1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Overview: 4 * This is the generic MTD driver for NAND flash devices. It should be 5 * capable of working with almost all NAND chips currently available. 6 * 7 * Additional technical information is available on 8 * http://www.linux-mtd.infradead.org/doc/nand.html 9 * 10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 12 * 13 * Credits: 14 * David Woodhouse for adding multichip support 15 * 16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 17 * rework for 2K page size chips 18 * 19 * TODO: 20 * Enable cached programming for 2k page size chips 21 * Check, if mtd->ecctype should be set to MTD_ECC_HW 22 * if we have HW ECC support. 23 * BBT table is not serialized, has to be fixed 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/module.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/sched.h> 33 #include <linux/slab.h> 34 #include <linux/mm.h> 35 #include <linux/types.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/nand.h> 38 #include <linux/mtd/nand-ecc-sw-hamming.h> 39 #include <linux/mtd/nand-ecc-sw-bch.h> 40 #include <linux/interrupt.h> 41 #include <linux/bitops.h> 42 #include <linux/io.h> 43 #include <linux/mtd/partitions.h> 44 #include <linux/of.h> 45 #include <linux/of_gpio.h> 46 #include <linux/gpio/consumer.h> 47 48 #include "internals.h" 49 50 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page, 51 struct mtd_pairing_info *info) 52 { 53 int lastpage = (mtd->erasesize / mtd->writesize) - 1; 54 int dist = 3; 55 56 if (page == lastpage) 57 dist = 2; 58 59 if (!page || (page & 1)) { 60 info->group = 0; 61 info->pair = (page + 1) / 2; 62 } else { 63 info->group = 1; 64 info->pair = (page + 1 - dist) / 2; 65 } 66 67 return 0; 68 } 69 70 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd, 71 const struct mtd_pairing_info *info) 72 { 73 int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2; 74 int page = info->pair * 2; 75 int dist = 3; 76 77 if (!info->group && !info->pair) 78 return 0; 79 80 if (info->pair == lastpair && info->group) 81 dist = 2; 82 83 if (!info->group) 84 page--; 85 else if (info->pair) 86 page += dist - 1; 87 88 if (page >= mtd->erasesize / mtd->writesize) 89 return -EINVAL; 90 91 return page; 92 } 93 94 const struct mtd_pairing_scheme dist3_pairing_scheme = { 95 .ngroups = 2, 96 .get_info = nand_pairing_dist3_get_info, 97 .get_wunit = nand_pairing_dist3_get_wunit, 98 }; 99 100 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) 101 { 102 int ret = 0; 103 104 /* Start address must align on block boundary */ 105 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 106 pr_debug("%s: unaligned address\n", __func__); 107 ret = -EINVAL; 108 } 109 110 /* Length must align on block boundary */ 111 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 112 pr_debug("%s: length not block aligned\n", __func__); 113 ret = -EINVAL; 114 } 115 116 return ret; 117 } 118 119 /** 120 * nand_extract_bits - Copy unaligned bits from one buffer to another one 121 * @dst: destination buffer 122 * @dst_off: bit offset at which the writing starts 123 * @src: source buffer 124 * @src_off: bit offset at which the reading starts 125 * @nbits: number of bits to copy from @src to @dst 126 * 127 * Copy bits from one memory region to another (overlap authorized). 128 */ 129 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, 130 unsigned int src_off, unsigned int nbits) 131 { 132 unsigned int tmp, n; 133 134 dst += dst_off / 8; 135 dst_off %= 8; 136 src += src_off / 8; 137 src_off %= 8; 138 139 while (nbits) { 140 n = min3(8 - dst_off, 8 - src_off, nbits); 141 142 tmp = (*src >> src_off) & GENMASK(n - 1, 0); 143 *dst &= ~GENMASK(n - 1 + dst_off, dst_off); 144 *dst |= tmp << dst_off; 145 146 dst_off += n; 147 if (dst_off >= 8) { 148 dst++; 149 dst_off -= 8; 150 } 151 152 src_off += n; 153 if (src_off >= 8) { 154 src++; 155 src_off -= 8; 156 } 157 158 nbits -= n; 159 } 160 } 161 EXPORT_SYMBOL_GPL(nand_extract_bits); 162 163 /** 164 * nand_select_target() - Select a NAND target (A.K.A. die) 165 * @chip: NAND chip object 166 * @cs: the CS line to select. Note that this CS id is always from the chip 167 * PoV, not the controller one 168 * 169 * Select a NAND target so that further operations executed on @chip go to the 170 * selected NAND target. 171 */ 172 void nand_select_target(struct nand_chip *chip, unsigned int cs) 173 { 174 /* 175 * cs should always lie between 0 and nanddev_ntargets(), when that's 176 * not the case it's a bug and the caller should be fixed. 177 */ 178 if (WARN_ON(cs > nanddev_ntargets(&chip->base))) 179 return; 180 181 chip->cur_cs = cs; 182 183 if (chip->legacy.select_chip) 184 chip->legacy.select_chip(chip, cs); 185 } 186 EXPORT_SYMBOL_GPL(nand_select_target); 187 188 /** 189 * nand_deselect_target() - Deselect the currently selected target 190 * @chip: NAND chip object 191 * 192 * Deselect the currently selected NAND target. The result of operations 193 * executed on @chip after the target has been deselected is undefined. 194 */ 195 void nand_deselect_target(struct nand_chip *chip) 196 { 197 if (chip->legacy.select_chip) 198 chip->legacy.select_chip(chip, -1); 199 200 chip->cur_cs = -1; 201 } 202 EXPORT_SYMBOL_GPL(nand_deselect_target); 203 204 /** 205 * nand_release_device - [GENERIC] release chip 206 * @chip: NAND chip object 207 * 208 * Release chip lock and wake up anyone waiting on the device. 209 */ 210 static void nand_release_device(struct nand_chip *chip) 211 { 212 /* Release the controller and the chip */ 213 mutex_unlock(&chip->controller->lock); 214 mutex_unlock(&chip->lock); 215 } 216 217 /** 218 * nand_bbm_get_next_page - Get the next page for bad block markers 219 * @chip: NAND chip object 220 * @page: First page to start checking for bad block marker usage 221 * 222 * Returns an integer that corresponds to the page offset within a block, for 223 * a page that is used to store bad block markers. If no more pages are 224 * available, -EINVAL is returned. 225 */ 226 int nand_bbm_get_next_page(struct nand_chip *chip, int page) 227 { 228 struct mtd_info *mtd = nand_to_mtd(chip); 229 int last_page = ((mtd->erasesize - mtd->writesize) >> 230 chip->page_shift) & chip->pagemask; 231 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE 232 | NAND_BBM_LASTPAGE; 233 234 if (page == 0 && !(chip->options & bbm_flags)) 235 return 0; 236 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) 237 return 0; 238 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) 239 return 1; 240 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) 241 return last_page; 242 243 return -EINVAL; 244 } 245 246 /** 247 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 248 * @chip: NAND chip object 249 * @ofs: offset from device start 250 * 251 * Check, if the block is bad. 252 */ 253 static int nand_block_bad(struct nand_chip *chip, loff_t ofs) 254 { 255 int first_page, page_offset; 256 int res; 257 u8 bad; 258 259 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; 260 page_offset = nand_bbm_get_next_page(chip, 0); 261 262 while (page_offset >= 0) { 263 res = chip->ecc.read_oob(chip, first_page + page_offset); 264 if (res < 0) 265 return res; 266 267 bad = chip->oob_poi[chip->badblockpos]; 268 269 if (likely(chip->badblockbits == 8)) 270 res = bad != 0xFF; 271 else 272 res = hweight8(bad) < chip->badblockbits; 273 if (res) 274 return res; 275 276 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 277 } 278 279 return 0; 280 } 281 282 /** 283 * nand_region_is_secured() - Check if the region is secured 284 * @chip: NAND chip object 285 * @offset: Offset of the region to check 286 * @size: Size of the region to check 287 * 288 * Checks if the region is secured by comparing the offset and size with the 289 * list of secure regions obtained from DT. Returns true if the region is 290 * secured else false. 291 */ 292 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size) 293 { 294 int i; 295 296 /* Skip touching the secure regions if present */ 297 for (i = 0; i < chip->nr_secure_regions; i++) { 298 const struct nand_secure_region *region = &chip->secure_regions[i]; 299 300 if (offset + size <= region->offset || 301 offset >= region->offset + region->size) 302 continue; 303 304 pr_debug("%s: Region 0x%llx - 0x%llx is secured!", 305 __func__, offset, offset + size); 306 307 return true; 308 } 309 310 return false; 311 } 312 313 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) 314 { 315 struct mtd_info *mtd = nand_to_mtd(chip); 316 317 if (chip->options & NAND_NO_BBM_QUIRK) 318 return 0; 319 320 /* Check if the region is secured */ 321 if (nand_region_is_secured(chip, ofs, mtd->erasesize)) 322 return -EIO; 323 324 if (mtd_check_expert_analysis_mode()) 325 return 0; 326 327 if (chip->legacy.block_bad) 328 return chip->legacy.block_bad(chip, ofs); 329 330 return nand_block_bad(chip, ofs); 331 } 332 333 /** 334 * nand_get_device - [GENERIC] Get chip for selected access 335 * @chip: NAND chip structure 336 * 337 * Lock the device and its controller for exclusive access 338 */ 339 static void nand_get_device(struct nand_chip *chip) 340 { 341 /* Wait until the device is resumed. */ 342 while (1) { 343 mutex_lock(&chip->lock); 344 if (!chip->suspended) { 345 mutex_lock(&chip->controller->lock); 346 return; 347 } 348 mutex_unlock(&chip->lock); 349 350 wait_event(chip->resume_wq, !chip->suspended); 351 } 352 } 353 354 /** 355 * nand_check_wp - [GENERIC] check if the chip is write protected 356 * @chip: NAND chip object 357 * 358 * Check, if the device is write protected. The function expects, that the 359 * device is already selected. 360 */ 361 static int nand_check_wp(struct nand_chip *chip) 362 { 363 u8 status; 364 int ret; 365 366 /* Broken xD cards report WP despite being writable */ 367 if (chip->options & NAND_BROKEN_XD) 368 return 0; 369 370 /* Check the WP bit */ 371 ret = nand_status_op(chip, &status); 372 if (ret) 373 return ret; 374 375 return status & NAND_STATUS_WP ? 0 : 1; 376 } 377 378 /** 379 * nand_fill_oob - [INTERN] Transfer client buffer to oob 380 * @chip: NAND chip object 381 * @oob: oob data buffer 382 * @len: oob data write length 383 * @ops: oob ops structure 384 */ 385 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, 386 struct mtd_oob_ops *ops) 387 { 388 struct mtd_info *mtd = nand_to_mtd(chip); 389 int ret; 390 391 /* 392 * Initialise to all 0xFF, to avoid the possibility of left over OOB 393 * data from a previous OOB read. 394 */ 395 memset(chip->oob_poi, 0xff, mtd->oobsize); 396 397 switch (ops->mode) { 398 399 case MTD_OPS_PLACE_OOB: 400 case MTD_OPS_RAW: 401 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 402 return oob + len; 403 404 case MTD_OPS_AUTO_OOB: 405 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 406 ops->ooboffs, len); 407 BUG_ON(ret); 408 return oob + len; 409 410 default: 411 BUG(); 412 } 413 return NULL; 414 } 415 416 /** 417 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 418 * @chip: NAND chip object 419 * @to: offset to write to 420 * @ops: oob operation description structure 421 * 422 * NAND write out-of-band. 423 */ 424 static int nand_do_write_oob(struct nand_chip *chip, loff_t to, 425 struct mtd_oob_ops *ops) 426 { 427 struct mtd_info *mtd = nand_to_mtd(chip); 428 int chipnr, page, status, len, ret; 429 430 pr_debug("%s: to = 0x%08x, len = %i\n", 431 __func__, (unsigned int)to, (int)ops->ooblen); 432 433 len = mtd_oobavail(mtd, ops); 434 435 /* Do not allow write past end of page */ 436 if ((ops->ooboffs + ops->ooblen) > len) { 437 pr_debug("%s: attempt to write past end of page\n", 438 __func__); 439 return -EINVAL; 440 } 441 442 /* Check if the region is secured */ 443 if (nand_region_is_secured(chip, to, ops->ooblen)) 444 return -EIO; 445 446 chipnr = (int)(to >> chip->chip_shift); 447 448 /* 449 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 450 * of my DiskOnChip 2000 test units) will clear the whole data page too 451 * if we don't do this. I have no clue why, but I seem to have 'fixed' 452 * it in the doc2000 driver in August 1999. dwmw2. 453 */ 454 ret = nand_reset(chip, chipnr); 455 if (ret) 456 return ret; 457 458 nand_select_target(chip, chipnr); 459 460 /* Shift to get page */ 461 page = (int)(to >> chip->page_shift); 462 463 /* Check, if it is write protected */ 464 if (nand_check_wp(chip)) { 465 nand_deselect_target(chip); 466 return -EROFS; 467 } 468 469 /* Invalidate the page cache, if we write to the cached page */ 470 if (page == chip->pagecache.page) 471 chip->pagecache.page = -1; 472 473 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); 474 475 if (ops->mode == MTD_OPS_RAW) 476 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); 477 else 478 status = chip->ecc.write_oob(chip, page & chip->pagemask); 479 480 nand_deselect_target(chip); 481 482 if (status) 483 return status; 484 485 ops->oobretlen = ops->ooblen; 486 487 return 0; 488 } 489 490 /** 491 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 492 * @chip: NAND chip object 493 * @ofs: offset from device start 494 * 495 * This is the default implementation, which can be overridden by a hardware 496 * specific driver. It provides the details for writing a bad block marker to a 497 * block. 498 */ 499 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) 500 { 501 struct mtd_info *mtd = nand_to_mtd(chip); 502 struct mtd_oob_ops ops; 503 uint8_t buf[2] = { 0, 0 }; 504 int ret = 0, res, page_offset; 505 506 memset(&ops, 0, sizeof(ops)); 507 ops.oobbuf = buf; 508 ops.ooboffs = chip->badblockpos; 509 if (chip->options & NAND_BUSWIDTH_16) { 510 ops.ooboffs &= ~0x01; 511 ops.len = ops.ooblen = 2; 512 } else { 513 ops.len = ops.ooblen = 1; 514 } 515 ops.mode = MTD_OPS_PLACE_OOB; 516 517 page_offset = nand_bbm_get_next_page(chip, 0); 518 519 while (page_offset >= 0) { 520 res = nand_do_write_oob(chip, 521 ofs + (page_offset * mtd->writesize), 522 &ops); 523 524 if (!ret) 525 ret = res; 526 527 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 528 } 529 530 return ret; 531 } 532 533 /** 534 * nand_markbad_bbm - mark a block by updating the BBM 535 * @chip: NAND chip object 536 * @ofs: offset of the block to mark bad 537 */ 538 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) 539 { 540 if (chip->legacy.block_markbad) 541 return chip->legacy.block_markbad(chip, ofs); 542 543 return nand_default_block_markbad(chip, ofs); 544 } 545 546 /** 547 * nand_block_markbad_lowlevel - mark a block bad 548 * @chip: NAND chip object 549 * @ofs: offset from device start 550 * 551 * This function performs the generic NAND bad block marking steps (i.e., bad 552 * block table(s) and/or marker(s)). We only allow the hardware driver to 553 * specify how to write bad block markers to OOB (chip->legacy.block_markbad). 554 * 555 * We try operations in the following order: 556 * 557 * (1) erase the affected block, to allow OOB marker to be written cleanly 558 * (2) write bad block marker to OOB area of affected block (unless flag 559 * NAND_BBT_NO_OOB_BBM is present) 560 * (3) update the BBT 561 * 562 * Note that we retain the first error encountered in (2) or (3), finish the 563 * procedures, and dump the error in the end. 564 */ 565 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) 566 { 567 struct mtd_info *mtd = nand_to_mtd(chip); 568 int res, ret = 0; 569 570 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 571 struct erase_info einfo; 572 573 /* Attempt erase before marking OOB */ 574 memset(&einfo, 0, sizeof(einfo)); 575 einfo.addr = ofs; 576 einfo.len = 1ULL << chip->phys_erase_shift; 577 nand_erase_nand(chip, &einfo, 0); 578 579 /* Write bad block marker to OOB */ 580 nand_get_device(chip); 581 582 ret = nand_markbad_bbm(chip, ofs); 583 nand_release_device(chip); 584 } 585 586 /* Mark block bad in BBT */ 587 if (chip->bbt) { 588 res = nand_markbad_bbt(chip, ofs); 589 if (!ret) 590 ret = res; 591 } 592 593 if (!ret) 594 mtd->ecc_stats.badblocks++; 595 596 return ret; 597 } 598 599 /** 600 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 601 * @mtd: MTD device structure 602 * @ofs: offset from device start 603 * 604 * Check if the block is marked as reserved. 605 */ 606 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 607 { 608 struct nand_chip *chip = mtd_to_nand(mtd); 609 610 if (!chip->bbt) 611 return 0; 612 /* Return info from the table */ 613 return nand_isreserved_bbt(chip, ofs); 614 } 615 616 /** 617 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 618 * @chip: NAND chip object 619 * @ofs: offset from device start 620 * @allowbbt: 1, if its allowed to access the bbt area 621 * 622 * Check, if the block is bad. Either by reading the bad block table or 623 * calling of the scan function. 624 */ 625 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) 626 { 627 /* Return info from the table */ 628 if (chip->bbt) 629 return nand_isbad_bbt(chip, ofs, allowbbt); 630 631 return nand_isbad_bbm(chip, ofs); 632 } 633 634 /** 635 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 636 * @chip: NAND chip structure 637 * @timeout_ms: Timeout in ms 638 * 639 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 640 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 641 * returned. 642 * 643 * This helper is intended to be used when the controller does not have access 644 * to the NAND R/B pin. 645 * 646 * Be aware that calling this helper from an ->exec_op() implementation means 647 * ->exec_op() must be re-entrant. 648 * 649 * Return 0 if the NAND chip is ready, a negative error otherwise. 650 */ 651 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 652 { 653 const struct nand_interface_config *conf; 654 u8 status = 0; 655 int ret; 656 657 if (!nand_has_exec_op(chip)) 658 return -ENOTSUPP; 659 660 /* Wait tWB before polling the STATUS reg. */ 661 conf = nand_get_interface_config(chip); 662 ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max)); 663 664 ret = nand_status_op(chip, NULL); 665 if (ret) 666 return ret; 667 668 /* 669 * +1 below is necessary because if we are now in the last fraction 670 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 671 * small jiffy fraction - possibly leading to false timeout 672 */ 673 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 674 do { 675 ret = nand_read_data_op(chip, &status, sizeof(status), true, 676 false); 677 if (ret) 678 break; 679 680 if (status & NAND_STATUS_READY) 681 break; 682 683 /* 684 * Typical lowest execution time for a tR on most NANDs is 10us, 685 * use this as polling delay before doing something smarter (ie. 686 * deriving a delay from the timeout value, timeout_ms/ratio). 687 */ 688 udelay(10); 689 } while (time_before(jiffies, timeout_ms)); 690 691 /* 692 * We have to exit READ_STATUS mode in order to read real data on the 693 * bus in case the WAITRDY instruction is preceding a DATA_IN 694 * instruction. 695 */ 696 nand_exit_status_op(chip); 697 698 if (ret) 699 return ret; 700 701 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 702 }; 703 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 704 705 /** 706 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready 707 * @chip: NAND chip structure 708 * @gpiod: GPIO descriptor of R/B pin 709 * @timeout_ms: Timeout in ms 710 * 711 * Poll the R/B GPIO pin until it becomes ready. If that does not happen 712 * whitin the specified timeout, -ETIMEDOUT is returned. 713 * 714 * This helper is intended to be used when the controller has access to the 715 * NAND R/B pin over GPIO. 716 * 717 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. 718 */ 719 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 720 unsigned long timeout_ms) 721 { 722 723 /* 724 * Wait until R/B pin indicates chip is ready or timeout occurs. 725 * +1 below is necessary because if we are now in the last fraction 726 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 727 * small jiffy fraction - possibly leading to false timeout. 728 */ 729 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 730 do { 731 if (gpiod_get_value_cansleep(gpiod)) 732 return 0; 733 734 cond_resched(); 735 } while (time_before(jiffies, timeout_ms)); 736 737 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; 738 }; 739 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); 740 741 /** 742 * panic_nand_wait - [GENERIC] wait until the command is done 743 * @chip: NAND chip structure 744 * @timeo: timeout 745 * 746 * Wait for command done. This is a helper function for nand_wait used when 747 * we are in interrupt context. May happen when in panic and trying to write 748 * an oops through mtdoops. 749 */ 750 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) 751 { 752 int i; 753 for (i = 0; i < timeo; i++) { 754 if (chip->legacy.dev_ready) { 755 if (chip->legacy.dev_ready(chip)) 756 break; 757 } else { 758 int ret; 759 u8 status; 760 761 ret = nand_read_data_op(chip, &status, sizeof(status), 762 true, false); 763 if (ret) 764 return; 765 766 if (status & NAND_STATUS_READY) 767 break; 768 } 769 mdelay(1); 770 } 771 } 772 773 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 774 { 775 return (chip->parameters.supports_set_get_features && 776 test_bit(addr, chip->parameters.get_feature_list)); 777 } 778 779 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 780 { 781 return (chip->parameters.supports_set_get_features && 782 test_bit(addr, chip->parameters.set_feature_list)); 783 } 784 785 /** 786 * nand_reset_interface - Reset data interface and timings 787 * @chip: The NAND chip 788 * @chipnr: Internal die id 789 * 790 * Reset the Data interface and timings to ONFI mode 0. 791 * 792 * Returns 0 for success or negative error code otherwise. 793 */ 794 static int nand_reset_interface(struct nand_chip *chip, int chipnr) 795 { 796 const struct nand_controller_ops *ops = chip->controller->ops; 797 int ret; 798 799 if (!nand_controller_can_setup_interface(chip)) 800 return 0; 801 802 /* 803 * The ONFI specification says: 804 * " 805 * To transition from NV-DDR or NV-DDR2 to the SDR data 806 * interface, the host shall use the Reset (FFh) command 807 * using SDR timing mode 0. A device in any timing mode is 808 * required to recognize Reset (FFh) command issued in SDR 809 * timing mode 0. 810 * " 811 * 812 * Configure the data interface in SDR mode and set the 813 * timings to timing mode 0. 814 */ 815 816 chip->current_interface_config = nand_get_reset_interface_config(); 817 ret = ops->setup_interface(chip, chipnr, 818 chip->current_interface_config); 819 if (ret) 820 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 821 822 return ret; 823 } 824 825 /** 826 * nand_setup_interface - Setup the best data interface and timings 827 * @chip: The NAND chip 828 * @chipnr: Internal die id 829 * 830 * Configure what has been reported to be the best data interface and NAND 831 * timings supported by the chip and the driver. 832 * 833 * Returns 0 for success or negative error code otherwise. 834 */ 835 static int nand_setup_interface(struct nand_chip *chip, int chipnr) 836 { 837 const struct nand_controller_ops *ops = chip->controller->ops; 838 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request; 839 int ret; 840 841 if (!nand_controller_can_setup_interface(chip)) 842 return 0; 843 844 /* 845 * A nand_reset_interface() put both the NAND chip and the NAND 846 * controller in timings mode 0. If the default mode for this chip is 847 * also 0, no need to proceed to the change again. Plus, at probe time, 848 * nand_setup_interface() uses ->set/get_features() which would 849 * fail anyway as the parameter page is not available yet. 850 */ 851 if (!chip->best_interface_config) 852 return 0; 853 854 request = chip->best_interface_config->timings.mode; 855 if (nand_interface_is_sdr(chip->best_interface_config)) 856 request |= ONFI_DATA_INTERFACE_SDR; 857 else 858 request |= ONFI_DATA_INTERFACE_NVDDR; 859 tmode_param[0] = request; 860 861 /* Change the mode on the chip side (if supported by the NAND chip) */ 862 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 863 nand_select_target(chip, chipnr); 864 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 865 tmode_param); 866 nand_deselect_target(chip); 867 if (ret) 868 return ret; 869 } 870 871 /* Change the mode on the controller side */ 872 ret = ops->setup_interface(chip, chipnr, chip->best_interface_config); 873 if (ret) 874 return ret; 875 876 /* Check the mode has been accepted by the chip, if supported */ 877 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 878 goto update_interface_config; 879 880 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 881 nand_select_target(chip, chipnr); 882 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 883 tmode_param); 884 nand_deselect_target(chip); 885 if (ret) 886 goto err_reset_chip; 887 888 if (request != tmode_param[0]) { 889 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n", 890 nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR", 891 chip->best_interface_config->timings.mode); 892 pr_debug("NAND chip would work in %s timing mode %d\n", 893 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR", 894 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0])); 895 goto err_reset_chip; 896 } 897 898 update_interface_config: 899 chip->current_interface_config = chip->best_interface_config; 900 901 return 0; 902 903 err_reset_chip: 904 /* 905 * Fallback to mode 0 if the chip explicitly did not ack the chosen 906 * timing mode. 907 */ 908 nand_reset_interface(chip, chipnr); 909 nand_select_target(chip, chipnr); 910 nand_reset_op(chip); 911 nand_deselect_target(chip); 912 913 return ret; 914 } 915 916 /** 917 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the 918 * NAND controller and the NAND chip support 919 * @chip: the NAND chip 920 * @iface: the interface configuration (can eventually be updated) 921 * @spec_timings: specific timings, when not fitting the ONFI specification 922 * 923 * If specific timings are provided, use them. Otherwise, retrieve supported 924 * timing modes from ONFI information. 