xref: /openbmc/linux/drivers/mtd/nand/raw/nand_base.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/of_gpio.h>
46 #include <linux/gpio/consumer.h>
47 
48 #include "internals.h"
49 
50 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
51 				       struct mtd_pairing_info *info)
52 {
53 	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
54 	int dist = 3;
55 
56 	if (page == lastpage)
57 		dist = 2;
58 
59 	if (!page || (page & 1)) {
60 		info->group = 0;
61 		info->pair = (page + 1) / 2;
62 	} else {
63 		info->group = 1;
64 		info->pair = (page + 1 - dist) / 2;
65 	}
66 
67 	return 0;
68 }
69 
70 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
71 					const struct mtd_pairing_info *info)
72 {
73 	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
74 	int page = info->pair * 2;
75 	int dist = 3;
76 
77 	if (!info->group && !info->pair)
78 		return 0;
79 
80 	if (info->pair == lastpair && info->group)
81 		dist = 2;
82 
83 	if (!info->group)
84 		page--;
85 	else if (info->pair)
86 		page += dist - 1;
87 
88 	if (page >= mtd->erasesize / mtd->writesize)
89 		return -EINVAL;
90 
91 	return page;
92 }
93 
94 const struct mtd_pairing_scheme dist3_pairing_scheme = {
95 	.ngroups = 2,
96 	.get_info = nand_pairing_dist3_get_info,
97 	.get_wunit = nand_pairing_dist3_get_wunit,
98 };
99 
100 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
101 {
102 	int ret = 0;
103 
104 	/* Start address must align on block boundary */
105 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
106 		pr_debug("%s: unaligned address\n", __func__);
107 		ret = -EINVAL;
108 	}
109 
110 	/* Length must align on block boundary */
111 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
112 		pr_debug("%s: length not block aligned\n", __func__);
113 		ret = -EINVAL;
114 	}
115 
116 	return ret;
117 }
118 
119 /**
120  * nand_extract_bits - Copy unaligned bits from one buffer to another one
121  * @dst: destination buffer
122  * @dst_off: bit offset at which the writing starts
123  * @src: source buffer
124  * @src_off: bit offset at which the reading starts
125  * @nbits: number of bits to copy from @src to @dst
126  *
127  * Copy bits from one memory region to another (overlap authorized).
128  */
129 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
130 		       unsigned int src_off, unsigned int nbits)
131 {
132 	unsigned int tmp, n;
133 
134 	dst += dst_off / 8;
135 	dst_off %= 8;
136 	src += src_off / 8;
137 	src_off %= 8;
138 
139 	while (nbits) {
140 		n = min3(8 - dst_off, 8 - src_off, nbits);
141 
142 		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
143 		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
144 		*dst |= tmp << dst_off;
145 
146 		dst_off += n;
147 		if (dst_off >= 8) {
148 			dst++;
149 			dst_off -= 8;
150 		}
151 
152 		src_off += n;
153 		if (src_off >= 8) {
154 			src++;
155 			src_off -= 8;
156 		}
157 
158 		nbits -= n;
159 	}
160 }
161 EXPORT_SYMBOL_GPL(nand_extract_bits);
162 
163 /**
164  * nand_select_target() - Select a NAND target (A.K.A. die)
165  * @chip: NAND chip object
166  * @cs: the CS line to select. Note that this CS id is always from the chip
167  *	PoV, not the controller one
168  *
169  * Select a NAND target so that further operations executed on @chip go to the
170  * selected NAND target.
171  */
172 void nand_select_target(struct nand_chip *chip, unsigned int cs)
173 {
174 	/*
175 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
176 	 * not the case it's a bug and the caller should be fixed.
177 	 */
178 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
179 		return;
180 
181 	chip->cur_cs = cs;
182 
183 	if (chip->legacy.select_chip)
184 		chip->legacy.select_chip(chip, cs);
185 }
186 EXPORT_SYMBOL_GPL(nand_select_target);
187 
188 /**
189  * nand_deselect_target() - Deselect the currently selected target
190  * @chip: NAND chip object
191  *
192  * Deselect the currently selected NAND target. The result of operations
193  * executed on @chip after the target has been deselected is undefined.
194  */
195 void nand_deselect_target(struct nand_chip *chip)
196 {
197 	if (chip->legacy.select_chip)
198 		chip->legacy.select_chip(chip, -1);
199 
200 	chip->cur_cs = -1;
201 }
202 EXPORT_SYMBOL_GPL(nand_deselect_target);
203 
204 /**
205  * nand_release_device - [GENERIC] release chip
206  * @chip: NAND chip object
207  *
208  * Release chip lock and wake up anyone waiting on the device.
209  */
210 static void nand_release_device(struct nand_chip *chip)
211 {
212 	/* Release the controller and the chip */
213 	mutex_unlock(&chip->controller->lock);
214 	mutex_unlock(&chip->lock);
215 }
216 
217 /**
218  * nand_bbm_get_next_page - Get the next page for bad block markers
219  * @chip: NAND chip object
220  * @page: First page to start checking for bad block marker usage
221  *
222  * Returns an integer that corresponds to the page offset within a block, for
223  * a page that is used to store bad block markers. If no more pages are
224  * available, -EINVAL is returned.
225  */
226 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
227 {
228 	struct mtd_info *mtd = nand_to_mtd(chip);
229 	int last_page = ((mtd->erasesize - mtd->writesize) >>
230 			 chip->page_shift) & chip->pagemask;
231 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
232 		| NAND_BBM_LASTPAGE;
233 
234 	if (page == 0 && !(chip->options & bbm_flags))
235 		return 0;
236 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
237 		return 0;
238 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
239 		return 1;
240 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
241 		return last_page;
242 
243 	return -EINVAL;
244 }
245 
246 /**
247  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
248  * @chip: NAND chip object
249  * @ofs: offset from device start
250  *
251  * Check, if the block is bad.
252  */
253 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
254 {
255 	int first_page, page_offset;
256 	int res;
257 	u8 bad;
258 
259 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
260 	page_offset = nand_bbm_get_next_page(chip, 0);
261 
262 	while (page_offset >= 0) {
263 		res = chip->ecc.read_oob(chip, first_page + page_offset);
264 		if (res < 0)
265 			return res;
266 
267 		bad = chip->oob_poi[chip->badblockpos];
268 
269 		if (likely(chip->badblockbits == 8))
270 			res = bad != 0xFF;
271 		else
272 			res = hweight8(bad) < chip->badblockbits;
273 		if (res)
274 			return res;
275 
276 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
277 	}
278 
279 	return 0;
280 }
281 
282 /**
283  * nand_region_is_secured() - Check if the region is secured
284  * @chip: NAND chip object
285  * @offset: Offset of the region to check
286  * @size: Size of the region to check
287  *
288  * Checks if the region is secured by comparing the offset and size with the
289  * list of secure regions obtained from DT. Returns true if the region is
290  * secured else false.
291  */
292 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
293 {
294 	int i;
295 
296 	/* Skip touching the secure regions if present */
297 	for (i = 0; i < chip->nr_secure_regions; i++) {
298 		const struct nand_secure_region *region = &chip->secure_regions[i];
299 
300 		if (offset + size <= region->offset ||
301 		    offset >= region->offset + region->size)
302 			continue;
303 
304 		pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
305 			 __func__, offset, offset + size);
306 
307 		return true;
308 	}
309 
310 	return false;
311 }
312 
313 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
314 {
315 	struct mtd_info *mtd = nand_to_mtd(chip);
316 
317 	if (chip->options & NAND_NO_BBM_QUIRK)
318 		return 0;
319 
320 	/* Check if the region is secured */
321 	if (nand_region_is_secured(chip, ofs, mtd->erasesize))
322 		return -EIO;
323 
324 	if (mtd_check_expert_analysis_mode())
325 		return 0;
326 
327 	if (chip->legacy.block_bad)
328 		return chip->legacy.block_bad(chip, ofs);
329 
330 	return nand_block_bad(chip, ofs);
331 }
332 
333 /**
334  * nand_get_device - [GENERIC] Get chip for selected access
335  * @chip: NAND chip structure
336  *
337  * Lock the device and its controller for exclusive access
338  */
339 static void nand_get_device(struct nand_chip *chip)
340 {
341 	/* Wait until the device is resumed. */
342 	while (1) {
343 		mutex_lock(&chip->lock);
344 		if (!chip->suspended) {
345 			mutex_lock(&chip->controller->lock);
346 			return;
347 		}
348 		mutex_unlock(&chip->lock);
349 
350 		wait_event(chip->resume_wq, !chip->suspended);
351 	}
352 }
353 
354 /**
355  * nand_check_wp - [GENERIC] check if the chip is write protected
356  * @chip: NAND chip object
357  *
358  * Check, if the device is write protected. The function expects, that the
359  * device is already selected.
360  */
361 static int nand_check_wp(struct nand_chip *chip)
362 {
363 	u8 status;
364 	int ret;
365 
366 	/* Broken xD cards report WP despite being writable */
367 	if (chip->options & NAND_BROKEN_XD)
368 		return 0;
369 
370 	/* Check the WP bit */
371 	ret = nand_status_op(chip, &status);
372 	if (ret)
373 		return ret;
374 
375 	return status & NAND_STATUS_WP ? 0 : 1;
376 }
377 
378 /**
379  * nand_fill_oob - [INTERN] Transfer client buffer to oob
380  * @chip: NAND chip object
381  * @oob: oob data buffer
382  * @len: oob data write length
383  * @ops: oob ops structure
384  */
385 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
386 			      struct mtd_oob_ops *ops)
387 {
388 	struct mtd_info *mtd = nand_to_mtd(chip);
389 	int ret;
390 
391 	/*
392 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
393 	 * data from a previous OOB read.
394 	 */
395 	memset(chip->oob_poi, 0xff, mtd->oobsize);
396 
397 	switch (ops->mode) {
398 
399 	case MTD_OPS_PLACE_OOB:
400 	case MTD_OPS_RAW:
401 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
402 		return oob + len;
403 
404 	case MTD_OPS_AUTO_OOB:
405 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
406 						  ops->ooboffs, len);
407 		BUG_ON(ret);
408 		return oob + len;
409 
410 	default:
411 		BUG();
412 	}
413 	return NULL;
414 }
415 
416 /**
417  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
418  * @chip: NAND chip object
419  * @to: offset to write to
420  * @ops: oob operation description structure
421  *
422  * NAND write out-of-band.
423  */
424 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
425 			     struct mtd_oob_ops *ops)
426 {
427 	struct mtd_info *mtd = nand_to_mtd(chip);
428 	int chipnr, page, status, len, ret;
429 
430 	pr_debug("%s: to = 0x%08x, len = %i\n",
431 			 __func__, (unsigned int)to, (int)ops->ooblen);
432 
433 	len = mtd_oobavail(mtd, ops);
434 
435 	/* Do not allow write past end of page */
436 	if ((ops->ooboffs + ops->ooblen) > len) {
437 		pr_debug("%s: attempt to write past end of page\n",
438 				__func__);
439 		return -EINVAL;
440 	}
441 
442 	/* Check if the region is secured */
443 	if (nand_region_is_secured(chip, to, ops->ooblen))
444 		return -EIO;
445 
446 	chipnr = (int)(to >> chip->chip_shift);
447 
448 	/*
449 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
450 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
451 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
452 	 * it in the doc2000 driver in August 1999.  dwmw2.
453 	 */
454 	ret = nand_reset(chip, chipnr);
455 	if (ret)
456 		return ret;
457 
458 	nand_select_target(chip, chipnr);
459 
460 	/* Shift to get page */
461 	page = (int)(to >> chip->page_shift);
462 
463 	/* Check, if it is write protected */
464 	if (nand_check_wp(chip)) {
465 		nand_deselect_target(chip);
466 		return -EROFS;
467 	}
468 
469 	/* Invalidate the page cache, if we write to the cached page */
470 	if (page == chip->pagecache.page)
471 		chip->pagecache.page = -1;
472 
473 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
474 
475 	if (ops->mode == MTD_OPS_RAW)
476 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
477 	else
478 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
479 
480 	nand_deselect_target(chip);
481 
482 	if (status)
483 		return status;
484 
485 	ops->oobretlen = ops->ooblen;
486 
487 	return 0;
488 }
489 
490 /**
491  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
492  * @chip: NAND chip object
493  * @ofs: offset from device start
494  *
495  * This is the default implementation, which can be overridden by a hardware
496  * specific driver. It provides the details for writing a bad block marker to a
497  * block.
498  */
499 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
500 {
501 	struct mtd_info *mtd = nand_to_mtd(chip);
502 	struct mtd_oob_ops ops;
503 	uint8_t buf[2] = { 0, 0 };
504 	int ret = 0, res, page_offset;
505 
506 	memset(&ops, 0, sizeof(ops));
507 	ops.oobbuf = buf;
508 	ops.ooboffs = chip->badblockpos;
509 	if (chip->options & NAND_BUSWIDTH_16) {
510 		ops.ooboffs &= ~0x01;
511 		ops.len = ops.ooblen = 2;
512 	} else {
513 		ops.len = ops.ooblen = 1;
514 	}
515 	ops.mode = MTD_OPS_PLACE_OOB;
516 
517 	page_offset = nand_bbm_get_next_page(chip, 0);
518 
519 	while (page_offset >= 0) {
520 		res = nand_do_write_oob(chip,
521 					ofs + (page_offset * mtd->writesize),
522 					&ops);
523 
524 		if (!ret)
525 			ret = res;
526 
527 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
528 	}
529 
530 	return ret;
531 }
532 
533 /**
534  * nand_markbad_bbm - mark a block by updating the BBM
535  * @chip: NAND chip object
536  * @ofs: offset of the block to mark bad
537  */
538 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
539 {
540 	if (chip->legacy.block_markbad)
541 		return chip->legacy.block_markbad(chip, ofs);
542 
543 	return nand_default_block_markbad(chip, ofs);
544 }
545 
546 /**
547  * nand_block_markbad_lowlevel - mark a block bad
548  * @chip: NAND chip object
549  * @ofs: offset from device start
550  *
551  * This function performs the generic NAND bad block marking steps (i.e., bad
552  * block table(s) and/or marker(s)). We only allow the hardware driver to
553  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
554  *
555  * We try operations in the following order:
556  *
557  *  (1) erase the affected block, to allow OOB marker to be written cleanly
558  *  (2) write bad block marker to OOB area of affected block (unless flag
559  *      NAND_BBT_NO_OOB_BBM is present)
560  *  (3) update the BBT
561  *
562  * Note that we retain the first error encountered in (2) or (3), finish the
563  * procedures, and dump the error in the end.
564 */
565 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
566 {
567 	struct mtd_info *mtd = nand_to_mtd(chip);
568 	int res, ret = 0;
569 
570 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
571 		struct erase_info einfo;
572 
573 		/* Attempt erase before marking OOB */
574 		memset(&einfo, 0, sizeof(einfo));
575 		einfo.addr = ofs;
576 		einfo.len = 1ULL << chip->phys_erase_shift;
577 		nand_erase_nand(chip, &einfo, 0);
578 
579 		/* Write bad block marker to OOB */
580 		nand_get_device(chip);
581 
582 		ret = nand_markbad_bbm(chip, ofs);
583 		nand_release_device(chip);
584 	}
585 
586 	/* Mark block bad in BBT */
587 	if (chip->bbt) {
588 		res = nand_markbad_bbt(chip, ofs);
589 		if (!ret)
590 			ret = res;
591 	}
592 
593 	if (!ret)
594 		mtd->ecc_stats.badblocks++;
595 
596 	return ret;
597 }
598 
599 /**
600  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
601  * @mtd: MTD device structure
602  * @ofs: offset from device start
603  *
604  * Check if the block is marked as reserved.
605  */
606 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
607 {
608 	struct nand_chip *chip = mtd_to_nand(mtd);
609 
610 	if (!chip->bbt)
611 		return 0;
612 	/* Return info from the table */
613 	return nand_isreserved_bbt(chip, ofs);
614 }
615 
616 /**
617  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
618  * @chip: NAND chip object
619  * @ofs: offset from device start
620  * @allowbbt: 1, if its allowed to access the bbt area
621  *
622  * Check, if the block is bad. Either by reading the bad block table or
623  * calling of the scan function.
624  */
625 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
626 {
627 	/* Return info from the table */
628 	if (chip->bbt)
629 		return nand_isbad_bbt(chip, ofs, allowbbt);
630 
631 	return nand_isbad_bbm(chip, ofs);
632 }
633 
634 /**
635  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
636  * @chip: NAND chip structure
637  * @timeout_ms: Timeout in ms
638  *
639  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
640  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
641  * returned.
642  *
643  * This helper is intended to be used when the controller does not have access
644  * to the NAND R/B pin.
645  *
646  * Be aware that calling this helper from an ->exec_op() implementation means
647  * ->exec_op() must be re-entrant.
648  *
649  * Return 0 if the NAND chip is ready, a negative error otherwise.
650  */
651 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
652 {
653 	const struct nand_interface_config *conf;
654 	u8 status = 0;
655 	int ret;
656 
657 	if (!nand_has_exec_op(chip))
658 		return -ENOTSUPP;
659 
660 	/* Wait tWB before polling the STATUS reg. */
661 	conf = nand_get_interface_config(chip);
662 	ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
663 
664 	ret = nand_status_op(chip, NULL);
665 	if (ret)
666 		return ret;
667 
668 	/*
669 	 * +1 below is necessary because if we are now in the last fraction
670 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
671 	 * small jiffy fraction - possibly leading to false timeout
672 	 */
673 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
674 	do {
675 		ret = nand_read_data_op(chip, &status, sizeof(status), true,
676 					false);
677 		if (ret)
678 			break;
679 
680 		if (status & NAND_STATUS_READY)
681 			break;
682 
683 		/*
684 		 * Typical lowest execution time for a tR on most NANDs is 10us,
685 		 * use this as polling delay before doing something smarter (ie.
686 		 * deriving a delay from the timeout value, timeout_ms/ratio).
687 		 */
688 		udelay(10);
689 	} while	(time_before(jiffies, timeout_ms));
690 
691 	/*
692 	 * We have to exit READ_STATUS mode in order to read real data on the
693 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
694 	 * instruction.
695 	 */
696 	nand_exit_status_op(chip);
697 
698 	if (ret)
699 		return ret;
700 
701 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
702 };
703 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
704 
705 /**
706  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
707  * @chip: NAND chip structure
708  * @gpiod: GPIO descriptor of R/B pin
709  * @timeout_ms: Timeout in ms
710  *
711  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
712  * whitin the specified timeout, -ETIMEDOUT is returned.
713  *
714  * This helper is intended to be used when the controller has access to the
715  * NAND R/B pin over GPIO.
716  *
717  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
718  */
719 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
720 		      unsigned long timeout_ms)
721 {
722 
723 	/*
724 	 * Wait until R/B pin indicates chip is ready or timeout occurs.
725 	 * +1 below is necessary because if we are now in the last fraction
726 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
727 	 * small jiffy fraction - possibly leading to false timeout.
728 	 */
729 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
730 	do {
731 		if (gpiod_get_value_cansleep(gpiod))
732 			return 0;
733 
734 		cond_resched();
735 	} while	(time_before(jiffies, timeout_ms));
736 
737 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
738 };
739 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
740 
741 /**
742  * panic_nand_wait - [GENERIC] wait until the command is done
743  * @chip: NAND chip structure
744  * @timeo: timeout
745  *
746  * Wait for command done. This is a helper function for nand_wait used when
747  * we are in interrupt context. May happen when in panic and trying to write
748  * an oops through mtdoops.
749  */
750 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
751 {
752 	int i;
753 	for (i = 0; i < timeo; i++) {
754 		if (chip->legacy.dev_ready) {
755 			if (chip->legacy.dev_ready(chip))
756 				break;
757 		} else {
758 			int ret;
759 			u8 status;
760 
761 			ret = nand_read_data_op(chip, &status, sizeof(status),
762 						true, false);
763 			if (ret)
764 				return;
765 
766 			if (status & NAND_STATUS_READY)
767 				break;
768 		}
769 		mdelay(1);
770 	}
771 }
772 
773 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
774 {
775 	return (chip->parameters.supports_set_get_features &&
776 		test_bit(addr, chip->parameters.get_feature_list));
777 }
778 
779 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
780 {
781 	return (chip->parameters.supports_set_get_features &&
782 		test_bit(addr, chip->parameters.set_feature_list));
783 }
784 
785 /**
786  * nand_reset_interface - Reset data interface and timings
787  * @chip: The NAND chip
788  * @chipnr: Internal die id
789  *
790  * Reset the Data interface and timings to ONFI mode 0.
791  *
792  * Returns 0 for success or negative error code otherwise.
793  */
794 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
795 {
796 	const struct nand_controller_ops *ops = chip->controller->ops;
797 	int ret;
798 
799 	if (!nand_controller_can_setup_interface(chip))
800 		return 0;
801 
802 	/*
803 	 * The ONFI specification says:
804 	 * "
805 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
806 	 * interface, the host shall use the Reset (FFh) command
807 	 * using SDR timing mode 0. A device in any timing mode is
808 	 * required to recognize Reset (FFh) command issued in SDR
809 	 * timing mode 0.
810 	 * "
811 	 *
812 	 * Configure the data interface in SDR mode and set the
813 	 * timings to timing mode 0.
814 	 */
815 
816 	chip->current_interface_config = nand_get_reset_interface_config();
817 	ret = ops->setup_interface(chip, chipnr,
818 				   chip->current_interface_config);
819 	if (ret)
820 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
821 
822 	return ret;
823 }
824 
825 /**
826  * nand_setup_interface - Setup the best data interface and timings
827  * @chip: The NAND chip
828  * @chipnr: Internal die id
829  *
830  * Configure what has been reported to be the best data interface and NAND
831  * timings supported by the chip and the driver.
832  *
833  * Returns 0 for success or negative error code otherwise.
834  */
835 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
836 {
837 	const struct nand_controller_ops *ops = chip->controller->ops;
838 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
839 	int ret;
840 
841 	if (!nand_controller_can_setup_interface(chip))
842 		return 0;
843 
844 	/*
845 	 * A nand_reset_interface() put both the NAND chip and the NAND
846 	 * controller in timings mode 0. If the default mode for this chip is
847 	 * also 0, no need to proceed to the change again. Plus, at probe time,
848 	 * nand_setup_interface() uses ->set/get_features() which would
849 	 * fail anyway as the parameter page is not available yet.
850 	 */
851 	if (!chip->best_interface_config)
852 		return 0;
853 
854 	request = chip->best_interface_config->timings.mode;
855 	if (nand_interface_is_sdr(chip->best_interface_config))
856 		request |= ONFI_DATA_INTERFACE_SDR;
857 	else
858 		request |= ONFI_DATA_INTERFACE_NVDDR;
859 	tmode_param[0] = request;
860 
861 	/* Change the mode on the chip side (if supported by the NAND chip) */
862 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
863 		nand_select_target(chip, chipnr);
864 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
865 					tmode_param);
866 		nand_deselect_target(chip);
867 		if (ret)
868 			return ret;
869 	}
870 
871 	/* Change the mode on the controller side */
872 	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
873 	if (ret)
874 		return ret;
875 
876 	/* Check the mode has been accepted by the chip, if supported */
877 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
878 		goto update_interface_config;
879 
880 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
881 	nand_select_target(chip, chipnr);
882 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
883 				tmode_param);
884 	nand_deselect_target(chip);
885 	if (ret)
886 		goto err_reset_chip;
887 
888 	if (request != tmode_param[0]) {
889 		pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
890 			nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
891 			chip->best_interface_config->timings.mode);
892 		pr_debug("NAND chip would work in %s timing mode %d\n",
893 			 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
894 			 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
895 		goto err_reset_chip;
896 	}
897 
898 update_interface_config:
899 	chip->current_interface_config = chip->best_interface_config;
900 
901 	return 0;
902 
903 err_reset_chip:
904 	/*
905 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
906 	 * timing mode.
907 	 */
908 	nand_reset_interface(chip, chipnr);
909 	nand_select_target(chip, chipnr);
910 	nand_reset_op(chip);
911 	nand_deselect_target(chip);
912 
913 	return ret;
914 }
915 
916 /**
917  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
918  *                                NAND controller and the NAND chip support
919  * @chip: the NAND chip
920  * @iface: the interface configuration (can eventually be updated)
921  * @spec_timings: specific timings, when not fitting the ONFI specification
922  *
923  * If specific timings are provided, use them. Otherwise, retrieve supported
924  * timing modes from ONFI information.
