1 /* 2 * Overview: 3 * This is the generic MTD driver for NAND flash devices. It should be 4 * capable of working with almost all NAND chips currently available. 5 * 6 * Additional technical information is available on 7 * http://www.linux-mtd.infradead.org/doc/nand.html 8 * 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 11 * 12 * Credits: 13 * David Woodhouse for adding multichip support 14 * 15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 16 * rework for 2K page size chips 17 * 18 * TODO: 19 * Enable cached programming for 2k page size chips 20 * Check, if mtd->ecctype should be set to MTD_ECC_HW 21 * if we have HW ECC support. 22 * BBT table is not serialized, has to be fixed 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License version 2 as 26 * published by the Free Software Foundation. 27 * 28 */ 29 30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 31 32 #include <linux/module.h> 33 #include <linux/delay.h> 34 #include <linux/errno.h> 35 #include <linux/err.h> 36 #include <linux/sched.h> 37 #include <linux/slab.h> 38 #include <linux/mm.h> 39 #include <linux/types.h> 40 #include <linux/mtd/mtd.h> 41 #include <linux/mtd/nand_ecc.h> 42 #include <linux/mtd/nand_bch.h> 43 #include <linux/interrupt.h> 44 #include <linux/bitops.h> 45 #include <linux/io.h> 46 #include <linux/mtd/partitions.h> 47 #include <linux/of.h> 48 #include <linux/gpio/consumer.h> 49 50 #include "internals.h" 51 52 /* Define default oob placement schemes for large and small page devices */ 53 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, 54 struct mtd_oob_region *oobregion) 55 { 56 struct nand_chip *chip = mtd_to_nand(mtd); 57 struct nand_ecc_ctrl *ecc = &chip->ecc; 58 59 if (section > 1) 60 return -ERANGE; 61 62 if (!section) { 63 oobregion->offset = 0; 64 if (mtd->oobsize == 16) 65 oobregion->length = 4; 66 else 67 oobregion->length = 3; 68 } else { 69 if (mtd->oobsize == 8) 70 return -ERANGE; 71 72 oobregion->offset = 6; 73 oobregion->length = ecc->total - 4; 74 } 75 76 return 0; 77 } 78 79 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, 80 struct mtd_oob_region *oobregion) 81 { 82 if (section > 1) 83 return -ERANGE; 84 85 if (mtd->oobsize == 16) { 86 if (section) 87 return -ERANGE; 88 89 oobregion->length = 8; 90 oobregion->offset = 8; 91 } else { 92 oobregion->length = 2; 93 if (!section) 94 oobregion->offset = 3; 95 else 96 oobregion->offset = 6; 97 } 98 99 return 0; 100 } 101 102 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { 103 .ecc = nand_ooblayout_ecc_sp, 104 .free = nand_ooblayout_free_sp, 105 }; 106 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); 107 108 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, 109 struct mtd_oob_region *oobregion) 110 { 111 struct nand_chip *chip = mtd_to_nand(mtd); 112 struct nand_ecc_ctrl *ecc = &chip->ecc; 113 114 if (section || !ecc->total) 115 return -ERANGE; 116 117 oobregion->length = ecc->total; 118 oobregion->offset = mtd->oobsize - oobregion->length; 119 120 return 0; 121 } 122 123 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, 124 struct mtd_oob_region *oobregion) 125 { 126 struct nand_chip *chip = mtd_to_nand(mtd); 127 struct nand_ecc_ctrl *ecc = &chip->ecc; 128 129 if (section) 130 return -ERANGE; 131 132 oobregion->length = mtd->oobsize - ecc->total - 2; 133 oobregion->offset = 2; 134 135 return 0; 136 } 137 138 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { 139 .ecc = nand_ooblayout_ecc_lp, 140 .free = nand_ooblayout_free_lp, 141 }; 142 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); 143 144 /* 145 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC 146 * are placed at a fixed offset. 147 */ 148 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, 149 struct mtd_oob_region *oobregion) 150 { 151 struct nand_chip *chip = mtd_to_nand(mtd); 152 struct nand_ecc_ctrl *ecc = &chip->ecc; 153 154 if (section) 155 return -ERANGE; 156 157 switch (mtd->oobsize) { 158 case 64: 159 oobregion->offset = 40; 160 break; 161 case 128: 162 oobregion->offset = 80; 163 break; 164 default: 165 return -EINVAL; 166 } 167 168 oobregion->length = ecc->total; 169 if (oobregion->offset + oobregion->length > mtd->oobsize) 170 return -ERANGE; 171 172 return 0; 173 } 174 175 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, 176 struct mtd_oob_region *oobregion) 177 { 178 struct nand_chip *chip = mtd_to_nand(mtd); 179 struct nand_ecc_ctrl *ecc = &chip->ecc; 180 int ecc_offset = 0; 181 182 if (section < 0 || section > 1) 183 return -ERANGE; 184 185 switch (mtd->oobsize) { 186 case 64: 187 ecc_offset = 40; 188 break; 189 case 128: 190 ecc_offset = 80; 191 break; 192 default: 193 return -EINVAL; 194 } 195 196 if (section == 0) { 197 oobregion->offset = 2; 198 oobregion->length = ecc_offset - 2; 199 } else { 200 oobregion->offset = ecc_offset + ecc->total; 201 oobregion->length = mtd->oobsize - oobregion->offset; 202 } 203 204 return 0; 205 } 206 207 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { 208 .ecc = nand_ooblayout_ecc_lp_hamming, 209 .free = nand_ooblayout_free_lp_hamming, 210 }; 211 212 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) 213 { 214 int ret = 0; 215 216 /* Start address must align on block boundary */ 217 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 218 pr_debug("%s: unaligned address\n", __func__); 219 ret = -EINVAL; 220 } 221 222 /* Length must align on block boundary */ 223 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 224 pr_debug("%s: length not block aligned\n", __func__); 225 ret = -EINVAL; 226 } 227 228 return ret; 229 } 230 231 /** 232 * nand_select_target() - Select a NAND target (A.K.A. die) 233 * @chip: NAND chip object 234 * @cs: the CS line to select. Note that this CS id is always from the chip 235 * PoV, not the controller one 236 * 237 * Select a NAND target so that further operations executed on @chip go to the 238 * selected NAND target. 239 */ 240 void nand_select_target(struct nand_chip *chip, unsigned int cs) 241 { 242 /* 243 * cs should always lie between 0 and chip->numchips, when that's not 244 * the case it's a bug and the caller should be fixed. 245 */ 246 if (WARN_ON(cs > chip->numchips)) 247 return; 248 249 chip->cur_cs = cs; 250 251 if (chip->legacy.select_chip) 252 chip->legacy.select_chip(chip, cs); 253 } 254 EXPORT_SYMBOL_GPL(nand_select_target); 255 256 /** 257 * nand_deselect_target() - Deselect the currently selected target 258 * @chip: NAND chip object 259 * 260 * Deselect the currently selected NAND target. The result of operations 261 * executed on @chip after the target has been deselected is undefined. 262 */ 263 void nand_deselect_target(struct nand_chip *chip) 264 { 265 if (chip->legacy.select_chip) 266 chip->legacy.select_chip(chip, -1); 267 268 chip->cur_cs = -1; 269 } 270 EXPORT_SYMBOL_GPL(nand_deselect_target); 271 272 /** 273 * nand_release_device - [GENERIC] release chip 274 * @chip: NAND chip object 275 * 276 * Release chip lock and wake up anyone waiting on the device. 277 */ 278 static void nand_release_device(struct nand_chip *chip) 279 { 280 /* Release the controller and the chip */ 281 spin_lock(&chip->controller->lock); 282 chip->controller->active = NULL; 283 chip->state = FL_READY; 284 wake_up(&chip->controller->wq); 285 spin_unlock(&chip->controller->lock); 286 } 287 288 /** 289 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 290 * @chip: NAND chip object 291 * @ofs: offset from device start 292 * 293 * Check, if the block is bad. 294 */ 295 static int nand_block_bad(struct nand_chip *chip, loff_t ofs) 296 { 297 struct mtd_info *mtd = nand_to_mtd(chip); 298 int page, page_end, res; 299 u8 bad; 300 301 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) 302 ofs += mtd->erasesize - mtd->writesize; 303 304 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 305 page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1); 306 307 for (; page < page_end; page++) { 308 res = chip->ecc.read_oob(chip, page); 309 if (res < 0) 310 return res; 311 312 bad = chip->oob_poi[chip->badblockpos]; 313 314 if (likely(chip->badblockbits == 8)) 315 res = bad != 0xFF; 316 else 317 res = hweight8(bad) < chip->badblockbits; 318 if (res) 319 return res; 320 } 321 322 return 0; 323 } 324 325 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) 326 { 327 if (chip->legacy.block_bad) 328 return chip->legacy.block_bad(chip, ofs); 329 330 return nand_block_bad(chip, ofs); 331 } 332 333 /** 334 * panic_nand_get_device - [GENERIC] Get chip for selected access 335 * @chip: the nand chip descriptor 336 * @new_state: the state which is requested 337 * 338 * Used when in panic, no locks are taken. 339 */ 340 static void panic_nand_get_device(struct nand_chip *chip, int new_state) 341 { 342 /* Hardware controller shared among independent devices */ 343 chip->controller->active = chip; 344 chip->state = new_state; 345 } 346 347 /** 348 * nand_get_device - [GENERIC] Get chip for selected access 349 * @chip: NAND chip structure 350 * @new_state: the state which is requested 351 * 352 * Get the device and lock it for exclusive access 353 */ 354 static int 355 nand_get_device(struct nand_chip *chip, int new_state) 356 { 357 spinlock_t *lock = &chip->controller->lock; 358 wait_queue_head_t *wq = &chip->controller->wq; 359 DECLARE_WAITQUEUE(wait, current); 360 retry: 361 spin_lock(lock); 362 363 /* Hardware controller shared among independent devices */ 364 if (!chip->controller->active) 365 chip->controller->active = chip; 366 367 if (chip->controller->active == chip && chip->state == FL_READY) { 368 chip->state = new_state; 369 spin_unlock(lock); 370 return 0; 371 } 372 if (new_state == FL_PM_SUSPENDED) { 373 if (chip->controller->active->state == FL_PM_SUSPENDED) { 374 chip->state = FL_PM_SUSPENDED; 375 spin_unlock(lock); 376 return 0; 377 } 378 } 379 set_current_state(TASK_UNINTERRUPTIBLE); 380 add_wait_queue(wq, &wait); 381 spin_unlock(lock); 382 schedule(); 383 remove_wait_queue(wq, &wait); 384 goto retry; 385 } 386 387 /** 388 * nand_check_wp - [GENERIC] check if the chip is write protected 389 * @chip: NAND chip object 390 * 391 * Check, if the device is write protected. The function expects, that the 392 * device is already selected. 393 */ 394 static int nand_check_wp(struct nand_chip *chip) 395 { 396 u8 status; 397 int ret; 398 399 /* Broken xD cards report WP despite being writable */ 400 if (chip->options & NAND_BROKEN_XD) 401 return 0; 402 403 /* Check the WP bit */ 404 ret = nand_status_op(chip, &status); 405 if (ret) 406 return ret; 407 408 return status & NAND_STATUS_WP ? 0 : 1; 409 } 410 411 /** 412 * nand_fill_oob - [INTERN] Transfer client buffer to oob 413 * @chip: NAND chip object 414 * @oob: oob data buffer 415 * @len: oob data write length 416 * @ops: oob ops structure 417 */ 418 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, 419 struct mtd_oob_ops *ops) 420 { 421 struct mtd_info *mtd = nand_to_mtd(chip); 422 int ret; 423 424 /* 425 * Initialise to all 0xFF, to avoid the possibility of left over OOB 426 * data from a previous OOB read. 427 */ 428 memset(chip->oob_poi, 0xff, mtd->oobsize); 429 430 switch (ops->mode) { 431 432 case MTD_OPS_PLACE_OOB: 433 case MTD_OPS_RAW: 434 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 435 return oob + len; 436 437 case MTD_OPS_AUTO_OOB: 438 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 439 ops->ooboffs, len); 440 BUG_ON(ret); 441 return oob + len; 442 443 default: 444 BUG(); 445 } 446 return NULL; 447 } 448 449 /** 450 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 451 * @chip: NAND chip object 452 * @to: offset to write to 453 * @ops: oob operation description structure 454 * 455 * NAND write out-of-band. 456 */ 457 static int nand_do_write_oob(struct nand_chip *chip, loff_t to, 458 struct mtd_oob_ops *ops) 459 { 460 struct mtd_info *mtd = nand_to_mtd(chip); 461 int chipnr, page, status, len; 462 463 pr_debug("%s: to = 0x%08x, len = %i\n", 464 __func__, (unsigned int)to, (int)ops->ooblen); 465 466 len = mtd_oobavail(mtd, ops); 467 468 /* Do not allow write past end of page */ 469 if ((ops->ooboffs + ops->ooblen) > len) { 470 pr_debug("%s: attempt to write past end of page\n", 471 __func__); 472 return -EINVAL; 473 } 474 475 chipnr = (int)(to >> chip->chip_shift); 476 477 /* 478 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 479 * of my DiskOnChip 2000 test units) will clear the whole data page too 480 * if we don't do this. I have no clue why, but I seem to have 'fixed' 481 * it in the doc2000 driver in August 1999. dwmw2. 482 */ 483 nand_reset(chip, chipnr); 484 485 nand_select_target(chip, chipnr); 486 487 /* Shift to get page */ 488 page = (int)(to >> chip->page_shift); 489 490 /* Check, if it is write protected */ 491 if (nand_check_wp(chip)) { 492 nand_deselect_target(chip); 493 return -EROFS; 494 } 495 496 /* Invalidate the page cache, if we write to the cached page */ 497 if (page == chip->pagebuf) 498 chip->pagebuf = -1; 499 500 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); 501 502 if (ops->mode == MTD_OPS_RAW) 503 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); 504 else 505 status = chip->ecc.write_oob(chip, page & chip->pagemask); 506 507 nand_deselect_target(chip); 508 509 if (status) 510 return status; 511 512 ops->oobretlen = ops->ooblen; 513 514 return 0; 515 } 516 517 /** 518 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 519 * @chip: NAND chip object 520 * @ofs: offset from device start 521 * 522 * This is the default implementation, which can be overridden by a hardware 523 * specific driver. It provides the details for writing a bad block marker to a 524 * block. 525 */ 526 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) 527 { 528 struct mtd_info *mtd = nand_to_mtd(chip); 529 struct mtd_oob_ops ops; 530 uint8_t buf[2] = { 0, 0 }; 531 int ret = 0, res, i = 0; 532 533 memset(&ops, 0, sizeof(ops)); 534 ops.oobbuf = buf; 535 ops.ooboffs = chip->badblockpos; 536 if (chip->options & NAND_BUSWIDTH_16) { 537 ops.ooboffs &= ~0x01; 538 ops.len = ops.ooblen = 2; 539 } else { 540 ops.len = ops.ooblen = 1; 541 } 542 ops.mode = MTD_OPS_PLACE_OOB; 543 544 /* Write to first/last page(s) if necessary */ 545 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) 546 ofs += mtd->erasesize - mtd->writesize; 547 do { 548 res = nand_do_write_oob(chip, ofs, &ops); 549 if (!ret) 550 ret = res; 551 552 i++; 553 ofs += mtd->writesize; 554 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); 555 556 return ret; 557 } 558 559 /** 560 * nand_markbad_bbm - mark a block by updating the BBM 561 * @chip: NAND chip object 562 * @ofs: offset of the block to mark bad 563 */ 564 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) 565 { 566 if (chip->legacy.block_markbad) 567 return chip->legacy.block_markbad(chip, ofs); 568 569 return nand_default_block_markbad(chip, ofs); 570 } 571 572 /** 573 * nand_block_markbad_lowlevel - mark a block bad 574 * @chip: NAND chip object 575 * @ofs: offset from device start 576 * 577 * This function performs the generic NAND bad block marking steps (i.e., bad 578 * block table(s) and/or marker(s)). We only allow the hardware driver to 579 * specify how to write bad block markers to OOB (chip->legacy.block_markbad). 580 * 581 * We try operations in the following order: 582 * 583 * (1) erase the affected block, to allow OOB marker to be written cleanly 584 * (2) write bad block marker to OOB area of affected block (unless flag 585 * NAND_BBT_NO_OOB_BBM is present) 586 * (3) update the BBT 587 * 588 * Note that we retain the first error encountered in (2) or (3), finish the 589 * procedures, and dump the error in the end. 590 */ 591 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) 592 { 593 struct mtd_info *mtd = nand_to_mtd(chip); 594 int res, ret = 0; 595 596 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 597 struct erase_info einfo; 598 599 /* Attempt erase before marking OOB */ 600 memset(&einfo, 0, sizeof(einfo)); 601 einfo.addr = ofs; 602 einfo.len = 1ULL << chip->phys_erase_shift; 603 nand_erase_nand(chip, &einfo, 0); 604 605 /* Write bad block marker to OOB */ 606 nand_get_device(chip, FL_WRITING); 607 ret = nand_markbad_bbm(chip, ofs); 608 nand_release_device(chip); 609 } 610 611 /* Mark block bad in BBT */ 612 if (chip->bbt) { 613 res = nand_markbad_bbt(chip, ofs); 614 if (!ret) 615 ret = res; 616 } 617 618 if (!ret) 619 mtd->ecc_stats.badblocks++; 620 621 return ret; 622 } 623 624 /** 625 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 626 * @mtd: MTD device structure 627 * @ofs: offset from device start 628 * 629 * Check if the block is marked as reserved. 630 */ 631 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 632 { 633 struct nand_chip *chip = mtd_to_nand(mtd); 634 635 if (!chip->bbt) 636 return 0; 637 /* Return info from the table */ 638 return nand_isreserved_bbt(chip, ofs); 639 } 640 641 /** 642 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 643 * @chip: NAND chip object 644 * @ofs: offset from device start 645 * @allowbbt: 1, if its allowed to access the bbt area 646 * 647 * Check, if the block is bad. Either by reading the bad block table or 648 * calling of the scan function. 649 */ 650 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) 651 { 652 /* Return info from the table */ 653 if (chip->bbt) 654 return nand_isbad_bbt(chip, ofs, allowbbt); 655 656 return nand_isbad_bbm(chip, ofs); 657 } 658 659 /** 660 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 661 * @chip: NAND chip structure 662 * @timeout_ms: Timeout in ms 663 * 664 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 665 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 666 * returned. 667 * 668 * This helper is intended to be used when the controller does not have access 669 * to the NAND R/B pin. 670 * 671 * Be aware that calling this helper from an ->exec_op() implementation means 672 * ->exec_op() must be re-entrant. 673 * 674 * Return 0 if the NAND chip is ready, a negative error otherwise. 675 */ 676 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 677 { 678 const struct nand_sdr_timings *timings; 679 u8 status = 0; 680 int ret; 681 682 if (!nand_has_exec_op(chip)) 683 return -ENOTSUPP; 684 685 /* Wait tWB before polling the STATUS reg. */ 686 timings = nand_get_sdr_timings(&chip->data_interface); 687 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 688 689 ret = nand_status_op(chip, NULL); 690 if (ret) 691 return ret; 692 693 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); 694 do { 695 ret = nand_read_data_op(chip, &status, sizeof(status), true); 696 if (ret) 697 break; 698 699 if (status & NAND_STATUS_READY) 700 break; 701 702 /* 703 * Typical lowest execution time for a tR on most NANDs is 10us, 704 * use this as polling delay before doing something smarter (ie. 705 * deriving a delay from the timeout value, timeout_ms/ratio). 706 */ 707 udelay(10); 708 } while (time_before(jiffies, timeout_ms)); 709 710 /* 711 * We have to exit READ_STATUS mode in order to read real data on the 712 * bus in case the WAITRDY instruction is preceding a DATA_IN 713 * instruction. 714 */ 715 nand_exit_status_op(chip); 716 717 if (ret) 718 return ret; 719 720 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 721 }; 722 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 723 724 /** 725 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready 726 * @chip: NAND chip structure 727 * @gpiod: GPIO descriptor of R/B pin 728 * @timeout_ms: Timeout in ms 729 * 730 * Poll the R/B GPIO pin until it becomes ready. If that does not happen 731 * whitin the specified timeout, -ETIMEDOUT is returned. 732 * 733 * This helper is intended to be used when the controller has access to the 734 * NAND R/B pin over GPIO. 735 * 736 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. 737 */ 738 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 739 unsigned long timeout_ms) 740 { 741 /* Wait until R/B pin indicates chip is ready or timeout occurs */ 742 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); 743 do { 744 if (gpiod_get_value_cansleep(gpiod)) 745 return 0; 746 747 cond_resched(); 748 } while (time_before(jiffies, timeout_ms)); 749 750 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; 751 }; 752 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); 753 754 /** 755 * panic_nand_wait - [GENERIC] wait until the command is done 756 * @chip: NAND chip structure 757 * @timeo: timeout 758 * 759 * Wait for command done. This is a helper function for nand_wait used when 760 * we are in interrupt context. May happen when in panic and trying to write 761 * an oops through mtdoops. 762 */ 763 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) 764 { 765 int i; 766 for (i = 0; i < timeo; i++) { 767 if (chip->legacy.dev_ready) { 768 if (chip->legacy.dev_ready(chip)) 769 break; 770 } else { 771 int ret; 772 u8 status; 773 774 ret = nand_read_data_op(chip, &status, sizeof(status), 775 true); 776 if (ret) 777 return; 778 779 if (status & NAND_STATUS_READY) 780 break; 781 } 782 mdelay(1); 783 } 784 } 785 786 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 787 { 788 return (chip->parameters.supports_set_get_features && 789 test_bit(addr, chip->parameters.get_feature_list)); 790 } 791 792 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 793 { 794 return (chip->parameters.supports_set_get_features && 795 test_bit(addr, chip->parameters.set_feature_list)); 796 } 797 798 /** 799 * nand_reset_data_interface - Reset data interface and timings 800 * @chip: The NAND chip 801 * @chipnr: Internal die id 802 * 803 * Reset the Data interface and timings to ONFI mode 0. 