1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Overview: 4 * This is the generic MTD driver for NAND flash devices. It should be 5 * capable of working with almost all NAND chips currently available. 6 * 7 * Additional technical information is available on 8 * http://www.linux-mtd.infradead.org/doc/nand.html 9 * 10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 12 * 13 * Credits: 14 * David Woodhouse for adding multichip support 15 * 16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 17 * rework for 2K page size chips 18 * 19 * TODO: 20 * Enable cached programming for 2k page size chips 21 * Check, if mtd->ecctype should be set to MTD_ECC_HW 22 * if we have HW ECC support. 23 * BBT table is not serialized, has to be fixed 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/module.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/sched.h> 33 #include <linux/slab.h> 34 #include <linux/mm.h> 35 #include <linux/types.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/nand.h> 38 #include <linux/mtd/nand-ecc-sw-hamming.h> 39 #include <linux/mtd/nand-ecc-sw-bch.h> 40 #include <linux/interrupt.h> 41 #include <linux/bitops.h> 42 #include <linux/io.h> 43 #include <linux/mtd/partitions.h> 44 #include <linux/of.h> 45 #include <linux/gpio/consumer.h> 46 47 #include "internals.h" 48 49 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page, 50 struct mtd_pairing_info *info) 51 { 52 int lastpage = (mtd->erasesize / mtd->writesize) - 1; 53 int dist = 3; 54 55 if (page == lastpage) 56 dist = 2; 57 58 if (!page || (page & 1)) { 59 info->group = 0; 60 info->pair = (page + 1) / 2; 61 } else { 62 info->group = 1; 63 info->pair = (page + 1 - dist) / 2; 64 } 65 66 return 0; 67 } 68 69 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd, 70 const struct mtd_pairing_info *info) 71 { 72 int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2; 73 int page = info->pair * 2; 74 int dist = 3; 75 76 if (!info->group && !info->pair) 77 return 0; 78 79 if (info->pair == lastpair && info->group) 80 dist = 2; 81 82 if (!info->group) 83 page--; 84 else if (info->pair) 85 page += dist - 1; 86 87 if (page >= mtd->erasesize / mtd->writesize) 88 return -EINVAL; 89 90 return page; 91 } 92 93 const struct mtd_pairing_scheme dist3_pairing_scheme = { 94 .ngroups = 2, 95 .get_info = nand_pairing_dist3_get_info, 96 .get_wunit = nand_pairing_dist3_get_wunit, 97 }; 98 99 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) 100 { 101 int ret = 0; 102 103 /* Start address must align on block boundary */ 104 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 105 pr_debug("%s: unaligned address\n", __func__); 106 ret = -EINVAL; 107 } 108 109 /* Length must align on block boundary */ 110 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 111 pr_debug("%s: length not block aligned\n", __func__); 112 ret = -EINVAL; 113 } 114 115 return ret; 116 } 117 118 /** 119 * nand_extract_bits - Copy unaligned bits from one buffer to another one 120 * @dst: destination buffer 121 * @dst_off: bit offset at which the writing starts 122 * @src: source buffer 123 * @src_off: bit offset at which the reading starts 124 * @nbits: number of bits to copy from @src to @dst 125 * 126 * Copy bits from one memory region to another (overlap authorized). 127 */ 128 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, 129 unsigned int src_off, unsigned int nbits) 130 { 131 unsigned int tmp, n; 132 133 dst += dst_off / 8; 134 dst_off %= 8; 135 src += src_off / 8; 136 src_off %= 8; 137 138 while (nbits) { 139 n = min3(8 - dst_off, 8 - src_off, nbits); 140 141 tmp = (*src >> src_off) & GENMASK(n - 1, 0); 142 *dst &= ~GENMASK(n - 1 + dst_off, dst_off); 143 *dst |= tmp << dst_off; 144 145 dst_off += n; 146 if (dst_off >= 8) { 147 dst++; 148 dst_off -= 8; 149 } 150 151 src_off += n; 152 if (src_off >= 8) { 153 src++; 154 src_off -= 8; 155 } 156 157 nbits -= n; 158 } 159 } 160 EXPORT_SYMBOL_GPL(nand_extract_bits); 161 162 /** 163 * nand_select_target() - Select a NAND target (A.K.A. die) 164 * @chip: NAND chip object 165 * @cs: the CS line to select. Note that this CS id is always from the chip 166 * PoV, not the controller one 167 * 168 * Select a NAND target so that further operations executed on @chip go to the 169 * selected NAND target. 170 */ 171 void nand_select_target(struct nand_chip *chip, unsigned int cs) 172 { 173 /* 174 * cs should always lie between 0 and nanddev_ntargets(), when that's 175 * not the case it's a bug and the caller should be fixed. 176 */ 177 if (WARN_ON(cs > nanddev_ntargets(&chip->base))) 178 return; 179 180 chip->cur_cs = cs; 181 182 if (chip->legacy.select_chip) 183 chip->legacy.select_chip(chip, cs); 184 } 185 EXPORT_SYMBOL_GPL(nand_select_target); 186 187 /** 188 * nand_deselect_target() - Deselect the currently selected target 189 * @chip: NAND chip object 190 * 191 * Deselect the currently selected NAND target. The result of operations 192 * executed on @chip after the target has been deselected is undefined. 193 */ 194 void nand_deselect_target(struct nand_chip *chip) 195 { 196 if (chip->legacy.select_chip) 197 chip->legacy.select_chip(chip, -1); 198 199 chip->cur_cs = -1; 200 } 201 EXPORT_SYMBOL_GPL(nand_deselect_target); 202 203 /** 204 * nand_release_device - [GENERIC] release chip 205 * @chip: NAND chip object 206 * 207 * Release chip lock and wake up anyone waiting on the device. 208 */ 209 static void nand_release_device(struct nand_chip *chip) 210 { 211 /* Release the controller and the chip */ 212 mutex_unlock(&chip->controller->lock); 213 mutex_unlock(&chip->lock); 214 } 215 216 /** 217 * nand_bbm_get_next_page - Get the next page for bad block markers 218 * @chip: NAND chip object 219 * @page: First page to start checking for bad block marker usage 220 * 221 * Returns an integer that corresponds to the page offset within a block, for 222 * a page that is used to store bad block markers. If no more pages are 223 * available, -EINVAL is returned. 224 */ 225 int nand_bbm_get_next_page(struct nand_chip *chip, int page) 226 { 227 struct mtd_info *mtd = nand_to_mtd(chip); 228 int last_page = ((mtd->erasesize - mtd->writesize) >> 229 chip->page_shift) & chip->pagemask; 230 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE 231 | NAND_BBM_LASTPAGE; 232 233 if (page == 0 && !(chip->options & bbm_flags)) 234 return 0; 235 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) 236 return 0; 237 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) 238 return 1; 239 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) 240 return last_page; 241 242 return -EINVAL; 243 } 244 245 /** 246 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 247 * @chip: NAND chip object 248 * @ofs: offset from device start 249 * 250 * Check, if the block is bad. 251 */ 252 static int nand_block_bad(struct nand_chip *chip, loff_t ofs) 253 { 254 int first_page, page_offset; 255 int res; 256 u8 bad; 257 258 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; 259 page_offset = nand_bbm_get_next_page(chip, 0); 260 261 while (page_offset >= 0) { 262 res = chip->ecc.read_oob(chip, first_page + page_offset); 263 if (res < 0) 264 return res; 265 266 bad = chip->oob_poi[chip->badblockpos]; 267 268 if (likely(chip->badblockbits == 8)) 269 res = bad != 0xFF; 270 else 271 res = hweight8(bad) < chip->badblockbits; 272 if (res) 273 return res; 274 275 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 276 } 277 278 return 0; 279 } 280 281 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) 282 { 283 if (chip->options & NAND_NO_BBM_QUIRK) 284 return 0; 285 286 if (chip->legacy.block_bad) 287 return chip->legacy.block_bad(chip, ofs); 288 289 return nand_block_bad(chip, ofs); 290 } 291 292 /** 293 * nand_get_device - [GENERIC] Get chip for selected access 294 * @chip: NAND chip structure 295 * 296 * Lock the device and its controller for exclusive access 297 * 298 * Return: -EBUSY if the chip has been suspended, 0 otherwise 299 */ 300 static int nand_get_device(struct nand_chip *chip) 301 { 302 mutex_lock(&chip->lock); 303 if (chip->suspended) { 304 mutex_unlock(&chip->lock); 305 return -EBUSY; 306 } 307 mutex_lock(&chip->controller->lock); 308 309 return 0; 310 } 311 312 /** 313 * nand_check_wp - [GENERIC] check if the chip is write protected 314 * @chip: NAND chip object 315 * 316 * Check, if the device is write protected. The function expects, that the 317 * device is already selected. 318 */ 319 static int nand_check_wp(struct nand_chip *chip) 320 { 321 u8 status; 322 int ret; 323 324 /* Broken xD cards report WP despite being writable */ 325 if (chip->options & NAND_BROKEN_XD) 326 return 0; 327 328 /* Check the WP bit */ 329 ret = nand_status_op(chip, &status); 330 if (ret) 331 return ret; 332 333 return status & NAND_STATUS_WP ? 0 : 1; 334 } 335 336 /** 337 * nand_fill_oob - [INTERN] Transfer client buffer to oob 338 * @chip: NAND chip object 339 * @oob: oob data buffer 340 * @len: oob data write length 341 * @ops: oob ops structure 342 */ 343 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, 344 struct mtd_oob_ops *ops) 345 { 346 struct mtd_info *mtd = nand_to_mtd(chip); 347 int ret; 348 349 /* 350 * Initialise to all 0xFF, to avoid the possibility of left over OOB 351 * data from a previous OOB read. 352 */ 353 memset(chip->oob_poi, 0xff, mtd->oobsize); 354 355 switch (ops->mode) { 356 357 case MTD_OPS_PLACE_OOB: 358 case MTD_OPS_RAW: 359 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 360 return oob + len; 361 362 case MTD_OPS_AUTO_OOB: 363 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 364 ops->ooboffs, len); 365 BUG_ON(ret); 366 return oob + len; 367 368 default: 369 BUG(); 370 } 371 return NULL; 372 } 373 374 /** 375 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 376 * @chip: NAND chip object 377 * @to: offset to write to 378 * @ops: oob operation description structure 379 * 380 * NAND write out-of-band. 381 */ 382 static int nand_do_write_oob(struct nand_chip *chip, loff_t to, 383 struct mtd_oob_ops *ops) 384 { 385 struct mtd_info *mtd = nand_to_mtd(chip); 386 int chipnr, page, status, len, ret; 387 388 pr_debug("%s: to = 0x%08x, len = %i\n", 389 __func__, (unsigned int)to, (int)ops->ooblen); 390 391 len = mtd_oobavail(mtd, ops); 392 393 /* Do not allow write past end of page */ 394 if ((ops->ooboffs + ops->ooblen) > len) { 395 pr_debug("%s: attempt to write past end of page\n", 396 __func__); 397 return -EINVAL; 398 } 399 400 chipnr = (int)(to >> chip->chip_shift); 401 402 /* 403 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 404 * of my DiskOnChip 2000 test units) will clear the whole data page too 405 * if we don't do this. I have no clue why, but I seem to have 'fixed' 406 * it in the doc2000 driver in August 1999. dwmw2. 407 */ 408 ret = nand_reset(chip, chipnr); 409 if (ret) 410 return ret; 411 412 nand_select_target(chip, chipnr); 413 414 /* Shift to get page */ 415 page = (int)(to >> chip->page_shift); 416 417 /* Check, if it is write protected */ 418 if (nand_check_wp(chip)) { 419 nand_deselect_target(chip); 420 return -EROFS; 421 } 422 423 /* Invalidate the page cache, if we write to the cached page */ 424 if (page == chip->pagecache.page) 425 chip->pagecache.page = -1; 426 427 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); 428 429 if (ops->mode == MTD_OPS_RAW) 430 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); 431 else 432 status = chip->ecc.write_oob(chip, page & chip->pagemask); 433 434 nand_deselect_target(chip); 435 436 if (status) 437 return status; 438 439 ops->oobretlen = ops->ooblen; 440 441 return 0; 442 } 443 444 /** 445 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 446 * @chip: NAND chip object 447 * @ofs: offset from device start 448 * 449 * This is the default implementation, which can be overridden by a hardware 450 * specific driver. It provides the details for writing a bad block marker to a 451 * block. 452 */ 453 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) 454 { 455 struct mtd_info *mtd = nand_to_mtd(chip); 456 struct mtd_oob_ops ops; 457 uint8_t buf[2] = { 0, 0 }; 458 int ret = 0, res, page_offset; 459 460 memset(&ops, 0, sizeof(ops)); 461 ops.oobbuf = buf; 462 ops.ooboffs = chip->badblockpos; 463 if (chip->options & NAND_BUSWIDTH_16) { 464 ops.ooboffs &= ~0x01; 465 ops.len = ops.ooblen = 2; 466 } else { 467 ops.len = ops.ooblen = 1; 468 } 469 ops.mode = MTD_OPS_PLACE_OOB; 470 471 page_offset = nand_bbm_get_next_page(chip, 0); 472 473 while (page_offset >= 0) { 474 res = nand_do_write_oob(chip, 475 ofs + (page_offset * mtd->writesize), 476 &ops); 477 478 if (!ret) 479 ret = res; 480 481 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 482 } 483 484 return ret; 485 } 486 487 /** 488 * nand_markbad_bbm - mark a block by updating the BBM 489 * @chip: NAND chip object 490 * @ofs: offset of the block to mark bad 491 */ 492 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) 493 { 494 if (chip->legacy.block_markbad) 495 return chip->legacy.block_markbad(chip, ofs); 496 497 return nand_default_block_markbad(chip, ofs); 498 } 499 500 /** 501 * nand_block_markbad_lowlevel - mark a block bad 502 * @chip: NAND chip object 503 * @ofs: offset from device start 504 * 505 * This function performs the generic NAND bad block marking steps (i.e., bad 506 * block table(s) and/or marker(s)). We only allow the hardware driver to 507 * specify how to write bad block markers to OOB (chip->legacy.block_markbad). 508 * 509 * We try operations in the following order: 510 * 511 * (1) erase the affected block, to allow OOB marker to be written cleanly 512 * (2) write bad block marker to OOB area of affected block (unless flag 513 * NAND_BBT_NO_OOB_BBM is present) 514 * (3) update the BBT 515 * 516 * Note that we retain the first error encountered in (2) or (3), finish the 517 * procedures, and dump the error in the end. 518 */ 519 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) 520 { 521 struct mtd_info *mtd = nand_to_mtd(chip); 522 int res, ret = 0; 523 524 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 525 struct erase_info einfo; 526 527 /* Attempt erase before marking OOB */ 528 memset(&einfo, 0, sizeof(einfo)); 529 einfo.addr = ofs; 530 einfo.len = 1ULL << chip->phys_erase_shift; 531 nand_erase_nand(chip, &einfo, 0); 532 533 /* Write bad block marker to OOB */ 534 ret = nand_get_device(chip); 535 if (ret) 536 return ret; 537 538 ret = nand_markbad_bbm(chip, ofs); 539 nand_release_device(chip); 540 } 541 542 /* Mark block bad in BBT */ 543 if (chip->bbt) { 544 res = nand_markbad_bbt(chip, ofs); 545 if (!ret) 546 ret = res; 547 } 548 549 if (!ret) 550 mtd->ecc_stats.badblocks++; 551 552 return ret; 553 } 554 555 /** 556 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 557 * @mtd: MTD device structure 558 * @ofs: offset from device start 559 * 560 * Check if the block is marked as reserved. 561 */ 562 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 563 { 564 struct nand_chip *chip = mtd_to_nand(mtd); 565 566 if (!chip->bbt) 567 return 0; 568 /* Return info from the table */ 569 return nand_isreserved_bbt(chip, ofs); 570 } 571 572 /** 573 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 574 * @chip: NAND chip object 575 * @ofs: offset from device start 576 * @allowbbt: 1, if its allowed to access the bbt area 577 * 578 * Check, if the block is bad. Either by reading the bad block table or 579 * calling of the scan function. 580 */ 581 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) 582 { 583 /* Return info from the table */ 584 if (chip->bbt) 585 return nand_isbad_bbt(chip, ofs, allowbbt); 586 587 return nand_isbad_bbm(chip, ofs); 588 } 589 590 /** 591 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 592 * @chip: NAND chip structure 593 * @timeout_ms: Timeout in ms 594 * 595 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 596 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 597 * returned. 598 * 599 * This helper is intended to be used when the controller does not have access 600 * to the NAND R/B pin. 601 * 602 * Be aware that calling this helper from an ->exec_op() implementation means 603 * ->exec_op() must be re-entrant. 604 * 605 * Return 0 if the NAND chip is ready, a negative error otherwise. 606 */ 607 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 608 { 609 const struct nand_sdr_timings *timings; 610 u8 status = 0; 611 int ret; 612 613 if (!nand_has_exec_op(chip)) 614 return -ENOTSUPP; 615 616 /* Wait tWB before polling the STATUS reg. */ 617 timings = nand_get_sdr_timings(nand_get_interface_config(chip)); 618 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 619 620 ret = nand_status_op(chip, NULL); 621 if (ret) 622 return ret; 623 624 /* 625 * +1 below is necessary because if we are now in the last fraction 626 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 627 * small jiffy fraction - possibly leading to false timeout 628 */ 629 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 630 do { 631 ret = nand_read_data_op(chip, &status, sizeof(status), true, 632 false); 633 if (ret) 634 break; 635 636 if (status & NAND_STATUS_READY) 637 break; 638 639 /* 640 * Typical lowest execution time for a tR on most NANDs is 10us, 641 * use this as polling delay before doing something smarter (ie. 642 * deriving a delay from the timeout value, timeout_ms/ratio). 643 */ 644 udelay(10); 645 } while (time_before(jiffies, timeout_ms)); 646 647 /* 648 * We have to exit READ_STATUS mode in order to read real data on the 649 * bus in case the WAITRDY instruction is preceding a DATA_IN 650 * instruction. 651 */ 652 nand_exit_status_op(chip); 653 654 if (ret) 655 return ret; 656 657 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 658 }; 659 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 660 661 /** 662 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready 663 * @chip: NAND chip structure 664 * @gpiod: GPIO descriptor of R/B pin 665 * @timeout_ms: Timeout in ms 666 * 667 * Poll the R/B GPIO pin until it becomes ready. If that does not happen 668 * whitin the specified timeout, -ETIMEDOUT is returned. 669 * 670 * This helper is intended to be used when the controller has access to the 671 * NAND R/B pin over GPIO. 672 * 673 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. 674 */ 675 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 676 unsigned long timeout_ms) 677 { 678 679 /* 680 * Wait until R/B pin indicates chip is ready or timeout occurs. 681 * +1 below is necessary because if we are now in the last fraction 682 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 683 * small jiffy fraction - possibly leading to false timeout. 684 */ 685 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 686 do { 687 if (gpiod_get_value_cansleep(gpiod)) 688 return 0; 689 690 cond_resched(); 691 } while (time_before(jiffies, timeout_ms)); 692 693 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; 694 }; 695 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); 696 697 /** 698 * panic_nand_wait - [GENERIC] wait until the command is done 699 * @chip: NAND chip structure 700 * @timeo: timeout 701 * 702 * Wait for command done. This is a helper function for nand_wait used when 703 * we are in interrupt context. May happen when in panic and trying to write 704 * an oops through mtdoops. 705 */ 706 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) 707 { 708 int i; 709 for (i = 0; i < timeo; i++) { 710 if (chip->legacy.dev_ready) { 711 if (chip->legacy.dev_ready(chip)) 712 break; 713 } else { 714 int ret; 715 u8 status; 716 717 ret = nand_read_data_op(chip, &status, sizeof(status), 718 true, false); 719 if (ret) 720 return; 721 722 if (status & NAND_STATUS_READY) 723 break; 724 } 725 mdelay(1); 726 } 727 } 728 729 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 730 { 731 return (chip->parameters.supports_set_get_features && 732 test_bit(addr, chip->parameters.get_feature_list)); 733 } 734 735 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 736 { 737 return (chip->parameters.supports_set_get_features && 738 test_bit(addr, chip->parameters.set_feature_list)); 739 } 740 741 /** 742 * nand_reset_interface - Reset data interface and timings 743 * @chip: The NAND chip 744 * @chipnr: Internal die id 745 * 746 * Reset the Data interface and timings to ONFI mode 0. 747 * 748 * Returns 0 for success or negative error code otherwise. 749 */ 750 static int nand_reset_interface(struct nand_chip *chip, int chipnr) 751 { 752 const struct nand_controller_ops *ops = chip->controller->ops; 753 int ret; 754 755 if (!nand_controller_can_setup_interface(chip)) 756 return 0; 757 758 /* 759 * The ONFI specification says: 760 * " 761 * To transition from NV-DDR or NV-DDR2 to the SDR data 762 * interface, the host shall use the Reset (FFh) command 763 * using SDR timing mode 0. A device in any timing mode is 764 * required to recognize Reset (FFh) command issued in SDR 765 * timing mode 0. 766 * " 767 * 768 * Configure the data interface in SDR mode and set the 769 * timings to timing mode 0. 770 */ 771 772 chip->current_interface_config = nand_get_reset_interface_config(); 773 ret = ops->setup_interface(chip, chipnr, 774 chip->current_interface_config); 775 if (ret) 776 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 777 778 return ret; 779 } 780 781 /** 782 * nand_setup_interface - Setup the best data interface and timings 783 * @chip: The NAND chip 784 * @chipnr: Internal die id 785 * 786 * Configure what has been reported to be the best data interface and NAND 787 * timings supported by the chip and the driver. 788 * 789 * Returns 0 for success or negative error code otherwise. 