925  */
926 int nand_choose_best_sdr_timings(struct nand_chip *chip,
927 				 struct nand_interface_config *iface,
928 				 struct nand_sdr_timings *spec_timings)
929 {
930 	const struct nand_controller_ops *ops = chip->controller->ops;
931 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
932 
933 	iface->type = NAND_SDR_IFACE;
934 
935 	if (spec_timings) {
936 		iface->timings.sdr = *spec_timings;
937 		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
938 
939 		/* Verify the controller supports the requested interface */
940 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
941 					   iface);
942 		if (!ret) {
943 			chip->best_interface_config = iface;
944 			return ret;
945 		}
946 
947 		/* Fallback to slower modes */
948 		best_mode = iface->timings.mode;
949 	} else if (chip->parameters.onfi) {
950 		best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
951 	}
952 
953 	for (mode = best_mode; mode >= 0; mode--) {
954 		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
955 
956 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
957 					   iface);
958 		if (!ret) {
959 			chip->best_interface_config = iface;
960 			break;
961 		}
962 	}
963 
964 	return ret;
965 }
966 
967 /**
968  * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
969  *                                  NAND controller and the NAND chip support
970  * @chip: the NAND chip
971  * @iface: the interface configuration (can eventually be updated)
972  * @spec_timings: specific timings, when not fitting the ONFI specification
973  *
974  * If specific timings are provided, use them. Otherwise, retrieve supported
975  * timing modes from ONFI information.
976  */
977 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
978 				   struct nand_interface_config *iface,
979 				   struct nand_nvddr_timings *spec_timings)
980 {
981 	const struct nand_controller_ops *ops = chip->controller->ops;
982 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
983 
984 	iface->type = NAND_NVDDR_IFACE;
985 
986 	if (spec_timings) {
987 		iface->timings.nvddr = *spec_timings;
988 		iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
989 
990 		/* Verify the controller supports the requested interface */
991 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
992 					   iface);
993 		if (!ret) {
994 			chip->best_interface_config = iface;
995 			return ret;
996 		}
997 
998 		/* Fallback to slower modes */
999 		best_mode = iface->timings.mode;
1000 	} else if (chip->parameters.onfi) {
1001 		best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1002 	}
1003 
1004 	for (mode = best_mode; mode >= 0; mode--) {
1005 		onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1006 
1007 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1008 					   iface);
1009 		if (!ret) {
1010 			chip->best_interface_config = iface;
1011 			break;
1012 		}
1013 	}
1014 
1015 	return ret;
1016 }
1017 
1018 /**
1019  * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1020  *                            NAND controller and the NAND chip support
1021  * @chip: the NAND chip
1022  * @iface: the interface configuration (can eventually be updated)
1023  *
1024  * If specific timings are provided, use them. Otherwise, retrieve supported
1025  * timing modes from ONFI information.
1026  */
1027 static int nand_choose_best_timings(struct nand_chip *chip,
1028 				    struct nand_interface_config *iface)
1029 {
1030 	int ret;
1031 
1032 	/* Try the fastest timings: NV-DDR */
1033 	ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1034 	if (!ret)
1035 		return 0;
1036 
1037 	/* Fallback to SDR timings otherwise */
1038 	return nand_choose_best_sdr_timings(chip, iface, NULL);
1039 }
1040 
1041 /**
1042  * nand_choose_interface_config - find the best data interface and timings
1043  * @chip: The NAND chip
1044  *
1045  * Find the best data interface and NAND timings supported by the chip
1046  * and the driver. Eventually let the NAND manufacturer driver propose his own
1047  * set of timings.
1048  *
1049  * After this function nand_chip->interface_config is initialized with the best
1050  * timing mode available.
1051  *
1052  * Returns 0 for success or negative error code otherwise.
1053  */
1054 static int nand_choose_interface_config(struct nand_chip *chip)
1055 {
1056 	struct nand_interface_config *iface;
1057 	int ret;
1058 
1059 	if (!nand_controller_can_setup_interface(chip))
1060 		return 0;
1061 
1062 	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1063 	if (!iface)
1064 		return -ENOMEM;
1065 
1066 	if (chip->ops.choose_interface_config)
1067 		ret = chip->ops.choose_interface_config(chip, iface);
1068 	else
1069 		ret = nand_choose_best_timings(chip, iface);
1070 
1071 	if (ret)
1072 		kfree(iface);
1073 
1074 	return ret;
1075 }
1076 
1077 /**
1078  * nand_fill_column_cycles - fill the column cycles of an address
1079  * @chip: The NAND chip
1080  * @addrs: Array of address cycles to fill
1081  * @offset_in_page: The offset in the page
1082  *
1083  * Fills the first or the first two bytes of the @addrs field depending
1084  * on the NAND bus width and the page size.
1085  *
1086  * Returns the number of cycles needed to encode the column, or a negative
1087  * error code in case one of the arguments is invalid.
1088  */
1089 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1090 				   unsigned int offset_in_page)
1091 {
1092 	struct mtd_info *mtd = nand_to_mtd(chip);
1093 
1094 	/* Make sure the offset is less than the actual page size. */
1095 	if (offset_in_page > mtd->writesize + mtd->oobsize)
1096 		return -EINVAL;
1097 
1098 	/*
1099 	 * On small page NANDs, there's a dedicated command to access the OOB
1100 	 * area, and the column address is relative to the start of the OOB
1101 	 * area, not the start of the page. Asjust the address accordingly.
1102 	 */
1103 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1104 		offset_in_page -= mtd->writesize;
1105 
1106 	/*
1107 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1108 	 * wide, then it must be divided by 2.
1109 	 */
1110 	if (chip->options & NAND_BUSWIDTH_16) {
1111 		if (WARN_ON(offset_in_page % 2))
1112 			return -EINVAL;
1113 
1114 		offset_in_page /= 2;
1115 	}
1116 
1117 	addrs[0] = offset_in_page;
1118 
1119 	/*
1120 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1121 	 * need 2
1122 	 */
1123 	if (mtd->writesize <= 512)
1124 		return 1;
1125 
1126 	addrs[1] = offset_in_page >> 8;
1127 
1128 	return 2;
1129 }
1130 
1131 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1132 				     unsigned int offset_in_page, void *buf,
1133 				     unsigned int len)
1134 {
1135 	const struct nand_interface_config *conf =
1136 		nand_get_interface_config(chip);
1137 	struct mtd_info *mtd = nand_to_mtd(chip);
1138 	u8 addrs[4];
1139 	struct nand_op_instr instrs[] = {
1140 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1141 		NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1142 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1143 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1144 		NAND_OP_DATA_IN(len, buf, 0),
1145 	};
1146 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1147 	int ret;
1148 
1149 	/* Drop the DATA_IN instruction if len is set to 0. */
1150 	if (!len)
1151 		op.ninstrs--;
1152 
1153 	if (offset_in_page >= mtd->writesize)
1154 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1155 	else if (offset_in_page >= 256 &&
1156 		 !(chip->options & NAND_BUSWIDTH_16))
1157 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1158 
1159 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1160 	if (ret < 0)
1161 		return ret;
1162 
1163 	addrs[1] = page;
1164 	addrs[2] = page >> 8;
1165 
1166 	if (chip->options & NAND_ROW_ADDR_3) {
1167 		addrs[3] = page >> 16;
1168 		instrs[1].ctx.addr.naddrs++;
1169 	}
1170 
1171 	return nand_exec_op(chip, &op);
1172 }
1173 
1174 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1175 				     unsigned int offset_in_page, void *buf,
1176 				     unsigned int len)
1177 {
1178 	const struct nand_interface_config *conf =
1179 		nand_get_interface_config(chip);
1180 	u8 addrs[5];
1181 	struct nand_op_instr instrs[] = {
1182 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1183 		NAND_OP_ADDR(4, addrs, 0),
1184 		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1185 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1186 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1187 		NAND_OP_DATA_IN(len, buf, 0),
1188 	};
1189 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1190 	int ret;
1191 
1192 	/* Drop the DATA_IN instruction if len is set to 0. */
1193 	if (!len)
1194 		op.ninstrs--;
1195 
1196 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1197 	if (ret < 0)
1198 		return ret;
1199 
1200 	addrs[2] = page;
1201 	addrs[3] = page >> 8;
1202 
1203 	if (chip->options & NAND_ROW_ADDR_3) {
1204 		addrs[4] = page >> 16;
1205 		instrs[1].ctx.addr.naddrs++;
1206 	}
1207 
1208 	return nand_exec_op(chip, &op);
1209 }
1210 
1211 static void rawnand_cap_cont_reads(struct nand_chip *chip)
1212 {
1213 	struct nand_memory_organization *memorg;
1214 	unsigned int pages_per_lun, first_lun, last_lun;
1215 
1216 	memorg = nanddev_get_memorg(&chip->base);
1217 	pages_per_lun = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
1218 	first_lun = chip->cont_read.first_page / pages_per_lun;
1219 	last_lun = chip->cont_read.last_page / pages_per_lun;
1220 
1221 	/* Prevent sequential cache reads across LUN boundaries */
1222 	if (first_lun != last_lun)
1223 		chip->cont_read.pause_page = first_lun * pages_per_lun + pages_per_lun - 1;
1224 	else
1225 		chip->cont_read.pause_page = chip->cont_read.last_page;
1226 }
1227 
1228 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1229 					  unsigned int offset_in_page, void *buf,
1230 					  unsigned int len, bool check_only)
1231 {
1232 	const struct nand_interface_config *conf =
1233 		nand_get_interface_config(chip);
1234 	u8 addrs[5];
1235 	struct nand_op_instr start_instrs[] = {
1236 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1237 		NAND_OP_ADDR(4, addrs, 0),
1238 		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1239 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1240 		NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1241 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1242 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1243 		NAND_OP_DATA_IN(len, buf, 0),
1244 	};
1245 	struct nand_op_instr cont_instrs[] = {
1246 		NAND_OP_CMD(page == chip->cont_read.pause_page ?
1247 			    NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1248 			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1249 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1250 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1251 		NAND_OP_DATA_IN(len, buf, 0),
1252 	};
1253 	struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1254 	struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1255 	int ret;
1256 
1257 	if (!len) {
1258 		start_op.ninstrs--;
1259 		cont_op.ninstrs--;
1260 	}
1261 
1262 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1263 	if (ret < 0)
1264 		return ret;
1265 
1266 	addrs[2] = page;
1267 	addrs[3] = page >> 8;
1268 
1269 	if (chip->options & NAND_ROW_ADDR_3) {
1270 		addrs[4] = page >> 16;
1271 		start_instrs[1].ctx.addr.naddrs++;
1272 	}
1273 
1274 	/* Check if cache reads are supported */
1275 	if (check_only) {
1276 		if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1277 			return -EOPNOTSUPP;
1278 
1279 		return 0;
1280 	}
1281 
1282 	if (page == chip->cont_read.first_page)
1283 		ret = nand_exec_op(chip, &start_op);
1284 	else
1285 		ret = nand_exec_op(chip, &cont_op);
1286 	if (ret)
1287 		return ret;
1288 
1289 	if (!chip->cont_read.ongoing)
1290 		return 0;
1291 
1292 	if (page == chip->cont_read.pause_page &&
1293 	    page != chip->cont_read.last_page) {
1294 		chip->cont_read.first_page = chip->cont_read.pause_page + 1;
1295 		rawnand_cap_cont_reads(chip);
1296 	} else if (page == chip->cont_read.last_page) {
1297 		chip->cont_read.ongoing = false;
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1304 {
1305 	return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
1306 }
1307 
1308 /**
1309  * nand_read_page_op - Do a READ PAGE operation
1310  * @chip: The NAND chip
1311  * @page: page to read
1312  * @offset_in_page: offset within the page
1313  * @buf: buffer used to store the data
1314  * @len: length of the buffer
1315  *
1316  * This function issues a READ PAGE operation.
1317  * This function does not select/unselect the CS line.
1318  *
1319  * Returns 0 on success, a negative error code otherwise.
1320  */
1321 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1322 		      unsigned int offset_in_page, void *buf, unsigned int len)
1323 {
1324 	struct mtd_info *mtd = nand_to_mtd(chip);
1325 
1326 	if (len && !buf)
1327 		return -EINVAL;
1328 
1329 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1330 		return -EINVAL;
1331 
1332 	if (nand_has_exec_op(chip)) {
1333 		if (mtd->writesize > 512) {
1334 			if (rawnand_cont_read_ongoing(chip, page))
1335 				return nand_lp_exec_cont_read_page_op(chip, page,
1336 								      offset_in_page,
1337 								      buf, len, false);
1338 			else
1339 				return nand_lp_exec_read_page_op(chip, page,
1340 								 offset_in_page, buf,
1341 								 len);
1342 		}
1343 
1344 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1345 						 buf, len);
1346 	}
1347 
1348 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1349 	if (len)
1350 		chip->legacy.read_buf(chip, buf, len);
1351 
1352 	return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(nand_read_page_op);
1355 
1356 /**
1357  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1358  * @chip: The NAND chip
1359  * @page: parameter page to read
1360  * @buf: buffer used to store the data
1361  * @len: length of the buffer
1362  *
1363  * This function issues a READ PARAMETER PAGE operation.
1364  * This function does not select/unselect the CS line.
1365  *
1366  * Returns 0 on success, a negative error code otherwise.
1367  */
1368 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1369 			    unsigned int len)
1370 {
1371 	unsigned int i;
1372 	u8 *p = buf;
1373 
1374 	if (len && !buf)
1375 		return -EINVAL;
1376 
1377 	if (nand_has_exec_op(chip)) {
1378 		const struct nand_interface_config *conf =
1379 			nand_get_interface_config(chip);
1380 		struct nand_op_instr instrs[] = {
1381 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1382 			NAND_OP_ADDR(1, &page,
1383 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1384 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1385 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1386 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1387 		};
1388 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1389 
1390 		/* Drop the DATA_IN instruction if len is set to 0. */
1391 		if (!len)
1392 			op.ninstrs--;
1393 
1394 		return nand_exec_op(chip, &op);
1395 	}
1396 
1397 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1398 	for (i = 0; i < len; i++)
1399 		p[i] = chip->legacy.read_byte(chip);
1400 
1401 	return 0;
1402 }
1403 
1404 /**
1405  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1406  * @chip: The NAND chip
1407  * @offset_in_page: offset within the page
1408  * @buf: buffer used to store the data
1409  * @len: length of the buffer
1410  * @force_8bit: force 8-bit bus access
1411  *
1412  * This function issues a CHANGE READ COLUMN operation.
1413  * This function does not select/unselect the CS line.
1414  *
1415  * Returns 0 on success, a negative error code otherwise.
1416  */
1417 int nand_change_read_column_op(struct nand_chip *chip,
1418 			       unsigned int offset_in_page, void *buf,
1419 			       unsigned int len, bool force_8bit)
1420 {
1421 	struct mtd_info *mtd = nand_to_mtd(chip);
1422 
1423 	if (len && !buf)
1424 		return -EINVAL;
1425 
1426 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1427 		return -EINVAL;
1428 
1429 	/* Small page NANDs do not support column change. */
1430 	if (mtd->writesize <= 512)
1431 		return -ENOTSUPP;
1432 
1433 	if (nand_has_exec_op(chip)) {
1434 		const struct nand_interface_config *conf =
1435 			nand_get_interface_config(chip);
1436 		u8 addrs[2] = {};
1437 		struct nand_op_instr instrs[] = {
1438 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1439 			NAND_OP_ADDR(2, addrs, 0),
1440 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1441 				    NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1442 			NAND_OP_DATA_IN(len, buf, 0),
1443 		};
1444 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1445 		int ret;
1446 
1447 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1448 		if (ret < 0)
1449 			return ret;
1450 
1451 		/* Drop the DATA_IN instruction if len is set to 0. */
1452 		if (!len)
1453 			op.ninstrs--;
1454 
1455 		instrs[3].ctx.data.force_8bit = force_8bit;
1456 
1457 		return nand_exec_op(chip, &op);
1458 	}
1459 
1460 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1461 	if (len)
1462 		chip->legacy.read_buf(chip, buf, len);
1463 
1464 	return 0;
1465 }
1466 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1467 
1468 /**
1469  * nand_read_oob_op - Do a READ OOB operation
1470  * @chip: The NAND chip
1471  * @page: page to read
1472  * @offset_in_oob: offset within the OOB area
1473  * @buf: buffer used to store the data
1474  * @len: length of the buffer
1475  *
1476  * This function issues a READ OOB operation.
1477  * This function does not select/unselect the CS line.
1478  *
1479  * Returns 0 on success, a negative error code otherwise.
1480  */
1481 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1482 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1483 {
1484 	struct mtd_info *mtd = nand_to_mtd(chip);
1485 
1486 	if (len && !buf)
1487 		return -EINVAL;
1488 
1489 	if (offset_in_oob + len > mtd->oobsize)
1490 		return -EINVAL;
1491 
1492 	if (nand_has_exec_op(chip))
1493 		return nand_read_page_op(chip, page,
1494 					 mtd->writesize + offset_in_oob,
1495 					 buf, len);
1496 
1497 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1498 	if (len)
1499 		chip->legacy.read_buf(chip, buf, len);
1500 
1501 	return 0;
1502 }
1503 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1504 
1505 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1506 				  unsigned int offset_in_page, const void *buf,
1507 				  unsigned int len, bool prog)
1508 {
1509 	const struct nand_interface_config *conf =
1510 		nand_get_interface_config(chip);
1511 	struct mtd_info *mtd = nand_to_mtd(chip);
1512 	u8 addrs[5] = {};
1513 	struct nand_op_instr instrs[] = {
1514 		/*
1515 		 * The first instruction will be dropped if we're dealing
1516 		 * with a large page NAND and adjusted if we're dealing
1517 		 * with a small page NAND and the page offset is > 255.
1518 		 */
1519 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1520 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1521 		NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1522 		NAND_OP_DATA_OUT(len, buf, 0),
1523 		NAND_OP_CMD(NAND_CMD_PAGEPROG,
1524 			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1525 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1526 	};
1527 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1528 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1529 
1530 	if (naddrs < 0)
1531 		return naddrs;
1532 
1533 	addrs[naddrs++] = page;
1534 	addrs[naddrs++] = page >> 8;
1535 	if (chip->options & NAND_ROW_ADDR_3)
1536 		addrs[naddrs++] = page >> 16;
1537 
1538 	instrs[2].ctx.addr.naddrs = naddrs;
1539 
1540 	/* Drop the last two instructions if we're not programming the page. */
1541 	if (!prog) {
1542 		op.ninstrs -= 2;
1543 		/* Also drop the DATA_OUT instruction if empty. */
1544 		if (!len)
1545 			op.ninstrs--;
1546 	}
1547 
1548 	if (mtd->writesize <= 512) {
1549 		/*
1550 		 * Small pages need some more tweaking: we have to adjust the
1551 		 * first instruction depending on the page offset we're trying
1552 		 * to access.
1553 		 */
1554 		if (offset_in_page >= mtd->writesize)
1555 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1556 		else if (offset_in_page >= 256 &&
1557 			 !(chip->options & NAND_BUSWIDTH_16))
1558 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1559 	} else {
1560 		/*
1561 		 * Drop the first command if we're dealing with a large page
1562 		 * NAND.
1563 		 */
1564 		op.instrs++;
1565 		op.ninstrs--;
1566 	}
1567 
1568 	return nand_exec_op(chip, &op);
1569 }
1570 
1571 /**
1572  * nand_prog_page_begin_op - starts a PROG PAGE operation
1573  * @chip: The NAND chip
1574  * @page: page to write
1575  * @offset_in_page: offset within the page
1576  * @buf: buffer containing the data to write to the page
1577  * @len: length of the buffer
1578  *
1579  * This function issues the first half of a PROG PAGE operation.
1580  * This function does not select/unselect the CS line.
1581  *
1582  * Returns 0 on success, a negative error code otherwise.
1583  */
1584 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1585 			    unsigned int offset_in_page, const void *buf,
1586 			    unsigned int len)
1587 {
1588 	struct mtd_info *mtd = nand_to_mtd(chip);
1589 
1590 	if (len && !buf)
1591 		return -EINVAL;
1592 
1593 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1594 		return -EINVAL;
1595 
1596 	if (nand_has_exec_op(chip))
1597 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1598 					      len, false);
1599 
1600 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1601 
1602 	if (buf)
1603 		chip->legacy.write_buf(chip, buf, len);
1604 
1605 	return 0;
1606 }
1607 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1608 
1609 /**
1610  * nand_prog_page_end_op - ends a PROG PAGE operation
1611  * @chip: The NAND chip
1612  *
1613  * This function issues the second half of a PROG PAGE operation.
1614  * This function does not select/unselect the CS line.
1615  *
1616  * Returns 0 on success, a negative error code otherwise.
1617  */
1618 int nand_prog_page_end_op(struct nand_chip *chip)
1619 {
1620 	int ret;
1621 	u8 status;
1622 
1623 	if (nand_has_exec_op(chip)) {
1624 		const struct nand_interface_config *conf =
1625 			nand_get_interface_config(chip);
1626 		struct nand_op_instr instrs[] = {
1627 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1628 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1629 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1630 					 0),
1631 		};
1632 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1633 
1634 		ret = nand_exec_op(chip, &op);
1635 		if (ret)
1636 			return ret;
1637 
1638 		ret = nand_status_op(chip, &status);
1639 		if (ret)
1640 			return ret;
1641 	} else {
1642 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1643 		ret = chip->legacy.waitfunc(chip);
1644 		if (ret < 0)
1645 			return ret;
1646 
1647 		status = ret;
1648 	}
1649 
1650 	if (status & NAND_STATUS_FAIL)
1651 		return -EIO;
1652 
1653 	return 0;
1654 }
1655 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1656 
1657 /**
1658  * nand_prog_page_op - Do a full PROG PAGE operation
1659  * @chip: The NAND chip
1660  * @page: page to write
1661  * @offset_in_page: offset within the page
1662  * @buf: buffer containing the data to write to the page
1663  * @len: length of the buffer
1664  *
1665  * This function issues a full PROG PAGE operation.
1666  * This function does not select/unselect the CS line.
1667  *
1668  * Returns 0 on success, a negative error code otherwise.
1669  */
1670 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1671 		      unsigned int offset_in_page, const void *buf,
1672 		      unsigned int len)
1673 {
1674 	struct mtd_info *mtd = nand_to_mtd(chip);
1675 	u8 status;
1676 	int ret;
1677 
1678 	if (!len || !buf)
1679 		return -EINVAL;
1680 
1681 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1682 		return -EINVAL;
1683 
1684 	if (nand_has_exec_op(chip)) {
1685 		ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1686 						len, true);
1687 		if (ret)
1688 			return ret;
1689 
1690 		ret = nand_status_op(chip, &status);
1691 		if (ret)
1692 			return ret;
1693 	} else {
1694 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1695 				     page);
1696 		chip->legacy.write_buf(chip, buf, len);
1697 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1698 		ret = chip->legacy.waitfunc(chip);
1699 		if (ret < 0)
1700 			return ret;
1701 
1702 		status = ret;
1703 	}
1704 
1705 	if (status & NAND_STATUS_FAIL)
1706 		return -EIO;
1707 
1708 	return 0;
1709 }
1710 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1711 
1712 /**
1713  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1714  * @chip: The NAND chip
1715  * @offset_in_page: offset within the page
1716  * @buf: buffer containing the data to send to the NAND
1717  * @len: length of the buffer
1718  * @force_8bit: force 8-bit bus access
1719  *
1720  * This function issues a CHANGE WRITE COLUMN operation.
1721  * This function does not select/unselect the CS line.
1722  *
1723  * Returns 0 on success, a negative error code otherwise.
1724  */
1725 int nand_change_write_column_op(struct nand_chip *chip,
1726 				unsigned int offset_in_page,
1727 				const void *buf, unsigned int len,
1728 				bool force_8bit)
1729 {
1730 	struct mtd_info *mtd = nand_to_mtd(chip);
1731 
1732 	if (len && !buf)
1733 		return -EINVAL;
1734 
1735 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1736 		return -EINVAL;
1737 
1738 	/* Small page NANDs do not support column change. */
1739 	if (mtd->writesize <= 512)
1740 		return -ENOTSUPP;
1741 
1742 	if (nand_has_exec_op(chip)) {
1743 		const struct nand_interface_config *conf =
1744 			nand_get_interface_config(chip);
1745 		u8 addrs[2];
1746 		struct nand_op_instr instrs[] = {
1747 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1748 			NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1749 			NAND_OP_DATA_OUT(len, buf, 0),
1750 		};
1751 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1752 		int ret;
1753 
1754 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1755 		if (ret < 0)
1756 			return ret;
1757 
1758 		instrs[2].ctx.data.force_8bit = force_8bit;
1759 
1760 		/* Drop the DATA_OUT instruction if len is set to 0. */
1761 		if (!len)
1762 			op.ninstrs--;
1763 
1764 		return nand_exec_op(chip, &op);
1765 	}
1766 
1767 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1768 	if (len)
1769 		chip->legacy.write_buf(chip, buf, len);
1770 
1771 	return 0;
1772 }
1773 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1774 
1775 /**
1776  * nand_readid_op - Do a READID operation
1777  * @chip: The NAND chip
1778  * @addr: address cycle to pass after the READID command
1779  * @buf: buffer used to store the ID
1780  * @len: length of the buffer
1781  *
1782  * This function sends a READID command and reads back the ID returned by the
1783  * NAND.