925 */ 926 int nand_choose_best_sdr_timings(struct nand_chip *chip, 927 struct nand_interface_config *iface, 928 struct nand_sdr_timings *spec_timings) 929 { 930 const struct nand_controller_ops *ops = chip->controller->ops; 931 int best_mode = 0, mode, ret = -EOPNOTSUPP; 932 933 iface->type = NAND_SDR_IFACE; 934 935 if (spec_timings) { 936 iface->timings.sdr = *spec_timings; 937 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings); 938 939 /* Verify the controller supports the requested interface */ 940 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 941 iface); 942 if (!ret) { 943 chip->best_interface_config = iface; 944 return ret; 945 } 946 947 /* Fallback to slower modes */ 948 best_mode = iface->timings.mode; 949 } else if (chip->parameters.onfi) { 950 best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1; 951 } 952 953 for (mode = best_mode; mode >= 0; mode--) { 954 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode); 955 956 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 957 iface); 958 if (!ret) { 959 chip->best_interface_config = iface; 960 break; 961 } 962 } 963 964 return ret; 965 } 966 967 /** 968 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the 969 * NAND controller and the NAND chip support 970 * @chip: the NAND chip 971 * @iface: the interface configuration (can eventually be updated) 972 * @spec_timings: specific timings, when not fitting the ONFI specification 973 * 974 * If specific timings are provided, use them. Otherwise, retrieve supported 975 * timing modes from ONFI information. 976 */ 977 int nand_choose_best_nvddr_timings(struct nand_chip *chip, 978 struct nand_interface_config *iface, 979 struct nand_nvddr_timings *spec_timings) 980 { 981 const struct nand_controller_ops *ops = chip->controller->ops; 982 int best_mode = 0, mode, ret = -EOPNOTSUPP; 983 984 iface->type = NAND_NVDDR_IFACE; 985 986 if (spec_timings) { 987 iface->timings.nvddr = *spec_timings; 988 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings); 989 990 /* Verify the controller supports the requested interface */ 991 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 992 iface); 993 if (!ret) { 994 chip->best_interface_config = iface; 995 return ret; 996 } 997 998 /* Fallback to slower modes */ 999 best_mode = iface->timings.mode; 1000 } else if (chip->parameters.onfi) { 1001 best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1; 1002 } 1003 1004 for (mode = best_mode; mode >= 0; mode--) { 1005 onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode); 1006 1007 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 1008 iface); 1009 if (!ret) { 1010 chip->best_interface_config = iface; 1011 break; 1012 } 1013 } 1014 1015 return ret; 1016 } 1017 1018 /** 1019 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both 1020 * NAND controller and the NAND chip support 1021 * @chip: the NAND chip 1022 * @iface: the interface configuration (can eventually be updated) 1023 * 1024 * If specific timings are provided, use them. Otherwise, retrieve supported 1025 * timing modes from ONFI information. 1026 */ 1027 static int nand_choose_best_timings(struct nand_chip *chip, 1028 struct nand_interface_config *iface) 1029 { 1030 int ret; 1031 1032 /* Try the fastest timings: NV-DDR */ 1033 ret = nand_choose_best_nvddr_timings(chip, iface, NULL); 1034 if (!ret) 1035 return 0; 1036 1037 /* Fallback to SDR timings otherwise */ 1038 return nand_choose_best_sdr_timings(chip, iface, NULL); 1039 } 1040 1041 /** 1042 * nand_choose_interface_config - find the best data interface and timings 1043 * @chip: The NAND chip 1044 * 1045 * Find the best data interface and NAND timings supported by the chip 1046 * and the driver. Eventually let the NAND manufacturer driver propose his own 1047 * set of timings. 1048 * 1049 * After this function nand_chip->interface_config is initialized with the best 1050 * timing mode available. 1051 * 1052 * Returns 0 for success or negative error code otherwise. 1053 */ 1054 static int nand_choose_interface_config(struct nand_chip *chip) 1055 { 1056 struct nand_interface_config *iface; 1057 int ret; 1058 1059 if (!nand_controller_can_setup_interface(chip)) 1060 return 0; 1061 1062 iface = kzalloc(sizeof(*iface), GFP_KERNEL); 1063 if (!iface) 1064 return -ENOMEM; 1065 1066 if (chip->ops.choose_interface_config) 1067 ret = chip->ops.choose_interface_config(chip, iface); 1068 else 1069 ret = nand_choose_best_timings(chip, iface); 1070 1071 if (ret) 1072 kfree(iface); 1073 1074 return ret; 1075 } 1076 1077 /** 1078 * nand_fill_column_cycles - fill the column cycles of an address 1079 * @chip: The NAND chip 1080 * @addrs: Array of address cycles to fill 1081 * @offset_in_page: The offset in the page 1082 * 1083 * Fills the first or the first two bytes of the @addrs field depending 1084 * on the NAND bus width and the page size. 1085 * 1086 * Returns the number of cycles needed to encode the column, or a negative 1087 * error code in case one of the arguments is invalid. 1088 */ 1089 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 1090 unsigned int offset_in_page) 1091 { 1092 struct mtd_info *mtd = nand_to_mtd(chip); 1093 bool ident_stage = !mtd->writesize; 1094 1095 /* Bypass all checks during NAND identification */ 1096 if (likely(!ident_stage)) { 1097 /* Make sure the offset is less than the actual page size. */ 1098 if (offset_in_page > mtd->writesize + mtd->oobsize) 1099 return -EINVAL; 1100 1101 /* 1102 * On small page NANDs, there's a dedicated command to access the OOB 1103 * area, and the column address is relative to the start of the OOB 1104 * area, not the start of the page. Asjust the address accordingly. 1105 */ 1106 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 1107 offset_in_page -= mtd->writesize; 1108 1109 /* 1110 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 1111 * wide, then it must be divided by 2. 1112 */ 1113 if (chip->options & NAND_BUSWIDTH_16) { 1114 if (WARN_ON(offset_in_page % 2)) 1115 return -EINVAL; 1116 1117 offset_in_page /= 2; 1118 } 1119 } 1120 1121 addrs[0] = offset_in_page; 1122 1123 /* 1124 * Small page NANDs use 1 cycle for the columns, while large page NANDs 1125 * need 2 1126 */ 1127 if (!ident_stage && mtd->writesize <= 512) 1128 return 1; 1129 1130 addrs[1] = offset_in_page >> 8; 1131 1132 return 2; 1133 } 1134 1135 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1136 unsigned int offset_in_page, void *buf, 1137 unsigned int len) 1138 { 1139 const struct nand_interface_config *conf = 1140 nand_get_interface_config(chip); 1141 struct mtd_info *mtd = nand_to_mtd(chip); 1142 u8 addrs[4]; 1143 struct nand_op_instr instrs[] = { 1144 NAND_OP_CMD(NAND_CMD_READ0, 0), 1145 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1146 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1147 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1148 NAND_OP_DATA_IN(len, buf, 0), 1149 }; 1150 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1151 int ret; 1152 1153 /* Drop the DATA_IN instruction if len is set to 0. */ 1154 if (!len) 1155 op.ninstrs--; 1156 1157 if (offset_in_page >= mtd->writesize) 1158 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1159 else if (offset_in_page >= 256 && 1160 !(chip->options & NAND_BUSWIDTH_16)) 1161 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1162 1163 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1164 if (ret < 0) 1165 return ret; 1166 1167 addrs[1] = page; 1168 addrs[2] = page >> 8; 1169 1170 if (chip->options & NAND_ROW_ADDR_3) { 1171 addrs[3] = page >> 16; 1172 instrs[1].ctx.addr.naddrs++; 1173 } 1174 1175 return nand_exec_op(chip, &op); 1176 } 1177 1178 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1179 unsigned int offset_in_page, void *buf, 1180 unsigned int len) 1181 { 1182 const struct nand_interface_config *conf = 1183 nand_get_interface_config(chip); 1184 u8 addrs[5]; 1185 struct nand_op_instr instrs[] = { 1186 NAND_OP_CMD(NAND_CMD_READ0, 0), 1187 NAND_OP_ADDR(4, addrs, 0), 1188 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1189 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1190 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1191 NAND_OP_DATA_IN(len, buf, 0), 1192 }; 1193 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1194 int ret; 1195 1196 /* Drop the DATA_IN instruction if len is set to 0. */ 1197 if (!len) 1198 op.ninstrs--; 1199 1200 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1201 if (ret < 0) 1202 return ret; 1203 1204 addrs[2] = page; 1205 addrs[3] = page >> 8; 1206 1207 if (chip->options & NAND_ROW_ADDR_3) { 1208 addrs[4] = page >> 16; 1209 instrs[1].ctx.addr.naddrs++; 1210 } 1211 1212 return nand_exec_op(chip, &op); 1213 } 1214 1215 static void rawnand_cap_cont_reads(struct nand_chip *chip) 1216 { 1217 struct nand_memory_organization *memorg; 1218 unsigned int pages_per_lun, first_lun, last_lun; 1219 1220 memorg = nanddev_get_memorg(&chip->base); 1221 pages_per_lun = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun; 1222 first_lun = chip->cont_read.first_page / pages_per_lun; 1223 last_lun = chip->cont_read.last_page / pages_per_lun; 1224 1225 /* Prevent sequential cache reads across LUN boundaries */ 1226 if (first_lun != last_lun) 1227 chip->cont_read.pause_page = first_lun * pages_per_lun + pages_per_lun - 1; 1228 else 1229 chip->cont_read.pause_page = chip->cont_read.last_page; 1230 } 1231 1232 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page, 1233 unsigned int offset_in_page, void *buf, 1234 unsigned int len, bool check_only) 1235 { 1236 const struct nand_interface_config *conf = 1237 nand_get_interface_config(chip); 1238 u8 addrs[5]; 1239 struct nand_op_instr start_instrs[] = { 1240 NAND_OP_CMD(NAND_CMD_READ0, 0), 1241 NAND_OP_ADDR(4, addrs, 0), 1242 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1243 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0), 1244 NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1245 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1246 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1247 NAND_OP_DATA_IN(len, buf, 0), 1248 }; 1249 struct nand_op_instr cont_instrs[] = { 1250 NAND_OP_CMD(page == chip->cont_read.pause_page ? 1251 NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ, 1252 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1253 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1254 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1255 NAND_OP_DATA_IN(len, buf, 0), 1256 }; 1257 struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs); 1258 struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs); 1259 int ret; 1260 1261 if (!len) { 1262 start_op.ninstrs--; 1263 cont_op.ninstrs--; 1264 } 1265 1266 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1267 if (ret < 0) 1268 return ret; 1269 1270 addrs[2] = page; 1271 addrs[3] = page >> 8; 1272 1273 if (chip->options & NAND_ROW_ADDR_3) { 1274 addrs[4] = page >> 16; 1275 start_instrs[1].ctx.addr.naddrs++; 1276 } 1277 1278 /* Check if cache reads are supported */ 1279 if (check_only) { 1280 if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op)) 1281 return -EOPNOTSUPP; 1282 1283 return 0; 1284 } 1285 1286 if (page == chip->cont_read.first_page) 1287 ret = nand_exec_op(chip, &start_op); 1288 else 1289 ret = nand_exec_op(chip, &cont_op); 1290 if (ret) 1291 return ret; 1292 1293 if (!chip->cont_read.ongoing) 1294 return 0; 1295 1296 if (page == chip->cont_read.pause_page && 1297 page != chip->cont_read.last_page) { 1298 chip->cont_read.first_page = chip->cont_read.pause_page + 1; 1299 rawnand_cap_cont_reads(chip); 1300 } else if (page == chip->cont_read.last_page) { 1301 chip->cont_read.ongoing = false; 1302 } 1303 1304 return 0; 1305 } 1306 1307 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page) 1308 { 1309 return chip->cont_read.ongoing && page >= chip->cont_read.first_page; 1310 } 1311 1312 /** 1313 * nand_read_page_op - Do a READ PAGE operation 1314 * @chip: The NAND chip 1315 * @page: page to read 1316 * @offset_in_page: offset within the page 1317 * @buf: buffer used to store the data 1318 * @len: length of the buffer 1319 * 1320 * This function issues a READ PAGE operation. 1321 * This function does not select/unselect the CS line. 1322 * 1323 * Returns 0 on success, a negative error code otherwise. 1324 */ 1325 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1326 unsigned int offset_in_page, void *buf, unsigned int len) 1327 { 1328 struct mtd_info *mtd = nand_to_mtd(chip); 1329 1330 if (len && !buf) 1331 return -EINVAL; 1332 1333 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1334 return -EINVAL; 1335 1336 if (nand_has_exec_op(chip)) { 1337 if (mtd->writesize > 512) { 1338 if (rawnand_cont_read_ongoing(chip, page)) 1339 return nand_lp_exec_cont_read_page_op(chip, page, 1340 offset_in_page, 1341 buf, len, false); 1342 else 1343 return nand_lp_exec_read_page_op(chip, page, 1344 offset_in_page, buf, 1345 len); 1346 } 1347 1348 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1349 buf, len); 1350 } 1351 1352 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); 1353 if (len) 1354 chip->legacy.read_buf(chip, buf, len); 1355 1356 return 0; 1357 } 1358 EXPORT_SYMBOL_GPL(nand_read_page_op); 1359 1360 /** 1361 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1362 * @chip: The NAND chip 1363 * @page: parameter page to read 1364 * @buf: buffer used to store the data 1365 * @len: length of the buffer 1366 * 1367 * This function issues a READ PARAMETER PAGE operation. 1368 * This function does not select/unselect the CS line. 1369 * 1370 * Returns 0 on success, a negative error code otherwise. 1371 */ 1372 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1373 unsigned int len) 1374 { 1375 unsigned int i; 1376 u8 *p = buf; 1377 1378 if (len && !buf) 1379 return -EINVAL; 1380 1381 if (nand_has_exec_op(chip)) { 1382 const struct nand_interface_config *conf = 1383 nand_get_interface_config(chip); 1384 struct nand_op_instr instrs[] = { 1385 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1386 NAND_OP_ADDR(1, &page, 1387 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1388 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1389 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1390 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1391 }; 1392 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1393 1394 /* Drop the DATA_IN instruction if len is set to 0. */ 1395 if (!len) 1396 op.ninstrs--; 1397 1398 return nand_exec_op(chip, &op); 1399 } 1400 1401 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); 1402 for (i = 0; i < len; i++) 1403 p[i] = chip->legacy.read_byte(chip); 1404 1405 return 0; 1406 } 1407 1408 /** 1409 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1410 * @chip: The NAND chip 1411 * @offset_in_page: offset within the page 1412 * @buf: buffer used to store the data 1413 * @len: length of the buffer 1414 * @force_8bit: force 8-bit bus access 1415 * 1416 * This function issues a CHANGE READ COLUMN operation. 1417 * This function does not select/unselect the CS line. 1418 * 1419 * Returns 0 on success, a negative error code otherwise. 1420 */ 1421 int nand_change_read_column_op(struct nand_chip *chip, 1422 unsigned int offset_in_page, void *buf, 1423 unsigned int len, bool force_8bit) 1424 { 1425 struct mtd_info *mtd = nand_to_mtd(chip); 1426 bool ident_stage = !mtd->writesize; 1427 1428 if (len && !buf) 1429 return -EINVAL; 1430 1431 if (!ident_stage) { 1432 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1433 return -EINVAL; 1434 1435 /* Small page NANDs do not support column change. */ 1436 if (mtd->writesize <= 512) 1437 return -ENOTSUPP; 1438 } 1439 1440 if (nand_has_exec_op(chip)) { 1441 const struct nand_interface_config *conf = 1442 nand_get_interface_config(chip); 1443 u8 addrs[2] = {}; 1444 struct nand_op_instr instrs[] = { 1445 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1446 NAND_OP_ADDR(2, addrs, 0), 1447 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1448 NAND_COMMON_TIMING_NS(conf, tCCS_min)), 1449 NAND_OP_DATA_IN(len, buf, 0), 1450 }; 1451 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1452 int ret; 1453 1454 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1455 if (ret < 0) 1456 return ret; 1457 1458 /* Drop the DATA_IN instruction if len is set to 0. */ 1459 if (!len) 1460 op.ninstrs--; 1461 1462 instrs[3].ctx.data.force_8bit = force_8bit; 1463 1464 return nand_exec_op(chip, &op); 1465 } 1466 1467 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); 1468 if (len) 1469 chip->legacy.read_buf(chip, buf, len); 1470 1471 return 0; 1472 } 1473 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1474 1475 /** 1476 * nand_read_oob_op - Do a READ OOB operation 1477 * @chip: The NAND chip 1478 * @page: page to read 1479 * @offset_in_oob: offset within the OOB area 1480 * @buf: buffer used to store the data 1481 * @len: length of the buffer 1482 * 1483 * This function issues a READ OOB operation. 1484 * This function does not select/unselect the CS line. 1485 * 1486 * Returns 0 on success, a negative error code otherwise. 1487 */ 1488 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1489 unsigned int offset_in_oob, void *buf, unsigned int len) 1490 { 1491 struct mtd_info *mtd = nand_to_mtd(chip); 1492 1493 if (len && !buf) 1494 return -EINVAL; 1495 1496 if (offset_in_oob + len > mtd->oobsize) 1497 return -EINVAL; 1498 1499 if (nand_has_exec_op(chip)) 1500 return nand_read_page_op(chip, page, 1501 mtd->writesize + offset_in_oob, 1502 buf, len); 1503 1504 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); 1505 if (len) 1506 chip->legacy.read_buf(chip, buf, len); 1507 1508 return 0; 1509 } 1510 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1511 1512 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1513 unsigned int offset_in_page, const void *buf, 1514 unsigned int len, bool prog) 1515 { 1516 const struct nand_interface_config *conf = 1517 nand_get_interface_config(chip); 1518 struct mtd_info *mtd = nand_to_mtd(chip); 1519 u8 addrs[5] = {}; 1520 struct nand_op_instr instrs[] = { 1521 /* 1522 * The first instruction will be dropped if we're dealing 1523 * with a large page NAND and adjusted if we're dealing 1524 * with a small page NAND and the page offset is > 255. 1525 */ 1526 NAND_OP_CMD(NAND_CMD_READ0, 0), 1527 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1528 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)), 1529 NAND_OP_DATA_OUT(len, buf, 0), 1530 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1531 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1532 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0), 1533 }; 1534 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1535 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1536 1537 if (naddrs < 0) 1538 return naddrs; 1539 1540 addrs[naddrs++] = page; 1541 addrs[naddrs++] = page >> 8; 1542 if (chip->options & NAND_ROW_ADDR_3) 1543 addrs[naddrs++] = page >> 16; 1544 1545 instrs[2].ctx.addr.naddrs = naddrs; 1546 1547 /* Drop the last two instructions if we're not programming the page. */ 1548 if (!prog) { 1549 op.ninstrs -= 2; 1550 /* Also drop the DATA_OUT instruction if empty. */ 1551 if (!len) 1552 op.ninstrs--; 1553 } 1554 1555 if (mtd->writesize <= 512) { 1556 /* 1557 * Small pages need some more tweaking: we have to adjust the 1558 * first instruction depending on the page offset we're trying 1559 * to access. 1560 */ 1561 if (offset_in_page >= mtd->writesize) 1562 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1563 else if (offset_in_page >= 256 && 1564 !(chip->options & NAND_BUSWIDTH_16)) 1565 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1566 } else { 1567 /* 1568 * Drop the first command if we're dealing with a large page 1569 * NAND. 1570 */ 1571 op.instrs++; 1572 op.ninstrs--; 1573 } 1574 1575 return nand_exec_op(chip, &op); 1576 } 1577 1578 /** 1579 * nand_prog_page_begin_op - starts a PROG PAGE operation 1580 * @chip: The NAND chip 1581 * @page: page to write 1582 * @offset_in_page: offset within the page 1583 * @buf: buffer containing the data to write to the page 1584 * @len: length of the buffer 1585 * 1586 * This function issues the first half of a PROG PAGE operation. 1587 * This function does not select/unselect the CS line. 1588 * 1589 * Returns 0 on success, a negative error code otherwise. 1590 */ 1591 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1592 unsigned int offset_in_page, const void *buf, 1593 unsigned int len) 1594 { 1595 struct mtd_info *mtd = nand_to_mtd(chip); 1596 1597 if (len && !buf) 1598 return -EINVAL; 1599 1600 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1601 return -EINVAL; 1602 1603 if (nand_has_exec_op(chip)) 1604 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1605 len, false); 1606 1607 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); 1608 1609 if (buf) 1610 chip->legacy.write_buf(chip, buf, len); 1611 1612 return 0; 1613 } 1614 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1615 1616 /** 1617 * nand_prog_page_end_op - ends a PROG PAGE operation 1618 * @chip: The NAND chip 1619 * 1620 * This function issues the second half of a PROG PAGE operation. 1621 * This function does not select/unselect the CS line. 1622 * 1623 * Returns 0 on success, a negative error code otherwise. 1624 */ 1625 int nand_prog_page_end_op(struct nand_chip *chip) 1626 { 1627 int ret; 1628 u8 status; 1629 1630 if (nand_has_exec_op(chip)) { 1631 const struct nand_interface_config *conf = 1632 nand_get_interface_config(chip); 1633 struct nand_op_instr instrs[] = { 1634 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1635 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1636 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 1637 0), 1638 }; 1639 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1640 1641 ret = nand_exec_op(chip, &op); 1642 if (ret) 1643 return ret; 1644 1645 ret = nand_status_op(chip, &status); 1646 if (ret) 1647 return ret; 1648 } else { 1649 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1650 ret = chip->legacy.waitfunc(chip); 1651 if (ret < 0) 1652 return ret; 1653 1654 status = ret; 1655 } 1656 1657 if (status & NAND_STATUS_FAIL) 1658 return -EIO; 1659 1660 return 0; 1661 } 1662 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1663 1664 /** 1665 * nand_prog_page_op - Do a full PROG PAGE operation 1666 * @chip: The NAND chip 1667 * @page: page to write 1668 * @offset_in_page: offset within the page 1669 * @buf: buffer containing the data to write to the page 1670 * @len: length of the buffer 1671 * 1672 * This function issues a full PROG PAGE operation. 1673 * This function does not select/unselect the CS line. 1674 * 1675 * Returns 0 on success, a negative error code otherwise. 