790 */ 791 static int nand_setup_interface(struct nand_chip *chip, int chipnr) 792 { 793 const struct nand_controller_ops *ops = chip->controller->ops; 794 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }; 795 int ret; 796 797 if (!nand_controller_can_setup_interface(chip)) 798 return 0; 799 800 /* 801 * A nand_reset_interface() put both the NAND chip and the NAND 802 * controller in timings mode 0. If the default mode for this chip is 803 * also 0, no need to proceed to the change again. Plus, at probe time, 804 * nand_setup_interface() uses ->set/get_features() which would 805 * fail anyway as the parameter page is not available yet. 806 */ 807 if (!chip->best_interface_config) 808 return 0; 809 810 tmode_param[0] = chip->best_interface_config->timings.mode; 811 812 /* Change the mode on the chip side (if supported by the NAND chip) */ 813 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 814 nand_select_target(chip, chipnr); 815 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 816 tmode_param); 817 nand_deselect_target(chip); 818 if (ret) 819 return ret; 820 } 821 822 /* Change the mode on the controller side */ 823 ret = ops->setup_interface(chip, chipnr, chip->best_interface_config); 824 if (ret) 825 return ret; 826 827 /* Check the mode has been accepted by the chip, if supported */ 828 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 829 goto update_interface_config; 830 831 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 832 nand_select_target(chip, chipnr); 833 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 834 tmode_param); 835 nand_deselect_target(chip); 836 if (ret) 837 goto err_reset_chip; 838 839 if (tmode_param[0] != chip->best_interface_config->timings.mode) { 840 pr_warn("timing mode %d not acknowledged by the NAND chip\n", 841 chip->best_interface_config->timings.mode); 842 goto err_reset_chip; 843 } 844 845 update_interface_config: 846 chip->current_interface_config = chip->best_interface_config; 847 848 return 0; 849 850 err_reset_chip: 851 /* 852 * Fallback to mode 0 if the chip explicitly did not ack the chosen 853 * timing mode. 854 */ 855 nand_reset_interface(chip, chipnr); 856 nand_select_target(chip, chipnr); 857 nand_reset_op(chip); 858 nand_deselect_target(chip); 859 860 return ret; 861 } 862 863 /** 864 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the 865 * NAND controller and the NAND chip support 866 * @chip: the NAND chip 867 * @iface: the interface configuration (can eventually be updated) 868 * @spec_timings: specific timings, when not fitting the ONFI specification 869 * 870 * If specific timings are provided, use them. Otherwise, retrieve supported 871 * timing modes from ONFI information. 872 */ 873 int nand_choose_best_sdr_timings(struct nand_chip *chip, 874 struct nand_interface_config *iface, 875 struct nand_sdr_timings *spec_timings) 876 { 877 const struct nand_controller_ops *ops = chip->controller->ops; 878 int best_mode = 0, mode, ret; 879 880 iface->type = NAND_SDR_IFACE; 881 882 if (spec_timings) { 883 iface->timings.sdr = *spec_timings; 884 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings); 885 886 /* Verify the controller supports the requested interface */ 887 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 888 iface); 889 if (!ret) { 890 chip->best_interface_config = iface; 891 return ret; 892 } 893 894 /* Fallback to slower modes */ 895 best_mode = iface->timings.mode; 896 } else if (chip->parameters.onfi) { 897 best_mode = fls(chip->parameters.onfi->async_timing_mode) - 1; 898 } 899 900 for (mode = best_mode; mode >= 0; mode--) { 901 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode); 902 903 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 904 iface); 905 if (!ret) 906 break; 907 } 908 909 chip->best_interface_config = iface; 910 911 return 0; 912 } 913 914 /** 915 * nand_choose_interface_config - find the best data interface and timings 916 * @chip: The NAND chip 917 * 918 * Find the best data interface and NAND timings supported by the chip 919 * and the driver. Eventually let the NAND manufacturer driver propose his own 920 * set of timings. 921 * 922 * After this function nand_chip->interface_config is initialized with the best 923 * timing mode available. 924 * 925 * Returns 0 for success or negative error code otherwise. 926 */ 927 static int nand_choose_interface_config(struct nand_chip *chip) 928 { 929 struct nand_interface_config *iface; 930 int ret; 931 932 if (!nand_controller_can_setup_interface(chip)) 933 return 0; 934 935 iface = kzalloc(sizeof(*iface), GFP_KERNEL); 936 if (!iface) 937 return -ENOMEM; 938 939 if (chip->ops.choose_interface_config) 940 ret = chip->ops.choose_interface_config(chip, iface); 941 else 942 ret = nand_choose_best_sdr_timings(chip, iface, NULL); 943 944 if (ret) 945 kfree(iface); 946 947 return ret; 948 } 949 950 /** 951 * nand_fill_column_cycles - fill the column cycles of an address 952 * @chip: The NAND chip 953 * @addrs: Array of address cycles to fill 954 * @offset_in_page: The offset in the page 955 * 956 * Fills the first or the first two bytes of the @addrs field depending 957 * on the NAND bus width and the page size. 958 * 959 * Returns the number of cycles needed to encode the column, or a negative 960 * error code in case one of the arguments is invalid. 961 */ 962 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 963 unsigned int offset_in_page) 964 { 965 struct mtd_info *mtd = nand_to_mtd(chip); 966 967 /* Make sure the offset is less than the actual page size. */ 968 if (offset_in_page > mtd->writesize + mtd->oobsize) 969 return -EINVAL; 970 971 /* 972 * On small page NANDs, there's a dedicated command to access the OOB 973 * area, and the column address is relative to the start of the OOB 974 * area, not the start of the page. Asjust the address accordingly. 975 */ 976 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 977 offset_in_page -= mtd->writesize; 978 979 /* 980 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 981 * wide, then it must be divided by 2. 982 */ 983 if (chip->options & NAND_BUSWIDTH_16) { 984 if (WARN_ON(offset_in_page % 2)) 985 return -EINVAL; 986 987 offset_in_page /= 2; 988 } 989 990 addrs[0] = offset_in_page; 991 992 /* 993 * Small page NANDs use 1 cycle for the columns, while large page NANDs 994 * need 2 995 */ 996 if (mtd->writesize <= 512) 997 return 1; 998 999 addrs[1] = offset_in_page >> 8; 1000 1001 return 2; 1002 } 1003 1004 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1005 unsigned int offset_in_page, void *buf, 1006 unsigned int len) 1007 { 1008 const struct nand_sdr_timings *sdr = 1009 nand_get_sdr_timings(nand_get_interface_config(chip)); 1010 struct mtd_info *mtd = nand_to_mtd(chip); 1011 u8 addrs[4]; 1012 struct nand_op_instr instrs[] = { 1013 NAND_OP_CMD(NAND_CMD_READ0, 0), 1014 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), 1015 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1016 PSEC_TO_NSEC(sdr->tRR_min)), 1017 NAND_OP_DATA_IN(len, buf, 0), 1018 }; 1019 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1020 int ret; 1021 1022 /* Drop the DATA_IN instruction if len is set to 0. */ 1023 if (!len) 1024 op.ninstrs--; 1025 1026 if (offset_in_page >= mtd->writesize) 1027 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1028 else if (offset_in_page >= 256 && 1029 !(chip->options & NAND_BUSWIDTH_16)) 1030 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1031 1032 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1033 if (ret < 0) 1034 return ret; 1035 1036 addrs[1] = page; 1037 addrs[2] = page >> 8; 1038 1039 if (chip->options & NAND_ROW_ADDR_3) { 1040 addrs[3] = page >> 16; 1041 instrs[1].ctx.addr.naddrs++; 1042 } 1043 1044 return nand_exec_op(chip, &op); 1045 } 1046 1047 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1048 unsigned int offset_in_page, void *buf, 1049 unsigned int len) 1050 { 1051 const struct nand_sdr_timings *sdr = 1052 nand_get_sdr_timings(nand_get_interface_config(chip)); 1053 u8 addrs[5]; 1054 struct nand_op_instr instrs[] = { 1055 NAND_OP_CMD(NAND_CMD_READ0, 0), 1056 NAND_OP_ADDR(4, addrs, 0), 1057 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), 1058 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1059 PSEC_TO_NSEC(sdr->tRR_min)), 1060 NAND_OP_DATA_IN(len, buf, 0), 1061 }; 1062 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1063 int ret; 1064 1065 /* Drop the DATA_IN instruction if len is set to 0. */ 1066 if (!len) 1067 op.ninstrs--; 1068 1069 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1070 if (ret < 0) 1071 return ret; 1072 1073 addrs[2] = page; 1074 addrs[3] = page >> 8; 1075 1076 if (chip->options & NAND_ROW_ADDR_3) { 1077 addrs[4] = page >> 16; 1078 instrs[1].ctx.addr.naddrs++; 1079 } 1080 1081 return nand_exec_op(chip, &op); 1082 } 1083 1084 /** 1085 * nand_read_page_op - Do a READ PAGE operation 1086 * @chip: The NAND chip 1087 * @page: page to read 1088 * @offset_in_page: offset within the page 1089 * @buf: buffer used to store the data 1090 * @len: length of the buffer 1091 * 1092 * This function issues a READ PAGE operation. 1093 * This function does not select/unselect the CS line. 1094 * 1095 * Returns 0 on success, a negative error code otherwise. 1096 */ 1097 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1098 unsigned int offset_in_page, void *buf, unsigned int len) 1099 { 1100 struct mtd_info *mtd = nand_to_mtd(chip); 1101 1102 if (len && !buf) 1103 return -EINVAL; 1104 1105 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1106 return -EINVAL; 1107 1108 if (nand_has_exec_op(chip)) { 1109 if (mtd->writesize > 512) 1110 return nand_lp_exec_read_page_op(chip, page, 1111 offset_in_page, buf, 1112 len); 1113 1114 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1115 buf, len); 1116 } 1117 1118 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); 1119 if (len) 1120 chip->legacy.read_buf(chip, buf, len); 1121 1122 return 0; 1123 } 1124 EXPORT_SYMBOL_GPL(nand_read_page_op); 1125 1126 /** 1127 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1128 * @chip: The NAND chip 1129 * @page: parameter page to read 1130 * @buf: buffer used to store the data 1131 * @len: length of the buffer 1132 * 1133 * This function issues a READ PARAMETER PAGE operation. 1134 * This function does not select/unselect the CS line. 1135 * 1136 * Returns 0 on success, a negative error code otherwise. 1137 */ 1138 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1139 unsigned int len) 1140 { 1141 unsigned int i; 1142 u8 *p = buf; 1143 1144 if (len && !buf) 1145 return -EINVAL; 1146 1147 if (nand_has_exec_op(chip)) { 1148 const struct nand_sdr_timings *sdr = 1149 nand_get_sdr_timings(nand_get_interface_config(chip)); 1150 struct nand_op_instr instrs[] = { 1151 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1152 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), 1153 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1154 PSEC_TO_NSEC(sdr->tRR_min)), 1155 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1156 }; 1157 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1158 1159 /* Drop the DATA_IN instruction if len is set to 0. */ 1160 if (!len) 1161 op.ninstrs--; 1162 1163 return nand_exec_op(chip, &op); 1164 } 1165 1166 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); 1167 for (i = 0; i < len; i++) 1168 p[i] = chip->legacy.read_byte(chip); 1169 1170 return 0; 1171 } 1172 1173 /** 1174 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1175 * @chip: The NAND chip 1176 * @offset_in_page: offset within the page 1177 * @buf: buffer used to store the data 1178 * @len: length of the buffer 1179 * @force_8bit: force 8-bit bus access 1180 * 1181 * This function issues a CHANGE READ COLUMN operation. 1182 * This function does not select/unselect the CS line. 1183 * 1184 * Returns 0 on success, a negative error code otherwise. 1185 */ 1186 int nand_change_read_column_op(struct nand_chip *chip, 1187 unsigned int offset_in_page, void *buf, 1188 unsigned int len, bool force_8bit) 1189 { 1190 struct mtd_info *mtd = nand_to_mtd(chip); 1191 1192 if (len && !buf) 1193 return -EINVAL; 1194 1195 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1196 return -EINVAL; 1197 1198 /* Small page NANDs do not support column change. */ 1199 if (mtd->writesize <= 512) 1200 return -ENOTSUPP; 1201 1202 if (nand_has_exec_op(chip)) { 1203 const struct nand_sdr_timings *sdr = 1204 nand_get_sdr_timings(nand_get_interface_config(chip)); 1205 u8 addrs[2] = {}; 1206 struct nand_op_instr instrs[] = { 1207 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1208 NAND_OP_ADDR(2, addrs, 0), 1209 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1210 PSEC_TO_NSEC(sdr->tCCS_min)), 1211 NAND_OP_DATA_IN(len, buf, 0), 1212 }; 1213 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1214 int ret; 1215 1216 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1217 if (ret < 0) 1218 return ret; 1219 1220 /* Drop the DATA_IN instruction if len is set to 0. */ 1221 if (!len) 1222 op.ninstrs--; 1223 1224 instrs[3].ctx.data.force_8bit = force_8bit; 1225 1226 return nand_exec_op(chip, &op); 1227 } 1228 1229 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); 1230 if (len) 1231 chip->legacy.read_buf(chip, buf, len); 1232 1233 return 0; 1234 } 1235 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1236 1237 /** 1238 * nand_read_oob_op - Do a READ OOB operation 1239 * @chip: The NAND chip 1240 * @page: page to read 1241 * @offset_in_oob: offset within the OOB area 1242 * @buf: buffer used to store the data 1243 * @len: length of the buffer 1244 * 1245 * This function issues a READ OOB operation. 1246 * This function does not select/unselect the CS line. 1247 * 1248 * Returns 0 on success, a negative error code otherwise. 1249 */ 1250 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1251 unsigned int offset_in_oob, void *buf, unsigned int len) 1252 { 1253 struct mtd_info *mtd = nand_to_mtd(chip); 1254 1255 if (len && !buf) 1256 return -EINVAL; 1257 1258 if (offset_in_oob + len > mtd->oobsize) 1259 return -EINVAL; 1260 1261 if (nand_has_exec_op(chip)) 1262 return nand_read_page_op(chip, page, 1263 mtd->writesize + offset_in_oob, 1264 buf, len); 1265 1266 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); 1267 if (len) 1268 chip->legacy.read_buf(chip, buf, len); 1269 1270 return 0; 1271 } 1272 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1273 1274 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1275 unsigned int offset_in_page, const void *buf, 1276 unsigned int len, bool prog) 1277 { 1278 const struct nand_sdr_timings *sdr = 1279 nand_get_sdr_timings(nand_get_interface_config(chip)); 1280 struct mtd_info *mtd = nand_to_mtd(chip); 1281 u8 addrs[5] = {}; 1282 struct nand_op_instr instrs[] = { 1283 /* 1284 * The first instruction will be dropped if we're dealing 1285 * with a large page NAND and adjusted if we're dealing 1286 * with a small page NAND and the page offset is > 255. 1287 */ 1288 NAND_OP_CMD(NAND_CMD_READ0, 0), 1289 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1290 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), 1291 NAND_OP_DATA_OUT(len, buf, 0), 1292 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), 1293 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1294 }; 1295 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1296 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1297 int ret; 1298 u8 status; 1299 1300 if (naddrs < 0) 1301 return naddrs; 1302 1303 addrs[naddrs++] = page; 1304 addrs[naddrs++] = page >> 8; 1305 if (chip->options & NAND_ROW_ADDR_3) 1306 addrs[naddrs++] = page >> 16; 1307 1308 instrs[2].ctx.addr.naddrs = naddrs; 1309 1310 /* Drop the last two instructions if we're not programming the page. */ 1311 if (!prog) { 1312 op.ninstrs -= 2; 1313 /* Also drop the DATA_OUT instruction if empty. */ 1314 if (!len) 1315 op.ninstrs--; 1316 } 1317 1318 if (mtd->writesize <= 512) { 1319 /* 1320 * Small pages need some more tweaking: we have to adjust the 1321 * first instruction depending on the page offset we're trying 1322 * to access. 1323 */ 1324 if (offset_in_page >= mtd->writesize) 1325 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1326 else if (offset_in_page >= 256 && 1327 !(chip->options & NAND_BUSWIDTH_16)) 1328 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1329 } else { 1330 /* 1331 * Drop the first command if we're dealing with a large page 1332 * NAND. 1333 */ 1334 op.instrs++; 1335 op.ninstrs--; 1336 } 1337 1338 ret = nand_exec_op(chip, &op); 1339 if (!prog || ret) 1340 return ret; 1341 1342 ret = nand_status_op(chip, &status); 1343 if (ret) 1344 return ret; 1345 1346 return status; 1347 } 1348 1349 /** 1350 * nand_prog_page_begin_op - starts a PROG PAGE operation 1351 * @chip: The NAND chip 1352 * @page: page to write 1353 * @offset_in_page: offset within the page 1354 * @buf: buffer containing the data to write to the page 1355 * @len: length of the buffer 1356 * 1357 * This function issues the first half of a PROG PAGE operation. 1358 * This function does not select/unselect the CS line. 1359 * 1360 * Returns 0 on success, a negative error code otherwise. 1361 */ 1362 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1363 unsigned int offset_in_page, const void *buf, 1364 unsigned int len) 1365 { 1366 struct mtd_info *mtd = nand_to_mtd(chip); 1367 1368 if (len && !buf) 1369 return -EINVAL; 1370 1371 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1372 return -EINVAL; 1373 1374 if (nand_has_exec_op(chip)) 1375 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1376 len, false); 1377 1378 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); 1379 1380 if (buf) 1381 chip->legacy.write_buf(chip, buf, len); 1382 1383 return 0; 1384 } 1385 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1386 1387 /** 1388 * nand_prog_page_end_op - ends a PROG PAGE operation 1389 * @chip: The NAND chip 1390 * 1391 * This function issues the second half of a PROG PAGE operation. 1392 * This function does not select/unselect the CS line. 1393 * 1394 * Returns 0 on success, a negative error code otherwise. 1395 */ 1396 int nand_prog_page_end_op(struct nand_chip *chip) 1397 { 1398 int ret; 1399 u8 status; 1400 1401 if (nand_has_exec_op(chip)) { 1402 const struct nand_sdr_timings *sdr = 1403 nand_get_sdr_timings(nand_get_interface_config(chip)); 1404 struct nand_op_instr instrs[] = { 1405 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1406 PSEC_TO_NSEC(sdr->tWB_max)), 1407 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1408 }; 1409 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1410 1411 ret = nand_exec_op(chip, &op); 1412 if (ret) 1413 return ret; 1414 1415 ret = nand_status_op(chip, &status); 1416 if (ret) 1417 return ret; 1418 } else { 1419 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1420 ret = chip->legacy.waitfunc(chip); 1421 if (ret < 0) 1422 return ret; 1423 1424 status = ret; 1425 } 1426 1427 if (status & NAND_STATUS_FAIL) 1428 return -EIO; 1429 1430 return 0; 1431 } 1432 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1433 1434 /** 1435 * nand_prog_page_op - Do a full PROG PAGE operation 1436 * @chip: The NAND chip 1437 * @page: page to write 1438 * @offset_in_page: offset within the page 1439 * @buf: buffer containing the data to write to the page 1440 * @len: length of the buffer 1441 * 1442 * This function issues a full PROG PAGE operation. 1443 * This function does not select/unselect the CS line. 1444 * 1445 * Returns 0 on success, a negative error code otherwise. 1446 */ 1447 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1448 unsigned int offset_in_page, const void *buf, 1449 unsigned int len) 1450 { 1451 struct mtd_info *mtd = nand_to_mtd(chip); 1452 int status; 1453 1454 if (!len || !buf) 1455 return -EINVAL; 1456 1457 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1458 return -EINVAL; 1459 1460 if (nand_has_exec_op(chip)) { 1461 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1462 len, true); 1463 } else { 1464 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, 1465 page); 1466 chip->legacy.write_buf(chip, buf, len); 1467 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1468 status = chip->legacy.waitfunc(chip); 1469 } 1470 1471 if (status & NAND_STATUS_FAIL) 1472 return -EIO; 1473 1474 return 0; 1475 } 1476 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1477 1478 /** 1479 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1480 * @chip: The NAND chip 1481 * @offset_in_page: offset within the page 1482 * @buf: buffer containing the data to send to the NAND 1483 * @len: length of the buffer 1484 * @force_8bit: force 8-bit bus access 1485 * 1486 * This function issues a CHANGE WRITE COLUMN operation. 1487 * This function does not select/unselect the CS line. 1488 * 1489 * Returns 0 on success, a negative error code otherwise. 1490 */ 1491 int nand_change_write_column_op(struct nand_chip *chip, 1492 unsigned int offset_in_page, 1493 const void *buf, unsigned int len, 1494 bool force_8bit) 1495 { 1496 struct mtd_info *mtd = nand_to_mtd(chip); 1497 1498 if (len && !buf) 1499 return -EINVAL; 1500 1501 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1502 return -EINVAL; 1503 1504 /* Small page NANDs do not support column change. */ 1505 if (mtd->writesize <= 512) 1506 return -ENOTSUPP; 1507 1508 if (nand_has_exec_op(chip)) { 1509 const struct nand_sdr_timings *sdr = 1510 nand_get_sdr_timings(nand_get_interface_config(chip)); 1511 u8 addrs[2]; 1512 struct nand_op_instr instrs[] = { 1513 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1514 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), 1515 NAND_OP_DATA_OUT(len, buf, 0), 1516 }; 1517 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1518 int ret; 1519 1520 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1521 if (ret < 0) 1522 return ret; 1523 1524 instrs[2].ctx.data.force_8bit = force_8bit; 1525 1526 /* Drop the DATA_OUT instruction if len is set to 0. */ 1527 if (!len) 1528 op.ninstrs--; 1529 1530 return nand_exec_op(chip, &op); 1531 } 1532 1533 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); 1534 if (len) 1535 chip->legacy.write_buf(chip, buf, len); 1536 1537 return 0; 1538 } 1539 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1540 1541 /** 1542 * nand_readid_op - Do a READID operation 1543 * @chip: The NAND chip 1544 * @addr: address cycle to pass after the READID command 1545 * @buf: buffer used to store the ID 1546 * @len: length of the buffer 1547 * 1548 * This function sends a READID command and reads back the ID returned by the 1549 * NAND. 1550 * This function does not select/unselect the CS line. 1551 * 1552 * Returns 0 on success, a negative error code otherwise. 