1784  * This function does not select/unselect the CS line.
1785  *
1786  * Returns 0 on success, a negative error code otherwise.
1787  */
1788 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1789 		   unsigned int len)
1790 {
1791 	unsigned int i;
1792 	u8 *id = buf, *ddrbuf = NULL;
1793 
1794 	if (len && !buf)
1795 		return -EINVAL;
1796 
1797 	if (nand_has_exec_op(chip)) {
1798 		const struct nand_interface_config *conf =
1799 			nand_get_interface_config(chip);
1800 		struct nand_op_instr instrs[] = {
1801 			NAND_OP_CMD(NAND_CMD_READID, 0),
1802 			NAND_OP_ADDR(1, &addr,
1803 				     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1804 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1805 		};
1806 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1807 		int ret;
1808 
1809 		/* READ_ID data bytes are received twice in NV-DDR mode */
1810 		if (len && nand_interface_is_nvddr(conf)) {
1811 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1812 			if (!ddrbuf)
1813 				return -ENOMEM;
1814 
1815 			instrs[2].ctx.data.len *= 2;
1816 			instrs[2].ctx.data.buf.in = ddrbuf;
1817 		}
1818 
1819 		/* Drop the DATA_IN instruction if len is set to 0. */
1820 		if (!len)
1821 			op.ninstrs--;
1822 
1823 		ret = nand_exec_op(chip, &op);
1824 		if (!ret && len && nand_interface_is_nvddr(conf)) {
1825 			for (i = 0; i < len; i++)
1826 				id[i] = ddrbuf[i * 2];
1827 		}
1828 
1829 		kfree(ddrbuf);
1830 
1831 		return ret;
1832 	}
1833 
1834 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1835 
1836 	for (i = 0; i < len; i++)
1837 		id[i] = chip->legacy.read_byte(chip);
1838 
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(nand_readid_op);
1842 
1843 /**
1844  * nand_status_op - Do a STATUS operation
1845  * @chip: The NAND chip
1846  * @status: out variable to store the NAND status
1847  *
1848  * This function sends a STATUS command and reads back the status returned by
1849  * the NAND.
1850  * This function does not select/unselect the CS line.
1851  *
1852  * Returns 0 on success, a negative error code otherwise.
1853  */
1854 int nand_status_op(struct nand_chip *chip, u8 *status)
1855 {
1856 	if (nand_has_exec_op(chip)) {
1857 		const struct nand_interface_config *conf =
1858 			nand_get_interface_config(chip);
1859 		u8 ddrstatus[2];
1860 		struct nand_op_instr instrs[] = {
1861 			NAND_OP_CMD(NAND_CMD_STATUS,
1862 				    NAND_COMMON_TIMING_NS(conf, tADL_min)),
1863 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1864 		};
1865 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1866 		int ret;
1867 
1868 		/* The status data byte will be received twice in NV-DDR mode */
1869 		if (status && nand_interface_is_nvddr(conf)) {
1870 			instrs[1].ctx.data.len *= 2;
1871 			instrs[1].ctx.data.buf.in = ddrstatus;
1872 		}
1873 
1874 		if (!status)
1875 			op.ninstrs--;
1876 
1877 		ret = nand_exec_op(chip, &op);
1878 		if (!ret && status && nand_interface_is_nvddr(conf))
1879 			*status = ddrstatus[0];
1880 
1881 		return ret;
1882 	}
1883 
1884 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1885 	if (status)
1886 		*status = chip->legacy.read_byte(chip);
1887 
1888 	return 0;
1889 }
1890 EXPORT_SYMBOL_GPL(nand_status_op);
1891 
1892 /**
1893  * nand_exit_status_op - Exit a STATUS operation
1894  * @chip: The NAND chip
1895  *
1896  * This function sends a READ0 command to cancel the effect of the STATUS
1897  * command to avoid reading only the status until a new read command is sent.
1898  *
1899  * This function does not select/unselect the CS line.
1900  *
1901  * Returns 0 on success, a negative error code otherwise.
1902  */
1903 int nand_exit_status_op(struct nand_chip *chip)
1904 {
1905 	if (nand_has_exec_op(chip)) {
1906 		struct nand_op_instr instrs[] = {
1907 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1908 		};
1909 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1910 
1911 		return nand_exec_op(chip, &op);
1912 	}
1913 
1914 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1915 
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1919 
1920 /**
1921  * nand_erase_op - Do an erase operation
1922  * @chip: The NAND chip
1923  * @eraseblock: block to erase
1924  *
1925  * This function sends an ERASE command and waits for the NAND to be ready
1926  * before returning.
1927  * This function does not select/unselect the CS line.
1928  *
1929  * Returns 0 on success, a negative error code otherwise.
1930  */
1931 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1932 {
1933 	unsigned int page = eraseblock <<
1934 			    (chip->phys_erase_shift - chip->page_shift);
1935 	int ret;
1936 	u8 status;
1937 
1938 	if (nand_has_exec_op(chip)) {
1939 		const struct nand_interface_config *conf =
1940 			nand_get_interface_config(chip);
1941 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1942 		struct nand_op_instr instrs[] = {
1943 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1944 			NAND_OP_ADDR(2, addrs, 0),
1945 			NAND_OP_CMD(NAND_CMD_ERASE2,
1946 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1947 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1948 					 0),
1949 		};
1950 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1951 
1952 		if (chip->options & NAND_ROW_ADDR_3)
1953 			instrs[1].ctx.addr.naddrs++;
1954 
1955 		ret = nand_exec_op(chip, &op);
1956 		if (ret)
1957 			return ret;
1958 
1959 		ret = nand_status_op(chip, &status);
1960 		if (ret)
1961 			return ret;
1962 	} else {
1963 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1964 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1965 
1966 		ret = chip->legacy.waitfunc(chip);
1967 		if (ret < 0)
1968 			return ret;
1969 
1970 		status = ret;
1971 	}
1972 
1973 	if (status & NAND_STATUS_FAIL)
1974 		return -EIO;
1975 
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(nand_erase_op);
1979 
1980 /**
1981  * nand_set_features_op - Do a SET FEATURES operation
1982  * @chip: The NAND chip
1983  * @feature: feature id
1984  * @data: 4 bytes of data
1985  *
1986  * This function sends a SET FEATURES command and waits for the NAND to be
1987  * ready before returning.
1988  * This function does not select/unselect the CS line.
1989  *
1990  * Returns 0 on success, a negative error code otherwise.
1991  */
1992 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1993 				const void *data)
1994 {
1995 	const u8 *params = data;
1996 	int i, ret;
1997 
1998 	if (nand_has_exec_op(chip)) {
1999 		const struct nand_interface_config *conf =
2000 			nand_get_interface_config(chip);
2001 		struct nand_op_instr instrs[] = {
2002 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2003 			NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
2004 									tADL_min)),
2005 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2006 					      NAND_COMMON_TIMING_NS(conf,
2007 								    tWB_max)),
2008 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2009 					 0),
2010 		};
2011 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2012 
2013 		return nand_exec_op(chip, &op);
2014 	}
2015 
2016 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
2017 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2018 		chip->legacy.write_byte(chip, params[i]);
2019 
2020 	ret = chip->legacy.waitfunc(chip);
2021 	if (ret < 0)
2022 		return ret;
2023 
2024 	if (ret & NAND_STATUS_FAIL)
2025 		return -EIO;
2026 
2027 	return 0;
2028 }
2029 
2030 /**
2031  * nand_get_features_op - Do a GET FEATURES operation
2032  * @chip: The NAND chip
2033  * @feature: feature id
2034  * @data: 4 bytes of data
2035  *
2036  * This function sends a GET FEATURES command and waits for the NAND to be
2037  * ready before returning.
2038  * This function does not select/unselect the CS line.
2039  *
2040  * Returns 0 on success, a negative error code otherwise.
2041  */
2042 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2043 				void *data)
2044 {
2045 	u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2046 	int i;
2047 
2048 	if (nand_has_exec_op(chip)) {
2049 		const struct nand_interface_config *conf =
2050 			nand_get_interface_config(chip);
2051 		struct nand_op_instr instrs[] = {
2052 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2053 			NAND_OP_ADDR(1, &feature,
2054 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
2055 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2056 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
2057 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2058 					     data, 0),
2059 		};
2060 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2061 		int ret;
2062 
2063 		/* GET_FEATURE data bytes are received twice in NV-DDR mode */
2064 		if (nand_interface_is_nvddr(conf)) {
2065 			instrs[3].ctx.data.len *= 2;
2066 			instrs[3].ctx.data.buf.in = ddrbuf;
2067 		}
2068 
2069 		ret = nand_exec_op(chip, &op);
2070 		if (nand_interface_is_nvddr(conf)) {
2071 			for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2072 				params[i] = ddrbuf[i * 2];
2073 		}
2074 
2075 		return ret;
2076 	}
2077 
2078 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2079 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2080 		params[i] = chip->legacy.read_byte(chip);
2081 
2082 	return 0;
2083 }
2084 
2085 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2086 			    unsigned int delay_ns)
2087 {
2088 	if (nand_has_exec_op(chip)) {
2089 		struct nand_op_instr instrs[] = {
2090 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2091 					 PSEC_TO_NSEC(delay_ns)),
2092 		};
2093 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2094 
2095 		return nand_exec_op(chip, &op);
2096 	}
2097 
2098 	/* Apply delay or wait for ready/busy pin */
2099 	if (!chip->legacy.dev_ready)
2100 		udelay(chip->legacy.chip_delay);
2101 	else
2102 		nand_wait_ready(chip);
2103 
2104 	return 0;
2105 }
2106 
2107 /**
2108  * nand_reset_op - Do a reset operation
2109  * @chip: The NAND chip
2110  *
2111  * This function sends a RESET command and waits for the NAND to be ready
2112  * before returning.
2113  * This function does not select/unselect the CS line.
2114  *
2115  * Returns 0 on success, a negative error code otherwise.
2116  */
2117 int nand_reset_op(struct nand_chip *chip)
2118 {
2119 	if (nand_has_exec_op(chip)) {
2120 		const struct nand_interface_config *conf =
2121 			nand_get_interface_config(chip);
2122 		struct nand_op_instr instrs[] = {
2123 			NAND_OP_CMD(NAND_CMD_RESET,
2124 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
2125 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2126 					 0),
2127 		};
2128 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2129 
2130 		return nand_exec_op(chip, &op);
2131 	}
2132 
2133 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2134 
2135 	return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(nand_reset_op);
2138 
2139 /**
2140  * nand_read_data_op - Read data from the NAND
2141  * @chip: The NAND chip
2142  * @buf: buffer used to store the data
2143  * @len: length of the buffer
2144  * @force_8bit: force 8-bit bus access
2145  * @check_only: do not actually run the command, only checks if the
2146  *              controller driver supports it
2147  *
2148  * This function does a raw data read on the bus. Usually used after launching
2149  * another NAND operation like nand_read_page_op().
2150  * This function does not select/unselect the CS line.
2151  *
2152  * Returns 0 on success, a negative error code otherwise.
2153  */
2154 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2155 		      bool force_8bit, bool check_only)
2156 {
2157 	if (!len || !buf)
2158 		return -EINVAL;
2159 
2160 	if (nand_has_exec_op(chip)) {
2161 		const struct nand_interface_config *conf =
2162 			nand_get_interface_config(chip);
2163 		struct nand_op_instr instrs[] = {
2164 			NAND_OP_DATA_IN(len, buf, 0),
2165 		};
2166 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2167 		u8 *ddrbuf = NULL;
2168 		int ret, i;
2169 
2170 		instrs[0].ctx.data.force_8bit = force_8bit;
2171 
2172 		/*
2173 		 * Parameter payloads (ID, status, features, etc) do not go
2174 		 * through the same pipeline as regular data, hence the
2175 		 * force_8bit flag must be set and this also indicates that in
2176 		 * case NV-DDR timings are being used the data will be received
2177 		 * twice.
2178 		 */
2179 		if (force_8bit && nand_interface_is_nvddr(conf)) {
2180 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2181 			if (!ddrbuf)
2182 				return -ENOMEM;
2183 
2184 			instrs[0].ctx.data.len *= 2;
2185 			instrs[0].ctx.data.buf.in = ddrbuf;
2186 		}
2187 
2188 		if (check_only) {
2189 			ret = nand_check_op(chip, &op);
2190 			kfree(ddrbuf);
2191 			return ret;
2192 		}
2193 
2194 		ret = nand_exec_op(chip, &op);
2195 		if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2196 			u8 *dst = buf;
2197 
2198 			for (i = 0; i < len; i++)
2199 				dst[i] = ddrbuf[i * 2];
2200 		}
2201 
2202 		kfree(ddrbuf);
2203 
2204 		return ret;
2205 	}
2206 
2207 	if (check_only)
2208 		return 0;
2209 
2210 	if (force_8bit) {
2211 		u8 *p = buf;
2212 		unsigned int i;
2213 
2214 		for (i = 0; i < len; i++)
2215 			p[i] = chip->legacy.read_byte(chip);
2216 	} else {
2217 		chip->legacy.read_buf(chip, buf, len);
2218 	}
2219 
2220 	return 0;
2221 }
2222 EXPORT_SYMBOL_GPL(nand_read_data_op);
2223 
2224 /**
2225  * nand_write_data_op - Write data from the NAND
2226  * @chip: The NAND chip
2227  * @buf: buffer containing the data to send on the bus
2228  * @len: length of the buffer
2229  * @force_8bit: force 8-bit bus access
2230  *
2231  * This function does a raw data write on the bus. Usually used after launching
2232  * another NAND operation like nand_write_page_begin_op().
2233  * This function does not select/unselect the CS line.
2234  *
2235  * Returns 0 on success, a negative error code otherwise.
2236  */
2237 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2238 		       unsigned int len, bool force_8bit)
2239 {
2240 	if (!len || !buf)
2241 		return -EINVAL;
2242 
2243 	if (nand_has_exec_op(chip)) {
2244 		struct nand_op_instr instrs[] = {
2245 			NAND_OP_DATA_OUT(len, buf, 0),
2246 		};
2247 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2248 
2249 		instrs[0].ctx.data.force_8bit = force_8bit;
2250 
2251 		return nand_exec_op(chip, &op);
2252 	}
2253 
2254 	if (force_8bit) {
2255 		const u8 *p = buf;
2256 		unsigned int i;
2257 
2258 		for (i = 0; i < len; i++)
2259 			chip->legacy.write_byte(chip, p[i]);
2260 	} else {
2261 		chip->legacy.write_buf(chip, buf, len);
2262 	}
2263 
2264 	return 0;
2265 }
2266 EXPORT_SYMBOL_GPL(nand_write_data_op);
2267 
2268 /**
2269  * struct nand_op_parser_ctx - Context used by the parser
2270  * @instrs: array of all the instructions that must be addressed
2271  * @ninstrs: length of the @instrs array
2272  * @subop: Sub-operation to be passed to the NAND controller
2273  *
2274  * This structure is used by the core to split NAND operations into
2275  * sub-operations that can be handled by the NAND controller.
2276  */
2277 struct nand_op_parser_ctx {
2278 	const struct nand_op_instr *instrs;
2279 	unsigned int ninstrs;
2280 	struct nand_subop subop;
2281 };
2282 
2283 /**
2284  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2285  * @pat: the parser pattern element that matches @instr
2286  * @instr: pointer to the instruction to check
2287  * @start_offset: this is an in/out parameter. If @instr has already been
2288  *		  split, then @start_offset is the offset from which to start
2289  *		  (either an address cycle or an offset in the data buffer).
2290  *		  Conversely, if the function returns true (ie. instr must be
2291  *		  split), this parameter is updated to point to the first
2292  *		  data/address cycle that has not been taken care of.
2293  *
2294  * Some NAND controllers are limited and cannot send X address cycles with a
2295  * unique operation, or cannot read/write more than Y bytes at the same time.
2296  * In this case, split the instruction that does not fit in a single
2297  * controller-operation into two or more chunks.
2298  *
2299  * Returns true if the instruction must be split, false otherwise.
2300  * The @start_offset parameter is also updated to the offset at which the next
2301  * bundle of instruction must start (if an address or a data instruction).
2302  */
2303 static bool
2304 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2305 				const struct nand_op_instr *instr,
2306 				unsigned int *start_offset)
2307 {
2308 	switch (pat->type) {
2309 	case NAND_OP_ADDR_INSTR:
2310 		if (!pat->ctx.addr.maxcycles)
2311 			break;
2312 
2313 		if (instr->ctx.addr.naddrs - *start_offset >
2314 		    pat->ctx.addr.maxcycles) {
2315 			*start_offset += pat->ctx.addr.maxcycles;
2316 			return true;
2317 		}
2318 		break;
2319 
2320 	case NAND_OP_DATA_IN_INSTR:
2321 	case NAND_OP_DATA_OUT_INSTR:
2322 		if (!pat->ctx.data.maxlen)
2323 			break;
2324 
2325 		if (instr->ctx.data.len - *start_offset >
2326 		    pat->ctx.data.maxlen) {
2327 			*start_offset += pat->ctx.data.maxlen;
2328 			return true;
2329 		}
2330 		break;
2331 
2332 	default:
2333 		break;
2334 	}
2335 
2336 	return false;
2337 }
2338 
2339 /**
2340  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2341  *			      remaining in the parser context
2342  * @pat: the pattern to test
2343  * @ctx: the parser context structure to match with the pattern @pat
2344  *
2345  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2346  * Returns true if this is the case, false ortherwise. When true is returned,
2347  * @ctx->subop is updated with the set of instructions to be passed to the
2348  * controller driver.
2349  */
2350 static bool
2351 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2352 			 struct nand_op_parser_ctx *ctx)
2353 {
2354 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2355 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2356 	const struct nand_op_instr *instr = ctx->subop.instrs;
2357 	unsigned int i, ninstrs;
2358 
2359 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2360 		/*
2361 		 * The pattern instruction does not match the operation
2362 		 * instruction. If the instruction is marked optional in the
2363 		 * pattern definition, we skip the pattern element and continue
2364 		 * to the next one. If the element is mandatory, there's no
2365 		 * match and we can return false directly.
2366 		 */
2367 		if (instr->type != pat->elems[i].type) {
2368 			if (!pat->elems[i].optional)
2369 				return false;
2370 
2371 			continue;
2372 		}
2373 
2374 		/*
2375 		 * Now check the pattern element constraints. If the pattern is
2376 		 * not able to handle the whole instruction in a single step,
2377 		 * we have to split it.
2378 		 * The last_instr_end_off value comes back updated to point to
2379 		 * the position where we have to split the instruction (the
2380 		 * start of the next subop chunk).
2381 		 */
2382 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2383 						    &instr_offset)) {
2384 			ninstrs++;
2385 			i++;
2386 			break;
2387 		}
2388 
2389 		instr++;
2390 		ninstrs++;
2391 		instr_offset = 0;
2392 	}
2393 
2394 	/*
2395 	 * This can happen if all instructions of a pattern are optional.
2396 	 * Still, if there's not at least one instruction handled by this
2397 	 * pattern, this is not a match, and we should try the next one (if
2398 	 * any).
2399 	 */
2400 	if (!ninstrs)
2401 		return false;
2402 
2403 	/*
2404 	 * We had a match on the pattern head, but the pattern may be longer
2405 	 * than the instructions we're asked to execute. We need to make sure
2406 	 * there's no mandatory elements in the pattern tail.
2407 	 */
2408 	for (; i < pat->nelems; i++) {
2409 		if (!pat->elems[i].optional)
2410 			return false;
2411 	}
2412 
2413 	/*
2414 	 * We have a match: update the subop structure accordingly and return
2415 	 * true.
2416 	 */
2417 	ctx->subop.ninstrs = ninstrs;
2418 	ctx->subop.last_instr_end_off = instr_offset;
2419 
2420 	return true;
2421 }
2422 
2423 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2424 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2425 {
2426 	const struct nand_op_instr *instr;
2427 	char *prefix = "      ";
2428 	unsigned int i;
2429 
2430 	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2431 
2432 	for (i = 0; i < ctx->ninstrs; i++) {
2433 		instr = &ctx->instrs[i];
2434 
2435 		if (instr == &ctx->subop.instrs[0])
2436 			prefix = "    ->";
2437 
2438 		nand_op_trace(prefix, instr);
2439 
2440 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2441 			prefix = "      ";
2442 	}
2443 }
2444 #else
2445 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2446 {
2447 	/* NOP */
2448 }
2449 #endif
2450 
2451 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2452 				  const struct nand_op_parser_ctx *b)
2453 {
2454 	if (a->subop.ninstrs < b->subop.ninstrs)
2455 		return -1;
2456 	else if (a->subop.ninstrs > b->subop.ninstrs)
2457 		return 1;
2458 
2459 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2460 		return -1;
2461 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2462 		return 1;
2463 
2464 	return 0;
2465 }
2466 
2467 /**
2468  * nand_op_parser_exec_op - exec_op parser
2469  * @chip: the NAND chip
2470  * @parser: patterns description provided by the controller driver
2471  * @op: the NAND operation to address
2472  * @check_only: when true, the function only checks if @op can be handled but
2473  *		does not execute the operation
2474  *
2475  * Helper function designed to ease integration of NAND controller drivers that
2476  * only support a limited set of instruction sequences. The supported sequences
2477  * are described in @parser, and the framework takes care of splitting @op into
2478  * multiple sub-operations (if required) and pass them back to the ->exec()
2479  * callback of the matching pattern if @check_only is set to false.
2480  *
2481  * NAND controller drivers should call this function from their own ->exec_op()
2482  * implementation.
2483  *
2484  * Returns 0 on success, a negative error code otherwise. A failure can be
2485  * caused by an unsupported operation (none of the supported patterns is able
2486  * to handle the requested operation), or an error returned by one of the
2487  * matching pattern->exec() hook.
2488  */
2489 int nand_op_parser_exec_op(struct nand_chip *chip,
2490 			   const struct nand_op_parser *parser,
2491 			   const struct nand_operation *op, bool check_only)
2492 {
2493 	struct nand_op_parser_ctx ctx = {
2494 		.subop.cs = op->cs,
2495 		.subop.instrs = op->instrs,
2496 		.instrs = op->instrs,
2497 		.ninstrs = op->ninstrs,
2498 	};
2499 	unsigned int i;
2500 
2501 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2502 		const struct nand_op_parser_pattern *pattern;
2503 		struct nand_op_parser_ctx best_ctx;
2504 		int ret, best_pattern = -1;
2505 
2506 		for (i = 0; i < parser->npatterns; i++) {
2507 			struct nand_op_parser_ctx test_ctx = ctx;
2508 
2509 			pattern = &parser->patterns[i];
2510 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2511 				continue;
2512 
2513 			if (best_pattern >= 0 &&
2514 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2515 				continue;
2516 
2517 			best_pattern = i;
2518 			best_ctx = test_ctx;
2519 		}
2520 
2521 		if (best_pattern < 0) {
2522 			pr_debug("->exec_op() parser: pattern not found!\n");
2523 			return -ENOTSUPP;
2524 		}
2525 
2526 		ctx = best_ctx;
2527 		nand_op_parser_trace(&ctx);
2528 
2529 		if (!check_only) {
2530 			pattern = &parser->patterns[best_pattern];
2531 			ret = pattern->exec(chip, &ctx.subop);
2532 			if (ret)
2533 				return ret;
2534 		}
2535 
2536 		/*
2537 		 * Update the context structure by pointing to the start of the
2538 		 * next subop.
2539 		 */
2540 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2541 		if (ctx.subop.last_instr_end_off)
2542 			ctx.subop.instrs -= 1;
2543 
2544 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2545 	}
2546 
2547 	return 0;
2548 }
2549 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2550 
2551 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2552 {
2553 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2554 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2555 }
2556 
2557 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2558 				      unsigned int instr_idx)
2559 {
2560 	return subop && instr_idx < subop->ninstrs;
2561 }
2562 
2563 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2564 					     unsigned int instr_idx)
2565 {
2566 	if (instr_idx)
2567 		return 0;
2568 
2569 	return subop->first_instr_start_off;
2570 }
2571 
2572 /**
2573  * nand_subop_get_addr_start_off - Get the start offset in an address array
2574  * @subop: The entire sub-operation
2575  * @instr_idx: Index of the instruction inside the sub-operation
2576  *
2577  * During driver development, one could be tempted to directly use the
2578  * ->addr.addrs field of address instructions. This is wrong as address
2579  * instructions might be split.
2580  *
2581  * Given an address instruction, returns the offset of the first cycle to issue.
2582  */
2583 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2584 					   unsigned int instr_idx)
2585 {
2586 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2587 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2588 		return 0;
2589 
2590 	return nand_subop_get_start_off(subop, instr_idx);
2591 }
2592 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2593 
2594 /**
2595  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2596  * @subop: The entire sub-operation
2597  * @instr_idx: Index of the instruction inside the sub-operation
2598  *
2599  * During driver development, one could be tempted to directly use the
2600  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2601  * might be split.