1676 */ 1677 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1678 unsigned int offset_in_page, const void *buf, 1679 unsigned int len) 1680 { 1681 struct mtd_info *mtd = nand_to_mtd(chip); 1682 u8 status; 1683 int ret; 1684 1685 if (!len || !buf) 1686 return -EINVAL; 1687 1688 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1689 return -EINVAL; 1690 1691 if (nand_has_exec_op(chip)) { 1692 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1693 len, true); 1694 if (ret) 1695 return ret; 1696 1697 ret = nand_status_op(chip, &status); 1698 if (ret) 1699 return ret; 1700 } else { 1701 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, 1702 page); 1703 chip->legacy.write_buf(chip, buf, len); 1704 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1705 ret = chip->legacy.waitfunc(chip); 1706 if (ret < 0) 1707 return ret; 1708 1709 status = ret; 1710 } 1711 1712 if (status & NAND_STATUS_FAIL) 1713 return -EIO; 1714 1715 return 0; 1716 } 1717 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1718 1719 /** 1720 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1721 * @chip: The NAND chip 1722 * @offset_in_page: offset within the page 1723 * @buf: buffer containing the data to send to the NAND 1724 * @len: length of the buffer 1725 * @force_8bit: force 8-bit bus access 1726 * 1727 * This function issues a CHANGE WRITE COLUMN operation. 1728 * This function does not select/unselect the CS line. 1729 * 1730 * Returns 0 on success, a negative error code otherwise. 1731 */ 1732 int nand_change_write_column_op(struct nand_chip *chip, 1733 unsigned int offset_in_page, 1734 const void *buf, unsigned int len, 1735 bool force_8bit) 1736 { 1737 struct mtd_info *mtd = nand_to_mtd(chip); 1738 1739 if (len && !buf) 1740 return -EINVAL; 1741 1742 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1743 return -EINVAL; 1744 1745 /* Small page NANDs do not support column change. */ 1746 if (mtd->writesize <= 512) 1747 return -ENOTSUPP; 1748 1749 if (nand_has_exec_op(chip)) { 1750 const struct nand_interface_config *conf = 1751 nand_get_interface_config(chip); 1752 u8 addrs[2]; 1753 struct nand_op_instr instrs[] = { 1754 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1755 NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)), 1756 NAND_OP_DATA_OUT(len, buf, 0), 1757 }; 1758 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1759 int ret; 1760 1761 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1762 if (ret < 0) 1763 return ret; 1764 1765 instrs[2].ctx.data.force_8bit = force_8bit; 1766 1767 /* Drop the DATA_OUT instruction if len is set to 0. */ 1768 if (!len) 1769 op.ninstrs--; 1770 1771 return nand_exec_op(chip, &op); 1772 } 1773 1774 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); 1775 if (len) 1776 chip->legacy.write_buf(chip, buf, len); 1777 1778 return 0; 1779 } 1780 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1781 1782 /** 1783 * nand_readid_op - Do a READID operation 1784 * @chip: The NAND chip 1785 * @addr: address cycle to pass after the READID command 1786 * @buf: buffer used to store the ID 1787 * @len: length of the buffer 1788 * 1789 * This function sends a READID command and reads back the ID returned by the 1790 * NAND. 1791 * This function does not select/unselect the CS line. 1792 * 1793 * Returns 0 on success, a negative error code otherwise. 1794 */ 1795 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1796 unsigned int len) 1797 { 1798 unsigned int i; 1799 u8 *id = buf, *ddrbuf = NULL; 1800 1801 if (len && !buf) 1802 return -EINVAL; 1803 1804 if (nand_has_exec_op(chip)) { 1805 const struct nand_interface_config *conf = 1806 nand_get_interface_config(chip); 1807 struct nand_op_instr instrs[] = { 1808 NAND_OP_CMD(NAND_CMD_READID, 0), 1809 NAND_OP_ADDR(1, &addr, 1810 NAND_COMMON_TIMING_NS(conf, tADL_min)), 1811 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1812 }; 1813 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1814 int ret; 1815 1816 /* READ_ID data bytes are received twice in NV-DDR mode */ 1817 if (len && nand_interface_is_nvddr(conf)) { 1818 ddrbuf = kzalloc(len * 2, GFP_KERNEL); 1819 if (!ddrbuf) 1820 return -ENOMEM; 1821 1822 instrs[2].ctx.data.len *= 2; 1823 instrs[2].ctx.data.buf.in = ddrbuf; 1824 } 1825 1826 /* Drop the DATA_IN instruction if len is set to 0. */ 1827 if (!len) 1828 op.ninstrs--; 1829 1830 ret = nand_exec_op(chip, &op); 1831 if (!ret && len && nand_interface_is_nvddr(conf)) { 1832 for (i = 0; i < len; i++) 1833 id[i] = ddrbuf[i * 2]; 1834 } 1835 1836 kfree(ddrbuf); 1837 1838 return ret; 1839 } 1840 1841 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); 1842 1843 for (i = 0; i < len; i++) 1844 id[i] = chip->legacy.read_byte(chip); 1845 1846 return 0; 1847 } 1848 EXPORT_SYMBOL_GPL(nand_readid_op); 1849 1850 /** 1851 * nand_status_op - Do a STATUS operation 1852 * @chip: The NAND chip 1853 * @status: out variable to store the NAND status 1854 * 1855 * This function sends a STATUS command and reads back the status returned by 1856 * the NAND. 1857 * This function does not select/unselect the CS line. 1858 * 1859 * Returns 0 on success, a negative error code otherwise. 1860 */ 1861 int nand_status_op(struct nand_chip *chip, u8 *status) 1862 { 1863 if (nand_has_exec_op(chip)) { 1864 const struct nand_interface_config *conf = 1865 nand_get_interface_config(chip); 1866 u8 ddrstatus[2]; 1867 struct nand_op_instr instrs[] = { 1868 NAND_OP_CMD(NAND_CMD_STATUS, 1869 NAND_COMMON_TIMING_NS(conf, tADL_min)), 1870 NAND_OP_8BIT_DATA_IN(1, status, 0), 1871 }; 1872 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1873 int ret; 1874 1875 /* The status data byte will be received twice in NV-DDR mode */ 1876 if (status && nand_interface_is_nvddr(conf)) { 1877 instrs[1].ctx.data.len *= 2; 1878 instrs[1].ctx.data.buf.in = ddrstatus; 1879 } 1880 1881 if (!status) 1882 op.ninstrs--; 1883 1884 ret = nand_exec_op(chip, &op); 1885 if (!ret && status && nand_interface_is_nvddr(conf)) 1886 *status = ddrstatus[0]; 1887 1888 return ret; 1889 } 1890 1891 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); 1892 if (status) 1893 *status = chip->legacy.read_byte(chip); 1894 1895 return 0; 1896 } 1897 EXPORT_SYMBOL_GPL(nand_status_op); 1898 1899 /** 1900 * nand_exit_status_op - Exit a STATUS operation 1901 * @chip: The NAND chip 1902 * 1903 * This function sends a READ0 command to cancel the effect of the STATUS 1904 * command to avoid reading only the status until a new read command is sent. 1905 * 1906 * This function does not select/unselect the CS line. 1907 * 1908 * Returns 0 on success, a negative error code otherwise. 1909 */ 1910 int nand_exit_status_op(struct nand_chip *chip) 1911 { 1912 if (nand_has_exec_op(chip)) { 1913 struct nand_op_instr instrs[] = { 1914 NAND_OP_CMD(NAND_CMD_READ0, 0), 1915 }; 1916 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1917 1918 return nand_exec_op(chip, &op); 1919 } 1920 1921 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); 1922 1923 return 0; 1924 } 1925 EXPORT_SYMBOL_GPL(nand_exit_status_op); 1926 1927 /** 1928 * nand_erase_op - Do an erase operation 1929 * @chip: The NAND chip 1930 * @eraseblock: block to erase 1931 * 1932 * This function sends an ERASE command and waits for the NAND to be ready 1933 * before returning. 1934 * This function does not select/unselect the CS line. 1935 * 1936 * Returns 0 on success, a negative error code otherwise. 1937 */ 1938 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 1939 { 1940 unsigned int page = eraseblock << 1941 (chip->phys_erase_shift - chip->page_shift); 1942 int ret; 1943 u8 status; 1944 1945 if (nand_has_exec_op(chip)) { 1946 const struct nand_interface_config *conf = 1947 nand_get_interface_config(chip); 1948 u8 addrs[3] = { page, page >> 8, page >> 16 }; 1949 struct nand_op_instr instrs[] = { 1950 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 1951 NAND_OP_ADDR(2, addrs, 0), 1952 NAND_OP_CMD(NAND_CMD_ERASE2, 1953 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1954 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max), 1955 0), 1956 }; 1957 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1958 1959 if (chip->options & NAND_ROW_ADDR_3) 1960 instrs[1].ctx.addr.naddrs++; 1961 1962 ret = nand_exec_op(chip, &op); 1963 if (ret) 1964 return ret; 1965 1966 ret = nand_status_op(chip, &status); 1967 if (ret) 1968 return ret; 1969 } else { 1970 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); 1971 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); 1972 1973 ret = chip->legacy.waitfunc(chip); 1974 if (ret < 0) 1975 return ret; 1976 1977 status = ret; 1978 } 1979 1980 if (status & NAND_STATUS_FAIL) 1981 return -EIO; 1982 1983 return 0; 1984 } 1985 EXPORT_SYMBOL_GPL(nand_erase_op); 1986 1987 /** 1988 * nand_set_features_op - Do a SET FEATURES operation 1989 * @chip: The NAND chip 1990 * @feature: feature id 1991 * @data: 4 bytes of data 1992 * 1993 * This function sends a SET FEATURES command and waits for the NAND to be 1994 * ready before returning. 1995 * This function does not select/unselect the CS line. 1996 * 1997 * Returns 0 on success, a negative error code otherwise. 1998 */ 1999 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 2000 const void *data) 2001 { 2002 const u8 *params = data; 2003 int i, ret; 2004 2005 if (nand_has_exec_op(chip)) { 2006 const struct nand_interface_config *conf = 2007 nand_get_interface_config(chip); 2008 struct nand_op_instr instrs[] = { 2009 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 2010 NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf, 2011 tADL_min)), 2012 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 2013 NAND_COMMON_TIMING_NS(conf, 2014 tWB_max)), 2015 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), 2016 0), 2017 }; 2018 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2019 2020 return nand_exec_op(chip, &op); 2021 } 2022 2023 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); 2024 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 2025 chip->legacy.write_byte(chip, params[i]); 2026 2027 ret = chip->legacy.waitfunc(chip); 2028 if (ret < 0) 2029 return ret; 2030 2031 if (ret & NAND_STATUS_FAIL) 2032 return -EIO; 2033 2034 return 0; 2035 } 2036 2037 /** 2038 * nand_get_features_op - Do a GET FEATURES operation 2039 * @chip: The NAND chip 2040 * @feature: feature id 2041 * @data: 4 bytes of data 2042 * 2043 * This function sends a GET FEATURES command and waits for the NAND to be 2044 * ready before returning. 2045 * This function does not select/unselect the CS line. 2046 * 2047 * Returns 0 on success, a negative error code otherwise. 2048 */ 2049 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 2050 void *data) 2051 { 2052 u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2]; 2053 int i; 2054 2055 if (nand_has_exec_op(chip)) { 2056 const struct nand_interface_config *conf = 2057 nand_get_interface_config(chip); 2058 struct nand_op_instr instrs[] = { 2059 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 2060 NAND_OP_ADDR(1, &feature, 2061 NAND_COMMON_TIMING_NS(conf, tWB_max)), 2062 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), 2063 NAND_COMMON_TIMING_NS(conf, tRR_min)), 2064 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 2065 data, 0), 2066 }; 2067 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2068 int ret; 2069 2070 /* GET_FEATURE data bytes are received twice in NV-DDR mode */ 2071 if (nand_interface_is_nvddr(conf)) { 2072 instrs[3].ctx.data.len *= 2; 2073 instrs[3].ctx.data.buf.in = ddrbuf; 2074 } 2075 2076 ret = nand_exec_op(chip, &op); 2077 if (nand_interface_is_nvddr(conf)) { 2078 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++) 2079 params[i] = ddrbuf[i * 2]; 2080 } 2081 2082 return ret; 2083 } 2084 2085 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); 2086 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 2087 params[i] = chip->legacy.read_byte(chip); 2088 2089 return 0; 2090 } 2091 2092 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, 2093 unsigned int delay_ns) 2094 { 2095 if (nand_has_exec_op(chip)) { 2096 struct nand_op_instr instrs[] = { 2097 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), 2098 PSEC_TO_NSEC(delay_ns)), 2099 }; 2100 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2101 2102 return nand_exec_op(chip, &op); 2103 } 2104 2105 /* Apply delay or wait for ready/busy pin */ 2106 if (!chip->legacy.dev_ready) 2107 udelay(chip->legacy.chip_delay); 2108 else 2109 nand_wait_ready(chip); 2110 2111 return 0; 2112 } 2113 2114 /** 2115 * nand_reset_op - Do a reset operation 2116 * @chip: The NAND chip 2117 * 2118 * This function sends a RESET command and waits for the NAND to be ready 2119 * before returning. 2120 * This function does not select/unselect the CS line. 2121 * 2122 * Returns 0 on success, a negative error code otherwise. 2123 */ 2124 int nand_reset_op(struct nand_chip *chip) 2125 { 2126 if (nand_has_exec_op(chip)) { 2127 const struct nand_interface_config *conf = 2128 nand_get_interface_config(chip); 2129 struct nand_op_instr instrs[] = { 2130 NAND_OP_CMD(NAND_CMD_RESET, 2131 NAND_COMMON_TIMING_NS(conf, tWB_max)), 2132 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max), 2133 0), 2134 }; 2135 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2136 2137 return nand_exec_op(chip, &op); 2138 } 2139 2140 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); 2141 2142 return 0; 2143 } 2144 EXPORT_SYMBOL_GPL(nand_reset_op); 2145 2146 /** 2147 * nand_read_data_op - Read data from the NAND 2148 * @chip: The NAND chip 2149 * @buf: buffer used to store the data 2150 * @len: length of the buffer 2151 * @force_8bit: force 8-bit bus access 2152 * @check_only: do not actually run the command, only checks if the 2153 * controller driver supports it 2154 * 2155 * This function does a raw data read on the bus. Usually used after launching 2156 * another NAND operation like nand_read_page_op(). 2157 * This function does not select/unselect the CS line. 2158 * 2159 * Returns 0 on success, a negative error code otherwise. 2160 */ 2161 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 2162 bool force_8bit, bool check_only) 2163 { 2164 if (!len || (!check_only && !buf)) 2165 return -EINVAL; 2166 2167 if (nand_has_exec_op(chip)) { 2168 const struct nand_interface_config *conf = 2169 nand_get_interface_config(chip); 2170 struct nand_op_instr instrs[] = { 2171 NAND_OP_DATA_IN(len, buf, 0), 2172 }; 2173 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2174 u8 *ddrbuf = NULL; 2175 int ret, i; 2176 2177 instrs[0].ctx.data.force_8bit = force_8bit; 2178 2179 /* 2180 * Parameter payloads (ID, status, features, etc) do not go 2181 * through the same pipeline as regular data, hence the 2182 * force_8bit flag must be set and this also indicates that in 2183 * case NV-DDR timings are being used the data will be received 2184 * twice. 2185 */ 2186 if (force_8bit && nand_interface_is_nvddr(conf)) { 2187 ddrbuf = kzalloc(len * 2, GFP_KERNEL); 2188 if (!ddrbuf) 2189 return -ENOMEM; 2190 2191 instrs[0].ctx.data.len *= 2; 2192 instrs[0].ctx.data.buf.in = ddrbuf; 2193 } 2194 2195 if (check_only) { 2196 ret = nand_check_op(chip, &op); 2197 kfree(ddrbuf); 2198 return ret; 2199 } 2200 2201 ret = nand_exec_op(chip, &op); 2202 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) { 2203 u8 *dst = buf; 2204 2205 for (i = 0; i < len; i++) 2206 dst[i] = ddrbuf[i * 2]; 2207 } 2208 2209 kfree(ddrbuf); 2210 2211 return ret; 2212 } 2213 2214 if (check_only) 2215 return 0; 2216 2217 if (force_8bit) { 2218 u8 *p = buf; 2219 unsigned int i; 2220 2221 for (i = 0; i < len; i++) 2222 p[i] = chip->legacy.read_byte(chip); 2223 } else { 2224 chip->legacy.read_buf(chip, buf, len); 2225 } 2226 2227 return 0; 2228 } 2229 EXPORT_SYMBOL_GPL(nand_read_data_op); 2230 2231 /** 2232 * nand_write_data_op - Write data from the NAND 2233 * @chip: The NAND chip 2234 * @buf: buffer containing the data to send on the bus 2235 * @len: length of the buffer 2236 * @force_8bit: force 8-bit bus access 2237 * 2238 * This function does a raw data write on the bus. Usually used after launching 2239 * another NAND operation like nand_write_page_begin_op(). 2240 * This function does not select/unselect the CS line. 2241 * 2242 * Returns 0 on success, a negative error code otherwise. 2243 */ 2244 int nand_write_data_op(struct nand_chip *chip, const void *buf, 2245 unsigned int len, bool force_8bit) 2246 { 2247 if (!len || !buf) 2248 return -EINVAL; 2249 2250 if (nand_has_exec_op(chip)) { 2251 struct nand_op_instr instrs[] = { 2252 NAND_OP_DATA_OUT(len, buf, 0), 2253 }; 2254 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2255 2256 instrs[0].ctx.data.force_8bit = force_8bit; 2257 2258 return nand_exec_op(chip, &op); 2259 } 2260 2261 if (force_8bit) { 2262 const u8 *p = buf; 2263 unsigned int i; 2264 2265 for (i = 0; i < len; i++) 2266 chip->legacy.write_byte(chip, p[i]); 2267 } else { 2268 chip->legacy.write_buf(chip, buf, len); 2269 } 2270 2271 return 0; 2272 } 2273 EXPORT_SYMBOL_GPL(nand_write_data_op); 2274 2275 /** 2276 * struct nand_op_parser_ctx - Context used by the parser 2277 * @instrs: array of all the instructions that must be addressed 2278 * @ninstrs: length of the @instrs array 2279 * @subop: Sub-operation to be passed to the NAND controller 2280 * 2281 * This structure is used by the core to split NAND operations into 2282 * sub-operations that can be handled by the NAND controller. 2283 */ 2284 struct nand_op_parser_ctx { 2285 const struct nand_op_instr *instrs; 2286 unsigned int ninstrs; 2287 struct nand_subop subop; 2288 }; 2289 2290 /** 2291 * nand_op_parser_must_split_instr - Checks if an instruction must be split 2292 * @pat: the parser pattern element that matches @instr 2293 * @instr: pointer to the instruction to check 2294 * @start_offset: this is an in/out parameter. If @instr has already been 2295 * split, then @start_offset is the offset from which to start 2296 * (either an address cycle or an offset in the data buffer). 2297 * Conversely, if the function returns true (ie. instr must be 2298 * split), this parameter is updated to point to the first 2299 * data/address cycle that has not been taken care of. 2300 * 2301 * Some NAND controllers are limited and cannot send X address cycles with a 2302 * unique operation, or cannot read/write more than Y bytes at the same time. 2303 * In this case, split the instruction that does not fit in a single 2304 * controller-operation into two or more chunks. 2305 * 2306 * Returns true if the instruction must be split, false otherwise. 2307 * The @start_offset parameter is also updated to the offset at which the next 2308 * bundle of instruction must start (if an address or a data instruction). 2309 */ 2310 static bool 2311 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 2312 const struct nand_op_instr *instr, 2313 unsigned int *start_offset) 2314 { 2315 switch (pat->type) { 2316 case NAND_OP_ADDR_INSTR: 2317 if (!pat->ctx.addr.maxcycles) 2318 break; 2319 2320 if (instr->ctx.addr.naddrs - *start_offset > 2321 pat->ctx.addr.maxcycles) { 2322 *start_offset += pat->ctx.addr.maxcycles; 2323 return true; 2324 } 2325 break; 2326 2327 case NAND_OP_DATA_IN_INSTR: 2328 case NAND_OP_DATA_OUT_INSTR: 2329 if (!pat->ctx.data.maxlen) 2330 break; 2331 2332 if (instr->ctx.data.len - *start_offset > 2333 pat->ctx.data.maxlen) { 2334 *start_offset += pat->ctx.data.maxlen; 2335 return true; 2336 } 2337 break; 2338 2339 default: 2340 break; 2341 } 2342 2343 return false; 2344 } 2345 2346 /** 2347 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2348 * remaining in the parser context 2349 * @pat: the pattern to test 2350 * @ctx: the parser context structure to match with the pattern @pat 2351 * 2352 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2353 * Returns true if this is the case, false ortherwise. When true is returned, 2354 * @ctx->subop is updated with the set of instructions to be passed to the 2355 * controller driver. 2356 */ 2357 static bool 2358 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2359 struct nand_op_parser_ctx *ctx) 2360 { 2361 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2362 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2363 const struct nand_op_instr *instr = ctx->subop.instrs; 2364 unsigned int i, ninstrs; 2365 2366 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2367 /* 2368 * The pattern instruction does not match the operation 2369 * instruction. If the instruction is marked optional in the 2370 * pattern definition, we skip the pattern element and continue 2371 * to the next one. If the element is mandatory, there's no 2372 * match and we can return false directly. 2373 */ 2374 if (instr->type != pat->elems[i].type) { 2375 if (!pat->elems[i].optional) 2376 return false; 2377 2378 continue; 2379 } 2380 2381 /* 2382 * Now check the pattern element constraints. If the pattern is 2383 * not able to handle the whole instruction in a single step, 2384 * we have to split it. 2385 * The last_instr_end_off value comes back updated to point to 2386 * the position where we have to split the instruction (the 2387 * start of the next subop chunk). 2388 */ 2389 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2390 &instr_offset)) { 2391 ninstrs++; 2392 i++; 2393 break; 2394 } 2395 2396 instr++; 2397 ninstrs++; 2398 instr_offset = 0; 2399 } 2400 2401 /* 2402 * This can happen if all instructions of a pattern are optional. 2403 * Still, if there's not at least one instruction handled by this 2404 * pattern, this is not a match, and we should try the next one (if 2405 * any). 2406 */ 2407 if (!ninstrs) 2408 return false; 2409 2410 /* 2411 * We had a match on the pattern head, but the pattern may be longer 2412 * than the instructions we're asked to execute. We need to make sure 2413 * there's no mandatory elements in the pattern tail. 2414 */ 2415 for (; i < pat->nelems; i++) { 2416 if (!pat->elems[i].optional) 2417 return false; 2418 } 2419 2420 /* 2421 * We have a match: update the subop structure accordingly and return 2422 * true. 2423 */ 2424 ctx->subop.ninstrs = ninstrs; 2425 ctx->subop.last_instr_end_off = instr_offset; 2426 2427 return true; 2428 } 2429 2430 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2431 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2432 { 2433 const struct nand_op_instr *instr; 2434 char *prefix = " "; 2435 unsigned int i; 2436 2437 pr_debug("executing subop (CS%d):\n", ctx->subop.cs); 2438 2439 for (i = 0; i < ctx->ninstrs; i++) { 2440 instr = &ctx->instrs[i]; 2441 2442 if (instr == &ctx->subop.instrs[0]) 2443 prefix = " ->"; 2444 2445 nand_op_trace(prefix, instr); 2446 2447 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2448 prefix = " "; 2449 } 2450 } 2451 #else 2452 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2453 { 2454 /* NOP */ 2455 } 2456 #endif 2457 2458 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, 2459 const struct nand_op_parser_ctx *b) 2460 { 2461 if (a->subop.ninstrs < b->subop.ninstrs) 2462 return -1; 2463 else if (a->subop.ninstrs > b->subop.ninstrs) 2464 return 1; 2465 2466 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) 2467 return -1; 2468 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) 2469 return 1; 2470 2471 return 0; 2472 } 2473 2474 /** 2475 * nand_op_parser_exec_op - exec_op parser 2476 * @chip: the NAND chip 2477 * @parser: patterns description provided by the controller driver 2478 * @op: the NAND operation to address 2479 * @check_only: when true, the function only checks if @op can be handled but 2480 * does not execute the operation 2481 * 2482 * Helper function designed to ease integration of NAND controller drivers that 2483 * only support a limited set of instruction sequences. The supported sequences 2484 * are described in @parser, and the framework takes care of splitting @op into 2485 * multiple sub-operations (if required) and pass them back to the ->exec() 2486 * callback of the matching pattern if @check_only is set to false. 2487 * 2488 * NAND controller drivers should call this function from their own ->exec_op() 2489 * implementation. 2490 * 2491 * Returns 0 on success, a negative error code otherwise. A failure can be 2492 * caused by an unsupported operation (none of the supported patterns is able 2493 * to handle the requested operation), or an error returned by one of the 2494 * matching pattern->exec() hook. 2495 */ 2496 int nand_op_parser_exec_op(struct nand_chip *chip, 2497 const struct nand_op_parser *parser, 2498 const struct nand_operation *op, bool check_only) 2499 { 2500 struct nand_op_parser_ctx ctx = { 2501 .subop.cs = op->cs, 2502 .subop.instrs = op->instrs, 2503 .instrs = op->instrs, 2504 .ninstrs = op->ninstrs, 2505 }; 2506 unsigned int i; 2507 2508 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2509 const struct nand_op_parser_pattern *pattern; 2510 struct nand_op_parser_ctx best_ctx; 2511 int ret, best_pattern = -1; 2512 2513 for (i = 0; i < parser->npatterns; i++) { 2514 struct nand_op_parser_ctx test_ctx = ctx; 2515 2516 pattern = &parser->patterns[i]; 2517 if (!nand_op_parser_match_pat(pattern, &test_ctx)) 2518 continue; 2519 2520 if (best_pattern >= 0 && 2521 nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) 2522 continue; 2523 2524 best_pattern = i; 2525 best_ctx = test_ctx; 2526 } 2527 2528 if (best_pattern < 0) { 2529 pr_debug("->exec_op() parser: pattern not found!