1553 */ 1554 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1555 unsigned int len) 1556 { 1557 unsigned int i; 1558 u8 *id = buf; 1559 1560 if (len && !buf) 1561 return -EINVAL; 1562 1563 if (nand_has_exec_op(chip)) { 1564 const struct nand_sdr_timings *sdr = 1565 nand_get_sdr_timings(nand_get_interface_config(chip)); 1566 struct nand_op_instr instrs[] = { 1567 NAND_OP_CMD(NAND_CMD_READID, 0), 1568 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), 1569 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1570 }; 1571 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1572 1573 /* Drop the DATA_IN instruction if len is set to 0. */ 1574 if (!len) 1575 op.ninstrs--; 1576 1577 return nand_exec_op(chip, &op); 1578 } 1579 1580 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); 1581 1582 for (i = 0; i < len; i++) 1583 id[i] = chip->legacy.read_byte(chip); 1584 1585 return 0; 1586 } 1587 EXPORT_SYMBOL_GPL(nand_readid_op); 1588 1589 /** 1590 * nand_status_op - Do a STATUS operation 1591 * @chip: The NAND chip 1592 * @status: out variable to store the NAND status 1593 * 1594 * This function sends a STATUS command and reads back the status returned by 1595 * the NAND. 1596 * This function does not select/unselect the CS line. 1597 * 1598 * Returns 0 on success, a negative error code otherwise. 1599 */ 1600 int nand_status_op(struct nand_chip *chip, u8 *status) 1601 { 1602 if (nand_has_exec_op(chip)) { 1603 const struct nand_sdr_timings *sdr = 1604 nand_get_sdr_timings(nand_get_interface_config(chip)); 1605 struct nand_op_instr instrs[] = { 1606 NAND_OP_CMD(NAND_CMD_STATUS, 1607 PSEC_TO_NSEC(sdr->tADL_min)), 1608 NAND_OP_8BIT_DATA_IN(1, status, 0), 1609 }; 1610 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1611 1612 if (!status) 1613 op.ninstrs--; 1614 1615 return nand_exec_op(chip, &op); 1616 } 1617 1618 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); 1619 if (status) 1620 *status = chip->legacy.read_byte(chip); 1621 1622 return 0; 1623 } 1624 EXPORT_SYMBOL_GPL(nand_status_op); 1625 1626 /** 1627 * nand_exit_status_op - Exit a STATUS operation 1628 * @chip: The NAND chip 1629 * 1630 * This function sends a READ0 command to cancel the effect of the STATUS 1631 * command to avoid reading only the status until a new read command is sent. 1632 * 1633 * This function does not select/unselect the CS line. 1634 * 1635 * Returns 0 on success, a negative error code otherwise. 1636 */ 1637 int nand_exit_status_op(struct nand_chip *chip) 1638 { 1639 if (nand_has_exec_op(chip)) { 1640 struct nand_op_instr instrs[] = { 1641 NAND_OP_CMD(NAND_CMD_READ0, 0), 1642 }; 1643 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1644 1645 return nand_exec_op(chip, &op); 1646 } 1647 1648 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); 1649 1650 return 0; 1651 } 1652 1653 /** 1654 * nand_erase_op - Do an erase operation 1655 * @chip: The NAND chip 1656 * @eraseblock: block to erase 1657 * 1658 * This function sends an ERASE command and waits for the NAND to be ready 1659 * before returning. 1660 * This function does not select/unselect the CS line. 1661 * 1662 * Returns 0 on success, a negative error code otherwise. 1663 */ 1664 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 1665 { 1666 unsigned int page = eraseblock << 1667 (chip->phys_erase_shift - chip->page_shift); 1668 int ret; 1669 u8 status; 1670 1671 if (nand_has_exec_op(chip)) { 1672 const struct nand_sdr_timings *sdr = 1673 nand_get_sdr_timings(nand_get_interface_config(chip)); 1674 u8 addrs[3] = { page, page >> 8, page >> 16 }; 1675 struct nand_op_instr instrs[] = { 1676 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 1677 NAND_OP_ADDR(2, addrs, 0), 1678 NAND_OP_CMD(NAND_CMD_ERASE2, 1679 PSEC_TO_MSEC(sdr->tWB_max)), 1680 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), 1681 }; 1682 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1683 1684 if (chip->options & NAND_ROW_ADDR_3) 1685 instrs[1].ctx.addr.naddrs++; 1686 1687 ret = nand_exec_op(chip, &op); 1688 if (ret) 1689 return ret; 1690 1691 ret = nand_status_op(chip, &status); 1692 if (ret) 1693 return ret; 1694 } else { 1695 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); 1696 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); 1697 1698 ret = chip->legacy.waitfunc(chip); 1699 if (ret < 0) 1700 return ret; 1701 1702 status = ret; 1703 } 1704 1705 if (status & NAND_STATUS_FAIL) 1706 return -EIO; 1707 1708 return 0; 1709 } 1710 EXPORT_SYMBOL_GPL(nand_erase_op); 1711 1712 /** 1713 * nand_set_features_op - Do a SET FEATURES operation 1714 * @chip: The NAND chip 1715 * @feature: feature id 1716 * @data: 4 bytes of data 1717 * 1718 * This function sends a SET FEATURES command and waits for the NAND to be 1719 * ready before returning. 1720 * This function does not select/unselect the CS line. 1721 * 1722 * Returns 0 on success, a negative error code otherwise. 1723 */ 1724 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 1725 const void *data) 1726 { 1727 const u8 *params = data; 1728 int i, ret; 1729 1730 if (nand_has_exec_op(chip)) { 1731 const struct nand_sdr_timings *sdr = 1732 nand_get_sdr_timings(nand_get_interface_config(chip)); 1733 struct nand_op_instr instrs[] = { 1734 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 1735 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), 1736 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 1737 PSEC_TO_NSEC(sdr->tWB_max)), 1738 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), 1739 }; 1740 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1741 1742 return nand_exec_op(chip, &op); 1743 } 1744 1745 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); 1746 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1747 chip->legacy.write_byte(chip, params[i]); 1748 1749 ret = chip->legacy.waitfunc(chip); 1750 if (ret < 0) 1751 return ret; 1752 1753 if (ret & NAND_STATUS_FAIL) 1754 return -EIO; 1755 1756 return 0; 1757 } 1758 1759 /** 1760 * nand_get_features_op - Do a GET FEATURES operation 1761 * @chip: The NAND chip 1762 * @feature: feature id 1763 * @data: 4 bytes of data 1764 * 1765 * This function sends a GET FEATURES command and waits for the NAND to be 1766 * ready before returning. 1767 * This function does not select/unselect the CS line. 1768 * 1769 * Returns 0 on success, a negative error code otherwise. 1770 */ 1771 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 1772 void *data) 1773 { 1774 u8 *params = data; 1775 int i; 1776 1777 if (nand_has_exec_op(chip)) { 1778 const struct nand_sdr_timings *sdr = 1779 nand_get_sdr_timings(nand_get_interface_config(chip)); 1780 struct nand_op_instr instrs[] = { 1781 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 1782 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), 1783 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 1784 PSEC_TO_NSEC(sdr->tRR_min)), 1785 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 1786 data, 0), 1787 }; 1788 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1789 1790 return nand_exec_op(chip, &op); 1791 } 1792 1793 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); 1794 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1795 params[i] = chip->legacy.read_byte(chip); 1796 1797 return 0; 1798 } 1799 1800 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, 1801 unsigned int delay_ns) 1802 { 1803 if (nand_has_exec_op(chip)) { 1804 struct nand_op_instr instrs[] = { 1805 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), 1806 PSEC_TO_NSEC(delay_ns)), 1807 }; 1808 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1809 1810 return nand_exec_op(chip, &op); 1811 } 1812 1813 /* Apply delay or wait for ready/busy pin */ 1814 if (!chip->legacy.dev_ready) 1815 udelay(chip->legacy.chip_delay); 1816 else 1817 nand_wait_ready(chip); 1818 1819 return 0; 1820 } 1821 1822 /** 1823 * nand_reset_op - Do a reset operation 1824 * @chip: The NAND chip 1825 * 1826 * This function sends a RESET command and waits for the NAND to be ready 1827 * before returning. 1828 * This function does not select/unselect the CS line. 1829 * 1830 * Returns 0 on success, a negative error code otherwise. 1831 */ 1832 int nand_reset_op(struct nand_chip *chip) 1833 { 1834 if (nand_has_exec_op(chip)) { 1835 const struct nand_sdr_timings *sdr = 1836 nand_get_sdr_timings(nand_get_interface_config(chip)); 1837 struct nand_op_instr instrs[] = { 1838 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), 1839 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), 1840 }; 1841 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1842 1843 return nand_exec_op(chip, &op); 1844 } 1845 1846 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); 1847 1848 return 0; 1849 } 1850 EXPORT_SYMBOL_GPL(nand_reset_op); 1851 1852 /** 1853 * nand_read_data_op - Read data from the NAND 1854 * @chip: The NAND chip 1855 * @buf: buffer used to store the data 1856 * @len: length of the buffer 1857 * @force_8bit: force 8-bit bus access 1858 * @check_only: do not actually run the command, only checks if the 1859 * controller driver supports it 1860 * 1861 * This function does a raw data read on the bus. Usually used after launching 1862 * another NAND operation like nand_read_page_op(). 1863 * This function does not select/unselect the CS line. 1864 * 1865 * Returns 0 on success, a negative error code otherwise. 1866 */ 1867 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1868 bool force_8bit, bool check_only) 1869 { 1870 if (!len || !buf) 1871 return -EINVAL; 1872 1873 if (nand_has_exec_op(chip)) { 1874 struct nand_op_instr instrs[] = { 1875 NAND_OP_DATA_IN(len, buf, 0), 1876 }; 1877 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1878 1879 instrs[0].ctx.data.force_8bit = force_8bit; 1880 1881 if (check_only) 1882 return nand_check_op(chip, &op); 1883 1884 return nand_exec_op(chip, &op); 1885 } 1886 1887 if (check_only) 1888 return 0; 1889 1890 if (force_8bit) { 1891 u8 *p = buf; 1892 unsigned int i; 1893 1894 for (i = 0; i < len; i++) 1895 p[i] = chip->legacy.read_byte(chip); 1896 } else { 1897 chip->legacy.read_buf(chip, buf, len); 1898 } 1899 1900 return 0; 1901 } 1902 EXPORT_SYMBOL_GPL(nand_read_data_op); 1903 1904 /** 1905 * nand_write_data_op - Write data from the NAND 1906 * @chip: The NAND chip 1907 * @buf: buffer containing the data to send on the bus 1908 * @len: length of the buffer 1909 * @force_8bit: force 8-bit bus access 1910 * 1911 * This function does a raw data write on the bus. Usually used after launching 1912 * another NAND operation like nand_write_page_begin_op(). 1913 * This function does not select/unselect the CS line. 1914 * 1915 * Returns 0 on success, a negative error code otherwise. 1916 */ 1917 int nand_write_data_op(struct nand_chip *chip, const void *buf, 1918 unsigned int len, bool force_8bit) 1919 { 1920 if (!len || !buf) 1921 return -EINVAL; 1922 1923 if (nand_has_exec_op(chip)) { 1924 struct nand_op_instr instrs[] = { 1925 NAND_OP_DATA_OUT(len, buf, 0), 1926 }; 1927 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1928 1929 instrs[0].ctx.data.force_8bit = force_8bit; 1930 1931 return nand_exec_op(chip, &op); 1932 } 1933 1934 if (force_8bit) { 1935 const u8 *p = buf; 1936 unsigned int i; 1937 1938 for (i = 0; i < len; i++) 1939 chip->legacy.write_byte(chip, p[i]); 1940 } else { 1941 chip->legacy.write_buf(chip, buf, len); 1942 } 1943 1944 return 0; 1945 } 1946 EXPORT_SYMBOL_GPL(nand_write_data_op); 1947 1948 /** 1949 * struct nand_op_parser_ctx - Context used by the parser 1950 * @instrs: array of all the instructions that must be addressed 1951 * @ninstrs: length of the @instrs array 1952 * @subop: Sub-operation to be passed to the NAND controller 1953 * 1954 * This structure is used by the core to split NAND operations into 1955 * sub-operations that can be handled by the NAND controller. 1956 */ 1957 struct nand_op_parser_ctx { 1958 const struct nand_op_instr *instrs; 1959 unsigned int ninstrs; 1960 struct nand_subop subop; 1961 }; 1962 1963 /** 1964 * nand_op_parser_must_split_instr - Checks if an instruction must be split 1965 * @pat: the parser pattern element that matches @instr 1966 * @instr: pointer to the instruction to check 1967 * @start_offset: this is an in/out parameter. If @instr has already been 1968 * split, then @start_offset is the offset from which to start 1969 * (either an address cycle or an offset in the data buffer). 1970 * Conversely, if the function returns true (ie. instr must be 1971 * split), this parameter is updated to point to the first 1972 * data/address cycle that has not been taken care of. 1973 * 1974 * Some NAND controllers are limited and cannot send X address cycles with a 1975 * unique operation, or cannot read/write more than Y bytes at the same time. 1976 * In this case, split the instruction that does not fit in a single 1977 * controller-operation into two or more chunks. 1978 * 1979 * Returns true if the instruction must be split, false otherwise. 1980 * The @start_offset parameter is also updated to the offset at which the next 1981 * bundle of instruction must start (if an address or a data instruction). 1982 */ 1983 static bool 1984 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 1985 const struct nand_op_instr *instr, 1986 unsigned int *start_offset) 1987 { 1988 switch (pat->type) { 1989 case NAND_OP_ADDR_INSTR: 1990 if (!pat->ctx.addr.maxcycles) 1991 break; 1992 1993 if (instr->ctx.addr.naddrs - *start_offset > 1994 pat->ctx.addr.maxcycles) { 1995 *start_offset += pat->ctx.addr.maxcycles; 1996 return true; 1997 } 1998 break; 1999 2000 case NAND_OP_DATA_IN_INSTR: 2001 case NAND_OP_DATA_OUT_INSTR: 2002 if (!pat->ctx.data.maxlen) 2003 break; 2004 2005 if (instr->ctx.data.len - *start_offset > 2006 pat->ctx.data.maxlen) { 2007 *start_offset += pat->ctx.data.maxlen; 2008 return true; 2009 } 2010 break; 2011 2012 default: 2013 break; 2014 } 2015 2016 return false; 2017 } 2018 2019 /** 2020 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2021 * remaining in the parser context 2022 * @pat: the pattern to test 2023 * @ctx: the parser context structure to match with the pattern @pat 2024 * 2025 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2026 * Returns true if this is the case, false ortherwise. When true is returned, 2027 * @ctx->subop is updated with the set of instructions to be passed to the 2028 * controller driver. 2029 */ 2030 static bool 2031 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2032 struct nand_op_parser_ctx *ctx) 2033 { 2034 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2035 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2036 const struct nand_op_instr *instr = ctx->subop.instrs; 2037 unsigned int i, ninstrs; 2038 2039 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2040 /* 2041 * The pattern instruction does not match the operation 2042 * instruction. If the instruction is marked optional in the 2043 * pattern definition, we skip the pattern element and continue 2044 * to the next one. If the element is mandatory, there's no 2045 * match and we can return false directly. 2046 */ 2047 if (instr->type != pat->elems[i].type) { 2048 if (!pat->elems[i].optional) 2049 return false; 2050 2051 continue; 2052 } 2053 2054 /* 2055 * Now check the pattern element constraints. If the pattern is 2056 * not able to handle the whole instruction in a single step, 2057 * we have to split it. 2058 * The last_instr_end_off value comes back updated to point to 2059 * the position where we have to split the instruction (the 2060 * start of the next subop chunk). 2061 */ 2062 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2063 &instr_offset)) { 2064 ninstrs++; 2065 i++; 2066 break; 2067 } 2068 2069 instr++; 2070 ninstrs++; 2071 instr_offset = 0; 2072 } 2073 2074 /* 2075 * This can happen if all instructions of a pattern are optional. 2076 * Still, if there's not at least one instruction handled by this 2077 * pattern, this is not a match, and we should try the next one (if 2078 * any). 2079 */ 2080 if (!ninstrs) 2081 return false; 2082 2083 /* 2084 * We had a match on the pattern head, but the pattern may be longer 2085 * than the instructions we're asked to execute. We need to make sure 2086 * there's no mandatory elements in the pattern tail. 2087 */ 2088 for (; i < pat->nelems; i++) { 2089 if (!pat->elems[i].optional) 2090 return false; 2091 } 2092 2093 /* 2094 * We have a match: update the subop structure accordingly and return 2095 * true. 2096 */ 2097 ctx->subop.ninstrs = ninstrs; 2098 ctx->subop.last_instr_end_off = instr_offset; 2099 2100 return true; 2101 } 2102 2103 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2104 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2105 { 2106 const struct nand_op_instr *instr; 2107 char *prefix = " "; 2108 unsigned int i; 2109 2110 pr_debug("executing subop (CS%d):\n", ctx->subop.cs); 2111 2112 for (i = 0; i < ctx->ninstrs; i++) { 2113 instr = &ctx->instrs[i]; 2114 2115 if (instr == &ctx->subop.instrs[0]) 2116 prefix = " ->"; 2117 2118 nand_op_trace(prefix, instr); 2119 2120 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2121 prefix = " "; 2122 } 2123 } 2124 #else 2125 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2126 { 2127 /* NOP */ 2128 } 2129 #endif 2130 2131 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, 2132 const struct nand_op_parser_ctx *b) 2133 { 2134 if (a->subop.ninstrs < b->subop.ninstrs) 2135 return -1; 2136 else if (a->subop.ninstrs > b->subop.ninstrs) 2137 return 1; 2138 2139 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) 2140 return -1; 2141 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) 2142 return 1; 2143 2144 return 0; 2145 } 2146 2147 /** 2148 * nand_op_parser_exec_op - exec_op parser 2149 * @chip: the NAND chip 2150 * @parser: patterns description provided by the controller driver 2151 * @op: the NAND operation to address 2152 * @check_only: when true, the function only checks if @op can be handled but 2153 * does not execute the operation 2154 * 2155 * Helper function designed to ease integration of NAND controller drivers that 2156 * only support a limited set of instruction sequences. The supported sequences 2157 * are described in @parser, and the framework takes care of splitting @op into 2158 * multiple sub-operations (if required) and pass them back to the ->exec() 2159 * callback of the matching pattern if @check_only is set to false. 2160 * 2161 * NAND controller drivers should call this function from their own ->exec_op() 2162 * implementation. 2163 * 2164 * Returns 0 on success, a negative error code otherwise. A failure can be 2165 * caused by an unsupported operation (none of the supported patterns is able 2166 * to handle the requested operation), or an error returned by one of the 2167 * matching pattern->exec() hook. 2168 */ 2169 int nand_op_parser_exec_op(struct nand_chip *chip, 2170 const struct nand_op_parser *parser, 2171 const struct nand_operation *op, bool check_only) 2172 { 2173 struct nand_op_parser_ctx ctx = { 2174 .subop.cs = op->cs, 2175 .subop.instrs = op->instrs, 2176 .instrs = op->instrs, 2177 .ninstrs = op->ninstrs, 2178 }; 2179 unsigned int i; 2180 2181 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2182 const struct nand_op_parser_pattern *pattern; 2183 struct nand_op_parser_ctx best_ctx; 2184 int ret, best_pattern = -1; 2185 2186 for (i = 0; i < parser->npatterns; i++) { 2187 struct nand_op_parser_ctx test_ctx = ctx; 2188 2189 pattern = &parser->patterns[i]; 2190 if (!nand_op_parser_match_pat(pattern, &test_ctx)) 2191 continue; 2192 2193 if (best_pattern >= 0 && 2194 nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) 2195 continue; 2196 2197 best_pattern = i; 2198 best_ctx = test_ctx; 2199 } 2200 2201 if (best_pattern < 0) { 2202 pr_debug("->exec_op() parser: pattern not found!\n"); 2203 return -ENOTSUPP; 2204 } 2205 2206 ctx = best_ctx; 2207 nand_op_parser_trace(&ctx); 2208 2209 if (!check_only) { 2210 pattern = &parser->patterns[best_pattern]; 2211 ret = pattern->exec(chip, &ctx.subop); 2212 if (ret) 2213 return ret; 2214 } 2215 2216 /* 2217 * Update the context structure by pointing to the start of the 2218 * next subop. 2219 */ 2220 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2221 if (ctx.subop.last_instr_end_off) 2222 ctx.subop.instrs -= 1; 2223 2224 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2225 } 2226 2227 return 0; 2228 } 2229 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2230 2231 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2232 { 2233 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2234 instr->type == NAND_OP_DATA_OUT_INSTR); 2235 } 2236 2237 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2238 unsigned int instr_idx) 2239 { 2240 return subop && instr_idx < subop->ninstrs; 2241 } 2242 2243 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2244 unsigned int instr_idx) 2245 { 2246 if (instr_idx) 2247 return 0; 2248 2249 return subop->first_instr_start_off; 2250 } 2251 2252 /** 2253 * nand_subop_get_addr_start_off - Get the start offset in an address array 2254 * @subop: The entire sub-operation 2255 * @instr_idx: Index of the instruction inside the sub-operation 2256 * 2257 * During driver development, one could be tempted to directly use the 2258 * ->addr.addrs field of address instructions. This is wrong as address 2259 * instructions might be split. 2260 * 2261 * Given an address instruction, returns the offset of the first cycle to issue. 2262 */ 2263 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2264 unsigned int instr_idx) 2265 { 2266 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2267 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2268 return 0; 2269 2270 return nand_subop_get_start_off(subop, instr_idx); 2271 } 2272 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2273 2274 /** 2275 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2276 * @subop: The entire sub-operation 2277 * @instr_idx: Index of the instruction inside the sub-operation 2278 * 2279 * During driver development, one could be tempted to directly use the 2280 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2281 * might be split. 