2602  *
2603  * Given an address instruction, returns the number of address cycle to issue.
2604  */
2605 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2606 					 unsigned int instr_idx)
2607 {
2608 	int start_off, end_off;
2609 
2610 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2611 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2612 		return 0;
2613 
2614 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2615 
2616 	if (instr_idx == subop->ninstrs - 1 &&
2617 	    subop->last_instr_end_off)
2618 		end_off = subop->last_instr_end_off;
2619 	else
2620 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2621 
2622 	return end_off - start_off;
2623 }
2624 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2625 
2626 /**
2627  * nand_subop_get_data_start_off - Get the start offset in a data array
2628  * @subop: The entire sub-operation
2629  * @instr_idx: Index of the instruction inside the sub-operation
2630  *
2631  * During driver development, one could be tempted to directly use the
2632  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2633  * instructions might be split.
2634  *
2635  * Given a data instruction, returns the offset to start from.
2636  */
2637 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2638 					   unsigned int instr_idx)
2639 {
2640 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2641 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2642 		return 0;
2643 
2644 	return nand_subop_get_start_off(subop, instr_idx);
2645 }
2646 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2647 
2648 /**
2649  * nand_subop_get_data_len - Get the number of bytes to retrieve
2650  * @subop: The entire sub-operation
2651  * @instr_idx: Index of the instruction inside the sub-operation
2652  *
2653  * During driver development, one could be tempted to directly use the
2654  * ->data->len field of a data instruction. This is wrong as data instructions
2655  * might be split.
2656  *
2657  * Returns the length of the chunk of data to send/receive.
2658  */
2659 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2660 				     unsigned int instr_idx)
2661 {
2662 	int start_off = 0, end_off;
2663 
2664 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2665 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2666 		return 0;
2667 
2668 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2669 
2670 	if (instr_idx == subop->ninstrs - 1 &&
2671 	    subop->last_instr_end_off)
2672 		end_off = subop->last_instr_end_off;
2673 	else
2674 		end_off = subop->instrs[instr_idx].ctx.data.len;
2675 
2676 	return end_off - start_off;
2677 }
2678 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2679 
2680 /**
2681  * nand_reset - Reset and initialize a NAND device
2682  * @chip: The NAND chip
2683  * @chipnr: Internal die id
2684  *
2685  * Save the timings data structure, then apply SDR timings mode 0 (see
2686  * nand_reset_interface for details), do the reset operation, and apply
2687  * back the previous timings.
2688  *
2689  * Returns 0 on success, a negative error code otherwise.
2690  */
2691 int nand_reset(struct nand_chip *chip, int chipnr)
2692 {
2693 	int ret;
2694 
2695 	ret = nand_reset_interface(chip, chipnr);
2696 	if (ret)
2697 		return ret;
2698 
2699 	/*
2700 	 * The CS line has to be released before we can apply the new NAND
2701 	 * interface settings, hence this weird nand_select_target()
2702 	 * nand_deselect_target() dance.
2703 	 */
2704 	nand_select_target(chip, chipnr);
2705 	ret = nand_reset_op(chip);
2706 	nand_deselect_target(chip);
2707 	if (ret)
2708 		return ret;
2709 
2710 	ret = nand_setup_interface(chip, chipnr);
2711 	if (ret)
2712 		return ret;
2713 
2714 	return 0;
2715 }
2716 EXPORT_SYMBOL_GPL(nand_reset);
2717 
2718 /**
2719  * nand_get_features - wrapper to perform a GET_FEATURE
2720  * @chip: NAND chip info structure
2721  * @addr: feature address
2722  * @subfeature_param: the subfeature parameters, a four bytes array
2723  *
2724  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2725  * operation cannot be handled.
2726  */
2727 int nand_get_features(struct nand_chip *chip, int addr,
2728 		      u8 *subfeature_param)
2729 {
2730 	if (!nand_supports_get_features(chip, addr))
2731 		return -ENOTSUPP;
2732 
2733 	if (chip->legacy.get_features)
2734 		return chip->legacy.get_features(chip, addr, subfeature_param);
2735 
2736 	return nand_get_features_op(chip, addr, subfeature_param);
2737 }
2738 
2739 /**
2740  * nand_set_features - wrapper to perform a SET_FEATURE
2741  * @chip: NAND chip info structure
2742  * @addr: feature address
2743  * @subfeature_param: the subfeature parameters, a four bytes array
2744  *
2745  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2746  * operation cannot be handled.
2747  */
2748 int nand_set_features(struct nand_chip *chip, int addr,
2749 		      u8 *subfeature_param)
2750 {
2751 	if (!nand_supports_set_features(chip, addr))
2752 		return -ENOTSUPP;
2753 
2754 	if (chip->legacy.set_features)
2755 		return chip->legacy.set_features(chip, addr, subfeature_param);
2756 
2757 	return nand_set_features_op(chip, addr, subfeature_param);
2758 }
2759 
2760 /**
2761  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2762  * @buf: buffer to test
2763  * @len: buffer length
2764  * @bitflips_threshold: maximum number of bitflips
2765  *
2766  * Check if a buffer contains only 0xff, which means the underlying region
2767  * has been erased and is ready to be programmed.
2768  * The bitflips_threshold specify the maximum number of bitflips before
2769  * considering the region is not erased.
2770  * Note: The logic of this function has been extracted from the memweight
2771  * implementation, except that nand_check_erased_buf function exit before
2772  * testing the whole buffer if the number of bitflips exceed the
2773  * bitflips_threshold value.
2774  *
2775  * Returns a positive number of bitflips less than or equal to
2776  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2777  * threshold.
2778  */
2779 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2780 {
2781 	const unsigned char *bitmap = buf;
2782 	int bitflips = 0;
2783 	int weight;
2784 
2785 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2786 	     len--, bitmap++) {
2787 		weight = hweight8(*bitmap);
2788 		bitflips += BITS_PER_BYTE - weight;
2789 		if (unlikely(bitflips > bitflips_threshold))
2790 			return -EBADMSG;
2791 	}
2792 
2793 	for (; len >= sizeof(long);
2794 	     len -= sizeof(long), bitmap += sizeof(long)) {
2795 		unsigned long d = *((unsigned long *)bitmap);
2796 		if (d == ~0UL)
2797 			continue;
2798 		weight = hweight_long(d);
2799 		bitflips += BITS_PER_LONG - weight;
2800 		if (unlikely(bitflips > bitflips_threshold))
2801 			return -EBADMSG;
2802 	}
2803 
2804 	for (; len > 0; len--, bitmap++) {
2805 		weight = hweight8(*bitmap);
2806 		bitflips += BITS_PER_BYTE - weight;
2807 		if (unlikely(bitflips > bitflips_threshold))
2808 			return -EBADMSG;
2809 	}
2810 
2811 	return bitflips;
2812 }
2813 
2814 /**
2815  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2816  *				 0xff data
2817  * @data: data buffer to test
2818  * @datalen: data length
2819  * @ecc: ECC buffer
2820  * @ecclen: ECC length
2821  * @extraoob: extra OOB buffer
2822  * @extraooblen: extra OOB length
2823  * @bitflips_threshold: maximum number of bitflips
2824  *
2825  * Check if a data buffer and its associated ECC and OOB data contains only
2826  * 0xff pattern, which means the underlying region has been erased and is
2827  * ready to be programmed.
2828  * The bitflips_threshold specify the maximum number of bitflips before
2829  * considering the region as not erased.
2830  *
2831  * Note:
2832  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2833  *    different from the NAND page size. When fixing bitflips, ECC engines will
2834  *    report the number of errors per chunk, and the NAND core infrastructure
2835  *    expect you to return the maximum number of bitflips for the whole page.
2836  *    This is why you should always use this function on a single chunk and
2837  *    not on the whole page. After checking each chunk you should update your
2838  *    max_bitflips value accordingly.
2839  * 2/ When checking for bitflips in erased pages you should not only check
2840  *    the payload data but also their associated ECC data, because a user might
2841  *    have programmed almost all bits to 1 but a few. In this case, we
2842  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2843  *    this case.
2844  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2845  *    data are protected by the ECC engine.
2846  *    It could also be used if you support subpages and want to attach some
2847  *    extra OOB data to an ECC chunk.
2848  *
2849  * Returns a positive number of bitflips less than or equal to
2850  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2851  * threshold. In case of success, the passed buffers are filled with 0xff.
2852  */
2853 int nand_check_erased_ecc_chunk(void *data, int datalen,
2854 				void *ecc, int ecclen,
2855 				void *extraoob, int extraooblen,
2856 				int bitflips_threshold)
2857 {
2858 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2859 
2860 	data_bitflips = nand_check_erased_buf(data, datalen,
2861 					      bitflips_threshold);
2862 	if (data_bitflips < 0)
2863 		return data_bitflips;
2864 
2865 	bitflips_threshold -= data_bitflips;
2866 
2867 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2868 	if (ecc_bitflips < 0)
2869 		return ecc_bitflips;
2870 
2871 	bitflips_threshold -= ecc_bitflips;
2872 
2873 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2874 						  bitflips_threshold);
2875 	if (extraoob_bitflips < 0)
2876 		return extraoob_bitflips;
2877 
2878 	if (data_bitflips)
2879 		memset(data, 0xff, datalen);
2880 
2881 	if (ecc_bitflips)
2882 		memset(ecc, 0xff, ecclen);
2883 
2884 	if (extraoob_bitflips)
2885 		memset(extraoob, 0xff, extraooblen);
2886 
2887 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2888 }
2889 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2890 
2891 /**
2892  * nand_read_page_raw_notsupp - dummy read raw page function
2893  * @chip: nand chip info structure
2894  * @buf: buffer to store read data
2895  * @oob_required: caller requires OOB data read to chip->oob_poi
2896  * @page: page number to read
2897  *
2898  * Returns -ENOTSUPP unconditionally.
2899  */
2900 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2901 			       int oob_required, int page)
2902 {
2903 	return -ENOTSUPP;
2904 }
2905 
2906 /**
2907  * nand_read_page_raw - [INTERN] read raw page data without ecc
2908  * @chip: nand chip info structure
2909  * @buf: buffer to store read data
2910  * @oob_required: caller requires OOB data read to chip->oob_poi
2911  * @page: page number to read
2912  *
2913  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2914  */
2915 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2916 		       int page)
2917 {
2918 	struct mtd_info *mtd = nand_to_mtd(chip);
2919 	int ret;
2920 
2921 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2922 	if (ret)
2923 		return ret;
2924 
2925 	if (oob_required) {
2926 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2927 					false, false);
2928 		if (ret)
2929 			return ret;
2930 	}
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL(nand_read_page_raw);
2935 
2936 /**
2937  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2938  * @chip: NAND chip info structure
2939  * @buf: buffer to store read data
2940  * @oob_required: caller requires OOB data read to chip->oob_poi
2941  * @page: page number to read
2942  *
2943  * This is a raw page read, ie. without any error detection/correction.
2944  * Monolithic means we are requesting all the relevant data (main plus
2945  * eventually OOB) to be loaded in the NAND cache and sent over the
2946  * bus (from the NAND chip to the NAND controller) in a single
2947  * operation. This is an alternative to nand_read_page_raw(), which
2948  * first reads the main data, and if the OOB data is requested too,
2949  * then reads more data on the bus.
2950  */
2951 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2952 				  int oob_required, int page)
2953 {
2954 	struct mtd_info *mtd = nand_to_mtd(chip);
2955 	unsigned int size = mtd->writesize;
2956 	u8 *read_buf = buf;
2957 	int ret;
2958 
2959 	if (oob_required) {
2960 		size += mtd->oobsize;
2961 
2962 		if (buf != chip->data_buf)
2963 			read_buf = nand_get_data_buf(chip);
2964 	}
2965 
2966 	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2967 	if (ret)
2968 		return ret;
2969 
2970 	if (buf != chip->data_buf)
2971 		memcpy(buf, read_buf, mtd->writesize);
2972 
2973 	return 0;
2974 }
2975 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2976 
2977 /**
2978  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2979  * @chip: nand chip info structure
2980  * @buf: buffer to store read data
2981  * @oob_required: caller requires OOB data read to chip->oob_poi
2982  * @page: page number to read
2983  *
2984  * We need a special oob layout and handling even when OOB isn't used.
2985  */
2986 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2987 				       int oob_required, int page)
2988 {
2989 	struct mtd_info *mtd = nand_to_mtd(chip);
2990 	int eccsize = chip->ecc.size;
2991 	int eccbytes = chip->ecc.bytes;
2992 	uint8_t *oob = chip->oob_poi;
2993 	int steps, size, ret;
2994 
2995 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2996 	if (ret)
2997 		return ret;
2998 
2999 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3000 		ret = nand_read_data_op(chip, buf, eccsize, false, false);
3001 		if (ret)
3002 			return ret;
3003 
3004 		buf += eccsize;
3005 
3006 		if (chip->ecc.prepad) {
3007 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3008 						false, false);
3009 			if (ret)
3010 				return ret;
3011 
3012 			oob += chip->ecc.prepad;
3013 		}
3014 
3015 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3016 		if (ret)
3017 			return ret;
3018 
3019 		oob += eccbytes;
3020 
3021 		if (chip->ecc.postpad) {
3022 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3023 						false, false);
3024 			if (ret)
3025 				return ret;
3026 
3027 			oob += chip->ecc.postpad;
3028 		}
3029 	}
3030 
3031 	size = mtd->oobsize - (oob - chip->oob_poi);
3032 	if (size) {
3033 		ret = nand_read_data_op(chip, oob, size, false, false);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 	return 0;
3039 }
3040 
3041 /**
3042  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3043  * @chip: nand chip info structure
3044  * @buf: buffer to store read data
3045  * @oob_required: caller requires OOB data read to chip->oob_poi
3046  * @page: page number to read
3047  */
3048 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3049 				int oob_required, int page)
3050 {
3051 	struct mtd_info *mtd = nand_to_mtd(chip);
3052 	int i, eccsize = chip->ecc.size, ret;
3053 	int eccbytes = chip->ecc.bytes;
3054 	int eccsteps = chip->ecc.steps;
3055 	uint8_t *p = buf;
3056 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3057 	uint8_t *ecc_code = chip->ecc.code_buf;
3058 	unsigned int max_bitflips = 0;
3059 
3060 	chip->ecc.read_page_raw(chip, buf, 1, page);
3061 
3062 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3063 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3064 
3065 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3066 					 chip->ecc.total);
3067 	if (ret)
3068 		return ret;
3069 
3070 	eccsteps = chip->ecc.steps;
3071 	p = buf;
3072 
3073 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3074 		int stat;
3075 
3076 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3077 		if (stat < 0) {
3078 			mtd->ecc_stats.failed++;
3079 		} else {
3080 			mtd->ecc_stats.corrected += stat;
3081 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3082 		}
3083 	}
3084 	return max_bitflips;
3085 }
3086 
3087 /**
3088  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3089  * @chip: nand chip info structure
3090  * @data_offs: offset of requested data within the page
3091  * @readlen: data length
3092  * @bufpoi: buffer to store read data
3093  * @page: page number to read
3094  */
3095 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3096 			     uint32_t readlen, uint8_t *bufpoi, int page)
3097 {
3098 	struct mtd_info *mtd = nand_to_mtd(chip);
3099 	int start_step, end_step, num_steps, ret;
3100 	uint8_t *p;
3101 	int data_col_addr, i, gaps = 0;
3102 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3103 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3104 	int index, section = 0;
3105 	unsigned int max_bitflips = 0;
3106 	struct mtd_oob_region oobregion = { };
3107 
3108 	/* Column address within the page aligned to ECC size (256bytes) */
3109 	start_step = data_offs / chip->ecc.size;
3110 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
3111 	num_steps = end_step - start_step + 1;
3112 	index = start_step * chip->ecc.bytes;
3113 
3114 	/* Data size aligned to ECC ecc.size */
3115 	datafrag_len = num_steps * chip->ecc.size;
3116 	eccfrag_len = num_steps * chip->ecc.bytes;
3117 
3118 	data_col_addr = start_step * chip->ecc.size;
3119 	/* If we read not a page aligned data */
3120 	p = bufpoi + data_col_addr;
3121 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3122 	if (ret)
3123 		return ret;
3124 
3125 	/* Calculate ECC */
3126 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3127 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3128 
3129 	/*
3130 	 * The performance is faster if we position offsets according to
3131 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3132 	 */
3133 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3134 	if (ret)
3135 		return ret;
3136 
3137 	if (oobregion.length < eccfrag_len)
3138 		gaps = 1;
3139 
3140 	if (gaps) {
3141 		ret = nand_change_read_column_op(chip, mtd->writesize,
3142 						 chip->oob_poi, mtd->oobsize,
3143 						 false);
3144 		if (ret)
3145 			return ret;
3146 	} else {
3147 		/*
3148 		 * Send the command to read the particular ECC bytes take care
3149 		 * about buswidth alignment in read_buf.
3150 		 */
3151 		aligned_pos = oobregion.offset & ~(busw - 1);
3152 		aligned_len = eccfrag_len;
3153 		if (oobregion.offset & (busw - 1))
3154 			aligned_len++;
3155 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3156 		    (busw - 1))
3157 			aligned_len++;
3158 
3159 		ret = nand_change_read_column_op(chip,
3160 						 mtd->writesize + aligned_pos,
3161 						 &chip->oob_poi[aligned_pos],
3162 						 aligned_len, false);
3163 		if (ret)
3164 			return ret;
3165 	}
3166 
3167 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3168 					 chip->oob_poi, index, eccfrag_len);
3169 	if (ret)
3170 		return ret;
3171 
3172 	p = bufpoi + data_col_addr;
3173 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3174 		int stat;
3175 
3176 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3177 					 &chip->ecc.calc_buf[i]);
3178 		if (stat == -EBADMSG &&
3179 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3180 			/* check for empty pages with bitflips */
3181 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3182 						&chip->ecc.code_buf[i],
3183 						chip->ecc.bytes,
3184 						NULL, 0,
3185 						chip->ecc.strength);
3186 		}
3187 
3188 		if (stat < 0) {
3189 			mtd->ecc_stats.failed++;
3190 		} else {
3191 			mtd->ecc_stats.corrected += stat;
3192 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3193 		}
3194 	}
3195 	return max_bitflips;
3196 }
3197 
3198 /**
3199  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3200  * @chip: nand chip info structure
3201  * @buf: buffer to store read data
3202  * @oob_required: caller requires OOB data read to chip->oob_poi
3203  * @page: page number to read
3204  *
3205  * Not for syndrome calculating ECC controllers which need a special oob layout.
3206  */
3207 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3208 				int oob_required, int page)
3209 {
3210 	struct mtd_info *mtd = nand_to_mtd(chip);
3211 	int i, eccsize = chip->ecc.size, ret;
3212 	int eccbytes = chip->ecc.bytes;
3213 	int eccsteps = chip->ecc.steps;
3214 	uint8_t *p = buf;
3215 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3216 	uint8_t *ecc_code = chip->ecc.code_buf;
3217 	unsigned int max_bitflips = 0;
3218 
3219 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3220 	if (ret)
3221 		return ret;
3222 
3223 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3224 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3225 
3226 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3227 		if (ret)
3228 			return ret;
3229 
3230 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3231 	}
3232 
3233 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3234 				false);
3235 	if (ret)
3236 		return ret;
3237 
3238 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3239 					 chip->ecc.total);
3240 	if (ret)
3241 		return ret;
3242 
3243 	eccsteps = chip->ecc.steps;
3244 	p = buf;
3245 
3246 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3247 		int stat;
3248 
3249 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3250 		if (stat == -EBADMSG &&
3251 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3252 			/* check for empty pages with bitflips */
3253 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3254 						&ecc_code[i], eccbytes,
3255 						NULL, 0,
3256 						chip->ecc.strength);
3257 		}
3258 
3259 		if (stat < 0) {
3260 			mtd->ecc_stats.failed++;
3261 		} else {
3262 			mtd->ecc_stats.corrected += stat;
3263 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3264 		}
3265 	}
3266 	return max_bitflips;
3267 }
3268 
3269 /**
3270  * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3271  *                                  data read from OOB area
3272  * @chip: nand chip info structure
3273  * @buf: buffer to store read data
3274  * @oob_required: caller requires OOB data read to chip->oob_poi
3275  * @page: page number to read
3276  *
3277  * Hardware ECC for large page chips, which requires the ECC data to be
3278  * extracted from the OOB before the actual data is read.
3279  */
3280 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3281 				   int oob_required, int page)
3282 {
3283 	struct mtd_info *mtd = nand_to_mtd(chip);
3284 	int i, eccsize = chip->ecc.size, ret;
3285 	int eccbytes = chip->ecc.bytes;
3286 	int eccsteps = chip->ecc.steps;
3287 	uint8_t *p = buf;
3288 	uint8_t *ecc_code = chip->ecc.code_buf;
3289 	unsigned int max_bitflips = 0;
3290 
3291 	/* Read the OOB area first */
3292 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3293 	if (ret)
3294 		return ret;
3295 
3296 	/* Move read cursor to start of page */
3297 	ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3298 	if (ret)
3299 		return ret;
3300 
3301 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3302 					 chip->ecc.total);
3303 	if (ret)
3304 		return ret;
3305 
3306 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3307 		int stat;
3308 
3309 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3310 
3311 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3312 		if (ret)
3313 			return ret;
3314 
3315 		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3316 		if (stat == -EBADMSG &&
3317 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3318 			/* check for empty pages with bitflips */
3319 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3320 							   &ecc_code[i],
3321 							   eccbytes, NULL, 0,
3322 							   chip->ecc.strength);
3323 		}
3324 
3325 		if (stat < 0) {
3326 			mtd->ecc_stats.failed++;
3327 		} else {
3328 			mtd->ecc_stats.corrected += stat;
3329 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3330 		}
3331 	}
3332 	return max_bitflips;
3333 }
3334 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3335 
3336 /**
3337  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3338  * @chip: nand chip info structure
3339  * @buf: buffer to store read data
3340  * @oob_required: caller requires OOB data read to chip->oob_poi
3341  * @page: page number to read
3342  *
3343  * The hw generator calculates the error syndrome automatically. Therefore we
3344  * need a special oob layout and handling.
3345  */
3346 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3347 				   int oob_required, int page)
3348 {
3349 	struct mtd_info *mtd = nand_to_mtd(chip);
3350 	int ret, i, eccsize = chip->ecc.size;
3351 	int eccbytes = chip->ecc.bytes;
3352 	int eccsteps = chip->ecc.steps;
3353 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3354 	uint8_t *p = buf;
3355 	uint8_t *oob = chip->oob_poi;
3356 	unsigned int max_bitflips = 0;
3357 
3358 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3359 	if (ret)
3360 		return ret;
3361 
3362 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3363 		int stat;
3364 
3365 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3366 
3367 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3368 		if (ret)
3369 			return ret;
3370 
3371 		if (chip->ecc.prepad) {
3372 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3373 						false, false);
3374 			if (ret)
3375 				return ret;
3376 
3377 			oob += chip->ecc.prepad;
3378 		}
3379 
3380 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3381 
3382 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3383 		if (ret)
3384 			return ret;
3385 
3386 		stat = chip->ecc.correct(chip, p, oob, NULL);
3387 
3388 		oob += eccbytes;
3389 
3390 		if (chip->ecc.postpad) {
3391 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3392 						false, false);
3393 			if (ret)
3394 				return ret;
3395 
3396 			oob += chip->ecc.postpad;
3397 		}
3398 
3399 		if (stat == -EBADMSG &&
3400 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3401 			/* check for empty pages with bitflips */
3402 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3403 							   oob - eccpadbytes,
3404 							   eccpadbytes,
3405 							   NULL, 0,
3406 							   chip->ecc.strength);
3407 		}
3408 
3409 		if (stat < 0) {
3410 			mtd->ecc_stats.failed++;
3411 		} else {
3412 			mtd->ecc_stats.corrected += stat;
3413 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3414 		}
3415 	}
3416 
3417 	/* Calculate remaining oob bytes */
3418 	i = mtd->oobsize - (oob - chip->oob_poi);
3419 	if (i) {
3420 		ret = nand_read_data_op(chip, oob, i, false, false);
3421 		if (ret)
3422 			return ret;
3423 	}
3424 
3425 	return max_bitflips;
3426 }
3427 
3428 /**
3429  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3430  * @chip: NAND chip object
3431  * @oob: oob destination address
3432  * @ops: oob ops structure
3433  * @len: size of oob to transfer
3434  */
3435 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3436 				  struct mtd_oob_ops *ops, size_t len)
3437 {
3438 	struct mtd_info *mtd = nand_to_mtd(chip);
3439 	int ret;
3440 
3441 	switch (ops->mode) {
3442 
3443 	case MTD_OPS_PLACE_OOB:
3444 	case MTD_OPS_RAW:
3445 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3446 		return oob + len;
3447 
3448 	case MTD_OPS_AUTO_OOB:
3449 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3450 						  ops->ooboffs, len);
3451 		BUG_ON(ret);
3452 		return oob + len;
3453 
3454 	default:
3455 		BUG();
3456 	}
3457 	return NULL;
3458 }
3459 
3460 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3461 				      u32 readlen, int col)
3462 {
3463 	struct mtd_info *mtd = nand_to_mtd(chip);
3464 	unsigned int first_page, last_page;
3465 
3466 	chip->cont_read.ongoing = false;
3467 
3468 	if (!chip->controller->supported_op.cont_read)
3469 		return;
3470 
3471 	/*
3472 	 * Don't bother making any calculations if the length is too small.