\n"); 2530 return -ENOTSUPP; 2531 } 2532 2533 ctx = best_ctx; 2534 nand_op_parser_trace(&ctx); 2535 2536 if (!check_only) { 2537 pattern = &parser->patterns[best_pattern]; 2538 ret = pattern->exec(chip, &ctx.subop); 2539 if (ret) 2540 return ret; 2541 } 2542 2543 /* 2544 * Update the context structure by pointing to the start of the 2545 * next subop. 2546 */ 2547 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2548 if (ctx.subop.last_instr_end_off) 2549 ctx.subop.instrs -= 1; 2550 2551 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2552 } 2553 2554 return 0; 2555 } 2556 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2557 2558 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2559 { 2560 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2561 instr->type == NAND_OP_DATA_OUT_INSTR); 2562 } 2563 2564 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2565 unsigned int instr_idx) 2566 { 2567 return subop && instr_idx < subop->ninstrs; 2568 } 2569 2570 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2571 unsigned int instr_idx) 2572 { 2573 if (instr_idx) 2574 return 0; 2575 2576 return subop->first_instr_start_off; 2577 } 2578 2579 /** 2580 * nand_subop_get_addr_start_off - Get the start offset in an address array 2581 * @subop: The entire sub-operation 2582 * @instr_idx: Index of the instruction inside the sub-operation 2583 * 2584 * During driver development, one could be tempted to directly use the 2585 * ->addr.addrs field of address instructions. This is wrong as address 2586 * instructions might be split. 2587 * 2588 * Given an address instruction, returns the offset of the first cycle to issue. 2589 */ 2590 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2591 unsigned int instr_idx) 2592 { 2593 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2594 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2595 return 0; 2596 2597 return nand_subop_get_start_off(subop, instr_idx); 2598 } 2599 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2600 2601 /** 2602 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2603 * @subop: The entire sub-operation 2604 * @instr_idx: Index of the instruction inside the sub-operation 2605 * 2606 * During driver development, one could be tempted to directly use the 2607 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2608 * might be split. 2609 * 2610 * Given an address instruction, returns the number of address cycle to issue. 2611 */ 2612 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2613 unsigned int instr_idx) 2614 { 2615 int start_off, end_off; 2616 2617 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2618 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2619 return 0; 2620 2621 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2622 2623 if (instr_idx == subop->ninstrs - 1 && 2624 subop->last_instr_end_off) 2625 end_off = subop->last_instr_end_off; 2626 else 2627 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2628 2629 return end_off - start_off; 2630 } 2631 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2632 2633 /** 2634 * nand_subop_get_data_start_off - Get the start offset in a data array 2635 * @subop: The entire sub-operation 2636 * @instr_idx: Index of the instruction inside the sub-operation 2637 * 2638 * During driver development, one could be tempted to directly use the 2639 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2640 * instructions might be split. 2641 * 2642 * Given a data instruction, returns the offset to start from. 2643 */ 2644 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2645 unsigned int instr_idx) 2646 { 2647 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2648 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2649 return 0; 2650 2651 return nand_subop_get_start_off(subop, instr_idx); 2652 } 2653 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2654 2655 /** 2656 * nand_subop_get_data_len - Get the number of bytes to retrieve 2657 * @subop: The entire sub-operation 2658 * @instr_idx: Index of the instruction inside the sub-operation 2659 * 2660 * During driver development, one could be tempted to directly use the 2661 * ->data->len field of a data instruction. This is wrong as data instructions 2662 * might be split. 2663 * 2664 * Returns the length of the chunk of data to send/receive. 2665 */ 2666 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2667 unsigned int instr_idx) 2668 { 2669 int start_off = 0, end_off; 2670 2671 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2672 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2673 return 0; 2674 2675 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2676 2677 if (instr_idx == subop->ninstrs - 1 && 2678 subop->last_instr_end_off) 2679 end_off = subop->last_instr_end_off; 2680 else 2681 end_off = subop->instrs[instr_idx].ctx.data.len; 2682 2683 return end_off - start_off; 2684 } 2685 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2686 2687 /** 2688 * nand_reset - Reset and initialize a NAND device 2689 * @chip: The NAND chip 2690 * @chipnr: Internal die id 2691 * 2692 * Save the timings data structure, then apply SDR timings mode 0 (see 2693 * nand_reset_interface for details), do the reset operation, and apply 2694 * back the previous timings. 2695 * 2696 * Returns 0 on success, a negative error code otherwise. 2697 */ 2698 int nand_reset(struct nand_chip *chip, int chipnr) 2699 { 2700 int ret; 2701 2702 ret = nand_reset_interface(chip, chipnr); 2703 if (ret) 2704 return ret; 2705 2706 /* 2707 * The CS line has to be released before we can apply the new NAND 2708 * interface settings, hence this weird nand_select_target() 2709 * nand_deselect_target() dance. 2710 */ 2711 nand_select_target(chip, chipnr); 2712 ret = nand_reset_op(chip); 2713 nand_deselect_target(chip); 2714 if (ret) 2715 return ret; 2716 2717 ret = nand_setup_interface(chip, chipnr); 2718 if (ret) 2719 return ret; 2720 2721 return 0; 2722 } 2723 EXPORT_SYMBOL_GPL(nand_reset); 2724 2725 /** 2726 * nand_get_features - wrapper to perform a GET_FEATURE 2727 * @chip: NAND chip info structure 2728 * @addr: feature address 2729 * @subfeature_param: the subfeature parameters, a four bytes array 2730 * 2731 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2732 * operation cannot be handled. 2733 */ 2734 int nand_get_features(struct nand_chip *chip, int addr, 2735 u8 *subfeature_param) 2736 { 2737 if (!nand_supports_get_features(chip, addr)) 2738 return -ENOTSUPP; 2739 2740 if (chip->legacy.get_features) 2741 return chip->legacy.get_features(chip, addr, subfeature_param); 2742 2743 return nand_get_features_op(chip, addr, subfeature_param); 2744 } 2745 2746 /** 2747 * nand_set_features - wrapper to perform a SET_FEATURE 2748 * @chip: NAND chip info structure 2749 * @addr: feature address 2750 * @subfeature_param: the subfeature parameters, a four bytes array 2751 * 2752 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2753 * operation cannot be handled. 2754 */ 2755 int nand_set_features(struct nand_chip *chip, int addr, 2756 u8 *subfeature_param) 2757 { 2758 if (!nand_supports_set_features(chip, addr)) 2759 return -ENOTSUPP; 2760 2761 if (chip->legacy.set_features) 2762 return chip->legacy.set_features(chip, addr, subfeature_param); 2763 2764 return nand_set_features_op(chip, addr, subfeature_param); 2765 } 2766 2767 /** 2768 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2769 * @buf: buffer to test 2770 * @len: buffer length 2771 * @bitflips_threshold: maximum number of bitflips 2772 * 2773 * Check if a buffer contains only 0xff, which means the underlying region 2774 * has been erased and is ready to be programmed. 2775 * The bitflips_threshold specify the maximum number of bitflips before 2776 * considering the region is not erased. 2777 * Note: The logic of this function has been extracted from the memweight 2778 * implementation, except that nand_check_erased_buf function exit before 2779 * testing the whole buffer if the number of bitflips exceed the 2780 * bitflips_threshold value. 2781 * 2782 * Returns a positive number of bitflips less than or equal to 2783 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2784 * threshold. 2785 */ 2786 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2787 { 2788 const unsigned char *bitmap = buf; 2789 int bitflips = 0; 2790 int weight; 2791 2792 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2793 len--, bitmap++) { 2794 weight = hweight8(*bitmap); 2795 bitflips += BITS_PER_BYTE - weight; 2796 if (unlikely(bitflips > bitflips_threshold)) 2797 return -EBADMSG; 2798 } 2799 2800 for (; len >= sizeof(long); 2801 len -= sizeof(long), bitmap += sizeof(long)) { 2802 unsigned long d = *((unsigned long *)bitmap); 2803 if (d == ~0UL) 2804 continue; 2805 weight = hweight_long(d); 2806 bitflips += BITS_PER_LONG - weight; 2807 if (unlikely(bitflips > bitflips_threshold)) 2808 return -EBADMSG; 2809 } 2810 2811 for (; len > 0; len--, bitmap++) { 2812 weight = hweight8(*bitmap); 2813 bitflips += BITS_PER_BYTE - weight; 2814 if (unlikely(bitflips > bitflips_threshold)) 2815 return -EBADMSG; 2816 } 2817 2818 return bitflips; 2819 } 2820 2821 /** 2822 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2823 * 0xff data 2824 * @data: data buffer to test 2825 * @datalen: data length 2826 * @ecc: ECC buffer 2827 * @ecclen: ECC length 2828 * @extraoob: extra OOB buffer 2829 * @extraooblen: extra OOB length 2830 * @bitflips_threshold: maximum number of bitflips 2831 * 2832 * Check if a data buffer and its associated ECC and OOB data contains only 2833 * 0xff pattern, which means the underlying region has been erased and is 2834 * ready to be programmed. 2835 * The bitflips_threshold specify the maximum number of bitflips before 2836 * considering the region as not erased. 2837 * 2838 * Note: 2839 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2840 * different from the NAND page size. When fixing bitflips, ECC engines will 2841 * report the number of errors per chunk, and the NAND core infrastructure 2842 * expect you to return the maximum number of bitflips for the whole page. 2843 * This is why you should always use this function on a single chunk and 2844 * not on the whole page. After checking each chunk you should update your 2845 * max_bitflips value accordingly. 2846 * 2/ When checking for bitflips in erased pages you should not only check 2847 * the payload data but also their associated ECC data, because a user might 2848 * have programmed almost all bits to 1 but a few. In this case, we 2849 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2850 * this case. 2851 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2852 * data are protected by the ECC engine. 2853 * It could also be used if you support subpages and want to attach some 2854 * extra OOB data to an ECC chunk. 2855 * 2856 * Returns a positive number of bitflips less than or equal to 2857 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2858 * threshold. In case of success, the passed buffers are filled with 0xff. 2859 */ 2860 int nand_check_erased_ecc_chunk(void *data, int datalen, 2861 void *ecc, int ecclen, 2862 void *extraoob, int extraooblen, 2863 int bitflips_threshold) 2864 { 2865 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2866 2867 data_bitflips = nand_check_erased_buf(data, datalen, 2868 bitflips_threshold); 2869 if (data_bitflips < 0) 2870 return data_bitflips; 2871 2872 bitflips_threshold -= data_bitflips; 2873 2874 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2875 if (ecc_bitflips < 0) 2876 return ecc_bitflips; 2877 2878 bitflips_threshold -= ecc_bitflips; 2879 2880 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2881 bitflips_threshold); 2882 if (extraoob_bitflips < 0) 2883 return extraoob_bitflips; 2884 2885 if (data_bitflips) 2886 memset(data, 0xff, datalen); 2887 2888 if (ecc_bitflips) 2889 memset(ecc, 0xff, ecclen); 2890 2891 if (extraoob_bitflips) 2892 memset(extraoob, 0xff, extraooblen); 2893 2894 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2895 } 2896 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2897 2898 /** 2899 * nand_read_page_raw_notsupp - dummy read raw page function 2900 * @chip: nand chip info structure 2901 * @buf: buffer to store read data 2902 * @oob_required: caller requires OOB data read to chip->oob_poi 2903 * @page: page number to read 2904 * 2905 * Returns -ENOTSUPP unconditionally. 2906 */ 2907 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, 2908 int oob_required, int page) 2909 { 2910 return -ENOTSUPP; 2911 } 2912 2913 /** 2914 * nand_read_page_raw - [INTERN] read raw page data without ecc 2915 * @chip: nand chip info structure 2916 * @buf: buffer to store read data 2917 * @oob_required: caller requires OOB data read to chip->oob_poi 2918 * @page: page number to read 2919 * 2920 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2921 */ 2922 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 2923 int page) 2924 { 2925 struct mtd_info *mtd = nand_to_mtd(chip); 2926 int ret; 2927 2928 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2929 if (ret) 2930 return ret; 2931 2932 if (oob_required) { 2933 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2934 false, false); 2935 if (ret) 2936 return ret; 2937 } 2938 2939 return 0; 2940 } 2941 EXPORT_SYMBOL(nand_read_page_raw); 2942 2943 /** 2944 * nand_monolithic_read_page_raw - Monolithic page read in raw mode 2945 * @chip: NAND chip info structure 2946 * @buf: buffer to store read data 2947 * @oob_required: caller requires OOB data read to chip->oob_poi 2948 * @page: page number to read 2949 * 2950 * This is a raw page read, ie. without any error detection/correction. 2951 * Monolithic means we are requesting all the relevant data (main plus 2952 * eventually OOB) to be loaded in the NAND cache and sent over the 2953 * bus (from the NAND chip to the NAND controller) in a single 2954 * operation. This is an alternative to nand_read_page_raw(), which 2955 * first reads the main data, and if the OOB data is requested too, 2956 * then reads more data on the bus. 2957 */ 2958 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf, 2959 int oob_required, int page) 2960 { 2961 struct mtd_info *mtd = nand_to_mtd(chip); 2962 unsigned int size = mtd->writesize; 2963 u8 *read_buf = buf; 2964 int ret; 2965 2966 if (oob_required) { 2967 size += mtd->oobsize; 2968 2969 if (buf != chip->data_buf) 2970 read_buf = nand_get_data_buf(chip); 2971 } 2972 2973 ret = nand_read_page_op(chip, page, 0, read_buf, size); 2974 if (ret) 2975 return ret; 2976 2977 if (buf != chip->data_buf) 2978 memcpy(buf, read_buf, mtd->writesize); 2979 2980 return 0; 2981 } 2982 EXPORT_SYMBOL(nand_monolithic_read_page_raw); 2983 2984 /** 2985 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 2986 * @chip: nand chip info structure 2987 * @buf: buffer to store read data 2988 * @oob_required: caller requires OOB data read to chip->oob_poi 2989 * @page: page number to read 2990 * 2991 * We need a special oob layout and handling even when OOB isn't used. 2992 */ 2993 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, 2994 int oob_required, int page) 2995 { 2996 struct mtd_info *mtd = nand_to_mtd(chip); 2997 int eccsize = chip->ecc.size; 2998 int eccbytes = chip->ecc.bytes; 2999 uint8_t *oob = chip->oob_poi; 3000 int steps, size, ret; 3001 3002 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3003 if (ret) 3004 return ret; 3005 3006 for (steps = chip->ecc.steps; steps > 0; steps--) { 3007 ret = nand_read_data_op(chip, buf, eccsize, false, false); 3008 if (ret) 3009 return ret; 3010 3011 buf += eccsize; 3012 3013 if (chip->ecc.prepad) { 3014 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3015 false, false); 3016 if (ret) 3017 return ret; 3018 3019 oob += chip->ecc.prepad; 3020 } 3021 3022 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 3023 if (ret) 3024 return ret; 3025 3026 oob += eccbytes; 3027 3028 if (chip->ecc.postpad) { 3029 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3030 false, false); 3031 if (ret) 3032 return ret; 3033 3034 oob += chip->ecc.postpad; 3035 } 3036 } 3037 3038 size = mtd->oobsize - (oob - chip->oob_poi); 3039 if (size) { 3040 ret = nand_read_data_op(chip, oob, size, false, false); 3041 if (ret) 3042 return ret; 3043 } 3044 3045 return 0; 3046 } 3047 3048 /** 3049 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 3050 * @chip: nand chip info structure 3051 * @buf: buffer to store read data 3052 * @oob_required: caller requires OOB data read to chip->oob_poi 3053 * @page: page number to read 3054 */ 3055 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, 3056 int oob_required, int page) 3057 { 3058 struct mtd_info *mtd = nand_to_mtd(chip); 3059 int i, eccsize = chip->ecc.size, ret; 3060 int eccbytes = chip->ecc.bytes; 3061 int eccsteps = chip->ecc.steps; 3062 uint8_t *p = buf; 3063 uint8_t *ecc_calc = chip->ecc.calc_buf; 3064 uint8_t *ecc_code = chip->ecc.code_buf; 3065 unsigned int max_bitflips = 0; 3066 3067 chip->ecc.read_page_raw(chip, buf, 1, page); 3068 3069 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3070 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3071 3072 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3073 chip->ecc.total); 3074 if (ret) 3075 return ret; 3076 3077 eccsteps = chip->ecc.steps; 3078 p = buf; 3079 3080 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3081 int stat; 3082 3083 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 3084 if (stat < 0) { 3085 mtd->ecc_stats.failed++; 3086 } else { 3087 mtd->ecc_stats.corrected += stat; 3088 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3089 } 3090 } 3091 return max_bitflips; 3092 } 3093 3094 /** 3095 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 3096 * @chip: nand chip info structure 3097 * @data_offs: offset of requested data within the page 3098 * @readlen: data length 3099 * @bufpoi: buffer to store read data 3100 * @page: page number to read 3101 */ 3102 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, 3103 uint32_t readlen, uint8_t *bufpoi, int page) 3104 { 3105 struct mtd_info *mtd = nand_to_mtd(chip); 3106 int start_step, end_step, num_steps, ret; 3107 uint8_t *p; 3108 int data_col_addr, i, gaps = 0; 3109 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 3110 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 3111 int index, section = 0; 3112 unsigned int max_bitflips = 0; 3113 struct mtd_oob_region oobregion = { }; 3114 3115 /* Column address within the page aligned to ECC size (256bytes) */ 3116 start_step = data_offs / chip->ecc.size; 3117 end_step = (data_offs + readlen - 1) / chip->ecc.size; 3118 num_steps = end_step - start_step + 1; 3119 index = start_step * chip->ecc.bytes; 3120 3121 /* Data size aligned to ECC ecc.size */ 3122 datafrag_len = num_steps * chip->ecc.size; 3123 eccfrag_len = num_steps * chip->ecc.bytes; 3124 3125 data_col_addr = start_step * chip->ecc.size; 3126 /* If we read not a page aligned data */ 3127 p = bufpoi + data_col_addr; 3128 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 3129 if (ret) 3130 return ret; 3131 3132 /* Calculate ECC */ 3133 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 3134 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); 3135 3136 /* 3137 * The performance is faster if we position offsets according to 3138 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 3139 */ 3140 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 3141 if (ret) 3142 return ret; 3143 3144 if (oobregion.length < eccfrag_len) 3145 gaps = 1; 3146 3147 if (gaps) { 3148 ret = nand_change_read_column_op(chip, mtd->writesize, 3149 chip->oob_poi, mtd->oobsize, 3150 false); 3151 if (ret) 3152 return ret; 3153 } else { 3154 /* 3155 * Send the command to read the particular ECC bytes take care 3156 * about buswidth alignment in read_buf. 3157 */ 3158 aligned_pos = oobregion.offset & ~(busw - 1); 3159 aligned_len = eccfrag_len; 3160 if (oobregion.offset & (busw - 1)) 3161 aligned_len++; 3162 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 3163 (busw - 1)) 3164 aligned_len++; 3165 3166 ret = nand_change_read_column_op(chip, 3167 mtd->writesize + aligned_pos, 3168 &chip->oob_poi[aligned_pos], 3169 aligned_len, false); 3170 if (ret) 3171 return ret; 3172 } 3173 3174 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 3175 chip->oob_poi, index, eccfrag_len); 3176 if (ret) 3177 return ret; 3178 3179 p = bufpoi + data_col_addr; 3180 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 3181 int stat; 3182 3183 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], 3184 &chip->ecc.calc_buf[i]); 3185 if (stat == -EBADMSG && 3186 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3187 /* check for empty pages with bitflips */ 3188 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3189 &chip->ecc.code_buf[i], 3190 chip->ecc.bytes, 3191 NULL, 0, 3192 chip->ecc.strength); 3193 } 3194 3195 if (stat < 0) { 3196 mtd->ecc_stats.failed++; 3197 } else { 3198 mtd->ecc_stats.corrected += stat; 3199 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3200 } 3201 } 3202 return max_bitflips; 3203 } 3204 3205 /** 3206 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 3207 * @chip: nand chip info structure 3208 * @buf: buffer to store read data 3209 * @oob_required: caller requires OOB data read to chip->oob_poi 3210 * @page: page number to read 3211 * 3212 * Not for syndrome calculating ECC controllers which need a special oob layout. 3213 */ 3214 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, 3215 int oob_required, int page) 3216 { 3217 struct mtd_info *mtd = nand_to_mtd(chip); 3218 int i, eccsize = chip->ecc.size, ret; 3219 int eccbytes = chip->ecc.bytes; 3220 int eccsteps = chip->ecc.steps; 3221 uint8_t *p = buf; 3222 uint8_t *ecc_calc = chip->ecc.calc_buf; 3223 uint8_t *ecc_code = chip->ecc.code_buf; 3224 unsigned int max_bitflips = 0; 3225 3226 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3227 if (ret) 3228 return ret; 3229 3230 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3231 chip->ecc.hwctl(chip, NAND_ECC_READ); 3232 3233 ret = nand_read_data_op(chip, p, eccsize, false, false); 3234 if (ret) 3235 return ret; 3236 3237 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3238 } 3239 3240 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, 3241 false); 3242 if (ret) 3243 return ret; 3244 3245 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3246 chip->ecc.total); 3247 if (ret) 3248 return ret; 3249 3250 eccsteps = chip->ecc.steps; 3251 p = buf; 3252 3253 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3254 int stat; 3255 3256 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 3257 if (stat == -EBADMSG && 3258 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3259 /* check for empty pages with bitflips */ 3260 stat = nand_check_erased_ecc_chunk(p, eccsize, 3261 &ecc_code[i], eccbytes, 3262 NULL, 0, 3263 chip->ecc.strength); 3264 } 3265 3266 if (stat < 0) { 3267 mtd->ecc_stats.failed++; 3268 } else { 3269 mtd->ecc_stats.corrected += stat; 3270 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3271 } 3272 } 3273 return max_bitflips; 3274 } 3275 3276 /** 3277 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC 3278 * data read from OOB area 3279 * @chip: nand chip info structure 3280 * @buf: buffer to store read data 3281 * @oob_required: caller requires OOB data read to chip->oob_poi 3282 * @page: page number to read 3283 * 3284 * Hardware ECC for large page chips, which requires the ECC data to be 3285 * extracted from the OOB before the actual data is read. 3286 */ 3287 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, 3288 int oob_required, int page) 3289 { 3290 struct mtd_info *mtd = nand_to_mtd(chip); 3291 int i, eccsize = chip->ecc.size, ret; 3292 int eccbytes = chip->ecc.bytes; 3293 int eccsteps = chip->ecc.steps; 3294 uint8_t *p = buf; 3295 uint8_t *ecc_code = chip->ecc.code_buf; 3296 unsigned int max_bitflips = 0; 3297 3298 /* Read the OOB area first */ 3299 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3300 if (ret) 3301 return ret; 3302 3303 /* Move read cursor to start of page */ 3304 ret = nand_change_read_column_op(chip, 0, NULL, 0, false); 3305 if (ret) 3306 return ret; 3307 3308 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3309 chip->ecc.total); 3310 if (ret) 3311 return ret; 3312 3313 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3314 int stat; 3315 3316 chip->ecc.hwctl(chip, NAND_ECC_READ); 3317 3318 ret = nand_read_data_op(chip, p, eccsize, false, false); 3319 if (ret) 3320 return ret; 3321 3322 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); 3323 if (stat == -EBADMSG && 3324 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3325 /* check for empty pages with bitflips */ 3326 stat = nand_check_erased_ecc_chunk(p, eccsize, 3327 &ecc_code[i], 3328 eccbytes, NULL, 0, 3329 chip->ecc.strength); 3330 } 3331 3332 if (stat < 0) { 3333 mtd->ecc_stats.failed++; 3334 } else { 3335 mtd->ecc_stats.corrected += stat; 3336 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3337 } 3338 } 3339 return max_bitflips; 3340 } 3341 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first); 3342 3343 /** 3344 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 3345 * @chip: nand chip info structure 3346 * @buf: buffer to store read data 3347 * @oob_required: caller requires OOB data read to chip->oob_poi 3348 * @page: page number to read 3349 * 3350 * The hw generator calculates the error syndrome automatically. Therefore we 3351 * need a special oob layout and handling. 