2282 * 2283 * Given an address instruction, returns the number of address cycle to issue. 2284 */ 2285 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2286 unsigned int instr_idx) 2287 { 2288 int start_off, end_off; 2289 2290 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2291 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2292 return 0; 2293 2294 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2295 2296 if (instr_idx == subop->ninstrs - 1 && 2297 subop->last_instr_end_off) 2298 end_off = subop->last_instr_end_off; 2299 else 2300 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2301 2302 return end_off - start_off; 2303 } 2304 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2305 2306 /** 2307 * nand_subop_get_data_start_off - Get the start offset in a data array 2308 * @subop: The entire sub-operation 2309 * @instr_idx: Index of the instruction inside the sub-operation 2310 * 2311 * During driver development, one could be tempted to directly use the 2312 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2313 * instructions might be split. 2314 * 2315 * Given a data instruction, returns the offset to start from. 2316 */ 2317 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2318 unsigned int instr_idx) 2319 { 2320 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2321 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2322 return 0; 2323 2324 return nand_subop_get_start_off(subop, instr_idx); 2325 } 2326 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2327 2328 /** 2329 * nand_subop_get_data_len - Get the number of bytes to retrieve 2330 * @subop: The entire sub-operation 2331 * @instr_idx: Index of the instruction inside the sub-operation 2332 * 2333 * During driver development, one could be tempted to directly use the 2334 * ->data->len field of a data instruction. This is wrong as data instructions 2335 * might be split. 2336 * 2337 * Returns the length of the chunk of data to send/receive. 2338 */ 2339 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2340 unsigned int instr_idx) 2341 { 2342 int start_off = 0, end_off; 2343 2344 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2345 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2346 return 0; 2347 2348 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2349 2350 if (instr_idx == subop->ninstrs - 1 && 2351 subop->last_instr_end_off) 2352 end_off = subop->last_instr_end_off; 2353 else 2354 end_off = subop->instrs[instr_idx].ctx.data.len; 2355 2356 return end_off - start_off; 2357 } 2358 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2359 2360 /** 2361 * nand_reset - Reset and initialize a NAND device 2362 * @chip: The NAND chip 2363 * @chipnr: Internal die id 2364 * 2365 * Save the timings data structure, then apply SDR timings mode 0 (see 2366 * nand_reset_interface for details), do the reset operation, and apply 2367 * back the previous timings. 2368 * 2369 * Returns 0 on success, a negative error code otherwise. 2370 */ 2371 int nand_reset(struct nand_chip *chip, int chipnr) 2372 { 2373 int ret; 2374 2375 ret = nand_reset_interface(chip, chipnr); 2376 if (ret) 2377 return ret; 2378 2379 /* 2380 * The CS line has to be released before we can apply the new NAND 2381 * interface settings, hence this weird nand_select_target() 2382 * nand_deselect_target() dance. 2383 */ 2384 nand_select_target(chip, chipnr); 2385 ret = nand_reset_op(chip); 2386 nand_deselect_target(chip); 2387 if (ret) 2388 return ret; 2389 2390 ret = nand_setup_interface(chip, chipnr); 2391 if (ret) 2392 return ret; 2393 2394 return 0; 2395 } 2396 EXPORT_SYMBOL_GPL(nand_reset); 2397 2398 /** 2399 * nand_get_features - wrapper to perform a GET_FEATURE 2400 * @chip: NAND chip info structure 2401 * @addr: feature address 2402 * @subfeature_param: the subfeature parameters, a four bytes array 2403 * 2404 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2405 * operation cannot be handled. 2406 */ 2407 int nand_get_features(struct nand_chip *chip, int addr, 2408 u8 *subfeature_param) 2409 { 2410 if (!nand_supports_get_features(chip, addr)) 2411 return -ENOTSUPP; 2412 2413 if (chip->legacy.get_features) 2414 return chip->legacy.get_features(chip, addr, subfeature_param); 2415 2416 return nand_get_features_op(chip, addr, subfeature_param); 2417 } 2418 2419 /** 2420 * nand_set_features - wrapper to perform a SET_FEATURE 2421 * @chip: NAND chip info structure 2422 * @addr: feature address 2423 * @subfeature_param: the subfeature parameters, a four bytes array 2424 * 2425 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2426 * operation cannot be handled. 2427 */ 2428 int nand_set_features(struct nand_chip *chip, int addr, 2429 u8 *subfeature_param) 2430 { 2431 if (!nand_supports_set_features(chip, addr)) 2432 return -ENOTSUPP; 2433 2434 if (chip->legacy.set_features) 2435 return chip->legacy.set_features(chip, addr, subfeature_param); 2436 2437 return nand_set_features_op(chip, addr, subfeature_param); 2438 } 2439 2440 /** 2441 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2442 * @buf: buffer to test 2443 * @len: buffer length 2444 * @bitflips_threshold: maximum number of bitflips 2445 * 2446 * Check if a buffer contains only 0xff, which means the underlying region 2447 * has been erased and is ready to be programmed. 2448 * The bitflips_threshold specify the maximum number of bitflips before 2449 * considering the region is not erased. 2450 * Note: The logic of this function has been extracted from the memweight 2451 * implementation, except that nand_check_erased_buf function exit before 2452 * testing the whole buffer if the number of bitflips exceed the 2453 * bitflips_threshold value. 2454 * 2455 * Returns a positive number of bitflips less than or equal to 2456 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2457 * threshold. 2458 */ 2459 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2460 { 2461 const unsigned char *bitmap = buf; 2462 int bitflips = 0; 2463 int weight; 2464 2465 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2466 len--, bitmap++) { 2467 weight = hweight8(*bitmap); 2468 bitflips += BITS_PER_BYTE - weight; 2469 if (unlikely(bitflips > bitflips_threshold)) 2470 return -EBADMSG; 2471 } 2472 2473 for (; len >= sizeof(long); 2474 len -= sizeof(long), bitmap += sizeof(long)) { 2475 unsigned long d = *((unsigned long *)bitmap); 2476 if (d == ~0UL) 2477 continue; 2478 weight = hweight_long(d); 2479 bitflips += BITS_PER_LONG - weight; 2480 if (unlikely(bitflips > bitflips_threshold)) 2481 return -EBADMSG; 2482 } 2483 2484 for (; len > 0; len--, bitmap++) { 2485 weight = hweight8(*bitmap); 2486 bitflips += BITS_PER_BYTE - weight; 2487 if (unlikely(bitflips > bitflips_threshold)) 2488 return -EBADMSG; 2489 } 2490 2491 return bitflips; 2492 } 2493 2494 /** 2495 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2496 * 0xff data 2497 * @data: data buffer to test 2498 * @datalen: data length 2499 * @ecc: ECC buffer 2500 * @ecclen: ECC length 2501 * @extraoob: extra OOB buffer 2502 * @extraooblen: extra OOB length 2503 * @bitflips_threshold: maximum number of bitflips 2504 * 2505 * Check if a data buffer and its associated ECC and OOB data contains only 2506 * 0xff pattern, which means the underlying region has been erased and is 2507 * ready to be programmed. 2508 * The bitflips_threshold specify the maximum number of bitflips before 2509 * considering the region as not erased. 2510 * 2511 * Note: 2512 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2513 * different from the NAND page size. When fixing bitflips, ECC engines will 2514 * report the number of errors per chunk, and the NAND core infrastructure 2515 * expect you to return the maximum number of bitflips for the whole page. 2516 * This is why you should always use this function on a single chunk and 2517 * not on the whole page. After checking each chunk you should update your 2518 * max_bitflips value accordingly. 2519 * 2/ When checking for bitflips in erased pages you should not only check 2520 * the payload data but also their associated ECC data, because a user might 2521 * have programmed almost all bits to 1 but a few. In this case, we 2522 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2523 * this case. 2524 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2525 * data are protected by the ECC engine. 2526 * It could also be used if you support subpages and want to attach some 2527 * extra OOB data to an ECC chunk. 2528 * 2529 * Returns a positive number of bitflips less than or equal to 2530 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2531 * threshold. In case of success, the passed buffers are filled with 0xff. 2532 */ 2533 int nand_check_erased_ecc_chunk(void *data, int datalen, 2534 void *ecc, int ecclen, 2535 void *extraoob, int extraooblen, 2536 int bitflips_threshold) 2537 { 2538 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2539 2540 data_bitflips = nand_check_erased_buf(data, datalen, 2541 bitflips_threshold); 2542 if (data_bitflips < 0) 2543 return data_bitflips; 2544 2545 bitflips_threshold -= data_bitflips; 2546 2547 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2548 if (ecc_bitflips < 0) 2549 return ecc_bitflips; 2550 2551 bitflips_threshold -= ecc_bitflips; 2552 2553 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2554 bitflips_threshold); 2555 if (extraoob_bitflips < 0) 2556 return extraoob_bitflips; 2557 2558 if (data_bitflips) 2559 memset(data, 0xff, datalen); 2560 2561 if (ecc_bitflips) 2562 memset(ecc, 0xff, ecclen); 2563 2564 if (extraoob_bitflips) 2565 memset(extraoob, 0xff, extraooblen); 2566 2567 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2568 } 2569 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2570 2571 /** 2572 * nand_read_page_raw_notsupp - dummy read raw page function 2573 * @chip: nand chip info structure 2574 * @buf: buffer to store read data 2575 * @oob_required: caller requires OOB data read to chip->oob_poi 2576 * @page: page number to read 2577 * 2578 * Returns -ENOTSUPP unconditionally. 2579 */ 2580 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, 2581 int oob_required, int page) 2582 { 2583 return -ENOTSUPP; 2584 } 2585 2586 /** 2587 * nand_read_page_raw - [INTERN] read raw page data without ecc 2588 * @chip: nand chip info structure 2589 * @buf: buffer to store read data 2590 * @oob_required: caller requires OOB data read to chip->oob_poi 2591 * @page: page number to read 2592 * 2593 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2594 */ 2595 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 2596 int page) 2597 { 2598 struct mtd_info *mtd = nand_to_mtd(chip); 2599 int ret; 2600 2601 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2602 if (ret) 2603 return ret; 2604 2605 if (oob_required) { 2606 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2607 false, false); 2608 if (ret) 2609 return ret; 2610 } 2611 2612 return 0; 2613 } 2614 EXPORT_SYMBOL(nand_read_page_raw); 2615 2616 /** 2617 * nand_monolithic_read_page_raw - Monolithic page read in raw mode 2618 * @chip: NAND chip info structure 2619 * @buf: buffer to store read data 2620 * @oob_required: caller requires OOB data read to chip->oob_poi 2621 * @page: page number to read 2622 * 2623 * This is a raw page read, ie. without any error detection/correction. 2624 * Monolithic means we are requesting all the relevant data (main plus 2625 * eventually OOB) to be loaded in the NAND cache and sent over the 2626 * bus (from the NAND chip to the NAND controller) in a single 2627 * operation. This is an alternative to nand_read_page_raw(), which 2628 * first reads the main data, and if the OOB data is requested too, 2629 * then reads more data on the bus. 2630 */ 2631 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf, 2632 int oob_required, int page) 2633 { 2634 struct mtd_info *mtd = nand_to_mtd(chip); 2635 unsigned int size = mtd->writesize; 2636 u8 *read_buf = buf; 2637 int ret; 2638 2639 if (oob_required) { 2640 size += mtd->oobsize; 2641 2642 if (buf != chip->data_buf) 2643 read_buf = nand_get_data_buf(chip); 2644 } 2645 2646 ret = nand_read_page_op(chip, page, 0, read_buf, size); 2647 if (ret) 2648 return ret; 2649 2650 if (buf != chip->data_buf) 2651 memcpy(buf, read_buf, mtd->writesize); 2652 2653 return 0; 2654 } 2655 EXPORT_SYMBOL(nand_monolithic_read_page_raw); 2656 2657 /** 2658 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 2659 * @chip: nand chip info structure 2660 * @buf: buffer to store read data 2661 * @oob_required: caller requires OOB data read to chip->oob_poi 2662 * @page: page number to read 2663 * 2664 * We need a special oob layout and handling even when OOB isn't used. 2665 */ 2666 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, 2667 int oob_required, int page) 2668 { 2669 struct mtd_info *mtd = nand_to_mtd(chip); 2670 int eccsize = chip->ecc.size; 2671 int eccbytes = chip->ecc.bytes; 2672 uint8_t *oob = chip->oob_poi; 2673 int steps, size, ret; 2674 2675 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2676 if (ret) 2677 return ret; 2678 2679 for (steps = chip->ecc.steps; steps > 0; steps--) { 2680 ret = nand_read_data_op(chip, buf, eccsize, false, false); 2681 if (ret) 2682 return ret; 2683 2684 buf += eccsize; 2685 2686 if (chip->ecc.prepad) { 2687 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 2688 false, false); 2689 if (ret) 2690 return ret; 2691 2692 oob += chip->ecc.prepad; 2693 } 2694 2695 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 2696 if (ret) 2697 return ret; 2698 2699 oob += eccbytes; 2700 2701 if (chip->ecc.postpad) { 2702 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 2703 false, false); 2704 if (ret) 2705 return ret; 2706 2707 oob += chip->ecc.postpad; 2708 } 2709 } 2710 2711 size = mtd->oobsize - (oob - chip->oob_poi); 2712 if (size) { 2713 ret = nand_read_data_op(chip, oob, size, false, false); 2714 if (ret) 2715 return ret; 2716 } 2717 2718 return 0; 2719 } 2720 2721 /** 2722 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 2723 * @chip: nand chip info structure 2724 * @buf: buffer to store read data 2725 * @oob_required: caller requires OOB data read to chip->oob_poi 2726 * @page: page number to read 2727 */ 2728 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, 2729 int oob_required, int page) 2730 { 2731 struct mtd_info *mtd = nand_to_mtd(chip); 2732 int i, eccsize = chip->ecc.size, ret; 2733 int eccbytes = chip->ecc.bytes; 2734 int eccsteps = chip->ecc.steps; 2735 uint8_t *p = buf; 2736 uint8_t *ecc_calc = chip->ecc.calc_buf; 2737 uint8_t *ecc_code = chip->ecc.code_buf; 2738 unsigned int max_bitflips = 0; 2739 2740 chip->ecc.read_page_raw(chip, buf, 1, page); 2741 2742 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 2743 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2744 2745 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2746 chip->ecc.total); 2747 if (ret) 2748 return ret; 2749 2750 eccsteps = chip->ecc.steps; 2751 p = buf; 2752 2753 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2754 int stat; 2755 2756 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2757 if (stat < 0) { 2758 mtd->ecc_stats.failed++; 2759 } else { 2760 mtd->ecc_stats.corrected += stat; 2761 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2762 } 2763 } 2764 return max_bitflips; 2765 } 2766 2767 /** 2768 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 2769 * @chip: nand chip info structure 2770 * @data_offs: offset of requested data within the page 2771 * @readlen: data length 2772 * @bufpoi: buffer to store read data 2773 * @page: page number to read 2774 */ 2775 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, 2776 uint32_t readlen, uint8_t *bufpoi, int page) 2777 { 2778 struct mtd_info *mtd = nand_to_mtd(chip); 2779 int start_step, end_step, num_steps, ret; 2780 uint8_t *p; 2781 int data_col_addr, i, gaps = 0; 2782 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 2783 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 2784 int index, section = 0; 2785 unsigned int max_bitflips = 0; 2786 struct mtd_oob_region oobregion = { }; 2787 2788 /* Column address within the page aligned to ECC size (256bytes) */ 2789 start_step = data_offs / chip->ecc.size; 2790 end_step = (data_offs + readlen - 1) / chip->ecc.size; 2791 num_steps = end_step - start_step + 1; 2792 index = start_step * chip->ecc.bytes; 2793 2794 /* Data size aligned to ECC ecc.size */ 2795 datafrag_len = num_steps * chip->ecc.size; 2796 eccfrag_len = num_steps * chip->ecc.bytes; 2797 2798 data_col_addr = start_step * chip->ecc.size; 2799 /* If we read not a page aligned data */ 2800 p = bufpoi + data_col_addr; 2801 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 2802 if (ret) 2803 return ret; 2804 2805 /* Calculate ECC */ 2806 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 2807 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); 2808 2809 /* 2810 * The performance is faster if we position offsets according to 2811 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 2812 */ 2813 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 2814 if (ret) 2815 return ret; 2816 2817 if (oobregion.length < eccfrag_len) 2818 gaps = 1; 2819 2820 if (gaps) { 2821 ret = nand_change_read_column_op(chip, mtd->writesize, 2822 chip->oob_poi, mtd->oobsize, 2823 false); 2824 if (ret) 2825 return ret; 2826 } else { 2827 /* 2828 * Send the command to read the particular ECC bytes take care 2829 * about buswidth alignment in read_buf. 2830 */ 2831 aligned_pos = oobregion.offset & ~(busw - 1); 2832 aligned_len = eccfrag_len; 2833 if (oobregion.offset & (busw - 1)) 2834 aligned_len++; 2835 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 2836 (busw - 1)) 2837 aligned_len++; 2838 2839 ret = nand_change_read_column_op(chip, 2840 mtd->writesize + aligned_pos, 2841 &chip->oob_poi[aligned_pos], 2842 aligned_len, false); 2843 if (ret) 2844 return ret; 2845 } 2846 2847 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 2848 chip->oob_poi, index, eccfrag_len); 2849 if (ret) 2850 return ret; 2851 2852 p = bufpoi + data_col_addr; 2853 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 2854 int stat; 2855 2856 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], 2857 &chip->ecc.calc_buf[i]); 2858 if (stat == -EBADMSG && 2859 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2860 /* check for empty pages with bitflips */ 2861 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 2862 &chip->ecc.code_buf[i], 2863 chip->ecc.bytes, 2864 NULL, 0, 2865 chip->ecc.strength); 2866 } 2867 2868 if (stat < 0) { 2869 mtd->ecc_stats.failed++; 2870 } else { 2871 mtd->ecc_stats.corrected += stat; 2872 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2873 } 2874 } 2875 return max_bitflips; 2876 } 2877 2878 /** 2879 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 2880 * @chip: nand chip info structure 2881 * @buf: buffer to store read data 2882 * @oob_required: caller requires OOB data read to chip->oob_poi 2883 * @page: page number to read 2884 * 2885 * Not for syndrome calculating ECC controllers which need a special oob layout. 2886 */ 2887 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, 2888 int oob_required, int page) 2889 { 2890 struct mtd_info *mtd = nand_to_mtd(chip); 2891 int i, eccsize = chip->ecc.size, ret; 2892 int eccbytes = chip->ecc.bytes; 2893 int eccsteps = chip->ecc.steps; 2894 uint8_t *p = buf; 2895 uint8_t *ecc_calc = chip->ecc.calc_buf; 2896 uint8_t *ecc_code = chip->ecc.code_buf; 2897 unsigned int max_bitflips = 0; 2898 2899 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2900 if (ret) 2901 return ret; 2902 2903 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2904 chip->ecc.hwctl(chip, NAND_ECC_READ); 2905 2906 ret = nand_read_data_op(chip, p, eccsize, false, false); 2907 if (ret) 2908 return ret; 2909 2910 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2911 } 2912 2913 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, 2914 false); 2915 if (ret) 2916 return ret; 2917 2918 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2919 chip->ecc.total); 2920 if (ret) 2921 return ret; 2922 2923 eccsteps = chip->ecc.steps; 2924 p = buf; 2925 2926 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2927 int stat; 2928 2929 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2930 if (stat == -EBADMSG && 2931 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2932 /* check for empty pages with bitflips */ 2933 stat = nand_check_erased_ecc_chunk(p, eccsize, 2934 &ecc_code[i], eccbytes, 2935 NULL, 0, 2936 chip->ecc.strength); 2937 } 2938 2939 if (stat < 0) { 2940 mtd->ecc_stats.failed++; 2941 } else { 2942 mtd->ecc_stats.corrected += stat; 2943 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2944 } 2945 } 2946 return max_bitflips; 2947 } 2948 2949 /** 2950 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 2951 * @chip: nand chip info structure 2952 * @buf: buffer to store read data 2953 * @oob_required: caller requires OOB data read to chip->oob_poi 2954 * @page: page number to read 2955 * 2956 * The hw generator calculates the error syndrome automatically. Therefore we 2957 * need a special oob layout and handling. 