3473 	 * Side effect: avoids possible integer underflows below.
3474 	 */
3475 	if (readlen < (2 * mtd->writesize))
3476 		return;
3477 
3478 	/* Derive the page where continuous read should start (the first full page read) */
3479 	first_page = page;
3480 	if (col)
3481 		first_page++;
3482 
3483 	/* Derive the page where continuous read should stop (the last full page read) */
3484 	last_page = page + ((col + readlen) / mtd->writesize) - 1;
3485 
3486 	/* Configure and enable continuous read when suitable */
3487 	if (first_page < last_page) {
3488 		chip->cont_read.first_page = first_page;
3489 		chip->cont_read.last_page = last_page;
3490 		chip->cont_read.ongoing = true;
3491 		/* May reset the ongoing flag */
3492 		rawnand_cap_cont_reads(chip);
3493 	}
3494 }
3495 
3496 static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
3497 {
3498 	if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
3499 		return;
3500 
3501 	chip->cont_read.first_page++;
3502 	if (chip->cont_read.first_page == chip->cont_read.pause_page)
3503 		chip->cont_read.first_page++;
3504 	if (chip->cont_read.first_page >= chip->cont_read.last_page)
3505 		chip->cont_read.ongoing = false;
3506 }
3507 
3508 /**
3509  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3510  * @chip: NAND chip object
3511  * @retry_mode: the retry mode to use
3512  *
3513  * Some vendors supply a special command to shift the Vt threshold, to be used
3514  * when there are too many bitflips in a page (i.e., ECC error). After setting
3515  * a new threshold, the host should retry reading the page.
3516  */
3517 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3518 {
3519 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3520 
3521 	if (retry_mode >= chip->read_retries)
3522 		return -EINVAL;
3523 
3524 	if (!chip->ops.setup_read_retry)
3525 		return -EOPNOTSUPP;
3526 
3527 	return chip->ops.setup_read_retry(chip, retry_mode);
3528 }
3529 
3530 static void nand_wait_readrdy(struct nand_chip *chip)
3531 {
3532 	const struct nand_interface_config *conf;
3533 
3534 	if (!(chip->options & NAND_NEED_READRDY))
3535 		return;
3536 
3537 	conf = nand_get_interface_config(chip);
3538 	WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3539 }
3540 
3541 /**
3542  * nand_do_read_ops - [INTERN] Read data with ECC
3543  * @chip: NAND chip object
3544  * @from: offset to read from
3545  * @ops: oob ops structure
3546  *
3547  * Internal function. Called with chip held.
3548  */
3549 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3550 			    struct mtd_oob_ops *ops)
3551 {
3552 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3553 	struct mtd_info *mtd = nand_to_mtd(chip);
3554 	int ret = 0;
3555 	uint32_t readlen = ops->len;
3556 	uint32_t oobreadlen = ops->ooblen;
3557 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3558 
3559 	uint8_t *bufpoi, *oob, *buf;
3560 	int use_bounce_buf;
3561 	unsigned int max_bitflips = 0;
3562 	int retry_mode = 0;
3563 	bool ecc_fail = false;
3564 
3565 	/* Check if the region is secured */
3566 	if (nand_region_is_secured(chip, from, readlen))
3567 		return -EIO;
3568 
3569 	chipnr = (int)(from >> chip->chip_shift);
3570 	nand_select_target(chip, chipnr);
3571 
3572 	realpage = (int)(from >> chip->page_shift);
3573 	page = realpage & chip->pagemask;
3574 
3575 	col = (int)(from & (mtd->writesize - 1));
3576 
3577 	buf = ops->datbuf;
3578 	oob = ops->oobbuf;
3579 	oob_required = oob ? 1 : 0;
3580 
3581 	if (likely(ops->mode != MTD_OPS_RAW))
3582 		rawnand_enable_cont_reads(chip, page, readlen, col);
3583 
3584 	while (1) {
3585 		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3586 
3587 		bytes = min(mtd->writesize - col, readlen);
3588 		aligned = (bytes == mtd->writesize);
3589 
3590 		if (!aligned)
3591 			use_bounce_buf = 1;
3592 		else if (chip->options & NAND_USES_DMA)
3593 			use_bounce_buf = !virt_addr_valid(buf) ||
3594 					 !IS_ALIGNED((unsigned long)buf,
3595 						     chip->buf_align);
3596 		else
3597 			use_bounce_buf = 0;
3598 
3599 		/* Is the current page in the buffer? */
3600 		if (realpage != chip->pagecache.page || oob) {
3601 			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3602 
3603 			if (use_bounce_buf && aligned)
3604 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3605 						 __func__, buf);
3606 
3607 read_retry:
3608 			/*
3609 			 * Now read the page into the buffer.  Absent an error,
3610 			 * the read methods return max bitflips per ecc step.
3611 			 */
3612 			if (unlikely(ops->mode == MTD_OPS_RAW))
3613 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3614 							      oob_required,
3615 							      page);
3616 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3617 				 !oob)
3618 				ret = chip->ecc.read_subpage(chip, col, bytes,
3619 							     bufpoi, page);
3620 			else
3621 				ret = chip->ecc.read_page(chip, bufpoi,
3622 							  oob_required, page);
3623 			if (ret < 0) {
3624 				if (use_bounce_buf)
3625 					/* Invalidate page cache */
3626 					chip->pagecache.page = -1;
3627 				break;
3628 			}
3629 
3630 			/*
3631 			 * Copy back the data in the initial buffer when reading
3632 			 * partial pages or when a bounce buffer is required.
3633 			 */
3634 			if (use_bounce_buf) {
3635 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3636 				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3637 				    (ops->mode != MTD_OPS_RAW)) {
3638 					chip->pagecache.page = realpage;
3639 					chip->pagecache.bitflips = ret;
3640 				} else {
3641 					/* Invalidate page cache */
3642 					chip->pagecache.page = -1;
3643 				}
3644 				memcpy(buf, bufpoi + col, bytes);
3645 			}
3646 
3647 			if (unlikely(oob)) {
3648 				int toread = min(oobreadlen, max_oobsize);
3649 
3650 				if (toread) {
3651 					oob = nand_transfer_oob(chip, oob, ops,
3652 								toread);
3653 					oobreadlen -= toread;
3654 				}
3655 			}
3656 
3657 			nand_wait_readrdy(chip);
3658 
3659 			if (mtd->ecc_stats.failed - ecc_stats.failed) {
3660 				if (retry_mode + 1 < chip->read_retries) {
3661 					retry_mode++;
3662 					ret = nand_setup_read_retry(chip,
3663 							retry_mode);
3664 					if (ret < 0)
3665 						break;
3666 
3667 					/* Reset ecc_stats; retry */
3668 					mtd->ecc_stats = ecc_stats;
3669 					goto read_retry;
3670 				} else {
3671 					/* No more retry modes; real failure */
3672 					ecc_fail = true;
3673 				}
3674 			}
3675 
3676 			buf += bytes;
3677 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3678 		} else {
3679 			memcpy(buf, chip->data_buf + col, bytes);
3680 			buf += bytes;
3681 			max_bitflips = max_t(unsigned int, max_bitflips,
3682 					     chip->pagecache.bitflips);
3683 
3684 			rawnand_cont_read_skip_first_page(chip, page);
3685 		}
3686 
3687 		readlen -= bytes;
3688 
3689 		/* Reset to retry mode 0 */
3690 		if (retry_mode) {
3691 			ret = nand_setup_read_retry(chip, 0);
3692 			if (ret < 0)
3693 				break;
3694 			retry_mode = 0;
3695 		}
3696 
3697 		if (!readlen)
3698 			break;
3699 
3700 		/* For subsequent reads align to page boundary */
3701 		col = 0;
3702 		/* Increment page address */
3703 		realpage++;
3704 
3705 		page = realpage & chip->pagemask;
3706 		/* Check, if we cross a chip boundary */
3707 		if (!page) {
3708 			chipnr++;
3709 			nand_deselect_target(chip);
3710 			nand_select_target(chip, chipnr);
3711 		}
3712 	}
3713 	nand_deselect_target(chip);
3714 
3715 	ops->retlen = ops->len - (size_t) readlen;
3716 	if (oob)
3717 		ops->oobretlen = ops->ooblen - oobreadlen;
3718 
3719 	if (ret < 0)
3720 		return ret;
3721 
3722 	if (ecc_fail)
3723 		return -EBADMSG;
3724 
3725 	return max_bitflips;
3726 }
3727 
3728 /**
3729  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3730  * @chip: nand chip info structure
3731  * @page: page number to read
3732  */
3733 int nand_read_oob_std(struct nand_chip *chip, int page)
3734 {
3735 	struct mtd_info *mtd = nand_to_mtd(chip);
3736 
3737 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3738 }
3739 EXPORT_SYMBOL(nand_read_oob_std);
3740 
3741 /**
3742  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3743  *			    with syndromes
3744  * @chip: nand chip info structure
3745  * @page: page number to read
3746  */
3747 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3748 {
3749 	struct mtd_info *mtd = nand_to_mtd(chip);
3750 	int length = mtd->oobsize;
3751 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3752 	int eccsize = chip->ecc.size;
3753 	uint8_t *bufpoi = chip->oob_poi;
3754 	int i, toread, sndrnd = 0, pos, ret;
3755 
3756 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3757 	if (ret)
3758 		return ret;
3759 
3760 	for (i = 0; i < chip->ecc.steps; i++) {
3761 		if (sndrnd) {
3762 			int ret;
3763 
3764 			pos = eccsize + i * (eccsize + chunk);
3765 			if (mtd->writesize > 512)
3766 				ret = nand_change_read_column_op(chip, pos,
3767 								 NULL, 0,
3768 								 false);
3769 			else
3770 				ret = nand_read_page_op(chip, page, pos, NULL,
3771 							0);
3772 
3773 			if (ret)
3774 				return ret;
3775 		} else
3776 			sndrnd = 1;
3777 		toread = min_t(int, length, chunk);
3778 
3779 		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3780 		if (ret)
3781 			return ret;
3782 
3783 		bufpoi += toread;
3784 		length -= toread;
3785 	}
3786 	if (length > 0) {
3787 		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3788 		if (ret)
3789 			return ret;
3790 	}
3791 
3792 	return 0;
3793 }
3794 
3795 /**
3796  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3797  * @chip: nand chip info structure
3798  * @page: page number to write
3799  */
3800 int nand_write_oob_std(struct nand_chip *chip, int page)
3801 {
3802 	struct mtd_info *mtd = nand_to_mtd(chip);
3803 
3804 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3805 				 mtd->oobsize);
3806 }
3807 EXPORT_SYMBOL(nand_write_oob_std);
3808 
3809 /**
3810  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3811  *			     with syndrome - only for large page flash
3812  * @chip: nand chip info structure
3813  * @page: page number to write
3814  */
3815 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3816 {
3817 	struct mtd_info *mtd = nand_to_mtd(chip);
3818 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3819 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3820 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3821 	const uint8_t *bufpoi = chip->oob_poi;
3822 
3823 	/*
3824 	 * data-ecc-data-ecc ... ecc-oob
3825 	 * or
3826 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3827 	 */
3828 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3829 		pos = steps * (eccsize + chunk);
3830 		steps = 0;
3831 	} else
3832 		pos = eccsize;
3833 
3834 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3835 	if (ret)
3836 		return ret;
3837 
3838 	for (i = 0; i < steps; i++) {
3839 		if (sndcmd) {
3840 			if (mtd->writesize <= 512) {
3841 				uint32_t fill = 0xFFFFFFFF;
3842 
3843 				len = eccsize;
3844 				while (len > 0) {
3845 					int num = min_t(int, len, 4);
3846 
3847 					ret = nand_write_data_op(chip, &fill,
3848 								 num, false);
3849 					if (ret)
3850 						return ret;
3851 
3852 					len -= num;
3853 				}
3854 			} else {
3855 				pos = eccsize + i * (eccsize + chunk);
3856 				ret = nand_change_write_column_op(chip, pos,
3857 								  NULL, 0,
3858 								  false);
3859 				if (ret)
3860 					return ret;
3861 			}
3862 		} else
3863 			sndcmd = 1;
3864 		len = min_t(int, length, chunk);
3865 
3866 		ret = nand_write_data_op(chip, bufpoi, len, false);
3867 		if (ret)
3868 			return ret;
3869 
3870 		bufpoi += len;
3871 		length -= len;
3872 	}
3873 	if (length > 0) {
3874 		ret = nand_write_data_op(chip, bufpoi, length, false);
3875 		if (ret)
3876 			return ret;
3877 	}
3878 
3879 	return nand_prog_page_end_op(chip);
3880 }
3881 
3882 /**
3883  * nand_do_read_oob - [INTERN] NAND read out-of-band
3884  * @chip: NAND chip object
3885  * @from: offset to read from
3886  * @ops: oob operations description structure
3887  *
3888  * NAND read out-of-band data from the spare area.
3889  */
3890 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3891 			    struct mtd_oob_ops *ops)
3892 {
3893 	struct mtd_info *mtd = nand_to_mtd(chip);
3894 	unsigned int max_bitflips = 0;
3895 	int page, realpage, chipnr;
3896 	struct mtd_ecc_stats stats;
3897 	int readlen = ops->ooblen;
3898 	int len;
3899 	uint8_t *buf = ops->oobbuf;
3900 	int ret = 0;
3901 
3902 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3903 			__func__, (unsigned long long)from, readlen);
3904 
3905 	/* Check if the region is secured */
3906 	if (nand_region_is_secured(chip, from, readlen))
3907 		return -EIO;
3908 
3909 	stats = mtd->ecc_stats;
3910 
3911 	len = mtd_oobavail(mtd, ops);
3912 
3913 	chipnr = (int)(from >> chip->chip_shift);
3914 	nand_select_target(chip, chipnr);
3915 
3916 	/* Shift to get page */
3917 	realpage = (int)(from >> chip->page_shift);
3918 	page = realpage & chip->pagemask;
3919 
3920 	while (1) {
3921 		if (ops->mode == MTD_OPS_RAW)
3922 			ret = chip->ecc.read_oob_raw(chip, page);
3923 		else
3924 			ret = chip->ecc.read_oob(chip, page);
3925 
3926 		if (ret < 0)
3927 			break;
3928 
3929 		len = min(len, readlen);
3930 		buf = nand_transfer_oob(chip, buf, ops, len);
3931 
3932 		nand_wait_readrdy(chip);
3933 
3934 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3935 
3936 		readlen -= len;
3937 		if (!readlen)
3938 			break;
3939 
3940 		/* Increment page address */
3941 		realpage++;
3942 
3943 		page = realpage & chip->pagemask;
3944 		/* Check, if we cross a chip boundary */
3945 		if (!page) {
3946 			chipnr++;
3947 			nand_deselect_target(chip);
3948 			nand_select_target(chip, chipnr);
3949 		}
3950 	}
3951 	nand_deselect_target(chip);
3952 
3953 	ops->oobretlen = ops->ooblen - readlen;
3954 
3955 	if (ret < 0)
3956 		return ret;
3957 
3958 	if (mtd->ecc_stats.failed - stats.failed)
3959 		return -EBADMSG;
3960 
3961 	return max_bitflips;
3962 }
3963 
3964 /**
3965  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3966  * @mtd: MTD device structure
3967  * @from: offset to read from
3968  * @ops: oob operation description structure
3969  *
3970  * NAND read data and/or out-of-band data.
3971  */
3972 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3973 			 struct mtd_oob_ops *ops)
3974 {
3975 	struct nand_chip *chip = mtd_to_nand(mtd);
3976 	struct mtd_ecc_stats old_stats;
3977 	int ret;
3978 
3979 	ops->retlen = 0;
3980 
3981 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3982 	    ops->mode != MTD_OPS_AUTO_OOB &&
3983 	    ops->mode != MTD_OPS_RAW)
3984 		return -ENOTSUPP;
3985 
3986 	nand_get_device(chip);
3987 
3988 	old_stats = mtd->ecc_stats;
3989 
3990 	if (!ops->datbuf)
3991 		ret = nand_do_read_oob(chip, from, ops);
3992 	else
3993 		ret = nand_do_read_ops(chip, from, ops);
3994 
3995 	if (ops->stats) {
3996 		ops->stats->uncorrectable_errors +=
3997 			mtd->ecc_stats.failed - old_stats.failed;
3998 		ops->stats->corrected_bitflips +=
3999 			mtd->ecc_stats.corrected - old_stats.corrected;
4000 	}
4001 
4002 	nand_release_device(chip);
4003 	return ret;
4004 }
4005 
4006 /**
4007  * nand_write_page_raw_notsupp - dummy raw page write function
4008  * @chip: nand chip info structure
4009  * @buf: data buffer
4010  * @oob_required: must write chip->oob_poi to OOB
4011  * @page: page number to write
4012  *
4013  * Returns -ENOTSUPP unconditionally.
4014  */
4015 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
4016 				int oob_required, int page)
4017 {
4018 	return -ENOTSUPP;
4019 }
4020 
4021 /**
4022  * nand_write_page_raw - [INTERN] raw page write function
4023  * @chip: nand chip info structure
4024  * @buf: data buffer
4025  * @oob_required: must write chip->oob_poi to OOB
4026  * @page: page number to write
4027  *
4028  * Not for syndrome calculating ECC controllers, which use a special oob layout.
4029  */
4030 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
4031 			int oob_required, int page)
4032 {
4033 	struct mtd_info *mtd = nand_to_mtd(chip);
4034 	int ret;
4035 
4036 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
4037 	if (ret)
4038 		return ret;
4039 
4040 	if (oob_required) {
4041 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
4042 					 false);
4043 		if (ret)
4044 			return ret;
4045 	}
4046 
4047 	return nand_prog_page_end_op(chip);
4048 }
4049 EXPORT_SYMBOL(nand_write_page_raw);
4050 
4051 /**
4052  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
4053  * @chip: NAND chip info structure
4054  * @buf: data buffer to write
4055  * @oob_required: must write chip->oob_poi to OOB
4056  * @page: page number to write
4057  *
4058  * This is a raw page write, ie. without any error detection/correction.
4059  * Monolithic means we are requesting all the relevant data (main plus
4060  * eventually OOB) to be sent over the bus and effectively programmed
4061  * into the NAND chip arrays in a single operation. This is an
4062  * alternative to nand_write_page_raw(), which first sends the main
4063  * data, then eventually send the OOB data by latching more data
4064  * cycles on the NAND bus, and finally sends the program command to
4065  * synchronyze the NAND chip cache.
4066  */
4067 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4068 				   int oob_required, int page)
4069 {
4070 	struct mtd_info *mtd = nand_to_mtd(chip);
4071 	unsigned int size = mtd->writesize;
4072 	u8 *write_buf = (u8 *)buf;
4073 
4074 	if (oob_required) {
4075 		size += mtd->oobsize;
4076 
4077 		if (buf != chip->data_buf) {
4078 			write_buf = nand_get_data_buf(chip);
4079 			memcpy(write_buf, buf, mtd->writesize);
4080 		}
4081 	}
4082 
4083 	return nand_prog_page_op(chip, page, 0, write_buf, size);
4084 }
4085 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4086 
4087 /**
4088  * nand_write_page_raw_syndrome - [INTERN] raw page write function
4089  * @chip: nand chip info structure
4090  * @buf: data buffer
4091  * @oob_required: must write chip->oob_poi to OOB
4092  * @page: page number to write
4093  *
4094  * We need a special oob layout and handling even when ECC isn't checked.
4095  */
4096 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4097 					const uint8_t *buf, int oob_required,
4098 					int page)
4099 {
4100 	struct mtd_info *mtd = nand_to_mtd(chip);
4101 	int eccsize = chip->ecc.size;
4102 	int eccbytes = chip->ecc.bytes;
4103 	uint8_t *oob = chip->oob_poi;
4104 	int steps, size, ret;
4105 
4106 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4107 	if (ret)
4108 		return ret;
4109 
4110 	for (steps = chip->ecc.steps; steps > 0; steps--) {
4111 		ret = nand_write_data_op(chip, buf, eccsize, false);
4112 		if (ret)
4113 			return ret;
4114 
4115 		buf += eccsize;
4116 
4117 		if (chip->ecc.prepad) {
4118 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4119 						 false);
4120 			if (ret)
4121 				return ret;
4122 
4123 			oob += chip->ecc.prepad;
4124 		}
4125 
4126 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4127 		if (ret)
4128 			return ret;
4129 
4130 		oob += eccbytes;
4131 
4132 		if (chip->ecc.postpad) {
4133 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4134 						 false);
4135 			if (ret)
4136 				return ret;
4137 
4138 			oob += chip->ecc.postpad;
4139 		}
4140 	}
4141 
4142 	size = mtd->oobsize - (oob - chip->oob_poi);
4143 	if (size) {
4144 		ret = nand_write_data_op(chip, oob, size, false);
4145 		if (ret)
4146 			return ret;
4147 	}
4148 
4149 	return nand_prog_page_end_op(chip);
4150 }
4151 /**
4152  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4153  * @chip: nand chip info structure
4154  * @buf: data buffer
4155  * @oob_required: must write chip->oob_poi to OOB
4156  * @page: page number to write
4157  */
4158 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4159 				 int oob_required, int page)
4160 {
4161 	struct mtd_info *mtd = nand_to_mtd(chip);
4162 	int i, eccsize = chip->ecc.size, ret;
4163 	int eccbytes = chip->ecc.bytes;
4164 	int eccsteps = chip->ecc.steps;
4165 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4166 	const uint8_t *p = buf;
4167 
4168 	/* Software ECC calculation */
4169 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4170 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4171 
4172 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4173 					 chip->ecc.total);
4174 	if (ret)
4175 		return ret;
4176 
4177 	return chip->ecc.write_page_raw(chip, buf, 1, page);
4178 }
4179 
4180 /**
4181  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4182  * @chip: nand chip info structure
4183  * @buf: data buffer
4184  * @oob_required: must write chip->oob_poi to OOB
4185  * @page: page number to write
4186  */
4187 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4188 				 int oob_required, int page)
4189 {
4190 	struct mtd_info *mtd = nand_to_mtd(chip);
4191 	int i, eccsize = chip->ecc.size, ret;
4192 	int eccbytes = chip->ecc.bytes;
4193 	int eccsteps = chip->ecc.steps;
4194 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4195 	const uint8_t *p = buf;
4196 
4197 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4198 	if (ret)
4199 		return ret;
4200 
4201 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4202 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4203 
4204 		ret = nand_write_data_op(chip, p, eccsize, false);
4205 		if (ret)
4206 			return ret;
4207 
4208 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4209 	}
4210 
4211 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4212 					 chip->ecc.total);
4213 	if (ret)
4214 		return ret;
4215 
4216 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4217 	if (ret)
4218 		return ret;
4219 
4220 	return nand_prog_page_end_op(chip);
4221 }
4222 
4223 
4224 /**
4225  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4226  * @chip:	nand chip info structure
4227  * @offset:	column address of subpage within the page
4228  * @data_len:	data length
4229  * @buf:	data buffer
4230  * @oob_required: must write chip->oob_poi to OOB
4231  * @page: page number to write
4232  */
4233 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4234 				    uint32_t data_len, const uint8_t *buf,
4235 				    int oob_required, int page)
4236 {
4237 	struct mtd_info *mtd = nand_to_mtd(chip);
4238 	uint8_t *oob_buf  = chip->oob_poi;
4239 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4240 	int ecc_size      = chip->ecc.size;
4241 	int ecc_bytes     = chip->ecc.bytes;
4242 	int ecc_steps     = chip->ecc.steps;
4243 	uint32_t start_step = offset / ecc_size;
4244 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4245 	int oob_bytes       = mtd->oobsize / ecc_steps;
4246 	int step, ret;
4247 
4248 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4249 	if (ret)
4250 		return ret;
4251 
4252 	for (step = 0; step < ecc_steps; step++) {
4253 		/* configure controller for WRITE access */
4254 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4255 
4256 		/* write data (untouched subpages already masked by 0xFF) */
4257 		ret = nand_write_data_op(chip, buf, ecc_size, false);
4258 		if (ret)
4259 			return ret;
4260 
4261 		/* mask ECC of un-touched subpages by padding 0xFF */
4262 		if ((step < start_step) || (step > end_step))
4263 			memset(ecc_calc, 0xff, ecc_bytes);
4264 		else
4265 			chip->ecc.calculate(chip, buf, ecc_calc);
4266 
4267 		/* mask OOB of un-touched subpages by padding 0xFF */
4268 		/* if oob_required, preserve OOB metadata of written subpage */
4269 		if (!oob_required || (step < start_step) || (step > end_step))
4270 			memset(oob_buf, 0xff, oob_bytes);
4271 
4272 		buf += ecc_size;
4273 		ecc_calc += ecc_bytes;
4274 		oob_buf  += oob_bytes;
4275 	}
4276 
4277 	/* copy calculated ECC for whole page to chip->buffer->oob */
4278 	/* this include masked-value(0xFF) for unwritten subpages */
4279 	ecc_calc = chip->ecc.calc_buf;
4280 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4281 					 chip->ecc.total);
4282 	if (ret)
4283 		return ret;
4284 
4285 	/* write OOB buffer to NAND device */
4286 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4287 	if (ret)
4288 		return ret;
4289 
4290 	return nand_prog_page_end_op(chip);
4291 }
4292 
4293 
4294 /**
4295  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4296  * @chip: nand chip info structure
4297  * @buf: data buffer
4298  * @oob_required: must write chip->oob_poi to OOB
4299  * @page: page number to write
4300  *
4301  * The hw generator calculates the error syndrome automatically. Therefore we
4302  * need a special oob layout and handling.