3352 */ 3353 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 3354 int oob_required, int page) 3355 { 3356 struct mtd_info *mtd = nand_to_mtd(chip); 3357 int ret, i, eccsize = chip->ecc.size; 3358 int eccbytes = chip->ecc.bytes; 3359 int eccsteps = chip->ecc.steps; 3360 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 3361 uint8_t *p = buf; 3362 uint8_t *oob = chip->oob_poi; 3363 unsigned int max_bitflips = 0; 3364 3365 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3366 if (ret) 3367 return ret; 3368 3369 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3370 int stat; 3371 3372 chip->ecc.hwctl(chip, NAND_ECC_READ); 3373 3374 ret = nand_read_data_op(chip, p, eccsize, false, false); 3375 if (ret) 3376 return ret; 3377 3378 if (chip->ecc.prepad) { 3379 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3380 false, false); 3381 if (ret) 3382 return ret; 3383 3384 oob += chip->ecc.prepad; 3385 } 3386 3387 chip->ecc.hwctl(chip, NAND_ECC_READSYN); 3388 3389 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 3390 if (ret) 3391 return ret; 3392 3393 stat = chip->ecc.correct(chip, p, oob, NULL); 3394 3395 oob += eccbytes; 3396 3397 if (chip->ecc.postpad) { 3398 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3399 false, false); 3400 if (ret) 3401 return ret; 3402 3403 oob += chip->ecc.postpad; 3404 } 3405 3406 if (stat == -EBADMSG && 3407 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3408 /* check for empty pages with bitflips */ 3409 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3410 oob - eccpadbytes, 3411 eccpadbytes, 3412 NULL, 0, 3413 chip->ecc.strength); 3414 } 3415 3416 if (stat < 0) { 3417 mtd->ecc_stats.failed++; 3418 } else { 3419 mtd->ecc_stats.corrected += stat; 3420 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3421 } 3422 } 3423 3424 /* Calculate remaining oob bytes */ 3425 i = mtd->oobsize - (oob - chip->oob_poi); 3426 if (i) { 3427 ret = nand_read_data_op(chip, oob, i, false, false); 3428 if (ret) 3429 return ret; 3430 } 3431 3432 return max_bitflips; 3433 } 3434 3435 /** 3436 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3437 * @chip: NAND chip object 3438 * @oob: oob destination address 3439 * @ops: oob ops structure 3440 * @len: size of oob to transfer 3441 */ 3442 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, 3443 struct mtd_oob_ops *ops, size_t len) 3444 { 3445 struct mtd_info *mtd = nand_to_mtd(chip); 3446 int ret; 3447 3448 switch (ops->mode) { 3449 3450 case MTD_OPS_PLACE_OOB: 3451 case MTD_OPS_RAW: 3452 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3453 return oob + len; 3454 3455 case MTD_OPS_AUTO_OOB: 3456 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3457 ops->ooboffs, len); 3458 BUG_ON(ret); 3459 return oob + len; 3460 3461 default: 3462 BUG(); 3463 } 3464 return NULL; 3465 } 3466 3467 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page, 3468 u32 readlen, int col) 3469 { 3470 struct mtd_info *mtd = nand_to_mtd(chip); 3471 unsigned int first_page, last_page; 3472 3473 chip->cont_read.ongoing = false; 3474 3475 if (!chip->controller->supported_op.cont_read) 3476 return; 3477 3478 /* 3479 * Don't bother making any calculations if the length is too small. 3480 * Side effect: avoids possible integer underflows below. 3481 */ 3482 if (readlen < (2 * mtd->writesize)) 3483 return; 3484 3485 /* Derive the page where continuous read should start (the first full page read) */ 3486 first_page = page; 3487 if (col) 3488 first_page++; 3489 3490 /* Derive the page where continuous read should stop (the last full page read) */ 3491 last_page = page + ((col + readlen) / mtd->writesize) - 1; 3492 3493 /* Configure and enable continuous read when suitable */ 3494 if (first_page < last_page) { 3495 chip->cont_read.first_page = first_page; 3496 chip->cont_read.last_page = last_page; 3497 chip->cont_read.ongoing = true; 3498 /* May reset the ongoing flag */ 3499 rawnand_cap_cont_reads(chip); 3500 } 3501 } 3502 3503 static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page) 3504 { 3505 if (!chip->cont_read.ongoing || page != chip->cont_read.first_page) 3506 return; 3507 3508 chip->cont_read.first_page++; 3509 if (chip->cont_read.first_page == chip->cont_read.pause_page) 3510 chip->cont_read.first_page++; 3511 if (chip->cont_read.first_page >= chip->cont_read.last_page) 3512 chip->cont_read.ongoing = false; 3513 } 3514 3515 /** 3516 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3517 * @chip: NAND chip object 3518 * @retry_mode: the retry mode to use 3519 * 3520 * Some vendors supply a special command to shift the Vt threshold, to be used 3521 * when there are too many bitflips in a page (i.e., ECC error). After setting 3522 * a new threshold, the host should retry reading the page. 3523 */ 3524 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) 3525 { 3526 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3527 3528 if (retry_mode >= chip->read_retries) 3529 return -EINVAL; 3530 3531 if (!chip->ops.setup_read_retry) 3532 return -EOPNOTSUPP; 3533 3534 return chip->ops.setup_read_retry(chip, retry_mode); 3535 } 3536 3537 static void nand_wait_readrdy(struct nand_chip *chip) 3538 { 3539 const struct nand_interface_config *conf; 3540 3541 if (!(chip->options & NAND_NEED_READRDY)) 3542 return; 3543 3544 conf = nand_get_interface_config(chip); 3545 WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0)); 3546 } 3547 3548 /** 3549 * nand_do_read_ops - [INTERN] Read data with ECC 3550 * @chip: NAND chip object 3551 * @from: offset to read from 3552 * @ops: oob ops structure 3553 * 3554 * Internal function. Called with chip held. 3555 */ 3556 static int nand_do_read_ops(struct nand_chip *chip, loff_t from, 3557 struct mtd_oob_ops *ops) 3558 { 3559 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3560 struct mtd_info *mtd = nand_to_mtd(chip); 3561 int ret = 0; 3562 uint32_t readlen = ops->len; 3563 uint32_t oobreadlen = ops->ooblen; 3564 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3565 3566 uint8_t *bufpoi, *oob, *buf; 3567 int use_bounce_buf; 3568 unsigned int max_bitflips = 0; 3569 int retry_mode = 0; 3570 bool ecc_fail = false; 3571 3572 /* Check if the region is secured */ 3573 if (nand_region_is_secured(chip, from, readlen)) 3574 return -EIO; 3575 3576 chipnr = (int)(from >> chip->chip_shift); 3577 nand_select_target(chip, chipnr); 3578 3579 realpage = (int)(from >> chip->page_shift); 3580 page = realpage & chip->pagemask; 3581 3582 col = (int)(from & (mtd->writesize - 1)); 3583 3584 buf = ops->datbuf; 3585 oob = ops->oobbuf; 3586 oob_required = oob ? 1 : 0; 3587 3588 if (likely(ops->mode != MTD_OPS_RAW)) 3589 rawnand_enable_cont_reads(chip, page, readlen, col); 3590 3591 while (1) { 3592 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats; 3593 3594 bytes = min(mtd->writesize - col, readlen); 3595 aligned = (bytes == mtd->writesize); 3596 3597 if (!aligned) 3598 use_bounce_buf = 1; 3599 else if (chip->options & NAND_USES_DMA) 3600 use_bounce_buf = !virt_addr_valid(buf) || 3601 !IS_ALIGNED((unsigned long)buf, 3602 chip->buf_align); 3603 else 3604 use_bounce_buf = 0; 3605 3606 /* Is the current page in the buffer? */ 3607 if (realpage != chip->pagecache.page || oob) { 3608 bufpoi = use_bounce_buf ? chip->data_buf : buf; 3609 3610 if (use_bounce_buf && aligned) 3611 pr_debug("%s: using read bounce buffer for buf@%p\n", 3612 __func__, buf); 3613 3614 read_retry: 3615 /* 3616 * Now read the page into the buffer. Absent an error, 3617 * the read methods return max bitflips per ecc step. 3618 */ 3619 if (unlikely(ops->mode == MTD_OPS_RAW)) 3620 ret = chip->ecc.read_page_raw(chip, bufpoi, 3621 oob_required, 3622 page); 3623 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3624 !oob) 3625 ret = chip->ecc.read_subpage(chip, col, bytes, 3626 bufpoi, page); 3627 else 3628 ret = chip->ecc.read_page(chip, bufpoi, 3629 oob_required, page); 3630 if (ret < 0) { 3631 if (use_bounce_buf) 3632 /* Invalidate page cache */ 3633 chip->pagecache.page = -1; 3634 break; 3635 } 3636 3637 /* 3638 * Copy back the data in the initial buffer when reading 3639 * partial pages or when a bounce buffer is required. 3640 */ 3641 if (use_bounce_buf) { 3642 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3643 !(mtd->ecc_stats.failed - ecc_stats.failed) && 3644 (ops->mode != MTD_OPS_RAW)) { 3645 chip->pagecache.page = realpage; 3646 chip->pagecache.bitflips = ret; 3647 } else { 3648 /* Invalidate page cache */ 3649 chip->pagecache.page = -1; 3650 } 3651 memcpy(buf, bufpoi + col, bytes); 3652 } 3653 3654 if (unlikely(oob)) { 3655 int toread = min(oobreadlen, max_oobsize); 3656 3657 if (toread) { 3658 oob = nand_transfer_oob(chip, oob, ops, 3659 toread); 3660 oobreadlen -= toread; 3661 } 3662 } 3663 3664 nand_wait_readrdy(chip); 3665 3666 if (mtd->ecc_stats.failed - ecc_stats.failed) { 3667 if (retry_mode + 1 < chip->read_retries) { 3668 retry_mode++; 3669 ret = nand_setup_read_retry(chip, 3670 retry_mode); 3671 if (ret < 0) 3672 break; 3673 3674 /* Reset ecc_stats; retry */ 3675 mtd->ecc_stats = ecc_stats; 3676 goto read_retry; 3677 } else { 3678 /* No more retry modes; real failure */ 3679 ecc_fail = true; 3680 } 3681 } 3682 3683 buf += bytes; 3684 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3685 } else { 3686 memcpy(buf, chip->data_buf + col, bytes); 3687 buf += bytes; 3688 max_bitflips = max_t(unsigned int, max_bitflips, 3689 chip->pagecache.bitflips); 3690 3691 rawnand_cont_read_skip_first_page(chip, page); 3692 } 3693 3694 readlen -= bytes; 3695 3696 /* Reset to retry mode 0 */ 3697 if (retry_mode) { 3698 ret = nand_setup_read_retry(chip, 0); 3699 if (ret < 0) 3700 break; 3701 retry_mode = 0; 3702 } 3703 3704 if (!readlen) 3705 break; 3706 3707 /* For subsequent reads align to page boundary */ 3708 col = 0; 3709 /* Increment page address */ 3710 realpage++; 3711 3712 page = realpage & chip->pagemask; 3713 /* Check, if we cross a chip boundary */ 3714 if (!page) { 3715 chipnr++; 3716 nand_deselect_target(chip); 3717 nand_select_target(chip, chipnr); 3718 } 3719 } 3720 nand_deselect_target(chip); 3721 3722 ops->retlen = ops->len - (size_t) readlen; 3723 if (oob) 3724 ops->oobretlen = ops->ooblen - oobreadlen; 3725 3726 if (ret < 0) 3727 return ret; 3728 3729 if (ecc_fail) 3730 return -EBADMSG; 3731 3732 return max_bitflips; 3733 } 3734 3735 /** 3736 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3737 * @chip: nand chip info structure 3738 * @page: page number to read 3739 */ 3740 int nand_read_oob_std(struct nand_chip *chip, int page) 3741 { 3742 struct mtd_info *mtd = nand_to_mtd(chip); 3743 3744 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3745 } 3746 EXPORT_SYMBOL(nand_read_oob_std); 3747 3748 /** 3749 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3750 * with syndromes 3751 * @chip: nand chip info structure 3752 * @page: page number to read 3753 */ 3754 static int nand_read_oob_syndrome(struct nand_chip *chip, int page) 3755 { 3756 struct mtd_info *mtd = nand_to_mtd(chip); 3757 int length = mtd->oobsize; 3758 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3759 int eccsize = chip->ecc.size; 3760 uint8_t *bufpoi = chip->oob_poi; 3761 int i, toread, sndrnd = 0, pos, ret; 3762 3763 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3764 if (ret) 3765 return ret; 3766 3767 for (i = 0; i < chip->ecc.steps; i++) { 3768 if (sndrnd) { 3769 int ret; 3770 3771 pos = eccsize + i * (eccsize + chunk); 3772 if (mtd->writesize > 512) 3773 ret = nand_change_read_column_op(chip, pos, 3774 NULL, 0, 3775 false); 3776 else 3777 ret = nand_read_page_op(chip, page, pos, NULL, 3778 0); 3779 3780 if (ret) 3781 return ret; 3782 } else 3783 sndrnd = 1; 3784 toread = min_t(int, length, chunk); 3785 3786 ret = nand_read_data_op(chip, bufpoi, toread, false, false); 3787 if (ret) 3788 return ret; 3789 3790 bufpoi += toread; 3791 length -= toread; 3792 } 3793 if (length > 0) { 3794 ret = nand_read_data_op(chip, bufpoi, length, false, false); 3795 if (ret) 3796 return ret; 3797 } 3798 3799 return 0; 3800 } 3801 3802 /** 3803 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3804 * @chip: nand chip info structure 3805 * @page: page number to write 3806 */ 3807 int nand_write_oob_std(struct nand_chip *chip, int page) 3808 { 3809 struct mtd_info *mtd = nand_to_mtd(chip); 3810 3811 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3812 mtd->oobsize); 3813 } 3814 EXPORT_SYMBOL(nand_write_oob_std); 3815 3816 /** 3817 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3818 * with syndrome - only for large page flash 3819 * @chip: nand chip info structure 3820 * @page: page number to write 3821 */ 3822 static int nand_write_oob_syndrome(struct nand_chip *chip, int page) 3823 { 3824 struct mtd_info *mtd = nand_to_mtd(chip); 3825 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3826 int eccsize = chip->ecc.size, length = mtd->oobsize; 3827 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3828 const uint8_t *bufpoi = chip->oob_poi; 3829 3830 /* 3831 * data-ecc-data-ecc ... ecc-oob 3832 * or 3833 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3834 */ 3835 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3836 pos = steps * (eccsize + chunk); 3837 steps = 0; 3838 } else 3839 pos = eccsize; 3840 3841 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3842 if (ret) 3843 return ret; 3844 3845 for (i = 0; i < steps; i++) { 3846 if (sndcmd) { 3847 if (mtd->writesize <= 512) { 3848 uint32_t fill = 0xFFFFFFFF; 3849 3850 len = eccsize; 3851 while (len > 0) { 3852 int num = min_t(int, len, 4); 3853 3854 ret = nand_write_data_op(chip, &fill, 3855 num, false); 3856 if (ret) 3857 return ret; 3858 3859 len -= num; 3860 } 3861 } else { 3862 pos = eccsize + i * (eccsize + chunk); 3863 ret = nand_change_write_column_op(chip, pos, 3864 NULL, 0, 3865 false); 3866 if (ret) 3867 return ret; 3868 } 3869 } else 3870 sndcmd = 1; 3871 len = min_t(int, length, chunk); 3872 3873 ret = nand_write_data_op(chip, bufpoi, len, false); 3874 if (ret) 3875 return ret; 3876 3877 bufpoi += len; 3878 length -= len; 3879 } 3880 if (length > 0) { 3881 ret = nand_write_data_op(chip, bufpoi, length, false); 3882 if (ret) 3883 return ret; 3884 } 3885 3886 return nand_prog_page_end_op(chip); 3887 } 3888 3889 /** 3890 * nand_do_read_oob - [INTERN] NAND read out-of-band 3891 * @chip: NAND chip object 3892 * @from: offset to read from 3893 * @ops: oob operations description structure 3894 * 3895 * NAND read out-of-band data from the spare area. 3896 */ 3897 static int nand_do_read_oob(struct nand_chip *chip, loff_t from, 3898 struct mtd_oob_ops *ops) 3899 { 3900 struct mtd_info *mtd = nand_to_mtd(chip); 3901 unsigned int max_bitflips = 0; 3902 int page, realpage, chipnr; 3903 struct mtd_ecc_stats stats; 3904 int readlen = ops->ooblen; 3905 int len; 3906 uint8_t *buf = ops->oobbuf; 3907 int ret = 0; 3908 3909 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3910 __func__, (unsigned long long)from, readlen); 3911 3912 /* Check if the region is secured */ 3913 if (nand_region_is_secured(chip, from, readlen)) 3914 return -EIO; 3915 3916 stats = mtd->ecc_stats; 3917 3918 len = mtd_oobavail(mtd, ops); 3919 3920 chipnr = (int)(from >> chip->chip_shift); 3921 nand_select_target(chip, chipnr); 3922 3923 /* Shift to get page */ 3924 realpage = (int)(from >> chip->page_shift); 3925 page = realpage & chip->pagemask; 3926 3927 while (1) { 3928 if (ops->mode == MTD_OPS_RAW) 3929 ret = chip->ecc.read_oob_raw(chip, page); 3930 else 3931 ret = chip->ecc.read_oob(chip, page); 3932 3933 if (ret < 0) 3934 break; 3935 3936 len = min(len, readlen); 3937 buf = nand_transfer_oob(chip, buf, ops, len); 3938 3939 nand_wait_readrdy(chip); 3940 3941 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3942 3943 readlen -= len; 3944 if (!readlen) 3945 break; 3946 3947 /* Increment page address */ 3948 realpage++; 3949 3950 page = realpage & chip->pagemask; 3951 /* Check, if we cross a chip boundary */ 3952 if (!page) { 3953 chipnr++; 3954 nand_deselect_target(chip); 3955 nand_select_target(chip, chipnr); 3956 } 3957 } 3958 nand_deselect_target(chip); 3959 3960 ops->oobretlen = ops->ooblen - readlen; 3961 3962 if (ret < 0) 3963 return ret; 3964 3965 if (mtd->ecc_stats.failed - stats.failed) 3966 return -EBADMSG; 3967 3968 return max_bitflips; 3969 } 3970 3971 /** 3972 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3973 * @mtd: MTD device structure 3974 * @from: offset to read from 3975 * @ops: oob operation description structure 3976 * 3977 * NAND read data and/or out-of-band data. 3978 */ 3979 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3980 struct mtd_oob_ops *ops) 3981 { 3982 struct nand_chip *chip = mtd_to_nand(mtd); 3983 struct mtd_ecc_stats old_stats; 3984 int ret; 3985 3986 ops->retlen = 0; 3987 3988 if (ops->mode != MTD_OPS_PLACE_OOB && 3989 ops->mode != MTD_OPS_AUTO_OOB && 3990 ops->mode != MTD_OPS_RAW) 3991 return -ENOTSUPP; 3992 3993 nand_get_device(chip); 3994 3995 old_stats = mtd->ecc_stats; 3996 3997 if (!ops->datbuf) 3998 ret = nand_do_read_oob(chip, from, ops); 3999 else 4000 ret = nand_do_read_ops(chip, from, ops); 4001 4002 if (ops->stats) { 4003 ops->stats->uncorrectable_errors += 4004 mtd->ecc_stats.failed - old_stats.failed; 4005 ops->stats->corrected_bitflips += 4006 mtd->ecc_stats.corrected - old_stats.corrected; 4007 } 4008 4009 nand_release_device(chip); 4010 return ret; 4011 } 4012 4013 /** 4014 * nand_write_page_raw_notsupp - dummy raw page write function 4015 * @chip: nand chip info structure 4016 * @buf: data buffer 4017 * @oob_required: must write chip->oob_poi to OOB 4018 * @page: page number to write 4019 * 4020 * Returns -ENOTSUPP unconditionally. 4021 */ 4022 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, 4023 int oob_required, int page) 4024 { 4025 return -ENOTSUPP; 4026 } 4027 4028 /** 4029 * nand_write_page_raw - [INTERN] raw page write function 4030 * @chip: nand chip info structure 4031 * @buf: data buffer 4032 * @oob_required: must write chip->oob_poi to OOB 4033 * @page: page number to write 4034 * 4035 * Not for syndrome calculating ECC controllers, which use a special oob layout. 4036 */ 4037 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 4038 int oob_required, int page) 4039 { 4040 struct mtd_info *mtd = nand_to_mtd(chip); 4041 int ret; 4042 4043 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 4044 if (ret) 4045 return ret; 4046 4047 if (oob_required) { 4048 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 4049 false); 4050 if (ret) 4051 return ret; 4052 } 4053 4054 return nand_prog_page_end_op(chip); 4055 } 4056 EXPORT_SYMBOL(nand_write_page_raw); 4057 4058 /** 4059 * nand_monolithic_write_page_raw - Monolithic page write in raw mode 4060 * @chip: NAND chip info structure 4061 * @buf: data buffer to write 4062 * @oob_required: must write chip->oob_poi to OOB 4063 * @page: page number to write 4064 * 4065 * This is a raw page write, ie. without any error detection/correction. 4066 * Monolithic means we are requesting all the relevant data (main plus 4067 * eventually OOB) to be sent over the bus and effectively programmed 4068 * into the NAND chip arrays in a single operation. This is an 4069 * alternative to nand_write_page_raw(), which first sends the main 4070 * data, then eventually send the OOB data by latching more data 4071 * cycles on the NAND bus, and finally sends the program command to 4072 * synchronyze the NAND chip cache. 4073 */ 4074 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf, 4075 int oob_required, int page) 4076 { 4077 struct mtd_info *mtd = nand_to_mtd(chip); 4078 unsigned int size = mtd->writesize; 4079 u8 *write_buf = (u8 *)buf; 4080 4081 if (oob_required) { 4082 size += mtd->oobsize; 4083 4084 if (buf != chip->data_buf) { 4085 write_buf = nand_get_data_buf(chip); 4086 memcpy(write_buf, buf, mtd->writesize); 4087 } 4088 } 4089 4090 return nand_prog_page_op(chip, page, 0, write_buf, size); 4091 } 4092 EXPORT_SYMBOL(nand_monolithic_write_page_raw); 4093 4094 /** 4095 * nand_write_page_raw_syndrome - [INTERN] raw page write function 4096 * @chip: nand chip info structure 4097 * @buf: data buffer 4098 * @oob_required: must write chip->oob_poi to OOB 4099 * @page: page number to write 4100 * 4101 * We need a special oob layout and handling even when ECC isn't checked. 