2958 */ 2959 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 2960 int oob_required, int page) 2961 { 2962 struct mtd_info *mtd = nand_to_mtd(chip); 2963 int ret, i, eccsize = chip->ecc.size; 2964 int eccbytes = chip->ecc.bytes; 2965 int eccsteps = chip->ecc.steps; 2966 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 2967 uint8_t *p = buf; 2968 uint8_t *oob = chip->oob_poi; 2969 unsigned int max_bitflips = 0; 2970 2971 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2972 if (ret) 2973 return ret; 2974 2975 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2976 int stat; 2977 2978 chip->ecc.hwctl(chip, NAND_ECC_READ); 2979 2980 ret = nand_read_data_op(chip, p, eccsize, false, false); 2981 if (ret) 2982 return ret; 2983 2984 if (chip->ecc.prepad) { 2985 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 2986 false, false); 2987 if (ret) 2988 return ret; 2989 2990 oob += chip->ecc.prepad; 2991 } 2992 2993 chip->ecc.hwctl(chip, NAND_ECC_READSYN); 2994 2995 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 2996 if (ret) 2997 return ret; 2998 2999 stat = chip->ecc.correct(chip, p, oob, NULL); 3000 3001 oob += eccbytes; 3002 3003 if (chip->ecc.postpad) { 3004 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3005 false, false); 3006 if (ret) 3007 return ret; 3008 3009 oob += chip->ecc.postpad; 3010 } 3011 3012 if (stat == -EBADMSG && 3013 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3014 /* check for empty pages with bitflips */ 3015 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3016 oob - eccpadbytes, 3017 eccpadbytes, 3018 NULL, 0, 3019 chip->ecc.strength); 3020 } 3021 3022 if (stat < 0) { 3023 mtd->ecc_stats.failed++; 3024 } else { 3025 mtd->ecc_stats.corrected += stat; 3026 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3027 } 3028 } 3029 3030 /* Calculate remaining oob bytes */ 3031 i = mtd->oobsize - (oob - chip->oob_poi); 3032 if (i) { 3033 ret = nand_read_data_op(chip, oob, i, false, false); 3034 if (ret) 3035 return ret; 3036 } 3037 3038 return max_bitflips; 3039 } 3040 3041 /** 3042 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3043 * @chip: NAND chip object 3044 * @oob: oob destination address 3045 * @ops: oob ops structure 3046 * @len: size of oob to transfer 3047 */ 3048 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, 3049 struct mtd_oob_ops *ops, size_t len) 3050 { 3051 struct mtd_info *mtd = nand_to_mtd(chip); 3052 int ret; 3053 3054 switch (ops->mode) { 3055 3056 case MTD_OPS_PLACE_OOB: 3057 case MTD_OPS_RAW: 3058 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3059 return oob + len; 3060 3061 case MTD_OPS_AUTO_OOB: 3062 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3063 ops->ooboffs, len); 3064 BUG_ON(ret); 3065 return oob + len; 3066 3067 default: 3068 BUG(); 3069 } 3070 return NULL; 3071 } 3072 3073 /** 3074 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3075 * @chip: NAND chip object 3076 * @retry_mode: the retry mode to use 3077 * 3078 * Some vendors supply a special command to shift the Vt threshold, to be used 3079 * when there are too many bitflips in a page (i.e., ECC error). After setting 3080 * a new threshold, the host should retry reading the page. 3081 */ 3082 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) 3083 { 3084 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3085 3086 if (retry_mode >= chip->read_retries) 3087 return -EINVAL; 3088 3089 if (!chip->ops.setup_read_retry) 3090 return -EOPNOTSUPP; 3091 3092 return chip->ops.setup_read_retry(chip, retry_mode); 3093 } 3094 3095 static void nand_wait_readrdy(struct nand_chip *chip) 3096 { 3097 const struct nand_sdr_timings *sdr; 3098 3099 if (!(chip->options & NAND_NEED_READRDY)) 3100 return; 3101 3102 sdr = nand_get_sdr_timings(nand_get_interface_config(chip)); 3103 WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0)); 3104 } 3105 3106 /** 3107 * nand_do_read_ops - [INTERN] Read data with ECC 3108 * @chip: NAND chip object 3109 * @from: offset to read from 3110 * @ops: oob ops structure 3111 * 3112 * Internal function. Called with chip held. 3113 */ 3114 static int nand_do_read_ops(struct nand_chip *chip, loff_t from, 3115 struct mtd_oob_ops *ops) 3116 { 3117 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3118 struct mtd_info *mtd = nand_to_mtd(chip); 3119 int ret = 0; 3120 uint32_t readlen = ops->len; 3121 uint32_t oobreadlen = ops->ooblen; 3122 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3123 3124 uint8_t *bufpoi, *oob, *buf; 3125 int use_bounce_buf; 3126 unsigned int max_bitflips = 0; 3127 int retry_mode = 0; 3128 bool ecc_fail = false; 3129 3130 chipnr = (int)(from >> chip->chip_shift); 3131 nand_select_target(chip, chipnr); 3132 3133 realpage = (int)(from >> chip->page_shift); 3134 page = realpage & chip->pagemask; 3135 3136 col = (int)(from & (mtd->writesize - 1)); 3137 3138 buf = ops->datbuf; 3139 oob = ops->oobbuf; 3140 oob_required = oob ? 1 : 0; 3141 3142 while (1) { 3143 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats; 3144 3145 bytes = min(mtd->writesize - col, readlen); 3146 aligned = (bytes == mtd->writesize); 3147 3148 if (!aligned) 3149 use_bounce_buf = 1; 3150 else if (chip->options & NAND_USES_DMA) 3151 use_bounce_buf = !virt_addr_valid(buf) || 3152 !IS_ALIGNED((unsigned long)buf, 3153 chip->buf_align); 3154 else 3155 use_bounce_buf = 0; 3156 3157 /* Is the current page in the buffer? */ 3158 if (realpage != chip->pagecache.page || oob) { 3159 bufpoi = use_bounce_buf ? chip->data_buf : buf; 3160 3161 if (use_bounce_buf && aligned) 3162 pr_debug("%s: using read bounce buffer for buf@%p\n", 3163 __func__, buf); 3164 3165 read_retry: 3166 /* 3167 * Now read the page into the buffer. Absent an error, 3168 * the read methods return max bitflips per ecc step. 3169 */ 3170 if (unlikely(ops->mode == MTD_OPS_RAW)) 3171 ret = chip->ecc.read_page_raw(chip, bufpoi, 3172 oob_required, 3173 page); 3174 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3175 !oob) 3176 ret = chip->ecc.read_subpage(chip, col, bytes, 3177 bufpoi, page); 3178 else 3179 ret = chip->ecc.read_page(chip, bufpoi, 3180 oob_required, page); 3181 if (ret < 0) { 3182 if (use_bounce_buf) 3183 /* Invalidate page cache */ 3184 chip->pagecache.page = -1; 3185 break; 3186 } 3187 3188 /* 3189 * Copy back the data in the initial buffer when reading 3190 * partial pages or when a bounce buffer is required. 3191 */ 3192 if (use_bounce_buf) { 3193 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3194 !(mtd->ecc_stats.failed - ecc_stats.failed) && 3195 (ops->mode != MTD_OPS_RAW)) { 3196 chip->pagecache.page = realpage; 3197 chip->pagecache.bitflips = ret; 3198 } else { 3199 /* Invalidate page cache */ 3200 chip->pagecache.page = -1; 3201 } 3202 memcpy(buf, bufpoi + col, bytes); 3203 } 3204 3205 if (unlikely(oob)) { 3206 int toread = min(oobreadlen, max_oobsize); 3207 3208 if (toread) { 3209 oob = nand_transfer_oob(chip, oob, ops, 3210 toread); 3211 oobreadlen -= toread; 3212 } 3213 } 3214 3215 nand_wait_readrdy(chip); 3216 3217 if (mtd->ecc_stats.failed - ecc_stats.failed) { 3218 if (retry_mode + 1 < chip->read_retries) { 3219 retry_mode++; 3220 ret = nand_setup_read_retry(chip, 3221 retry_mode); 3222 if (ret < 0) 3223 break; 3224 3225 /* Reset ecc_stats; retry */ 3226 mtd->ecc_stats = ecc_stats; 3227 goto read_retry; 3228 } else { 3229 /* No more retry modes; real failure */ 3230 ecc_fail = true; 3231 } 3232 } 3233 3234 buf += bytes; 3235 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3236 } else { 3237 memcpy(buf, chip->data_buf + col, bytes); 3238 buf += bytes; 3239 max_bitflips = max_t(unsigned int, max_bitflips, 3240 chip->pagecache.bitflips); 3241 } 3242 3243 readlen -= bytes; 3244 3245 /* Reset to retry mode 0 */ 3246 if (retry_mode) { 3247 ret = nand_setup_read_retry(chip, 0); 3248 if (ret < 0) 3249 break; 3250 retry_mode = 0; 3251 } 3252 3253 if (!readlen) 3254 break; 3255 3256 /* For subsequent reads align to page boundary */ 3257 col = 0; 3258 /* Increment page address */ 3259 realpage++; 3260 3261 page = realpage & chip->pagemask; 3262 /* Check, if we cross a chip boundary */ 3263 if (!page) { 3264 chipnr++; 3265 nand_deselect_target(chip); 3266 nand_select_target(chip, chipnr); 3267 } 3268 } 3269 nand_deselect_target(chip); 3270 3271 ops->retlen = ops->len - (size_t) readlen; 3272 if (oob) 3273 ops->oobretlen = ops->ooblen - oobreadlen; 3274 3275 if (ret < 0) 3276 return ret; 3277 3278 if (ecc_fail) 3279 return -EBADMSG; 3280 3281 return max_bitflips; 3282 } 3283 3284 /** 3285 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3286 * @chip: nand chip info structure 3287 * @page: page number to read 3288 */ 3289 int nand_read_oob_std(struct nand_chip *chip, int page) 3290 { 3291 struct mtd_info *mtd = nand_to_mtd(chip); 3292 3293 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3294 } 3295 EXPORT_SYMBOL(nand_read_oob_std); 3296 3297 /** 3298 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3299 * with syndromes 3300 * @chip: nand chip info structure 3301 * @page: page number to read 3302 */ 3303 static int nand_read_oob_syndrome(struct nand_chip *chip, int page) 3304 { 3305 struct mtd_info *mtd = nand_to_mtd(chip); 3306 int length = mtd->oobsize; 3307 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3308 int eccsize = chip->ecc.size; 3309 uint8_t *bufpoi = chip->oob_poi; 3310 int i, toread, sndrnd = 0, pos, ret; 3311 3312 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3313 if (ret) 3314 return ret; 3315 3316 for (i = 0; i < chip->ecc.steps; i++) { 3317 if (sndrnd) { 3318 int ret; 3319 3320 pos = eccsize + i * (eccsize + chunk); 3321 if (mtd->writesize > 512) 3322 ret = nand_change_read_column_op(chip, pos, 3323 NULL, 0, 3324 false); 3325 else 3326 ret = nand_read_page_op(chip, page, pos, NULL, 3327 0); 3328 3329 if (ret) 3330 return ret; 3331 } else 3332 sndrnd = 1; 3333 toread = min_t(int, length, chunk); 3334 3335 ret = nand_read_data_op(chip, bufpoi, toread, false, false); 3336 if (ret) 3337 return ret; 3338 3339 bufpoi += toread; 3340 length -= toread; 3341 } 3342 if (length > 0) { 3343 ret = nand_read_data_op(chip, bufpoi, length, false, false); 3344 if (ret) 3345 return ret; 3346 } 3347 3348 return 0; 3349 } 3350 3351 /** 3352 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3353 * @chip: nand chip info structure 3354 * @page: page number to write 3355 */ 3356 int nand_write_oob_std(struct nand_chip *chip, int page) 3357 { 3358 struct mtd_info *mtd = nand_to_mtd(chip); 3359 3360 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3361 mtd->oobsize); 3362 } 3363 EXPORT_SYMBOL(nand_write_oob_std); 3364 3365 /** 3366 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3367 * with syndrome - only for large page flash 3368 * @chip: nand chip info structure 3369 * @page: page number to write 3370 */ 3371 static int nand_write_oob_syndrome(struct nand_chip *chip, int page) 3372 { 3373 struct mtd_info *mtd = nand_to_mtd(chip); 3374 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3375 int eccsize = chip->ecc.size, length = mtd->oobsize; 3376 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3377 const uint8_t *bufpoi = chip->oob_poi; 3378 3379 /* 3380 * data-ecc-data-ecc ... ecc-oob 3381 * or 3382 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3383 */ 3384 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3385 pos = steps * (eccsize + chunk); 3386 steps = 0; 3387 } else 3388 pos = eccsize; 3389 3390 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3391 if (ret) 3392 return ret; 3393 3394 for (i = 0; i < steps; i++) { 3395 if (sndcmd) { 3396 if (mtd->writesize <= 512) { 3397 uint32_t fill = 0xFFFFFFFF; 3398 3399 len = eccsize; 3400 while (len > 0) { 3401 int num = min_t(int, len, 4); 3402 3403 ret = nand_write_data_op(chip, &fill, 3404 num, false); 3405 if (ret) 3406 return ret; 3407 3408 len -= num; 3409 } 3410 } else { 3411 pos = eccsize + i * (eccsize + chunk); 3412 ret = nand_change_write_column_op(chip, pos, 3413 NULL, 0, 3414 false); 3415 if (ret) 3416 return ret; 3417 } 3418 } else 3419 sndcmd = 1; 3420 len = min_t(int, length, chunk); 3421 3422 ret = nand_write_data_op(chip, bufpoi, len, false); 3423 if (ret) 3424 return ret; 3425 3426 bufpoi += len; 3427 length -= len; 3428 } 3429 if (length > 0) { 3430 ret = nand_write_data_op(chip, bufpoi, length, false); 3431 if (ret) 3432 return ret; 3433 } 3434 3435 return nand_prog_page_end_op(chip); 3436 } 3437 3438 /** 3439 * nand_do_read_oob - [INTERN] NAND read out-of-band 3440 * @chip: NAND chip object 3441 * @from: offset to read from 3442 * @ops: oob operations description structure 3443 * 3444 * NAND read out-of-band data from the spare area. 3445 */ 3446 static int nand_do_read_oob(struct nand_chip *chip, loff_t from, 3447 struct mtd_oob_ops *ops) 3448 { 3449 struct mtd_info *mtd = nand_to_mtd(chip); 3450 unsigned int max_bitflips = 0; 3451 int page, realpage, chipnr; 3452 struct mtd_ecc_stats stats; 3453 int readlen = ops->ooblen; 3454 int len; 3455 uint8_t *buf = ops->oobbuf; 3456 int ret = 0; 3457 3458 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3459 __func__, (unsigned long long)from, readlen); 3460 3461 stats = mtd->ecc_stats; 3462 3463 len = mtd_oobavail(mtd, ops); 3464 3465 chipnr = (int)(from >> chip->chip_shift); 3466 nand_select_target(chip, chipnr); 3467 3468 /* Shift to get page */ 3469 realpage = (int)(from >> chip->page_shift); 3470 page = realpage & chip->pagemask; 3471 3472 while (1) { 3473 if (ops->mode == MTD_OPS_RAW) 3474 ret = chip->ecc.read_oob_raw(chip, page); 3475 else 3476 ret = chip->ecc.read_oob(chip, page); 3477 3478 if (ret < 0) 3479 break; 3480 3481 len = min(len, readlen); 3482 buf = nand_transfer_oob(chip, buf, ops, len); 3483 3484 nand_wait_readrdy(chip); 3485 3486 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3487 3488 readlen -= len; 3489 if (!readlen) 3490 break; 3491 3492 /* Increment page address */ 3493 realpage++; 3494 3495 page = realpage & chip->pagemask; 3496 /* Check, if we cross a chip boundary */ 3497 if (!page) { 3498 chipnr++; 3499 nand_deselect_target(chip); 3500 nand_select_target(chip, chipnr); 3501 } 3502 } 3503 nand_deselect_target(chip); 3504 3505 ops->oobretlen = ops->ooblen - readlen; 3506 3507 if (ret < 0) 3508 return ret; 3509 3510 if (mtd->ecc_stats.failed - stats.failed) 3511 return -EBADMSG; 3512 3513 return max_bitflips; 3514 } 3515 3516 /** 3517 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3518 * @mtd: MTD device structure 3519 * @from: offset to read from 3520 * @ops: oob operation description structure 3521 * 3522 * NAND read data and/or out-of-band data. 3523 */ 3524 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3525 struct mtd_oob_ops *ops) 3526 { 3527 struct nand_chip *chip = mtd_to_nand(mtd); 3528 int ret; 3529 3530 ops->retlen = 0; 3531 3532 if (ops->mode != MTD_OPS_PLACE_OOB && 3533 ops->mode != MTD_OPS_AUTO_OOB && 3534 ops->mode != MTD_OPS_RAW) 3535 return -ENOTSUPP; 3536 3537 ret = nand_get_device(chip); 3538 if (ret) 3539 return ret; 3540 3541 if (!ops->datbuf) 3542 ret = nand_do_read_oob(chip, from, ops); 3543 else 3544 ret = nand_do_read_ops(chip, from, ops); 3545 3546 nand_release_device(chip); 3547 return ret; 3548 } 3549 3550 /** 3551 * nand_write_page_raw_notsupp - dummy raw page write function 3552 * @chip: nand chip info structure 3553 * @buf: data buffer 3554 * @oob_required: must write chip->oob_poi to OOB 3555 * @page: page number to write 3556 * 3557 * Returns -ENOTSUPP unconditionally. 3558 */ 3559 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, 3560 int oob_required, int page) 3561 { 3562 return -ENOTSUPP; 3563 } 3564 3565 /** 3566 * nand_write_page_raw - [INTERN] raw page write function 3567 * @chip: nand chip info structure 3568 * @buf: data buffer 3569 * @oob_required: must write chip->oob_poi to OOB 3570 * @page: page number to write 3571 * 3572 * Not for syndrome calculating ECC controllers, which use a special oob layout. 3573 */ 3574 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 3575 int oob_required, int page) 3576 { 3577 struct mtd_info *mtd = nand_to_mtd(chip); 3578 int ret; 3579 3580 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 3581 if (ret) 3582 return ret; 3583 3584 if (oob_required) { 3585 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 3586 false); 3587 if (ret) 3588 return ret; 3589 } 3590 3591 return nand_prog_page_end_op(chip); 3592 } 3593 EXPORT_SYMBOL(nand_write_page_raw); 3594 3595 /** 3596 * nand_monolithic_write_page_raw - Monolithic page write in raw mode 3597 * @chip: NAND chip info structure 3598 * @buf: data buffer to write 3599 * @oob_required: must write chip->oob_poi to OOB 3600 * @page: page number to write 3601 * 3602 * This is a raw page write, ie. without any error detection/correction. 3603 * Monolithic means we are requesting all the relevant data (main plus 3604 * eventually OOB) to be sent over the bus and effectively programmed 3605 * into the NAND chip arrays in a single operation. This is an 3606 * alternative to nand_write_page_raw(), which first sends the main 3607 * data, then eventually send the OOB data by latching more data 3608 * cycles on the NAND bus, and finally sends the program command to 3609 * synchronyze the NAND chip cache. 3610 */ 3611 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf, 3612 int oob_required, int page) 3613 { 3614 struct mtd_info *mtd = nand_to_mtd(chip); 3615 unsigned int size = mtd->writesize; 3616 u8 *write_buf = (u8 *)buf; 3617 3618 if (oob_required) { 3619 size += mtd->oobsize; 3620 3621 if (buf != chip->data_buf) { 3622 write_buf = nand_get_data_buf(chip); 3623 memcpy(write_buf, buf, mtd->writesize); 3624 } 3625 } 3626 3627 return nand_prog_page_op(chip, page, 0, write_buf, size); 3628 } 3629 EXPORT_SYMBOL(nand_monolithic_write_page_raw); 3630 3631 /** 3632 * nand_write_page_raw_syndrome - [INTERN] raw page write function 3633 * @chip: nand chip info structure 3634 * @buf: data buffer 3635 * @oob_required: must write chip->oob_poi to OOB 3636 * @page: page number to write 3637 * 3638 * We need a special oob layout and handling even when ECC isn't checked. 3639 */ 3640 static int nand_write_page_raw_syndrome(struct nand_chip *chip, 3641 const uint8_t *buf, int oob_required, 3642 int page) 3643 { 3644 struct mtd_info *mtd = nand_to_mtd(chip); 3645 int eccsize = chip->ecc.size; 3646 int eccbytes = chip->ecc.bytes; 3647 uint8_t *oob = chip->oob_poi; 3648 int steps, size, ret; 3649 3650 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3651 if (ret) 3652 return ret; 3653 3654 for (steps = chip->ecc.steps; steps > 0; steps--) { 3655 ret = nand_write_data_op(chip, buf, eccsize, false); 3656 if (ret) 3657 return ret; 3658 3659 buf += eccsize; 3660 3661 if (chip->ecc.prepad) { 3662 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3663 false); 3664 if (ret) 3665 return ret; 3666 3667 oob += chip->ecc.prepad; 3668 } 3669 3670 ret = nand_write_data_op(chip, oob, eccbytes, false); 3671 if (ret) 3672 return ret; 3673 3674 oob += eccbytes; 3675 3676 if (chip->ecc.postpad) { 3677 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3678 false); 3679 if (ret) 3680 return ret; 3681 3682 oob += chip->ecc.postpad; 3683 } 3684 } 3685 3686 size = mtd->oobsize - (oob - chip->oob_poi); 3687 if (size) { 3688 ret = nand_write_data_op(chip, oob, size, false); 3689 if (ret) 3690 return ret; 3691 } 3692 3693 return nand_prog_page_end_op(chip); 3694 } 3695 /** 3696 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 3697 * @chip: nand chip info structure 3698 * @buf: data buffer 3699 * @oob_required: must write chip->oob_poi to OOB 3700 * @page: page number to write 3701 */ 3702 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, 3703 int oob_required, int page) 3704 { 3705 struct mtd_info *mtd = nand_to_mtd(chip); 3706 int i, eccsize = chip->ecc.size, ret; 3707 int eccbytes = chip->ecc.bytes; 3708 int eccsteps = chip->ecc.steps; 3709 uint8_t *ecc_calc = chip->ecc.calc_buf; 3710 const uint8_t *p = buf; 3711 3712 /* Software ECC calculation */ 3713 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3714 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3715 3716 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3717 chip->ecc.total); 3718 if (ret) 3719 return ret; 3720 3721 return chip->ecc.write_page_raw(chip, buf, 1, page); 3722 } 3723 3724 /** 3725 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 3726 * @chip: nand chip info structure 3727 * @buf: data buffer 3728 * @oob_required: must write chip->oob_poi to OOB 3729 * @page: page number to write 3730 */ 3731 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, 3732 int oob_required, int page) 3733 { 3734 struct mtd_info *mtd = nand_to_mtd(chip); 3735 int i, eccsize = chip->ecc.size, ret; 3736 int eccbytes = chip->ecc.bytes; 3737 int eccsteps = chip->ecc.steps; 3738 uint8_t *ecc_calc = chip->ecc.calc_buf; 3739 const uint8_t *p = buf; 3740 3741 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3742 if (ret) 3743 return ret; 3744 3745 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3746 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3747 3748 ret = nand_write_data_op(chip, p, eccsize, false); 3749 if (ret) 3750 return ret; 3751 3752 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3753 } 3754 3755 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3756 chip->ecc.total); 3757 if (ret) 3758 return ret; 3759 3760 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3761 if (ret) 3762 return ret; 3763 3764 return nand_prog_page_end_op(chip); 3765 } 3766 3767 3768 /** 3769 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 3770 * @chip: nand chip info structure 3771 * @offset: column address of subpage within the page 3772 * @data_len: data length 3773 * @buf: data buffer 3774 * @oob_required: must write chip->oob_poi to OOB 3775 * @page: page number to write 3776 */ 3777 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, 3778 uint32_t data_len, const uint8_t *buf, 3779 int oob_required, int page) 3780 { 3781 struct mtd_info *mtd = nand_to_mtd(chip); 3782 uint8_t *oob_buf = chip->oob_poi; 3783 uint8_t *ecc_calc = chip->ecc.calc_buf; 3784 int ecc_size = chip->ecc.size; 3785 int ecc_bytes = chip->ecc.bytes; 3786 int ecc_steps = chip->ecc.steps; 3787 uint32_t start_step = offset / ecc_size; 3788 uint32_t end_step = (offset + data_len - 1) / ecc_size; 3789 int oob_bytes = mtd->oobsize / ecc_steps; 3790 int step, ret; 3791 3792 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3793 if (ret) 3794 return ret; 3795 3796 for (step = 0; step < ecc_steps; step++) { 3797 /* configure controller for WRITE access */ 3798 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3799 3800 /* write data (untouched subpages already masked by 0xFF) */ 3801 ret = nand_write_data_op(chip, buf, ecc_size, false); 3802 if (ret) 3803 return ret; 3804 3805 /* mask ECC of un-touched subpages by padding 0xFF */ 3806 if ((step < start_step) || (step > end_step)) 3807 memset(ecc_calc, 0xff, ecc_bytes); 3808 else 3809 chip->ecc.calculate(chip, buf, ecc_calc); 3810 3811 /* mask OOB of un-touched subpages by padding 0xFF */ 3812 /* if oob_required, preserve OOB metadata of written subpage */ 3813 if (!oob_required || (step < start_step) || (step > end_step)) 3814 memset(oob_buf, 0xff, oob_bytes); 3815 3816 buf += ecc_size; 3817 ecc_calc += ecc_bytes; 3818 oob_buf += oob_bytes; 3819 } 3820 3821 /* copy calculated ECC for whole page to chip->buffer->oob */ 3822 /* this include masked-value(0xFF) for unwritten subpages */ 3823 ecc_calc = chip->ecc.calc_buf; 3824 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3825 chip->ecc.total); 3826 if (ret) 3827 return ret; 3828 3829 /* write OOB buffer to NAND device */ 3830 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3831 if (ret) 3832 return ret; 3833 3834 return nand_prog_page_end_op(chip); 3835 } 3836 3837 3838 /** 3839 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 3840 * @chip: nand chip info structure 3841 * @buf: data buffer 3842 * @oob_required: must write chip->oob_poi to OOB 3843 * @page: page number to write 3844 * 3845 * The hw generator calculates the error syndrome automatically. Therefore we 3846 * need a special oob layout and handling. 