4303  */
4304 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4305 				    int oob_required, int page)
4306 {
4307 	struct mtd_info *mtd = nand_to_mtd(chip);
4308 	int i, eccsize = chip->ecc.size;
4309 	int eccbytes = chip->ecc.bytes;
4310 	int eccsteps = chip->ecc.steps;
4311 	const uint8_t *p = buf;
4312 	uint8_t *oob = chip->oob_poi;
4313 	int ret;
4314 
4315 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4316 	if (ret)
4317 		return ret;
4318 
4319 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4320 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4321 
4322 		ret = nand_write_data_op(chip, p, eccsize, false);
4323 		if (ret)
4324 			return ret;
4325 
4326 		if (chip->ecc.prepad) {
4327 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4328 						 false);
4329 			if (ret)
4330 				return ret;
4331 
4332 			oob += chip->ecc.prepad;
4333 		}
4334 
4335 		chip->ecc.calculate(chip, p, oob);
4336 
4337 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4338 		if (ret)
4339 			return ret;
4340 
4341 		oob += eccbytes;
4342 
4343 		if (chip->ecc.postpad) {
4344 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4345 						 false);
4346 			if (ret)
4347 				return ret;
4348 
4349 			oob += chip->ecc.postpad;
4350 		}
4351 	}
4352 
4353 	/* Calculate remaining oob bytes */
4354 	i = mtd->oobsize - (oob - chip->oob_poi);
4355 	if (i) {
4356 		ret = nand_write_data_op(chip, oob, i, false);
4357 		if (ret)
4358 			return ret;
4359 	}
4360 
4361 	return nand_prog_page_end_op(chip);
4362 }
4363 
4364 /**
4365  * nand_write_page - write one page
4366  * @chip: NAND chip descriptor
4367  * @offset: address offset within the page
4368  * @data_len: length of actual data to be written
4369  * @buf: the data to write
4370  * @oob_required: must write chip->oob_poi to OOB
4371  * @page: page number to write
4372  * @raw: use _raw version of write_page
4373  */
4374 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4375 			   int data_len, const uint8_t *buf, int oob_required,
4376 			   int page, int raw)
4377 {
4378 	struct mtd_info *mtd = nand_to_mtd(chip);
4379 	int status, subpage;
4380 
4381 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4382 		chip->ecc.write_subpage)
4383 		subpage = offset || (data_len < mtd->writesize);
4384 	else
4385 		subpage = 0;
4386 
4387 	if (unlikely(raw))
4388 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
4389 						  page);
4390 	else if (subpage)
4391 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4392 						 oob_required, page);
4393 	else
4394 		status = chip->ecc.write_page(chip, buf, oob_required, page);
4395 
4396 	if (status < 0)
4397 		return status;
4398 
4399 	return 0;
4400 }
4401 
4402 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4403 
4404 /**
4405  * nand_do_write_ops - [INTERN] NAND write with ECC
4406  * @chip: NAND chip object
4407  * @to: offset to write to
4408  * @ops: oob operations description structure
4409  *
4410  * NAND write with ECC.
4411  */
4412 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4413 			     struct mtd_oob_ops *ops)
4414 {
4415 	struct mtd_info *mtd = nand_to_mtd(chip);
4416 	int chipnr, realpage, page, column;
4417 	uint32_t writelen = ops->len;
4418 
4419 	uint32_t oobwritelen = ops->ooblen;
4420 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4421 
4422 	uint8_t *oob = ops->oobbuf;
4423 	uint8_t *buf = ops->datbuf;
4424 	int ret;
4425 	int oob_required = oob ? 1 : 0;
4426 
4427 	ops->retlen = 0;
4428 	if (!writelen)
4429 		return 0;
4430 
4431 	/* Reject writes, which are not page aligned */
4432 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4433 		pr_notice("%s: attempt to write non page aligned data\n",
4434 			   __func__);
4435 		return -EINVAL;
4436 	}
4437 
4438 	/* Check if the region is secured */
4439 	if (nand_region_is_secured(chip, to, writelen))
4440 		return -EIO;
4441 
4442 	column = to & (mtd->writesize - 1);
4443 
4444 	chipnr = (int)(to >> chip->chip_shift);
4445 	nand_select_target(chip, chipnr);
4446 
4447 	/* Check, if it is write protected */
4448 	if (nand_check_wp(chip)) {
4449 		ret = -EIO;
4450 		goto err_out;
4451 	}
4452 
4453 	realpage = (int)(to >> chip->page_shift);
4454 	page = realpage & chip->pagemask;
4455 
4456 	/* Invalidate the page cache, when we write to the cached page */
4457 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4458 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4459 		chip->pagecache.page = -1;
4460 
4461 	/* Don't allow multipage oob writes with offset */
4462 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4463 		ret = -EINVAL;
4464 		goto err_out;
4465 	}
4466 
4467 	while (1) {
4468 		int bytes = mtd->writesize;
4469 		uint8_t *wbuf = buf;
4470 		int use_bounce_buf;
4471 		int part_pagewr = (column || writelen < mtd->writesize);
4472 
4473 		if (part_pagewr)
4474 			use_bounce_buf = 1;
4475 		else if (chip->options & NAND_USES_DMA)
4476 			use_bounce_buf = !virt_addr_valid(buf) ||
4477 					 !IS_ALIGNED((unsigned long)buf,
4478 						     chip->buf_align);
4479 		else
4480 			use_bounce_buf = 0;
4481 
4482 		/*
4483 		 * Copy the data from the initial buffer when doing partial page
4484 		 * writes or when a bounce buffer is required.
4485 		 */
4486 		if (use_bounce_buf) {
4487 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4488 					 __func__, buf);
4489 			if (part_pagewr)
4490 				bytes = min_t(int, bytes - column, writelen);
4491 			wbuf = nand_get_data_buf(chip);
4492 			memset(wbuf, 0xff, mtd->writesize);
4493 			memcpy(&wbuf[column], buf, bytes);
4494 		}
4495 
4496 		if (unlikely(oob)) {
4497 			size_t len = min(oobwritelen, oobmaxlen);
4498 			oob = nand_fill_oob(chip, oob, len, ops);
4499 			oobwritelen -= len;
4500 		} else {
4501 			/* We still need to erase leftover OOB data */
4502 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4503 		}
4504 
4505 		ret = nand_write_page(chip, column, bytes, wbuf,
4506 				      oob_required, page,
4507 				      (ops->mode == MTD_OPS_RAW));
4508 		if (ret)
4509 			break;
4510 
4511 		writelen -= bytes;
4512 		if (!writelen)
4513 			break;
4514 
4515 		column = 0;
4516 		buf += bytes;
4517 		realpage++;
4518 
4519 		page = realpage & chip->pagemask;
4520 		/* Check, if we cross a chip boundary */
4521 		if (!page) {
4522 			chipnr++;
4523 			nand_deselect_target(chip);
4524 			nand_select_target(chip, chipnr);
4525 		}
4526 	}
4527 
4528 	ops->retlen = ops->len - writelen;
4529 	if (unlikely(oob))
4530 		ops->oobretlen = ops->ooblen;
4531 
4532 err_out:
4533 	nand_deselect_target(chip);
4534 	return ret;
4535 }
4536 
4537 /**
4538  * panic_nand_write - [MTD Interface] NAND write with ECC
4539  * @mtd: MTD device structure
4540  * @to: offset to write to
4541  * @len: number of bytes to write
4542  * @retlen: pointer to variable to store the number of written bytes
4543  * @buf: the data to write
4544  *
4545  * NAND write with ECC. Used when performing writes in interrupt context, this
4546  * may for example be called by mtdoops when writing an oops while in panic.
4547  */
4548 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4549 			    size_t *retlen, const uint8_t *buf)
4550 {
4551 	struct nand_chip *chip = mtd_to_nand(mtd);
4552 	int chipnr = (int)(to >> chip->chip_shift);
4553 	struct mtd_oob_ops ops;
4554 	int ret;
4555 
4556 	nand_select_target(chip, chipnr);
4557 
4558 	/* Wait for the device to get ready */
4559 	panic_nand_wait(chip, 400);
4560 
4561 	memset(&ops, 0, sizeof(ops));
4562 	ops.len = len;
4563 	ops.datbuf = (uint8_t *)buf;
4564 	ops.mode = MTD_OPS_PLACE_OOB;
4565 
4566 	ret = nand_do_write_ops(chip, to, &ops);
4567 
4568 	*retlen = ops.retlen;
4569 	return ret;
4570 }
4571 
4572 /**
4573  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4574  * @mtd: MTD device structure
4575  * @to: offset to write to
4576  * @ops: oob operation description structure
4577  */
4578 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4579 			  struct mtd_oob_ops *ops)
4580 {
4581 	struct nand_chip *chip = mtd_to_nand(mtd);
4582 	int ret = 0;
4583 
4584 	ops->retlen = 0;
4585 
4586 	nand_get_device(chip);
4587 
4588 	switch (ops->mode) {
4589 	case MTD_OPS_PLACE_OOB:
4590 	case MTD_OPS_AUTO_OOB:
4591 	case MTD_OPS_RAW:
4592 		break;
4593 
4594 	default:
4595 		goto out;
4596 	}
4597 
4598 	if (!ops->datbuf)
4599 		ret = nand_do_write_oob(chip, to, ops);
4600 	else
4601 		ret = nand_do_write_ops(chip, to, ops);
4602 
4603 out:
4604 	nand_release_device(chip);
4605 	return ret;
4606 }
4607 
4608 /**
4609  * nand_erase - [MTD Interface] erase block(s)
4610  * @mtd: MTD device structure
4611  * @instr: erase instruction
4612  *
4613  * Erase one ore more blocks.
4614  */
4615 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4616 {
4617 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4618 }
4619 
4620 /**
4621  * nand_erase_nand - [INTERN] erase block(s)
4622  * @chip: NAND chip object
4623  * @instr: erase instruction
4624  * @allowbbt: allow erasing the bbt area
4625  *
4626  * Erase one ore more blocks.
4627  */
4628 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4629 		    int allowbbt)
4630 {
4631 	int page, pages_per_block, ret, chipnr;
4632 	loff_t len;
4633 
4634 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4635 			__func__, (unsigned long long)instr->addr,
4636 			(unsigned long long)instr->len);
4637 
4638 	if (check_offs_len(chip, instr->addr, instr->len))
4639 		return -EINVAL;
4640 
4641 	/* Check if the region is secured */
4642 	if (nand_region_is_secured(chip, instr->addr, instr->len))
4643 		return -EIO;
4644 
4645 	/* Grab the lock and see if the device is available */
4646 	nand_get_device(chip);
4647 
4648 	/* Shift to get first page */
4649 	page = (int)(instr->addr >> chip->page_shift);
4650 	chipnr = (int)(instr->addr >> chip->chip_shift);
4651 
4652 	/* Calculate pages in each block */
4653 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4654 
4655 	/* Select the NAND device */
4656 	nand_select_target(chip, chipnr);
4657 
4658 	/* Check, if it is write protected */
4659 	if (nand_check_wp(chip)) {
4660 		pr_debug("%s: device is write protected!\n",
4661 				__func__);
4662 		ret = -EIO;
4663 		goto erase_exit;
4664 	}
4665 
4666 	/* Loop through the pages */
4667 	len = instr->len;
4668 
4669 	while (len) {
4670 		loff_t ofs = (loff_t)page << chip->page_shift;
4671 
4672 		/* Check if we have a bad block, we do not erase bad blocks! */
4673 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4674 					chip->page_shift, allowbbt)) {
4675 			pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4676 				    __func__, (unsigned long long)ofs);
4677 			ret = -EIO;
4678 			goto erase_exit;
4679 		}
4680 
4681 		/*
4682 		 * Invalidate the page cache, if we erase the block which
4683 		 * contains the current cached page.
4684 		 */
4685 		if (page <= chip->pagecache.page && chip->pagecache.page <
4686 		    (page + pages_per_block))
4687 			chip->pagecache.page = -1;
4688 
4689 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4690 				    (chip->phys_erase_shift - chip->page_shift));
4691 		if (ret) {
4692 			pr_debug("%s: failed erase, page 0x%08x\n",
4693 					__func__, page);
4694 			instr->fail_addr = ofs;
4695 			goto erase_exit;
4696 		}
4697 
4698 		/* Increment page address and decrement length */
4699 		len -= (1ULL << chip->phys_erase_shift);
4700 		page += pages_per_block;
4701 
4702 		/* Check, if we cross a chip boundary */
4703 		if (len && !(page & chip->pagemask)) {
4704 			chipnr++;
4705 			nand_deselect_target(chip);
4706 			nand_select_target(chip, chipnr);
4707 		}
4708 	}
4709 
4710 	ret = 0;
4711 erase_exit:
4712 
4713 	/* Deselect and wake up anyone waiting on the device */
4714 	nand_deselect_target(chip);
4715 	nand_release_device(chip);
4716 
4717 	/* Return more or less happy */
4718 	return ret;
4719 }
4720 
4721 /**
4722  * nand_sync - [MTD Interface] sync
4723  * @mtd: MTD device structure
4724  *
4725  * Sync is actually a wait for chip ready function.
4726  */
4727 static void nand_sync(struct mtd_info *mtd)
4728 {
4729 	struct nand_chip *chip = mtd_to_nand(mtd);
4730 
4731 	pr_debug("%s: called\n", __func__);
4732 
4733 	/* Grab the lock and see if the device is available */
4734 	nand_get_device(chip);
4735 	/* Release it and go back */
4736 	nand_release_device(chip);
4737 }
4738 
4739 /**
4740  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4741  * @mtd: MTD device structure
4742  * @offs: offset relative to mtd start
4743  */
4744 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4745 {
4746 	struct nand_chip *chip = mtd_to_nand(mtd);
4747 	int chipnr = (int)(offs >> chip->chip_shift);
4748 	int ret;
4749 
4750 	/* Select the NAND device */
4751 	nand_get_device(chip);
4752 
4753 	nand_select_target(chip, chipnr);
4754 
4755 	ret = nand_block_checkbad(chip, offs, 0);
4756 
4757 	nand_deselect_target(chip);
4758 	nand_release_device(chip);
4759 
4760 	return ret;
4761 }
4762 
4763 /**
4764  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4765  * @mtd: MTD device structure
4766  * @ofs: offset relative to mtd start
4767  */
4768 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4769 {
4770 	int ret;
4771 
4772 	ret = nand_block_isbad(mtd, ofs);
4773 	if (ret) {
4774 		/* If it was bad already, return success and do nothing */
4775 		if (ret > 0)
4776 			return 0;
4777 		return ret;
4778 	}
4779 
4780 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4781 }
4782 
4783 /**
4784  * nand_suspend - [MTD Interface] Suspend the NAND flash
4785  * @mtd: MTD device structure
4786  *
4787  * Returns 0 for success or negative error code otherwise.
4788  */
4789 static int nand_suspend(struct mtd_info *mtd)
4790 {
4791 	struct nand_chip *chip = mtd_to_nand(mtd);
4792 	int ret = 0;
4793 
4794 	mutex_lock(&chip->lock);
4795 	if (chip->ops.suspend)
4796 		ret = chip->ops.suspend(chip);
4797 	if (!ret)
4798 		chip->suspended = 1;
4799 	mutex_unlock(&chip->lock);
4800 
4801 	return ret;
4802 }
4803 
4804 /**
4805  * nand_resume - [MTD Interface] Resume the NAND flash
4806  * @mtd: MTD device structure
4807  */
4808 static void nand_resume(struct mtd_info *mtd)
4809 {
4810 	struct nand_chip *chip = mtd_to_nand(mtd);
4811 
4812 	mutex_lock(&chip->lock);
4813 	if (chip->suspended) {
4814 		if (chip->ops.resume)
4815 			chip->ops.resume(chip);
4816 		chip->suspended = 0;
4817 	} else {
4818 		pr_err("%s called for a chip which is not in suspended state\n",
4819 			__func__);
4820 	}
4821 	mutex_unlock(&chip->lock);
4822 
4823 	wake_up_all(&chip->resume_wq);
4824 }
4825 
4826 /**
4827  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4828  *                 prevent further operations
4829  * @mtd: MTD device structure
4830  */
4831 static void nand_shutdown(struct mtd_info *mtd)
4832 {
4833 	nand_suspend(mtd);
4834 }
4835 
4836 /**
4837  * nand_lock - [MTD Interface] Lock the NAND flash
4838  * @mtd: MTD device structure
4839  * @ofs: offset byte address
4840  * @len: number of bytes to lock (must be a multiple of block/page size)
4841  */
4842 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4843 {
4844 	struct nand_chip *chip = mtd_to_nand(mtd);
4845 
4846 	if (!chip->ops.lock_area)
4847 		return -ENOTSUPP;
4848 
4849 	return chip->ops.lock_area(chip, ofs, len);
4850 }
4851 
4852 /**
4853  * nand_unlock - [MTD Interface] Unlock the NAND flash
4854  * @mtd: MTD device structure
4855  * @ofs: offset byte address
4856  * @len: number of bytes to unlock (must be a multiple of block/page size)
4857  */
4858 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4859 {
4860 	struct nand_chip *chip = mtd_to_nand(mtd);
4861 
4862 	if (!chip->ops.unlock_area)
4863 		return -ENOTSUPP;
4864 
4865 	return chip->ops.unlock_area(chip, ofs, len);
4866 }
4867 
4868 /* Set default functions */
4869 static void nand_set_defaults(struct nand_chip *chip)
4870 {
4871 	/* If no controller is provided, use the dummy, legacy one. */
4872 	if (!chip->controller) {
4873 		chip->controller = &chip->legacy.dummy_controller;
4874 		nand_controller_init(chip->controller);
4875 	}
4876 
4877 	nand_legacy_set_defaults(chip);
4878 
4879 	if (!chip->buf_align)
4880 		chip->buf_align = 1;
4881 }
4882 
4883 /* Sanitize ONFI strings so we can safely print them */
4884 void sanitize_string(uint8_t *s, size_t len)
4885 {
4886 	ssize_t i;
4887 
4888 	/* Null terminate */
4889 	s[len - 1] = 0;
4890 
4891 	/* Remove non printable chars */
4892 	for (i = 0; i < len - 1; i++) {
4893 		if (s[i] < ' ' || s[i] > 127)
4894 			s[i] = '?';
4895 	}
4896 
4897 	/* Remove trailing spaces */
4898 	strim(s);
4899 }
4900 
4901 /*
4902  * nand_id_has_period - Check if an ID string has a given wraparound period
4903  * @id_data: the ID string
4904  * @arrlen: the length of the @id_data array
4905  * @period: the period of repitition
4906  *
4907  * Check if an ID string is repeated within a given sequence of bytes at
4908  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4909  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4910  * if the repetition has a period of @period; otherwise, returns zero.
4911  */
4912 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4913 {
4914 	int i, j;
4915 	for (i = 0; i < period; i++)
4916 		for (j = i + period; j < arrlen; j += period)
4917 			if (id_data[i] != id_data[j])
4918 				return 0;
4919 	return 1;
4920 }
4921 
4922 /*
4923  * nand_id_len - Get the length of an ID string returned by CMD_READID
4924  * @id_data: the ID string
4925  * @arrlen: the length of the @id_data array
4926 
4927  * Returns the length of the ID string, according to known wraparound/trailing
4928  * zero patterns. If no pattern exists, returns the length of the array.
4929  */
4930 static int nand_id_len(u8 *id_data, int arrlen)
4931 {
4932 	int last_nonzero, period;
4933 
4934 	/* Find last non-zero byte */
4935 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4936 		if (id_data[last_nonzero])
4937 			break;
4938 
4939 	/* All zeros */
4940 	if (last_nonzero < 0)
4941 		return 0;
4942 
4943 	/* Calculate wraparound period */
4944 	for (period = 1; period < arrlen; period++)
4945 		if (nand_id_has_period(id_data, arrlen, period))
4946 			break;
4947 
4948 	/* There's a repeated pattern */
4949 	if (period < arrlen)
4950 		return period;
4951 
4952 	/* There are trailing zeros */
4953 	if (last_nonzero < arrlen - 1)
4954 		return last_nonzero + 1;
4955 
4956 	/* No pattern detected */
4957 	return arrlen;
4958 }
4959 
4960 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4961 static int nand_get_bits_per_cell(u8 cellinfo)
4962 {
4963 	int bits;
4964 
4965 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4966 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4967 	return bits + 1;
4968 }
4969 
4970 /*
4971  * Many new NAND share similar device ID codes, which represent the size of the
4972  * chip. The rest of the parameters must be decoded according to generic or
4973  * manufacturer-specific "extended ID" decoding patterns.
4974  */
4975 void nand_decode_ext_id(struct nand_chip *chip)
4976 {
4977 	struct nand_memory_organization *memorg;
4978 	struct mtd_info *mtd = nand_to_mtd(chip);
4979 	int extid;
4980 	u8 *id_data = chip->id.data;
4981 
4982 	memorg = nanddev_get_memorg(&chip->base);
4983 
4984 	/* The 3rd id byte holds MLC / multichip data */
4985 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4986 	/* The 4th id byte is the important one */
4987 	extid = id_data[3];
4988 
4989 	/* Calc pagesize */
4990 	memorg->pagesize = 1024 << (extid & 0x03);
4991 	mtd->writesize = memorg->pagesize;
4992 	extid >>= 2;
4993 	/* Calc oobsize */
4994 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4995 	mtd->oobsize = memorg->oobsize;
4996 	extid >>= 2;
4997 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4998 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4999 				       memorg->pagesize;
5000 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
5001 	extid >>= 2;
5002 	/* Get buswidth information */
5003 	if (extid & 0x1)
5004 		chip->options |= NAND_BUSWIDTH_16;
5005 }
5006 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5007 
5008 /*
5009  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5010  * decodes a matching ID table entry and assigns the MTD size parameters for
5011  * the chip.
5012  */
5013 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5014 {
5015 	struct mtd_info *mtd = nand_to_mtd(chip);
5016 	struct nand_memory_organization *memorg;
5017 
5018 	memorg = nanddev_get_memorg(&chip->base);
5019 
5020 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
5021 	mtd->erasesize = type->erasesize;
5022 	memorg->pagesize = type->pagesize;
5023 	mtd->writesize = memorg->pagesize;
5024 	memorg->oobsize = memorg->pagesize / 32;
5025 	mtd->oobsize = memorg->oobsize;
5026 
5027 	/* All legacy ID NAND are small-page, SLC */
5028 	memorg->bits_per_cell = 1;
5029 }
5030 
5031 /*
5032  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5033  * heuristic patterns using various detected parameters (e.g., manufacturer,
5034  * page size, cell-type information).
