chip, chipnr); 4259 4260 ret = nand_block_checkbad(mtd, offs, 0); 4261 4262 chip->select_chip(chip, -1); 4263 nand_release_device(mtd); 4264 4265 return ret; 4266 } 4267 4268 /** 4269 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4270 * @mtd: MTD device structure 4271 * @ofs: offset relative to mtd start 4272 */ 4273 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4274 { 4275 int ret; 4276 4277 ret = nand_block_isbad(mtd, ofs); 4278 if (ret) { 4279 /* If it was bad already, return success and do nothing */ 4280 if (ret > 0) 4281 return 0; 4282 return ret; 4283 } 4284 4285 return nand_block_markbad_lowlevel(mtd, ofs); 4286 } 4287 4288 /** 4289 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd 4290 * @mtd: MTD device structure 4291 * @ofs: offset relative to mtd start 4292 * @len: length of mtd 4293 */ 4294 static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) 4295 { 4296 struct nand_chip *chip = mtd_to_nand(mtd); 4297 u32 part_start_block; 4298 u32 part_end_block; 4299 u32 part_start_die; 4300 u32 part_end_die; 4301 4302 /* 4303 * max_bb_per_die and blocks_per_die used to determine 4304 * the maximum bad block count. 4305 */ 4306 if (!chip->max_bb_per_die || !chip->blocks_per_die) 4307 return -ENOTSUPP; 4308 4309 /* Get the start and end of the partition in erase blocks. */ 4310 part_start_block = mtd_div_by_eb(ofs, mtd); 4311 part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1; 4312 4313 /* Get the start and end LUNs of the partition. */ 4314 part_start_die = part_start_block / chip->blocks_per_die; 4315 part_end_die = part_end_block / chip->blocks_per_die; 4316 4317 /* 4318 * Look up the bad blocks per unit and multiply by the number of units 4319 * that the partition spans. 4320 */ 4321 return chip->max_bb_per_die * (part_end_die - part_start_die + 1); 4322 } 4323 4324 /** 4325 * nand_suspend - [MTD Interface] Suspend the NAND flash 4326 * @mtd: MTD device structure 4327 */ 4328 static int nand_suspend(struct mtd_info *mtd) 4329 { 4330 return nand_get_device(mtd, FL_PM_SUSPENDED); 4331 } 4332 4333 /** 4334 * nand_resume - [MTD Interface] Resume the NAND flash 4335 * @mtd: MTD device structure 4336 */ 4337 static void nand_resume(struct mtd_info *mtd) 4338 { 4339 struct nand_chip *chip = mtd_to_nand(mtd); 4340 4341 if (chip->state == FL_PM_SUSPENDED) 4342 nand_release_device(mtd); 4343 else 4344 pr_err("%s called for a chip which is not in suspended state\n", 4345 __func__); 4346 } 4347 4348 /** 4349 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4350 * prevent further operations 4351 * @mtd: MTD device structure 4352 */ 4353 static void nand_shutdown(struct mtd_info *mtd) 4354 { 4355 nand_get_device(mtd, FL_PM_SUSPENDED); 4356 } 4357 4358 /* Set default functions */ 4359 static void nand_set_defaults(struct nand_chip *chip) 4360 { 4361 nand_legacy_set_defaults(chip); 4362 4363 if (!chip->controller) { 4364 chip->controller = &chip->dummy_controller; 4365 nand_controller_init(chip->controller); 4366 } 4367 4368 if (!chip->buf_align) 4369 chip->buf_align = 1; 4370 } 4371 4372 /* Sanitize ONFI strings so we can safely print them */ 4373 void sanitize_string(uint8_t *s, size_t len) 4374 { 4375 ssize_t i; 4376 4377 /* Null terminate */ 4378 s[len - 1] = 0; 4379 4380 /* Remove non printable chars */ 4381 for (i = 0; i < len - 1; i++) { 4382 if (s[i] < ' ' || s[i] > 127) 4383 s[i] = '?'; 4384 } 4385 4386 /* Remove trailing spaces */ 4387 strim(s); 4388 } 4389 4390 /* 4391 * nand_id_has_period - Check if an ID string has a given wraparound period 4392 * @id_data: the ID string 4393 * @arrlen: the length of the @id_data array 4394 * @period: the period of repitition 4395 * 4396 * Check if an ID string is repeated within a given sequence of bytes at 4397 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 4398 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 4399 * if the repetition has a period of @period; otherwise, returns zero. 4400 */ 4401 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 4402 { 4403 int i, j; 4404 for (i = 0; i < period; i++) 4405 for (j = i + period; j < arrlen; j += period) 4406 if (id_data[i] != id_data[j]) 4407 return 0; 4408 return 1; 4409 } 4410 4411 /* 4412 * nand_id_len - Get the length of an ID string returned by CMD_READID 4413 * @id_data: the ID string 4414 * @arrlen: the length of the @id_data array 4415 4416 * Returns the length of the ID string, according to known wraparound/trailing 4417 * zero patterns. If no pattern exists, returns the length of the array. 4418 */ 4419 static int nand_id_len(u8 *id_data, int arrlen) 4420 { 4421 int last_nonzero, period; 4422 4423 /* Find last non-zero byte */ 4424 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 4425 if (id_data[last_nonzero]) 4426 break; 4427 4428 /* All zeros */ 4429 if (last_nonzero < 0) 4430 return 0; 4431 4432 /* Calculate wraparound period */ 4433 for (period = 1; period < arrlen; period++) 4434 if (nand_id_has_period(id_data, arrlen, period)) 4435 break; 4436 4437 /* There's a repeated pattern */ 4438 if (period < arrlen) 4439 return period; 4440 4441 /* There are trailing zeros */ 4442 if (last_nonzero < arrlen - 1) 4443 return last_nonzero + 1; 4444 4445 /* No pattern detected */ 4446 return arrlen; 4447 } 4448 4449 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 4450 static int nand_get_bits_per_cell(u8 cellinfo) 4451 { 4452 int bits; 4453 4454 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 4455 bits >>= NAND_CI_CELLTYPE_SHIFT; 4456 return bits + 1; 4457 } 4458 4459 /* 4460 * Many new NAND share similar device ID codes, which represent the size of the 4461 * chip. The rest of the parameters must be decoded according to generic or 4462 * manufacturer-specific "extended ID" decoding patterns. 