3847 */ 3848 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, 3849 int oob_required, int page) 3850 { 3851 struct mtd_info *mtd = nand_to_mtd(chip); 3852 int i, eccsize = chip->ecc.size; 3853 int eccbytes = chip->ecc.bytes; 3854 int eccsteps = chip->ecc.steps; 3855 const uint8_t *p = buf; 3856 uint8_t *oob = chip->oob_poi; 3857 int ret; 3858 3859 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3860 if (ret) 3861 return ret; 3862 3863 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3864 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3865 3866 ret = nand_write_data_op(chip, p, eccsize, false); 3867 if (ret) 3868 return ret; 3869 3870 if (chip->ecc.prepad) { 3871 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3872 false); 3873 if (ret) 3874 return ret; 3875 3876 oob += chip->ecc.prepad; 3877 } 3878 3879 chip->ecc.calculate(chip, p, oob); 3880 3881 ret = nand_write_data_op(chip, oob, eccbytes, false); 3882 if (ret) 3883 return ret; 3884 3885 oob += eccbytes; 3886 3887 if (chip->ecc.postpad) { 3888 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3889 false); 3890 if (ret) 3891 return ret; 3892 3893 oob += chip->ecc.postpad; 3894 } 3895 } 3896 3897 /* Calculate remaining oob bytes */ 3898 i = mtd->oobsize - (oob - chip->oob_poi); 3899 if (i) { 3900 ret = nand_write_data_op(chip, oob, i, false); 3901 if (ret) 3902 return ret; 3903 } 3904 3905 return nand_prog_page_end_op(chip); 3906 } 3907 3908 /** 3909 * nand_write_page - write one page 3910 * @chip: NAND chip descriptor 3911 * @offset: address offset within the page 3912 * @data_len: length of actual data to be written 3913 * @buf: the data to write 3914 * @oob_required: must write chip->oob_poi to OOB 3915 * @page: page number to write 3916 * @raw: use _raw version of write_page 3917 */ 3918 static int nand_write_page(struct nand_chip *chip, uint32_t offset, 3919 int data_len, const uint8_t *buf, int oob_required, 3920 int page, int raw) 3921 { 3922 struct mtd_info *mtd = nand_to_mtd(chip); 3923 int status, subpage; 3924 3925 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 3926 chip->ecc.write_subpage) 3927 subpage = offset || (data_len < mtd->writesize); 3928 else 3929 subpage = 0; 3930 3931 if (unlikely(raw)) 3932 status = chip->ecc.write_page_raw(chip, buf, oob_required, 3933 page); 3934 else if (subpage) 3935 status = chip->ecc.write_subpage(chip, offset, data_len, buf, 3936 oob_required, page); 3937 else 3938 status = chip->ecc.write_page(chip, buf, oob_required, page); 3939 3940 if (status < 0) 3941 return status; 3942 3943 return 0; 3944 } 3945 3946 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 3947 3948 /** 3949 * nand_do_write_ops - [INTERN] NAND write with ECC 3950 * @chip: NAND chip object 3951 * @to: offset to write to 3952 * @ops: oob operations description structure 3953 * 3954 * NAND write with ECC. 3955 */ 3956 static int nand_do_write_ops(struct nand_chip *chip, loff_t to, 3957 struct mtd_oob_ops *ops) 3958 { 3959 struct mtd_info *mtd = nand_to_mtd(chip); 3960 int chipnr, realpage, page, column; 3961 uint32_t writelen = ops->len; 3962 3963 uint32_t oobwritelen = ops->ooblen; 3964 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 3965 3966 uint8_t *oob = ops->oobbuf; 3967 uint8_t *buf = ops->datbuf; 3968 int ret; 3969 int oob_required = oob ? 1 : 0; 3970 3971 ops->retlen = 0; 3972 if (!writelen) 3973 return 0; 3974 3975 /* Reject writes, which are not page aligned */ 3976 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 3977 pr_notice("%s: attempt to write non page aligned data\n", 3978 __func__); 3979 return -EINVAL; 3980 } 3981 3982 column = to & (mtd->writesize - 1); 3983 3984 chipnr = (int)(to >> chip->chip_shift); 3985 nand_select_target(chip, chipnr); 3986 3987 /* Check, if it is write protected */ 3988 if (nand_check_wp(chip)) { 3989 ret = -EIO; 3990 goto err_out; 3991 } 3992 3993 realpage = (int)(to >> chip->page_shift); 3994 page = realpage & chip->pagemask; 3995 3996 /* Invalidate the page cache, when we write to the cached page */ 3997 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && 3998 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) 3999 chip->pagecache.page = -1; 4000 4001 /* Don't allow multipage oob writes with offset */ 4002 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4003 ret = -EINVAL; 4004 goto err_out; 4005 } 4006 4007 while (1) { 4008 int bytes = mtd->writesize; 4009 uint8_t *wbuf = buf; 4010 int use_bounce_buf; 4011 int part_pagewr = (column || writelen < mtd->writesize); 4012 4013 if (part_pagewr) 4014 use_bounce_buf = 1; 4015 else if (chip->options & NAND_USES_DMA) 4016 use_bounce_buf = !virt_addr_valid(buf) || 4017 !IS_ALIGNED((unsigned long)buf, 4018 chip->buf_align); 4019 else 4020 use_bounce_buf = 0; 4021 4022 /* 4023 * Copy the data from the initial buffer when doing partial page 4024 * writes or when a bounce buffer is required. 4025 */ 4026 if (use_bounce_buf) { 4027 pr_debug("%s: using write bounce buffer for buf@%p\n", 4028 __func__, buf); 4029 if (part_pagewr) 4030 bytes = min_t(int, bytes - column, writelen); 4031 wbuf = nand_get_data_buf(chip); 4032 memset(wbuf, 0xff, mtd->writesize); 4033 memcpy(&wbuf[column], buf, bytes); 4034 } 4035 4036 if (unlikely(oob)) { 4037 size_t len = min(oobwritelen, oobmaxlen); 4038 oob = nand_fill_oob(chip, oob, len, ops); 4039 oobwritelen -= len; 4040 } else { 4041 /* We still need to erase leftover OOB data */ 4042 memset(chip->oob_poi, 0xff, mtd->oobsize); 4043 } 4044 4045 ret = nand_write_page(chip, column, bytes, wbuf, 4046 oob_required, page, 4047 (ops->mode == MTD_OPS_RAW)); 4048 if (ret) 4049 break; 4050 4051 writelen -= bytes; 4052 if (!writelen) 4053 break; 4054 4055 column = 0; 4056 buf += bytes; 4057 realpage++; 4058 4059 page = realpage & chip->pagemask; 4060 /* Check, if we cross a chip boundary */ 4061 if (!page) { 4062 chipnr++; 4063 nand_deselect_target(chip); 4064 nand_select_target(chip, chipnr); 4065 } 4066 } 4067 4068 ops->retlen = ops->len - writelen; 4069 if (unlikely(oob)) 4070 ops->oobretlen = ops->ooblen; 4071 4072 err_out: 4073 nand_deselect_target(chip); 4074 return ret; 4075 } 4076 4077 /** 4078 * panic_nand_write - [MTD Interface] NAND write with ECC 4079 * @mtd: MTD device structure 4080 * @to: offset to write to 4081 * @len: number of bytes to write 4082 * @retlen: pointer to variable to store the number of written bytes 4083 * @buf: the data to write 4084 * 4085 * NAND write with ECC. Used when performing writes in interrupt context, this 4086 * may for example be called by mtdoops when writing an oops while in panic. 4087 */ 4088 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4089 size_t *retlen, const uint8_t *buf) 4090 { 4091 struct nand_chip *chip = mtd_to_nand(mtd); 4092 int chipnr = (int)(to >> chip->chip_shift); 4093 struct mtd_oob_ops ops; 4094 int ret; 4095 4096 nand_select_target(chip, chipnr); 4097 4098 /* Wait for the device to get ready */ 4099 panic_nand_wait(chip, 400); 4100 4101 memset(&ops, 0, sizeof(ops)); 4102 ops.len = len; 4103 ops.datbuf = (uint8_t *)buf; 4104 ops.mode = MTD_OPS_PLACE_OOB; 4105 4106 ret = nand_do_write_ops(chip, to, &ops); 4107 4108 *retlen = ops.retlen; 4109 return ret; 4110 } 4111 4112 /** 4113 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4114 * @mtd: MTD device structure 4115 * @to: offset to write to 4116 * @ops: oob operation description structure 4117 */ 4118 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4119 struct mtd_oob_ops *ops) 4120 { 4121 struct nand_chip *chip = mtd_to_nand(mtd); 4122 int ret; 4123 4124 ops->retlen = 0; 4125 4126 ret = nand_get_device(chip); 4127 if (ret) 4128 return ret; 4129 4130 switch (ops->mode) { 4131 case MTD_OPS_PLACE_OOB: 4132 case MTD_OPS_AUTO_OOB: 4133 case MTD_OPS_RAW: 4134 break; 4135 4136 default: 4137 goto out; 4138 } 4139 4140 if (!ops->datbuf) 4141 ret = nand_do_write_oob(chip, to, ops); 4142 else 4143 ret = nand_do_write_ops(chip, to, ops); 4144 4145 out: 4146 nand_release_device(chip); 4147 return ret; 4148 } 4149 4150 /** 4151 * nand_erase - [MTD Interface] erase block(s) 4152 * @mtd: MTD device structure 4153 * @instr: erase instruction 4154 * 4155 * Erase one ore more blocks. 4156 */ 4157 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4158 { 4159 return nand_erase_nand(mtd_to_nand(mtd), instr, 0); 4160 } 4161 4162 /** 4163 * nand_erase_nand - [INTERN] erase block(s) 4164 * @chip: NAND chip object 4165 * @instr: erase instruction 4166 * @allowbbt: allow erasing the bbt area 4167 * 4168 * Erase one ore more blocks. 4169 */ 4170 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, 4171 int allowbbt) 4172 { 4173 int page, pages_per_block, ret, chipnr; 4174 loff_t len; 4175 4176 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4177 __func__, (unsigned long long)instr->addr, 4178 (unsigned long long)instr->len); 4179 4180 if (check_offs_len(chip, instr->addr, instr->len)) 4181 return -EINVAL; 4182 4183 /* Grab the lock and see if the device is available */ 4184 ret = nand_get_device(chip); 4185 if (ret) 4186 return ret; 4187 4188 /* Shift to get first page */ 4189 page = (int)(instr->addr >> chip->page_shift); 4190 chipnr = (int)(instr->addr >> chip->chip_shift); 4191 4192 /* Calculate pages in each block */ 4193 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4194 4195 /* Select the NAND device */ 4196 nand_select_target(chip, chipnr); 4197 4198 /* Check, if it is write protected */ 4199 if (nand_check_wp(chip)) { 4200 pr_debug("%s: device is write protected!\n", 4201 __func__); 4202 ret = -EIO; 4203 goto erase_exit; 4204 } 4205 4206 /* Loop through the pages */ 4207 len = instr->len; 4208 4209 while (len) { 4210 /* Check if we have a bad block, we do not erase bad blocks! */ 4211 if (nand_block_checkbad(chip, ((loff_t) page) << 4212 chip->page_shift, allowbbt)) { 4213 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", 4214 __func__, page); 4215 ret = -EIO; 4216 goto erase_exit; 4217 } 4218 4219 /* 4220 * Invalidate the page cache, if we erase the block which 4221 * contains the current cached page. 4222 */ 4223 if (page <= chip->pagecache.page && chip->pagecache.page < 4224 (page + pages_per_block)) 4225 chip->pagecache.page = -1; 4226 4227 ret = nand_erase_op(chip, (page & chip->pagemask) >> 4228 (chip->phys_erase_shift - chip->page_shift)); 4229 if (ret) { 4230 pr_debug("%s: failed erase, page 0x%08x\n", 4231 __func__, page); 4232 instr->fail_addr = 4233 ((loff_t)page << chip->page_shift); 4234 goto erase_exit; 4235 } 4236 4237 /* Increment page address and decrement length */ 4238 len -= (1ULL << chip->phys_erase_shift); 4239 page += pages_per_block; 4240 4241 /* Check, if we cross a chip boundary */ 4242 if (len && !(page & chip->pagemask)) { 4243 chipnr++; 4244 nand_deselect_target(chip); 4245 nand_select_target(chip, chipnr); 4246 } 4247 } 4248 4249 ret = 0; 4250 erase_exit: 4251 4252 /* Deselect and wake up anyone waiting on the device */ 4253 nand_deselect_target(chip); 4254 nand_release_device(chip); 4255 4256 /* Return more or less happy */ 4257 return ret; 4258 } 4259 4260 /** 4261 * nand_sync - [MTD Interface] sync 4262 * @mtd: MTD device structure 4263 * 4264 * Sync is actually a wait for chip ready function. 4265 */ 4266 static void nand_sync(struct mtd_info *mtd) 4267 { 4268 struct nand_chip *chip = mtd_to_nand(mtd); 4269 4270 pr_debug("%s: called\n", __func__); 4271 4272 /* Grab the lock and see if the device is available */ 4273 WARN_ON(nand_get_device(chip)); 4274 /* Release it and go back */ 4275 nand_release_device(chip); 4276 } 4277 4278 /** 4279 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4280 * @mtd: MTD device structure 4281 * @offs: offset relative to mtd start 4282 */ 4283 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4284 { 4285 struct nand_chip *chip = mtd_to_nand(mtd); 4286 int chipnr = (int)(offs >> chip->chip_shift); 4287 int ret; 4288 4289 /* Select the NAND device */ 4290 ret = nand_get_device(chip); 4291 if (ret) 4292 return ret; 4293 4294 nand_select_target(chip, chipnr); 4295 4296 ret = nand_block_checkbad(chip, offs, 0); 4297 4298 nand_deselect_target(chip); 4299 nand_release_device(chip); 4300 4301 return ret; 4302 } 4303 4304 /** 4305 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4306 * @mtd: MTD device structure 4307 * @ofs: offset relative to mtd start 4308 */ 4309 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4310 { 4311 int ret; 4312 4313 ret = nand_block_isbad(mtd, ofs); 4314 if (ret) { 4315 /* If it was bad already, return success and do nothing */ 4316 if (ret > 0) 4317 return 0; 4318 return ret; 4319 } 4320 4321 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); 4322 } 4323 4324 /** 4325 * nand_suspend - [MTD Interface] Suspend the NAND flash 4326 * @mtd: MTD device structure 4327 * 4328 * Returns 0 for success or negative error code otherwise. 4329 */ 4330 static int nand_suspend(struct mtd_info *mtd) 4331 { 4332 struct nand_chip *chip = mtd_to_nand(mtd); 4333 int ret = 0; 4334 4335 mutex_lock(&chip->lock); 4336 if (chip->ops.suspend) 4337 ret = chip->ops.suspend(chip); 4338 if (!ret) 4339 chip->suspended = 1; 4340 mutex_unlock(&chip->lock); 4341 4342 return ret; 4343 } 4344 4345 /** 4346 * nand_resume - [MTD Interface] Resume the NAND flash 4347 * @mtd: MTD device structure 4348 */ 4349 static void nand_resume(struct mtd_info *mtd) 4350 { 4351 struct nand_chip *chip = mtd_to_nand(mtd); 4352 4353 mutex_lock(&chip->lock); 4354 if (chip->suspended) { 4355 if (chip->ops.resume) 4356 chip->ops.resume(chip); 4357 chip->suspended = 0; 4358 } else { 4359 pr_err("%s called for a chip which is not in suspended state\n", 4360 __func__); 4361 } 4362 mutex_unlock(&chip->lock); 4363 } 4364 4365 /** 4366 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4367 * prevent further operations 4368 * @mtd: MTD device structure 4369 */ 4370 static void nand_shutdown(struct mtd_info *mtd) 4371 { 4372 nand_suspend(mtd); 4373 } 4374 4375 /** 4376 * nand_lock - [MTD Interface] Lock the NAND flash 4377 * @mtd: MTD device structure 4378 * @ofs: offset byte address 4379 * @len: number of bytes to lock (must be a multiple of block/page size) 4380 */ 4381 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4382 { 4383 struct nand_chip *chip = mtd_to_nand(mtd); 4384 4385 if (!chip->ops.lock_area) 4386 return -ENOTSUPP; 4387 4388 return chip->ops.lock_area(chip, ofs, len); 4389 } 4390 4391 /** 4392 * nand_unlock - [MTD Interface] Unlock the NAND flash 4393 * @mtd: MTD device structure 4394 * @ofs: offset byte address 4395 * @len: number of bytes to unlock (must be a multiple of block/page size) 4396 */ 4397 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4398 { 4399 struct nand_chip *chip = mtd_to_nand(mtd); 4400 4401 if (!chip->ops.unlock_area) 4402 return -ENOTSUPP; 4403 4404 return chip->ops.unlock_area(chip, ofs, len); 4405 } 4406 4407 /* Set default functions */ 4408 static void nand_set_defaults(struct nand_chip *chip) 4409 { 4410 /* If no controller is provided, use the dummy, legacy one. */ 4411 if (!chip->controller) { 4412 chip->controller = &chip->legacy.dummy_controller; 4413 nand_controller_init(chip->controller); 4414 } 4415 4416 nand_legacy_set_defaults(chip); 4417 4418 if (!chip->buf_align) 4419 chip->buf_align = 1; 4420 } 4421 4422 /* Sanitize ONFI strings so we can safely print them */ 4423 void sanitize_string(uint8_t *s, size_t len) 4424 { 4425 ssize_t i; 4426 4427 /* Null terminate */ 4428 s[len - 1] = 0; 4429 4430 /* Remove non printable chars */ 4431 for (i = 0; i < len - 1; i++) { 4432 if (s[i] < ' ' || s[i] > 127) 4433 s[i] = '?'; 4434 } 4435 4436 /* Remove trailing spaces */ 4437 strim(s); 4438 } 4439 4440 /* 4441 * nand_id_has_period - Check if an ID string has a given wraparound period 4442 * @id_data: the ID string 4443 * @arrlen: the length of the @id_data array 4444 * @period: the period of repitition 4445 * 4446 * Check if an ID string is repeated within a given sequence of bytes at 4447 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 4448 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 4449 * if the repetition has a period of @period; otherwise, returns zero. 4450 */ 4451 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 4452 { 4453 int i, j; 4454 for (i = 0; i < period; i++) 4455 for (j = i + period; j < arrlen; j += period) 4456 if (id_data[i] != id_data[j]) 4457 return 0; 4458 return 1; 4459 } 4460 4461 /* 4462 * nand_id_len - Get the length of an ID string returned by CMD_READID 4463 * @id_data: the ID string 4464 * @arrlen: the length of the @id_data array 4465 4466 * Returns the length of the ID string, according to known wraparound/trailing 4467 * zero patterns. If no pattern exists, returns the length of the array. 4468 */ 4469 static int nand_id_len(u8 *id_data, int arrlen) 4470 { 4471 int last_nonzero, period; 4472 4473 /* Find last non-zero byte */ 4474 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 4475 if (id_data[last_nonzero]) 4476 break; 4477 4478 /* All zeros */ 4479 if (last_nonzero < 0) 4480 return 0; 4481 4482 /* Calculate wraparound period */ 4483 for (period = 1; period < arrlen; period++) 4484 if (nand_id_has_period(id_data, arrlen, period)) 4485 break; 4486 4487 /* There's a repeated pattern */ 4488 if (period < arrlen) 4489 return period; 4490 4491 /* There are trailing zeros */ 4492 if (last_nonzero < arrlen - 1) 4493 return last_nonzero + 1; 4494 4495 /* No pattern detected */ 4496 return arrlen; 4497 } 4498 4499 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 4500 static int nand_get_bits_per_cell(u8 cellinfo) 4501 { 4502 int bits; 4503 4504 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 4505 bits >>= NAND_CI_CELLTYPE_SHIFT; 4506 return bits + 1; 4507 } 4508 4509 /* 4510 * Many new NAND share similar device ID codes, which represent the size of the 4511 * chip. The rest of the parameters must be decoded according to generic or 4512 * manufacturer-specific "extended ID" decoding patterns. 4513 */ 4514 void nand_decode_ext_id(struct nand_chip *chip) 4515 { 4516 struct nand_memory_organization *memorg; 4517 struct mtd_info *mtd = nand_to_mtd(chip); 4518 int extid; 4519 u8 *id_data = chip->id.data; 4520 4521 memorg = nanddev_get_memorg(&chip->base); 4522 4523 /* The 3rd id byte holds MLC / multichip data */ 4524 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4525 /* The 4th id byte is the important one */ 4526 extid = id_data[3]; 4527 4528 /* Calc pagesize */ 4529 memorg->pagesize = 1024 << (extid & 0x03); 4530 mtd->writesize = memorg->pagesize; 4531 extid >>= 2; 4532 /* Calc oobsize */ 4533 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 4534 mtd->oobsize = memorg->oobsize; 4535 extid >>= 2; 4536 /* Calc blocksize. Blocksize is multiples of 64KiB */ 4537 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / 4538 memorg->pagesize; 4539 mtd->erasesize = (64 * 1024) << (extid & 0x03); 4540 extid >>= 2; 4541 /* Get buswidth information */ 4542 if (extid & 0x1) 4543 chip->options |= NAND_BUSWIDTH_16; 4544 } 4545 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 4546 4547 /* 4548 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 4549 * decodes a matching ID table entry and assigns the MTD size parameters for 4550 * the chip. 4551 */ 4552 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 4553 { 4554 struct mtd_info *mtd = nand_to_mtd(chip); 4555 struct nand_memory_organization *memorg; 4556 4557 memorg = nanddev_get_memorg(&chip->base); 4558 4559 memorg->pages_per_eraseblock = type->erasesize / type->pagesize; 4560 mtd->erasesize = type->erasesize; 4561 memorg->pagesize = type->pagesize; 4562 mtd->writesize = memorg->pagesize; 4563 memorg->oobsize = memorg->pagesize / 32; 4564 mtd->oobsize = memorg->oobsize; 4565 4566 /* All legacy ID NAND are small-page, SLC */ 4567 memorg->bits_per_cell = 1; 4568 } 4569 4570 /* 4571 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 4572 * heuristic patterns using various detected parameters (e.g., manufacturer, 4573 * page size, cell-type information). 4574 */ 4575 static void nand_decode_bbm_options(struct nand_chip *chip) 4576 { 4577 struct mtd_info *mtd = nand_to_mtd(chip); 4578 4579 /* Set the bad block position */ 4580 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 4581 chip->badblockpos = NAND_BBM_POS_LARGE; 4582 else 4583 chip->badblockpos = NAND_BBM_POS_SMALL; 4584 } 4585 4586 static inline bool is_full_id_nand(struct nand_flash_dev *type) 4587 { 4588 return type->id_len; 4589 } 4590 4591 static bool find_full_id_nand(struct nand_chip *chip, 4592 struct nand_flash_dev *type) 4593 { 4594 struct nand_device *base = &chip->base; 4595 struct nand_ecc_props requirements; 4596 struct mtd_info *mtd = nand_to_mtd(chip); 4597 struct nand_memory_organization *memorg; 4598 u8 *id_data = chip->id.data; 4599 4600 memorg = nanddev_get_memorg(&chip->base); 4601 4602 if (!strncmp(type->id, id_data, type->id_len)) { 4603 memorg->pagesize = type->pagesize; 4604 mtd->writesize = memorg->pagesize; 4605 memorg->pages_per_eraseblock = type->erasesize / 4606 type->pagesize; 4607 mtd->erasesize = type->erasesize; 4608 memorg->oobsize = type->oobsize; 4609 mtd->oobsize = memorg->oobsize; 4610 4611 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4612 memorg->eraseblocks_per_lun = 4613 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 4614 memorg->pagesize * 4615 memorg->pages_per_eraseblock); 4616 chip->options |= type->options; 4617 requirements.strength = NAND_ECC_STRENGTH(type); 4618 requirements.step_size = NAND_ECC_STEP(type); 4619 nanddev_set_ecc_requirements(base, &requirements); 4620 4621 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4622 if (!chip->parameters.model) 4623 return false; 4624 4625 return true; 4626 } 4627 return false; 4628 } 4629 4630 /* 4631 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 4632 * compliant and does not have a full-id or legacy-id entry in the nand_ids 4633 * table. 