4102 */ 4103 static int nand_write_page_raw_syndrome(struct nand_chip *chip, 4104 const uint8_t *buf, int oob_required, 4105 int page) 4106 { 4107 struct mtd_info *mtd = nand_to_mtd(chip); 4108 int eccsize = chip->ecc.size; 4109 int eccbytes = chip->ecc.bytes; 4110 uint8_t *oob = chip->oob_poi; 4111 int steps, size, ret; 4112 4113 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4114 if (ret) 4115 return ret; 4116 4117 for (steps = chip->ecc.steps; steps > 0; steps--) { 4118 ret = nand_write_data_op(chip, buf, eccsize, false); 4119 if (ret) 4120 return ret; 4121 4122 buf += eccsize; 4123 4124 if (chip->ecc.prepad) { 4125 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4126 false); 4127 if (ret) 4128 return ret; 4129 4130 oob += chip->ecc.prepad; 4131 } 4132 4133 ret = nand_write_data_op(chip, oob, eccbytes, false); 4134 if (ret) 4135 return ret; 4136 4137 oob += eccbytes; 4138 4139 if (chip->ecc.postpad) { 4140 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4141 false); 4142 if (ret) 4143 return ret; 4144 4145 oob += chip->ecc.postpad; 4146 } 4147 } 4148 4149 size = mtd->oobsize - (oob - chip->oob_poi); 4150 if (size) { 4151 ret = nand_write_data_op(chip, oob, size, false); 4152 if (ret) 4153 return ret; 4154 } 4155 4156 return nand_prog_page_end_op(chip); 4157 } 4158 /** 4159 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 4160 * @chip: nand chip info structure 4161 * @buf: data buffer 4162 * @oob_required: must write chip->oob_poi to OOB 4163 * @page: page number to write 4164 */ 4165 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, 4166 int oob_required, int page) 4167 { 4168 struct mtd_info *mtd = nand_to_mtd(chip); 4169 int i, eccsize = chip->ecc.size, ret; 4170 int eccbytes = chip->ecc.bytes; 4171 int eccsteps = chip->ecc.steps; 4172 uint8_t *ecc_calc = chip->ecc.calc_buf; 4173 const uint8_t *p = buf; 4174 4175 /* Software ECC calculation */ 4176 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 4177 chip->ecc.calculate(chip, p, &ecc_calc[i]); 4178 4179 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4180 chip->ecc.total); 4181 if (ret) 4182 return ret; 4183 4184 return chip->ecc.write_page_raw(chip, buf, 1, page); 4185 } 4186 4187 /** 4188 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 4189 * @chip: nand chip info structure 4190 * @buf: data buffer 4191 * @oob_required: must write chip->oob_poi to OOB 4192 * @page: page number to write 4193 */ 4194 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, 4195 int oob_required, int page) 4196 { 4197 struct mtd_info *mtd = nand_to_mtd(chip); 4198 int i, eccsize = chip->ecc.size, ret; 4199 int eccbytes = chip->ecc.bytes; 4200 int eccsteps = chip->ecc.steps; 4201 uint8_t *ecc_calc = chip->ecc.calc_buf; 4202 const uint8_t *p = buf; 4203 4204 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4205 if (ret) 4206 return ret; 4207 4208 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4209 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4210 4211 ret = nand_write_data_op(chip, p, eccsize, false); 4212 if (ret) 4213 return ret; 4214 4215 chip->ecc.calculate(chip, p, &ecc_calc[i]); 4216 } 4217 4218 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4219 chip->ecc.total); 4220 if (ret) 4221 return ret; 4222 4223 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4224 if (ret) 4225 return ret; 4226 4227 return nand_prog_page_end_op(chip); 4228 } 4229 4230 4231 /** 4232 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 4233 * @chip: nand chip info structure 4234 * @offset: column address of subpage within the page 4235 * @data_len: data length 4236 * @buf: data buffer 4237 * @oob_required: must write chip->oob_poi to OOB 4238 * @page: page number to write 4239 */ 4240 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, 4241 uint32_t data_len, const uint8_t *buf, 4242 int oob_required, int page) 4243 { 4244 struct mtd_info *mtd = nand_to_mtd(chip); 4245 uint8_t *oob_buf = chip->oob_poi; 4246 uint8_t *ecc_calc = chip->ecc.calc_buf; 4247 int ecc_size = chip->ecc.size; 4248 int ecc_bytes = chip->ecc.bytes; 4249 int ecc_steps = chip->ecc.steps; 4250 uint32_t start_step = offset / ecc_size; 4251 uint32_t end_step = (offset + data_len - 1) / ecc_size; 4252 int oob_bytes = mtd->oobsize / ecc_steps; 4253 int step, ret; 4254 4255 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4256 if (ret) 4257 return ret; 4258 4259 for (step = 0; step < ecc_steps; step++) { 4260 /* configure controller for WRITE access */ 4261 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4262 4263 /* write data (untouched subpages already masked by 0xFF) */ 4264 ret = nand_write_data_op(chip, buf, ecc_size, false); 4265 if (ret) 4266 return ret; 4267 4268 /* mask ECC of un-touched subpages by padding 0xFF */ 4269 if ((step < start_step) || (step > end_step)) 4270 memset(ecc_calc, 0xff, ecc_bytes); 4271 else 4272 chip->ecc.calculate(chip, buf, ecc_calc); 4273 4274 /* mask OOB of un-touched subpages by padding 0xFF */ 4275 /* if oob_required, preserve OOB metadata of written subpage */ 4276 if (!oob_required || (step < start_step) || (step > end_step)) 4277 memset(oob_buf, 0xff, oob_bytes); 4278 4279 buf += ecc_size; 4280 ecc_calc += ecc_bytes; 4281 oob_buf += oob_bytes; 4282 } 4283 4284 /* copy calculated ECC for whole page to chip->buffer->oob */ 4285 /* this include masked-value(0xFF) for unwritten subpages */ 4286 ecc_calc = chip->ecc.calc_buf; 4287 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4288 chip->ecc.total); 4289 if (ret) 4290 return ret; 4291 4292 /* write OOB buffer to NAND device */ 4293 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4294 if (ret) 4295 return ret; 4296 4297 return nand_prog_page_end_op(chip); 4298 } 4299 4300 4301 /** 4302 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 4303 * @chip: nand chip info structure 4304 * @buf: data buffer 4305 * @oob_required: must write chip->oob_poi to OOB 4306 * @page: page number to write 4307 * 4308 * The hw generator calculates the error syndrome automatically. Therefore we 4309 * need a special oob layout and handling. 4310 */ 4311 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, 4312 int oob_required, int page) 4313 { 4314 struct mtd_info *mtd = nand_to_mtd(chip); 4315 int i, eccsize = chip->ecc.size; 4316 int eccbytes = chip->ecc.bytes; 4317 int eccsteps = chip->ecc.steps; 4318 const uint8_t *p = buf; 4319 uint8_t *oob = chip->oob_poi; 4320 int ret; 4321 4322 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4323 if (ret) 4324 return ret; 4325 4326 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4327 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4328 4329 ret = nand_write_data_op(chip, p, eccsize, false); 4330 if (ret) 4331 return ret; 4332 4333 if (chip->ecc.prepad) { 4334 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4335 false); 4336 if (ret) 4337 return ret; 4338 4339 oob += chip->ecc.prepad; 4340 } 4341 4342 chip->ecc.calculate(chip, p, oob); 4343 4344 ret = nand_write_data_op(chip, oob, eccbytes, false); 4345 if (ret) 4346 return ret; 4347 4348 oob += eccbytes; 4349 4350 if (chip->ecc.postpad) { 4351 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4352 false); 4353 if (ret) 4354 return ret; 4355 4356 oob += chip->ecc.postpad; 4357 } 4358 } 4359 4360 /* Calculate remaining oob bytes */ 4361 i = mtd->oobsize - (oob - chip->oob_poi); 4362 if (i) { 4363 ret = nand_write_data_op(chip, oob, i, false); 4364 if (ret) 4365 return ret; 4366 } 4367 4368 return nand_prog_page_end_op(chip); 4369 } 4370 4371 /** 4372 * nand_write_page - write one page 4373 * @chip: NAND chip descriptor 4374 * @offset: address offset within the page 4375 * @data_len: length of actual data to be written 4376 * @buf: the data to write 4377 * @oob_required: must write chip->oob_poi to OOB 4378 * @page: page number to write 4379 * @raw: use _raw version of write_page 4380 */ 4381 static int nand_write_page(struct nand_chip *chip, uint32_t offset, 4382 int data_len, const uint8_t *buf, int oob_required, 4383 int page, int raw) 4384 { 4385 struct mtd_info *mtd = nand_to_mtd(chip); 4386 int status, subpage; 4387 4388 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 4389 chip->ecc.write_subpage) 4390 subpage = offset || (data_len < mtd->writesize); 4391 else 4392 subpage = 0; 4393 4394 if (unlikely(raw)) 4395 status = chip->ecc.write_page_raw(chip, buf, oob_required, 4396 page); 4397 else if (subpage) 4398 status = chip->ecc.write_subpage(chip, offset, data_len, buf, 4399 oob_required, page); 4400 else 4401 status = chip->ecc.write_page(chip, buf, oob_required, page); 4402 4403 if (status < 0) 4404 return status; 4405 4406 return 0; 4407 } 4408 4409 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 4410 4411 /** 4412 * nand_do_write_ops - [INTERN] NAND write with ECC 4413 * @chip: NAND chip object 4414 * @to: offset to write to 4415 * @ops: oob operations description structure 4416 * 4417 * NAND write with ECC. 4418 */ 4419 static int nand_do_write_ops(struct nand_chip *chip, loff_t to, 4420 struct mtd_oob_ops *ops) 4421 { 4422 struct mtd_info *mtd = nand_to_mtd(chip); 4423 int chipnr, realpage, page, column; 4424 uint32_t writelen = ops->len; 4425 4426 uint32_t oobwritelen = ops->ooblen; 4427 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 4428 4429 uint8_t *oob = ops->oobbuf; 4430 uint8_t *buf = ops->datbuf; 4431 int ret; 4432 int oob_required = oob ? 1 : 0; 4433 4434 ops->retlen = 0; 4435 if (!writelen) 4436 return 0; 4437 4438 /* Reject writes, which are not page aligned */ 4439 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 4440 pr_notice("%s: attempt to write non page aligned data\n", 4441 __func__); 4442 return -EINVAL; 4443 } 4444 4445 /* Check if the region is secured */ 4446 if (nand_region_is_secured(chip, to, writelen)) 4447 return -EIO; 4448 4449 column = to & (mtd->writesize - 1); 4450 4451 chipnr = (int)(to >> chip->chip_shift); 4452 nand_select_target(chip, chipnr); 4453 4454 /* Check, if it is write protected */ 4455 if (nand_check_wp(chip)) { 4456 ret = -EIO; 4457 goto err_out; 4458 } 4459 4460 realpage = (int)(to >> chip->page_shift); 4461 page = realpage & chip->pagemask; 4462 4463 /* Invalidate the page cache, when we write to the cached page */ 4464 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && 4465 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) 4466 chip->pagecache.page = -1; 4467 4468 /* Don't allow multipage oob writes with offset */ 4469 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4470 ret = -EINVAL; 4471 goto err_out; 4472 } 4473 4474 while (1) { 4475 int bytes = mtd->writesize; 4476 uint8_t *wbuf = buf; 4477 int use_bounce_buf; 4478 int part_pagewr = (column || writelen < mtd->writesize); 4479 4480 if (part_pagewr) 4481 use_bounce_buf = 1; 4482 else if (chip->options & NAND_USES_DMA) 4483 use_bounce_buf = !virt_addr_valid(buf) || 4484 !IS_ALIGNED((unsigned long)buf, 4485 chip->buf_align); 4486 else 4487 use_bounce_buf = 0; 4488 4489 /* 4490 * Copy the data from the initial buffer when doing partial page 4491 * writes or when a bounce buffer is required. 4492 */ 4493 if (use_bounce_buf) { 4494 pr_debug("%s: using write bounce buffer for buf@%p\n", 4495 __func__, buf); 4496 if (part_pagewr) 4497 bytes = min_t(int, bytes - column, writelen); 4498 wbuf = nand_get_data_buf(chip); 4499 memset(wbuf, 0xff, mtd->writesize); 4500 memcpy(&wbuf[column], buf, bytes); 4501 } 4502 4503 if (unlikely(oob)) { 4504 size_t len = min(oobwritelen, oobmaxlen); 4505 oob = nand_fill_oob(chip, oob, len, ops); 4506 oobwritelen -= len; 4507 } else { 4508 /* We still need to erase leftover OOB data */ 4509 memset(chip->oob_poi, 0xff, mtd->oobsize); 4510 } 4511 4512 ret = nand_write_page(chip, column, bytes, wbuf, 4513 oob_required, page, 4514 (ops->mode == MTD_OPS_RAW)); 4515 if (ret) 4516 break; 4517 4518 writelen -= bytes; 4519 if (!writelen) 4520 break; 4521 4522 column = 0; 4523 buf += bytes; 4524 realpage++; 4525 4526 page = realpage & chip->pagemask; 4527 /* Check, if we cross a chip boundary */ 4528 if (!page) { 4529 chipnr++; 4530 nand_deselect_target(chip); 4531 nand_select_target(chip, chipnr); 4532 } 4533 } 4534 4535 ops->retlen = ops->len - writelen; 4536 if (unlikely(oob)) 4537 ops->oobretlen = ops->ooblen; 4538 4539 err_out: 4540 nand_deselect_target(chip); 4541 return ret; 4542 } 4543 4544 /** 4545 * panic_nand_write - [MTD Interface] NAND write with ECC 4546 * @mtd: MTD device structure 4547 * @to: offset to write to 4548 * @len: number of bytes to write 4549 * @retlen: pointer to variable to store the number of written bytes 4550 * @buf: the data to write 4551 * 4552 * NAND write with ECC. Used when performing writes in interrupt context, this 4553 * may for example be called by mtdoops when writing an oops while in panic. 4554 */ 4555 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4556 size_t *retlen, const uint8_t *buf) 4557 { 4558 struct nand_chip *chip = mtd_to_nand(mtd); 4559 int chipnr = (int)(to >> chip->chip_shift); 4560 struct mtd_oob_ops ops; 4561 int ret; 4562 4563 nand_select_target(chip, chipnr); 4564 4565 /* Wait for the device to get ready */ 4566 panic_nand_wait(chip, 400); 4567 4568 memset(&ops, 0, sizeof(ops)); 4569 ops.len = len; 4570 ops.datbuf = (uint8_t *)buf; 4571 ops.mode = MTD_OPS_PLACE_OOB; 4572 4573 ret = nand_do_write_ops(chip, to, &ops); 4574 4575 *retlen = ops.retlen; 4576 return ret; 4577 } 4578 4579 /** 4580 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4581 * @mtd: MTD device structure 4582 * @to: offset to write to 4583 * @ops: oob operation description structure 4584 */ 4585 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4586 struct mtd_oob_ops *ops) 4587 { 4588 struct nand_chip *chip = mtd_to_nand(mtd); 4589 int ret = 0; 4590 4591 ops->retlen = 0; 4592 4593 nand_get_device(chip); 4594 4595 switch (ops->mode) { 4596 case MTD_OPS_PLACE_OOB: 4597 case MTD_OPS_AUTO_OOB: 4598 case MTD_OPS_RAW: 4599 break; 4600 4601 default: 4602 goto out; 4603 } 4604 4605 if (!ops->datbuf) 4606 ret = nand_do_write_oob(chip, to, ops); 4607 else 4608 ret = nand_do_write_ops(chip, to, ops); 4609 4610 out: 4611 nand_release_device(chip); 4612 return ret; 4613 } 4614 4615 /** 4616 * nand_erase - [MTD Interface] erase block(s) 4617 * @mtd: MTD device structure 4618 * @instr: erase instruction 4619 * 4620 * Erase one ore more blocks. 4621 */ 4622 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4623 { 4624 return nand_erase_nand(mtd_to_nand(mtd), instr, 0); 4625 } 4626 4627 /** 4628 * nand_erase_nand - [INTERN] erase block(s) 4629 * @chip: NAND chip object 4630 * @instr: erase instruction 4631 * @allowbbt: allow erasing the bbt area 4632 * 4633 * Erase one ore more blocks. 4634 */ 4635 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, 4636 int allowbbt) 4637 { 4638 int page, pages_per_block, ret, chipnr; 4639 loff_t len; 4640 4641 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4642 __func__, (unsigned long long)instr->addr, 4643 (unsigned long long)instr->len); 4644 4645 if (check_offs_len(chip, instr->addr, instr->len)) 4646 return -EINVAL; 4647 4648 /* Check if the region is secured */ 4649 if (nand_region_is_secured(chip, instr->addr, instr->len)) 4650 return -EIO; 4651 4652 /* Grab the lock and see if the device is available */ 4653 nand_get_device(chip); 4654 4655 /* Shift to get first page */ 4656 page = (int)(instr->addr >> chip->page_shift); 4657 chipnr = (int)(instr->addr >> chip->chip_shift); 4658 4659 /* Calculate pages in each block */ 4660 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4661 4662 /* Select the NAND device */ 4663 nand_select_target(chip, chipnr); 4664 4665 /* Check, if it is write protected */ 4666 if (nand_check_wp(chip)) { 4667 pr_debug("%s: device is write protected!\n", 4668 __func__); 4669 ret = -EIO; 4670 goto erase_exit; 4671 } 4672 4673 /* Loop through the pages */ 4674 len = instr->len; 4675 4676 while (len) { 4677 loff_t ofs = (loff_t)page << chip->page_shift; 4678 4679 /* Check if we have a bad block, we do not erase bad blocks! */ 4680 if (nand_block_checkbad(chip, ((loff_t) page) << 4681 chip->page_shift, allowbbt)) { 4682 pr_warn("%s: attempt to erase a bad block at 0x%08llx\n", 4683 __func__, (unsigned long long)ofs); 4684 ret = -EIO; 4685 goto erase_exit; 4686 } 4687 4688 /* 4689 * Invalidate the page cache, if we erase the block which 4690 * contains the current cached page. 4691 */ 4692 if (page <= chip->pagecache.page && chip->pagecache.page < 4693 (page + pages_per_block)) 4694 chip->pagecache.page = -1; 4695 4696 ret = nand_erase_op(chip, (page & chip->pagemask) >> 4697 (chip->phys_erase_shift - chip->page_shift)); 4698 if (ret) { 4699 pr_debug("%s: failed erase, page 0x%08x\n", 4700 __func__, page); 4701 instr->fail_addr = ofs; 4702 goto erase_exit; 4703 } 4704 4705 /* Increment page address and decrement length */ 4706 len -= (1ULL << chip->phys_erase_shift); 4707 page += pages_per_block; 4708 4709 /* Check, if we cross a chip boundary */ 4710 if (len && !(page & chip->pagemask)) { 4711 chipnr++; 4712 nand_deselect_target(chip); 4713 nand_select_target(chip, chipnr); 4714 } 4715 } 4716 4717 ret = 0; 4718 erase_exit: 4719 4720 /* Deselect and wake up anyone waiting on the device */ 4721 nand_deselect_target(chip); 4722 nand_release_device(chip); 4723 4724 /* Return more or less happy */ 4725 return ret; 4726 } 4727 4728 /** 4729 * nand_sync - [MTD Interface] sync 4730 * @mtd: MTD device structure 4731 * 4732 * Sync is actually a wait for chip ready function. 4733 */ 4734 static void nand_sync(struct mtd_info *mtd) 4735 { 4736 struct nand_chip *chip = mtd_to_nand(mtd); 4737 4738 pr_debug("%s: called\n", __func__); 4739 4740 /* Grab the lock and see if the device is available */ 4741 nand_get_device(chip); 4742 /* Release it and go back */ 4743 nand_release_device(chip); 4744 } 4745 4746 /** 4747 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4748 * @mtd: MTD device structure 4749 * @offs: offset relative to mtd start 4750 */ 4751 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4752 { 4753 struct nand_chip *chip = mtd_to_nand(mtd); 4754 int chipnr = (int)(offs >> chip->chip_shift); 4755 int ret; 4756 4757 /* Select the NAND device */ 4758 nand_get_device(chip); 4759 4760 nand_select_target(chip, chipnr); 4761 4762 ret = nand_block_checkbad(chip, offs, 0); 4763 4764 nand_deselect_target(chip); 4765 nand_release_device(chip); 4766 4767 return ret; 4768 } 4769 4770 /** 4771 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4772 * @mtd: MTD device structure 4773 * @ofs: offset relative to mtd start 4774 */ 4775 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4776 { 4777 int ret; 4778 4779 ret = nand_block_isbad(mtd, ofs); 4780 if (ret) { 4781 /* If it was bad already, return success and do nothing */ 4782 if (ret > 0) 4783 return 0; 4784 return ret; 4785 } 4786 4787 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); 4788 } 4789 4790 /** 4791 * nand_suspend - [MTD Interface] Suspend the NAND flash 4792 * @mtd: MTD device structure 4793 * 4794 * Returns 0 for success or negative error code otherwise. 4795 */ 4796 static int nand_suspend(struct mtd_info *mtd) 4797 { 4798 struct nand_chip *chip = mtd_to_nand(mtd); 4799 int ret = 0; 4800 4801 mutex_lock(&chip->lock); 4802 if (chip->ops.suspend) 4803 ret = chip->ops.suspend(chip); 4804 if (!ret) 4805 chip->suspended = 1; 4806 mutex_unlock(&chip->lock); 4807 4808 return ret; 4809 } 4810 4811 /** 4812 * nand_resume - [MTD Interface] Resume the NAND flash 4813 * @mtd: MTD device structure 4814 */ 4815 static void nand_resume(struct mtd_info *mtd) 4816 { 4817 struct nand_chip *chip = mtd_to_nand(mtd); 4818 4819 mutex_lock(&chip->lock); 4820 if (chip->suspended) { 4821 if (chip->ops.resume) 4822 chip->ops.resume(chip); 4823 chip->suspended = 0; 4824 } else { 4825 pr_err("%s called for a chip which is not in suspended state\n", 4826 __func__); 4827 } 4828 mutex_unlock(&chip->lock); 4829 4830 wake_up_all(&chip->resume_wq); 4831 } 4832 4833 /** 4834 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4835 * prevent further operations 4836 * @mtd: MTD device structure 4837 */ 4838 static void nand_shutdown(struct mtd_info *mtd) 4839 { 4840 nand_suspend(mtd); 4841 } 4842 4843 /** 4844 * nand_lock - [MTD Interface] Lock the NAND flash 4845 * @mtd: MTD device structure 4846 * @ofs: offset byte address 4847 * @len: number of bytes to lock (must be a multiple of block/page size) 4848 */ 4849 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4850 { 4851 struct nand_chip *chip = mtd_to_nand(mtd); 4852 4853 if (!chip->ops.lock_area) 4854 return -ENOTSUPP; 4855 4856 return chip->ops.lock_area(chip, ofs, len); 4857 } 4858 4859 /** 4860 * nand_unlock - [MTD Interface] Unlock the NAND flash 4861 * @mtd: MTD device structure 4862 * @ofs: offset byte address 4863 * @len: number of bytes to unlock (must be a multiple of block/page size) 4864 */ 4865 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4866 { 4867 struct nand_chip *chip = mtd_to_nand(mtd); 4868 4869 if (!chip->ops.unlock_area) 4870 return -ENOTSUPP; 4871 4872 return chip->ops.unlock_area(chip, ofs, len); 4873 } 4874 4875 /* Set default functions */ 4876 static void nand_set_defaults(struct nand_chip *chip) 4877 { 4878 /* If no controller is provided, use the dummy, legacy one. */ 4879 if (!chip->controller) { 4880 chip->controller = &chip->legacy.dummy_controller; 4881 nand_controller_init(chip->controller); 4882 } 4883 4884 nand_legacy_set_defaults(chip); 4885 4886 if (!chip->buf_align) 4887 chip->buf_align = 1; 4888 } 4889 4890 /* Sanitize ONFI strings so we can safely print them */ 4891 void sanitize_string(uint8_t *s, size_t len) 4892 { 4893 ssize_t i; 4894 4895 /* Null terminate */ 4896 s[len - 1] = 0; 4897 4898 /* Remove non printable chars */ 4899 for (i = 0; i < len - 1; i++) { 4900 if (s[i] < ' ' || s[i] > 127) 4901 s[i] = '?'; 4902 } 4903 4904 /* Remove trailing spaces */ 4905 strim(s); 4906 } 4907 4908 /* 4909 * nand_id_has_period - Check if an ID string has a given wraparound period 4910 * @id_data: the ID string 4911 * @arrlen: the length of the @id_data array 4912 * @period: the period of repitition 4913 * 4914 * Check if an ID string is repeated within a given sequence of bytes at 4915 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 4916 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 4917 * if the repetition has a period of @period; otherwise, returns zero. 4918 */ 4919 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 4920 { 4921 int i, j; 4922 for (i = 0; i < period; i++) 4923 for (j = i + period; j < arrlen; j += period) 4924 if (id_data[i] != id_data[j]) 4925 return 0; 4926 return 1; 4927 } 4928 4929 /* 4930 * nand_id_len - Get the length of an ID string returned by CMD_READID 4931 * @id_data: the ID string 4932 * @arrlen: the length of the @id_data array 4933 4934 * Returns the length of the ID string, according to known wraparound/trailing 4935 * zero patterns. If no pattern exists, returns the length of the array. 4936 */ 4937 static int nand_id_len(u8 *id_data, int arrlen) 4938 { 4939 int last_nonzero, period; 4940 4941 /* Find last non-zero byte */ 4942 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 4943 if (id_data[last_nonzero]) 4944 break; 4945 4946 /* All zeros */ 4947 if (last_nonzero < 0) 4948 return 0; 4949 4950 /* Calculate wraparound period */ 4951 for (period = 1; period < arrlen; period++) 4952 if (nand_id_has_period(id_data, arrlen, period)) 4953 break; 4954 4955 /* There's a repeated pattern */ 4956 if (period < arrlen) 4957 return period; 4958 4959 /* There are trailing zeros */ 4960 if (last_nonzero < arrlen - 1) 4961 return last_nonzero + 1; 4962 4963 /* No pattern detected */ 4964 return arrlen; 4965 } 4966 4967 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 4968 static int nand_get_bits_per_cell(u8 cellinfo) 4969 { 4970 int bits; 4971 4972 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 4973 bits >>= NAND_CI_CELLTYPE_SHIFT; 4974 return bits + 1; 4975 } 4976 4977 /* 4978 * Many new NAND share similar device ID codes, which represent the size of the 4979 * chip. The rest of the parameters must be decoded according to generic or 4980 * manufacturer-specific "extended ID" decoding patterns. 4981 */ 4982 void nand_decode_ext_id(struct nand_chip *chip) 4983 { 4984 struct nand_memory_organization *memorg; 4985 struct mtd_info *mtd = nand_to_mtd(chip); 4986 int extid; 4987 u8 *id_data = chip->id.data; 4988 4989 memorg = nanddev_get_memorg(&chip->base); 4990 4991 /* The 3rd id byte holds MLC / multichip data */ 4992 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4993 /* The 4th id byte is the important one */ 4994 extid = id_data[3]; 4995 4996 /* Calc pagesize */ 4997 memorg->pagesize = 1024 << (extid & 0x03); 4998 mtd->writesize = memorg->pagesize; 4999 extid >>= 2; 5000 /* Calc oobsize */ 5001 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 5002 mtd->oobsize = memorg->oobsize; 5003 extid >>= 2; 5004 /* Calc blocksize. Blocksize is multiples of 64KiB */ 5005 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / 5006 memorg->pagesize; 5007 mtd->erasesize = (64 * 1024) << (extid & 0x03); 5008 extid >>= 2; 5009 /* Get buswidth information */ 5010 if (extid & 0x1) 5011 chip->options |= NAND_BUSWIDTH_16; 5012 } 5013 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 5014 5015 /* 5016 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 5017 * decodes a matching ID table entry and assigns the MTD size parameters for 5018 * the chip. 5019 */ 5020 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 5021 { 5022 struct mtd_info *mtd = nand_to_mtd(chip); 5023 struct nand_memory_organization *memorg; 5024 5025 memorg = nanddev_get_memorg(&chip->base); 5026 5027 memorg->pages_per_eraseblock = type->erasesize / type->pagesize; 5028 mtd->erasesize = type->erasesize; 5029 memorg->pagesize = type->pagesize; 5030 mtd->writesize = memorg->pagesize; 5031 memorg->oobsize = memorg->pagesize / 32; 5032 mtd->oobsize = memorg->oobsize; 5033 5034 /* All legacy ID NAND are small-page, SLC */ 5035 memorg->bits_per_cell = 1; 5036 } 5037 5038 /* 5039 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 5040 * heuristic patterns using various detected parameters (e.g., manufacturer, 5041 * page size, cell-type information). 5042 */ 5043 static void nand_decode_bbm_options(struct nand_chip *chip) 5044 { 5045 struct mtd_info *mtd = nand_to_mtd(chip); 5046 5047 /* Set the bad block position */ 5048 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 5049 chip->badblockpos = NAND_BBM_POS_LARGE; 5050 else 5051 chip->badblockpos = NAND_BBM_POS_SMALL; 5052 } 5053 5054 static inline bool is_full_id_nand(struct nand_flash_dev *type) 5055 { 5056 return type->id_len; 5057 } 5058 5059 static bool find_full_id_nand(struct nand_chip *chip, 5060 struct nand_flash_dev *type) 5061 { 5062 struct nand_device *base = &chip->base; 5063 struct nand_ecc_props requirements; 5064 struct mtd_info *mtd = nand_to_mtd(chip); 5065 struct nand_memory_organization *memorg; 5066 u8 *id_data = chip->id.data; 5067 5068 memorg = nanddev_get_memorg(&chip->base); 5069 5070 if (!strncmp(type->id, id_data, type->id_len)) { 5071 memorg->pagesize = type->pagesize; 5072 mtd->writesize = memorg->pagesize; 5073 memorg->pages_per_eraseblock = type->erasesize / 5074 type->pagesize; 5075 mtd->erasesize = type->erasesize; 5076 memorg->oobsize = type->oobsize; 5077 mtd->oobsize = memorg->oobsize; 5078 5079 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 5080 memorg->eraseblocks_per_lun = 5081 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 5082 memorg->pagesize * 5083 memorg->pages_per_eraseblock); 5084 chip->options |= type->options; 5085 requirements.strength = NAND_ECC_STRENGTH(type); 5086 requirements.step_size = NAND_ECC_STEP(type); 5087 nanddev_set_ecc_requirements(base, &requirements); 5088 5089 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 5090 if (!chip->parameters.model) 5091 return false; 5092 5093 return true; 5094 } 5095 return false; 5096 } 5097 5098 /* 5099 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 5100 * compliant and does not have a full-id or legacy-id entry in the nand_ids 5101 * table. 