4463 */ 4464 void nand_decode_ext_id(struct nand_chip *chip) 4465 { 4466 struct mtd_info *mtd = nand_to_mtd(chip); 4467 int extid; 4468 u8 *id_data = chip->id.data; 4469 /* The 3rd id byte holds MLC / multichip data */ 4470 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4471 /* The 4th id byte is the important one */ 4472 extid = id_data[3]; 4473 4474 /* Calc pagesize */ 4475 mtd->writesize = 1024 << (extid & 0x03); 4476 extid >>= 2; 4477 /* Calc oobsize */ 4478 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 4479 extid >>= 2; 4480 /* Calc blocksize. Blocksize is multiples of 64KiB */ 4481 mtd->erasesize = (64 * 1024) << (extid & 0x03); 4482 extid >>= 2; 4483 /* Get buswidth information */ 4484 if (extid & 0x1) 4485 chip->options |= NAND_BUSWIDTH_16; 4486 } 4487 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 4488 4489 /* 4490 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 4491 * decodes a matching ID table entry and assigns the MTD size parameters for 4492 * the chip. 4493 */ 4494 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 4495 { 4496 struct mtd_info *mtd = nand_to_mtd(chip); 4497 4498 mtd->erasesize = type->erasesize; 4499 mtd->writesize = type->pagesize; 4500 mtd->oobsize = mtd->writesize / 32; 4501 4502 /* All legacy ID NAND are small-page, SLC */ 4503 chip->bits_per_cell = 1; 4504 } 4505 4506 /* 4507 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 4508 * heuristic patterns using various detected parameters (e.g., manufacturer, 4509 * page size, cell-type information). 4510 */ 4511 static void nand_decode_bbm_options(struct nand_chip *chip) 4512 { 4513 struct mtd_info *mtd = nand_to_mtd(chip); 4514 4515 /* Set the bad block position */ 4516 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 4517 chip->badblockpos = NAND_LARGE_BADBLOCK_POS; 4518 else 4519 chip->badblockpos = NAND_SMALL_BADBLOCK_POS; 4520 } 4521 4522 static inline bool is_full_id_nand(struct nand_flash_dev *type) 4523 { 4524 return type->id_len; 4525 } 4526 4527 static bool find_full_id_nand(struct nand_chip *chip, 4528 struct nand_flash_dev *type) 4529 { 4530 struct mtd_info *mtd = nand_to_mtd(chip); 4531 u8 *id_data = chip->id.data; 4532 4533 if (!strncmp(type->id, id_data, type->id_len)) { 4534 mtd->writesize = type->pagesize; 4535 mtd->erasesize = type->erasesize; 4536 mtd->oobsize = type->oobsize; 4537 4538 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4539 chip->chipsize = (uint64_t)type->chipsize << 20; 4540 chip->options |= type->options; 4541 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type); 4542 chip->ecc_step_ds = NAND_ECC_STEP(type); 4543 chip->onfi_timing_mode_default = 4544 type->onfi_timing_mode_default; 4545 4546 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4547 if (!chip->parameters.model) 4548 return false; 4549 4550 return true; 4551 } 4552 return false; 4553 } 4554 4555 /* 4556 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 4557 * compliant and does not have a full-id or legacy-id entry in the nand_ids 4558 * table. 4559 */ 4560 static void nand_manufacturer_detect(struct nand_chip *chip) 4561 { 4562 /* 4563 * Try manufacturer detection if available and use 4564 * nand_decode_ext_id() otherwise. 4565 */ 4566 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4567 chip->manufacturer.desc->ops->detect) { 4568 /* The 3rd id byte holds MLC / multichip data */ 4569 chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 4570 chip->manufacturer.desc->ops->detect(chip); 4571 } else { 4572 nand_decode_ext_id(chip); 4573 } 4574 } 4575 4576 /* 4577 * Manufacturer initialization. This function is called for all NANDs including 4578 * ONFI and JEDEC compliant ones. 4579 * Manufacturer drivers should put all their specific initialization code in 4580 * their ->init() hook. 4581 */ 4582 static int nand_manufacturer_init(struct nand_chip *chip) 4583 { 4584 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 4585 !chip->manufacturer.desc->ops->init) 4586 return 0; 4587 4588 return chip->manufacturer.desc->ops->init(chip); 4589 } 4590 4591 /* 4592 * Manufacturer cleanup. This function is called for all NANDs including 4593 * ONFI and JEDEC compliant ones. 4594 * Manufacturer drivers should put all their specific cleanup code in their 4595 * ->cleanup() hook. 4596 */ 4597 static void nand_manufacturer_cleanup(struct nand_chip *chip) 4598 { 4599 /* Release manufacturer private data */ 4600 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4601 chip->manufacturer.desc->ops->cleanup) 4602 chip->manufacturer.desc->ops->cleanup(chip); 4603 } 4604 4605 static const char * 4606 nand_manufacturer_name(const struct nand_manufacturer *manufacturer) 4607 { 4608 return manufacturer ? manufacturer->name : "Unknown"; 4609 } 4610 4611 /* 4612 * Get the flash and manufacturer id and lookup if the type is supported. 4613 */ 4614 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 4615 { 4616 const struct nand_manufacturer *manufacturer; 4617 struct mtd_info *mtd = nand_to_mtd(chip); 4618 int busw, ret; 4619 u8 *id_data = chip->id.data; 4620 u8 maf_id, dev_id; 4621 4622 /* 4623 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 4624 * after power-up. 4625 */ 4626 ret = nand_reset(chip, 0); 4627 if (ret) 4628 return ret; 4629 4630 /* Select the device */ 4631 chip->select_chip(chip, 0); 4632 4633 /* Send the command for reading device ID */ 4634 ret = nand_readid_op(chip, 0, id_data, 2); 4635 if (ret) 4636 return ret; 4637 4638 /* Read manufacturer and device IDs */ 4639 maf_id = id_data[0]; 4640 dev_id = id_data[1]; 4641 4642 /* 4643 * Try again to make sure, as some systems the bus-hold or other 4644 * interface concerns can cause random data which looks like a 4645 * possibly credible NAND flash to appear. If the two results do 4646 * not match, ignore the device completely. 