5035  */
5036 static void nand_decode_bbm_options(struct nand_chip *chip)
5037 {
5038 	struct mtd_info *mtd = nand_to_mtd(chip);
5039 
5040 	/* Set the bad block position */
5041 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5042 		chip->badblockpos = NAND_BBM_POS_LARGE;
5043 	else
5044 		chip->badblockpos = NAND_BBM_POS_SMALL;
5045 }
5046 
5047 static inline bool is_full_id_nand(struct nand_flash_dev *type)
5048 {
5049 	return type->id_len;
5050 }
5051 
5052 static bool find_full_id_nand(struct nand_chip *chip,
5053 			      struct nand_flash_dev *type)
5054 {
5055 	struct nand_device *base = &chip->base;
5056 	struct nand_ecc_props requirements;
5057 	struct mtd_info *mtd = nand_to_mtd(chip);
5058 	struct nand_memory_organization *memorg;
5059 	u8 *id_data = chip->id.data;
5060 
5061 	memorg = nanddev_get_memorg(&chip->base);
5062 
5063 	if (!strncmp(type->id, id_data, type->id_len)) {
5064 		memorg->pagesize = type->pagesize;
5065 		mtd->writesize = memorg->pagesize;
5066 		memorg->pages_per_eraseblock = type->erasesize /
5067 					       type->pagesize;
5068 		mtd->erasesize = type->erasesize;
5069 		memorg->oobsize = type->oobsize;
5070 		mtd->oobsize = memorg->oobsize;
5071 
5072 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5073 		memorg->eraseblocks_per_lun =
5074 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5075 					   memorg->pagesize *
5076 					   memorg->pages_per_eraseblock);
5077 		chip->options |= type->options;
5078 		requirements.strength = NAND_ECC_STRENGTH(type);
5079 		requirements.step_size = NAND_ECC_STEP(type);
5080 		nanddev_set_ecc_requirements(base, &requirements);
5081 
5082 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5083 		if (!chip->parameters.model)
5084 			return false;
5085 
5086 		return true;
5087 	}
5088 	return false;
5089 }
5090 
5091 /*
5092  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5093  * compliant and does not have a full-id or legacy-id entry in the nand_ids
5094  * table.
5095  */
5096 static void nand_manufacturer_detect(struct nand_chip *chip)
5097 {
5098 	/*
5099 	 * Try manufacturer detection if available and use
5100 	 * nand_decode_ext_id() otherwise.
5101 	 */
5102 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5103 	    chip->manufacturer.desc->ops->detect) {
5104 		struct nand_memory_organization *memorg;
5105 
5106 		memorg = nanddev_get_memorg(&chip->base);
5107 
5108 		/* The 3rd id byte holds MLC / multichip data */
5109 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5110 		chip->manufacturer.desc->ops->detect(chip);
5111 	} else {
5112 		nand_decode_ext_id(chip);
5113 	}
5114 }
5115 
5116 /*
5117  * Manufacturer initialization. This function is called for all NANDs including
5118  * ONFI and JEDEC compliant ones.
5119  * Manufacturer drivers should put all their specific initialization code in
5120  * their ->init() hook.
5121  */
5122 static int nand_manufacturer_init(struct nand_chip *chip)
5123 {
5124 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5125 	    !chip->manufacturer.desc->ops->init)
5126 		return 0;
5127 
5128 	return chip->manufacturer.desc->ops->init(chip);
5129 }
5130 
5131 /*
5132  * Manufacturer cleanup. This function is called for all NANDs including
5133  * ONFI and JEDEC compliant ones.
5134  * Manufacturer drivers should put all their specific cleanup code in their
5135  * ->cleanup() hook.
5136  */
5137 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5138 {
5139 	/* Release manufacturer private data */
5140 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5141 	    chip->manufacturer.desc->ops->cleanup)
5142 		chip->manufacturer.desc->ops->cleanup(chip);
5143 }
5144 
5145 static const char *
5146 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5147 {
5148 	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5149 }
5150 
5151 static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5152 {
5153 	/* Use an arbitrary size for the check */
5154 	if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5155 		chip->controller->supported_op.data_only_read = 1;
5156 }
5157 
5158 static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5159 {
5160 	/* The supported_op fields should not be set by individual drivers */
5161 	WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5162 
5163 	if (!nand_has_exec_op(chip))
5164 		return;
5165 
5166 	rawnand_check_data_only_read_support(chip);
5167 }
5168 
5169 static void rawnand_check_cont_read_support(struct nand_chip *chip)
5170 {
5171 	struct mtd_info *mtd = nand_to_mtd(chip);
5172 
5173 	if (!chip->parameters.supports_read_cache)
5174 		return;
5175 
5176 	if (chip->read_retries)
5177 		return;
5178 
5179 	if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5180 					    mtd->writesize, true))
5181 		chip->controller->supported_op.cont_read = 1;
5182 }
5183 
5184 static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5185 {
5186 	/* The supported_op fields should not be set by individual drivers */
5187 	WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5188 
5189 	/*
5190 	 * Too many devices do not support sequential cached reads with on-die
5191 	 * ECC correction enabled, so in this case refuse to perform the
5192 	 * automation.
5193 	 */
5194 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
5195 		return;
5196 
5197 	if (!nand_has_exec_op(chip))
5198 		return;
5199 
5200 	/*
5201 	 * For now, continuous reads can only be used with the core page helpers.
5202 	 * This can be extended later.
5203 	 */
5204 	if (!(chip->ecc.read_page == nand_read_page_hwecc ||
5205 	      chip->ecc.read_page == nand_read_page_syndrome ||
5206 	      chip->ecc.read_page == nand_read_page_swecc))
5207 		return;
5208 
5209 	rawnand_check_cont_read_support(chip);
5210 }
5211 
5212 /*
5213  * Get the flash and manufacturer id and lookup if the type is supported.
5214  */
5215 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5216 {
5217 	const struct nand_manufacturer_desc *manufacturer_desc;
5218 	struct mtd_info *mtd = nand_to_mtd(chip);
5219 	struct nand_memory_organization *memorg;
5220 	int busw, ret;
5221 	u8 *id_data = chip->id.data;
5222 	u8 maf_id, dev_id;
5223 	u64 targetsize;
5224 
5225 	/*
5226 	 * Let's start by initializing memorg fields that might be left
5227 	 * unassigned by the ID-based detection logic.
5228 	 */
5229 	memorg = nanddev_get_memorg(&chip->base);
5230 	memorg->planes_per_lun = 1;
5231 	memorg->luns_per_target = 1;
5232 
5233 	/*
5234 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5235 	 * after power-up.
5236 	 */
5237 	ret = nand_reset(chip, 0);
5238 	if (ret)
5239 		return ret;
5240 
5241 	/* Select the device */
5242 	nand_select_target(chip, 0);
5243 
5244 	rawnand_early_check_supported_ops(chip);
5245 
5246 	/* Send the command for reading device ID */
5247 	ret = nand_readid_op(chip, 0, id_data, 2);
5248 	if (ret)
5249 		return ret;
5250 
5251 	/* Read manufacturer and device IDs */
5252 	maf_id = id_data[0];
5253 	dev_id = id_data[1];
5254 
5255 	/*
5256 	 * Try again to make sure, as some systems the bus-hold or other
5257 	 * interface concerns can cause random data which looks like a
5258 	 * possibly credible NAND flash to appear. If the two results do
5259 	 * not match, ignore the device completely.
5260 	 */
5261 
5262 	/* Read entire ID string */
5263 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5264 	if (ret)
5265 		return ret;
5266 
5267 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
5268 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5269 			maf_id, dev_id, id_data[0], id_data[1]);
5270 		return -ENODEV;
5271 	}
5272 
5273 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5274 
5275 	/* Try to identify manufacturer */
5276 	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5277 	chip->manufacturer.desc = manufacturer_desc;
5278 
5279 	if (!type)
5280 		type = nand_flash_ids;
5281 
5282 	/*
5283 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5284 	 * override it.
5285 	 * This is required to make sure initial NAND bus width set by the
5286 	 * NAND controller driver is coherent with the real NAND bus width
5287 	 * (extracted by auto-detection code).
5288 	 */
5289 	busw = chip->options & NAND_BUSWIDTH_16;
5290 
5291 	/*
5292 	 * The flag is only set (never cleared), reset it to its default value
5293 	 * before starting auto-detection.
5294 	 */
5295 	chip->options &= ~NAND_BUSWIDTH_16;
5296 
5297 	for (; type->name != NULL; type++) {
5298 		if (is_full_id_nand(type)) {
5299 			if (find_full_id_nand(chip, type))
5300 				goto ident_done;
5301 		} else if (dev_id == type->dev_id) {
5302 			break;
5303 		}
5304 	}
5305 
5306 	if (!type->name || !type->pagesize) {
5307 		/* Check if the chip is ONFI compliant */
5308 		ret = nand_onfi_detect(chip);
5309 		if (ret < 0)
5310 			return ret;
5311 		else if (ret)
5312 			goto ident_done;
5313 
5314 		/* Check if the chip is JEDEC compliant */
5315 		ret = nand_jedec_detect(chip);
5316 		if (ret < 0)
5317 			return ret;
5318 		else if (ret)
5319 			goto ident_done;
5320 	}
5321 
5322 	if (!type->name)
5323 		return -ENODEV;
5324 
5325 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5326 	if (!chip->parameters.model)
5327 		return -ENOMEM;
5328 
5329 	if (!type->pagesize)
5330 		nand_manufacturer_detect(chip);
5331 	else
5332 		nand_decode_id(chip, type);
5333 
5334 	/* Get chip options */
5335 	chip->options |= type->options;
5336 
5337 	memorg->eraseblocks_per_lun =
5338 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5339 					   memorg->pagesize *
5340 					   memorg->pages_per_eraseblock);
5341 
5342 ident_done:
5343 	if (!mtd->name)
5344 		mtd->name = chip->parameters.model;
5345 
5346 	if (chip->options & NAND_BUSWIDTH_AUTO) {
5347 		WARN_ON(busw & NAND_BUSWIDTH_16);
5348 		nand_set_defaults(chip);
5349 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5350 		/*
5351 		 * Check, if buswidth is correct. Hardware drivers should set
5352 		 * chip correct!
5353 		 */
5354 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5355 			maf_id, dev_id);
5356 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5357 			mtd->name);
5358 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5359 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5360 		ret = -EINVAL;
5361 
5362 		goto free_detect_allocation;
5363 	}
5364 
5365 	nand_decode_bbm_options(chip);
5366 
5367 	/* Calculate the address shift from the page size */
5368 	chip->page_shift = ffs(mtd->writesize) - 1;
5369 	/* Convert chipsize to number of pages per chip -1 */
5370 	targetsize = nanddev_target_size(&chip->base);
5371 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
5372 
5373 	chip->bbt_erase_shift = chip->phys_erase_shift =
5374 		ffs(mtd->erasesize) - 1;
5375 	if (targetsize & 0xffffffff)
5376 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
5377 	else {
5378 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5379 		chip->chip_shift += 32 - 1;
5380 	}
5381 
5382 	if (chip->chip_shift - chip->page_shift > 16)
5383 		chip->options |= NAND_ROW_ADDR_3;
5384 
5385 	chip->badblockbits = 8;
5386 
5387 	nand_legacy_adjust_cmdfunc(chip);
5388 
5389 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5390 		maf_id, dev_id);
5391 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5392 		chip->parameters.model);
5393 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5394 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5395 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5396 	return 0;
5397 
5398 free_detect_allocation:
5399 	kfree(chip->parameters.model);
5400 
5401 	return ret;
5402 }
5403 
5404 static enum nand_ecc_engine_type
5405 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5406 {
5407 	enum nand_ecc_legacy_mode {
5408 		NAND_ECC_INVALID,
5409 		NAND_ECC_NONE,
5410 		NAND_ECC_SOFT,
5411 		NAND_ECC_SOFT_BCH,
5412 		NAND_ECC_HW,
5413 		NAND_ECC_HW_SYNDROME,
5414 		NAND_ECC_ON_DIE,
5415 	};
5416 	const char * const nand_ecc_legacy_modes[] = {
5417 		[NAND_ECC_NONE]		= "none",
5418 		[NAND_ECC_SOFT]		= "soft",
5419 		[NAND_ECC_SOFT_BCH]	= "soft_bch",
5420 		[NAND_ECC_HW]		= "hw",
5421 		[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5422 		[NAND_ECC_ON_DIE]	= "on-die",
5423 	};
5424 	enum nand_ecc_legacy_mode eng_type;
5425 	const char *pm;
5426 	int err;
5427 
5428 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5429 	if (err)
5430 		return NAND_ECC_ENGINE_TYPE_INVALID;
5431 
5432 	for (eng_type = NAND_ECC_NONE;
5433 	     eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5434 		if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5435 			switch (eng_type) {
5436 			case NAND_ECC_NONE:
5437 				return NAND_ECC_ENGINE_TYPE_NONE;
5438 			case NAND_ECC_SOFT:
5439 			case NAND_ECC_SOFT_BCH:
5440 				return NAND_ECC_ENGINE_TYPE_SOFT;
5441 			case NAND_ECC_HW:
5442 			case NAND_ECC_HW_SYNDROME:
5443 				return NAND_ECC_ENGINE_TYPE_ON_HOST;
5444 			case NAND_ECC_ON_DIE:
5445 				return NAND_ECC_ENGINE_TYPE_ON_DIE;
5446 			default:
5447 				break;
5448 			}
5449 		}
5450 	}
5451 
5452 	return NAND_ECC_ENGINE_TYPE_INVALID;
5453 }
5454 
5455 static enum nand_ecc_placement
5456 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5457 {
5458 	const char *pm;
5459 	int err;
5460 
5461 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5462 	if (!err) {
5463 		if (!strcasecmp(pm, "hw_syndrome"))
5464 			return NAND_ECC_PLACEMENT_INTERLEAVED;
5465 	}
5466 
5467 	return NAND_ECC_PLACEMENT_UNKNOWN;
5468 }
5469 
5470 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5471 {
5472 	const char *pm;
5473 	int err;
5474 
5475 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5476 	if (!err) {
5477 		if (!strcasecmp(pm, "soft"))
5478 			return NAND_ECC_ALGO_HAMMING;
5479 		else if (!strcasecmp(pm, "soft_bch"))
5480 			return NAND_ECC_ALGO_BCH;
5481 	}
5482 
5483 	return NAND_ECC_ALGO_UNKNOWN;
5484 }
5485 
5486 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5487 {
5488 	struct device_node *dn = nand_get_flash_node(chip);
5489 	struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5490 
5491 	if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5492 		user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5493 
5494 	if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5495 		user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5496 
5497 	if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5498 		user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5499 }
5500 
5501 static int of_get_nand_bus_width(struct nand_chip *chip)
5502 {
5503 	struct device_node *dn = nand_get_flash_node(chip);
5504 	u32 val;
5505 	int ret;
5506 
5507 	ret = of_property_read_u32(dn, "nand-bus-width", &val);
5508 	if (ret == -EINVAL)
5509 		/* Buswidth defaults to 8 if the property does not exist .*/
5510 		return 0;
5511 	else if (ret)
5512 		return ret;
5513 
5514 	if (val == 16)
5515 		chip->options |= NAND_BUSWIDTH_16;
5516 	else if (val != 8)
5517 		return -EINVAL;
5518 	return 0;
5519 }
5520 
5521 static int of_get_nand_secure_regions(struct nand_chip *chip)
5522 {
5523 	struct device_node *dn = nand_get_flash_node(chip);
5524 	struct property *prop;
5525 	int nr_elem, i, j;
5526 
5527 	/* Only proceed if the "secure-regions" property is present in DT */
5528 	prop = of_find_property(dn, "secure-regions", NULL);
5529 	if (!prop)
5530 		return 0;
5531 
5532 	nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5533 	if (nr_elem <= 0)
5534 		return nr_elem;
5535 
5536 	chip->nr_secure_regions = nr_elem / 2;
5537 	chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5538 				       GFP_KERNEL);
5539 	if (!chip->secure_regions)
5540 		return -ENOMEM;
5541 
5542 	for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5543 		of_property_read_u64_index(dn, "secure-regions", j,
5544 					   &chip->secure_regions[i].offset);
5545 		of_property_read_u64_index(dn, "secure-regions", j + 1,
5546 					   &chip->secure_regions[i].size);
5547 	}
5548 
5549 	return 0;
5550 }
5551 
5552 /**
5553  * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5554  * @dev: Device that will be parsed. Also used for managed allocations.
5555  * @cs_array: Array of GPIO desc pointers allocated on success
5556  * @ncs_array: Number of entries in @cs_array updated on success.
5557  * @return 0 on success, an error otherwise.
5558  */
5559 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5560 			     unsigned int *ncs_array)
5561 {
5562 	struct gpio_desc **descs;
5563 	int ndescs, i;
5564 
5565 	ndescs = gpiod_count(dev, "cs");
5566 	if (ndescs < 0) {
5567 		dev_dbg(dev, "No valid cs-gpios property\n");
5568 		return 0;
5569 	}
5570 
5571 	descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5572 	if (!descs)
5573 		return -ENOMEM;
5574 
5575 	for (i = 0; i < ndescs; i++) {
5576 		descs[i] = gpiod_get_index_optional(dev, "cs", i,
5577 						    GPIOD_OUT_HIGH);
5578 		if (IS_ERR(descs[i]))
5579 			return PTR_ERR(descs[i]);
5580 	}
5581 
5582 	*ncs_array = ndescs;
5583 	*cs_array = descs;
5584 
5585 	return 0;
5586 }
5587 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5588 
5589 static int rawnand_dt_init(struct nand_chip *chip)
5590 {
5591 	struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5592 	struct device_node *dn = nand_get_flash_node(chip);
5593 	int ret;
5594 
5595 	if (!dn)
5596 		return 0;
5597 
5598 	ret = of_get_nand_bus_width(chip);
5599 	if (ret)
5600 		return ret;
5601 
5602 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5603 		chip->options |= NAND_IS_BOOT_MEDIUM;
5604 
5605 	if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5606 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5607 
5608 	of_get_nand_ecc_user_config(nand);
5609 	of_get_nand_ecc_legacy_user_config(chip);
5610 
5611 	/*
5612 	 * If neither the user nor the NAND controller have requested a specific
5613 	 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5614 	 */
5615 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5616 
5617 	/*
5618 	 * Use the user requested engine type, unless there is none, in this
5619 	 * case default to the NAND controller choice, otherwise fallback to
5620 	 * the raw NAND default one.
5621 	 */
5622 	if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5623 		chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5624 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5625 		chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5626 
5627 	chip->ecc.placement = nand->ecc.user_conf.placement;
5628 	chip->ecc.algo = nand->ecc.user_conf.algo;
5629 	chip->ecc.strength = nand->ecc.user_conf.strength;
5630 	chip->ecc.size = nand->ecc.user_conf.step_size;
5631 
5632 	return 0;
5633 }
5634 
5635 /**
5636  * nand_scan_ident - Scan for the NAND device
5637  * @chip: NAND chip object
5638  * @maxchips: number of chips to scan for
5639  * @table: alternative NAND ID table
5640  *
5641  * This is the first phase of the normal nand_scan() function. It reads the
5642  * flash ID and sets up MTD fields accordingly.
5643  *
5644  * This helper used to be called directly from controller drivers that needed
5645  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5646  * prevented dynamic allocations during this phase which was unconvenient and
5647  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5648  */
5649 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5650 			   struct nand_flash_dev *table)
5651 {
5652 	struct mtd_info *mtd = nand_to_mtd(chip);
5653 	struct nand_memory_organization *memorg;
5654 	int nand_maf_id, nand_dev_id;
5655 	unsigned int i;
5656 	int ret;
5657 
5658 	memorg = nanddev_get_memorg(&chip->base);
5659 
5660 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5661 	chip->cur_cs = -1;
5662 
5663 	mutex_init(&chip->lock);
5664 	init_waitqueue_head(&chip->resume_wq);
5665 
5666 	/* Enforce the right timings for reset/detection */
5667 	chip->current_interface_config = nand_get_reset_interface_config();
5668 
5669 	ret = rawnand_dt_init(chip);
5670 	if (ret)
5671 		return ret;
5672 
5673 	if (!mtd->name && mtd->dev.parent)
5674 		mtd->name = dev_name(mtd->dev.parent);
5675 
5676 	/* Set the default functions */
5677 	nand_set_defaults(chip);
5678 
5679 	ret = nand_legacy_check_hooks(chip);
5680 	if (ret)
5681 		return ret;
5682 
5683 	memorg->ntargets = maxchips;
5684 
5685 	/* Read the flash type */
5686 	ret = nand_detect(chip, table);
5687 	if (ret) {
5688 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5689 			pr_warn("No NAND device found\n");
5690 		nand_deselect_target(chip);
5691 		return ret;
5692 	}
5693 
5694 	nand_maf_id = chip->id.data[0];
5695 	nand_dev_id = chip->id.data[1];
5696 
5697 	nand_deselect_target(chip);
5698 
5699 	/* Check for a chip array */
5700 	for (i = 1; i < maxchips; i++) {
5701 		u8 id[2];
5702 
5703 		/* See comment in nand_get_flash_type for reset */
5704 		ret = nand_reset(chip, i);
5705 		if (ret)
5706 			break;
5707 
5708 		nand_select_target(chip, i);
5709 		/* Send the command for reading device ID */
5710 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5711 		if (ret)
5712 			break;
5713 		/* Read manufacturer and device IDs */
5714 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5715 			nand_deselect_target(chip);
5716 			break;
5717 		}
5718 		nand_deselect_target(chip);
5719 	}
5720 	if (i > 1)
5721 		pr_info("%d chips detected\n", i);
5722 
5723 	/* Store the number of chips and calc total size for mtd */
5724 	memorg->ntargets = i;
5725 	mtd->size = i * nanddev_target_size(&chip->base);
5726 
5727 	return 0;
5728 }
5729 
5730 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5731 {
5732 	kfree(chip->parameters.model);
5733 	kfree(chip->parameters.onfi);
5734 }
5735 
5736 int rawnand_sw_hamming_init(struct nand_chip *chip)
5737 {
5738 	struct nand_ecc_sw_hamming_conf *engine_conf;
5739 	struct nand_device *base = &chip->base;
5740 	int ret;
5741 
5742 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5743 	base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5744 	base->ecc.user_conf.strength = chip->ecc.strength;
5745 	base->ecc.user_conf.step_size = chip->ecc.size;
5746 
5747 	ret = nand_ecc_sw_hamming_init_ctx(base);
5748 	if (ret)
5749 		return ret;
5750 
5751 	engine_conf = base->ecc.ctx.priv;
5752 
5753 	if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5754 		engine_conf->sm_order = true;
5755 
5756 	chip->ecc.size = base->ecc.ctx.conf.step_size;
5757 	chip->ecc.strength = base->ecc.ctx.conf.strength;
5758 	chip->ecc.total = base->ecc.ctx.total;
5759 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5760 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5761 
5762 	return 0;
5763 }
5764 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5765 
5766 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5767 				 const unsigned char *buf,
5768 				 unsigned char *code)
5769 {
5770 	struct nand_device *base = &chip->base;
5771 
5772 	return nand_ecc_sw_hamming_calculate(base, buf, code);
5773 }
5774 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5775 
5776 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5777 			       unsigned char *buf,
5778 			       unsigned char *read_ecc,
5779 			       unsigned char *calc_ecc)
5780 {
5781 	struct nand_device *base = &chip->base;
5782 
5783 	return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5784 }
5785 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5786 
5787 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5788 {
5789 	struct nand_device *base = &chip->base;
5790 
5791 	nand_ecc_sw_hamming_cleanup_ctx(base);
5792 }
5793 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5794 
5795 int rawnand_sw_bch_init(struct nand_chip *chip)
5796 {
5797 	struct nand_device *base = &chip->base;
5798 	const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5799 	int ret;
5800 
5801 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5802 	base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5803 	base->ecc.user_conf.step_size = chip->ecc.size;
5804 	base->ecc.user_conf.strength = chip->ecc.strength;
5805 
5806 	ret = nand_ecc_sw_bch_init_ctx(base);
5807 	if (ret)
5808 		return ret;
5809 
5810 	chip->ecc.size = ecc_conf->step_size;
5811 	chip->ecc.strength = ecc_conf->strength;
5812 	chip->ecc.total = base->ecc.ctx.total;
5813 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5814 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5815 
5816 	return 0;
5817 }
5818 EXPORT_SYMBOL(rawnand_sw_bch_init);
5819 
5820 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5821 				    const unsigned char *buf,
5822 				    unsigned char *code)
5823 {
5824 	struct nand_device *base = &chip->base;
5825 
5826 	return nand_ecc_sw_bch_calculate(base, buf, code);
5827 }
5828 
5829 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5830 			   unsigned char *read_ecc, unsigned char *calc_ecc)
5831 {
5832 	struct nand_device *base = &chip->base;
5833 
5834 	return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5835 }
5836 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5837 
5838 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5839 {
5840 	struct nand_device *base = &chip->base;
5841 
5842 	nand_ecc_sw_bch_cleanup_ctx(base);
5843 }
5844 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5845 
5846 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5847 {
5848 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5849 
5850 	switch (ecc->placement) {
5851 	case NAND_ECC_PLACEMENT_UNKNOWN:
5852 	case NAND_ECC_PLACEMENT_OOB:
5853 		/* Use standard hwecc read page function? */
5854 		if (!ecc->read_page)
5855 			ecc->read_page = nand_read_page_hwecc;
5856 		if (!ecc->write_page)
5857 			ecc->write_page = nand_write_page_hwecc;
5858 		if (!ecc->read_page_raw)
5859 			ecc->read_page_raw = nand_read_page_raw;
5860 		if (!ecc->write_page_raw)
5861 			ecc->write_page_raw = nand_write_page_raw;
5862 		if (!ecc->read_oob)
5863 			ecc->read_oob = nand_read_oob_std;
5864 		if (!ecc->write_oob)
5865 			ecc->write_oob = nand_write_oob_std;
5866 		if (!ecc->read_subpage)
5867 			ecc->read_subpage = nand_read_subpage;
5868 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5869 			ecc->write_subpage = nand_write_subpage_hwecc;
5870 		fallthrough;
5871 
5872 	case NAND_ECC_PLACEMENT_INTERLEAVED:
5873 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5874 		    (!ecc->read_page ||
5875 		     ecc->read_page == nand_read_page_hwecc ||
5876 		     !ecc->write_page ||
5877 		     ecc->write_page == nand_write_page_hwecc)) {
5878 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5879 			return -EINVAL;
5880 		}
5881 		/* Use standard syndrome read/write page function? */
5882 		if (!ecc->read_page)
5883 			ecc->read_page = nand_read_page_syndrome;
5884 		if (!ecc->write_page)
5885 			ecc->write_page = nand_write_page_syndrome;
5886 		if (!ecc->read_page_raw)
5887 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5888 		if (!ecc->write_page_raw)
5889 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5890 		if (!ecc->read_oob)
5891 			ecc->read_oob = nand_read_oob_syndrome;
5892 		if (!ecc->write_oob)
5893 			ecc->write_oob = nand_write_oob_syndrome;
5894 		break;
5895 
5896 	default:
5897 		pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5898 			ecc->placement);
5899 		return -EINVAL;
5900 	}
5901 
5902 	return 0;
5903 }
5904 
5905 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5906 {
5907 	struct mtd_info *mtd = nand_to_mtd(chip);
5908 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5909 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5910 	int ret;
5911 
5912 	if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5913 		return -EINVAL;
5914 
5915 	switch (ecc->algo) {
5916 	case NAND_ECC_ALGO_HAMMING:
5917 		ecc->calculate = rawnand_sw_hamming_calculate;
5918 		ecc->correct = rawnand_sw_hamming_correct;
5919 		ecc->read_page = nand_read_page_swecc;
5920 		ecc->read_subpage = nand_read_subpage;
5921 		ecc->write_page = nand_write_page_swecc;
5922 		if (!ecc->read_page_raw)
5923 			ecc->read_page_raw = nand_read_page_raw;
5924 		if (!ecc->write_page_raw)
5925 			ecc->write_page_raw = nand_write_page_raw;
5926 		ecc->read_oob = nand_read_oob_std;
5927 		ecc->write_oob = nand_write_oob_std;
5928 		if (!ecc->size)
5929 			ecc->size = 256;
5930 		ecc->bytes = 3;
5931 		ecc->strength = 1;
5932 
5933 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5934 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5935 
5936 		ret = rawnand_sw_hamming_init(chip);
5937 		if (ret) {
5938 			WARN(1, "Hamming ECC initialization failed!\n");
5939 			return ret;
5940 		}
5941 
5942 		return 0;
5943 	case NAND_ECC_ALGO_BCH:
5944 		if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5945 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5946 			return -EINVAL;
5947 		}
5948 		ecc->calculate = rawnand_sw_bch_calculate;
5949 		ecc->correct = rawnand_sw_bch_correct;
5950 		ecc->read_page = nand_read_page_swecc;
5951 		ecc->read_subpage = nand_read_subpage;
5952 		ecc->write_page = nand_write_page_swecc;
5953 		if (!ecc->read_page_raw)
5954 			ecc->read_page_raw = nand_read_page_raw;
5955 		if (!ecc->write_page_raw)
5956 			ecc->write_page_raw = nand_write_page_raw;
5957 		ecc->read_oob = nand_read_oob_std;
5958 		ecc->write_oob = nand_write_oob_std;
5959 
5960 		/*
5961 		 * We can only maximize ECC config when the default layout is
5962 		 * used, otherwise we don't know how many bytes can really be
5963 		 * used.