5102 */ 5103 static void nand_manufacturer_detect(struct nand_chip *chip) 5104 { 5105 /* 5106 * Try manufacturer detection if available and use 5107 * nand_decode_ext_id() otherwise. 5108 */ 5109 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 5110 chip->manufacturer.desc->ops->detect) { 5111 struct nand_memory_organization *memorg; 5112 5113 memorg = nanddev_get_memorg(&chip->base); 5114 5115 /* The 3rd id byte holds MLC / multichip data */ 5116 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 5117 chip->manufacturer.desc->ops->detect(chip); 5118 } else { 5119 nand_decode_ext_id(chip); 5120 } 5121 } 5122 5123 /* 5124 * Manufacturer initialization. This function is called for all NANDs including 5125 * ONFI and JEDEC compliant ones. 5126 * Manufacturer drivers should put all their specific initialization code in 5127 * their ->init() hook. 5128 */ 5129 static int nand_manufacturer_init(struct nand_chip *chip) 5130 { 5131 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 5132 !chip->manufacturer.desc->ops->init) 5133 return 0; 5134 5135 return chip->manufacturer.desc->ops->init(chip); 5136 } 5137 5138 /* 5139 * Manufacturer cleanup. This function is called for all NANDs including 5140 * ONFI and JEDEC compliant ones. 5141 * Manufacturer drivers should put all their specific cleanup code in their 5142 * ->cleanup() hook. 5143 */ 5144 static void nand_manufacturer_cleanup(struct nand_chip *chip) 5145 { 5146 /* Release manufacturer private data */ 5147 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 5148 chip->manufacturer.desc->ops->cleanup) 5149 chip->manufacturer.desc->ops->cleanup(chip); 5150 } 5151 5152 static const char * 5153 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc) 5154 { 5155 return manufacturer_desc ? manufacturer_desc->name : "Unknown"; 5156 } 5157 5158 static void rawnand_check_data_only_read_support(struct nand_chip *chip) 5159 { 5160 /* Use an arbitrary size for the check */ 5161 if (!nand_read_data_op(chip, NULL, SZ_512, true, true)) 5162 chip->controller->supported_op.data_only_read = 1; 5163 } 5164 5165 static void rawnand_early_check_supported_ops(struct nand_chip *chip) 5166 { 5167 /* The supported_op fields should not be set by individual drivers */ 5168 WARN_ON_ONCE(chip->controller->supported_op.data_only_read); 5169 5170 if (!nand_has_exec_op(chip)) 5171 return; 5172 5173 rawnand_check_data_only_read_support(chip); 5174 } 5175 5176 static void rawnand_check_cont_read_support(struct nand_chip *chip) 5177 { 5178 struct mtd_info *mtd = nand_to_mtd(chip); 5179 5180 if (!chip->parameters.supports_read_cache) 5181 return; 5182 5183 if (chip->read_retries) 5184 return; 5185 5186 if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL, 5187 mtd->writesize, true)) 5188 chip->controller->supported_op.cont_read = 1; 5189 } 5190 5191 static void rawnand_late_check_supported_ops(struct nand_chip *chip) 5192 { 5193 /* The supported_op fields should not be set by individual drivers */ 5194 WARN_ON_ONCE(chip->controller->supported_op.cont_read); 5195 5196 /* 5197 * Too many devices do not support sequential cached reads with on-die 5198 * ECC correction enabled, so in this case refuse to perform the 5199 * automation. 5200 */ 5201 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE) 5202 return; 5203 5204 if (!nand_has_exec_op(chip)) 5205 return; 5206 5207 /* 5208 * For now, continuous reads can only be used with the core page helpers. 5209 * This can be extended later. 5210 */ 5211 if (!(chip->ecc.read_page == nand_read_page_hwecc || 5212 chip->ecc.read_page == nand_read_page_syndrome || 5213 chip->ecc.read_page == nand_read_page_swecc)) 5214 return; 5215 5216 rawnand_check_cont_read_support(chip); 5217 } 5218 5219 /* 5220 * Get the flash and manufacturer id and lookup if the type is supported. 5221 */ 5222 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 5223 { 5224 const struct nand_manufacturer_desc *manufacturer_desc; 5225 struct mtd_info *mtd = nand_to_mtd(chip); 5226 struct nand_memory_organization *memorg; 5227 int busw, ret; 5228 u8 *id_data = chip->id.data; 5229 u8 maf_id, dev_id; 5230 u64 targetsize; 5231 5232 /* 5233 * Let's start by initializing memorg fields that might be left 5234 * unassigned by the ID-based detection logic. 5235 */ 5236 memorg = nanddev_get_memorg(&chip->base); 5237 memorg->planes_per_lun = 1; 5238 memorg->luns_per_target = 1; 5239 5240 /* 5241 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 5242 * after power-up. 5243 */ 5244 ret = nand_reset(chip, 0); 5245 if (ret) 5246 return ret; 5247 5248 /* Select the device */ 5249 nand_select_target(chip, 0); 5250 5251 rawnand_early_check_supported_ops(chip); 5252 5253 /* Send the command for reading device ID */ 5254 ret = nand_readid_op(chip, 0, id_data, 2); 5255 if (ret) 5256 return ret; 5257 5258 /* Read manufacturer and device IDs */ 5259 maf_id = id_data[0]; 5260 dev_id = id_data[1]; 5261 5262 /* 5263 * Try again to make sure, as some systems the bus-hold or other 5264 * interface concerns can cause random data which looks like a 5265 * possibly credible NAND flash to appear. If the two results do 5266 * not match, ignore the device completely. 5267 */ 5268 5269 /* Read entire ID string */ 5270 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 5271 if (ret) 5272 return ret; 5273 5274 if (id_data[0] != maf_id || id_data[1] != dev_id) { 5275 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 5276 maf_id, dev_id, id_data[0], id_data[1]); 5277 return -ENODEV; 5278 } 5279 5280 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 5281 5282 /* Try to identify manufacturer */ 5283 manufacturer_desc = nand_get_manufacturer_desc(maf_id); 5284 chip->manufacturer.desc = manufacturer_desc; 5285 5286 if (!type) 5287 type = nand_flash_ids; 5288 5289 /* 5290 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 5291 * override it. 5292 * This is required to make sure initial NAND bus width set by the 5293 * NAND controller driver is coherent with the real NAND bus width 5294 * (extracted by auto-detection code). 5295 */ 5296 busw = chip->options & NAND_BUSWIDTH_16; 5297 5298 /* 5299 * The flag is only set (never cleared), reset it to its default value 5300 * before starting auto-detection. 5301 */ 5302 chip->options &= ~NAND_BUSWIDTH_16; 5303 5304 for (; type->name != NULL; type++) { 5305 if (is_full_id_nand(type)) { 5306 if (find_full_id_nand(chip, type)) 5307 goto ident_done; 5308 } else if (dev_id == type->dev_id) { 5309 break; 5310 } 5311 } 5312 5313 if (!type->name || !type->pagesize) { 5314 /* Check if the chip is ONFI compliant */ 5315 ret = nand_onfi_detect(chip); 5316 if (ret < 0) 5317 return ret; 5318 else if (ret) 5319 goto ident_done; 5320 5321 /* Check if the chip is JEDEC compliant */ 5322 ret = nand_jedec_detect(chip); 5323 if (ret < 0) 5324 return ret; 5325 else if (ret) 5326 goto ident_done; 5327 } 5328 5329 if (!type->name) 5330 return -ENODEV; 5331 5332 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 5333 if (!chip->parameters.model) 5334 return -ENOMEM; 5335 5336 if (!type->pagesize) 5337 nand_manufacturer_detect(chip); 5338 else 5339 nand_decode_id(chip, type); 5340 5341 /* Get chip options */ 5342 chip->options |= type->options; 5343 5344 memorg->eraseblocks_per_lun = 5345 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 5346 memorg->pagesize * 5347 memorg->pages_per_eraseblock); 5348 5349 ident_done: 5350 if (!mtd->name) 5351 mtd->name = chip->parameters.model; 5352 5353 if (chip->options & NAND_BUSWIDTH_AUTO) { 5354 WARN_ON(busw & NAND_BUSWIDTH_16); 5355 nand_set_defaults(chip); 5356 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 5357 /* 5358 * Check, if buswidth is correct. Hardware drivers should set 5359 * chip correct! 5360 */ 5361 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5362 maf_id, dev_id); 5363 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 5364 mtd->name); 5365 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 5366 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 5367 ret = -EINVAL; 5368 5369 goto free_detect_allocation; 5370 } 5371 5372 nand_decode_bbm_options(chip); 5373 5374 /* Calculate the address shift from the page size */ 5375 chip->page_shift = ffs(mtd->writesize) - 1; 5376 /* Convert chipsize to number of pages per chip -1 */ 5377 targetsize = nanddev_target_size(&chip->base); 5378 chip->pagemask = (targetsize >> chip->page_shift) - 1; 5379 5380 chip->bbt_erase_shift = chip->phys_erase_shift = 5381 ffs(mtd->erasesize) - 1; 5382 if (targetsize & 0xffffffff) 5383 chip->chip_shift = ffs((unsigned)targetsize) - 1; 5384 else { 5385 chip->chip_shift = ffs((unsigned)(targetsize >> 32)); 5386 chip->chip_shift += 32 - 1; 5387 } 5388 5389 if (chip->chip_shift - chip->page_shift > 16) 5390 chip->options |= NAND_ROW_ADDR_3; 5391 5392 chip->badblockbits = 8; 5393 5394 nand_legacy_adjust_cmdfunc(chip); 5395 5396 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5397 maf_id, dev_id); 5398 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 5399 chip->parameters.model); 5400 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 5401 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 5402 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 5403 return 0; 5404 5405 free_detect_allocation: 5406 kfree(chip->parameters.model); 5407 5408 return ret; 5409 } 5410 5411 static enum nand_ecc_engine_type 5412 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np) 5413 { 5414 enum nand_ecc_legacy_mode { 5415 NAND_ECC_INVALID, 5416 NAND_ECC_NONE, 5417 NAND_ECC_SOFT, 5418 NAND_ECC_SOFT_BCH, 5419 NAND_ECC_HW, 5420 NAND_ECC_HW_SYNDROME, 5421 NAND_ECC_ON_DIE, 5422 }; 5423 const char * const nand_ecc_legacy_modes[] = { 5424 [NAND_ECC_NONE] = "none", 5425 [NAND_ECC_SOFT] = "soft", 5426 [NAND_ECC_SOFT_BCH] = "soft_bch", 5427 [NAND_ECC_HW] = "hw", 5428 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 5429 [NAND_ECC_ON_DIE] = "on-die", 5430 }; 5431 enum nand_ecc_legacy_mode eng_type; 5432 const char *pm; 5433 int err; 5434 5435 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5436 if (err) 5437 return NAND_ECC_ENGINE_TYPE_INVALID; 5438 5439 for (eng_type = NAND_ECC_NONE; 5440 eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) { 5441 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) { 5442 switch (eng_type) { 5443 case NAND_ECC_NONE: 5444 return NAND_ECC_ENGINE_TYPE_NONE; 5445 case NAND_ECC_SOFT: 5446 case NAND_ECC_SOFT_BCH: 5447 return NAND_ECC_ENGINE_TYPE_SOFT; 5448 case NAND_ECC_HW: 5449 case NAND_ECC_HW_SYNDROME: 5450 return NAND_ECC_ENGINE_TYPE_ON_HOST; 5451 case NAND_ECC_ON_DIE: 5452 return NAND_ECC_ENGINE_TYPE_ON_DIE; 5453 default: 5454 break; 5455 } 5456 } 5457 } 5458 5459 return NAND_ECC_ENGINE_TYPE_INVALID; 5460 } 5461 5462 static enum nand_ecc_placement 5463 of_get_rawnand_ecc_placement_legacy(struct device_node *np) 5464 { 5465 const char *pm; 5466 int err; 5467 5468 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5469 if (!err) { 5470 if (!strcasecmp(pm, "hw_syndrome")) 5471 return NAND_ECC_PLACEMENT_INTERLEAVED; 5472 } 5473 5474 return NAND_ECC_PLACEMENT_UNKNOWN; 5475 } 5476 5477 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np) 5478 { 5479 const char *pm; 5480 int err; 5481 5482 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5483 if (!err) { 5484 if (!strcasecmp(pm, "soft")) 5485 return NAND_ECC_ALGO_HAMMING; 5486 else if (!strcasecmp(pm, "soft_bch")) 5487 return NAND_ECC_ALGO_BCH; 5488 } 5489 5490 return NAND_ECC_ALGO_UNKNOWN; 5491 } 5492 5493 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip) 5494 { 5495 struct device_node *dn = nand_get_flash_node(chip); 5496 struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf; 5497 5498 if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 5499 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn); 5500 5501 if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN) 5502 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn); 5503 5504 if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN) 5505 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn); 5506 } 5507 5508 static int of_get_nand_bus_width(struct nand_chip *chip) 5509 { 5510 struct device_node *dn = nand_get_flash_node(chip); 5511 u32 val; 5512 int ret; 5513 5514 ret = of_property_read_u32(dn, "nand-bus-width", &val); 5515 if (ret == -EINVAL) 5516 /* Buswidth defaults to 8 if the property does not exist .*/ 5517 return 0; 5518 else if (ret) 5519 return ret; 5520 5521 if (val == 16) 5522 chip->options |= NAND_BUSWIDTH_16; 5523 else if (val != 8) 5524 return -EINVAL; 5525 return 0; 5526 } 5527 5528 static int of_get_nand_secure_regions(struct nand_chip *chip) 5529 { 5530 struct device_node *dn = nand_get_flash_node(chip); 5531 struct property *prop; 5532 int nr_elem, i, j; 5533 5534 /* Only proceed if the "secure-regions" property is present in DT */ 5535 prop = of_find_property(dn, "secure-regions", NULL); 5536 if (!prop) 5537 return 0; 5538 5539 nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64)); 5540 if (nr_elem <= 0) 5541 return nr_elem; 5542 5543 chip->nr_secure_regions = nr_elem / 2; 5544 chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions), 5545 GFP_KERNEL); 5546 if (!chip->secure_regions) 5547 return -ENOMEM; 5548 5549 for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) { 5550 of_property_read_u64_index(dn, "secure-regions", j, 5551 &chip->secure_regions[i].offset); 5552 of_property_read_u64_index(dn, "secure-regions", j + 1, 5553 &chip->secure_regions[i].size); 5554 } 5555 5556 return 0; 5557 } 5558 5559 /** 5560 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller 5561 * @dev: Device that will be parsed. Also used for managed allocations. 5562 * @cs_array: Array of GPIO desc pointers allocated on success 5563 * @ncs_array: Number of entries in @cs_array updated on success. 5564 * @return 0 on success, an error otherwise. 5565 */ 5566 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array, 5567 unsigned int *ncs_array) 5568 { 5569 struct gpio_desc **descs; 5570 int ndescs, i; 5571 5572 ndescs = gpiod_count(dev, "cs"); 5573 if (ndescs < 0) { 5574 dev_dbg(dev, "No valid cs-gpios property\n"); 5575 return 0; 5576 } 5577 5578 descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL); 5579 if (!descs) 5580 return -ENOMEM; 5581 5582 for (i = 0; i < ndescs; i++) { 5583 descs[i] = gpiod_get_index_optional(dev, "cs", i, 5584 GPIOD_OUT_HIGH); 5585 if (IS_ERR(descs[i])) 5586 return PTR_ERR(descs[i]); 5587 } 5588 5589 *ncs_array = ndescs; 5590 *cs_array = descs; 5591 5592 return 0; 5593 } 5594 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs); 5595 5596 static int rawnand_dt_init(struct nand_chip *chip) 5597 { 5598 struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip)); 5599 struct device_node *dn = nand_get_flash_node(chip); 5600 int ret; 5601 5602 if (!dn) 5603 return 0; 5604 5605 ret = of_get_nand_bus_width(chip); 5606 if (ret) 5607 return ret; 5608 5609 if (of_property_read_bool(dn, "nand-is-boot-medium")) 5610 chip->options |= NAND_IS_BOOT_MEDIUM; 5611 5612 if (of_property_read_bool(dn, "nand-on-flash-bbt")) 5613 chip->bbt_options |= NAND_BBT_USE_FLASH; 5614 5615 of_get_nand_ecc_user_config(nand); 5616 of_get_nand_ecc_legacy_user_config(chip); 5617 5618 /* 5619 * If neither the user nor the NAND controller have requested a specific 5620 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST. 5621 */ 5622 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 5623 5624 /* 5625 * Use the user requested engine type, unless there is none, in this 5626 * case default to the NAND controller choice, otherwise fallback to 5627 * the raw NAND default one. 5628 */ 5629 if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID) 5630 chip->ecc.engine_type = nand->ecc.user_conf.engine_type; 5631 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 5632 chip->ecc.engine_type = nand->ecc.defaults.engine_type; 5633 5634 chip->ecc.placement = nand->ecc.user_conf.placement; 5635 chip->ecc.algo = nand->ecc.user_conf.algo; 5636 chip->ecc.strength = nand->ecc.user_conf.strength; 5637 chip->ecc.size = nand->ecc.user_conf.step_size; 5638 5639 return 0; 5640 } 5641 5642 /** 5643 * nand_scan_ident - Scan for the NAND device 5644 * @chip: NAND chip object 5645 * @maxchips: number of chips to scan for 5646 * @table: alternative NAND ID table 5647 * 5648 * This is the first phase of the normal nand_scan() function. It reads the 5649 * flash ID and sets up MTD fields accordingly. 5650 * 5651 * This helper used to be called directly from controller drivers that needed 5652 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 5653 * prevented dynamic allocations during this phase which was unconvenient and 5654 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 5655 */ 5656 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, 5657 struct nand_flash_dev *table) 5658 { 5659 struct mtd_info *mtd = nand_to_mtd(chip); 5660 struct nand_memory_organization *memorg; 5661 int nand_maf_id, nand_dev_id; 5662 unsigned int i; 5663 int ret; 5664 5665 memorg = nanddev_get_memorg(&chip->base); 5666 5667 /* Assume all dies are deselected when we enter nand_scan_ident(). */ 5668 chip->cur_cs = -1; 5669 5670 mutex_init(&chip->lock); 5671 init_waitqueue_head(&chip->resume_wq); 5672 5673 /* Enforce the right timings for reset/detection */ 5674 chip->current_interface_config = nand_get_reset_interface_config(); 5675 5676 ret = rawnand_dt_init(chip); 5677 if (ret) 5678 return ret; 5679 5680 if (!mtd->name && mtd->dev.parent) 5681 mtd->name = dev_name(mtd->dev.parent); 5682 5683 /* Set the default functions */ 5684 nand_set_defaults(chip); 5685 5686 ret = nand_legacy_check_hooks(chip); 5687 if (ret) 5688 return ret; 5689 5690 memorg->ntargets = maxchips; 5691 5692 /* Read the flash type */ 5693 ret = nand_detect(chip, table); 5694 if (ret) { 5695 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 5696 pr_warn("No NAND device found\n"); 5697 nand_deselect_target(chip); 5698 return ret; 5699 } 5700 5701 nand_maf_id = chip->id.data[0]; 5702 nand_dev_id = chip->id.data[1]; 5703 5704 nand_deselect_target(chip); 5705 5706 /* Check for a chip array */ 5707 for (i = 1; i < maxchips; i++) { 5708 u8 id[2]; 5709 5710 /* See comment in nand_get_flash_type for reset */ 5711 ret = nand_reset(chip, i); 5712 if (ret) 5713 break; 5714 5715 nand_select_target(chip, i); 5716 /* Send the command for reading device ID */ 5717 ret = nand_readid_op(chip, 0, id, sizeof(id)); 5718 if (ret) 5719 break; 5720 /* Read manufacturer and device IDs */ 5721 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5722 nand_deselect_target(chip); 5723 break; 5724 } 5725 nand_deselect_target(chip); 5726 } 5727 if (i > 1) 5728 pr_info("%d chips detected\n", i); 5729 5730 /* Store the number of chips and calc total size for mtd */ 5731 memorg->ntargets = i; 5732 mtd->size = i * nanddev_target_size(&chip->base); 5733 5734 return 0; 5735 } 5736 5737 static void nand_scan_ident_cleanup(struct nand_chip *chip) 5738 { 5739 kfree(chip->parameters.model); 5740 kfree(chip->parameters.onfi); 5741 } 5742 5743 int rawnand_sw_hamming_init(struct nand_chip *chip) 5744 { 5745 struct nand_ecc_sw_hamming_conf *engine_conf; 5746 struct nand_device *base = &chip->base; 5747 int ret; 5748 5749 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5750 base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING; 5751 base->ecc.user_conf.strength = chip->ecc.strength; 5752 base->ecc.user_conf.step_size = chip->ecc.size; 5753 5754 ret = nand_ecc_sw_hamming_init_ctx(base); 5755 if (ret) 5756 return ret; 5757 5758 engine_conf = base->ecc.ctx.priv; 5759 5760 if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER) 5761 engine_conf->sm_order = true; 5762 5763 chip->ecc.size = base->ecc.ctx.conf.step_size; 5764 chip->ecc.strength = base->ecc.ctx.conf.strength; 5765 chip->ecc.total = base->ecc.ctx.total; 5766 chip->ecc.steps = nanddev_get_ecc_nsteps(base); 5767 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); 5768 5769 return 0; 5770 } 5771 EXPORT_SYMBOL(rawnand_sw_hamming_init); 5772 5773 int rawnand_sw_hamming_calculate(struct nand_chip *chip, 5774 const unsigned char *buf, 5775 unsigned char *code) 5776 { 5777 struct nand_device *base = &chip->base; 5778 5779 return nand_ecc_sw_hamming_calculate(base, buf, code); 5780 } 5781 EXPORT_SYMBOL(rawnand_sw_hamming_calculate); 5782 5783 int rawnand_sw_hamming_correct(struct nand_chip *chip, 5784 unsigned char *buf, 5785 unsigned char *read_ecc, 5786 unsigned char *calc_ecc) 5787 { 5788 struct nand_device *base = &chip->base; 5789 5790 return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc); 5791 } 5792 EXPORT_SYMBOL(rawnand_sw_hamming_correct); 5793 5794 void rawnand_sw_hamming_cleanup(struct nand_chip *chip) 5795 { 5796 struct nand_device *base = &chip->base; 5797 5798 nand_ecc_sw_hamming_cleanup_ctx(base); 5799 } 5800 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup); 5801 5802 int rawnand_sw_bch_init(struct nand_chip *chip) 5803 { 5804 struct nand_device *base = &chip->base; 5805 const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base); 5806 int ret; 5807 5808 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5809 base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH; 5810 base->ecc.user_conf.step_size = chip->ecc.size; 5811 base->ecc.user_conf.strength = chip->ecc.strength; 5812 5813 ret = nand_ecc_sw_bch_init_ctx(base); 5814 if (ret) 5815 return ret; 5816 5817 chip->ecc.size = ecc_conf->step_size; 5818 chip->ecc.strength = ecc_conf->strength; 5819 chip->ecc.total = base->ecc.ctx.total; 5820 chip->ecc.steps = nanddev_get_ecc_nsteps(base); 5821 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); 5822 5823 return 0; 5824 } 5825 EXPORT_SYMBOL(rawnand_sw_bch_init); 5826 5827 static int rawnand_sw_bch_calculate(struct nand_chip *chip, 5828 const unsigned char *buf, 5829 unsigned char *code) 5830 { 5831 struct nand_device *base = &chip->base; 5832 5833 return nand_ecc_sw_bch_calculate(base, buf, code); 5834 } 5835 5836 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf, 5837 unsigned char *read_ecc, unsigned char *calc_ecc) 5838 { 5839 struct nand_device *base = &chip->base; 5840 5841 return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc); 5842 } 5843 EXPORT_SYMBOL(rawnand_sw_bch_correct); 5844 5845 void rawnand_sw_bch_cleanup(struct nand_chip *chip) 5846 { 5847 struct nand_device *base = &chip->base; 5848 5849 nand_ecc_sw_bch_cleanup_ctx(base); 5850 } 5851 EXPORT_SYMBOL(rawnand_sw_bch_cleanup); 5852 5853 static int nand_set_ecc_on_host_ops(struct nand_chip *chip) 5854 { 5855 struct nand_ecc_ctrl *ecc = &chip->ecc; 5856 5857 switch (ecc->placement) { 5858 case NAND_ECC_PLACEMENT_UNKNOWN: 5859 case NAND_ECC_PLACEMENT_OOB: 5860 /* Use standard hwecc read page function? */ 5861 if (!ecc->read_page) 5862 ecc->read_page = nand_read_page_hwecc; 5863 if (!ecc->write_page) 5864 ecc->write_page = nand_write_page_hwecc; 5865 if (!ecc->read_page_raw) 5866 ecc->read_page_raw = nand_read_page_raw; 5867 if (!ecc->write_page_raw) 5868 ecc->write_page_raw = nand_write_page_raw; 5869 if (!ecc->read_oob) 5870 ecc->read_oob = nand_read_oob_std; 5871 if (!ecc->write_oob) 5872 ecc->write_oob = nand_write_oob_std; 5873 if (!ecc->read_subpage) 5874 ecc->read_subpage = nand_read_subpage; 5875 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 5876 ecc->write_subpage = nand_write_subpage_hwecc; 5877 fallthrough; 5878 5879 case NAND_ECC_PLACEMENT_INTERLEAVED: 5880 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 5881 (!ecc->read_page || 5882 ecc->read_page == nand_read_page_hwecc || 5883 !ecc->write_page || 5884 ecc->write_page == nand_write_page_hwecc)) { 5885 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5886 return -EINVAL; 5887 } 5888 /* Use standard syndrome read/write page function? */ 5889 if (!ecc->read_page) 5890 ecc->read_page = nand_read_page_syndrome; 5891 if (!ecc->write_page) 5892 ecc->write_page = nand_write_page_syndrome; 5893 if (!ecc->read_page_raw) 5894 ecc->read_page_raw = nand_read_page_raw_syndrome; 5895 if (!ecc->write_page_raw) 5896 ecc->write_page_raw = nand_write_page_raw_syndrome; 5897 if (!ecc->read_oob) 5898 ecc->read_oob = nand_read_oob_syndrome; 5899 if (!ecc->write_oob) 5900 ecc->write_oob = nand_write_oob_syndrome; 5901 break; 5902 5903 default: 5904 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n", 5905 ecc->placement); 5906 return -EINVAL; 5907 } 5908 5909 return 0; 5910 } 5911 5912 static int nand_set_ecc_soft_ops(struct nand_chip *chip) 5913 { 5914 struct mtd_info *mtd = nand_to_mtd(chip); 5915 struct nand_device *nanddev = mtd_to_nanddev(mtd); 5916 struct nand_ecc_ctrl *ecc = &chip->ecc; 5917 int ret; 5918 5919 if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT)) 5920 return -EINVAL; 5921 5922 switch (ecc->algo) { 5923 case NAND_ECC_ALGO_HAMMING: 5924 ecc->calculate = rawnand_sw_hamming_calculate; 5925 ecc->correct = rawnand_sw_hamming_correct; 5926 ecc->read_page = nand_read_page_swecc; 5927 ecc->read_subpage = nand_read_subpage; 5928 ecc->write_page = nand_write_page_swecc; 5929 if (!ecc->read_page_raw) 5930 ecc->read_page_raw = nand_read_page_raw; 5931 if (!ecc->write_page_raw) 5932 ecc->write_page_raw = nand_write_page_raw; 5933 ecc->read_oob = nand_read_oob_std; 5934 ecc->write_oob = nand_write_oob_std; 5935 if (!ecc->size) 5936 ecc->size = 256; 5937 ecc->bytes = 3; 5938 ecc->strength = 1; 5939 5940 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) 5941 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 5942 5943 ret = rawnand_sw_hamming_init(chip); 5944 if (ret) { 5945 WARN(1, "Hamming ECC initialization failed!