804 * 805 * Returns 0 for success or negative error code otherwise. 806 */ 807 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) 808 { 809 int ret; 810 811 if (!nand_has_setup_data_iface(chip)) 812 return 0; 813 814 /* 815 * The ONFI specification says: 816 * " 817 * To transition from NV-DDR or NV-DDR2 to the SDR data 818 * interface, the host shall use the Reset (FFh) command 819 * using SDR timing mode 0. A device in any timing mode is 820 * required to recognize Reset (FFh) command issued in SDR 821 * timing mode 0. 822 * " 823 * 824 * Configure the data interface in SDR mode and set the 825 * timings to timing mode 0. 826 */ 827 828 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 829 ret = chip->controller->ops->setup_data_interface(chip, chipnr, 830 &chip->data_interface); 831 if (ret) 832 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 833 834 return ret; 835 } 836 837 /** 838 * nand_setup_data_interface - Setup the best data interface and timings 839 * @chip: The NAND chip 840 * @chipnr: Internal die id 841 * 842 * Find and configure the best data interface and NAND timings supported by 843 * the chip and the driver. 844 * First tries to retrieve supported timing modes from ONFI information, 845 * and if the NAND chip does not support ONFI, relies on the 846 * ->onfi_timing_mode_default specified in the nand_ids table. 847 * 848 * Returns 0 for success or negative error code otherwise. 849 */ 850 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) 851 { 852 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { 853 chip->onfi_timing_mode_default, 854 }; 855 int ret; 856 857 if (!nand_has_setup_data_iface(chip)) 858 return 0; 859 860 /* Change the mode on the chip side (if supported by the NAND chip) */ 861 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 862 nand_select_target(chip, chipnr); 863 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 864 tmode_param); 865 nand_deselect_target(chip); 866 if (ret) 867 return ret; 868 } 869 870 /* Change the mode on the controller side */ 871 ret = chip->controller->ops->setup_data_interface(chip, chipnr, 872 &chip->data_interface); 873 if (ret) 874 return ret; 875 876 /* Check the mode has been accepted by the chip, if supported */ 877 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 878 return 0; 879 880 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 881 nand_select_target(chip, chipnr); 882 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 883 tmode_param); 884 nand_deselect_target(chip); 885 if (ret) 886 goto err_reset_chip; 887 888 if (tmode_param[0] != chip->onfi_timing_mode_default) { 889 pr_warn("timing mode %d not acknowledged by the NAND chip\n", 890 chip->onfi_timing_mode_default); 891 goto err_reset_chip; 892 } 893 894 return 0; 895 896 err_reset_chip: 897 /* 898 * Fallback to mode 0 if the chip explicitly did not ack the chosen 899 * timing mode. 900 */ 901 nand_reset_data_interface(chip, chipnr); 902 nand_select_target(chip, chipnr); 903 nand_reset_op(chip); 904 nand_deselect_target(chip); 905 906 return ret; 907 } 908 909 /** 910 * nand_init_data_interface - find the best data interface and timings 911 * @chip: The NAND chip 912 * 913 * Find the best data interface and NAND timings supported by the chip 914 * and the driver. 915 * First tries to retrieve supported timing modes from ONFI information, 916 * and if the NAND chip does not support ONFI, relies on the 917 * ->onfi_timing_mode_default specified in the nand_ids table. After this 918 * function nand_chip->data_interface is initialized with the best timing mode 919 * available. 920 * 921 * Returns 0 for success or negative error code otherwise. 922 */ 923 static int nand_init_data_interface(struct nand_chip *chip) 924 { 925 int modes, mode, ret; 926 927 if (!nand_has_setup_data_iface(chip)) 928 return 0; 929 930 /* 931 * First try to identify the best timings from ONFI parameters and 932 * if the NAND does not support ONFI, fallback to the default ONFI 933 * timing mode. 934 */ 935 if (chip->parameters.onfi) { 936 modes = chip->parameters.onfi->async_timing_mode; 937 } else { 938 if (!chip->onfi_timing_mode_default) 939 return 0; 940 941 modes = GENMASK(chip->onfi_timing_mode_default, 0); 942 } 943 944 for (mode = fls(modes) - 1; mode >= 0; mode--) { 945 ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode); 946 if (ret) 947 continue; 948 949 /* 950 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the 951 * controller supports the requested timings. 952 */ 953 ret = chip->controller->ops->setup_data_interface(chip, 954 NAND_DATA_IFACE_CHECK_ONLY, 955 &chip->data_interface); 956 if (!ret) { 957 chip->onfi_timing_mode_default = mode; 958 break; 959 } 960 } 961 962 return 0; 963 } 964 965 /** 966 * nand_fill_column_cycles - fill the column cycles of an address 967 * @chip: The NAND chip 968 * @addrs: Array of address cycles to fill 969 * @offset_in_page: The offset in the page 970 * 971 * Fills the first or the first two bytes of the @addrs field depending 972 * on the NAND bus width and the page size. 973 * 974 * Returns the number of cycles needed to encode the column, or a negative 975 * error code in case one of the arguments is invalid. 976 */ 977 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 978 unsigned int offset_in_page) 979 { 980 struct mtd_info *mtd = nand_to_mtd(chip); 981 982 /* Make sure the offset is less than the actual page size. */ 983 if (offset_in_page > mtd->writesize + mtd->oobsize) 984 return -EINVAL; 985 986 /* 987 * On small page NANDs, there's a dedicated command to access the OOB 988 * area, and the column address is relative to the start of the OOB 989 * area, not the start of the page. Asjust the address accordingly. 990 */ 991 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 992 offset_in_page -= mtd->writesize; 993 994 /* 995 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 996 * wide, then it must be divided by 2. 997 */ 998 if (chip->options & NAND_BUSWIDTH_16) { 999 if (WARN_ON(offset_in_page % 2)) 1000 return -EINVAL; 1001 1002 offset_in_page /= 2; 1003 } 1004 1005 addrs[0] = offset_in_page; 1006 1007 /* 1008 * Small page NANDs use 1 cycle for the columns, while large page NANDs 1009 * need 2 1010 */ 1011 if (mtd->writesize <= 512) 1012 return 1; 1013 1014 addrs[1] = offset_in_page >> 8; 1015 1016 return 2; 1017 } 1018 1019 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1020 unsigned int offset_in_page, void *buf, 1021 unsigned int len) 1022 { 1023 struct mtd_info *mtd = nand_to_mtd(chip); 1024 const struct nand_sdr_timings *sdr = 1025 nand_get_sdr_timings(&chip->data_interface); 1026 u8 addrs[4]; 1027 struct nand_op_instr instrs[] = { 1028 NAND_OP_CMD(NAND_CMD_READ0, 0), 1029 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), 1030 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1031 PSEC_TO_NSEC(sdr->tRR_min)), 1032 NAND_OP_DATA_IN(len, buf, 0), 1033 }; 1034 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1035 int ret; 1036 1037 /* Drop the DATA_IN instruction if len is set to 0. */ 1038 if (!len) 1039 op.ninstrs--; 1040 1041 if (offset_in_page >= mtd->writesize) 1042 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1043 else if (offset_in_page >= 256 && 1044 !(chip->options & NAND_BUSWIDTH_16)) 1045 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1046 1047 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1048 if (ret < 0) 1049 return ret; 1050 1051 addrs[1] = page; 1052 addrs[2] = page >> 8; 1053 1054 if (chip->options & NAND_ROW_ADDR_3) { 1055 addrs[3] = page >> 16; 1056 instrs[1].ctx.addr.naddrs++; 1057 } 1058 1059 return nand_exec_op(chip, &op); 1060 } 1061 1062 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1063 unsigned int offset_in_page, void *buf, 1064 unsigned int len) 1065 { 1066 const struct nand_sdr_timings *sdr = 1067 nand_get_sdr_timings(&chip->data_interface); 1068 u8 addrs[5]; 1069 struct nand_op_instr instrs[] = { 1070 NAND_OP_CMD(NAND_CMD_READ0, 0), 1071 NAND_OP_ADDR(4, addrs, 0), 1072 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), 1073 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1074 PSEC_TO_NSEC(sdr->tRR_min)), 1075 NAND_OP_DATA_IN(len, buf, 0), 1076 }; 1077 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1078 int ret; 1079 1080 /* Drop the DATA_IN instruction if len is set to 0. */ 1081 if (!len) 1082 op.ninstrs--; 1083 1084 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1085 if (ret < 0) 1086 return ret; 1087 1088 addrs[2] = page; 1089 addrs[3] = page >> 8; 1090 1091 if (chip->options & NAND_ROW_ADDR_3) { 1092 addrs[4] = page >> 16; 1093 instrs[1].ctx.addr.naddrs++; 1094 } 1095 1096 return nand_exec_op(chip, &op); 1097 } 1098 1099 /** 1100 * nand_read_page_op - Do a READ PAGE operation 1101 * @chip: The NAND chip 1102 * @page: page to read 1103 * @offset_in_page: offset within the page 1104 * @buf: buffer used to store the data 1105 * @len: length of the buffer 1106 * 1107 * This function issues a READ PAGE operation. 1108 * This function does not select/unselect the CS line. 1109 * 1110 * Returns 0 on success, a negative error code otherwise. 1111 */ 1112 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1113 unsigned int offset_in_page, void *buf, unsigned int len) 1114 { 1115 struct mtd_info *mtd = nand_to_mtd(chip); 1116 1117 if (len && !buf) 1118 return -EINVAL; 1119 1120 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1121 return -EINVAL; 1122 1123 if (nand_has_exec_op(chip)) { 1124 if (mtd->writesize > 512) 1125 return nand_lp_exec_read_page_op(chip, page, 1126 offset_in_page, buf, 1127 len); 1128 1129 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1130 buf, len); 1131 } 1132 1133 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); 1134 if (len) 1135 chip->legacy.read_buf(chip, buf, len); 1136 1137 return 0; 1138 } 1139 EXPORT_SYMBOL_GPL(nand_read_page_op); 1140 1141 /** 1142 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1143 * @chip: The NAND chip 1144 * @page: parameter page to read 1145 * @buf: buffer used to store the data 1146 * @len: length of the buffer 1147 * 1148 * This function issues a READ PARAMETER PAGE operation. 1149 * This function does not select/unselect the CS line. 1150 * 1151 * Returns 0 on success, a negative error code otherwise. 1152 */ 1153 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1154 unsigned int len) 1155 { 1156 unsigned int i; 1157 u8 *p = buf; 1158 1159 if (len && !buf) 1160 return -EINVAL; 1161 1162 if (nand_has_exec_op(chip)) { 1163 const struct nand_sdr_timings *sdr = 1164 nand_get_sdr_timings(&chip->data_interface); 1165 struct nand_op_instr instrs[] = { 1166 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1167 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), 1168 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1169 PSEC_TO_NSEC(sdr->tRR_min)), 1170 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1171 }; 1172 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1173 1174 /* Drop the DATA_IN instruction if len is set to 0. */ 1175 if (!len) 1176 op.ninstrs--; 1177 1178 return nand_exec_op(chip, &op); 1179 } 1180 1181 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); 1182 for (i = 0; i < len; i++) 1183 p[i] = chip->legacy.read_byte(chip); 1184 1185 return 0; 1186 } 1187 1188 /** 1189 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1190 * @chip: The NAND chip 1191 * @offset_in_page: offset within the page 1192 * @buf: buffer used to store the data 1193 * @len: length of the buffer 1194 * @force_8bit: force 8-bit bus access 1195 * 1196 * This function issues a CHANGE READ COLUMN operation. 1197 * This function does not select/unselect the CS line. 1198 * 1199 * Returns 0 on success, a negative error code otherwise. 1200 */ 1201 int nand_change_read_column_op(struct nand_chip *chip, 1202 unsigned int offset_in_page, void *buf, 1203 unsigned int len, bool force_8bit) 1204 { 1205 struct mtd_info *mtd = nand_to_mtd(chip); 1206 1207 if (len && !buf) 1208 return -EINVAL; 1209 1210 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1211 return -EINVAL; 1212 1213 /* Small page NANDs do not support column change. */ 1214 if (mtd->writesize <= 512) 1215 return -ENOTSUPP; 1216 1217 if (nand_has_exec_op(chip)) { 1218 const struct nand_sdr_timings *sdr = 1219 nand_get_sdr_timings(&chip->data_interface); 1220 u8 addrs[2] = {}; 1221 struct nand_op_instr instrs[] = { 1222 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1223 NAND_OP_ADDR(2, addrs, 0), 1224 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1225 PSEC_TO_NSEC(sdr->tCCS_min)), 1226 NAND_OP_DATA_IN(len, buf, 0), 1227 }; 1228 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1229 int ret; 1230 1231 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1232 if (ret < 0) 1233 return ret; 1234 1235 /* Drop the DATA_IN instruction if len is set to 0. */ 1236 if (!len) 1237 op.ninstrs--; 1238 1239 instrs[3].ctx.data.force_8bit = force_8bit; 1240 1241 return nand_exec_op(chip, &op); 1242 } 1243 1244 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); 1245 if (len) 1246 chip->legacy.read_buf(chip, buf, len); 1247 1248 return 0; 1249 } 1250 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1251 1252 /** 1253 * nand_read_oob_op - Do a READ OOB operation 1254 * @chip: The NAND chip 1255 * @page: page to read 1256 * @offset_in_oob: offset within the OOB area 1257 * @buf: buffer used to store the data 1258 * @len: length of the buffer 1259 * 1260 * This function issues a READ OOB operation. 1261 * This function does not select/unselect the CS line. 1262 * 1263 * Returns 0 on success, a negative error code otherwise. 1264 */ 1265 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1266 unsigned int offset_in_oob, void *buf, unsigned int len) 1267 { 1268 struct mtd_info *mtd = nand_to_mtd(chip); 1269 1270 if (len && !buf) 1271 return -EINVAL; 1272 1273 if (offset_in_oob + len > mtd->oobsize) 1274 return -EINVAL; 1275 1276 if (nand_has_exec_op(chip)) 1277 return nand_read_page_op(chip, page, 1278 mtd->writesize + offset_in_oob, 1279 buf, len); 1280 1281 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); 1282 if (len) 1283 chip->legacy.read_buf(chip, buf, len); 1284 1285 return 0; 1286 } 1287 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1288 1289 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1290 unsigned int offset_in_page, const void *buf, 1291 unsigned int len, bool prog) 1292 { 1293 struct mtd_info *mtd = nand_to_mtd(chip); 1294 const struct nand_sdr_timings *sdr = 1295 nand_get_sdr_timings(&chip->data_interface); 1296 u8 addrs[5] = {}; 1297 struct nand_op_instr instrs[] = { 1298 /* 1299 * The first instruction will be dropped if we're dealing 1300 * with a large page NAND and adjusted if we're dealing 1301 * with a small page NAND and the page offset is > 255. 1302 */ 1303 NAND_OP_CMD(NAND_CMD_READ0, 0), 1304 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1305 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), 1306 NAND_OP_DATA_OUT(len, buf, 0), 1307 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), 1308 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1309 }; 1310 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1311 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1312 int ret; 1313 u8 status; 1314 1315 if (naddrs < 0) 1316 return naddrs; 1317 1318 addrs[naddrs++] = page; 1319 addrs[naddrs++] = page >> 8; 1320 if (chip->options & NAND_ROW_ADDR_3) 1321 addrs[naddrs++] = page >> 16; 1322 1323 instrs[2].ctx.addr.naddrs = naddrs; 1324 1325 /* Drop the last two instructions if we're not programming the page. */ 1326 if (!prog) { 1327 op.ninstrs -= 2; 1328 /* Also drop the DATA_OUT instruction if empty. */ 1329 if (!len) 1330 op.ninstrs--; 1331 } 1332 1333 if (mtd->writesize <= 512) { 1334 /* 1335 * Small pages need some more tweaking: we have to adjust the 1336 * first instruction depending on the page offset we're trying 1337 * to access. 1338 */ 1339 if (offset_in_page >= mtd->writesize) 1340 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1341 else if (offset_in_page >= 256 && 1342 !(chip->options & NAND_BUSWIDTH_16)) 1343 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1344 } else { 1345 /* 1346 * Drop the first command if we're dealing with a large page 1347 * NAND. 1348 */ 1349 op.instrs++; 1350 op.ninstrs--; 1351 } 1352 1353 ret = nand_exec_op(chip, &op); 1354 if (!prog || ret) 1355 return ret; 1356 1357 ret = nand_status_op(chip, &status); 1358 if (ret) 1359 return ret; 1360 1361 return status; 1362 } 1363 1364 /** 1365 * nand_prog_page_begin_op - starts a PROG PAGE operation 1366 * @chip: The NAND chip 1367 * @page: page to write 1368 * @offset_in_page: offset within the page 1369 * @buf: buffer containing the data to write to the page 1370 * @len: length of the buffer 1371 * 1372 * This function issues the first half of a PROG PAGE operation. 1373 * This function does not select/unselect the CS line. 1374 * 1375 * Returns 0 on success, a negative error code otherwise. 1376 */ 1377 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1378 unsigned int offset_in_page, const void *buf, 1379 unsigned int len) 1380 { 1381 struct mtd_info *mtd = nand_to_mtd(chip); 1382 1383 if (len && !buf) 1384 return -EINVAL; 1385 1386 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1387 return -EINVAL; 1388 1389 if (nand_has_exec_op(chip)) 1390 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1391 len, false); 1392 1393 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); 1394 1395 if (buf) 1396 chip->legacy.write_buf(chip, buf, len); 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1401 1402 /** 1403 * nand_prog_page_end_op - ends a PROG PAGE operation 1404 * @chip: The NAND chip 1405 * 1406 * This function issues the second half of a PROG PAGE operation. 1407 * This function does not select/unselect the CS line. 1408 * 1409 * Returns 0 on success, a negative error code otherwise. 1410 */ 1411 int nand_prog_page_end_op(struct nand_chip *chip) 1412 { 1413 int ret; 1414 u8 status; 1415 1416 if (nand_has_exec_op(chip)) { 1417 const struct nand_sdr_timings *sdr = 1418 nand_get_sdr_timings(&chip->data_interface); 1419 struct nand_op_instr instrs[] = { 1420 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1421 PSEC_TO_NSEC(sdr->tWB_max)), 1422 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1423 }; 1424 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1425 1426 ret = nand_exec_op(chip, &op); 1427 if (ret) 1428 return ret; 1429 1430 ret = nand_status_op(chip, &status); 1431 if (ret) 1432 return ret; 1433 } else { 1434 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1435 ret = chip->legacy.waitfunc(chip); 1436 if (ret < 0) 1437 return ret; 1438 1439 status = ret; 1440 } 1441 1442 if (status & NAND_STATUS_FAIL) 1443 return -EIO; 1444 1445 return 0; 1446 } 1447 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1448 1449 /** 1450 * nand_prog_page_op - Do a full PROG PAGE operation 1451 * @chip: The NAND chip 1452 * @page: page to write 1453 * @offset_in_page: offset within the page 1454 * @buf: buffer containing the data to write to the page 1455 * @len: length of the buffer 1456 * 1457 * This function issues a full PROG PAGE operation. 1458 * This function does not select/unselect the CS line. 1459 * 1460 * Returns 0 on success, a negative error code otherwise. 1461 */ 1462 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1463 unsigned int offset_in_page, const void *buf, 1464 unsigned int len) 1465 { 1466 struct mtd_info *mtd = nand_to_mtd(chip); 1467 int status; 1468 1469 if (!len || !buf) 1470 return -EINVAL; 1471 1472 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1473 return -EINVAL; 1474 1475 if (nand_has_exec_op(chip)) { 1476 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1477 len, true); 1478 } else { 1479 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, 1480 page); 1481 chip->legacy.write_buf(chip, buf, len); 1482 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1483 status = chip->legacy.waitfunc(chip); 1484 } 1485 1486 if (status & NAND_STATUS_FAIL) 1487 return -EIO; 1488 1489 return 0; 1490 } 1491 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1492 1493 /** 1494 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1495 * @chip: The NAND chip 1496 * @offset_in_page: offset within the page 1497 * @buf: buffer containing the data to send to the NAND 1498 * @len: length of the buffer 1499 * @force_8bit: force 8-bit bus access 1500 * 1501 * This function issues a CHANGE WRITE COLUMN operation. 1502 * This function does not select/unselect the CS line. 1503 * 1504 * Returns 0 on success, a negative error code otherwise. 