4647 */ 4648 4649 /* Read entire ID string */ 4650 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 4651 if (ret) 4652 return ret; 4653 4654 if (id_data[0] != maf_id || id_data[1] != dev_id) { 4655 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 4656 maf_id, dev_id, id_data[0], id_data[1]); 4657 return -ENODEV; 4658 } 4659 4660 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 4661 4662 /* Try to identify manufacturer */ 4663 manufacturer = nand_get_manufacturer(maf_id); 4664 chip->manufacturer.desc = manufacturer; 4665 4666 if (!type) 4667 type = nand_flash_ids; 4668 4669 /* 4670 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 4671 * override it. 4672 * This is required to make sure initial NAND bus width set by the 4673 * NAND controller driver is coherent with the real NAND bus width 4674 * (extracted by auto-detection code). 4675 */ 4676 busw = chip->options & NAND_BUSWIDTH_16; 4677 4678 /* 4679 * The flag is only set (never cleared), reset it to its default value 4680 * before starting auto-detection. 4681 */ 4682 chip->options &= ~NAND_BUSWIDTH_16; 4683 4684 for (; type->name != NULL; type++) { 4685 if (is_full_id_nand(type)) { 4686 if (find_full_id_nand(chip, type)) 4687 goto ident_done; 4688 } else if (dev_id == type->dev_id) { 4689 break; 4690 } 4691 } 4692 4693 if (!type->name || !type->pagesize) { 4694 /* Check if the chip is ONFI compliant */ 4695 ret = nand_onfi_detect(chip); 4696 if (ret < 0) 4697 return ret; 4698 else if (ret) 4699 goto ident_done; 4700 4701 /* Check if the chip is JEDEC compliant */ 4702 ret = nand_jedec_detect(chip); 4703 if (ret < 0) 4704 return ret; 4705 else if (ret) 4706 goto ident_done; 4707 } 4708 4709 if (!type->name) 4710 return -ENODEV; 4711 4712 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4713 if (!chip->parameters.model) 4714 return -ENOMEM; 4715 4716 chip->chipsize = (uint64_t)type->chipsize << 20; 4717 4718 if (!type->pagesize) 4719 nand_manufacturer_detect(chip); 4720 else 4721 nand_decode_id(chip, type); 4722 4723 /* Get chip options */ 4724 chip->options |= type->options; 4725 4726 ident_done: 4727 if (!mtd->name) 4728 mtd->name = chip->parameters.model; 4729 4730 if (chip->options & NAND_BUSWIDTH_AUTO) { 4731 WARN_ON(busw & NAND_BUSWIDTH_16); 4732 nand_set_defaults(chip); 4733 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 4734 /* 4735 * Check, if buswidth is correct. Hardware drivers should set 4736 * chip correct! 4737 */ 4738 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4739 maf_id, dev_id); 4740 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 4741 mtd->name); 4742 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 4743 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 4744 ret = -EINVAL; 4745 4746 goto free_detect_allocation; 4747 } 4748 4749 nand_decode_bbm_options(chip); 4750 4751 /* Calculate the address shift from the page size */ 4752 chip->page_shift = ffs(mtd->writesize) - 1; 4753 /* Convert chipsize to number of pages per chip -1 */ 4754 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; 4755 4756 chip->bbt_erase_shift = chip->phys_erase_shift = 4757 ffs(mtd->erasesize) - 1; 4758 if (chip->chipsize & 0xffffffff) 4759 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; 4760 else { 4761 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); 4762 chip->chip_shift += 32 - 1; 4763 } 4764 4765 if (chip->chip_shift - chip->page_shift > 16) 4766 chip->options |= NAND_ROW_ADDR_3; 4767 4768 chip->badblockbits = 8; 4769 4770 nand_legacy_adjust_cmdfunc(chip); 4771 4772 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4773 maf_id, dev_id); 4774 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 4775 chip->parameters.model); 4776 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 4777 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 4778 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 4779 return 0; 4780 4781 free_detect_allocation: 4782 kfree(chip->parameters.model); 4783 4784 return ret; 4785 } 4786 4787 static const char * const nand_ecc_modes[] = { 4788 [NAND_ECC_NONE] = "none", 4789 [NAND_ECC_SOFT] = "soft", 4790 [NAND_ECC_HW] = "hw", 4791 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 4792 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first", 4793 [NAND_ECC_ON_DIE] = "on-die", 4794 }; 4795 4796 static int of_get_nand_ecc_mode(struct device_node *np) 4797 { 4798 const char *pm; 4799 int err, i; 4800 4801 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4802 if (err < 0) 4803 return err; 4804 4805 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++) 4806 if (!strcasecmp(pm, nand_ecc_modes[i])) 4807 return i; 4808 4809 /* 4810 * For backward compatibility we support few obsoleted values that don't 4811 * have their mappings into nand_ecc_modes_t anymore (they were merged 4812 * with other enums). 4813 */ 4814 if (!strcasecmp(pm, "soft_bch")) 4815 return NAND_ECC_SOFT; 4816 4817 return -ENODEV; 4818 } 4819 4820 static const char * const nand_ecc_algos[] = { 4821 [NAND_ECC_HAMMING] = "hamming", 4822 [NAND_ECC_BCH] = "bch", 4823 [NAND_ECC_RS] = "rs", 4824 }; 4825 4826 static int of_get_nand_ecc_algo(struct device_node *np) 4827 { 4828 const char *pm; 4829 int err, i; 4830 4831 err = of_property_read_string(np, "nand-ecc-algo", &pm); 4832 if (!err) { 4833 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++) 4834 if (!strcasecmp(pm, nand_ecc_algos[i])) 4835 return i; 4836 return -ENODEV; 4837 } 4838 4839 /* 4840 * For backward compatibility we also read "nand-ecc-mode" checking 4841 * for some obsoleted values that were specifying ECC algorithm. 