4634 */ 4635 static void nand_manufacturer_detect(struct nand_chip *chip) 4636 { 4637 /* 4638 * Try manufacturer detection if available and use 4639 * nand_decode_ext_id() otherwise. 4640 */ 4641 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4642 chip->manufacturer.desc->ops->detect) { 4643 struct nand_memory_organization *memorg; 4644 4645 memorg = nanddev_get_memorg(&chip->base); 4646 4647 /* The 3rd id byte holds MLC / multichip data */ 4648 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 4649 chip->manufacturer.desc->ops->detect(chip); 4650 } else { 4651 nand_decode_ext_id(chip); 4652 } 4653 } 4654 4655 /* 4656 * Manufacturer initialization. This function is called for all NANDs including 4657 * ONFI and JEDEC compliant ones. 4658 * Manufacturer drivers should put all their specific initialization code in 4659 * their ->init() hook. 4660 */ 4661 static int nand_manufacturer_init(struct nand_chip *chip) 4662 { 4663 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 4664 !chip->manufacturer.desc->ops->init) 4665 return 0; 4666 4667 return chip->manufacturer.desc->ops->init(chip); 4668 } 4669 4670 /* 4671 * Manufacturer cleanup. This function is called for all NANDs including 4672 * ONFI and JEDEC compliant ones. 4673 * Manufacturer drivers should put all their specific cleanup code in their 4674 * ->cleanup() hook. 4675 */ 4676 static void nand_manufacturer_cleanup(struct nand_chip *chip) 4677 { 4678 /* Release manufacturer private data */ 4679 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4680 chip->manufacturer.desc->ops->cleanup) 4681 chip->manufacturer.desc->ops->cleanup(chip); 4682 } 4683 4684 static const char * 4685 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc) 4686 { 4687 return manufacturer_desc ? manufacturer_desc->name : "Unknown"; 4688 } 4689 4690 /* 4691 * Get the flash and manufacturer id and lookup if the type is supported. 4692 */ 4693 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 4694 { 4695 const struct nand_manufacturer_desc *manufacturer_desc; 4696 struct mtd_info *mtd = nand_to_mtd(chip); 4697 struct nand_memory_organization *memorg; 4698 int busw, ret; 4699 u8 *id_data = chip->id.data; 4700 u8 maf_id, dev_id; 4701 u64 targetsize; 4702 4703 /* 4704 * Let's start by initializing memorg fields that might be left 4705 * unassigned by the ID-based detection logic. 4706 */ 4707 memorg = nanddev_get_memorg(&chip->base); 4708 memorg->planes_per_lun = 1; 4709 memorg->luns_per_target = 1; 4710 4711 /* 4712 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 4713 * after power-up. 4714 */ 4715 ret = nand_reset(chip, 0); 4716 if (ret) 4717 return ret; 4718 4719 /* Select the device */ 4720 nand_select_target(chip, 0); 4721 4722 /* Send the command for reading device ID */ 4723 ret = nand_readid_op(chip, 0, id_data, 2); 4724 if (ret) 4725 return ret; 4726 4727 /* Read manufacturer and device IDs */ 4728 maf_id = id_data[0]; 4729 dev_id = id_data[1]; 4730 4731 /* 4732 * Try again to make sure, as some systems the bus-hold or other 4733 * interface concerns can cause random data which looks like a 4734 * possibly credible NAND flash to appear. If the two results do 4735 * not match, ignore the device completely. 4736 */ 4737 4738 /* Read entire ID string */ 4739 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 4740 if (ret) 4741 return ret; 4742 4743 if (id_data[0] != maf_id || id_data[1] != dev_id) { 4744 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 4745 maf_id, dev_id, id_data[0], id_data[1]); 4746 return -ENODEV; 4747 } 4748 4749 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 4750 4751 /* Try to identify manufacturer */ 4752 manufacturer_desc = nand_get_manufacturer_desc(maf_id); 4753 chip->manufacturer.desc = manufacturer_desc; 4754 4755 if (!type) 4756 type = nand_flash_ids; 4757 4758 /* 4759 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 4760 * override it. 4761 * This is required to make sure initial NAND bus width set by the 4762 * NAND controller driver is coherent with the real NAND bus width 4763 * (extracted by auto-detection code). 4764 */ 4765 busw = chip->options & NAND_BUSWIDTH_16; 4766 4767 /* 4768 * The flag is only set (never cleared), reset it to its default value 4769 * before starting auto-detection. 4770 */ 4771 chip->options &= ~NAND_BUSWIDTH_16; 4772 4773 for (; type->name != NULL; type++) { 4774 if (is_full_id_nand(type)) { 4775 if (find_full_id_nand(chip, type)) 4776 goto ident_done; 4777 } else if (dev_id == type->dev_id) { 4778 break; 4779 } 4780 } 4781 4782 if (!type->name || !type->pagesize) { 4783 /* Check if the chip is ONFI compliant */ 4784 ret = nand_onfi_detect(chip); 4785 if (ret < 0) 4786 return ret; 4787 else if (ret) 4788 goto ident_done; 4789 4790 /* Check if the chip is JEDEC compliant */ 4791 ret = nand_jedec_detect(chip); 4792 if (ret < 0) 4793 return ret; 4794 else if (ret) 4795 goto ident_done; 4796 } 4797 4798 if (!type->name) 4799 return -ENODEV; 4800 4801 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4802 if (!chip->parameters.model) 4803 return -ENOMEM; 4804 4805 if (!type->pagesize) 4806 nand_manufacturer_detect(chip); 4807 else 4808 nand_decode_id(chip, type); 4809 4810 /* Get chip options */ 4811 chip->options |= type->options; 4812 4813 memorg->eraseblocks_per_lun = 4814 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 4815 memorg->pagesize * 4816 memorg->pages_per_eraseblock); 4817 4818 ident_done: 4819 if (!mtd->name) 4820 mtd->name = chip->parameters.model; 4821 4822 if (chip->options & NAND_BUSWIDTH_AUTO) { 4823 WARN_ON(busw & NAND_BUSWIDTH_16); 4824 nand_set_defaults(chip); 4825 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 4826 /* 4827 * Check, if buswidth is correct. Hardware drivers should set 4828 * chip correct! 4829 */ 4830 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4831 maf_id, dev_id); 4832 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 4833 mtd->name); 4834 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 4835 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 4836 ret = -EINVAL; 4837 4838 goto free_detect_allocation; 4839 } 4840 4841 nand_decode_bbm_options(chip); 4842 4843 /* Calculate the address shift from the page size */ 4844 chip->page_shift = ffs(mtd->writesize) - 1; 4845 /* Convert chipsize to number of pages per chip -1 */ 4846 targetsize = nanddev_target_size(&chip->base); 4847 chip->pagemask = (targetsize >> chip->page_shift) - 1; 4848 4849 chip->bbt_erase_shift = chip->phys_erase_shift = 4850 ffs(mtd->erasesize) - 1; 4851 if (targetsize & 0xffffffff) 4852 chip->chip_shift = ffs((unsigned)targetsize) - 1; 4853 else { 4854 chip->chip_shift = ffs((unsigned)(targetsize >> 32)); 4855 chip->chip_shift += 32 - 1; 4856 } 4857 4858 if (chip->chip_shift - chip->page_shift > 16) 4859 chip->options |= NAND_ROW_ADDR_3; 4860 4861 chip->badblockbits = 8; 4862 4863 nand_legacy_adjust_cmdfunc(chip); 4864 4865 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4866 maf_id, dev_id); 4867 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 4868 chip->parameters.model); 4869 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 4870 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 4871 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 4872 return 0; 4873 4874 free_detect_allocation: 4875 kfree(chip->parameters.model); 4876 4877 return ret; 4878 } 4879 4880 static enum nand_ecc_engine_type 4881 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np) 4882 { 4883 enum nand_ecc_legacy_mode { 4884 NAND_ECC_INVALID, 4885 NAND_ECC_NONE, 4886 NAND_ECC_SOFT, 4887 NAND_ECC_SOFT_BCH, 4888 NAND_ECC_HW, 4889 NAND_ECC_HW_SYNDROME, 4890 NAND_ECC_ON_DIE, 4891 }; 4892 const char * const nand_ecc_legacy_modes[] = { 4893 [NAND_ECC_NONE] = "none", 4894 [NAND_ECC_SOFT] = "soft", 4895 [NAND_ECC_SOFT_BCH] = "soft_bch", 4896 [NAND_ECC_HW] = "hw", 4897 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 4898 [NAND_ECC_ON_DIE] = "on-die", 4899 }; 4900 enum nand_ecc_legacy_mode eng_type; 4901 const char *pm; 4902 int err; 4903 4904 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4905 if (err) 4906 return NAND_ECC_ENGINE_TYPE_INVALID; 4907 4908 for (eng_type = NAND_ECC_NONE; 4909 eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) { 4910 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) { 4911 switch (eng_type) { 4912 case NAND_ECC_NONE: 4913 return NAND_ECC_ENGINE_TYPE_NONE; 4914 case NAND_ECC_SOFT: 4915 case NAND_ECC_SOFT_BCH: 4916 return NAND_ECC_ENGINE_TYPE_SOFT; 4917 case NAND_ECC_HW: 4918 case NAND_ECC_HW_SYNDROME: 4919 return NAND_ECC_ENGINE_TYPE_ON_HOST; 4920 case NAND_ECC_ON_DIE: 4921 return NAND_ECC_ENGINE_TYPE_ON_DIE; 4922 default: 4923 break; 4924 } 4925 } 4926 } 4927 4928 return NAND_ECC_ENGINE_TYPE_INVALID; 4929 } 4930 4931 static enum nand_ecc_placement 4932 of_get_rawnand_ecc_placement_legacy(struct device_node *np) 4933 { 4934 const char *pm; 4935 int err; 4936 4937 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4938 if (!err) { 4939 if (!strcasecmp(pm, "hw_syndrome")) 4940 return NAND_ECC_PLACEMENT_INTERLEAVED; 4941 } 4942 4943 return NAND_ECC_PLACEMENT_UNKNOWN; 4944 } 4945 4946 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np) 4947 { 4948 const char *pm; 4949 int err; 4950 4951 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4952 if (!err) { 4953 if (!strcasecmp(pm, "soft")) 4954 return NAND_ECC_ALGO_HAMMING; 4955 else if (!strcasecmp(pm, "soft_bch")) 4956 return NAND_ECC_ALGO_BCH; 4957 } 4958 4959 return NAND_ECC_ALGO_UNKNOWN; 4960 } 4961 4962 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip) 4963 { 4964 struct device_node *dn = nand_get_flash_node(chip); 4965 struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf; 4966 4967 if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 4968 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn); 4969 4970 if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN) 4971 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn); 4972 4973 if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN) 4974 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn); 4975 } 4976 4977 static int of_get_nand_bus_width(struct device_node *np) 4978 { 4979 u32 val; 4980 4981 if (of_property_read_u32(np, "nand-bus-width", &val)) 4982 return 8; 4983 4984 switch (val) { 4985 case 8: 4986 case 16: 4987 return val; 4988 default: 4989 return -EIO; 4990 } 4991 } 4992 4993 static bool of_get_nand_on_flash_bbt(struct device_node *np) 4994 { 4995 return of_property_read_bool(np, "nand-on-flash-bbt"); 4996 } 4997 4998 static int rawnand_dt_init(struct nand_chip *chip) 4999 { 5000 struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip)); 5001 struct device_node *dn = nand_get_flash_node(chip); 5002 5003 if (!dn) 5004 return 0; 5005 5006 if (of_get_nand_bus_width(dn) == 16) 5007 chip->options |= NAND_BUSWIDTH_16; 5008 5009 if (of_property_read_bool(dn, "nand-is-boot-medium")) 5010 chip->options |= NAND_IS_BOOT_MEDIUM; 5011 5012 if (of_get_nand_on_flash_bbt(dn)) 5013 chip->bbt_options |= NAND_BBT_USE_FLASH; 5014 5015 of_get_nand_ecc_user_config(nand); 5016 of_get_nand_ecc_legacy_user_config(chip); 5017 5018 /* 5019 * If neither the user nor the NAND controller have requested a specific 5020 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST. 5021 */ 5022 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 5023 5024 /* 5025 * Use the user requested engine type, unless there is none, in this 5026 * case default to the NAND controller choice, otherwise fallback to 5027 * the raw NAND default one. 5028 */ 5029 if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID) 5030 chip->ecc.engine_type = nand->ecc.user_conf.engine_type; 5031 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 5032 chip->ecc.engine_type = nand->ecc.defaults.engine_type; 5033 5034 chip->ecc.placement = nand->ecc.user_conf.placement; 5035 chip->ecc.algo = nand->ecc.user_conf.algo; 5036 chip->ecc.strength = nand->ecc.user_conf.strength; 5037 chip->ecc.size = nand->ecc.user_conf.step_size; 5038 5039 return 0; 5040 } 5041 5042 /** 5043 * nand_scan_ident - Scan for the NAND device 5044 * @chip: NAND chip object 5045 * @maxchips: number of chips to scan for 5046 * @table: alternative NAND ID table 5047 * 5048 * This is the first phase of the normal nand_scan() function. It reads the 5049 * flash ID and sets up MTD fields accordingly. 5050 * 5051 * This helper used to be called directly from controller drivers that needed 5052 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 5053 * prevented dynamic allocations during this phase which was unconvenient and 5054 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 5055 */ 5056 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, 5057 struct nand_flash_dev *table) 5058 { 5059 struct mtd_info *mtd = nand_to_mtd(chip); 5060 struct nand_memory_organization *memorg; 5061 int nand_maf_id, nand_dev_id; 5062 unsigned int i; 5063 int ret; 5064 5065 memorg = nanddev_get_memorg(&chip->base); 5066 5067 /* Assume all dies are deselected when we enter nand_scan_ident(). */ 5068 chip->cur_cs = -1; 5069 5070 mutex_init(&chip->lock); 5071 5072 /* Enforce the right timings for reset/detection */ 5073 chip->current_interface_config = nand_get_reset_interface_config(); 5074 5075 ret = rawnand_dt_init(chip); 5076 if (ret) 5077 return ret; 5078 5079 if (!mtd->name && mtd->dev.parent) 5080 mtd->name = dev_name(mtd->dev.parent); 5081 5082 /* Set the default functions */ 5083 nand_set_defaults(chip); 5084 5085 ret = nand_legacy_check_hooks(chip); 5086 if (ret) 5087 return ret; 5088 5089 memorg->ntargets = maxchips; 5090 5091 /* Read the flash type */ 5092 ret = nand_detect(chip, table); 5093 if (ret) { 5094 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 5095 pr_warn("No NAND device found\n"); 5096 nand_deselect_target(chip); 5097 return ret; 5098 } 5099 5100 nand_maf_id = chip->id.data[0]; 5101 nand_dev_id = chip->id.data[1]; 5102 5103 nand_deselect_target(chip); 5104 5105 /* Check for a chip array */ 5106 for (i = 1; i < maxchips; i++) { 5107 u8 id[2]; 5108 5109 /* See comment in nand_get_flash_type for reset */ 5110 ret = nand_reset(chip, i); 5111 if (ret) 5112 break; 5113 5114 nand_select_target(chip, i); 5115 /* Send the command for reading device ID */ 5116 ret = nand_readid_op(chip, 0, id, sizeof(id)); 5117 if (ret) 5118 break; 5119 /* Read manufacturer and device IDs */ 5120 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5121 nand_deselect_target(chip); 5122 break; 5123 } 5124 nand_deselect_target(chip); 5125 } 5126 if (i > 1) 5127 pr_info("%d chips detected\n", i); 5128 5129 /* Store the number of chips and calc total size for mtd */ 5130 memorg->ntargets = i; 5131 mtd->size = i * nanddev_target_size(&chip->base); 5132 5133 return 0; 5134 } 5135 5136 static void nand_scan_ident_cleanup(struct nand_chip *chip) 5137 { 5138 kfree(chip->parameters.model); 5139 kfree(chip->parameters.onfi); 5140 } 5141 5142 int rawnand_sw_hamming_init(struct nand_chip *chip) 5143 { 5144 struct nand_ecc_sw_hamming_conf *engine_conf; 5145 struct nand_device *base = &chip->base; 5146 int ret; 5147 5148 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5149 base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING; 5150 base->ecc.user_conf.strength = chip->ecc.strength; 5151 base->ecc.user_conf.step_size = chip->ecc.size; 5152 5153 ret = nand_ecc_sw_hamming_init_ctx(base); 5154 if (ret) 5155 return ret; 5156 5157 engine_conf = base->ecc.ctx.priv; 5158 5159 if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER) 5160 engine_conf->sm_order = true; 5161 5162 chip->ecc.size = base->ecc.ctx.conf.step_size; 5163 chip->ecc.strength = base->ecc.ctx.conf.strength; 5164 chip->ecc.total = base->ecc.ctx.total; 5165 chip->ecc.steps = engine_conf->nsteps; 5166 chip->ecc.bytes = engine_conf->code_size; 5167 5168 return 0; 5169 } 5170 EXPORT_SYMBOL(rawnand_sw_hamming_init); 5171 5172 int rawnand_sw_hamming_calculate(struct nand_chip *chip, 5173 const unsigned char *buf, 5174 unsigned char *code) 5175 { 5176 struct nand_device *base = &chip->base; 5177 5178 return nand_ecc_sw_hamming_calculate(base, buf, code); 5179 } 5180 EXPORT_SYMBOL(rawnand_sw_hamming_calculate); 5181 5182 int rawnand_sw_hamming_correct(struct nand_chip *chip, 5183 unsigned char *buf, 5184 unsigned char *read_ecc, 5185 unsigned char *calc_ecc) 5186 { 5187 struct nand_device *base = &chip->base; 5188 5189 return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc); 5190 } 5191 EXPORT_SYMBOL(rawnand_sw_hamming_correct); 5192 5193 void rawnand_sw_hamming_cleanup(struct nand_chip *chip) 5194 { 5195 struct nand_device *base = &chip->base; 5196 5197 nand_ecc_sw_hamming_cleanup_ctx(base); 5198 } 5199 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup); 5200 5201 int rawnand_sw_bch_init(struct nand_chip *chip) 5202 { 5203 struct nand_device *base = &chip->base; 5204 struct nand_ecc_sw_bch_conf *engine_conf; 5205 int ret; 5206 5207 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5208 base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH; 5209 base->ecc.user_conf.step_size = chip->ecc.size; 5210 base->ecc.user_conf.strength = chip->ecc.strength; 5211 5212 ret = nand_ecc_sw_bch_init_ctx(base); 5213 if (ret) 5214 return ret; 5215 5216 engine_conf = base->ecc.ctx.priv; 5217 5218 chip->ecc.size = base->ecc.ctx.conf.step_size; 5219 chip->ecc.strength = base->ecc.ctx.conf.strength; 5220 chip->ecc.total = base->ecc.ctx.total; 5221 chip->ecc.steps = engine_conf->nsteps; 5222 chip->ecc.bytes = engine_conf->code_size; 5223 5224 return 0; 5225 } 5226 EXPORT_SYMBOL(rawnand_sw_bch_init); 5227 5228 static int rawnand_sw_bch_calculate(struct nand_chip *chip, 5229 const unsigned char *buf, 5230 unsigned char *code) 5231 { 5232 struct nand_device *base = &chip->base; 5233 5234 return nand_ecc_sw_bch_calculate(base, buf, code); 5235 } 5236 5237 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf, 5238 unsigned char *read_ecc, unsigned char *calc_ecc) 5239 { 5240 struct nand_device *base = &chip->base; 5241 5242 return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc); 5243 } 5244 EXPORT_SYMBOL(rawnand_sw_bch_correct); 5245 5246 void rawnand_sw_bch_cleanup(struct nand_chip *chip) 5247 { 5248 struct nand_device *base = &chip->base; 5249 5250 nand_ecc_sw_bch_cleanup_ctx(base); 5251 } 5252 EXPORT_SYMBOL(rawnand_sw_bch_cleanup); 5253 5254 static int nand_set_ecc_on_host_ops(struct nand_chip *chip) 5255 { 5256 struct nand_ecc_ctrl *ecc = &chip->ecc; 5257 5258 switch (ecc->placement) { 5259 case NAND_ECC_PLACEMENT_UNKNOWN: 5260 case NAND_ECC_PLACEMENT_OOB: 5261 /* Use standard hwecc read page function? */ 5262 if (!ecc->read_page) 5263 ecc->read_page = nand_read_page_hwecc; 5264 if (!ecc->write_page) 5265 ecc->write_page = nand_write_page_hwecc; 5266 if (!ecc->read_page_raw) 5267 ecc->read_page_raw = nand_read_page_raw; 5268 if (!ecc->write_page_raw) 5269 ecc->write_page_raw = nand_write_page_raw; 5270 if (!ecc->read_oob) 5271 ecc->read_oob = nand_read_oob_std; 5272 if (!ecc->write_oob) 5273 ecc->write_oob = nand_write_oob_std; 5274 if (!ecc->read_subpage) 5275 ecc->read_subpage = nand_read_subpage; 5276 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 5277 ecc->write_subpage = nand_write_subpage_hwecc; 5278 fallthrough; 5279 5280 case NAND_ECC_PLACEMENT_INTERLEAVED: 5281 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 5282 (!ecc->read_page || 5283 ecc->read_page == nand_read_page_hwecc || 5284 !ecc->write_page || 5285 ecc->write_page == nand_write_page_hwecc)) { 5286 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5287 return -EINVAL; 5288 } 5289 /* Use standard syndrome read/write page function? */ 5290 if (!ecc->read_page) 5291 ecc->read_page = nand_read_page_syndrome; 5292 if (!ecc->write_page) 5293 ecc->write_page = nand_write_page_syndrome; 5294 if (!ecc->read_page_raw) 5295 ecc->read_page_raw = nand_read_page_raw_syndrome; 5296 if (!ecc->write_page_raw) 5297 ecc->write_page_raw = nand_write_page_raw_syndrome; 5298 if (!ecc->read_oob) 5299 ecc->read_oob = nand_read_oob_syndrome; 5300 if (!ecc->write_oob) 5301 ecc->write_oob = nand_write_oob_syndrome; 5302 break; 5303 5304 default: 5305 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n", 5306 ecc->placement); 5307 return -EINVAL; 5308 } 5309 5310 return 0; 5311 } 5312 5313 static int nand_set_ecc_soft_ops(struct nand_chip *chip) 5314 { 5315 struct mtd_info *mtd = nand_to_mtd(chip); 5316 struct nand_device *nanddev = mtd_to_nanddev(mtd); 5317 struct nand_ecc_ctrl *ecc = &chip->ecc; 5318 int ret; 5319 5320 if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT)) 5321 return -EINVAL; 5322 5323 switch (ecc->algo) { 5324 case NAND_ECC_ALGO_HAMMING: 5325 ecc->calculate = rawnand_sw_hamming_calculate; 5326 ecc->correct = rawnand_sw_hamming_correct; 5327 ecc->read_page = nand_read_page_swecc; 5328 ecc->read_subpage = nand_read_subpage; 5329 ecc->write_page = nand_write_page_swecc; 5330 if (!ecc->read_page_raw) 5331 ecc->read_page_raw = nand_read_page_raw; 5332 if (!ecc->write_page_raw) 5333 ecc->write_page_raw = nand_write_page_raw; 5334 ecc->read_oob = nand_read_oob_std; 5335 ecc->write_oob = nand_write_oob_std; 5336 if (!ecc->size) 5337 ecc->size = 256; 5338 ecc->bytes = 3; 5339 ecc->strength = 1; 5340 5341 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) 5342 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 5343 5344 ret = rawnand_sw_hamming_init(chip); 5345 if (ret) { 5346 WARN(1, "Hamming ECC initialization failed!