1505 */ 1506 int nand_change_write_column_op(struct nand_chip *chip, 1507 unsigned int offset_in_page, 1508 const void *buf, unsigned int len, 1509 bool force_8bit) 1510 { 1511 struct mtd_info *mtd = nand_to_mtd(chip); 1512 1513 if (len && !buf) 1514 return -EINVAL; 1515 1516 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1517 return -EINVAL; 1518 1519 /* Small page NANDs do not support column change. */ 1520 if (mtd->writesize <= 512) 1521 return -ENOTSUPP; 1522 1523 if (nand_has_exec_op(chip)) { 1524 const struct nand_sdr_timings *sdr = 1525 nand_get_sdr_timings(&chip->data_interface); 1526 u8 addrs[2]; 1527 struct nand_op_instr instrs[] = { 1528 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1529 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), 1530 NAND_OP_DATA_OUT(len, buf, 0), 1531 }; 1532 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1533 int ret; 1534 1535 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1536 if (ret < 0) 1537 return ret; 1538 1539 instrs[2].ctx.data.force_8bit = force_8bit; 1540 1541 /* Drop the DATA_OUT instruction if len is set to 0. */ 1542 if (!len) 1543 op.ninstrs--; 1544 1545 return nand_exec_op(chip, &op); 1546 } 1547 1548 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); 1549 if (len) 1550 chip->legacy.write_buf(chip, buf, len); 1551 1552 return 0; 1553 } 1554 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1555 1556 /** 1557 * nand_readid_op - Do a READID operation 1558 * @chip: The NAND chip 1559 * @addr: address cycle to pass after the READID command 1560 * @buf: buffer used to store the ID 1561 * @len: length of the buffer 1562 * 1563 * This function sends a READID command and reads back the ID returned by the 1564 * NAND. 1565 * This function does not select/unselect the CS line. 1566 * 1567 * Returns 0 on success, a negative error code otherwise. 1568 */ 1569 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1570 unsigned int len) 1571 { 1572 unsigned int i; 1573 u8 *id = buf; 1574 1575 if (len && !buf) 1576 return -EINVAL; 1577 1578 if (nand_has_exec_op(chip)) { 1579 const struct nand_sdr_timings *sdr = 1580 nand_get_sdr_timings(&chip->data_interface); 1581 struct nand_op_instr instrs[] = { 1582 NAND_OP_CMD(NAND_CMD_READID, 0), 1583 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), 1584 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1585 }; 1586 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1587 1588 /* Drop the DATA_IN instruction if len is set to 0. */ 1589 if (!len) 1590 op.ninstrs--; 1591 1592 return nand_exec_op(chip, &op); 1593 } 1594 1595 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); 1596 1597 for (i = 0; i < len; i++) 1598 id[i] = chip->legacy.read_byte(chip); 1599 1600 return 0; 1601 } 1602 EXPORT_SYMBOL_GPL(nand_readid_op); 1603 1604 /** 1605 * nand_status_op - Do a STATUS operation 1606 * @chip: The NAND chip 1607 * @status: out variable to store the NAND status 1608 * 1609 * This function sends a STATUS command and reads back the status returned by 1610 * the NAND. 1611 * This function does not select/unselect the CS line. 1612 * 1613 * Returns 0 on success, a negative error code otherwise. 1614 */ 1615 int nand_status_op(struct nand_chip *chip, u8 *status) 1616 { 1617 if (nand_has_exec_op(chip)) { 1618 const struct nand_sdr_timings *sdr = 1619 nand_get_sdr_timings(&chip->data_interface); 1620 struct nand_op_instr instrs[] = { 1621 NAND_OP_CMD(NAND_CMD_STATUS, 1622 PSEC_TO_NSEC(sdr->tADL_min)), 1623 NAND_OP_8BIT_DATA_IN(1, status, 0), 1624 }; 1625 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1626 1627 if (!status) 1628 op.ninstrs--; 1629 1630 return nand_exec_op(chip, &op); 1631 } 1632 1633 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); 1634 if (status) 1635 *status = chip->legacy.read_byte(chip); 1636 1637 return 0; 1638 } 1639 EXPORT_SYMBOL_GPL(nand_status_op); 1640 1641 /** 1642 * nand_exit_status_op - Exit a STATUS operation 1643 * @chip: The NAND chip 1644 * 1645 * This function sends a READ0 command to cancel the effect of the STATUS 1646 * command to avoid reading only the status until a new read command is sent. 1647 * 1648 * This function does not select/unselect the CS line. 1649 * 1650 * Returns 0 on success, a negative error code otherwise. 1651 */ 1652 int nand_exit_status_op(struct nand_chip *chip) 1653 { 1654 if (nand_has_exec_op(chip)) { 1655 struct nand_op_instr instrs[] = { 1656 NAND_OP_CMD(NAND_CMD_READ0, 0), 1657 }; 1658 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1659 1660 return nand_exec_op(chip, &op); 1661 } 1662 1663 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); 1664 1665 return 0; 1666 } 1667 1668 /** 1669 * nand_erase_op - Do an erase operation 1670 * @chip: The NAND chip 1671 * @eraseblock: block to erase 1672 * 1673 * This function sends an ERASE command and waits for the NAND to be ready 1674 * before returning. 1675 * This function does not select/unselect the CS line. 1676 * 1677 * Returns 0 on success, a negative error code otherwise. 1678 */ 1679 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 1680 { 1681 unsigned int page = eraseblock << 1682 (chip->phys_erase_shift - chip->page_shift); 1683 int ret; 1684 u8 status; 1685 1686 if (nand_has_exec_op(chip)) { 1687 const struct nand_sdr_timings *sdr = 1688 nand_get_sdr_timings(&chip->data_interface); 1689 u8 addrs[3] = { page, page >> 8, page >> 16 }; 1690 struct nand_op_instr instrs[] = { 1691 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 1692 NAND_OP_ADDR(2, addrs, 0), 1693 NAND_OP_CMD(NAND_CMD_ERASE2, 1694 PSEC_TO_MSEC(sdr->tWB_max)), 1695 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), 1696 }; 1697 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1698 1699 if (chip->options & NAND_ROW_ADDR_3) 1700 instrs[1].ctx.addr.naddrs++; 1701 1702 ret = nand_exec_op(chip, &op); 1703 if (ret) 1704 return ret; 1705 1706 ret = nand_status_op(chip, &status); 1707 if (ret) 1708 return ret; 1709 } else { 1710 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); 1711 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); 1712 1713 ret = chip->legacy.waitfunc(chip); 1714 if (ret < 0) 1715 return ret; 1716 1717 status = ret; 1718 } 1719 1720 if (status & NAND_STATUS_FAIL) 1721 return -EIO; 1722 1723 return 0; 1724 } 1725 EXPORT_SYMBOL_GPL(nand_erase_op); 1726 1727 /** 1728 * nand_set_features_op - Do a SET FEATURES operation 1729 * @chip: The NAND chip 1730 * @feature: feature id 1731 * @data: 4 bytes of data 1732 * 1733 * This function sends a SET FEATURES command and waits for the NAND to be 1734 * ready before returning. 1735 * This function does not select/unselect the CS line. 1736 * 1737 * Returns 0 on success, a negative error code otherwise. 1738 */ 1739 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 1740 const void *data) 1741 { 1742 const u8 *params = data; 1743 int i, ret; 1744 1745 if (nand_has_exec_op(chip)) { 1746 const struct nand_sdr_timings *sdr = 1747 nand_get_sdr_timings(&chip->data_interface); 1748 struct nand_op_instr instrs[] = { 1749 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 1750 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), 1751 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 1752 PSEC_TO_NSEC(sdr->tWB_max)), 1753 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), 1754 }; 1755 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1756 1757 return nand_exec_op(chip, &op); 1758 } 1759 1760 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); 1761 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1762 chip->legacy.write_byte(chip, params[i]); 1763 1764 ret = chip->legacy.waitfunc(chip); 1765 if (ret < 0) 1766 return ret; 1767 1768 if (ret & NAND_STATUS_FAIL) 1769 return -EIO; 1770 1771 return 0; 1772 } 1773 1774 /** 1775 * nand_get_features_op - Do a GET FEATURES operation 1776 * @chip: The NAND chip 1777 * @feature: feature id 1778 * @data: 4 bytes of data 1779 * 1780 * This function sends a GET FEATURES command and waits for the NAND to be 1781 * ready before returning. 1782 * This function does not select/unselect the CS line. 1783 * 1784 * Returns 0 on success, a negative error code otherwise. 1785 */ 1786 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 1787 void *data) 1788 { 1789 u8 *params = data; 1790 int i; 1791 1792 if (nand_has_exec_op(chip)) { 1793 const struct nand_sdr_timings *sdr = 1794 nand_get_sdr_timings(&chip->data_interface); 1795 struct nand_op_instr instrs[] = { 1796 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 1797 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), 1798 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 1799 PSEC_TO_NSEC(sdr->tRR_min)), 1800 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 1801 data, 0), 1802 }; 1803 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1804 1805 return nand_exec_op(chip, &op); 1806 } 1807 1808 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); 1809 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1810 params[i] = chip->legacy.read_byte(chip); 1811 1812 return 0; 1813 } 1814 1815 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, 1816 unsigned int delay_ns) 1817 { 1818 if (nand_has_exec_op(chip)) { 1819 struct nand_op_instr instrs[] = { 1820 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), 1821 PSEC_TO_NSEC(delay_ns)), 1822 }; 1823 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1824 1825 return nand_exec_op(chip, &op); 1826 } 1827 1828 /* Apply delay or wait for ready/busy pin */ 1829 if (!chip->legacy.dev_ready) 1830 udelay(chip->legacy.chip_delay); 1831 else 1832 nand_wait_ready(chip); 1833 1834 return 0; 1835 } 1836 1837 /** 1838 * nand_reset_op - Do a reset operation 1839 * @chip: The NAND chip 1840 * 1841 * This function sends a RESET command and waits for the NAND to be ready 1842 * before returning. 1843 * This function does not select/unselect the CS line. 1844 * 1845 * Returns 0 on success, a negative error code otherwise. 1846 */ 1847 int nand_reset_op(struct nand_chip *chip) 1848 { 1849 if (nand_has_exec_op(chip)) { 1850 const struct nand_sdr_timings *sdr = 1851 nand_get_sdr_timings(&chip->data_interface); 1852 struct nand_op_instr instrs[] = { 1853 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), 1854 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), 1855 }; 1856 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1857 1858 return nand_exec_op(chip, &op); 1859 } 1860 1861 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); 1862 1863 return 0; 1864 } 1865 EXPORT_SYMBOL_GPL(nand_reset_op); 1866 1867 /** 1868 * nand_read_data_op - Read data from the NAND 1869 * @chip: The NAND chip 1870 * @buf: buffer used to store the data 1871 * @len: length of the buffer 1872 * @force_8bit: force 8-bit bus access 1873 * 1874 * This function does a raw data read on the bus. Usually used after launching 1875 * another NAND operation like nand_read_page_op(). 1876 * This function does not select/unselect the CS line. 1877 * 1878 * Returns 0 on success, a negative error code otherwise. 1879 */ 1880 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1881 bool force_8bit) 1882 { 1883 if (!len || !buf) 1884 return -EINVAL; 1885 1886 if (nand_has_exec_op(chip)) { 1887 struct nand_op_instr instrs[] = { 1888 NAND_OP_DATA_IN(len, buf, 0), 1889 }; 1890 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1891 1892 instrs[0].ctx.data.force_8bit = force_8bit; 1893 1894 return nand_exec_op(chip, &op); 1895 } 1896 1897 if (force_8bit) { 1898 u8 *p = buf; 1899 unsigned int i; 1900 1901 for (i = 0; i < len; i++) 1902 p[i] = chip->legacy.read_byte(chip); 1903 } else { 1904 chip->legacy.read_buf(chip, buf, len); 1905 } 1906 1907 return 0; 1908 } 1909 EXPORT_SYMBOL_GPL(nand_read_data_op); 1910 1911 /** 1912 * nand_write_data_op - Write data from the NAND 1913 * @chip: The NAND chip 1914 * @buf: buffer containing the data to send on the bus 1915 * @len: length of the buffer 1916 * @force_8bit: force 8-bit bus access 1917 * 1918 * This function does a raw data write on the bus. Usually used after launching 1919 * another NAND operation like nand_write_page_begin_op(). 1920 * This function does not select/unselect the CS line. 1921 * 1922 * Returns 0 on success, a negative error code otherwise. 1923 */ 1924 int nand_write_data_op(struct nand_chip *chip, const void *buf, 1925 unsigned int len, bool force_8bit) 1926 { 1927 if (!len || !buf) 1928 return -EINVAL; 1929 1930 if (nand_has_exec_op(chip)) { 1931 struct nand_op_instr instrs[] = { 1932 NAND_OP_DATA_OUT(len, buf, 0), 1933 }; 1934 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1935 1936 instrs[0].ctx.data.force_8bit = force_8bit; 1937 1938 return nand_exec_op(chip, &op); 1939 } 1940 1941 if (force_8bit) { 1942 const u8 *p = buf; 1943 unsigned int i; 1944 1945 for (i = 0; i < len; i++) 1946 chip->legacy.write_byte(chip, p[i]); 1947 } else { 1948 chip->legacy.write_buf(chip, buf, len); 1949 } 1950 1951 return 0; 1952 } 1953 EXPORT_SYMBOL_GPL(nand_write_data_op); 1954 1955 /** 1956 * struct nand_op_parser_ctx - Context used by the parser 1957 * @instrs: array of all the instructions that must be addressed 1958 * @ninstrs: length of the @instrs array 1959 * @subop: Sub-operation to be passed to the NAND controller 1960 * 1961 * This structure is used by the core to split NAND operations into 1962 * sub-operations that can be handled by the NAND controller. 1963 */ 1964 struct nand_op_parser_ctx { 1965 const struct nand_op_instr *instrs; 1966 unsigned int ninstrs; 1967 struct nand_subop subop; 1968 }; 1969 1970 /** 1971 * nand_op_parser_must_split_instr - Checks if an instruction must be split 1972 * @pat: the parser pattern element that matches @instr 1973 * @instr: pointer to the instruction to check 1974 * @start_offset: this is an in/out parameter. If @instr has already been 1975 * split, then @start_offset is the offset from which to start 1976 * (either an address cycle or an offset in the data buffer). 1977 * Conversely, if the function returns true (ie. instr must be 1978 * split), this parameter is updated to point to the first 1979 * data/address cycle that has not been taken care of. 1980 * 1981 * Some NAND controllers are limited and cannot send X address cycles with a 1982 * unique operation, or cannot read/write more than Y bytes at the same time. 1983 * In this case, split the instruction that does not fit in a single 1984 * controller-operation into two or more chunks. 1985 * 1986 * Returns true if the instruction must be split, false otherwise. 1987 * The @start_offset parameter is also updated to the offset at which the next 1988 * bundle of instruction must start (if an address or a data instruction). 1989 */ 1990 static bool 1991 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 1992 const struct nand_op_instr *instr, 1993 unsigned int *start_offset) 1994 { 1995 switch (pat->type) { 1996 case NAND_OP_ADDR_INSTR: 1997 if (!pat->ctx.addr.maxcycles) 1998 break; 1999 2000 if (instr->ctx.addr.naddrs - *start_offset > 2001 pat->ctx.addr.maxcycles) { 2002 *start_offset += pat->ctx.addr.maxcycles; 2003 return true; 2004 } 2005 break; 2006 2007 case NAND_OP_DATA_IN_INSTR: 2008 case NAND_OP_DATA_OUT_INSTR: 2009 if (!pat->ctx.data.maxlen) 2010 break; 2011 2012 if (instr->ctx.data.len - *start_offset > 2013 pat->ctx.data.maxlen) { 2014 *start_offset += pat->ctx.data.maxlen; 2015 return true; 2016 } 2017 break; 2018 2019 default: 2020 break; 2021 } 2022 2023 return false; 2024 } 2025 2026 /** 2027 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2028 * remaining in the parser context 2029 * @pat: the pattern to test 2030 * @ctx: the parser context structure to match with the pattern @pat 2031 * 2032 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2033 * Returns true if this is the case, false ortherwise. When true is returned, 2034 * @ctx->subop is updated with the set of instructions to be passed to the 2035 * controller driver. 2036 */ 2037 static bool 2038 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2039 struct nand_op_parser_ctx *ctx) 2040 { 2041 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2042 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2043 const struct nand_op_instr *instr = ctx->subop.instrs; 2044 unsigned int i, ninstrs; 2045 2046 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2047 /* 2048 * The pattern instruction does not match the operation 2049 * instruction. If the instruction is marked optional in the 2050 * pattern definition, we skip the pattern element and continue 2051 * to the next one. If the element is mandatory, there's no 2052 * match and we can return false directly. 2053 */ 2054 if (instr->type != pat->elems[i].type) { 2055 if (!pat->elems[i].optional) 2056 return false; 2057 2058 continue; 2059 } 2060 2061 /* 2062 * Now check the pattern element constraints. If the pattern is 2063 * not able to handle the whole instruction in a single step, 2064 * we have to split it. 2065 * The last_instr_end_off value comes back updated to point to 2066 * the position where we have to split the instruction (the 2067 * start of the next subop chunk). 2068 */ 2069 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2070 &instr_offset)) { 2071 ninstrs++; 2072 i++; 2073 break; 2074 } 2075 2076 instr++; 2077 ninstrs++; 2078 instr_offset = 0; 2079 } 2080 2081 /* 2082 * This can happen if all instructions of a pattern are optional. 2083 * Still, if there's not at least one instruction handled by this 2084 * pattern, this is not a match, and we should try the next one (if 2085 * any). 2086 */ 2087 if (!ninstrs) 2088 return false; 2089 2090 /* 2091 * We had a match on the pattern head, but the pattern may be longer 2092 * than the instructions we're asked to execute. We need to make sure 2093 * there's no mandatory elements in the pattern tail. 2094 */ 2095 for (; i < pat->nelems; i++) { 2096 if (!pat->elems[i].optional) 2097 return false; 2098 } 2099 2100 /* 2101 * We have a match: update the subop structure accordingly and return 2102 * true. 2103 */ 2104 ctx->subop.ninstrs = ninstrs; 2105 ctx->subop.last_instr_end_off = instr_offset; 2106 2107 return true; 2108 } 2109 2110 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2111 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2112 { 2113 const struct nand_op_instr *instr; 2114 char *prefix = " "; 2115 unsigned int i; 2116 2117 pr_debug("executing subop:\n"); 2118 2119 for (i = 0; i < ctx->ninstrs; i++) { 2120 instr = &ctx->instrs[i]; 2121 2122 if (instr == &ctx->subop.instrs[0]) 2123 prefix = " ->"; 2124 2125 switch (instr->type) { 2126 case NAND_OP_CMD_INSTR: 2127 pr_debug("%sCMD [0x%02x]\n", prefix, 2128 instr->ctx.cmd.opcode); 2129 break; 2130 case NAND_OP_ADDR_INSTR: 2131 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, 2132 instr->ctx.addr.naddrs, 2133 instr->ctx.addr.naddrs < 64 ? 2134 instr->ctx.addr.naddrs : 64, 2135 instr->ctx.addr.addrs); 2136 break; 2137 case NAND_OP_DATA_IN_INSTR: 2138 pr_debug("%sDATA_IN [%d B%s]\n", prefix, 2139 instr->ctx.data.len, 2140 instr->ctx.data.force_8bit ? 2141 ", force 8-bit" : ""); 2142 break; 2143 case NAND_OP_DATA_OUT_INSTR: 2144 pr_debug("%sDATA_OUT [%d B%s]\n", prefix, 2145 instr->ctx.data.len, 2146 instr->ctx.data.force_8bit ? 2147 ", force 8-bit" : ""); 2148 break; 2149 case NAND_OP_WAITRDY_INSTR: 2150 pr_debug("%sWAITRDY [max %d ms]\n", prefix, 2151 instr->ctx.waitrdy.timeout_ms); 2152 break; 2153 } 2154 2155 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2156 prefix = " "; 2157 } 2158 } 2159 #else 2160 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2161 { 2162 /* NOP */ 2163 } 2164 #endif 2165 2166 /** 2167 * nand_op_parser_exec_op - exec_op parser 2168 * @chip: the NAND chip 2169 * @parser: patterns description provided by the controller driver 2170 * @op: the NAND operation to address 2171 * @check_only: when true, the function only checks if @op can be handled but 2172 * does not execute the operation 2173 * 2174 * Helper function designed to ease integration of NAND controller drivers that 2175 * only support a limited set of instruction sequences. The supported sequences 2176 * are described in @parser, and the framework takes care of splitting @op into 2177 * multiple sub-operations (if required) and pass them back to the ->exec() 2178 * callback of the matching pattern if @check_only is set to false. 2179 * 2180 * NAND controller drivers should call this function from their own ->exec_op() 2181 * implementation. 2182 * 2183 * Returns 0 on success, a negative error code otherwise. A failure can be 2184 * caused by an unsupported operation (none of the supported patterns is able 2185 * to handle the requested operation), or an error returned by one of the 2186 * matching pattern->exec() hook. 2187 */ 2188 int nand_op_parser_exec_op(struct nand_chip *chip, 2189 const struct nand_op_parser *parser, 2190 const struct nand_operation *op, bool check_only) 2191 { 2192 struct nand_op_parser_ctx ctx = { 2193 .subop.instrs = op->instrs, 2194 .instrs = op->instrs, 2195 .ninstrs = op->ninstrs, 2196 }; 2197 unsigned int i; 2198 2199 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2200 int ret; 2201 2202 for (i = 0; i < parser->npatterns; i++) { 2203 const struct nand_op_parser_pattern *pattern; 2204 2205 pattern = &parser->patterns[i]; 2206 if (!nand_op_parser_match_pat(pattern, &ctx)) 2207 continue; 2208 2209 nand_op_parser_trace(&ctx); 2210 2211 if (check_only) 2212 break; 2213 2214 ret = pattern->exec(chip, &ctx.subop); 2215 if (ret) 2216 return ret; 2217 2218 break; 2219 } 2220 2221 if (i == parser->npatterns) { 2222 pr_debug("->exec_op() parser: pattern not found!\n"); 2223 return -ENOTSUPP; 2224 } 2225 2226 /* 2227 * Update the context structure by pointing to the start of the 2228 * next subop. 