4842 */ 4843 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4844 if (err < 0) 4845 return err; 4846 4847 if (!strcasecmp(pm, "soft")) 4848 return NAND_ECC_HAMMING; 4849 else if (!strcasecmp(pm, "soft_bch")) 4850 return NAND_ECC_BCH; 4851 4852 return -ENODEV; 4853 } 4854 4855 static int of_get_nand_ecc_step_size(struct device_node *np) 4856 { 4857 int ret; 4858 u32 val; 4859 4860 ret = of_property_read_u32(np, "nand-ecc-step-size", &val); 4861 return ret ? ret : val; 4862 } 4863 4864 static int of_get_nand_ecc_strength(struct device_node *np) 4865 { 4866 int ret; 4867 u32 val; 4868 4869 ret = of_property_read_u32(np, "nand-ecc-strength", &val); 4870 return ret ? ret : val; 4871 } 4872 4873 static int of_get_nand_bus_width(struct device_node *np) 4874 { 4875 u32 val; 4876 4877 if (of_property_read_u32(np, "nand-bus-width", &val)) 4878 return 8; 4879 4880 switch (val) { 4881 case 8: 4882 case 16: 4883 return val; 4884 default: 4885 return -EIO; 4886 } 4887 } 4888 4889 static bool of_get_nand_on_flash_bbt(struct device_node *np) 4890 { 4891 return of_property_read_bool(np, "nand-on-flash-bbt"); 4892 } 4893 4894 static int nand_dt_init(struct nand_chip *chip) 4895 { 4896 struct device_node *dn = nand_get_flash_node(chip); 4897 int ecc_mode, ecc_algo, ecc_strength, ecc_step; 4898 4899 if (!dn) 4900 return 0; 4901 4902 if (of_get_nand_bus_width(dn) == 16) 4903 chip->options |= NAND_BUSWIDTH_16; 4904 4905 if (of_property_read_bool(dn, "nand-is-boot-medium")) 4906 chip->options |= NAND_IS_BOOT_MEDIUM; 4907 4908 if (of_get_nand_on_flash_bbt(dn)) 4909 chip->bbt_options |= NAND_BBT_USE_FLASH; 4910 4911 ecc_mode = of_get_nand_ecc_mode(dn); 4912 ecc_algo = of_get_nand_ecc_algo(dn); 4913 ecc_strength = of_get_nand_ecc_strength(dn); 4914 ecc_step = of_get_nand_ecc_step_size(dn); 4915 4916 if (ecc_mode >= 0) 4917 chip->ecc.mode = ecc_mode; 4918 4919 if (ecc_algo >= 0) 4920 chip->ecc.algo = ecc_algo; 4921 4922 if (ecc_strength >= 0) 4923 chip->ecc.strength = ecc_strength; 4924 4925 if (ecc_step > 0) 4926 chip->ecc.size = ecc_step; 4927 4928 if (of_property_read_bool(dn, "nand-ecc-maximize")) 4929 chip->ecc.options |= NAND_ECC_MAXIMIZE; 4930 4931 return 0; 4932 } 4933 4934 /** 4935 * nand_scan_ident - Scan for the NAND device 4936 * @chip: NAND chip object 4937 * @maxchips: number of chips to scan for 4938 * @table: alternative NAND ID table 4939 * 4940 * This is the first phase of the normal nand_scan() function. It reads the 4941 * flash ID and sets up MTD fields accordingly. 4942 * 4943 * This helper used to be called directly from controller drivers that needed 4944 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 4945 * prevented dynamic allocations during this phase which was unconvenient and 4946 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 4947 */ 4948 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, 4949 struct nand_flash_dev *table) 4950 { 4951 struct mtd_info *mtd = nand_to_mtd(chip); 4952 int nand_maf_id, nand_dev_id; 4953 unsigned int i; 4954 int ret; 4955 4956 /* Enforce the right timings for reset/detection */ 4957 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 4958 4959 ret = nand_dt_init(chip); 4960 if (ret) 4961 return ret; 4962 4963 if (!mtd->name && mtd->dev.parent) 4964 mtd->name = dev_name(mtd->dev.parent); 4965 4966 if (chip->exec_op && !chip->select_chip) { 4967 pr_err("->select_chip() is mandatory when implementing ->exec_op()\n"); 4968 return -EINVAL; 4969 } 4970 4971 ret = nand_legacy_check_hooks(chip); 4972 if (ret) 4973 return ret; 4974 4975 /* Set the default functions */ 4976 nand_set_defaults(chip); 4977 4978 /* Read the flash type */ 4979 ret = nand_detect(chip, table); 4980 if (ret) { 4981 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 4982 pr_warn("No NAND device found\n"); 4983 chip->select_chip(chip, -1); 4984 return ret; 4985 } 4986 4987 nand_maf_id = chip->id.data[0]; 4988 nand_dev_id = chip->id.data[1]; 4989 4990 chip->select_chip(chip, -1); 4991 4992 /* Check for a chip array */ 4993 for (i = 1; i < maxchips; i++) { 4994 u8 id[2]; 4995 4996 /* See comment in nand_get_flash_type for reset */ 4997 nand_reset(chip, i); 4998 4999 chip->select_chip(chip, i); 5000 /* Send the command for reading device ID */ 5001 nand_readid_op(chip, 0, id, sizeof(id)); 5002 /* Read manufacturer and device IDs */ 5003 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5004 chip->select_chip(chip, -1); 5005 break; 5006 } 5007 chip->select_chip(chip, -1); 5008 } 5009 if (i > 1) 5010 pr_info("%d chips detected\n", i); 5011 5012 /* Store the number of chips and calc total size for mtd */ 5013 chip->numchips = i; 5014 mtd->size = i * chip->chipsize; 5015 5016 return 0; 5017 } 5018 5019 static void nand_scan_ident_cleanup(struct nand_chip *chip) 5020 { 5021 kfree(chip->parameters.model); 5022 kfree(chip->parameters.onfi); 5023 } 5024 5025 static int nand_set_ecc_soft_ops(struct mtd_info *mtd) 5026 { 5027 struct nand_chip *chip = mtd_to_nand(mtd); 5028 struct nand_ecc_ctrl *ecc = &chip->ecc; 5029 5030 if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) 5031 return -EINVAL; 5032 5033 switch (ecc->algo) { 5034 case NAND_ECC_HAMMING: 5035 ecc->calculate = nand_calculate_ecc; 5036 ecc->correct = nand_correct_data; 5037 ecc->read_page = nand_read_page_swecc; 5038 ecc->read_subpage = nand_read_subpage; 5039 ecc->write_page = nand_write_page_swecc; 5040 ecc->read_page_raw = nand_read_page_raw; 5041 ecc->write_page_raw = nand_write_page_raw; 5042 ecc->read_oob = nand_read_oob_std; 5043 ecc->write_oob = nand_write_oob_std; 5044 if (!ecc->size) 5045 ecc->size = 256; 5046 ecc->bytes = 3; 5047 ecc->strength = 1; 5048 5049 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC)) 5050 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 5051 5052 return 0; 5053 case NAND_ECC_BCH: 5054 if (!mtd_nand_has_bch()) { 5055 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n"); 5056 return -EINVAL; 5057 } 5058 ecc->calculate = nand_bch_calculate_ecc; 5059 ecc->correct = nand_bch_correct_data; 5060 ecc->read_page = nand_read_page_swecc; 5061 ecc->read_subpage = nand_read_subpage; 5062 ecc->write_page = nand_write_page_swecc; 5063 ecc->read_page_raw = nand_read_page_raw; 5064 ecc->write_page_raw = nand_write_page_raw; 5065 ecc->read_oob = nand_read_oob_std; 5066 ecc->write_oob = nand_write_oob_std; 5067 5068 /* 5069 * Board driver should supply ecc.size and ecc.strength 5070 * values to select how many bits are correctable. 