\n"); 5946 return ret; 5947 } 5948 5949 return 0; 5950 case NAND_ECC_ALGO_BCH: 5951 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { 5952 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); 5953 return -EINVAL; 5954 } 5955 ecc->calculate = rawnand_sw_bch_calculate; 5956 ecc->correct = rawnand_sw_bch_correct; 5957 ecc->read_page = nand_read_page_swecc; 5958 ecc->read_subpage = nand_read_subpage; 5959 ecc->write_page = nand_write_page_swecc; 5960 if (!ecc->read_page_raw) 5961 ecc->read_page_raw = nand_read_page_raw; 5962 if (!ecc->write_page_raw) 5963 ecc->write_page_raw = nand_write_page_raw; 5964 ecc->read_oob = nand_read_oob_std; 5965 ecc->write_oob = nand_write_oob_std; 5966 5967 /* 5968 * We can only maximize ECC config when the default layout is 5969 * used, otherwise we don't know how many bytes can really be 5970 * used. 5971 */ 5972 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH && 5973 mtd->ooblayout != nand_get_large_page_ooblayout()) 5974 nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH; 5975 5976 ret = rawnand_sw_bch_init(chip); 5977 if (ret) { 5978 WARN(1, "BCH ECC initialization failed!\n"); 5979 return ret; 5980 } 5981 5982 return 0; 5983 default: 5984 WARN(1, "Unsupported ECC algorithm!\n"); 5985 return -EINVAL; 5986 } 5987 } 5988 5989 /** 5990 * nand_check_ecc_caps - check the sanity of preset ECC settings 5991 * @chip: nand chip info structure 5992 * @caps: ECC caps info structure 5993 * @oobavail: OOB size that the ECC engine can use 5994 * 5995 * When ECC step size and strength are already set, check if they are supported 5996 * by the controller and the calculated ECC bytes fit within the chip's OOB. 5997 * On success, the calculated ECC bytes is set. 5998 */ 5999 static int 6000 nand_check_ecc_caps(struct nand_chip *chip, 6001 const struct nand_ecc_caps *caps, int oobavail) 6002 { 6003 struct mtd_info *mtd = nand_to_mtd(chip); 6004 const struct nand_ecc_step_info *stepinfo; 6005 int preset_step = chip->ecc.size; 6006 int preset_strength = chip->ecc.strength; 6007 int ecc_bytes, nsteps = mtd->writesize / preset_step; 6008 int i, j; 6009 6010 for (i = 0; i < caps->nstepinfos; i++) { 6011 stepinfo = &caps->stepinfos[i]; 6012 6013 if (stepinfo->stepsize != preset_step) 6014 continue; 6015 6016 for (j = 0; j < stepinfo->nstrengths; j++) { 6017 if (stepinfo->strengths[j] != preset_strength) 6018 continue; 6019 6020 ecc_bytes = caps->calc_ecc_bytes(preset_step, 6021 preset_strength); 6022 if (WARN_ON_ONCE(ecc_bytes < 0)) 6023 return ecc_bytes; 6024 6025 if (ecc_bytes * nsteps > oobavail) { 6026 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 6027 preset_step, preset_strength); 6028 return -ENOSPC; 6029 } 6030 6031 chip->ecc.bytes = ecc_bytes; 6032 6033 return 0; 6034 } 6035 } 6036 6037 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 6038 preset_step, preset_strength); 6039 6040 return -ENOTSUPP; 6041 } 6042 6043 /** 6044 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 6045 * @chip: nand chip info structure 6046 * @caps: ECC engine caps info structure 6047 * @oobavail: OOB size that the ECC engine can use 6048 * 6049 * If a chip's ECC requirement is provided, try to meet it with the least 6050 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 6051 * On success, the chosen ECC settings are set. 6052 */ 6053 static int 6054 nand_match_ecc_req(struct nand_chip *chip, 6055 const struct nand_ecc_caps *caps, int oobavail) 6056 { 6057 const struct nand_ecc_props *requirements = 6058 nanddev_get_ecc_requirements(&chip->base); 6059 struct mtd_info *mtd = nand_to_mtd(chip); 6060 const struct nand_ecc_step_info *stepinfo; 6061 int req_step = requirements->step_size; 6062 int req_strength = requirements->strength; 6063 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 6064 int best_step = 0, best_strength = 0, best_ecc_bytes = 0; 6065 int best_ecc_bytes_total = INT_MAX; 6066 int i, j; 6067 6068 /* No information provided by the NAND chip */ 6069 if (!req_step || !req_strength) 6070 return -ENOTSUPP; 6071 6072 /* number of correctable bits the chip requires in a page */ 6073 req_corr = mtd->writesize / req_step * req_strength; 6074 6075 for (i = 0; i < caps->nstepinfos; i++) { 6076 stepinfo = &caps->stepinfos[i]; 6077 step_size = stepinfo->stepsize; 6078 6079 for (j = 0; j < stepinfo->nstrengths; j++) { 6080 strength = stepinfo->strengths[j]; 6081 6082 /* 6083 * If both step size and strength are smaller than the 6084 * chip's requirement, it is not easy to compare the 6085 * resulted reliability. 6086 */ 6087 if (step_size < req_step && strength < req_strength) 6088 continue; 6089 6090 if (mtd->writesize % step_size) 6091 continue; 6092 6093 nsteps = mtd->writesize / step_size; 6094 6095 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 6096 if (WARN_ON_ONCE(ecc_bytes < 0)) 6097 continue; 6098 ecc_bytes_total = ecc_bytes * nsteps; 6099 6100 if (ecc_bytes_total > oobavail || 6101 strength * nsteps < req_corr) 6102 continue; 6103 6104 /* 6105 * We assume the best is to meet the chip's requrement 6106 * with the least number of ECC bytes. 6107 */ 6108 if (ecc_bytes_total < best_ecc_bytes_total) { 6109 best_ecc_bytes_total = ecc_bytes_total; 6110 best_step = step_size; 6111 best_strength = strength; 6112 best_ecc_bytes = ecc_bytes; 6113 } 6114 } 6115 } 6116 6117 if (best_ecc_bytes_total == INT_MAX) 6118 return -ENOTSUPP; 6119 6120 chip->ecc.size = best_step; 6121 chip->ecc.strength = best_strength; 6122 chip->ecc.bytes = best_ecc_bytes; 6123 6124 return 0; 6125 } 6126 6127 /** 6128 * nand_maximize_ecc - choose the max ECC strength available 6129 * @chip: nand chip info structure 6130 * @caps: ECC engine caps info structure 6131 * @oobavail: OOB size that the ECC engine can use 6132 * 6133 * Choose the max ECC strength that is supported on the controller, and can fit 6134 * within the chip's OOB. On success, the chosen ECC settings are set. 6135 */ 6136 static int 6137 nand_maximize_ecc(struct nand_chip *chip, 6138 const struct nand_ecc_caps *caps, int oobavail) 6139 { 6140 struct mtd_info *mtd = nand_to_mtd(chip); 6141 const struct nand_ecc_step_info *stepinfo; 6142 int step_size, strength, nsteps, ecc_bytes, corr; 6143 int best_corr = 0; 6144 int best_step = 0; 6145 int best_strength = 0, best_ecc_bytes = 0; 6146 int i, j; 6147 6148 for (i = 0; i < caps->nstepinfos; i++) { 6149 stepinfo = &caps->stepinfos[i]; 6150 step_size = stepinfo->stepsize; 6151 6152 /* If chip->ecc.size is already set, respect it */ 6153 if (chip->ecc.size && step_size != chip->ecc.size) 6154 continue; 6155 6156 for (j = 0; j < stepinfo->nstrengths; j++) { 6157 strength = stepinfo->strengths[j]; 6158 6159 if (mtd->writesize % step_size) 6160 continue; 6161 6162 nsteps = mtd->writesize / step_size; 6163 6164 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 6165 if (WARN_ON_ONCE(ecc_bytes < 0)) 6166 continue; 6167 6168 if (ecc_bytes * nsteps > oobavail) 6169 continue; 6170 6171 corr = strength * nsteps; 6172 6173 /* 6174 * If the number of correctable bits is the same, 6175 * bigger step_size has more reliability. 6176 */ 6177 if (corr > best_corr || 6178 (corr == best_corr && step_size > best_step)) { 6179 best_corr = corr; 6180 best_step = step_size; 6181 best_strength = strength; 6182 best_ecc_bytes = ecc_bytes; 6183 } 6184 } 6185 } 6186 6187 if (!best_corr) 6188 return -ENOTSUPP; 6189 6190 chip->ecc.size = best_step; 6191 chip->ecc.strength = best_strength; 6192 chip->ecc.bytes = best_ecc_bytes; 6193 6194 return 0; 6195 } 6196 6197 /** 6198 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 6199 * @chip: nand chip info structure 6200 * @caps: ECC engine caps info structure 6201 * @oobavail: OOB size that the ECC engine can use 6202 * 6203 * Choose the ECC configuration according to following logic. 6204 * 6205 * 1. If both ECC step size and ECC strength are already set (usually by DT) 6206 * then check if it is supported by this controller. 6207 * 2. If the user provided the nand-ecc-maximize property, then select maximum 6208 * ECC strength. 6209 * 3. Otherwise, try to match the ECC step size and ECC strength closest 6210 * to the chip's requirement. If available OOB size can't fit the chip 6211 * requirement then fallback to the maximum ECC step size and ECC strength. 6212 * 6213 * On success, the chosen ECC settings are set. 6214 */ 6215 int nand_ecc_choose_conf(struct nand_chip *chip, 6216 const struct nand_ecc_caps *caps, int oobavail) 6217 { 6218 struct mtd_info *mtd = nand_to_mtd(chip); 6219 struct nand_device *nanddev = mtd_to_nanddev(mtd); 6220 6221 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 6222 return -EINVAL; 6223 6224 if (chip->ecc.size && chip->ecc.strength) 6225 return nand_check_ecc_caps(chip, caps, oobavail); 6226 6227 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) 6228 return nand_maximize_ecc(chip, caps, oobavail); 6229 6230 if (!nand_match_ecc_req(chip, caps, oobavail)) 6231 return 0; 6232 6233 return nand_maximize_ecc(chip, caps, oobavail); 6234 } 6235 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 6236 6237 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) 6238 { 6239 struct nand_chip *chip = container_of(nand, struct nand_chip, 6240 base); 6241 unsigned int eb = nanddev_pos_to_row(nand, pos); 6242 int ret; 6243 6244 eb >>= nand->rowconv.eraseblock_addr_shift; 6245 6246 nand_select_target(chip, pos->target); 6247 ret = nand_erase_op(chip, eb); 6248 nand_deselect_target(chip); 6249 6250 return ret; 6251 } 6252 6253 static int rawnand_markbad(struct nand_device *nand, 6254 const struct nand_pos *pos) 6255 { 6256 struct nand_chip *chip = container_of(nand, struct nand_chip, 6257 base); 6258 6259 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 6260 } 6261 6262 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) 6263 { 6264 struct nand_chip *chip = container_of(nand, struct nand_chip, 6265 base); 6266 int ret; 6267 6268 nand_select_target(chip, pos->target); 6269 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 6270 nand_deselect_target(chip); 6271 6272 return ret; 6273 } 6274 6275 static const struct nand_ops rawnand_ops = { 6276 .erase = rawnand_erase, 6277 .markbad = rawnand_markbad, 6278 .isbad = rawnand_isbad, 6279 }; 6280 6281 /** 6282 * nand_scan_tail - Scan for the NAND device 6283 * @chip: NAND chip object 6284 * 6285 * This is the second phase of the normal nand_scan() function. It fills out 6286 * all the uninitialized function pointers with the defaults and scans for a 6287 * bad block table if appropriate. 6288 */ 6289 static int nand_scan_tail(struct nand_chip *chip) 6290 { 6291 struct mtd_info *mtd = nand_to_mtd(chip); 6292 struct nand_device *base = &chip->base; 6293 struct nand_ecc_ctrl *ecc = &chip->ecc; 6294 int ret, i; 6295 6296 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 6297 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 6298 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 6299 return -EINVAL; 6300 } 6301 6302 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 6303 if (!chip->data_buf) 6304 return -ENOMEM; 6305 6306 /* 6307 * FIXME: some NAND manufacturer drivers expect the first die to be 6308 * selected when manufacturer->init() is called. They should be fixed 6309 * to explictly select the relevant die when interacting with the NAND 6310 * chip. 6311 */ 6312 nand_select_target(chip, 0); 6313 ret = nand_manufacturer_init(chip); 6314 nand_deselect_target(chip); 6315 if (ret) 6316 goto err_free_buf; 6317 6318 /* Set the internal oob buffer location, just after the page data */ 6319 chip->oob_poi = chip->data_buf + mtd->writesize; 6320 6321 /* 6322 * If no default placement scheme is given, select an appropriate one. 6323 */ 6324 if (!mtd->ooblayout && 6325 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 6326 ecc->algo == NAND_ECC_ALGO_BCH) && 6327 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 6328 ecc->algo == NAND_ECC_ALGO_HAMMING)) { 6329 switch (mtd->oobsize) { 6330 case 8: 6331 case 16: 6332 mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout()); 6333 break; 6334 case 64: 6335 case 128: 6336 mtd_set_ooblayout(mtd, 6337 nand_get_large_page_hamming_ooblayout()); 6338 break; 6339 default: 6340 /* 6341 * Expose the whole OOB area to users if ECC_NONE 6342 * is passed. We could do that for all kind of 6343 * ->oobsize, but we must keep the old large/small 6344 * page with ECC layout when ->oobsize <= 128 for 6345 * compatibility reasons. 6346 */ 6347 if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) { 6348 mtd_set_ooblayout(mtd, 6349 nand_get_large_page_ooblayout()); 6350 break; 6351 } 6352 6353 WARN(1, "No oob scheme defined for oobsize %d\n", 6354 mtd->oobsize); 6355 ret = -EINVAL; 6356 goto err_nand_manuf_cleanup; 6357 } 6358 } 6359 6360 /* 6361 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 6362 * selected and we have 256 byte pagesize fallback to software ECC 6363 */ 6364 6365 switch (ecc->engine_type) { 6366 case NAND_ECC_ENGINE_TYPE_ON_HOST: 6367 ret = nand_set_ecc_on_host_ops(chip); 6368 if (ret) 6369 goto err_nand_manuf_cleanup; 6370 6371 if (mtd->writesize >= ecc->size) { 6372 if (!ecc->strength) { 6373 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 6374 ret = -EINVAL; 6375 goto err_nand_manuf_cleanup; 6376 } 6377 break; 6378 } 6379 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 6380 ecc->size, mtd->writesize); 6381 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 6382 ecc->algo = NAND_ECC_ALGO_HAMMING; 6383 fallthrough; 6384 6385 case NAND_ECC_ENGINE_TYPE_SOFT: 6386 ret = nand_set_ecc_soft_ops(chip); 6387 if (ret) 6388 goto err_nand_manuf_cleanup; 6389 break; 6390 6391 case NAND_ECC_ENGINE_TYPE_ON_DIE: 6392 if (!ecc->read_page || !ecc->write_page) { 6393 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 6394 ret = -EINVAL; 6395 goto err_nand_manuf_cleanup; 6396 } 6397 if (!ecc->read_oob) 6398 ecc->read_oob = nand_read_oob_std; 6399 if (!ecc->write_oob) 6400 ecc->write_oob = nand_write_oob_std; 6401 break; 6402 6403 case NAND_ECC_ENGINE_TYPE_NONE: 6404 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n"); 6405 ecc->read_page = nand_read_page_raw; 6406 ecc->write_page = nand_write_page_raw; 6407 ecc->read_oob = nand_read_oob_std; 6408 ecc->read_page_raw = nand_read_page_raw; 6409 ecc->write_page_raw = nand_write_page_raw; 6410 ecc->write_oob = nand_write_oob_std; 6411 ecc->size = mtd->writesize; 6412 ecc->bytes = 0; 6413 ecc->strength = 0; 6414 break; 6415 6416 default: 6417 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type); 6418 ret = -EINVAL; 6419 goto err_nand_manuf_cleanup; 6420 } 6421 6422 if (ecc->correct || ecc->calculate) { 6423 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6424 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6425 if (!ecc->calc_buf || !ecc->code_buf) { 6426 ret = -ENOMEM; 6427 goto err_nand_manuf_cleanup; 6428 } 6429 } 6430 6431 /* For many systems, the standard OOB write also works for raw */ 6432 if (!ecc->read_oob_raw) 6433 ecc->read_oob_raw = ecc->read_oob; 6434 if (!ecc->write_oob_raw) 6435 ecc->write_oob_raw = ecc->write_oob; 6436 6437 /* Propagate ECC info to the generic NAND and MTD layers */ 6438 mtd->ecc_strength = ecc->strength; 6439 if (!base->ecc.ctx.conf.strength) 6440 base->ecc.ctx.conf.strength = ecc->strength; 6441 mtd->ecc_step_size = ecc->size; 6442 if (!base->ecc.ctx.conf.step_size) 6443 base->ecc.ctx.conf.step_size = ecc->size; 6444 6445 /* 6446 * Set the number of read / write steps for one page depending on ECC 6447 * mode. 6448 */ 6449 if (!ecc->steps) 6450 ecc->steps = mtd->writesize / ecc->size; 6451 if (!base->ecc.ctx.nsteps) 6452 base->ecc.ctx.nsteps = ecc->steps; 6453 if (ecc->steps * ecc->size != mtd->writesize) { 6454 WARN(1, "Invalid ECC parameters\n"); 6455 ret = -EINVAL; 6456 goto err_nand_manuf_cleanup; 6457 } 6458 6459 if (!ecc->total) { 6460 ecc->total = ecc->steps * ecc->bytes; 6461 chip->base.ecc.ctx.total = ecc->total; 6462 } 6463 6464 if (ecc->total > mtd->oobsize) { 6465 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 6466 ret = -EINVAL; 6467 goto err_nand_manuf_cleanup; 6468 } 6469 6470 /* 6471 * The number of bytes available for a client to place data into 6472 * the out of band area. 6473 */ 6474 ret = mtd_ooblayout_count_freebytes(mtd); 6475 if (ret < 0) 6476 ret = 0; 6477 6478 mtd->oobavail = ret; 6479 6480 /* ECC sanity check: warn if it's too weak */ 6481 if (!nand_ecc_is_strong_enough(&chip->base)) 6482 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n", 6483 mtd->name, chip->ecc.strength, chip->ecc.size, 6484 nanddev_get_ecc_requirements(&chip->base)->strength, 6485 nanddev_get_ecc_requirements(&chip->base)->step_size); 6486 6487 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 6488 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 6489 switch (ecc->steps) { 6490 case 2: 6491 mtd->subpage_sft = 1; 6492 break; 6493 case 4: 6494 case 8: 6495 case 16: 6496 mtd->subpage_sft = 2; 6497 break; 6498 } 6499 } 6500 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 6501 6502 /* Invalidate the pagebuffer reference */ 6503 chip->pagecache.page = -1; 6504 6505 /* Large page NAND with SOFT_ECC should support subpage reads */ 6506 switch (ecc->engine_type) { 6507 case NAND_ECC_ENGINE_TYPE_SOFT: 6508 if (chip->page_shift > 9) 6509 chip->options |= NAND_SUBPAGE_READ; 6510 break; 6511 6512 default: 6513 break; 6514 } 6515 6516 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); 6517 if (ret) 6518 goto err_nand_manuf_cleanup; 6519 6520 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ 6521 if (chip->options & NAND_ROM) 6522 mtd->flags = MTD_CAP_ROM; 6523 6524 /* Fill in remaining MTD driver data */ 6525 mtd->_erase = nand_erase; 6526 mtd->_point = NULL; 6527 mtd->_unpoint = NULL; 6528 mtd->_panic_write = panic_nand_write; 6529 mtd->_read_oob = nand_read_oob; 6530 mtd->_write_oob = nand_write_oob; 6531 mtd->_sync = nand_sync; 6532 mtd->_lock = nand_lock; 6533 mtd->_unlock = nand_unlock; 6534 mtd->_suspend = nand_suspend; 6535 mtd->_resume = nand_resume; 6536 mtd->_reboot = nand_shutdown; 6537 mtd->_block_isreserved = nand_block_isreserved; 6538 mtd->_block_isbad = nand_block_isbad; 6539 mtd->_block_markbad = nand_block_markbad; 6540 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; 6541 6542 /* 6543 * Initialize bitflip_threshold to its default prior scan_bbt() call. 6544 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 6545 * properly set. 6546 */ 6547 if (!mtd->bitflip_threshold) 6548 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 6549 6550 /* Find the fastest data interface for this chip */ 6551 ret = nand_choose_interface_config(chip); 6552 if (ret) 6553 goto err_nanddev_cleanup; 6554 6555 /* Enter fastest possible mode on all dies. */ 6556 for (i = 0; i < nanddev_ntargets(&chip->base); i++) { 6557 ret = nand_setup_interface(chip, i); 6558 if (ret) 6559 goto err_free_interface_config; 6560 } 6561 6562 rawnand_late_check_supported_ops(chip); 6563 6564 /* 6565 * Look for secure regions in the NAND chip. These regions are supposed 6566 * to be protected by a secure element like Trustzone. So the read/write 6567 * accesses to these regions will be blocked in the runtime by this 6568 * driver. 6569 */ 6570 ret = of_get_nand_secure_regions(chip); 6571 if (ret) 6572 goto err_free_interface_config; 6573 6574 /* Check, if we should skip the bad block table scan */ 6575 if (chip->options & NAND_SKIP_BBTSCAN) 6576 return 0; 6577 6578 /* Build bad block table */ 6579 ret = nand_create_bbt(chip); 6580 if (ret) 6581 goto err_free_secure_regions; 6582 6583 return 0; 6584 6585 err_free_secure_regions: 6586 kfree(chip->secure_regions); 6587 6588 err_free_interface_config: 6589 kfree(chip->best_interface_config); 6590 6591 err_nanddev_cleanup: 6592 nanddev_cleanup(&chip->base); 6593 6594 err_nand_manuf_cleanup: 6595 nand_manufacturer_cleanup(chip); 6596 6597 err_free_buf: 6598 kfree(chip->data_buf); 6599 kfree(ecc->code_buf); 6600 kfree(ecc->calc_buf); 6601 6602 return ret; 6603 } 6604 6605 static int nand_attach(struct nand_chip *chip) 6606 { 6607 if (chip->controller->ops && chip->controller->ops->attach_chip) 6608 return chip->controller->ops->attach_chip(chip); 6609 6610 return 0; 6611 } 6612 6613 static void nand_detach(struct nand_chip *chip) 6614 { 6615 if (chip->controller->ops && chip->controller->ops->detach_chip) 6616 chip->controller->ops->detach_chip(chip); 6617 } 6618 6619 /** 6620 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 6621 * @chip: NAND chip object 6622 * @maxchips: number of chips to scan for. 6623 * @ids: optional flash IDs table 6624 * 6625 * This fills out all the uninitialized function pointers with the defaults. 6626 * The flash ID is read and the mtd/chip structures are filled with the 6627 * appropriate values. 6628 */ 6629 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, 6630 struct nand_flash_dev *ids) 6631 { 6632 int ret; 6633 6634 if (!maxchips) 6635 return -EINVAL; 6636 6637 ret = nand_scan_ident(chip, maxchips, ids); 6638 if (ret) 6639 return ret; 6640 6641 ret = nand_attach(chip); 6642 if (ret) 6643 goto cleanup_ident; 6644 6645 ret = nand_scan_tail(chip); 6646 if (ret) 6647 goto detach_chip; 6648 6649 return 0; 6650 6651 detach_chip: 6652 nand_detach(chip); 6653 cleanup_ident: 6654 nand_scan_ident_cleanup(chip); 6655 6656 return ret; 6657 } 6658 EXPORT_SYMBOL(nand_scan_with_ids); 6659 6660 /** 6661 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 6662 * @chip: NAND chip object 6663 */ 6664 void nand_cleanup(struct nand_chip *chip) 6665 { 6666 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) { 6667 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING) 6668 rawnand_sw_hamming_cleanup(chip); 6669 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 6670 rawnand_sw_bch_cleanup(chip); 6671 } 6672 6673 nanddev_cleanup(&chip->base); 6674 6675 /* Free secure regions data */ 6676 kfree(chip->secure_regions); 6677 6678 /* Free bad block table memory */ 6679 kfree(chip->bbt); 6680 kfree(chip->data_buf); 6681 kfree(chip->ecc.code_buf); 6682 kfree(chip->ecc.calc_buf); 6683 6684 /* Free bad block descriptor memory */ 6685 if (chip->badblock_pattern && chip->badblock_pattern->options 6686 & NAND_BBT_DYNAMICSTRUCT) 6687 kfree(chip->badblock_pattern); 6688 6689 /* Free the data interface */ 6690 kfree(chip->best_interface_config); 6691 6692 /* Free manufacturer priv data. */ 6693 nand_manufacturer_cleanup(chip); 6694 6695 /* Free controller specific allocations after chip identification */ 6696 nand_detach(chip); 6697 6698 /* Free identification phase allocations */ 6699 nand_scan_ident_cleanup(chip); 6700 } 6701 6702 EXPORT_SYMBOL_GPL(nand_cleanup); 6703 6704 MODULE_LICENSE("GPL"); 6705 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 6706 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 6707 MODULE_DESCRIPTION("Generic NAND flash driver code"); 6708