2229 */ 2230 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2231 if (ctx.subop.last_instr_end_off) 2232 ctx.subop.instrs -= 1; 2233 2234 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2235 } 2236 2237 return 0; 2238 } 2239 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2240 2241 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2242 { 2243 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2244 instr->type == NAND_OP_DATA_OUT_INSTR); 2245 } 2246 2247 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2248 unsigned int instr_idx) 2249 { 2250 return subop && instr_idx < subop->ninstrs; 2251 } 2252 2253 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2254 unsigned int instr_idx) 2255 { 2256 if (instr_idx) 2257 return 0; 2258 2259 return subop->first_instr_start_off; 2260 } 2261 2262 /** 2263 * nand_subop_get_addr_start_off - Get the start offset in an address array 2264 * @subop: The entire sub-operation 2265 * @instr_idx: Index of the instruction inside the sub-operation 2266 * 2267 * During driver development, one could be tempted to directly use the 2268 * ->addr.addrs field of address instructions. This is wrong as address 2269 * instructions might be split. 2270 * 2271 * Given an address instruction, returns the offset of the first cycle to issue. 2272 */ 2273 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2274 unsigned int instr_idx) 2275 { 2276 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2277 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2278 return 0; 2279 2280 return nand_subop_get_start_off(subop, instr_idx); 2281 } 2282 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2283 2284 /** 2285 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2286 * @subop: The entire sub-operation 2287 * @instr_idx: Index of the instruction inside the sub-operation 2288 * 2289 * During driver development, one could be tempted to directly use the 2290 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2291 * might be split. 2292 * 2293 * Given an address instruction, returns the number of address cycle to issue. 2294 */ 2295 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2296 unsigned int instr_idx) 2297 { 2298 int start_off, end_off; 2299 2300 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2301 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2302 return 0; 2303 2304 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2305 2306 if (instr_idx == subop->ninstrs - 1 && 2307 subop->last_instr_end_off) 2308 end_off = subop->last_instr_end_off; 2309 else 2310 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2311 2312 return end_off - start_off; 2313 } 2314 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2315 2316 /** 2317 * nand_subop_get_data_start_off - Get the start offset in a data array 2318 * @subop: The entire sub-operation 2319 * @instr_idx: Index of the instruction inside the sub-operation 2320 * 2321 * During driver development, one could be tempted to directly use the 2322 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2323 * instructions might be split. 2324 * 2325 * Given a data instruction, returns the offset to start from. 2326 */ 2327 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2328 unsigned int instr_idx) 2329 { 2330 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2331 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2332 return 0; 2333 2334 return nand_subop_get_start_off(subop, instr_idx); 2335 } 2336 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2337 2338 /** 2339 * nand_subop_get_data_len - Get the number of bytes to retrieve 2340 * @subop: The entire sub-operation 2341 * @instr_idx: Index of the instruction inside the sub-operation 2342 * 2343 * During driver development, one could be tempted to directly use the 2344 * ->data->len field of a data instruction. This is wrong as data instructions 2345 * might be split. 2346 * 2347 * Returns the length of the chunk of data to send/receive. 2348 */ 2349 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2350 unsigned int instr_idx) 2351 { 2352 int start_off = 0, end_off; 2353 2354 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2355 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2356 return 0; 2357 2358 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2359 2360 if (instr_idx == subop->ninstrs - 1 && 2361 subop->last_instr_end_off) 2362 end_off = subop->last_instr_end_off; 2363 else 2364 end_off = subop->instrs[instr_idx].ctx.data.len; 2365 2366 return end_off - start_off; 2367 } 2368 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2369 2370 /** 2371 * nand_reset - Reset and initialize a NAND device 2372 * @chip: The NAND chip 2373 * @chipnr: Internal die id 2374 * 2375 * Save the timings data structure, then apply SDR timings mode 0 (see 2376 * nand_reset_data_interface for details), do the reset operation, and 2377 * apply back the previous timings. 2378 * 2379 * Returns 0 on success, a negative error code otherwise. 2380 */ 2381 int nand_reset(struct nand_chip *chip, int chipnr) 2382 { 2383 struct nand_data_interface saved_data_intf = chip->data_interface; 2384 int ret; 2385 2386 ret = nand_reset_data_interface(chip, chipnr); 2387 if (ret) 2388 return ret; 2389 2390 /* 2391 * The CS line has to be released before we can apply the new NAND 2392 * interface settings, hence this weird nand_select_target() 2393 * nand_deselect_target() dance. 2394 */ 2395 nand_select_target(chip, chipnr); 2396 ret = nand_reset_op(chip); 2397 nand_deselect_target(chip); 2398 if (ret) 2399 return ret; 2400 2401 /* 2402 * A nand_reset_data_interface() put both the NAND chip and the NAND 2403 * controller in timings mode 0. If the default mode for this chip is 2404 * also 0, no need to proceed to the change again. Plus, at probe time, 2405 * nand_setup_data_interface() uses ->set/get_features() which would 2406 * fail anyway as the parameter page is not available yet. 2407 */ 2408 if (!chip->onfi_timing_mode_default) 2409 return 0; 2410 2411 chip->data_interface = saved_data_intf; 2412 ret = nand_setup_data_interface(chip, chipnr); 2413 if (ret) 2414 return ret; 2415 2416 return 0; 2417 } 2418 EXPORT_SYMBOL_GPL(nand_reset); 2419 2420 /** 2421 * nand_get_features - wrapper to perform a GET_FEATURE 2422 * @chip: NAND chip info structure 2423 * @addr: feature address 2424 * @subfeature_param: the subfeature parameters, a four bytes array 2425 * 2426 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2427 * operation cannot be handled. 2428 */ 2429 int nand_get_features(struct nand_chip *chip, int addr, 2430 u8 *subfeature_param) 2431 { 2432 if (!nand_supports_get_features(chip, addr)) 2433 return -ENOTSUPP; 2434 2435 if (chip->legacy.get_features) 2436 return chip->legacy.get_features(chip, addr, subfeature_param); 2437 2438 return nand_get_features_op(chip, addr, subfeature_param); 2439 } 2440 2441 /** 2442 * nand_set_features - wrapper to perform a SET_FEATURE 2443 * @chip: NAND chip info structure 2444 * @addr: feature address 2445 * @subfeature_param: the subfeature parameters, a four bytes array 2446 * 2447 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2448 * operation cannot be handled. 2449 */ 2450 int nand_set_features(struct nand_chip *chip, int addr, 2451 u8 *subfeature_param) 2452 { 2453 if (!nand_supports_set_features(chip, addr)) 2454 return -ENOTSUPP; 2455 2456 if (chip->legacy.set_features) 2457 return chip->legacy.set_features(chip, addr, subfeature_param); 2458 2459 return nand_set_features_op(chip, addr, subfeature_param); 2460 } 2461 2462 /** 2463 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2464 * @buf: buffer to test 2465 * @len: buffer length 2466 * @bitflips_threshold: maximum number of bitflips 2467 * 2468 * Check if a buffer contains only 0xff, which means the underlying region 2469 * has been erased and is ready to be programmed. 2470 * The bitflips_threshold specify the maximum number of bitflips before 2471 * considering the region is not erased. 2472 * Note: The logic of this function has been extracted from the memweight 2473 * implementation, except that nand_check_erased_buf function exit before 2474 * testing the whole buffer if the number of bitflips exceed the 2475 * bitflips_threshold value. 2476 * 2477 * Returns a positive number of bitflips less than or equal to 2478 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2479 * threshold. 2480 */ 2481 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2482 { 2483 const unsigned char *bitmap = buf; 2484 int bitflips = 0; 2485 int weight; 2486 2487 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2488 len--, bitmap++) { 2489 weight = hweight8(*bitmap); 2490 bitflips += BITS_PER_BYTE - weight; 2491 if (unlikely(bitflips > bitflips_threshold)) 2492 return -EBADMSG; 2493 } 2494 2495 for (; len >= sizeof(long); 2496 len -= sizeof(long), bitmap += sizeof(long)) { 2497 unsigned long d = *((unsigned long *)bitmap); 2498 if (d == ~0UL) 2499 continue; 2500 weight = hweight_long(d); 2501 bitflips += BITS_PER_LONG - weight; 2502 if (unlikely(bitflips > bitflips_threshold)) 2503 return -EBADMSG; 2504 } 2505 2506 for (; len > 0; len--, bitmap++) { 2507 weight = hweight8(*bitmap); 2508 bitflips += BITS_PER_BYTE - weight; 2509 if (unlikely(bitflips > bitflips_threshold)) 2510 return -EBADMSG; 2511 } 2512 2513 return bitflips; 2514 } 2515 2516 /** 2517 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2518 * 0xff data 2519 * @data: data buffer to test 2520 * @datalen: data length 2521 * @ecc: ECC buffer 2522 * @ecclen: ECC length 2523 * @extraoob: extra OOB buffer 2524 * @extraooblen: extra OOB length 2525 * @bitflips_threshold: maximum number of bitflips 2526 * 2527 * Check if a data buffer and its associated ECC and OOB data contains only 2528 * 0xff pattern, which means the underlying region has been erased and is 2529 * ready to be programmed. 2530 * The bitflips_threshold specify the maximum number of bitflips before 2531 * considering the region as not erased. 2532 * 2533 * Note: 2534 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2535 * different from the NAND page size. When fixing bitflips, ECC engines will 2536 * report the number of errors per chunk, and the NAND core infrastructure 2537 * expect you to return the maximum number of bitflips for the whole page. 2538 * This is why you should always use this function on a single chunk and 2539 * not on the whole page. After checking each chunk you should update your 2540 * max_bitflips value accordingly. 2541 * 2/ When checking for bitflips in erased pages you should not only check 2542 * the payload data but also their associated ECC data, because a user might 2543 * have programmed almost all bits to 1 but a few. In this case, we 2544 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2545 * this case. 2546 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2547 * data are protected by the ECC engine. 2548 * It could also be used if you support subpages and want to attach some 2549 * extra OOB data to an ECC chunk. 2550 * 2551 * Returns a positive number of bitflips less than or equal to 2552 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2553 * threshold. In case of success, the passed buffers are filled with 0xff. 2554 */ 2555 int nand_check_erased_ecc_chunk(void *data, int datalen, 2556 void *ecc, int ecclen, 2557 void *extraoob, int extraooblen, 2558 int bitflips_threshold) 2559 { 2560 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2561 2562 data_bitflips = nand_check_erased_buf(data, datalen, 2563 bitflips_threshold); 2564 if (data_bitflips < 0) 2565 return data_bitflips; 2566 2567 bitflips_threshold -= data_bitflips; 2568 2569 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2570 if (ecc_bitflips < 0) 2571 return ecc_bitflips; 2572 2573 bitflips_threshold -= ecc_bitflips; 2574 2575 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2576 bitflips_threshold); 2577 if (extraoob_bitflips < 0) 2578 return extraoob_bitflips; 2579 2580 if (data_bitflips) 2581 memset(data, 0xff, datalen); 2582 2583 if (ecc_bitflips) 2584 memset(ecc, 0xff, ecclen); 2585 2586 if (extraoob_bitflips) 2587 memset(extraoob, 0xff, extraooblen); 2588 2589 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2590 } 2591 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2592 2593 /** 2594 * nand_read_page_raw_notsupp - dummy read raw page function 2595 * @chip: nand chip info structure 2596 * @buf: buffer to store read data 2597 * @oob_required: caller requires OOB data read to chip->oob_poi 2598 * @page: page number to read 2599 * 2600 * Returns -ENOTSUPP unconditionally. 2601 */ 2602 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, 2603 int oob_required, int page) 2604 { 2605 return -ENOTSUPP; 2606 } 2607 2608 /** 2609 * nand_read_page_raw - [INTERN] read raw page data without ecc 2610 * @chip: nand chip info structure 2611 * @buf: buffer to store read data 2612 * @oob_required: caller requires OOB data read to chip->oob_poi 2613 * @page: page number to read 2614 * 2615 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2616 */ 2617 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 2618 int page) 2619 { 2620 struct mtd_info *mtd = nand_to_mtd(chip); 2621 int ret; 2622 2623 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2624 if (ret) 2625 return ret; 2626 2627 if (oob_required) { 2628 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2629 false); 2630 if (ret) 2631 return ret; 2632 } 2633 2634 return 0; 2635 } 2636 EXPORT_SYMBOL(nand_read_page_raw); 2637 2638 /** 2639 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 2640 * @chip: nand chip info structure 2641 * @buf: buffer to store read data 2642 * @oob_required: caller requires OOB data read to chip->oob_poi 2643 * @page: page number to read 2644 * 2645 * We need a special oob layout and handling even when OOB isn't used. 2646 */ 2647 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, 2648 int oob_required, int page) 2649 { 2650 struct mtd_info *mtd = nand_to_mtd(chip); 2651 int eccsize = chip->ecc.size; 2652 int eccbytes = chip->ecc.bytes; 2653 uint8_t *oob = chip->oob_poi; 2654 int steps, size, ret; 2655 2656 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2657 if (ret) 2658 return ret; 2659 2660 for (steps = chip->ecc.steps; steps > 0; steps--) { 2661 ret = nand_read_data_op(chip, buf, eccsize, false); 2662 if (ret) 2663 return ret; 2664 2665 buf += eccsize; 2666 2667 if (chip->ecc.prepad) { 2668 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 2669 false); 2670 if (ret) 2671 return ret; 2672 2673 oob += chip->ecc.prepad; 2674 } 2675 2676 ret = nand_read_data_op(chip, oob, eccbytes, false); 2677 if (ret) 2678 return ret; 2679 2680 oob += eccbytes; 2681 2682 if (chip->ecc.postpad) { 2683 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 2684 false); 2685 if (ret) 2686 return ret; 2687 2688 oob += chip->ecc.postpad; 2689 } 2690 } 2691 2692 size = mtd->oobsize - (oob - chip->oob_poi); 2693 if (size) { 2694 ret = nand_read_data_op(chip, oob, size, false); 2695 if (ret) 2696 return ret; 2697 } 2698 2699 return 0; 2700 } 2701 2702 /** 2703 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 2704 * @chip: nand chip info structure 2705 * @buf: buffer to store read data 2706 * @oob_required: caller requires OOB data read to chip->oob_poi 2707 * @page: page number to read 2708 */ 2709 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, 2710 int oob_required, int page) 2711 { 2712 struct mtd_info *mtd = nand_to_mtd(chip); 2713 int i, eccsize = chip->ecc.size, ret; 2714 int eccbytes = chip->ecc.bytes; 2715 int eccsteps = chip->ecc.steps; 2716 uint8_t *p = buf; 2717 uint8_t *ecc_calc = chip->ecc.calc_buf; 2718 uint8_t *ecc_code = chip->ecc.code_buf; 2719 unsigned int max_bitflips = 0; 2720 2721 chip->ecc.read_page_raw(chip, buf, 1, page); 2722 2723 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 2724 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2725 2726 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2727 chip->ecc.total); 2728 if (ret) 2729 return ret; 2730 2731 eccsteps = chip->ecc.steps; 2732 p = buf; 2733 2734 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2735 int stat; 2736 2737 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2738 if (stat < 0) { 2739 mtd->ecc_stats.failed++; 2740 } else { 2741 mtd->ecc_stats.corrected += stat; 2742 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2743 } 2744 } 2745 return max_bitflips; 2746 } 2747 2748 /** 2749 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 2750 * @chip: nand chip info structure 2751 * @data_offs: offset of requested data within the page 2752 * @readlen: data length 2753 * @bufpoi: buffer to store read data 2754 * @page: page number to read 2755 */ 2756 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, 2757 uint32_t readlen, uint8_t *bufpoi, int page) 2758 { 2759 struct mtd_info *mtd = nand_to_mtd(chip); 2760 int start_step, end_step, num_steps, ret; 2761 uint8_t *p; 2762 int data_col_addr, i, gaps = 0; 2763 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 2764 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 2765 int index, section = 0; 2766 unsigned int max_bitflips = 0; 2767 struct mtd_oob_region oobregion = { }; 2768 2769 /* Column address within the page aligned to ECC size (256bytes) */ 2770 start_step = data_offs / chip->ecc.size; 2771 end_step = (data_offs + readlen - 1) / chip->ecc.size; 2772 num_steps = end_step - start_step + 1; 2773 index = start_step * chip->ecc.bytes; 2774 2775 /* Data size aligned to ECC ecc.size */ 2776 datafrag_len = num_steps * chip->ecc.size; 2777 eccfrag_len = num_steps * chip->ecc.bytes; 2778 2779 data_col_addr = start_step * chip->ecc.size; 2780 /* If we read not a page aligned data */ 2781 p = bufpoi + data_col_addr; 2782 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 2783 if (ret) 2784 return ret; 2785 2786 /* Calculate ECC */ 2787 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 2788 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); 2789 2790 /* 2791 * The performance is faster if we position offsets according to 2792 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 2793 */ 2794 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 2795 if (ret) 2796 return ret; 2797 2798 if (oobregion.length < eccfrag_len) 2799 gaps = 1; 2800 2801 if (gaps) { 2802 ret = nand_change_read_column_op(chip, mtd->writesize, 2803 chip->oob_poi, mtd->oobsize, 2804 false); 2805 if (ret) 2806 return ret; 2807 } else { 2808 /* 2809 * Send the command to read the particular ECC bytes take care 2810 * about buswidth alignment in read_buf. 2811 */ 2812 aligned_pos = oobregion.offset & ~(busw - 1); 2813 aligned_len = eccfrag_len; 2814 if (oobregion.offset & (busw - 1)) 2815 aligned_len++; 2816 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 2817 (busw - 1)) 2818 aligned_len++; 2819 2820 ret = nand_change_read_column_op(chip, 2821 mtd->writesize + aligned_pos, 2822 &chip->oob_poi[aligned_pos], 2823 aligned_len, false); 2824 if (ret) 2825 return ret; 2826 } 2827 2828 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 2829 chip->oob_poi, index, eccfrag_len); 2830 if (ret) 2831 return ret; 2832 2833 p = bufpoi + data_col_addr; 2834 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 2835 int stat; 2836 2837 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], 2838 &chip->ecc.calc_buf[i]); 2839 if (stat == -EBADMSG && 2840 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2841 /* check for empty pages with bitflips */ 2842 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 2843 &chip->ecc.code_buf[i], 2844 chip->ecc.bytes, 2845 NULL, 0, 2846 chip->ecc.strength); 2847 } 2848 2849 if (stat < 0) { 2850 mtd->ecc_stats.failed++; 2851 } else { 2852 mtd->ecc_stats.corrected += stat; 2853 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2854 } 2855 } 2856 return max_bitflips; 2857 } 2858 2859 /** 2860 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 2861 * @chip: nand chip info structure 2862 * @buf: buffer to store read data 2863 * @oob_required: caller requires OOB data read to chip->oob_poi 2864 * @page: page number to read 2865 * 2866 * Not for syndrome calculating ECC controllers which need a special oob layout. 