5071 * Otherwise, default to 4 bits for large page devices. 5072 */ 5073 if (!ecc->size && (mtd->oobsize >= 64)) { 5074 ecc->size = 512; 5075 ecc->strength = 4; 5076 } 5077 5078 /* 5079 * if no ecc placement scheme was provided pickup the default 5080 * large page one. 5081 */ 5082 if (!mtd->ooblayout) { 5083 /* handle large page devices only */ 5084 if (mtd->oobsize < 64) { 5085 WARN(1, "OOB layout is required when using software BCH on small pages\n"); 5086 return -EINVAL; 5087 } 5088 5089 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 5090 5091 } 5092 5093 /* 5094 * We can only maximize ECC config when the default layout is 5095 * used, otherwise we don't know how many bytes can really be 5096 * used. 5097 */ 5098 if (mtd->ooblayout == &nand_ooblayout_lp_ops && 5099 ecc->options & NAND_ECC_MAXIMIZE) { 5100 int steps, bytes; 5101 5102 /* Always prefer 1k blocks over 512bytes ones */ 5103 ecc->size = 1024; 5104 steps = mtd->writesize / ecc->size; 5105 5106 /* Reserve 2 bytes for the BBM */ 5107 bytes = (mtd->oobsize - 2) / steps; 5108 ecc->strength = bytes * 8 / fls(8 * ecc->size); 5109 } 5110 5111 /* See nand_bch_init() for details. */ 5112 ecc->bytes = 0; 5113 ecc->priv = nand_bch_init(mtd); 5114 if (!ecc->priv) { 5115 WARN(1, "BCH ECC initialization failed!\n"); 5116 return -EINVAL; 5117 } 5118 return 0; 5119 default: 5120 WARN(1, "Unsupported ECC algorithm!\n"); 5121 return -EINVAL; 5122 } 5123 } 5124 5125 /** 5126 * nand_check_ecc_caps - check the sanity of preset ECC settings 5127 * @chip: nand chip info structure 5128 * @caps: ECC caps info structure 5129 * @oobavail: OOB size that the ECC engine can use 5130 * 5131 * When ECC step size and strength are already set, check if they are supported 5132 * by the controller and the calculated ECC bytes fit within the chip's OOB. 5133 * On success, the calculated ECC bytes is set. 5134 */ 5135 static int 5136 nand_check_ecc_caps(struct nand_chip *chip, 5137 const struct nand_ecc_caps *caps, int oobavail) 5138 { 5139 struct mtd_info *mtd = nand_to_mtd(chip); 5140 const struct nand_ecc_step_info *stepinfo; 5141 int preset_step = chip->ecc.size; 5142 int preset_strength = chip->ecc.strength; 5143 int ecc_bytes, nsteps = mtd->writesize / preset_step; 5144 int i, j; 5145 5146 for (i = 0; i < caps->nstepinfos; i++) { 5147 stepinfo = &caps->stepinfos[i]; 5148 5149 if (stepinfo->stepsize != preset_step) 5150 continue; 5151 5152 for (j = 0; j < stepinfo->nstrengths; j++) { 5153 if (stepinfo->strengths[j] != preset_strength) 5154 continue; 5155 5156 ecc_bytes = caps->calc_ecc_bytes(preset_step, 5157 preset_strength); 5158 if (WARN_ON_ONCE(ecc_bytes < 0)) 5159 return ecc_bytes; 5160 5161 if (ecc_bytes * nsteps > oobavail) { 5162 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 5163 preset_step, preset_strength); 5164 return -ENOSPC; 5165 } 5166 5167 chip->ecc.bytes = ecc_bytes; 5168 5169 return 0; 5170 } 5171 } 5172 5173 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 5174 preset_step, preset_strength); 5175 5176 return -ENOTSUPP; 5177 } 5178 5179 /** 5180 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 5181 * @chip: nand chip info structure 5182 * @caps: ECC engine caps info structure 5183 * @oobavail: OOB size that the ECC engine can use 5184 * 5185 * If a chip's ECC requirement is provided, try to meet it with the least 5186 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 5187 * On success, the chosen ECC settings are set. 5188 */ 5189 static int 5190 nand_match_ecc_req(struct nand_chip *chip, 5191 const struct nand_ecc_caps *caps, int oobavail) 5192 { 5193 struct mtd_info *mtd = nand_to_mtd(chip); 5194 const struct nand_ecc_step_info *stepinfo; 5195 int req_step = chip->ecc_step_ds; 5196 int req_strength = chip->ecc_strength_ds; 5197 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 5198 int best_step, best_strength, best_ecc_bytes; 5199 int best_ecc_bytes_total = INT_MAX; 5200 int i, j; 5201 5202 /* No information provided by the NAND chip */ 5203 if (!req_step || !req_strength) 5204 return -ENOTSUPP; 5205 5206 /* number of correctable bits the chip requires in a page */ 5207 req_corr = mtd->writesize / req_step * req_strength; 5208 5209 for (i = 0; i < caps->nstepinfos; i++) { 5210 stepinfo = &caps->stepinfos[i]; 5211 step_size = stepinfo->stepsize; 5212 5213 for (j = 0; j < stepinfo->nstrengths; j++) { 5214 strength = stepinfo->strengths[j]; 5215 5216 /* 5217 * If both step size and strength are smaller than the 5218 * chip's requirement, it is not easy to compare the 5219 * resulted reliability. 5220 */ 5221 if (step_size < req_step && strength < req_strength) 5222 continue; 5223 5224 if (mtd->writesize % step_size) 5225 continue; 5226 5227 nsteps = mtd->writesize / step_size; 5228 5229 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5230 if (WARN_ON_ONCE(ecc_bytes < 0)) 5231 continue; 5232 ecc_bytes_total = ecc_bytes * nsteps; 5233 5234 if (ecc_bytes_total > oobavail || 5235 strength * nsteps < req_corr) 5236 continue; 5237 5238 /* 5239 * We assume the best is to meet the chip's requrement 5240 * with the least number of ECC bytes. 