\n"); 5347 return ret; 5348 } 5349 5350 return 0; 5351 case NAND_ECC_ALGO_BCH: 5352 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { 5353 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); 5354 return -EINVAL; 5355 } 5356 ecc->calculate = rawnand_sw_bch_calculate; 5357 ecc->correct = rawnand_sw_bch_correct; 5358 ecc->read_page = nand_read_page_swecc; 5359 ecc->read_subpage = nand_read_subpage; 5360 ecc->write_page = nand_write_page_swecc; 5361 if (!ecc->read_page_raw) 5362 ecc->read_page_raw = nand_read_page_raw; 5363 if (!ecc->write_page_raw) 5364 ecc->write_page_raw = nand_write_page_raw; 5365 ecc->read_oob = nand_read_oob_std; 5366 ecc->write_oob = nand_write_oob_std; 5367 5368 /* 5369 * We can only maximize ECC config when the default layout is 5370 * used, otherwise we don't know how many bytes can really be 5371 * used. 5372 */ 5373 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH && 5374 mtd->ooblayout != nand_get_large_page_ooblayout()) 5375 nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH; 5376 5377 ret = rawnand_sw_bch_init(chip); 5378 if (ret) { 5379 WARN(1, "BCH ECC initialization failed!\n"); 5380 return ret; 5381 } 5382 5383 return 0; 5384 default: 5385 WARN(1, "Unsupported ECC algorithm!\n"); 5386 return -EINVAL; 5387 } 5388 } 5389 5390 /** 5391 * nand_check_ecc_caps - check the sanity of preset ECC settings 5392 * @chip: nand chip info structure 5393 * @caps: ECC caps info structure 5394 * @oobavail: OOB size that the ECC engine can use 5395 * 5396 * When ECC step size and strength are already set, check if they are supported 5397 * by the controller and the calculated ECC bytes fit within the chip's OOB. 5398 * On success, the calculated ECC bytes is set. 5399 */ 5400 static int 5401 nand_check_ecc_caps(struct nand_chip *chip, 5402 const struct nand_ecc_caps *caps, int oobavail) 5403 { 5404 struct mtd_info *mtd = nand_to_mtd(chip); 5405 const struct nand_ecc_step_info *stepinfo; 5406 int preset_step = chip->ecc.size; 5407 int preset_strength = chip->ecc.strength; 5408 int ecc_bytes, nsteps = mtd->writesize / preset_step; 5409 int i, j; 5410 5411 for (i = 0; i < caps->nstepinfos; i++) { 5412 stepinfo = &caps->stepinfos[i]; 5413 5414 if (stepinfo->stepsize != preset_step) 5415 continue; 5416 5417 for (j = 0; j < stepinfo->nstrengths; j++) { 5418 if (stepinfo->strengths[j] != preset_strength) 5419 continue; 5420 5421 ecc_bytes = caps->calc_ecc_bytes(preset_step, 5422 preset_strength); 5423 if (WARN_ON_ONCE(ecc_bytes < 0)) 5424 return ecc_bytes; 5425 5426 if (ecc_bytes * nsteps > oobavail) { 5427 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 5428 preset_step, preset_strength); 5429 return -ENOSPC; 5430 } 5431 5432 chip->ecc.bytes = ecc_bytes; 5433 5434 return 0; 5435 } 5436 } 5437 5438 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 5439 preset_step, preset_strength); 5440 5441 return -ENOTSUPP; 5442 } 5443 5444 /** 5445 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 5446 * @chip: nand chip info structure 5447 * @caps: ECC engine caps info structure 5448 * @oobavail: OOB size that the ECC engine can use 5449 * 5450 * If a chip's ECC requirement is provided, try to meet it with the least 5451 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 5452 * On success, the chosen ECC settings are set. 5453 */ 5454 static int 5455 nand_match_ecc_req(struct nand_chip *chip, 5456 const struct nand_ecc_caps *caps, int oobavail) 5457 { 5458 const struct nand_ecc_props *requirements = 5459 nanddev_get_ecc_requirements(&chip->base); 5460 struct mtd_info *mtd = nand_to_mtd(chip); 5461 const struct nand_ecc_step_info *stepinfo; 5462 int req_step = requirements->step_size; 5463 int req_strength = requirements->strength; 5464 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 5465 int best_step, best_strength, best_ecc_bytes; 5466 int best_ecc_bytes_total = INT_MAX; 5467 int i, j; 5468 5469 /* No information provided by the NAND chip */ 5470 if (!req_step || !req_strength) 5471 return -ENOTSUPP; 5472 5473 /* number of correctable bits the chip requires in a page */ 5474 req_corr = mtd->writesize / req_step * req_strength; 5475 5476 for (i = 0; i < caps->nstepinfos; i++) { 5477 stepinfo = &caps->stepinfos[i]; 5478 step_size = stepinfo->stepsize; 5479 5480 for (j = 0; j < stepinfo->nstrengths; j++) { 5481 strength = stepinfo->strengths[j]; 5482 5483 /* 5484 * If both step size and strength are smaller than the 5485 * chip's requirement, it is not easy to compare the 5486 * resulted reliability. 5487 */ 5488 if (step_size < req_step && strength < req_strength) 5489 continue; 5490 5491 if (mtd->writesize % step_size) 5492 continue; 5493 5494 nsteps = mtd->writesize / step_size; 5495 5496 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5497 if (WARN_ON_ONCE(ecc_bytes < 0)) 5498 continue; 5499 ecc_bytes_total = ecc_bytes * nsteps; 5500 5501 if (ecc_bytes_total > oobavail || 5502 strength * nsteps < req_corr) 5503 continue; 5504 5505 /* 5506 * We assume the best is to meet the chip's requrement 5507 * with the least number of ECC bytes. 5508 */ 5509 if (ecc_bytes_total < best_ecc_bytes_total) { 5510 best_ecc_bytes_total = ecc_bytes_total; 5511 best_step = step_size; 5512 best_strength = strength; 5513 best_ecc_bytes = ecc_bytes; 5514 } 5515 } 5516 } 5517 5518 if (best_ecc_bytes_total == INT_MAX) 5519 return -ENOTSUPP; 5520 5521 chip->ecc.size = best_step; 5522 chip->ecc.strength = best_strength; 5523 chip->ecc.bytes = best_ecc_bytes; 5524 5525 return 0; 5526 } 5527 5528 /** 5529 * nand_maximize_ecc - choose the max ECC strength available 5530 * @chip: nand chip info structure 5531 * @caps: ECC engine caps info structure 5532 * @oobavail: OOB size that the ECC engine can use 5533 * 5534 * Choose the max ECC strength that is supported on the controller, and can fit 5535 * within the chip's OOB. On success, the chosen ECC settings are set. 5536 */ 5537 static int 5538 nand_maximize_ecc(struct nand_chip *chip, 5539 const struct nand_ecc_caps *caps, int oobavail) 5540 { 5541 struct mtd_info *mtd = nand_to_mtd(chip); 5542 const struct nand_ecc_step_info *stepinfo; 5543 int step_size, strength, nsteps, ecc_bytes, corr; 5544 int best_corr = 0; 5545 int best_step = 0; 5546 int best_strength, best_ecc_bytes; 5547 int i, j; 5548 5549 for (i = 0; i < caps->nstepinfos; i++) { 5550 stepinfo = &caps->stepinfos[i]; 5551 step_size = stepinfo->stepsize; 5552 5553 /* If chip->ecc.size is already set, respect it */ 5554 if (chip->ecc.size && step_size != chip->ecc.size) 5555 continue; 5556 5557 for (j = 0; j < stepinfo->nstrengths; j++) { 5558 strength = stepinfo->strengths[j]; 5559 5560 if (mtd->writesize % step_size) 5561 continue; 5562 5563 nsteps = mtd->writesize / step_size; 5564 5565 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5566 if (WARN_ON_ONCE(ecc_bytes < 0)) 5567 continue; 5568 5569 if (ecc_bytes * nsteps > oobavail) 5570 continue; 5571 5572 corr = strength * nsteps; 5573 5574 /* 5575 * If the number of correctable bits is the same, 5576 * bigger step_size has more reliability. 5577 */ 5578 if (corr > best_corr || 5579 (corr == best_corr && step_size > best_step)) { 5580 best_corr = corr; 5581 best_step = step_size; 5582 best_strength = strength; 5583 best_ecc_bytes = ecc_bytes; 5584 } 5585 } 5586 } 5587 5588 if (!best_corr) 5589 return -ENOTSUPP; 5590 5591 chip->ecc.size = best_step; 5592 chip->ecc.strength = best_strength; 5593 chip->ecc.bytes = best_ecc_bytes; 5594 5595 return 0; 5596 } 5597 5598 /** 5599 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 5600 * @chip: nand chip info structure 5601 * @caps: ECC engine caps info structure 5602 * @oobavail: OOB size that the ECC engine can use 5603 * 5604 * Choose the ECC configuration according to following logic. 5605 * 5606 * 1. If both ECC step size and ECC strength are already set (usually by DT) 5607 * then check if it is supported by this controller. 5608 * 2. If the user provided the nand-ecc-maximize property, then select maximum 5609 * ECC strength. 5610 * 3. Otherwise, try to match the ECC step size and ECC strength closest 5611 * to the chip's requirement. If available OOB size can't fit the chip 5612 * requirement then fallback to the maximum ECC step size and ECC strength. 5613 * 5614 * On success, the chosen ECC settings are set. 5615 */ 5616 int nand_ecc_choose_conf(struct nand_chip *chip, 5617 const struct nand_ecc_caps *caps, int oobavail) 5618 { 5619 struct mtd_info *mtd = nand_to_mtd(chip); 5620 struct nand_device *nanddev = mtd_to_nanddev(mtd); 5621 5622 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 5623 return -EINVAL; 5624 5625 if (chip->ecc.size && chip->ecc.strength) 5626 return nand_check_ecc_caps(chip, caps, oobavail); 5627 5628 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) 5629 return nand_maximize_ecc(chip, caps, oobavail); 5630 5631 if (!nand_match_ecc_req(chip, caps, oobavail)) 5632 return 0; 5633 5634 return nand_maximize_ecc(chip, caps, oobavail); 5635 } 5636 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 5637 5638 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) 5639 { 5640 struct nand_chip *chip = container_of(nand, struct nand_chip, 5641 base); 5642 unsigned int eb = nanddev_pos_to_row(nand, pos); 5643 int ret; 5644 5645 eb >>= nand->rowconv.eraseblock_addr_shift; 5646 5647 nand_select_target(chip, pos->target); 5648 ret = nand_erase_op(chip, eb); 5649 nand_deselect_target(chip); 5650 5651 return ret; 5652 } 5653 5654 static int rawnand_markbad(struct nand_device *nand, 5655 const struct nand_pos *pos) 5656 { 5657 struct nand_chip *chip = container_of(nand, struct nand_chip, 5658 base); 5659 5660 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 5661 } 5662 5663 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) 5664 { 5665 struct nand_chip *chip = container_of(nand, struct nand_chip, 5666 base); 5667 int ret; 5668 5669 nand_select_target(chip, pos->target); 5670 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 5671 nand_deselect_target(chip); 5672 5673 return ret; 5674 } 5675 5676 static const struct nand_ops rawnand_ops = { 5677 .erase = rawnand_erase, 5678 .markbad = rawnand_markbad, 5679 .isbad = rawnand_isbad, 5680 }; 5681 5682 /** 5683 * nand_scan_tail - Scan for the NAND device 5684 * @chip: NAND chip object 5685 * 5686 * This is the second phase of the normal nand_scan() function. It fills out 5687 * all the uninitialized function pointers with the defaults and scans for a 5688 * bad block table if appropriate. 5689 */ 5690 static int nand_scan_tail(struct nand_chip *chip) 5691 { 5692 struct mtd_info *mtd = nand_to_mtd(chip); 5693 struct nand_ecc_ctrl *ecc = &chip->ecc; 5694 int ret, i; 5695 5696 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 5697 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 5698 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 5699 return -EINVAL; 5700 } 5701 5702 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 5703 if (!chip->data_buf) 5704 return -ENOMEM; 5705 5706 /* 5707 * FIXME: some NAND manufacturer drivers expect the first die to be 5708 * selected when manufacturer->init() is called. They should be fixed 5709 * to explictly select the relevant die when interacting with the NAND 5710 * chip. 5711 */ 5712 nand_select_target(chip, 0); 5713 ret = nand_manufacturer_init(chip); 5714 nand_deselect_target(chip); 5715 if (ret) 5716 goto err_free_buf; 5717 5718 /* Set the internal oob buffer location, just after the page data */ 5719 chip->oob_poi = chip->data_buf + mtd->writesize; 5720 5721 /* 5722 * If no default placement scheme is given, select an appropriate one. 5723 */ 5724 if (!mtd->ooblayout && 5725 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 5726 ecc->algo == NAND_ECC_ALGO_BCH) && 5727 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 5728 ecc->algo == NAND_ECC_ALGO_HAMMING)) { 5729 switch (mtd->oobsize) { 5730 case 8: 5731 case 16: 5732 mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout()); 5733 break; 5734 case 64: 5735 case 128: 5736 mtd_set_ooblayout(mtd, 5737 nand_get_large_page_hamming_ooblayout()); 5738 break; 5739 default: 5740 /* 5741 * Expose the whole OOB area to users if ECC_NONE 5742 * is passed. We could do that for all kind of 5743 * ->oobsize, but we must keep the old large/small 5744 * page with ECC layout when ->oobsize <= 128 for 5745 * compatibility reasons. 5746 */ 5747 if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) { 5748 mtd_set_ooblayout(mtd, 5749 nand_get_large_page_ooblayout()); 5750 break; 5751 } 5752 5753 WARN(1, "No oob scheme defined for oobsize %d\n", 5754 mtd->oobsize); 5755 ret = -EINVAL; 5756 goto err_nand_manuf_cleanup; 5757 } 5758 } 5759 5760 /* 5761 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 5762 * selected and we have 256 byte pagesize fallback to software ECC 5763 */ 5764 5765 switch (ecc->engine_type) { 5766 case NAND_ECC_ENGINE_TYPE_ON_HOST: 5767 ret = nand_set_ecc_on_host_ops(chip); 5768 if (ret) 5769 goto err_nand_manuf_cleanup; 5770 5771 if (mtd->writesize >= ecc->size) { 5772 if (!ecc->strength) { 5773 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 5774 ret = -EINVAL; 5775 goto err_nand_manuf_cleanup; 5776 } 5777 break; 5778 } 5779 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 5780 ecc->size, mtd->writesize); 5781 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5782 ecc->algo = NAND_ECC_ALGO_HAMMING; 5783 fallthrough; 5784 5785 case NAND_ECC_ENGINE_TYPE_SOFT: 5786 ret = nand_set_ecc_soft_ops(chip); 5787 if (ret) 5788 goto err_nand_manuf_cleanup; 5789 break; 5790 5791 case NAND_ECC_ENGINE_TYPE_ON_DIE: 5792 if (!ecc->read_page || !ecc->write_page) { 5793 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 5794 ret = -EINVAL; 5795 goto err_nand_manuf_cleanup; 5796 } 5797 if (!ecc->read_oob) 5798 ecc->read_oob = nand_read_oob_std; 5799 if (!ecc->write_oob) 5800 ecc->write_oob = nand_write_oob_std; 5801 break; 5802 5803 case NAND_ECC_ENGINE_TYPE_NONE: 5804 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n"); 5805 ecc->read_page = nand_read_page_raw; 5806 ecc->write_page = nand_write_page_raw; 5807 ecc->read_oob = nand_read_oob_std; 5808 ecc->read_page_raw = nand_read_page_raw; 5809 ecc->write_page_raw = nand_write_page_raw; 5810 ecc->write_oob = nand_write_oob_std; 5811 ecc->size = mtd->writesize; 5812 ecc->bytes = 0; 5813 ecc->strength = 0; 5814 break; 5815 5816 default: 5817 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type); 5818 ret = -EINVAL; 5819 goto err_nand_manuf_cleanup; 5820 } 5821 5822 if (ecc->correct || ecc->calculate) { 5823 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5824 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5825 if (!ecc->calc_buf || !ecc->code_buf) { 5826 ret = -ENOMEM; 5827 goto err_nand_manuf_cleanup; 5828 } 5829 } 5830 5831 /* For many systems, the standard OOB write also works for raw */ 5832 if (!ecc->read_oob_raw) 5833 ecc->read_oob_raw = ecc->read_oob; 5834 if (!ecc->write_oob_raw) 5835 ecc->write_oob_raw = ecc->write_oob; 5836 5837 /* propagate ecc info to mtd_info */ 5838 mtd->ecc_strength = ecc->strength; 5839 mtd->ecc_step_size = ecc->size; 5840 5841 /* 5842 * Set the number of read / write steps for one page depending on ECC 5843 * mode. 5844 */ 5845 if (!ecc->steps) 5846 ecc->steps = mtd->writesize / ecc->size; 5847 if (ecc->steps * ecc->size != mtd->writesize) { 5848 WARN(1, "Invalid ECC parameters\n"); 5849 ret = -EINVAL; 5850 goto err_nand_manuf_cleanup; 5851 } 5852 5853 if (!ecc->total) { 5854 ecc->total = ecc->steps * ecc->bytes; 5855 chip->base.ecc.ctx.total = ecc->total; 5856 } 5857 5858 if (ecc->total > mtd->oobsize) { 5859 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 5860 ret = -EINVAL; 5861 goto err_nand_manuf_cleanup; 5862 } 5863 5864 /* 5865 * The number of bytes available for a client to place data into 5866 * the out of band area. 5867 */ 5868 ret = mtd_ooblayout_count_freebytes(mtd); 5869 if (ret < 0) 5870 ret = 0; 5871 5872 mtd->oobavail = ret; 5873 5874 /* ECC sanity check: warn if it's too weak */ 5875 if (!nand_ecc_is_strong_enough(&chip->base)) 5876 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n", 5877 mtd->name, chip->ecc.strength, chip->ecc.size, 5878 nanddev_get_ecc_requirements(&chip->base)->strength, 5879 nanddev_get_ecc_requirements(&chip->base)->step_size); 5880 5881 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 5882 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 5883 switch (ecc->steps) { 5884 case 2: 5885 mtd->subpage_sft = 1; 5886 break; 5887 case 4: 5888 case 8: 5889 case 16: 5890 mtd->subpage_sft = 2; 5891 break; 5892 } 5893 } 5894 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 5895 5896 /* Invalidate the pagebuffer reference */ 5897 chip->pagecache.page = -1; 5898 5899 /* Large page NAND with SOFT_ECC should support subpage reads */ 5900 switch (ecc->engine_type) { 5901 case NAND_ECC_ENGINE_TYPE_SOFT: 5902 if (chip->page_shift > 9) 5903 chip->options |= NAND_SUBPAGE_READ; 5904 break; 5905 5906 default: 5907 break; 5908 } 5909 5910 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); 5911 if (ret) 5912 goto err_nand_manuf_cleanup; 5913 5914 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ 5915 if (chip->options & NAND_ROM) 5916 mtd->flags = MTD_CAP_ROM; 5917 5918 /* Fill in remaining MTD driver data */ 5919 mtd->_erase = nand_erase; 5920 mtd->_point = NULL; 5921 mtd->_unpoint = NULL; 5922 mtd->_panic_write = panic_nand_write; 5923 mtd->_read_oob = nand_read_oob; 5924 mtd->_write_oob = nand_write_oob; 5925 mtd->_sync = nand_sync; 5926 mtd->_lock = nand_lock; 5927 mtd->_unlock = nand_unlock; 5928 mtd->_suspend = nand_suspend; 5929 mtd->_resume = nand_resume; 5930 mtd->_reboot = nand_shutdown; 5931 mtd->_block_isreserved = nand_block_isreserved; 5932 mtd->_block_isbad = nand_block_isbad; 5933 mtd->_block_markbad = nand_block_markbad; 5934 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; 5935 5936 /* 5937 * Initialize bitflip_threshold to its default prior scan_bbt() call. 5938 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 5939 * properly set. 5940 */ 5941 if (!mtd->bitflip_threshold) 5942 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 5943 5944 /* Find the fastest data interface for this chip */ 5945 ret = nand_choose_interface_config(chip); 5946 if (ret) 5947 goto err_nanddev_cleanup; 5948 5949 /* Enter fastest possible mode on all dies. */ 5950 for (i = 0; i < nanddev_ntargets(&chip->base); i++) { 5951 ret = nand_setup_interface(chip, i); 5952 if (ret) 5953 goto err_free_interface_config; 5954 } 5955 5956 /* Check, if we should skip the bad block table scan */ 5957 if (chip->options & NAND_SKIP_BBTSCAN) 5958 return 0; 5959 5960 /* Build bad block table */ 5961 ret = nand_create_bbt(chip); 5962 if (ret) 5963 goto err_free_interface_config; 5964 5965 return 0; 5966 5967 err_free_interface_config: 5968 kfree(chip->best_interface_config); 5969 5970 err_nanddev_cleanup: 5971 nanddev_cleanup(&chip->base); 5972 5973 err_nand_manuf_cleanup: 5974 nand_manufacturer_cleanup(chip); 5975 5976 err_free_buf: 5977 kfree(chip->data_buf); 5978 kfree(ecc->code_buf); 5979 kfree(ecc->calc_buf); 5980 5981 return ret; 5982 } 5983 5984 static int nand_attach(struct nand_chip *chip) 5985 { 5986 if (chip->controller->ops && chip->controller->ops->attach_chip) 5987 return chip->controller->ops->attach_chip(chip); 5988 5989 return 0; 5990 } 5991 5992 static void nand_detach(struct nand_chip *chip) 5993 { 5994 if (chip->controller->ops && chip->controller->ops->detach_chip) 5995 chip->controller->ops->detach_chip(chip); 5996 } 5997 5998 /** 5999 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 6000 * @chip: NAND chip object 6001 * @maxchips: number of chips to scan for. 6002 * @ids: optional flash IDs table 6003 * 6004 * This fills out all the uninitialized function pointers with the defaults. 6005 * The flash ID is read and the mtd/chip structures are filled with the 6006 * appropriate values. 6007 */ 6008 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, 6009 struct nand_flash_dev *ids) 6010 { 6011 int ret; 6012 6013 if (!maxchips) 6014 return -EINVAL; 6015 6016 ret = nand_scan_ident(chip, maxchips, ids); 6017 if (ret) 6018 return ret; 6019 6020 ret = nand_attach(chip); 6021 if (ret) 6022 goto cleanup_ident; 6023 6024 ret = nand_scan_tail(chip); 6025 if (ret) 6026 goto detach_chip; 6027 6028 return 0; 6029 6030 detach_chip: 6031 nand_detach(chip); 6032 cleanup_ident: 6033 nand_scan_ident_cleanup(chip); 6034 6035 return ret; 6036 } 6037 EXPORT_SYMBOL(nand_scan_with_ids); 6038 6039 /** 6040 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 6041 * @chip: NAND chip object 6042 */ 6043 void nand_cleanup(struct nand_chip *chip) 6044 { 6045 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) { 6046 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING) 6047 rawnand_sw_hamming_cleanup(chip); 6048 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 6049 rawnand_sw_bch_cleanup(chip); 6050 } 6051 6052 nanddev_cleanup(&chip->base); 6053 6054 /* Free bad block table memory */ 6055 kfree(chip->bbt); 6056 kfree(chip->data_buf); 6057 kfree(chip->ecc.code_buf); 6058 kfree(chip->ecc.calc_buf); 6059 6060 /* Free bad block descriptor memory */ 6061 if (chip->badblock_pattern && chip->badblock_pattern->options 6062 & NAND_BBT_DYNAMICSTRUCT) 6063 kfree(chip->badblock_pattern); 6064 6065 /* Free the data interface */ 6066 kfree(chip->best_interface_config); 6067 6068 /* Free manufacturer priv data. */ 6069 nand_manufacturer_cleanup(chip); 6070 6071 /* Free controller specific allocations after chip identification */ 6072 nand_detach(chip); 6073 6074 /* Free identification phase allocations */ 6075 nand_scan_ident_cleanup(chip); 6076 } 6077 6078 EXPORT_SYMBOL_GPL(nand_cleanup); 6079 6080 MODULE_LICENSE("GPL"); 6081 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 6082 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 6083 MODULE_DESCRIPTION("Generic NAND flash driver code"); 6084