2867 */ 2868 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, 2869 int oob_required, int page) 2870 { 2871 struct mtd_info *mtd = nand_to_mtd(chip); 2872 int i, eccsize = chip->ecc.size, ret; 2873 int eccbytes = chip->ecc.bytes; 2874 int eccsteps = chip->ecc.steps; 2875 uint8_t *p = buf; 2876 uint8_t *ecc_calc = chip->ecc.calc_buf; 2877 uint8_t *ecc_code = chip->ecc.code_buf; 2878 unsigned int max_bitflips = 0; 2879 2880 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2881 if (ret) 2882 return ret; 2883 2884 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2885 chip->ecc.hwctl(chip, NAND_ECC_READ); 2886 2887 ret = nand_read_data_op(chip, p, eccsize, false); 2888 if (ret) 2889 return ret; 2890 2891 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2892 } 2893 2894 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false); 2895 if (ret) 2896 return ret; 2897 2898 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2899 chip->ecc.total); 2900 if (ret) 2901 return ret; 2902 2903 eccsteps = chip->ecc.steps; 2904 p = buf; 2905 2906 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2907 int stat; 2908 2909 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2910 if (stat == -EBADMSG && 2911 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2912 /* check for empty pages with bitflips */ 2913 stat = nand_check_erased_ecc_chunk(p, eccsize, 2914 &ecc_code[i], eccbytes, 2915 NULL, 0, 2916 chip->ecc.strength); 2917 } 2918 2919 if (stat < 0) { 2920 mtd->ecc_stats.failed++; 2921 } else { 2922 mtd->ecc_stats.corrected += stat; 2923 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2924 } 2925 } 2926 return max_bitflips; 2927 } 2928 2929 /** 2930 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first 2931 * @chip: nand chip info structure 2932 * @buf: buffer to store read data 2933 * @oob_required: caller requires OOB data read to chip->oob_poi 2934 * @page: page number to read 2935 * 2936 * Hardware ECC for large page chips, require OOB to be read first. For this 2937 * ECC mode, the write_page method is re-used from ECC_HW. These methods 2938 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with 2939 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from 2940 * the data area, by overwriting the NAND manufacturer bad block markings. 2941 */ 2942 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, 2943 int oob_required, int page) 2944 { 2945 struct mtd_info *mtd = nand_to_mtd(chip); 2946 int i, eccsize = chip->ecc.size, ret; 2947 int eccbytes = chip->ecc.bytes; 2948 int eccsteps = chip->ecc.steps; 2949 uint8_t *p = buf; 2950 uint8_t *ecc_code = chip->ecc.code_buf; 2951 uint8_t *ecc_calc = chip->ecc.calc_buf; 2952 unsigned int max_bitflips = 0; 2953 2954 /* Read the OOB area first */ 2955 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 2956 if (ret) 2957 return ret; 2958 2959 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2960 if (ret) 2961 return ret; 2962 2963 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2964 chip->ecc.total); 2965 if (ret) 2966 return ret; 2967 2968 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2969 int stat; 2970 2971 chip->ecc.hwctl(chip, NAND_ECC_READ); 2972 2973 ret = nand_read_data_op(chip, p, eccsize, false); 2974 if (ret) 2975 return ret; 2976 2977 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2978 2979 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); 2980 if (stat == -EBADMSG && 2981 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2982 /* check for empty pages with bitflips */ 2983 stat = nand_check_erased_ecc_chunk(p, eccsize, 2984 &ecc_code[i], eccbytes, 2985 NULL, 0, 2986 chip->ecc.strength); 2987 } 2988 2989 if (stat < 0) { 2990 mtd->ecc_stats.failed++; 2991 } else { 2992 mtd->ecc_stats.corrected += stat; 2993 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2994 } 2995 } 2996 return max_bitflips; 2997 } 2998 2999 /** 3000 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 3001 * @chip: nand chip info structure 3002 * @buf: buffer to store read data 3003 * @oob_required: caller requires OOB data read to chip->oob_poi 3004 * @page: page number to read 3005 * 3006 * The hw generator calculates the error syndrome automatically. Therefore we 3007 * need a special oob layout and handling. 3008 */ 3009 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 3010 int oob_required, int page) 3011 { 3012 struct mtd_info *mtd = nand_to_mtd(chip); 3013 int ret, i, eccsize = chip->ecc.size; 3014 int eccbytes = chip->ecc.bytes; 3015 int eccsteps = chip->ecc.steps; 3016 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 3017 uint8_t *p = buf; 3018 uint8_t *oob = chip->oob_poi; 3019 unsigned int max_bitflips = 0; 3020 3021 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3022 if (ret) 3023 return ret; 3024 3025 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3026 int stat; 3027 3028 chip->ecc.hwctl(chip, NAND_ECC_READ); 3029 3030 ret = nand_read_data_op(chip, p, eccsize, false); 3031 if (ret) 3032 return ret; 3033 3034 if (chip->ecc.prepad) { 3035 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3036 false); 3037 if (ret) 3038 return ret; 3039 3040 oob += chip->ecc.prepad; 3041 } 3042 3043 chip->ecc.hwctl(chip, NAND_ECC_READSYN); 3044 3045 ret = nand_read_data_op(chip, oob, eccbytes, false); 3046 if (ret) 3047 return ret; 3048 3049 stat = chip->ecc.correct(chip, p, oob, NULL); 3050 3051 oob += eccbytes; 3052 3053 if (chip->ecc.postpad) { 3054 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3055 false); 3056 if (ret) 3057 return ret; 3058 3059 oob += chip->ecc.postpad; 3060 } 3061 3062 if (stat == -EBADMSG && 3063 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3064 /* check for empty pages with bitflips */ 3065 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3066 oob - eccpadbytes, 3067 eccpadbytes, 3068 NULL, 0, 3069 chip->ecc.strength); 3070 } 3071 3072 if (stat < 0) { 3073 mtd->ecc_stats.failed++; 3074 } else { 3075 mtd->ecc_stats.corrected += stat; 3076 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3077 } 3078 } 3079 3080 /* Calculate remaining oob bytes */ 3081 i = mtd->oobsize - (oob - chip->oob_poi); 3082 if (i) { 3083 ret = nand_read_data_op(chip, oob, i, false); 3084 if (ret) 3085 return ret; 3086 } 3087 3088 return max_bitflips; 3089 } 3090 3091 /** 3092 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3093 * @chip: NAND chip object 3094 * @oob: oob destination address 3095 * @ops: oob ops structure 3096 * @len: size of oob to transfer 3097 */ 3098 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, 3099 struct mtd_oob_ops *ops, size_t len) 3100 { 3101 struct mtd_info *mtd = nand_to_mtd(chip); 3102 int ret; 3103 3104 switch (ops->mode) { 3105 3106 case MTD_OPS_PLACE_OOB: 3107 case MTD_OPS_RAW: 3108 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3109 return oob + len; 3110 3111 case MTD_OPS_AUTO_OOB: 3112 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3113 ops->ooboffs, len); 3114 BUG_ON(ret); 3115 return oob + len; 3116 3117 default: 3118 BUG(); 3119 } 3120 return NULL; 3121 } 3122 3123 /** 3124 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3125 * @chip: NAND chip object 3126 * @retry_mode: the retry mode to use 3127 * 3128 * Some vendors supply a special command to shift the Vt threshold, to be used 3129 * when there are too many bitflips in a page (i.e., ECC error). After setting 3130 * a new threshold, the host should retry reading the page. 3131 */ 3132 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) 3133 { 3134 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3135 3136 if (retry_mode >= chip->read_retries) 3137 return -EINVAL; 3138 3139 if (!chip->setup_read_retry) 3140 return -EOPNOTSUPP; 3141 3142 return chip->setup_read_retry(chip, retry_mode); 3143 } 3144 3145 static void nand_wait_readrdy(struct nand_chip *chip) 3146 { 3147 const struct nand_sdr_timings *sdr; 3148 3149 if (!(chip->options & NAND_NEED_READRDY)) 3150 return; 3151 3152 sdr = nand_get_sdr_timings(&chip->data_interface); 3153 WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0)); 3154 } 3155 3156 /** 3157 * nand_do_read_ops - [INTERN] Read data with ECC 3158 * @chip: NAND chip object 3159 * @from: offset to read from 3160 * @ops: oob ops structure 3161 * 3162 * Internal function. Called with chip held. 3163 */ 3164 static int nand_do_read_ops(struct nand_chip *chip, loff_t from, 3165 struct mtd_oob_ops *ops) 3166 { 3167 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3168 struct mtd_info *mtd = nand_to_mtd(chip); 3169 int ret = 0; 3170 uint32_t readlen = ops->len; 3171 uint32_t oobreadlen = ops->ooblen; 3172 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3173 3174 uint8_t *bufpoi, *oob, *buf; 3175 int use_bufpoi; 3176 unsigned int max_bitflips = 0; 3177 int retry_mode = 0; 3178 bool ecc_fail = false; 3179 3180 chipnr = (int)(from >> chip->chip_shift); 3181 nand_select_target(chip, chipnr); 3182 3183 realpage = (int)(from >> chip->page_shift); 3184 page = realpage & chip->pagemask; 3185 3186 col = (int)(from & (mtd->writesize - 1)); 3187 3188 buf = ops->datbuf; 3189 oob = ops->oobbuf; 3190 oob_required = oob ? 1 : 0; 3191 3192 while (1) { 3193 unsigned int ecc_failures = mtd->ecc_stats.failed; 3194 3195 bytes = min(mtd->writesize - col, readlen); 3196 aligned = (bytes == mtd->writesize); 3197 3198 if (!aligned) 3199 use_bufpoi = 1; 3200 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 3201 use_bufpoi = !virt_addr_valid(buf) || 3202 !IS_ALIGNED((unsigned long)buf, 3203 chip->buf_align); 3204 else 3205 use_bufpoi = 0; 3206 3207 /* Is the current page in the buffer? */ 3208 if (realpage != chip->pagebuf || oob) { 3209 bufpoi = use_bufpoi ? chip->data_buf : buf; 3210 3211 if (use_bufpoi && aligned) 3212 pr_debug("%s: using read bounce buffer for buf@%p\n", 3213 __func__, buf); 3214 3215 read_retry: 3216 /* 3217 * Now read the page into the buffer. Absent an error, 3218 * the read methods return max bitflips per ecc step. 3219 */ 3220 if (unlikely(ops->mode == MTD_OPS_RAW)) 3221 ret = chip->ecc.read_page_raw(chip, bufpoi, 3222 oob_required, 3223 page); 3224 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3225 !oob) 3226 ret = chip->ecc.read_subpage(chip, col, bytes, 3227 bufpoi, page); 3228 else 3229 ret = chip->ecc.read_page(chip, bufpoi, 3230 oob_required, page); 3231 if (ret < 0) { 3232 if (use_bufpoi) 3233 /* Invalidate page cache */ 3234 chip->pagebuf = -1; 3235 break; 3236 } 3237 3238 /* Transfer not aligned data */ 3239 if (use_bufpoi) { 3240 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3241 !(mtd->ecc_stats.failed - ecc_failures) && 3242 (ops->mode != MTD_OPS_RAW)) { 3243 chip->pagebuf = realpage; 3244 chip->pagebuf_bitflips = ret; 3245 } else { 3246 /* Invalidate page cache */ 3247 chip->pagebuf = -1; 3248 } 3249 memcpy(buf, chip->data_buf + col, bytes); 3250 } 3251 3252 if (unlikely(oob)) { 3253 int toread = min(oobreadlen, max_oobsize); 3254 3255 if (toread) { 3256 oob = nand_transfer_oob(chip, oob, ops, 3257 toread); 3258 oobreadlen -= toread; 3259 } 3260 } 3261 3262 nand_wait_readrdy(chip); 3263 3264 if (mtd->ecc_stats.failed - ecc_failures) { 3265 if (retry_mode + 1 < chip->read_retries) { 3266 retry_mode++; 3267 ret = nand_setup_read_retry(chip, 3268 retry_mode); 3269 if (ret < 0) 3270 break; 3271 3272 /* Reset failures; retry */ 3273 mtd->ecc_stats.failed = ecc_failures; 3274 goto read_retry; 3275 } else { 3276 /* No more retry modes; real failure */ 3277 ecc_fail = true; 3278 } 3279 } 3280 3281 buf += bytes; 3282 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3283 } else { 3284 memcpy(buf, chip->data_buf + col, bytes); 3285 buf += bytes; 3286 max_bitflips = max_t(unsigned int, max_bitflips, 3287 chip->pagebuf_bitflips); 3288 } 3289 3290 readlen -= bytes; 3291 3292 /* Reset to retry mode 0 */ 3293 if (retry_mode) { 3294 ret = nand_setup_read_retry(chip, 0); 3295 if (ret < 0) 3296 break; 3297 retry_mode = 0; 3298 } 3299 3300 if (!readlen) 3301 break; 3302 3303 /* For subsequent reads align to page boundary */ 3304 col = 0; 3305 /* Increment page address */ 3306 realpage++; 3307 3308 page = realpage & chip->pagemask; 3309 /* Check, if we cross a chip boundary */ 3310 if (!page) { 3311 chipnr++; 3312 nand_deselect_target(chip); 3313 nand_select_target(chip, chipnr); 3314 } 3315 } 3316 nand_deselect_target(chip); 3317 3318 ops->retlen = ops->len - (size_t) readlen; 3319 if (oob) 3320 ops->oobretlen = ops->ooblen - oobreadlen; 3321 3322 if (ret < 0) 3323 return ret; 3324 3325 if (ecc_fail) 3326 return -EBADMSG; 3327 3328 return max_bitflips; 3329 } 3330 3331 /** 3332 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3333 * @chip: nand chip info structure 3334 * @page: page number to read 3335 */ 3336 int nand_read_oob_std(struct nand_chip *chip, int page) 3337 { 3338 struct mtd_info *mtd = nand_to_mtd(chip); 3339 3340 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3341 } 3342 EXPORT_SYMBOL(nand_read_oob_std); 3343 3344 /** 3345 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3346 * with syndromes 3347 * @chip: nand chip info structure 3348 * @page: page number to read 3349 */ 3350 static int nand_read_oob_syndrome(struct nand_chip *chip, int page) 3351 { 3352 struct mtd_info *mtd = nand_to_mtd(chip); 3353 int length = mtd->oobsize; 3354 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3355 int eccsize = chip->ecc.size; 3356 uint8_t *bufpoi = chip->oob_poi; 3357 int i, toread, sndrnd = 0, pos, ret; 3358 3359 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3360 if (ret) 3361 return ret; 3362 3363 for (i = 0; i < chip->ecc.steps; i++) { 3364 if (sndrnd) { 3365 int ret; 3366 3367 pos = eccsize + i * (eccsize + chunk); 3368 if (mtd->writesize > 512) 3369 ret = nand_change_read_column_op(chip, pos, 3370 NULL, 0, 3371 false); 3372 else 3373 ret = nand_read_page_op(chip, page, pos, NULL, 3374 0); 3375 3376 if (ret) 3377 return ret; 3378 } else 3379 sndrnd = 1; 3380 toread = min_t(int, length, chunk); 3381 3382 ret = nand_read_data_op(chip, bufpoi, toread, false); 3383 if (ret) 3384 return ret; 3385 3386 bufpoi += toread; 3387 length -= toread; 3388 } 3389 if (length > 0) { 3390 ret = nand_read_data_op(chip, bufpoi, length, false); 3391 if (ret) 3392 return ret; 3393 } 3394 3395 return 0; 3396 } 3397 3398 /** 3399 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3400 * @chip: nand chip info structure 3401 * @page: page number to write 3402 */ 3403 int nand_write_oob_std(struct nand_chip *chip, int page) 3404 { 3405 struct mtd_info *mtd = nand_to_mtd(chip); 3406 3407 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3408 mtd->oobsize); 3409 } 3410 EXPORT_SYMBOL(nand_write_oob_std); 3411 3412 /** 3413 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3414 * with syndrome - only for large page flash 3415 * @chip: nand chip info structure 3416 * @page: page number to write 3417 */ 3418 static int nand_write_oob_syndrome(struct nand_chip *chip, int page) 3419 { 3420 struct mtd_info *mtd = nand_to_mtd(chip); 3421 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3422 int eccsize = chip->ecc.size, length = mtd->oobsize; 3423 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3424 const uint8_t *bufpoi = chip->oob_poi; 3425 3426 /* 3427 * data-ecc-data-ecc ... ecc-oob 3428 * or 3429 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3430 */ 3431 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3432 pos = steps * (eccsize + chunk); 3433 steps = 0; 3434 } else 3435 pos = eccsize; 3436 3437 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3438 if (ret) 3439 return ret; 3440 3441 for (i = 0; i < steps; i++) { 3442 if (sndcmd) { 3443 if (mtd->writesize <= 512) { 3444 uint32_t fill = 0xFFFFFFFF; 3445 3446 len = eccsize; 3447 while (len > 0) { 3448 int num = min_t(int, len, 4); 3449 3450 ret = nand_write_data_op(chip, &fill, 3451 num, false); 3452 if (ret) 3453 return ret; 3454 3455 len -= num; 3456 } 3457 } else { 3458 pos = eccsize + i * (eccsize + chunk); 3459 ret = nand_change_write_column_op(chip, pos, 3460 NULL, 0, 3461 false); 3462 if (ret) 3463 return ret; 3464 } 3465 } else 3466 sndcmd = 1; 3467 len = min_t(int, length, chunk); 3468 3469 ret = nand_write_data_op(chip, bufpoi, len, false); 3470 if (ret) 3471 return ret; 3472 3473 bufpoi += len; 3474 length -= len; 3475 } 3476 if (length > 0) { 3477 ret = nand_write_data_op(chip, bufpoi, length, false); 3478 if (ret) 3479 return ret; 3480 } 3481 3482 return nand_prog_page_end_op(chip); 3483 } 3484 3485 /** 3486 * nand_do_read_oob - [INTERN] NAND read out-of-band 3487 * @chip: NAND chip object 3488 * @from: offset to read from 3489 * @ops: oob operations description structure 3490 * 3491 * NAND read out-of-band data from the spare area. 3492 */ 3493 static int nand_do_read_oob(struct nand_chip *chip, loff_t from, 3494 struct mtd_oob_ops *ops) 3495 { 3496 struct mtd_info *mtd = nand_to_mtd(chip); 3497 unsigned int max_bitflips = 0; 3498 int page, realpage, chipnr; 3499 struct mtd_ecc_stats stats; 3500 int readlen = ops->ooblen; 3501 int len; 3502 uint8_t *buf = ops->oobbuf; 3503 int ret = 0; 3504 3505 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3506 __func__, (unsigned long long)from, readlen); 3507 3508 stats = mtd->ecc_stats; 3509 3510 len = mtd_oobavail(mtd, ops); 3511 3512 chipnr = (int)(from >> chip->chip_shift); 3513 nand_select_target(chip, chipnr); 3514 3515 /* Shift to get page */ 3516 realpage = (int)(from >> chip->page_shift); 3517 page = realpage & chip->pagemask; 3518 3519 while (1) { 3520 if (ops->mode == MTD_OPS_RAW) 3521 ret = chip->ecc.read_oob_raw(chip, page); 3522 else 3523 ret = chip->ecc.read_oob(chip, page); 3524 3525 if (ret < 0) 3526 break; 3527 3528 len = min(len, readlen); 3529 buf = nand_transfer_oob(chip, buf, ops, len); 3530 3531 nand_wait_readrdy(chip); 3532 3533 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3534 3535 readlen -= len; 3536 if (!readlen) 3537 break; 3538 3539 /* Increment page address */ 3540 realpage++; 3541 3542 page = realpage & chip->pagemask; 3543 /* Check, if we cross a chip boundary */ 3544 if (!page) { 3545 chipnr++; 3546 nand_deselect_target(chip); 3547 nand_select_target(chip, chipnr); 3548 } 3549 } 3550 nand_deselect_target(chip); 3551 3552 ops->oobretlen = ops->ooblen - readlen; 3553 3554 if (ret < 0) 3555 return ret; 3556 3557 if (mtd->ecc_stats.failed - stats.failed) 3558 return -EBADMSG; 3559 3560 return max_bitflips; 3561 } 3562 3563 /** 3564 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3565 * @mtd: MTD device structure 3566 * @from: offset to read from 3567 * @ops: oob operation description structure 3568 * 3569 * NAND read data and/or out-of-band data. 3570 */ 3571 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3572 struct mtd_oob_ops *ops) 3573 { 3574 struct nand_chip *chip = mtd_to_nand(mtd); 3575 int ret; 3576 3577 ops->retlen = 0; 3578 3579 if (ops->mode != MTD_OPS_PLACE_OOB && 3580 ops->mode != MTD_OPS_AUTO_OOB && 3581 ops->mode != MTD_OPS_RAW) 3582 return -ENOTSUPP; 3583 3584 nand_get_device(chip, FL_READING); 3585 3586 if (!ops->datbuf) 3587 ret = nand_do_read_oob(chip, from, ops); 3588 else 3589 ret = nand_do_read_ops(chip, from, ops); 3590 3591 nand_release_device(chip); 3592 return ret; 3593 } 3594 3595 /** 3596 * nand_write_page_raw_notsupp - dummy raw page write function 3597 * @chip: nand chip info structure 3598 * @buf: data buffer 3599 * @oob_required: must write chip->oob_poi to OOB 3600 * @page: page number to write 3601 * 3602 * Returns -ENOTSUPP unconditionally. 3603 */ 3604 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, 3605 int oob_required, int page) 3606 { 3607 return -ENOTSUPP; 3608 } 3609 3610 /** 3611 * nand_write_page_raw - [INTERN] raw page write function 3612 * @chip: nand chip info structure 3613 * @buf: data buffer 3614 * @oob_required: must write chip->oob_poi to OOB 3615 * @page: page number to write 3616 * 3617 * Not for syndrome calculating ECC controllers, which use a special oob layout. 3618 */ 3619 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 3620 int oob_required, int page) 3621 { 3622 struct mtd_info *mtd = nand_to_mtd(chip); 3623 int ret; 3624 3625 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 3626 if (ret) 3627 return ret; 3628 3629 if (oob_required) { 3630 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 3631 false); 3632 if (ret) 3633 return ret; 3634 } 3635 3636 return nand_prog_page_end_op(chip); 3637 } 3638 EXPORT_SYMBOL(nand_write_page_raw); 3639 3640 /** 3641 * nand_write_page_raw_syndrome - [INTERN] raw page write function 3642 * @chip: nand chip info structure 3643 * @buf: data buffer 3644 * @oob_required: must write chip->oob_poi to OOB 3645 * @page: page number to write 3646 * 3647 * We need a special oob layout and handling even when ECC isn't checked. 