5241 */ 5242 if (ecc_bytes_total < best_ecc_bytes_total) { 5243 best_ecc_bytes_total = ecc_bytes_total; 5244 best_step = step_size; 5245 best_strength = strength; 5246 best_ecc_bytes = ecc_bytes; 5247 } 5248 } 5249 } 5250 5251 if (best_ecc_bytes_total == INT_MAX) 5252 return -ENOTSUPP; 5253 5254 chip->ecc.size = best_step; 5255 chip->ecc.strength = best_strength; 5256 chip->ecc.bytes = best_ecc_bytes; 5257 5258 return 0; 5259 } 5260 5261 /** 5262 * nand_maximize_ecc - choose the max ECC strength available 5263 * @chip: nand chip info structure 5264 * @caps: ECC engine caps info structure 5265 * @oobavail: OOB size that the ECC engine can use 5266 * 5267 * Choose the max ECC strength that is supported on the controller, and can fit 5268 * within the chip's OOB. On success, the chosen ECC settings are set. 5269 */ 5270 static int 5271 nand_maximize_ecc(struct nand_chip *chip, 5272 const struct nand_ecc_caps *caps, int oobavail) 5273 { 5274 struct mtd_info *mtd = nand_to_mtd(chip); 5275 const struct nand_ecc_step_info *stepinfo; 5276 int step_size, strength, nsteps, ecc_bytes, corr; 5277 int best_corr = 0; 5278 int best_step = 0; 5279 int best_strength, best_ecc_bytes; 5280 int i, j; 5281 5282 for (i = 0; i < caps->nstepinfos; i++) { 5283 stepinfo = &caps->stepinfos[i]; 5284 step_size = stepinfo->stepsize; 5285 5286 /* If chip->ecc.size is already set, respect it */ 5287 if (chip->ecc.size && step_size != chip->ecc.size) 5288 continue; 5289 5290 for (j = 0; j < stepinfo->nstrengths; j++) { 5291 strength = stepinfo->strengths[j]; 5292 5293 if (mtd->writesize % step_size) 5294 continue; 5295 5296 nsteps = mtd->writesize / step_size; 5297 5298 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5299 if (WARN_ON_ONCE(ecc_bytes < 0)) 5300 continue; 5301 5302 if (ecc_bytes * nsteps > oobavail) 5303 continue; 5304 5305 corr = strength * nsteps; 5306 5307 /* 5308 * If the number of correctable bits is the same, 5309 * bigger step_size has more reliability. 5310 */ 5311 if (corr > best_corr || 5312 (corr == best_corr && step_size > best_step)) { 5313 best_corr = corr; 5314 best_step = step_size; 5315 best_strength = strength; 5316 best_ecc_bytes = ecc_bytes; 5317 } 5318 } 5319 } 5320 5321 if (!best_corr) 5322 return -ENOTSUPP; 5323 5324 chip->ecc.size = best_step; 5325 chip->ecc.strength = best_strength; 5326 chip->ecc.bytes = best_ecc_bytes; 5327 5328 return 0; 5329 } 5330 5331 /** 5332 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 5333 * @chip: nand chip info structure 5334 * @caps: ECC engine caps info structure 5335 * @oobavail: OOB size that the ECC engine can use 5336 * 5337 * Choose the ECC configuration according to following logic 5338 * 5339 * 1. If both ECC step size and ECC strength are already set (usually by DT) 5340 * then check if it is supported by this controller. 5341 * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength. 5342 * 3. Otherwise, try to match the ECC step size and ECC strength closest 5343 * to the chip's requirement. If available OOB size can't fit the chip 5344 * requirement then fallback to the maximum ECC step size and ECC strength. 5345 * 5346 * On success, the chosen ECC settings are set. 5347 */ 5348 int nand_ecc_choose_conf(struct nand_chip *chip, 5349 const struct nand_ecc_caps *caps, int oobavail) 5350 { 5351 struct mtd_info *mtd = nand_to_mtd(chip); 5352 5353 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 5354 return -EINVAL; 5355 5356 if (chip->ecc.size && chip->ecc.strength) 5357 return nand_check_ecc_caps(chip, caps, oobavail); 5358 5359 if (chip->ecc.options & NAND_ECC_MAXIMIZE) 5360 return nand_maximize_ecc(chip, caps, oobavail); 5361 5362 if (!nand_match_ecc_req(chip, caps, oobavail)) 5363 return 0; 5364 5365 return nand_maximize_ecc(chip, caps, oobavail); 5366 } 5367 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 5368 5369 /* 5370 * Check if the chip configuration meet the datasheet requirements. 5371 5372 * If our configuration corrects A bits per B bytes and the minimum 5373 * required correction level is X bits per Y bytes, then we must ensure 5374 * both of the following are true: 5375 * 5376 * (1) A / B >= X / Y 5377 * (2) A >= X 5378 * 5379 * Requirement (1) ensures we can correct for the required bitflip density. 5380 * Requirement (2) ensures we can correct even when all bitflips are clumped 5381 * in the same sector. 5382 */ 5383 static bool nand_ecc_strength_good(struct mtd_info *mtd) 5384 { 5385 struct nand_chip *chip = mtd_to_nand(mtd); 5386 struct nand_ecc_ctrl *ecc = &chip->ecc; 5387 int corr, ds_corr; 5388 5389 if (ecc->size == 0 || chip->ecc_step_ds == 0) 5390 /* Not enough information */ 5391 return true; 5392 5393 /* 5394 * We get the number of corrected bits per page to compare 5395 * the correction density. 5396 */ 5397 corr = (mtd->writesize * ecc->strength) / ecc->size; 5398 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds; 5399 5400 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds; 5401 } 5402 5403 /** 5404 * nand_scan_tail - Scan for the NAND device 5405 * @chip: NAND chip object 5406 * 5407 * This is the second phase of the normal nand_scan() function. It fills out 5408 * all the uninitialized function pointers with the defaults and scans for a 5409 * bad block table if appropriate. 5410 */ 5411 static int nand_scan_tail(struct nand_chip *chip) 5412 { 5413 struct mtd_info *mtd = nand_to_mtd(chip); 5414 struct nand_ecc_ctrl *ecc = &chip->ecc; 5415 int ret, i; 5416 5417 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 5418 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 5419 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 5420 return -EINVAL; 5421 } 5422 5423 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 5424 if (!chip->data_buf) 5425 return -ENOMEM; 5426 5427 /* 5428 * FIXME: some NAND manufacturer drivers expect the first die to be 5429 * selected when manufacturer->init() is called. They should be fixed 5430 * to explictly select the relevant die when interacting with the NAND 5431 * chip. 5432 */ 5433 chip->select_chip(chip, 0); 5434 ret = nand_manufacturer_init(chip); 5435 chip->select_chip(chip, -1); 5436 if (ret) 5437 goto err_free_buf; 5438 5439 /* Set the internal oob buffer location, just after the page data */ 5440 chip->oob_poi = chip->data_buf + mtd->writesize; 5441 5442 /* 5443 * If no default placement scheme is given, select an appropriate one. 5444 */ 5445 if (!mtd->ooblayout && 5446 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { 5447 switch (mtd->oobsize) { 5448 case 8: 5449 case 16: 5450 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); 5451 break; 5452 case 64: 5453 case 128: 5454 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); 5455 break; 5456 default: 5457 /* 5458 * Expose the whole OOB area to users if ECC_NONE 5459 * is passed. We could do that for all kind of 5460 * ->oobsize, but we must keep the old large/small 5461 * page with ECC layout when ->oobsize <= 128 for 5462 * compatibility reasons. 