3648 */ 3649 static int nand_write_page_raw_syndrome(struct nand_chip *chip, 3650 const uint8_t *buf, int oob_required, 3651 int page) 3652 { 3653 struct mtd_info *mtd = nand_to_mtd(chip); 3654 int eccsize = chip->ecc.size; 3655 int eccbytes = chip->ecc.bytes; 3656 uint8_t *oob = chip->oob_poi; 3657 int steps, size, ret; 3658 3659 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3660 if (ret) 3661 return ret; 3662 3663 for (steps = chip->ecc.steps; steps > 0; steps--) { 3664 ret = nand_write_data_op(chip, buf, eccsize, false); 3665 if (ret) 3666 return ret; 3667 3668 buf += eccsize; 3669 3670 if (chip->ecc.prepad) { 3671 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3672 false); 3673 if (ret) 3674 return ret; 3675 3676 oob += chip->ecc.prepad; 3677 } 3678 3679 ret = nand_write_data_op(chip, oob, eccbytes, false); 3680 if (ret) 3681 return ret; 3682 3683 oob += eccbytes; 3684 3685 if (chip->ecc.postpad) { 3686 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3687 false); 3688 if (ret) 3689 return ret; 3690 3691 oob += chip->ecc.postpad; 3692 } 3693 } 3694 3695 size = mtd->oobsize - (oob - chip->oob_poi); 3696 if (size) { 3697 ret = nand_write_data_op(chip, oob, size, false); 3698 if (ret) 3699 return ret; 3700 } 3701 3702 return nand_prog_page_end_op(chip); 3703 } 3704 /** 3705 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 3706 * @chip: nand chip info structure 3707 * @buf: data buffer 3708 * @oob_required: must write chip->oob_poi to OOB 3709 * @page: page number to write 3710 */ 3711 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, 3712 int oob_required, int page) 3713 { 3714 struct mtd_info *mtd = nand_to_mtd(chip); 3715 int i, eccsize = chip->ecc.size, ret; 3716 int eccbytes = chip->ecc.bytes; 3717 int eccsteps = chip->ecc.steps; 3718 uint8_t *ecc_calc = chip->ecc.calc_buf; 3719 const uint8_t *p = buf; 3720 3721 /* Software ECC calculation */ 3722 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3723 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3724 3725 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3726 chip->ecc.total); 3727 if (ret) 3728 return ret; 3729 3730 return chip->ecc.write_page_raw(chip, buf, 1, page); 3731 } 3732 3733 /** 3734 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 3735 * @chip: nand chip info structure 3736 * @buf: data buffer 3737 * @oob_required: must write chip->oob_poi to OOB 3738 * @page: page number to write 3739 */ 3740 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, 3741 int oob_required, int page) 3742 { 3743 struct mtd_info *mtd = nand_to_mtd(chip); 3744 int i, eccsize = chip->ecc.size, ret; 3745 int eccbytes = chip->ecc.bytes; 3746 int eccsteps = chip->ecc.steps; 3747 uint8_t *ecc_calc = chip->ecc.calc_buf; 3748 const uint8_t *p = buf; 3749 3750 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3751 if (ret) 3752 return ret; 3753 3754 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3755 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3756 3757 ret = nand_write_data_op(chip, p, eccsize, false); 3758 if (ret) 3759 return ret; 3760 3761 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3762 } 3763 3764 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3765 chip->ecc.total); 3766 if (ret) 3767 return ret; 3768 3769 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3770 if (ret) 3771 return ret; 3772 3773 return nand_prog_page_end_op(chip); 3774 } 3775 3776 3777 /** 3778 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 3779 * @chip: nand chip info structure 3780 * @offset: column address of subpage within the page 3781 * @data_len: data length 3782 * @buf: data buffer 3783 * @oob_required: must write chip->oob_poi to OOB 3784 * @page: page number to write 3785 */ 3786 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, 3787 uint32_t data_len, const uint8_t *buf, 3788 int oob_required, int page) 3789 { 3790 struct mtd_info *mtd = nand_to_mtd(chip); 3791 uint8_t *oob_buf = chip->oob_poi; 3792 uint8_t *ecc_calc = chip->ecc.calc_buf; 3793 int ecc_size = chip->ecc.size; 3794 int ecc_bytes = chip->ecc.bytes; 3795 int ecc_steps = chip->ecc.steps; 3796 uint32_t start_step = offset / ecc_size; 3797 uint32_t end_step = (offset + data_len - 1) / ecc_size; 3798 int oob_bytes = mtd->oobsize / ecc_steps; 3799 int step, ret; 3800 3801 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3802 if (ret) 3803 return ret; 3804 3805 for (step = 0; step < ecc_steps; step++) { 3806 /* configure controller for WRITE access */ 3807 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3808 3809 /* write data (untouched subpages already masked by 0xFF) */ 3810 ret = nand_write_data_op(chip, buf, ecc_size, false); 3811 if (ret) 3812 return ret; 3813 3814 /* mask ECC of un-touched subpages by padding 0xFF */ 3815 if ((step < start_step) || (step > end_step)) 3816 memset(ecc_calc, 0xff, ecc_bytes); 3817 else 3818 chip->ecc.calculate(chip, buf, ecc_calc); 3819 3820 /* mask OOB of un-touched subpages by padding 0xFF */ 3821 /* if oob_required, preserve OOB metadata of written subpage */ 3822 if (!oob_required || (step < start_step) || (step > end_step)) 3823 memset(oob_buf, 0xff, oob_bytes); 3824 3825 buf += ecc_size; 3826 ecc_calc += ecc_bytes; 3827 oob_buf += oob_bytes; 3828 } 3829 3830 /* copy calculated ECC for whole page to chip->buffer->oob */ 3831 /* this include masked-value(0xFF) for unwritten subpages */ 3832 ecc_calc = chip->ecc.calc_buf; 3833 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3834 chip->ecc.total); 3835 if (ret) 3836 return ret; 3837 3838 /* write OOB buffer to NAND device */ 3839 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3840 if (ret) 3841 return ret; 3842 3843 return nand_prog_page_end_op(chip); 3844 } 3845 3846 3847 /** 3848 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 3849 * @chip: nand chip info structure 3850 * @buf: data buffer 3851 * @oob_required: must write chip->oob_poi to OOB 3852 * @page: page number to write 3853 * 3854 * The hw generator calculates the error syndrome automatically. Therefore we 3855 * need a special oob layout and handling. 3856 */ 3857 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, 3858 int oob_required, int page) 3859 { 3860 struct mtd_info *mtd = nand_to_mtd(chip); 3861 int i, eccsize = chip->ecc.size; 3862 int eccbytes = chip->ecc.bytes; 3863 int eccsteps = chip->ecc.steps; 3864 const uint8_t *p = buf; 3865 uint8_t *oob = chip->oob_poi; 3866 int ret; 3867 3868 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3869 if (ret) 3870 return ret; 3871 3872 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3873 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3874 3875 ret = nand_write_data_op(chip, p, eccsize, false); 3876 if (ret) 3877 return ret; 3878 3879 if (chip->ecc.prepad) { 3880 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3881 false); 3882 if (ret) 3883 return ret; 3884 3885 oob += chip->ecc.prepad; 3886 } 3887 3888 chip->ecc.calculate(chip, p, oob); 3889 3890 ret = nand_write_data_op(chip, oob, eccbytes, false); 3891 if (ret) 3892 return ret; 3893 3894 oob += eccbytes; 3895 3896 if (chip->ecc.postpad) { 3897 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3898 false); 3899 if (ret) 3900 return ret; 3901 3902 oob += chip->ecc.postpad; 3903 } 3904 } 3905 3906 /* Calculate remaining oob bytes */ 3907 i = mtd->oobsize - (oob - chip->oob_poi); 3908 if (i) { 3909 ret = nand_write_data_op(chip, oob, i, false); 3910 if (ret) 3911 return ret; 3912 } 3913 3914 return nand_prog_page_end_op(chip); 3915 } 3916 3917 /** 3918 * nand_write_page - write one page 3919 * @chip: NAND chip descriptor 3920 * @offset: address offset within the page 3921 * @data_len: length of actual data to be written 3922 * @buf: the data to write 3923 * @oob_required: must write chip->oob_poi to OOB 3924 * @page: page number to write 3925 * @raw: use _raw version of write_page 3926 */ 3927 static int nand_write_page(struct nand_chip *chip, uint32_t offset, 3928 int data_len, const uint8_t *buf, int oob_required, 3929 int page, int raw) 3930 { 3931 struct mtd_info *mtd = nand_to_mtd(chip); 3932 int status, subpage; 3933 3934 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 3935 chip->ecc.write_subpage) 3936 subpage = offset || (data_len < mtd->writesize); 3937 else 3938 subpage = 0; 3939 3940 if (unlikely(raw)) 3941 status = chip->ecc.write_page_raw(chip, buf, oob_required, 3942 page); 3943 else if (subpage) 3944 status = chip->ecc.write_subpage(chip, offset, data_len, buf, 3945 oob_required, page); 3946 else 3947 status = chip->ecc.write_page(chip, buf, oob_required, page); 3948 3949 if (status < 0) 3950 return status; 3951 3952 return 0; 3953 } 3954 3955 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 3956 3957 /** 3958 * nand_do_write_ops - [INTERN] NAND write with ECC 3959 * @chip: NAND chip object 3960 * @to: offset to write to 3961 * @ops: oob operations description structure 3962 * 3963 * NAND write with ECC. 3964 */ 3965 static int nand_do_write_ops(struct nand_chip *chip, loff_t to, 3966 struct mtd_oob_ops *ops) 3967 { 3968 struct mtd_info *mtd = nand_to_mtd(chip); 3969 int chipnr, realpage, page, column; 3970 uint32_t writelen = ops->len; 3971 3972 uint32_t oobwritelen = ops->ooblen; 3973 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 3974 3975 uint8_t *oob = ops->oobbuf; 3976 uint8_t *buf = ops->datbuf; 3977 int ret; 3978 int oob_required = oob ? 1 : 0; 3979 3980 ops->retlen = 0; 3981 if (!writelen) 3982 return 0; 3983 3984 /* Reject writes, which are not page aligned */ 3985 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 3986 pr_notice("%s: attempt to write non page aligned data\n", 3987 __func__); 3988 return -EINVAL; 3989 } 3990 3991 column = to & (mtd->writesize - 1); 3992 3993 chipnr = (int)(to >> chip->chip_shift); 3994 nand_select_target(chip, chipnr); 3995 3996 /* Check, if it is write protected */ 3997 if (nand_check_wp(chip)) { 3998 ret = -EIO; 3999 goto err_out; 4000 } 4001 4002 realpage = (int)(to >> chip->page_shift); 4003 page = realpage & chip->pagemask; 4004 4005 /* Invalidate the page cache, when we write to the cached page */ 4006 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) && 4007 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len)) 4008 chip->pagebuf = -1; 4009 4010 /* Don't allow multipage oob writes with offset */ 4011 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4012 ret = -EINVAL; 4013 goto err_out; 4014 } 4015 4016 while (1) { 4017 int bytes = mtd->writesize; 4018 uint8_t *wbuf = buf; 4019 int use_bufpoi; 4020 int part_pagewr = (column || writelen < mtd->writesize); 4021 4022 if (part_pagewr) 4023 use_bufpoi = 1; 4024 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 4025 use_bufpoi = !virt_addr_valid(buf) || 4026 !IS_ALIGNED((unsigned long)buf, 4027 chip->buf_align); 4028 else 4029 use_bufpoi = 0; 4030 4031 /* Partial page write?, or need to use bounce buffer */ 4032 if (use_bufpoi) { 4033 pr_debug("%s: using write bounce buffer for buf@%p\n", 4034 __func__, buf); 4035 if (part_pagewr) 4036 bytes = min_t(int, bytes - column, writelen); 4037 chip->pagebuf = -1; 4038 memset(chip->data_buf, 0xff, mtd->writesize); 4039 memcpy(&chip->data_buf[column], buf, bytes); 4040 wbuf = chip->data_buf; 4041 } 4042 4043 if (unlikely(oob)) { 4044 size_t len = min(oobwritelen, oobmaxlen); 4045 oob = nand_fill_oob(chip, oob, len, ops); 4046 oobwritelen -= len; 4047 } else { 4048 /* We still need to erase leftover OOB data */ 4049 memset(chip->oob_poi, 0xff, mtd->oobsize); 4050 } 4051 4052 ret = nand_write_page(chip, column, bytes, wbuf, 4053 oob_required, page, 4054 (ops->mode == MTD_OPS_RAW)); 4055 if (ret) 4056 break; 4057 4058 writelen -= bytes; 4059 if (!writelen) 4060 break; 4061 4062 column = 0; 4063 buf += bytes; 4064 realpage++; 4065 4066 page = realpage & chip->pagemask; 4067 /* Check, if we cross a chip boundary */ 4068 if (!page) { 4069 chipnr++; 4070 nand_deselect_target(chip); 4071 nand_select_target(chip, chipnr); 4072 } 4073 } 4074 4075 ops->retlen = ops->len - writelen; 4076 if (unlikely(oob)) 4077 ops->oobretlen = ops->ooblen; 4078 4079 err_out: 4080 nand_deselect_target(chip); 4081 return ret; 4082 } 4083 4084 /** 4085 * panic_nand_write - [MTD Interface] NAND write with ECC 4086 * @mtd: MTD device structure 4087 * @to: offset to write to 4088 * @len: number of bytes to write 4089 * @retlen: pointer to variable to store the number of written bytes 4090 * @buf: the data to write 4091 * 4092 * NAND write with ECC. Used when performing writes in interrupt context, this 4093 * may for example be called by mtdoops when writing an oops while in panic. 4094 */ 4095 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4096 size_t *retlen, const uint8_t *buf) 4097 { 4098 struct nand_chip *chip = mtd_to_nand(mtd); 4099 int chipnr = (int)(to >> chip->chip_shift); 4100 struct mtd_oob_ops ops; 4101 int ret; 4102 4103 /* Grab the device */ 4104 panic_nand_get_device(chip, FL_WRITING); 4105 4106 nand_select_target(chip, chipnr); 4107 4108 /* Wait for the device to get ready */ 4109 panic_nand_wait(chip, 400); 4110 4111 memset(&ops, 0, sizeof(ops)); 4112 ops.len = len; 4113 ops.datbuf = (uint8_t *)buf; 4114 ops.mode = MTD_OPS_PLACE_OOB; 4115 4116 ret = nand_do_write_ops(chip, to, &ops); 4117 4118 *retlen = ops.retlen; 4119 return ret; 4120 } 4121 4122 /** 4123 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4124 * @mtd: MTD device structure 4125 * @to: offset to write to 4126 * @ops: oob operation description structure 4127 */ 4128 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4129 struct mtd_oob_ops *ops) 4130 { 4131 struct nand_chip *chip = mtd_to_nand(mtd); 4132 int ret = -ENOTSUPP; 4133 4134 ops->retlen = 0; 4135 4136 nand_get_device(chip, FL_WRITING); 4137 4138 switch (ops->mode) { 4139 case MTD_OPS_PLACE_OOB: 4140 case MTD_OPS_AUTO_OOB: 4141 case MTD_OPS_RAW: 4142 break; 4143 4144 default: 4145 goto out; 4146 } 4147 4148 if (!ops->datbuf) 4149 ret = nand_do_write_oob(chip, to, ops); 4150 else 4151 ret = nand_do_write_ops(chip, to, ops); 4152 4153 out: 4154 nand_release_device(chip); 4155 return ret; 4156 } 4157 4158 /** 4159 * single_erase - [GENERIC] NAND standard block erase command function 4160 * @chip: NAND chip object 4161 * @page: the page address of the block which will be erased 4162 * 4163 * Standard erase command for NAND chips. Returns NAND status. 4164 */ 4165 static int single_erase(struct nand_chip *chip, int page) 4166 { 4167 unsigned int eraseblock; 4168 4169 /* Send commands to erase a block */ 4170 eraseblock = page >> (chip->phys_erase_shift - chip->page_shift); 4171 4172 return nand_erase_op(chip, eraseblock); 4173 } 4174 4175 /** 4176 * nand_erase - [MTD Interface] erase block(s) 4177 * @mtd: MTD device structure 4178 * @instr: erase instruction 4179 * 4180 * Erase one ore more blocks. 4181 */ 4182 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4183 { 4184 return nand_erase_nand(mtd_to_nand(mtd), instr, 0); 4185 } 4186 4187 /** 4188 * nand_erase_nand - [INTERN] erase block(s) 4189 * @chip: NAND chip object 4190 * @instr: erase instruction 4191 * @allowbbt: allow erasing the bbt area 4192 * 4193 * Erase one ore more blocks. 4194 */ 4195 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, 4196 int allowbbt) 4197 { 4198 int page, status, pages_per_block, ret, chipnr; 4199 loff_t len; 4200 4201 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4202 __func__, (unsigned long long)instr->addr, 4203 (unsigned long long)instr->len); 4204 4205 if (check_offs_len(chip, instr->addr, instr->len)) 4206 return -EINVAL; 4207 4208 /* Grab the lock and see if the device is available */ 4209 nand_get_device(chip, FL_ERASING); 4210 4211 /* Shift to get first page */ 4212 page = (int)(instr->addr >> chip->page_shift); 4213 chipnr = (int)(instr->addr >> chip->chip_shift); 4214 4215 /* Calculate pages in each block */ 4216 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4217 4218 /* Select the NAND device */ 4219 nand_select_target(chip, chipnr); 4220 4221 /* Check, if it is write protected */ 4222 if (nand_check_wp(chip)) { 4223 pr_debug("%s: device is write protected!\n", 4224 __func__); 4225 ret = -EIO; 4226 goto erase_exit; 4227 } 4228 4229 /* Loop through the pages */ 4230 len = instr->len; 4231 4232 while (len) { 4233 /* Check if we have a bad block, we do not erase bad blocks! */ 4234 if (nand_block_checkbad(chip, ((loff_t) page) << 4235 chip->page_shift, allowbbt)) { 4236 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", 4237 __func__, page); 4238 ret = -EIO; 4239 goto erase_exit; 4240 } 4241 4242 /* 4243 * Invalidate the page cache, if we erase the block which 4244 * contains the current cached page. 4245 */ 4246 if (page <= chip->pagebuf && chip->pagebuf < 4247 (page + pages_per_block)) 4248 chip->pagebuf = -1; 4249 4250 if (chip->legacy.erase) 4251 status = chip->legacy.erase(chip, 4252 page & chip->pagemask); 4253 else 4254 status = single_erase(chip, page & chip->pagemask); 4255 4256 /* See if block erase succeeded */ 4257 if (status) { 4258 pr_debug("%s: failed erase, page 0x%08x\n", 4259 __func__, page); 4260 ret = -EIO; 4261 instr->fail_addr = 4262 ((loff_t)page << chip->page_shift); 4263 goto erase_exit; 4264 } 4265 4266 /* Increment page address and decrement length */ 4267 len -= (1ULL << chip->phys_erase_shift); 4268 page += pages_per_block; 4269 4270 /* Check, if we cross a chip boundary */ 4271 if (len && !(page & chip->pagemask)) { 4272 chipnr++; 4273 nand_deselect_target(chip); 4274 nand_select_target(chip, chipnr); 4275 } 4276 } 4277 4278 ret = 0; 4279 erase_exit: 4280 4281 /* Deselect and wake up anyone waiting on the device */ 4282 nand_deselect_target(chip); 4283 nand_release_device(chip); 4284 4285 /* Return more or less happy */ 4286 return ret; 4287 } 4288 4289 /** 4290 * nand_sync - [MTD Interface] sync 4291 * @mtd: MTD device structure 4292 * 4293 * Sync is actually a wait for chip ready function. 4294 */ 4295 static void nand_sync(struct mtd_info *mtd) 4296 { 4297 struct nand_chip *chip = mtd_to_nand(mtd); 4298 4299 pr_debug("%s: called\n", __func__); 4300 4301 /* Grab the lock and see if the device is available */ 4302 nand_get_device(chip, FL_SYNCING); 4303 /* Release it and go back */ 4304 nand_release_device(chip); 4305 } 4306 4307 /** 4308 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4309 * @mtd: MTD device structure 4310 * @offs: offset relative to mtd start 4311 */ 4312 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4313 { 4314 struct nand_chip *chip = mtd_to_nand(mtd); 4315 int chipnr = (int)(offs >> chip->chip_shift); 4316 int ret; 4317 4318 /* Select the NAND device */ 4319 nand_get_device(chip, FL_READING); 4320 nand_select_target(chip, chipnr); 4321 4322 ret = nand_block_checkbad(chip, offs, 0); 4323 4324 nand_deselect_target(chip); 4325 nand_release_device(chip); 4326 4327 return ret; 4328 } 4329 4330 /** 4331 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4332 * @mtd: MTD device structure 4333 * @ofs: offset relative to mtd start 4334 */ 4335 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4336 { 4337 int ret; 4338 4339 ret = nand_block_isbad(mtd, ofs); 4340 if (ret) { 4341 /* If it was bad already, return success and do nothing */ 4342 if (ret > 0) 4343 return 0; 4344 return ret; 4345 } 4346 4347 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); 4348 } 4349 4350 /** 4351 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd 4352 * @mtd: MTD device structure 4353 * @ofs: offset relative to mtd start 4354 * @len: length of mtd 4355 */ 4356 static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) 4357 { 4358 struct nand_chip *chip = mtd_to_nand(mtd); 4359 u32 part_start_block; 4360 u32 part_end_block; 4361 u32 part_start_die; 4362 u32 part_end_die; 4363 4364 /* 4365 * max_bb_per_die and blocks_per_die used to determine 4366 * the maximum bad block count. 4367 */ 4368 if (!chip->max_bb_per_die || !chip->blocks_per_die) 4369 return -ENOTSUPP; 4370 4371 /* Get the start and end of the partition in erase blocks. */ 4372 part_start_block = mtd_div_by_eb(ofs, mtd); 4373 part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1; 4374 4375 /* Get the start and end LUNs of the partition. */ 4376 part_start_die = part_start_block / chip->blocks_per_die; 4377 part_end_die = part_end_block / chip->blocks_per_die; 4378 4379 /* 4380 * Look up the bad blocks per unit and multiply by the number of units 4381 * that the partition spans. 4382 */ 4383 return chip->max_bb_per_die * (part_end_die - part_start_die + 1); 4384 } 4385 4386 /** 4387 * nand_suspend - [MTD Interface] Suspend the NAND flash 4388 * @mtd: MTD device structure 4389 */ 4390 static int nand_suspend(struct mtd_info *mtd) 4391 { 4392 return nand_get_device(mtd_to_nand(mtd), FL_PM_SUSPENDED); 4393 } 4394 4395 /** 4396 * nand_resume - [MTD Interface] Resume the NAND flash 4397 * @mtd: MTD device structure 4398 */ 4399 static void nand_resume(struct mtd_info *mtd) 4400 { 4401 struct nand_chip *chip = mtd_to_nand(mtd); 4402 4403 if (chip->state == FL_PM_SUSPENDED) 4404 nand_release_device(chip); 4405 else 4406 pr_err("%s called for a chip which is not in suspended state\n", 4407 __func__); 4408 } 4409 4410 /** 4411 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4412 * prevent further operations 4413 * @mtd: MTD device structure 4414 */ 4415 static void nand_shutdown(struct mtd_info *mtd) 4416 { 4417 nand_get_device(mtd_to_nand(mtd), FL_PM_SUSPENDED); 4418 } 4419 4420 /* Set default functions */ 4421 static void nand_set_defaults(struct nand_chip *chip) 4422 { 4423 /* If no controller is provided, use the dummy, legacy one. */ 4424 if (!chip->controller) { 4425 chip->controller = &chip->legacy.dummy_controller; 4426 nand_controller_init(chip->controller); 4427 } 4428 4429 nand_legacy_set_defaults(chip); 4430 4431 if (!chip->buf_align) 4432 chip->buf_align = 1; 4433 } 4434 4435 /* Sanitize ONFI strings so we can safely print them */ 4436 void sanitize_string(uint8_t *s, size_t len) 4437 { 4438 ssize_t i; 4439 4440 /* Null terminate */ 4441 s[len - 1] = 0; 4442 4443 /* Remove non printable chars */ 4444 for (i = 0; i < len - 1; i++) { 4445 if (s[i] < ' ' || s[i] > 127) 4446 s[i] = '?'; 4447 } 4448 4449 /* Remove trailing spaces */ 4450 strim(s); 4451 } 4452 4453 /* 4454 * nand_id_has_period - Check if an ID string has a given wraparound period 4455 * @id_data: the ID string 4456 * @arrlen: the length of the @id_data array 4457 * @period: the period of repitition 4458 * 4459 * Check if an ID string is repeated within a given sequence of bytes at 4460 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 4461 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 4462 * if the repetition has a period of @period; otherwise, returns zero. 4463 */ 4464 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 4465 { 4466 int i, j; 4467 for (i = 0; i < period; i++) 4468 for (j = i + period; j < arrlen; j += period) 4469 if (id_data[i] != id_data[j]) 4470 return 0; 4471 return 1; 4472 } 4473 4474 /* 4475 * nand_id_len - Get the length of an ID string returned by CMD_READID 4476 * @id_data: the ID string 4477 * @arrlen: the length of the @id_data array 4478 4479 * Returns the length of the ID string, according to known wraparound/trailing 4480 * zero patterns. If no pattern exists, returns the length of the array. 4481 */ 4482 static int nand_id_len(u8 *id_data, int arrlen) 4483 { 4484 int last_nonzero, period; 4485 4486 /* Find last non-zero byte */ 4487 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 4488 if (id_data[last_nonzero]) 4489 break; 4490 4491 /* All zeros */ 4492 if (last_nonzero < 0) 4493 return 0; 4494 4495 /* Calculate wraparound period */ 4496 for (period = 1; period < arrlen; period++) 4497 if (nand_id_has_period(id_data, arrlen, period)) 4498 break; 4499 4500 /* There's a repeated pattern */ 4501 if (period < arrlen) 4502 return period; 4503 4504 /* There are trailing zeros */ 4505 if (last_nonzero < arrlen - 1) 4506 return last_nonzero + 1; 4507 4508 /* No pattern detected */ 4509 return arrlen; 4510 } 4511 4512 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 4513 static int nand_get_bits_per_cell(u8 cellinfo) 4514 { 4515 int bits; 4516 4517 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 4518 bits >>= NAND_CI_CELLTYPE_SHIFT; 4519 return bits + 1; 4520 } 4521 4522 /* 4523 * Many new NAND share similar device ID codes, which represent the size of the 4524 * chip. The rest of the parameters must be decoded according to generic or 4525 * manufacturer-specific "extended ID" decoding patterns. 4526 */ 4527 void nand_decode_ext_id(struct nand_chip *chip) 4528 { 4529 struct mtd_info *mtd = nand_to_mtd(chip); 4530 int extid; 4531 u8 *id_data = chip->id.data; 4532 /* The 3rd id byte holds MLC / multichip data */ 4533 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4534 /* The 4th id byte is the important one */ 4535 extid = id_data[3]; 4536 4537 /* Calc pagesize */ 4538 mtd->writesize = 1024 << (extid & 0x03); 4539 extid >>= 2; 4540 /* Calc oobsize */ 4541 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 4542 extid >>= 2; 4543 /* Calc blocksize. Blocksize is multiples of 64KiB */ 4544 mtd->erasesize = (64 * 1024) << (extid & 0x03); 4545 extid >>= 2; 4546 /* Get buswidth information */ 4547 if (extid & 0x1) 4548 chip->options |= NAND_BUSWIDTH_16; 4549 } 4550 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 4551 4552 /* 4553 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 4554 * decodes a matching ID table entry and assigns the MTD size parameters for 4555 * the chip. 4556 */ 4557 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 4558 { 4559 struct mtd_info *mtd = nand_to_mtd(chip); 4560 4561 mtd->erasesize = type->erasesize; 4562 mtd->writesize = type->pagesize; 4563 mtd->oobsize = mtd->writesize / 32; 4564 4565 /* All legacy ID NAND are small-page, SLC */ 4566 chip->bits_per_cell = 1; 4567 } 4568 4569 /* 4570 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 4571 * heuristic patterns using various detected parameters (e.g., manufacturer, 4572 * page size, cell-type information). 4573 */ 4574 static void nand_decode_bbm_options(struct nand_chip *chip) 4575 { 4576 struct mtd_info *mtd = nand_to_mtd(chip); 4577 4578 /* Set the bad block position */ 4579 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 4580 chip->badblockpos = NAND_LARGE_BADBLOCK_POS; 4581 else 4582 chip->badblockpos = NAND_SMALL_BADBLOCK_POS; 4583 } 4584 4585 static inline bool is_full_id_nand(struct nand_flash_dev *type) 4586 { 4587 return type->id_len; 4588 } 4589 4590 static bool find_full_id_nand(struct nand_chip *chip, 4591 struct nand_flash_dev *type) 4592 { 4593 struct mtd_info *mtd = nand_to_mtd(chip); 4594 u8 *id_data = chip->id.data; 4595 4596 if (!strncmp(type->id, id_data, type->id_len)) { 4597 mtd->writesize = type->pagesize; 4598 mtd->erasesize = type->erasesize; 4599 mtd->oobsize = type->oobsize; 4600 4601 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4602 chip->chipsize = (uint64_t)type->chipsize << 20; 4603 chip->options |= type->options; 4604 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type); 4605 chip->ecc_step_ds = NAND_ECC_STEP(type); 4606 chip->onfi_timing_mode_default = 4607 type->onfi_timing_mode_default; 4608 4609 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4610 if (!chip->parameters.model) 4611 return false; 4612 4613 return true; 4614 } 4615 return false; 4616 } 4617 4618 /* 4619 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 4620 * compliant and does not have a full-id or legacy-id entry in the nand_ids 4621 * table. 4622 */ 4623 static void nand_manufacturer_detect(struct nand_chip *chip) 4624 { 4625 /* 4626 * Try manufacturer detection if available and use 4627 * nand_decode_ext_id() otherwise. 4628 */ 4629 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4630 chip->manufacturer.desc->ops->detect) { 4631 /* The 3rd id byte holds MLC / multichip data */ 4632 chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 4633 chip->manufacturer.desc->ops->detect(chip); 4634 } else { 4635 nand_decode_ext_id(chip); 4636 } 4637 } 4638 4639 /* 4640 * Manufacturer initialization. This function is called for all NANDs including 4641 * ONFI and JEDEC compliant ones. 4642 * Manufacturer drivers should put all their specific initialization code in 4643 * their ->init() hook. 4644 */ 4645 static int nand_manufacturer_init(struct nand_chip *chip) 4646 { 4647 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 4648 !chip->manufacturer.desc->ops->init) 4649 return 0; 4650 4651 return chip->manufacturer.desc->ops->init(chip); 4652 } 4653 4654 /* 4655 * Manufacturer cleanup. This function is called for all NANDs including 4656 * ONFI and JEDEC compliant ones. 4657 * Manufacturer drivers should put all their specific cleanup code in their 4658 * ->cleanup() hook. 4659 */ 4660 static void nand_manufacturer_cleanup(struct nand_chip *chip) 4661 { 4662 /* Release manufacturer private data */ 4663 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4664 chip->manufacturer.desc->ops->cleanup) 4665 chip->manufacturer.desc->ops->cleanup(chip); 4666 } 4667 4668 static const char * 4669 nand_manufacturer_name(const struct nand_manufacturer *manufacturer) 4670 { 4671 return manufacturer ? manufacturer->name : "Unknown"; 4672 } 4673 4674 /* 4675 * Get the flash and manufacturer id and lookup if the type is supported. 4676 */ 4677 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 4678 { 4679 const struct nand_manufacturer *manufacturer; 4680 struct mtd_info *mtd = nand_to_mtd(chip); 4681 int busw, ret; 4682 u8 *id_data = chip->id.data; 4683 u8 maf_id, dev_id; 4684 4685 /* 4686 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 4687 * after power-up. 4688 */ 4689 ret = nand_reset(chip, 0); 4690 if (ret) 4691 return ret; 4692 4693 /* Select the device */ 4694 nand_select_target(chip, 0); 4695 4696 /* Send the command for reading device ID */ 4697 ret = nand_readid_op(chip, 0, id_data, 2); 4698 if (ret) 4699 return ret; 4700 4701 /* Read manufacturer and device IDs */ 4702 maf_id = id_data[0]; 4703 dev_id = id_data[1]; 4704 4705 /* 4706 * Try again to make sure, as some systems the bus-hold or other 4707 * interface concerns can cause random data which looks like a 4708 * possibly credible NAND flash to appear. If the two results do 4709 * not match, ignore the device completely. 4710 */ 4711 4712 /* Read entire ID string */ 4713 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 4714 if (ret) 4715 return ret; 4716 4717 if (id_data[0] != maf_id || id_data[1] != dev_id) { 4718 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 4719 maf_id, dev_id, id_data[0], id_data[1]); 4720 return -ENODEV; 4721 } 4722 4723 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 4724 4725 /* Try to identify manufacturer */ 4726 manufacturer = nand_get_manufacturer(maf_id); 4727 chip->manufacturer.desc = manufacturer; 4728 4729 if (!type) 4730 type = nand_flash_ids; 4731 4732 /* 4733 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 4734 * override it. 4735 * This is required to make sure initial NAND bus width set by the 4736 * NAND controller driver is coherent with the real NAND bus width 4737 * (extracted by auto-detection code). 4738 */ 4739 busw = chip->options & NAND_BUSWIDTH_16; 4740 4741 /* 4742 * The flag is only set (never cleared), reset it to its default value 4743 * before starting auto-detection. 4744 */ 4745 chip->options &= ~NAND_BUSWIDTH_16; 4746 4747 for (; type->name != NULL; type++) { 4748 if (is_full_id_nand(type)) { 4749 if (find_full_id_nand(chip, type)) 4750 goto ident_done; 4751 } else if (dev_id == type->dev_id) { 4752 break; 4753 } 4754 } 4755 4756 if (!type->name || !type->pagesize) { 4757 /* Check if the chip is ONFI compliant */ 4758 ret = nand_onfi_detect(chip); 4759 if (ret < 0) 4760 return ret; 4761 else if (ret) 4762 goto ident_done; 4763 4764 /* Check if the chip is JEDEC compliant */ 4765 ret = nand_jedec_detect(chip); 4766 if (ret < 0) 4767 return ret; 4768 else if (ret) 4769 goto ident_done; 4770 } 4771 4772 if (!type->name) 4773 return -ENODEV; 4774 4775 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4776 if (!chip->parameters.model) 4777 return -ENOMEM; 4778 4779 chip->chipsize = (uint64_t)type->chipsize << 20; 4780 4781 if (!type->pagesize) 4782 nand_manufacturer_detect(chip); 4783 else 4784 nand_decode_id(chip, type); 4785 4786 /* Get chip options */ 4787 chip->options |= type->options; 4788 4789 ident_done: 4790 if (!mtd->name) 4791 mtd->name = chip->parameters.model; 4792 4793 if (chip->options & NAND_BUSWIDTH_AUTO) { 4794 WARN_ON(busw & NAND_BUSWIDTH_16); 4795 nand_set_defaults(chip); 4796 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 4797 /* 4798 * Check, if buswidth is correct. Hardware drivers should set 4799 * chip correct! 4800 */ 4801 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4802 maf_id, dev_id); 4803 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 4804 mtd->name); 4805 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 4806 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 4807 ret = -EINVAL; 4808 4809 goto free_detect_allocation; 4810 } 4811 4812 nand_decode_bbm_options(chip); 4813 4814 /* Calculate the address shift from the page size */ 4815 chip->page_shift = ffs(mtd->writesize) - 1; 4816 /* Convert chipsize to number of pages per chip -1 */ 4817 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; 4818 4819 chip->bbt_erase_shift = chip->phys_erase_shift = 4820 ffs(mtd->erasesize) - 1; 4821 if (chip->chipsize & 0xffffffff) 4822 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; 4823 else { 4824 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); 4825 chip->chip_shift += 32 - 1; 4826 } 4827 4828 if (chip->chip_shift - chip->page_shift > 16) 4829 chip->options |= NAND_ROW_ADDR_3; 4830 4831 chip->badblockbits = 8; 4832 4833 nand_legacy_adjust_cmdfunc(chip); 4834 4835 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4836 maf_id, dev_id); 4837 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 4838 chip->parameters.model); 4839 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 4840 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 4841 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 4842 return 0; 4843 4844 free_detect_allocation: 4845 kfree(chip->parameters.model); 4846 4847 return ret; 4848 } 4849 4850 static const char * const nand_ecc_modes[] = { 4851 [NAND_ECC_NONE] = "none", 4852 [NAND_ECC_SOFT] = "soft", 4853 [NAND_ECC_HW] = "hw", 4854 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 4855 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first", 4856 [NAND_ECC_ON_DIE] = "on-die", 4857 }; 4858 4859 static int of_get_nand_ecc_mode(struct device_node *np) 4860 { 4861 const char *pm; 4862 int err, i; 4863 4864 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4865 if (err < 0) 4866 return err; 4867 4868 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++) 4869 if (!strcasecmp(pm, nand_ecc_modes[i])) 4870 return i; 4871 4872 /* 4873 * For backward compatibility we support few obsoleted values that don't 4874 * have their mappings into nand_ecc_modes_t anymore (they were merged 4875 * with other enums). 4876 */ 4877 if (!strcasecmp(pm, "soft_bch")) 4878 return NAND_ECC_SOFT; 4879 4880 return -ENODEV; 4881 } 4882 4883 static const char * const nand_ecc_algos[] = { 4884 [NAND_ECC_HAMMING] = "hamming", 4885 [NAND_ECC_BCH] = "bch", 4886 [NAND_ECC_RS] = "rs", 4887 }; 4888 4889 static int of_get_nand_ecc_algo(struct device_node *np) 4890 { 4891 const char *pm; 4892 int err, i; 4893 4894 err = of_property_read_string(np, "nand-ecc-algo", &pm); 4895 if (!err) { 4896 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++) 4897 if (!strcasecmp(pm, nand_ecc_algos[i])) 4898 return i; 4899 return -ENODEV; 4900 } 4901 4902 /* 4903 * For backward compatibility we also read "nand-ecc-mode" checking 4904 * for some obsoleted values that were specifying ECC algorithm. 4905 */ 4906 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4907 if (err < 0) 4908 return err; 4909 4910 if (!strcasecmp(pm, "soft")) 4911 return NAND_ECC_HAMMING; 4912 else if (!strcasecmp(pm, "soft_bch")) 4913 return NAND_ECC_BCH; 4914 4915 return -ENODEV; 4916 } 4917 4918 static int of_get_nand_ecc_step_size(struct device_node *np) 4919 { 4920 int ret; 4921 u32 val; 4922 4923 ret = of_property_read_u32(np, "nand-ecc-step-size", &val); 4924 return ret ? ret : val; 4925 } 4926 4927 static int of_get_nand_ecc_strength(struct device_node *np) 4928 { 4929 int ret; 4930 u32 val; 4931 4932 ret = of_property_read_u32(np, "nand-ecc-strength", &val); 4933 return ret ? ret : val; 4934 } 4935 4936 static int of_get_nand_bus_width(struct device_node *np) 4937 { 4938 u32 val; 4939 4940 if (of_property_read_u32(np, "nand-bus-width", &val)) 4941 return 8; 4942 4943 switch (val) { 4944 case 8: 4945 case 16: 4946 return val; 4947 default: 4948 return -EIO; 4949 } 4950 } 4951 4952 static bool of_get_nand_on_flash_bbt(struct device_node *np) 4953 { 4954 return of_property_read_bool(np, "nand-on-flash-bbt"); 4955 } 4956 4957 static int nand_dt_init(struct nand_chip *chip) 4958 { 4959 struct device_node *dn = nand_get_flash_node(chip); 4960 int ecc_mode, ecc_algo, ecc_strength, ecc_step; 4961 4962 if (!dn) 4963 return 0; 4964 4965 if (of_get_nand_bus_width(dn) == 16) 4966 chip->options |= NAND_BUSWIDTH_16; 4967 4968 if (of_property_read_bool(dn, "nand-is-boot-medium")) 4969 chip->options |= NAND_IS_BOOT_MEDIUM; 4970 4971 if (of_get_nand_on_flash_bbt(dn)) 4972 chip->bbt_options |= NAND_BBT_USE_FLASH; 4973 4974 ecc_mode = of_get_nand_ecc_mode(dn); 4975 ecc_algo = of_get_nand_ecc_algo(dn); 4976 ecc_strength = of_get_nand_ecc_strength(dn); 4977 ecc_step = of_get_nand_ecc_step_size(dn); 4978 4979 if (ecc_mode >= 0) 4980 chip->ecc.mode = ecc_mode; 4981 4982 if (ecc_algo >= 0) 4983 chip->ecc.algo = ecc_algo; 4984 4985 if (ecc_strength >= 0) 4986 chip->ecc.strength = ecc_strength; 4987 4988 if (ecc_step > 0) 4989 chip->ecc.size = ecc_step; 4990 4991 if (of_property_read_bool(dn, "nand-ecc-maximize")) 4992 chip->ecc.options |= NAND_ECC_MAXIMIZE; 4993 4994 return 0; 4995 } 4996 4997 /** 4998 * nand_scan_ident - Scan for the NAND device 4999 * @chip: NAND chip object 5000 * @maxchips: number of chips to scan for 5001 * @table: alternative NAND ID table 5002 * 5003 * This is the first phase of the normal nand_scan() function. It reads the 5004 * flash ID and sets up MTD fields accordingly. 5005 * 5006 * This helper used to be called directly from controller drivers that needed 5007 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 5008 * prevented dynamic allocations during this phase which was unconvenient and 5009 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 5010 */ 5011 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, 5012 struct nand_flash_dev *table) 5013 { 5014 struct mtd_info *mtd = nand_to_mtd(chip); 5015 int nand_maf_id, nand_dev_id; 5016 unsigned int i; 5017 int ret; 5018 5019 /* Assume all dies are deselected when we enter nand_scan_ident(). */ 5020 chip->cur_cs = -1; 5021 5022 /* Enforce the right timings for reset/detection */ 5023 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 5024 5025 ret = nand_dt_init(chip); 5026 if (ret) 5027 return ret; 5028 5029 if (!mtd->name && mtd->dev.parent) 5030 mtd->name = dev_name(mtd->dev.parent); 5031 5032 /* 5033 * Start with chips->numchips = maxchips to let nand_select_target() do 5034 * its job. chip->numchips will be adjusted after. 5035 */ 5036 chip->numchips = maxchips; 5037 5038 /* Set the default functions */ 5039 nand_set_defaults(chip); 5040 5041 ret = nand_legacy_check_hooks(chip); 5042 if (ret) 5043 return ret; 5044 5045 /* Read the flash type */ 5046 ret = nand_detect(chip, table); 5047 if (ret) { 5048 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 5049 pr_warn("No NAND device found\n"); 5050 nand_deselect_target(chip); 5051 return ret; 5052 } 5053 5054 nand_maf_id = chip->id.data[0]; 5055 nand_dev_id = chip->id.data[1]; 5056 5057 nand_deselect_target(chip); 5058 5059 /* Check for a chip array */ 5060 for (i = 1; i < maxchips; i++) { 5061 u8 id[2]; 5062 5063 /* See comment in nand_get_flash_type for reset */ 5064 nand_reset(chip, i); 5065 5066 nand_select_target(chip, i); 5067 /* Send the command for reading device ID */ 5068 nand_readid_op(chip, 0, id, sizeof(id)); 5069 /* Read manufacturer and device IDs */ 5070 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5071 nand_deselect_target(chip); 5072 break; 5073 } 5074 nand_deselect_target(chip); 5075 } 5076 if (i > 1) 5077 pr_info("%d chips detected\n", i); 5078 5079 /* Store the number of chips and calc total size for mtd */ 5080 chip->numchips = i; 5081 mtd->size = i * chip->chipsize; 5082 5083 return 0; 5084 } 5085 5086 static void nand_scan_ident_cleanup(struct nand_chip *chip) 5087 { 5088 kfree(chip->parameters.model); 5089 kfree(chip->parameters.onfi); 5090 } 5091 5092 static int nand_set_ecc_soft_ops(struct nand_chip *chip) 5093 { 5094 struct mtd_info *mtd = nand_to_mtd(chip); 5095 struct nand_ecc_ctrl *ecc = &chip->ecc; 5096 5097 if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) 5098 return -EINVAL; 5099 5100 switch (ecc->algo) { 5101 case NAND_ECC_HAMMING: 5102 ecc->calculate = nand_calculate_ecc; 5103 ecc->correct = nand_correct_data; 5104 ecc->read_page = nand_read_page_swecc; 5105 ecc->read_subpage = nand_read_subpage; 5106 ecc->write_page = nand_write_page_swecc; 5107 ecc->read_page_raw = nand_read_page_raw; 5108 ecc->write_page_raw = nand_write_page_raw; 5109 ecc->read_oob = nand_read_oob_std; 5110 ecc->write_oob = nand_write_oob_std; 5111 if (!ecc->size) 5112 ecc->size = 256; 5113 ecc->bytes = 3; 5114 ecc->strength = 1; 5115 5116 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC)) 5117 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 5118 5119 return 0; 5120 case NAND_ECC_BCH: 5121 if (!mtd_nand_has_bch()) { 5122 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n"); 5123 return -EINVAL; 5124 } 5125 ecc->calculate = nand_bch_calculate_ecc; 5126 ecc->correct = nand_bch_correct_data; 5127 ecc->read_page = nand_read_page_swecc; 5128 ecc->read_subpage = nand_read_subpage; 5129 ecc->write_page = nand_write_page_swecc; 5130 ecc->read_page_raw = nand_read_page_raw; 5131 ecc->write_page_raw = nand_write_page_raw; 5132 ecc->read_oob = nand_read_oob_std; 5133 ecc->write_oob = nand_write_oob_std; 5134 5135 /* 5136 * Board driver should supply ecc.size and ecc.strength 5137 * values to select how many bits are correctable. 5138 * Otherwise, default to 4 bits for large page devices. 5139 */ 5140 if (!ecc->size && (mtd->oobsize >= 64)) { 5141 ecc->size = 512; 5142 ecc->strength = 4; 5143 } 5144 5145 /* 5146 * if no ecc placement scheme was provided pickup the default 5147 * large page one. 5148 */ 5149 if (!mtd->ooblayout) { 5150 /* handle large page devices only */ 5151 if (mtd->oobsize < 64) { 5152 WARN(1, "OOB layout is required when using software BCH on small pages\n"); 5153 return -EINVAL; 5154 } 5155 5156 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 5157 5158 } 5159 5160 /* 5161 * We can only maximize ECC config when the default layout is 5162 * used, otherwise we don't know how many bytes can really be 5163 * used. 5164 */ 5165 if (mtd->ooblayout == &nand_ooblayout_lp_ops && 5166 ecc->options & NAND_ECC_MAXIMIZE) { 5167 int steps, bytes; 5168 5169 /* Always prefer 1k blocks over 512bytes ones */ 5170 ecc->size = 1024; 5171 steps = mtd->writesize / ecc->size; 5172 5173 /* Reserve 2 bytes for the BBM */ 5174 bytes = (mtd->oobsize - 2) / steps; 5175 ecc->strength = bytes * 8 / fls(8 * ecc->size); 5176 } 5177 5178 /* See nand_bch_init() for details. */ 5179 ecc->bytes = 0; 5180 ecc->priv = nand_bch_init(mtd); 5181 if (!ecc->priv) { 5182 WARN(1, "BCH ECC initialization failed!\n"); 5183 return -EINVAL; 5184 } 5185 return 0; 5186 default: 5187 WARN(1, "Unsupported ECC algorithm!