5463 */ 5464 if (ecc->mode == NAND_ECC_NONE) { 5465 mtd_set_ooblayout(mtd, 5466 &nand_ooblayout_lp_ops); 5467 break; 5468 } 5469 5470 WARN(1, "No oob scheme defined for oobsize %d\n", 5471 mtd->oobsize); 5472 ret = -EINVAL; 5473 goto err_nand_manuf_cleanup; 5474 } 5475 } 5476 5477 /* 5478 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 5479 * selected and we have 256 byte pagesize fallback to software ECC 5480 */ 5481 5482 switch (ecc->mode) { 5483 case NAND_ECC_HW_OOB_FIRST: 5484 /* Similar to NAND_ECC_HW, but a separate read_page handle */ 5485 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { 5486 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5487 ret = -EINVAL; 5488 goto err_nand_manuf_cleanup; 5489 } 5490 if (!ecc->read_page) 5491 ecc->read_page = nand_read_page_hwecc_oob_first; 5492 5493 case NAND_ECC_HW: 5494 /* Use standard hwecc read page function? */ 5495 if (!ecc->read_page) 5496 ecc->read_page = nand_read_page_hwecc; 5497 if (!ecc->write_page) 5498 ecc->write_page = nand_write_page_hwecc; 5499 if (!ecc->read_page_raw) 5500 ecc->read_page_raw = nand_read_page_raw; 5501 if (!ecc->write_page_raw) 5502 ecc->write_page_raw = nand_write_page_raw; 5503 if (!ecc->read_oob) 5504 ecc->read_oob = nand_read_oob_std; 5505 if (!ecc->write_oob) 5506 ecc->write_oob = nand_write_oob_std; 5507 if (!ecc->read_subpage) 5508 ecc->read_subpage = nand_read_subpage; 5509 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 5510 ecc->write_subpage = nand_write_subpage_hwecc; 5511 5512 case NAND_ECC_HW_SYNDROME: 5513 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 5514 (!ecc->read_page || 5515 ecc->read_page == nand_read_page_hwecc || 5516 !ecc->write_page || 5517 ecc->write_page == nand_write_page_hwecc)) { 5518 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5519 ret = -EINVAL; 5520 goto err_nand_manuf_cleanup; 5521 } 5522 /* Use standard syndrome read/write page function? */ 5523 if (!ecc->read_page) 5524 ecc->read_page = nand_read_page_syndrome; 5525 if (!ecc->write_page) 5526 ecc->write_page = nand_write_page_syndrome; 5527 if (!ecc->read_page_raw) 5528 ecc->read_page_raw = nand_read_page_raw_syndrome; 5529 if (!ecc->write_page_raw) 5530 ecc->write_page_raw = nand_write_page_raw_syndrome; 5531 if (!ecc->read_oob) 5532 ecc->read_oob = nand_read_oob_syndrome; 5533 if (!ecc->write_oob) 5534 ecc->write_oob = nand_write_oob_syndrome; 5535 5536 if (mtd->writesize >= ecc->size) { 5537 if (!ecc->strength) { 5538 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 5539 ret = -EINVAL; 5540 goto err_nand_manuf_cleanup; 5541 } 5542 break; 5543 } 5544 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 5545 ecc->size, mtd->writesize); 5546 ecc->mode = NAND_ECC_SOFT; 5547 ecc->algo = NAND_ECC_HAMMING; 5548 5549 case NAND_ECC_SOFT: 5550 ret = nand_set_ecc_soft_ops(mtd); 5551 if (ret) { 5552 ret = -EINVAL; 5553 goto err_nand_manuf_cleanup; 5554 } 5555 break; 5556 5557 case NAND_ECC_ON_DIE: 5558 if (!ecc->read_page || !ecc->write_page) { 5559 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 5560 ret = -EINVAL; 5561 goto err_nand_manuf_cleanup; 5562 } 5563 if (!ecc->read_oob) 5564 ecc->read_oob = nand_read_oob_std; 5565 if (!ecc->write_oob) 5566 ecc->write_oob = nand_write_oob_std; 5567 break; 5568 5569 case NAND_ECC_NONE: 5570 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); 5571 ecc->read_page = nand_read_page_raw; 5572 ecc->write_page = nand_write_page_raw; 5573 ecc->read_oob = nand_read_oob_std; 5574 ecc->read_page_raw = nand_read_page_raw; 5575 ecc->write_page_raw = nand_write_page_raw; 5576 ecc->write_oob = nand_write_oob_std; 5577 ecc->size = mtd->writesize; 5578 ecc->bytes = 0; 5579 ecc->strength = 0; 5580 break; 5581 5582 default: 5583 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); 5584 ret = -EINVAL; 5585 goto err_nand_manuf_cleanup; 5586 } 5587 5588 if (ecc->correct || ecc->calculate) { 5589 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5590 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5591 if (!ecc->calc_buf || !ecc->code_buf) { 5592 ret = -ENOMEM; 5593 goto err_nand_manuf_cleanup; 5594 } 5595 } 5596 5597 /* For many systems, the standard OOB write also works for raw */ 5598 if (!ecc->read_oob_raw) 5599 ecc->read_oob_raw = ecc->read_oob; 5600 if (!ecc->write_oob_raw) 5601 ecc->write_oob_raw = ecc->write_oob; 5602 5603 /* propagate ecc info to mtd_info */ 5604 mtd->ecc_strength = ecc->strength; 5605 mtd->ecc_step_size = ecc->size; 5606 5607 /* 5608 * Set the number of read / write steps for one page depending on ECC 5609 * mode. 5610 */ 5611 ecc->steps = mtd->writesize / ecc->size; 5612 if (ecc->steps * ecc->size != mtd->writesize) { 5613 WARN(1, "Invalid ECC parameters\n"); 5614 ret = -EINVAL; 5615 goto err_nand_manuf_cleanup; 5616 } 5617 ecc->total = ecc->steps * ecc->bytes; 5618 if (ecc->total > mtd->oobsize) { 5619 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 5620 ret = -EINVAL; 5621 goto err_nand_manuf_cleanup; 5622 } 5623 5624 /* 5625 * The number of bytes available for a client to place data into 5626 * the out of band area. 5627 */ 