\n"); 5188 return -EINVAL; 5189 } 5190 } 5191 5192 /** 5193 * nand_check_ecc_caps - check the sanity of preset ECC settings 5194 * @chip: nand chip info structure 5195 * @caps: ECC caps info structure 5196 * @oobavail: OOB size that the ECC engine can use 5197 * 5198 * When ECC step size and strength are already set, check if they are supported 5199 * by the controller and the calculated ECC bytes fit within the chip's OOB. 5200 * On success, the calculated ECC bytes is set. 5201 */ 5202 static int 5203 nand_check_ecc_caps(struct nand_chip *chip, 5204 const struct nand_ecc_caps *caps, int oobavail) 5205 { 5206 struct mtd_info *mtd = nand_to_mtd(chip); 5207 const struct nand_ecc_step_info *stepinfo; 5208 int preset_step = chip->ecc.size; 5209 int preset_strength = chip->ecc.strength; 5210 int ecc_bytes, nsteps = mtd->writesize / preset_step; 5211 int i, j; 5212 5213 for (i = 0; i < caps->nstepinfos; i++) { 5214 stepinfo = &caps->stepinfos[i]; 5215 5216 if (stepinfo->stepsize != preset_step) 5217 continue; 5218 5219 for (j = 0; j < stepinfo->nstrengths; j++) { 5220 if (stepinfo->strengths[j] != preset_strength) 5221 continue; 5222 5223 ecc_bytes = caps->calc_ecc_bytes(preset_step, 5224 preset_strength); 5225 if (WARN_ON_ONCE(ecc_bytes < 0)) 5226 return ecc_bytes; 5227 5228 if (ecc_bytes * nsteps > oobavail) { 5229 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 5230 preset_step, preset_strength); 5231 return -ENOSPC; 5232 } 5233 5234 chip->ecc.bytes = ecc_bytes; 5235 5236 return 0; 5237 } 5238 } 5239 5240 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 5241 preset_step, preset_strength); 5242 5243 return -ENOTSUPP; 5244 } 5245 5246 /** 5247 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 5248 * @chip: nand chip info structure 5249 * @caps: ECC engine caps info structure 5250 * @oobavail: OOB size that the ECC engine can use 5251 * 5252 * If a chip's ECC requirement is provided, try to meet it with the least 5253 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 5254 * On success, the chosen ECC settings are set. 5255 */ 5256 static int 5257 nand_match_ecc_req(struct nand_chip *chip, 5258 const struct nand_ecc_caps *caps, int oobavail) 5259 { 5260 struct mtd_info *mtd = nand_to_mtd(chip); 5261 const struct nand_ecc_step_info *stepinfo; 5262 int req_step = chip->ecc_step_ds; 5263 int req_strength = chip->ecc_strength_ds; 5264 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 5265 int best_step, best_strength, best_ecc_bytes; 5266 int best_ecc_bytes_total = INT_MAX; 5267 int i, j; 5268 5269 /* No information provided by the NAND chip */ 5270 if (!req_step || !req_strength) 5271 return -ENOTSUPP; 5272 5273 /* number of correctable bits the chip requires in a page */ 5274 req_corr = mtd->writesize / req_step * req_strength; 5275 5276 for (i = 0; i < caps->nstepinfos; i++) { 5277 stepinfo = &caps->stepinfos[i]; 5278 step_size = stepinfo->stepsize; 5279 5280 for (j = 0; j < stepinfo->nstrengths; j++) { 5281 strength = stepinfo->strengths[j]; 5282 5283 /* 5284 * If both step size and strength are smaller than the 5285 * chip's requirement, it is not easy to compare the 5286 * resulted reliability. 5287 */ 5288 if (step_size < req_step && strength < req_strength) 5289 continue; 5290 5291 if (mtd->writesize % step_size) 5292 continue; 5293 5294 nsteps = mtd->writesize / step_size; 5295 5296 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5297 if (WARN_ON_ONCE(ecc_bytes < 0)) 5298 continue; 5299 ecc_bytes_total = ecc_bytes * nsteps; 5300 5301 if (ecc_bytes_total > oobavail || 5302 strength * nsteps < req_corr) 5303 continue; 5304 5305 /* 5306 * We assume the best is to meet the chip's requrement 5307 * with the least number of ECC bytes. 5308 */ 5309 if (ecc_bytes_total < best_ecc_bytes_total) { 5310 best_ecc_bytes_total = ecc_bytes_total; 5311 best_step = step_size; 5312 best_strength = strength; 5313 best_ecc_bytes = ecc_bytes; 5314 } 5315 } 5316 } 5317 5318 if (best_ecc_bytes_total == INT_MAX) 5319 return -ENOTSUPP; 5320 5321 chip->ecc.size = best_step; 5322 chip->ecc.strength = best_strength; 5323 chip->ecc.bytes = best_ecc_bytes; 5324 5325 return 0; 5326 } 5327 5328 /** 5329 * nand_maximize_ecc - choose the max ECC strength available 5330 * @chip: nand chip info structure 5331 * @caps: ECC engine caps info structure 5332 * @oobavail: OOB size that the ECC engine can use 5333 * 5334 * Choose the max ECC strength that is supported on the controller, and can fit 5335 * within the chip's OOB. On success, the chosen ECC settings are set. 5336 */ 5337 static int 5338 nand_maximize_ecc(struct nand_chip *chip, 5339 const struct nand_ecc_caps *caps, int oobavail) 5340 { 5341 struct mtd_info *mtd = nand_to_mtd(chip); 5342 const struct nand_ecc_step_info *stepinfo; 5343 int step_size, strength, nsteps, ecc_bytes, corr; 5344 int best_corr = 0; 5345 int best_step = 0; 5346 int best_strength, best_ecc_bytes; 5347 int i, j; 5348 5349 for (i = 0; i < caps->nstepinfos; i++) { 5350 stepinfo = &caps->stepinfos[i]; 5351 step_size = stepinfo->stepsize; 5352 5353 /* If chip->ecc.size is already set, respect it */ 5354 if (chip->ecc.size && step_size != chip->ecc.size) 5355 continue; 5356 5357 for (j = 0; j < stepinfo->nstrengths; j++) { 5358 strength = stepinfo->strengths[j]; 5359 5360 if (mtd->writesize % step_size) 5361 continue; 5362 5363 nsteps = mtd->writesize / step_size; 5364 5365 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5366 if (WARN_ON_ONCE(ecc_bytes < 0)) 5367 continue; 5368 5369 if (ecc_bytes * nsteps > oobavail) 5370 continue; 5371 5372 corr = strength * nsteps; 5373 5374 /* 5375 * If the number of correctable bits is the same, 5376 * bigger step_size has more reliability. 5377 */ 5378 if (corr > best_corr || 5379 (corr == best_corr && step_size > best_step)) { 5380 best_corr = corr; 5381 best_step = step_size; 5382 best_strength = strength; 5383 best_ecc_bytes = ecc_bytes; 5384 } 5385 } 5386 } 5387 5388 if (!best_corr) 5389 return -ENOTSUPP; 5390 5391 chip->ecc.size = best_step; 5392 chip->ecc.strength = best_strength; 5393 chip->ecc.bytes = best_ecc_bytes; 5394 5395 return 0; 5396 } 5397 5398 /** 5399 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 5400 * @chip: nand chip info structure 5401 * @caps: ECC engine caps info structure 5402 * @oobavail: OOB size that the ECC engine can use 5403 * 5404 * Choose the ECC configuration according to following logic 5405 * 5406 * 1. If both ECC step size and ECC strength are already set (usually by DT) 5407 * then check if it is supported by this controller. 5408 * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength. 5409 * 3. Otherwise, try to match the ECC step size and ECC strength closest 5410 * to the chip's requirement. If available OOB size can't fit the chip 5411 * requirement then fallback to the maximum ECC step size and ECC strength. 5412 * 5413 * On success, the chosen ECC settings are set. 5414 */ 5415 int nand_ecc_choose_conf(struct nand_chip *chip, 5416 const struct nand_ecc_caps *caps, int oobavail) 5417 { 5418 struct mtd_info *mtd = nand_to_mtd(chip); 5419 5420 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 5421 return -EINVAL; 5422 5423 if (chip->ecc.size && chip->ecc.strength) 5424 return nand_check_ecc_caps(chip, caps, oobavail); 5425 5426 if (chip->ecc.options & NAND_ECC_MAXIMIZE) 5427 return nand_maximize_ecc(chip, caps, oobavail); 5428 5429 if (!nand_match_ecc_req(chip, caps, oobavail)) 5430 return 0; 5431 5432 return nand_maximize_ecc(chip, caps, oobavail); 5433 } 5434 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 5435 5436 /* 5437 * Check if the chip configuration meet the datasheet requirements. 5438 5439 * If our configuration corrects A bits per B bytes and the minimum 5440 * required correction level is X bits per Y bytes, then we must ensure 5441 * both of the following are true: 5442 * 5443 * (1) A / B >= X / Y 5444 * (2) A >= X 5445 * 5446 * Requirement (1) ensures we can correct for the required bitflip density. 5447 * Requirement (2) ensures we can correct even when all bitflips are clumped 5448 * in the same sector. 5449 */ 5450 static bool nand_ecc_strength_good(struct nand_chip *chip) 5451 { 5452 struct mtd_info *mtd = nand_to_mtd(chip); 5453 struct nand_ecc_ctrl *ecc = &chip->ecc; 5454 int corr, ds_corr; 5455 5456 if (ecc->size == 0 || chip->ecc_step_ds == 0) 5457 /* Not enough information */ 5458 return true; 5459 5460 /* 5461 * We get the number of corrected bits per page to compare 5462 * the correction density. 5463 */ 5464 corr = (mtd->writesize * ecc->strength) / ecc->size; 5465 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds; 5466 5467 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds; 5468 } 5469 5470 /** 5471 * nand_scan_tail - Scan for the NAND device 5472 * @chip: NAND chip object 5473 * 5474 * This is the second phase of the normal nand_scan() function. It fills out 5475 * all the uninitialized function pointers with the defaults and scans for a 5476 * bad block table if appropriate. 5477 */ 5478 static int nand_scan_tail(struct nand_chip *chip) 5479 { 5480 struct mtd_info *mtd = nand_to_mtd(chip); 5481 struct nand_ecc_ctrl *ecc = &chip->ecc; 5482 int ret, i; 5483 5484 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 5485 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 5486 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 5487 return -EINVAL; 5488 } 5489 5490 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 5491 if (!chip->data_buf) 5492 return -ENOMEM; 5493 5494 /* 5495 * FIXME: some NAND manufacturer drivers expect the first die to be 5496 * selected when manufacturer->init() is called. They should be fixed 5497 * to explictly select the relevant die when interacting with the NAND 5498 * chip. 5499 */ 5500 nand_select_target(chip, 0); 5501 ret = nand_manufacturer_init(chip); 5502 nand_deselect_target(chip); 5503 if (ret) 5504 goto err_free_buf; 5505 5506 /* Set the internal oob buffer location, just after the page data */ 5507 chip->oob_poi = chip->data_buf + mtd->writesize; 5508 5509 /* 5510 * If no default placement scheme is given, select an appropriate one. 5511 */ 5512 if (!mtd->ooblayout && 5513 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { 5514 switch (mtd->oobsize) { 5515 case 8: 5516 case 16: 5517 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); 5518 break; 5519 case 64: 5520 case 128: 5521 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); 5522 break; 5523 default: 5524 /* 5525 * Expose the whole OOB area to users if ECC_NONE 5526 * is passed. We could do that for all kind of 5527 * ->oobsize, but we must keep the old large/small 5528 * page with ECC layout when ->oobsize <= 128 for 5529 * compatibility reasons. 5530 */ 5531 if (ecc->mode == NAND_ECC_NONE) { 5532 mtd_set_ooblayout(mtd, 5533 &nand_ooblayout_lp_ops); 5534 break; 5535 } 5536 5537 WARN(1, "No oob scheme defined for oobsize %d\n", 5538 mtd->oobsize); 5539 ret = -EINVAL; 5540 goto err_nand_manuf_cleanup; 5541 } 5542 } 5543 5544 /* 5545 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 5546 * selected and we have 256 byte pagesize fallback to software ECC 5547 */ 5548 5549 switch (ecc->mode) { 5550 case NAND_ECC_HW_OOB_FIRST: 5551 /* Similar to NAND_ECC_HW, but a separate read_page handle */ 5552 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { 5553 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5554 ret = -EINVAL; 5555 goto err_nand_manuf_cleanup; 5556 } 5557 if (!ecc->read_page) 5558 ecc->read_page = nand_read_page_hwecc_oob_first; 5559 5560 case NAND_ECC_HW: 5561 /* Use standard hwecc read page function? */ 5562 if (!ecc->read_page) 5563 ecc->read_page = nand_read_page_hwecc; 5564 if (!ecc->write_page) 5565 ecc->write_page = nand_write_page_hwecc; 5566 if (!ecc->read_page_raw) 5567 ecc->read_page_raw = nand_read_page_raw; 5568 if (!ecc->write_page_raw) 5569 ecc->write_page_raw = nand_write_page_raw; 5570 if (!ecc->read_oob) 5571 ecc->read_oob = nand_read_oob_std; 5572 if (!ecc->write_oob) 5573 ecc->write_oob = nand_write_oob_std; 5574 if (!ecc->read_subpage) 5575 ecc->read_subpage = nand_read_subpage; 5576 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 5577 ecc->write_subpage = nand_write_subpage_hwecc; 5578 5579 case NAND_ECC_HW_SYNDROME: 5580 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 5581 (!ecc->read_page || 5582 ecc->read_page == nand_read_page_hwecc || 5583 !ecc->write_page || 5584 ecc->write_page == nand_write_page_hwecc)) { 5585 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5586 ret = -EINVAL; 5587 goto err_nand_manuf_cleanup; 5588 } 5589 /* Use standard syndrome read/write page function? */ 5590 if (!ecc->read_page) 5591 ecc->read_page = nand_read_page_syndrome; 5592 if (!ecc->write_page) 5593 ecc->write_page = nand_write_page_syndrome; 5594 if (!ecc->read_page_raw) 5595 ecc->read_page_raw = nand_read_page_raw_syndrome; 5596 if (!ecc->write_page_raw) 5597 ecc->write_page_raw = nand_write_page_raw_syndrome; 5598 if (!ecc->read_oob) 5599 ecc->read_oob = nand_read_oob_syndrome; 5600 if (!ecc->write_oob) 5601 ecc->write_oob = nand_write_oob_syndrome; 5602 5603 if (mtd->writesize >= ecc->size) { 5604 if (!ecc->strength) { 5605 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 5606 ret = -EINVAL; 5607 goto err_nand_manuf_cleanup; 5608 } 5609 break; 5610 } 5611 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 5612 ecc->size, mtd->writesize); 5613 ecc->mode = NAND_ECC_SOFT; 5614 ecc->algo = NAND_ECC_HAMMING; 5615 5616 case NAND_ECC_SOFT: 5617 ret = nand_set_ecc_soft_ops(chip); 5618 if (ret) { 5619 ret = -EINVAL; 5620 goto err_nand_manuf_cleanup; 5621 } 5622 break; 5623 5624 case NAND_ECC_ON_DIE: 5625 if (!ecc->read_page || !ecc->write_page) { 5626 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 5627 ret = -EINVAL; 5628 goto err_nand_manuf_cleanup; 5629 } 5630 if (!ecc->read_oob) 5631 ecc->read_oob = nand_read_oob_std; 5632 if (!ecc->write_oob) 5633 ecc->write_oob = nand_write_oob_std; 5634 break; 5635 5636 case NAND_ECC_NONE: 5637 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); 5638 ecc->read_page = nand_read_page_raw; 5639 ecc->write_page = nand_write_page_raw; 5640 ecc->read_oob = nand_read_oob_std; 5641 ecc->read_page_raw = nand_read_page_raw; 5642 ecc->write_page_raw = nand_write_page_raw; 5643 ecc->write_oob = nand_write_oob_std; 5644 ecc->size = mtd->writesize; 5645 ecc->bytes = 0; 5646 ecc->strength = 0; 5647 break; 5648 5649 default: 5650 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); 5651 ret = -EINVAL; 5652 goto err_nand_manuf_cleanup; 5653 } 5654 5655 if (ecc->correct || ecc->calculate) { 5656 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5657 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5658 if (!ecc->calc_buf || !ecc->code_buf) { 5659 ret = -ENOMEM; 5660 goto err_nand_manuf_cleanup; 5661 } 5662 } 5663 5664 /* For many systems, the standard OOB write also works for raw */ 5665 if (!ecc->read_oob_raw) 5666 ecc->read_oob_raw = ecc->read_oob; 5667 if (!ecc->write_oob_raw) 5668 ecc->write_oob_raw = ecc->write_oob; 5669 5670 /* propagate ecc info to mtd_info */ 5671 mtd->ecc_strength = ecc->strength; 5672 mtd->ecc_step_size = ecc->size; 5673 5674 /* 5675 * Set the number of read / write steps for one page depending on ECC 5676 * mode. 5677 */ 5678 ecc->steps = mtd->writesize / ecc->size; 5679 if (ecc->steps * ecc->size != mtd->writesize) { 5680 WARN(1, "Invalid ECC parameters\n"); 5681 ret = -EINVAL; 5682 goto err_nand_manuf_cleanup; 5683 } 5684 ecc->total = ecc->steps * ecc->bytes; 5685 if (ecc->total > mtd->oobsize) { 5686 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 5687 ret = -EINVAL; 5688 goto err_nand_manuf_cleanup; 5689 } 5690 5691 /* 5692 * The number of bytes available for a client to place data into 5693 * the out of band area. 5694 */ 5695 ret = mtd_ooblayout_count_freebytes(mtd); 5696 if (ret < 0) 5697 ret = 0; 5698 5699 mtd->oobavail = ret; 5700 5701 /* ECC sanity check: warn if it's too weak */ 5702 if (!nand_ecc_strength_good(chip)) 5703 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", 5704 mtd->name); 5705 5706 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 5707 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 5708 switch (ecc->steps) { 5709 case 2: 5710 mtd->subpage_sft = 1; 5711 break; 5712 case 4: 5713 case 8: 5714 case 16: 5715 mtd->subpage_sft = 2; 5716 break; 5717 } 5718 } 5719 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 5720 5721 /* Initialize state */ 5722 chip->state = FL_READY; 5723 5724 /* Invalidate the pagebuffer reference */ 5725 chip->pagebuf = -1; 5726 5727 /* Large page NAND with SOFT_ECC should support subpage reads */ 5728 switch (ecc->mode) { 5729 case NAND_ECC_SOFT: 5730 if (chip->page_shift > 9) 5731 chip->options |= NAND_SUBPAGE_READ; 5732 break; 5733 5734 default: 5735 break; 5736 } 5737 5738 /* Fill in remaining MTD driver data */ 5739 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH; 5740 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : 5741 MTD_CAP_NANDFLASH; 5742 mtd->_erase = nand_erase; 5743 mtd->_point = NULL; 5744 mtd->_unpoint = NULL; 5745 mtd->_panic_write = panic_nand_write; 5746 mtd->_read_oob = nand_read_oob; 5747 mtd->_write_oob = nand_write_oob; 5748 mtd->_sync = nand_sync; 5749 mtd->_lock = NULL; 5750 mtd->_unlock = NULL; 5751 mtd->_suspend = nand_suspend; 5752 mtd->_resume = nand_resume; 5753 mtd->_reboot = nand_shutdown; 5754 mtd->_block_isreserved = nand_block_isreserved; 5755 mtd->_block_isbad = nand_block_isbad; 5756 mtd->_block_markbad = nand_block_markbad; 5757 mtd->_max_bad_blocks = nand_max_bad_blocks; 5758 mtd->writebufsize = mtd->writesize; 5759 5760 /* 5761 * Initialize bitflip_threshold to its default prior scan_bbt() call. 5762 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 5763 * properly set. 5764 */ 5765 if (!mtd->bitflip_threshold) 5766 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 5767 5768 /* Initialize the ->data_interface field. */ 5769 ret = nand_init_data_interface(chip); 5770 if (ret) 5771 goto err_nand_manuf_cleanup; 5772 5773 /* Enter fastest possible mode on all dies. */ 5774 for (i = 0; i < chip->numchips; i++) { 5775 ret = nand_setup_data_interface(chip, i); 5776 if (ret) 5777 goto err_nand_manuf_cleanup; 5778 } 5779 5780 /* Check, if we should skip the bad block table scan */ 5781 if (chip->options & NAND_SKIP_BBTSCAN) 5782 return 0; 5783 5784 /* Build bad block table */ 5785 ret = nand_create_bbt(chip); 5786 if (ret) 5787 goto err_nand_manuf_cleanup; 5788 5789 return 0; 5790 5791 5792 err_nand_manuf_cleanup: 5793 nand_manufacturer_cleanup(chip); 5794 5795 err_free_buf: 5796 kfree(chip->data_buf); 5797 kfree(ecc->code_buf); 5798 kfree(ecc->calc_buf); 5799 5800 return ret; 5801 } 5802 5803 static int nand_attach(struct nand_chip *chip) 5804 { 5805 if (chip->controller->ops && chip->controller->ops->attach_chip) 5806 return chip->controller->ops->attach_chip(chip); 5807 5808 return 0; 5809 } 5810 5811 static void nand_detach(struct nand_chip *chip) 5812 { 5813 if (chip->controller->ops && chip->controller->ops->detach_chip) 5814 chip->controller->ops->detach_chip(chip); 5815 } 5816 5817 /** 5818 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 5819 * @chip: NAND chip object 5820 * @maxchips: number of chips to scan for. 5821 * @ids: optional flash IDs table 5822 * 5823 * This fills out all the uninitialized function pointers with the defaults. 5824 * The flash ID is read and the mtd/chip structures are filled with the 5825 * appropriate values. 5826 */ 5827 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, 5828 struct nand_flash_dev *ids) 5829 { 5830 int ret; 5831 5832 if (!maxchips) 5833 return -EINVAL; 5834 5835 ret = nand_scan_ident(chip, maxchips, ids); 5836 if (ret) 5837 return ret; 5838 5839 ret = nand_attach(chip); 5840 if (ret) 5841 goto cleanup_ident; 5842 5843 ret = nand_scan_tail(chip); 5844 if (ret) 5845 goto detach_chip; 5846 5847 return 0; 5848 5849 detach_chip: 5850 nand_detach(chip); 5851 cleanup_ident: 5852 nand_scan_ident_cleanup(chip); 5853 5854 return ret; 5855 } 5856 EXPORT_SYMBOL(nand_scan_with_ids); 5857 5858 /** 5859 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 5860 * @chip: NAND chip object 5861 */ 5862 void nand_cleanup(struct nand_chip *chip) 5863 { 5864 if (chip->ecc.mode == NAND_ECC_SOFT && 5865 chip->ecc.algo == NAND_ECC_BCH) 5866 nand_bch_free((struct nand_bch_control *)chip->ecc.priv); 5867 5868 /* Free bad block table memory */ 5869 kfree(chip->bbt); 5870 kfree(chip->data_buf); 5871 kfree(chip->ecc.code_buf); 5872 kfree(chip->ecc.calc_buf); 5873 5874 /* Free bad block descriptor memory */ 5875 if (chip->badblock_pattern && chip->badblock_pattern->options 5876 & NAND_BBT_DYNAMICSTRUCT) 5877 kfree(chip->badblock_pattern); 5878 5879 /* Free manufacturer priv data. */ 5880 nand_manufacturer_cleanup(chip); 5881 5882 /* Free controller specific allocations after chip identification */ 5883 nand_detach(chip); 5884 5885 /* Free identification phase allocations */ 5886 nand_scan_ident_cleanup(chip); 5887 } 5888 5889 EXPORT_SYMBOL_GPL(nand_cleanup); 5890 5891 /** 5892 * nand_release - [NAND Interface] Unregister the MTD device and free resources 5893 * held by the NAND device 5894 * @chip: NAND chip object 5895 */ 5896 void nand_release(struct nand_chip *chip) 5897 { 5898 mtd_device_unregister(nand_to_mtd(chip)); 5899 nand_cleanup(chip); 5900 } 5901 EXPORT_SYMBOL_GPL(nand_release); 5902 5903 MODULE_LICENSE("GPL"); 5904 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 5905 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 5906 MODULE_DESCRIPTION("Generic NAND flash driver code"); 5907