5628 ret = mtd_ooblayout_count_freebytes(mtd); 5629 if (ret < 0) 5630 ret = 0; 5631 5632 mtd->oobavail = ret; 5633 5634 /* ECC sanity check: warn if it's too weak */ 5635 if (!nand_ecc_strength_good(mtd)) 5636 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", 5637 mtd->name); 5638 5639 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 5640 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 5641 switch (ecc->steps) { 5642 case 2: 5643 mtd->subpage_sft = 1; 5644 break; 5645 case 4: 5646 case 8: 5647 case 16: 5648 mtd->subpage_sft = 2; 5649 break; 5650 } 5651 } 5652 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 5653 5654 /* Initialize state */ 5655 chip->state = FL_READY; 5656 5657 /* Invalidate the pagebuffer reference */ 5658 chip->pagebuf = -1; 5659 5660 /* Large page NAND with SOFT_ECC should support subpage reads */ 5661 switch (ecc->mode) { 5662 case NAND_ECC_SOFT: 5663 if (chip->page_shift > 9) 5664 chip->options |= NAND_SUBPAGE_READ; 5665 break; 5666 5667 default: 5668 break; 5669 } 5670 5671 /* Fill in remaining MTD driver data */ 5672 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH; 5673 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : 5674 MTD_CAP_NANDFLASH; 5675 mtd->_erase = nand_erase; 5676 mtd->_point = NULL; 5677 mtd->_unpoint = NULL; 5678 mtd->_panic_write = panic_nand_write; 5679 mtd->_read_oob = nand_read_oob; 5680 mtd->_write_oob = nand_write_oob; 5681 mtd->_sync = nand_sync; 5682 mtd->_lock = NULL; 5683 mtd->_unlock = NULL; 5684 mtd->_suspend = nand_suspend; 5685 mtd->_resume = nand_resume; 5686 mtd->_reboot = nand_shutdown; 5687 mtd->_block_isreserved = nand_block_isreserved; 5688 mtd->_block_isbad = nand_block_isbad; 5689 mtd->_block_markbad = nand_block_markbad; 5690 mtd->_max_bad_blocks = nand_max_bad_blocks; 5691 mtd->writebufsize = mtd->writesize; 5692 5693 /* 5694 * Initialize bitflip_threshold to its default prior scan_bbt() call. 5695 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 5696 * properly set. 5697 */ 5698 if (!mtd->bitflip_threshold) 5699 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 5700 5701 /* Initialize the ->data_interface field. */ 5702 ret = nand_init_data_interface(chip); 5703 if (ret) 5704 goto err_nand_manuf_cleanup; 5705 5706 /* Enter fastest possible mode on all dies. */ 5707 for (i = 0; i < chip->numchips; i++) { 5708 ret = nand_setup_data_interface(chip, i); 5709 if (ret) 5710 goto err_nand_manuf_cleanup; 5711 } 5712 5713 /* Check, if we should skip the bad block table scan */ 5714 if (chip->options & NAND_SKIP_BBTSCAN) 5715 return 0; 5716 5717 /* Build bad block table */ 5718 ret = nand_create_bbt(chip); 5719 if (ret) 5720 goto err_nand_manuf_cleanup; 5721 5722 return 0; 5723 5724 5725 err_nand_manuf_cleanup: 5726 nand_manufacturer_cleanup(chip); 5727 5728 err_free_buf: 5729 kfree(chip->data_buf); 5730 kfree(ecc->code_buf); 5731 kfree(ecc->calc_buf); 5732 5733 return ret; 5734 } 5735 5736 static int nand_attach(struct nand_chip *chip) 5737 { 5738 if (chip->controller->ops && chip->controller->ops->attach_chip) 5739 return chip->controller->ops->attach_chip(chip); 5740 5741 return 0; 5742 } 5743 5744 static void nand_detach(struct nand_chip *chip) 5745 { 5746 if (chip->controller->ops && chip->controller->ops->detach_chip) 5747 chip->controller->ops->detach_chip(chip); 5748 } 5749 5750 /** 5751 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 5752 * @chip: NAND chip object 5753 * @maxchips: number of chips to scan for. 5754 * @ids: optional flash IDs table 5755 * 5756 * This fills out all the uninitialized function pointers with the defaults. 5757 * The flash ID is read and the mtd/chip structures are filled with the 5758 * appropriate values. 5759 */ 5760 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, 5761 struct nand_flash_dev *ids) 5762 { 5763 int ret; 5764 5765 if (!maxchips) 5766 return -EINVAL; 5767 5768 ret = nand_scan_ident(chip, maxchips, ids); 5769 if (ret) 5770 return ret; 5771 5772 ret = nand_attach(chip); 5773 if (ret) 5774 goto cleanup_ident; 5775 5776 ret = nand_scan_tail(chip); 5777 if (ret) 5778 goto detach_chip; 5779 5780 return 0; 5781 5782 detach_chip: 5783 nand_detach(chip); 5784 cleanup_ident: 5785 nand_scan_ident_cleanup(chip); 5786 5787 return ret; 5788 } 5789 EXPORT_SYMBOL(nand_scan_with_ids); 5790 5791 /** 5792 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 5793 * @chip: NAND chip object 5794 */ 5795 void nand_cleanup(struct nand_chip *chip) 5796 { 5797 if (chip->ecc.mode == NAND_ECC_SOFT && 5798 chip->ecc.algo == NAND_ECC_BCH) 5799 nand_bch_free((struct nand_bch_control *)chip->ecc.priv); 5800 5801 /* Free bad block table memory */ 5802 kfree(chip->bbt); 5803 kfree(chip->data_buf); 5804 kfree(chip->ecc.code_buf); 5805 kfree(chip->ecc.calc_buf); 5806 5807 /* Free bad block descriptor memory */ 5808 if (chip->badblock_pattern && chip->badblock_pattern->options 5809 & NAND_BBT_DYNAMICSTRUCT) 5810 kfree(chip->badblock_pattern); 5811 5812 /* Free manufacturer priv data. */ 5813 nand_manufacturer_cleanup(chip); 5814 5815 /* Free controller specific allocations after chip identification */ 5816 nand_detach(chip); 5817 5818 /* Free identification phase allocations */ 5819 nand_scan_ident_cleanup(chip); 5820 } 5821 5822 EXPORT_SYMBOL_GPL(nand_cleanup); 5823 5824 /** 5825 * nand_release - [NAND Interface] Unregister the MTD device and free resources 5826 * held by the NAND device 5827 * @chip: NAND chip object 5828 */ 5829 void nand_release(struct nand_chip *chip) 5830 { 5831 mtd_device_unregister(nand_to_mtd(chip)); 5832 nand_cleanup(chip); 5833 } 5834 EXPORT_SYMBOL_GPL(nand_release); 5835 5836 MODULE_LICENSE("GPL"); 5837 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 5838 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 5839 MODULE_DESCRIPTION("Generic NAND flash driver code"); 5840