5964 		 */
5965 		if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5966 		    mtd->ooblayout != nand_get_large_page_ooblayout())
5967 			nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5968 
5969 		ret = rawnand_sw_bch_init(chip);
5970 		if (ret) {
5971 			WARN(1, "BCH ECC initialization failed!\n");
5972 			return ret;
5973 		}
5974 
5975 		return 0;
5976 	default:
5977 		WARN(1, "Unsupported ECC algorithm!\n");
5978 		return -EINVAL;
5979 	}
5980 }
5981 
5982 /**
5983  * nand_check_ecc_caps - check the sanity of preset ECC settings
5984  * @chip: nand chip info structure
5985  * @caps: ECC caps info structure
5986  * @oobavail: OOB size that the ECC engine can use
5987  *
5988  * When ECC step size and strength are already set, check if they are supported
5989  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5990  * On success, the calculated ECC bytes is set.
5991  */
5992 static int
5993 nand_check_ecc_caps(struct nand_chip *chip,
5994 		    const struct nand_ecc_caps *caps, int oobavail)
5995 {
5996 	struct mtd_info *mtd = nand_to_mtd(chip);
5997 	const struct nand_ecc_step_info *stepinfo;
5998 	int preset_step = chip->ecc.size;
5999 	int preset_strength = chip->ecc.strength;
6000 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
6001 	int i, j;
6002 
6003 	for (i = 0; i < caps->nstepinfos; i++) {
6004 		stepinfo = &caps->stepinfos[i];
6005 
6006 		if (stepinfo->stepsize != preset_step)
6007 			continue;
6008 
6009 		for (j = 0; j < stepinfo->nstrengths; j++) {
6010 			if (stepinfo->strengths[j] != preset_strength)
6011 				continue;
6012 
6013 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
6014 							 preset_strength);
6015 			if (WARN_ON_ONCE(ecc_bytes < 0))
6016 				return ecc_bytes;
6017 
6018 			if (ecc_bytes * nsteps > oobavail) {
6019 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6020 				       preset_step, preset_strength);
6021 				return -ENOSPC;
6022 			}
6023 
6024 			chip->ecc.bytes = ecc_bytes;
6025 
6026 			return 0;
6027 		}
6028 	}
6029 
6030 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6031 	       preset_step, preset_strength);
6032 
6033 	return -ENOTSUPP;
6034 }
6035 
6036 /**
6037  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6038  * @chip: nand chip info structure
6039  * @caps: ECC engine caps info structure
6040  * @oobavail: OOB size that the ECC engine can use
6041  *
6042  * If a chip's ECC requirement is provided, try to meet it with the least
6043  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6044  * On success, the chosen ECC settings are set.
6045  */
6046 static int
6047 nand_match_ecc_req(struct nand_chip *chip,
6048 		   const struct nand_ecc_caps *caps, int oobavail)
6049 {
6050 	const struct nand_ecc_props *requirements =
6051 		nanddev_get_ecc_requirements(&chip->base);
6052 	struct mtd_info *mtd = nand_to_mtd(chip);
6053 	const struct nand_ecc_step_info *stepinfo;
6054 	int req_step = requirements->step_size;
6055 	int req_strength = requirements->strength;
6056 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6057 	int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
6058 	int best_ecc_bytes_total = INT_MAX;
6059 	int i, j;
6060 
6061 	/* No information provided by the NAND chip */
6062 	if (!req_step || !req_strength)
6063 		return -ENOTSUPP;
6064 
6065 	/* number of correctable bits the chip requires in a page */
6066 	req_corr = mtd->writesize / req_step * req_strength;
6067 
6068 	for (i = 0; i < caps->nstepinfos; i++) {
6069 		stepinfo = &caps->stepinfos[i];
6070 		step_size = stepinfo->stepsize;
6071 
6072 		for (j = 0; j < stepinfo->nstrengths; j++) {
6073 			strength = stepinfo->strengths[j];
6074 
6075 			/*
6076 			 * If both step size and strength are smaller than the
6077 			 * chip's requirement, it is not easy to compare the
6078 			 * resulted reliability.
6079 			 */
6080 			if (step_size < req_step && strength < req_strength)
6081 				continue;
6082 
6083 			if (mtd->writesize % step_size)
6084 				continue;
6085 
6086 			nsteps = mtd->writesize / step_size;
6087 
6088 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6089 			if (WARN_ON_ONCE(ecc_bytes < 0))
6090 				continue;
6091 			ecc_bytes_total = ecc_bytes * nsteps;
6092 
6093 			if (ecc_bytes_total > oobavail ||
6094 			    strength * nsteps < req_corr)
6095 				continue;
6096 
6097 			/*
6098 			 * We assume the best is to meet the chip's requrement
6099 			 * with the least number of ECC bytes.
6100 			 */
6101 			if (ecc_bytes_total < best_ecc_bytes_total) {
6102 				best_ecc_bytes_total = ecc_bytes_total;
6103 				best_step = step_size;
6104 				best_strength = strength;
6105 				best_ecc_bytes = ecc_bytes;
6106 			}
6107 		}
6108 	}
6109 
6110 	if (best_ecc_bytes_total == INT_MAX)
6111 		return -ENOTSUPP;
6112 
6113 	chip->ecc.size = best_step;
6114 	chip->ecc.strength = best_strength;
6115 	chip->ecc.bytes = best_ecc_bytes;
6116 
6117 	return 0;
6118 }
6119 
6120 /**
6121  * nand_maximize_ecc - choose the max ECC strength available
6122  * @chip: nand chip info structure
6123  * @caps: ECC engine caps info structure
6124  * @oobavail: OOB size that the ECC engine can use
6125  *
6126  * Choose the max ECC strength that is supported on the controller, and can fit
6127  * within the chip's OOB.  On success, the chosen ECC settings are set.
6128  */
6129 static int
6130 nand_maximize_ecc(struct nand_chip *chip,
6131 		  const struct nand_ecc_caps *caps, int oobavail)
6132 {
6133 	struct mtd_info *mtd = nand_to_mtd(chip);
6134 	const struct nand_ecc_step_info *stepinfo;
6135 	int step_size, strength, nsteps, ecc_bytes, corr;
6136 	int best_corr = 0;
6137 	int best_step = 0;
6138 	int best_strength = 0, best_ecc_bytes = 0;
6139 	int i, j;
6140 
6141 	for (i = 0; i < caps->nstepinfos; i++) {
6142 		stepinfo = &caps->stepinfos[i];
6143 		step_size = stepinfo->stepsize;
6144 
6145 		/* If chip->ecc.size is already set, respect it */
6146 		if (chip->ecc.size && step_size != chip->ecc.size)
6147 			continue;
6148 
6149 		for (j = 0; j < stepinfo->nstrengths; j++) {
6150 			strength = stepinfo->strengths[j];
6151 
6152 			if (mtd->writesize % step_size)
6153 				continue;
6154 
6155 			nsteps = mtd->writesize / step_size;
6156 
6157 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6158 			if (WARN_ON_ONCE(ecc_bytes < 0))
6159 				continue;
6160 
6161 			if (ecc_bytes * nsteps > oobavail)
6162 				continue;
6163 
6164 			corr = strength * nsteps;
6165 
6166 			/*
6167 			 * If the number of correctable bits is the same,
6168 			 * bigger step_size has more reliability.
6169 			 */
6170 			if (corr > best_corr ||
6171 			    (corr == best_corr && step_size > best_step)) {
6172 				best_corr = corr;
6173 				best_step = step_size;
6174 				best_strength = strength;
6175 				best_ecc_bytes = ecc_bytes;
6176 			}
6177 		}
6178 	}
6179 
6180 	if (!best_corr)
6181 		return -ENOTSUPP;
6182 
6183 	chip->ecc.size = best_step;
6184 	chip->ecc.strength = best_strength;
6185 	chip->ecc.bytes = best_ecc_bytes;
6186 
6187 	return 0;
6188 }
6189 
6190 /**
6191  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6192  * @chip: nand chip info structure
6193  * @caps: ECC engine caps info structure
6194  * @oobavail: OOB size that the ECC engine can use
6195  *
6196  * Choose the ECC configuration according to following logic.
6197  *
6198  * 1. If both ECC step size and ECC strength are already set (usually by DT)
6199  *    then check if it is supported by this controller.
6200  * 2. If the user provided the nand-ecc-maximize property, then select maximum
6201  *    ECC strength.
6202  * 3. Otherwise, try to match the ECC step size and ECC strength closest
6203  *    to the chip's requirement. If available OOB size can't fit the chip
6204  *    requirement then fallback to the maximum ECC step size and ECC strength.
6205  *
6206  * On success, the chosen ECC settings are set.
6207  */
6208 int nand_ecc_choose_conf(struct nand_chip *chip,
6209 			 const struct nand_ecc_caps *caps, int oobavail)
6210 {
6211 	struct mtd_info *mtd = nand_to_mtd(chip);
6212 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
6213 
6214 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6215 		return -EINVAL;
6216 
6217 	if (chip->ecc.size && chip->ecc.strength)
6218 		return nand_check_ecc_caps(chip, caps, oobavail);
6219 
6220 	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6221 		return nand_maximize_ecc(chip, caps, oobavail);
6222 
6223 	if (!nand_match_ecc_req(chip, caps, oobavail))
6224 		return 0;
6225 
6226 	return nand_maximize_ecc(chip, caps, oobavail);
6227 }
6228 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6229 
6230 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6231 {
6232 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6233 					      base);
6234 	unsigned int eb = nanddev_pos_to_row(nand, pos);
6235 	int ret;
6236 
6237 	eb >>= nand->rowconv.eraseblock_addr_shift;
6238 
6239 	nand_select_target(chip, pos->target);
6240 	ret = nand_erase_op(chip, eb);
6241 	nand_deselect_target(chip);
6242 
6243 	return ret;
6244 }
6245 
6246 static int rawnand_markbad(struct nand_device *nand,
6247 			   const struct nand_pos *pos)
6248 {
6249 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6250 					      base);
6251 
6252 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6253 }
6254 
6255 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6256 {
6257 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6258 					      base);
6259 	int ret;
6260 
6261 	nand_select_target(chip, pos->target);
6262 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6263 	nand_deselect_target(chip);
6264 
6265 	return ret;
6266 }
6267 
6268 static const struct nand_ops rawnand_ops = {
6269 	.erase = rawnand_erase,
6270 	.markbad = rawnand_markbad,
6271 	.isbad = rawnand_isbad,
6272 };
6273 
6274 /**
6275  * nand_scan_tail - Scan for the NAND device
6276  * @chip: NAND chip object
6277  *
6278  * This is the second phase of the normal nand_scan() function. It fills out
6279  * all the uninitialized function pointers with the defaults and scans for a
6280  * bad block table if appropriate.
6281  */
6282 static int nand_scan_tail(struct nand_chip *chip)
6283 {
6284 	struct mtd_info *mtd = nand_to_mtd(chip);
6285 	struct nand_ecc_ctrl *ecc = &chip->ecc;
6286 	int ret, i;
6287 
6288 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
6289 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6290 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6291 		return -EINVAL;
6292 	}
6293 
6294 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6295 	if (!chip->data_buf)
6296 		return -ENOMEM;
6297 
6298 	/*
6299 	 * FIXME: some NAND manufacturer drivers expect the first die to be
6300 	 * selected when manufacturer->init() is called. They should be fixed
6301 	 * to explictly select the relevant die when interacting with the NAND
6302 	 * chip.
6303 	 */
6304 	nand_select_target(chip, 0);
6305 	ret = nand_manufacturer_init(chip);
6306 	nand_deselect_target(chip);
6307 	if (ret)
6308 		goto err_free_buf;
6309 
6310 	/* Set the internal oob buffer location, just after the page data */
6311 	chip->oob_poi = chip->data_buf + mtd->writesize;
6312 
6313 	/*
6314 	 * If no default placement scheme is given, select an appropriate one.
6315 	 */
6316 	if (!mtd->ooblayout &&
6317 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6318 	      ecc->algo == NAND_ECC_ALGO_BCH) &&
6319 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6320 	      ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6321 		switch (mtd->oobsize) {
6322 		case 8:
6323 		case 16:
6324 			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6325 			break;
6326 		case 64:
6327 		case 128:
6328 			mtd_set_ooblayout(mtd,
6329 					  nand_get_large_page_hamming_ooblayout());
6330 			break;
6331 		default:
6332 			/*
6333 			 * Expose the whole OOB area to users if ECC_NONE
6334 			 * is passed. We could do that for all kind of
6335 			 * ->oobsize, but we must keep the old large/small
6336 			 * page with ECC layout when ->oobsize <= 128 for
6337 			 * compatibility reasons.
6338 			 */
6339 			if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6340 				mtd_set_ooblayout(mtd,
6341 						  nand_get_large_page_ooblayout());
6342 				break;
6343 			}
6344 
6345 			WARN(1, "No oob scheme defined for oobsize %d\n",
6346 				mtd->oobsize);
6347 			ret = -EINVAL;
6348 			goto err_nand_manuf_cleanup;
6349 		}
6350 	}
6351 
6352 	/*
6353 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6354 	 * selected and we have 256 byte pagesize fallback to software ECC
6355 	 */
6356 
6357 	switch (ecc->engine_type) {
6358 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
6359 		ret = nand_set_ecc_on_host_ops(chip);
6360 		if (ret)
6361 			goto err_nand_manuf_cleanup;
6362 
6363 		if (mtd->writesize >= ecc->size) {
6364 			if (!ecc->strength) {
6365 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6366 				ret = -EINVAL;
6367 				goto err_nand_manuf_cleanup;
6368 			}
6369 			break;
6370 		}
6371 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6372 			ecc->size, mtd->writesize);
6373 		ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6374 		ecc->algo = NAND_ECC_ALGO_HAMMING;
6375 		fallthrough;
6376 
6377 	case NAND_ECC_ENGINE_TYPE_SOFT:
6378 		ret = nand_set_ecc_soft_ops(chip);
6379 		if (ret)
6380 			goto err_nand_manuf_cleanup;
6381 		break;
6382 
6383 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
6384 		if (!ecc->read_page || !ecc->write_page) {
6385 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6386 			ret = -EINVAL;
6387 			goto err_nand_manuf_cleanup;
6388 		}
6389 		if (!ecc->read_oob)
6390 			ecc->read_oob = nand_read_oob_std;
6391 		if (!ecc->write_oob)
6392 			ecc->write_oob = nand_write_oob_std;
6393 		break;
6394 
6395 	case NAND_ECC_ENGINE_TYPE_NONE:
6396 		pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6397 		ecc->read_page = nand_read_page_raw;
6398 		ecc->write_page = nand_write_page_raw;
6399 		ecc->read_oob = nand_read_oob_std;
6400 		ecc->read_page_raw = nand_read_page_raw;
6401 		ecc->write_page_raw = nand_write_page_raw;
6402 		ecc->write_oob = nand_write_oob_std;
6403 		ecc->size = mtd->writesize;
6404 		ecc->bytes = 0;
6405 		ecc->strength = 0;
6406 		break;
6407 
6408 	default:
6409 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6410 		ret = -EINVAL;
6411 		goto err_nand_manuf_cleanup;
6412 	}
6413 
6414 	if (ecc->correct || ecc->calculate) {
6415 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6416 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6417 		if (!ecc->calc_buf || !ecc->code_buf) {
6418 			ret = -ENOMEM;
6419 			goto err_nand_manuf_cleanup;
6420 		}
6421 	}
6422 
6423 	/* For many systems, the standard OOB write also works for raw */
6424 	if (!ecc->read_oob_raw)
6425 		ecc->read_oob_raw = ecc->read_oob;
6426 	if (!ecc->write_oob_raw)
6427 		ecc->write_oob_raw = ecc->write_oob;
6428 
6429 	/* propagate ecc info to mtd_info */
6430 	mtd->ecc_strength = ecc->strength;
6431 	mtd->ecc_step_size = ecc->size;
6432 
6433 	/*
6434 	 * Set the number of read / write steps for one page depending on ECC
6435 	 * mode.
6436 	 */
6437 	if (!ecc->steps)
6438 		ecc->steps = mtd->writesize / ecc->size;
6439 	if (ecc->steps * ecc->size != mtd->writesize) {
6440 		WARN(1, "Invalid ECC parameters\n");
6441 		ret = -EINVAL;
6442 		goto err_nand_manuf_cleanup;
6443 	}
6444 
6445 	if (!ecc->total) {
6446 		ecc->total = ecc->steps * ecc->bytes;
6447 		chip->base.ecc.ctx.total = ecc->total;
6448 	}
6449 
6450 	if (ecc->total > mtd->oobsize) {
6451 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6452 		ret = -EINVAL;
6453 		goto err_nand_manuf_cleanup;
6454 	}
6455 
6456 	/*
6457 	 * The number of bytes available for a client to place data into
6458 	 * the out of band area.
6459 	 */
6460 	ret = mtd_ooblayout_count_freebytes(mtd);
6461 	if (ret < 0)
6462 		ret = 0;
6463 
6464 	mtd->oobavail = ret;
6465 
6466 	/* ECC sanity check: warn if it's too weak */
6467 	if (!nand_ecc_is_strong_enough(&chip->base))
6468 		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6469 			mtd->name, chip->ecc.strength, chip->ecc.size,
6470 			nanddev_get_ecc_requirements(&chip->base)->strength,
6471 			nanddev_get_ecc_requirements(&chip->base)->step_size);
6472 
6473 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6474 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6475 		switch (ecc->steps) {
6476 		case 2:
6477 			mtd->subpage_sft = 1;
6478 			break;
6479 		case 4:
6480 		case 8:
6481 		case 16:
6482 			mtd->subpage_sft = 2;
6483 			break;
6484 		}
6485 	}
6486 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6487 
6488 	/* Invalidate the pagebuffer reference */
6489 	chip->pagecache.page = -1;
6490 
6491 	/* Large page NAND with SOFT_ECC should support subpage reads */
6492 	switch (ecc->engine_type) {
6493 	case NAND_ECC_ENGINE_TYPE_SOFT:
6494 		if (chip->page_shift > 9)
6495 			chip->options |= NAND_SUBPAGE_READ;
6496 		break;
6497 
6498 	default:
6499 		break;
6500 	}
6501 
6502 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6503 	if (ret)
6504 		goto err_nand_manuf_cleanup;
6505 
6506 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6507 	if (chip->options & NAND_ROM)
6508 		mtd->flags = MTD_CAP_ROM;
6509 
6510 	/* Fill in remaining MTD driver data */
6511 	mtd->_erase = nand_erase;
6512 	mtd->_point = NULL;
6513 	mtd->_unpoint = NULL;
6514 	mtd->_panic_write = panic_nand_write;
6515 	mtd->_read_oob = nand_read_oob;
6516 	mtd->_write_oob = nand_write_oob;
6517 	mtd->_sync = nand_sync;
6518 	mtd->_lock = nand_lock;
6519 	mtd->_unlock = nand_unlock;
6520 	mtd->_suspend = nand_suspend;
6521 	mtd->_resume = nand_resume;
6522 	mtd->_reboot = nand_shutdown;
6523 	mtd->_block_isreserved = nand_block_isreserved;
6524 	mtd->_block_isbad = nand_block_isbad;
6525 	mtd->_block_markbad = nand_block_markbad;
6526 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6527 
6528 	/*
6529 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6530 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6531 	 * properly set.
6532 	 */
6533 	if (!mtd->bitflip_threshold)
6534 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6535 
6536 	/* Find the fastest data interface for this chip */
6537 	ret = nand_choose_interface_config(chip);
6538 	if (ret)
6539 		goto err_nanddev_cleanup;
6540 
6541 	/* Enter fastest possible mode on all dies. */
6542 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6543 		ret = nand_setup_interface(chip, i);
6544 		if (ret)
6545 			goto err_free_interface_config;
6546 	}
6547 
6548 	rawnand_late_check_supported_ops(chip);
6549 
6550 	/*
6551 	 * Look for secure regions in the NAND chip. These regions are supposed
6552 	 * to be protected by a secure element like Trustzone. So the read/write
6553 	 * accesses to these regions will be blocked in the runtime by this
6554 	 * driver.
6555 	 */
6556 	ret = of_get_nand_secure_regions(chip);
6557 	if (ret)
6558 		goto err_free_interface_config;
6559 
6560 	/* Check, if we should skip the bad block table scan */
6561 	if (chip->options & NAND_SKIP_BBTSCAN)
6562 		return 0;
6563 
6564 	/* Build bad block table */
6565 	ret = nand_create_bbt(chip);
6566 	if (ret)
6567 		goto err_free_secure_regions;
6568 
6569 	return 0;
6570 
6571 err_free_secure_regions:
6572 	kfree(chip->secure_regions);
6573 
6574 err_free_interface_config:
6575 	kfree(chip->best_interface_config);
6576 
6577 err_nanddev_cleanup:
6578 	nanddev_cleanup(&chip->base);
6579 
6580 err_nand_manuf_cleanup:
6581 	nand_manufacturer_cleanup(chip);
6582 
6583 err_free_buf:
6584 	kfree(chip->data_buf);
6585 	kfree(ecc->code_buf);
6586 	kfree(ecc->calc_buf);
6587 
6588 	return ret;
6589 }
6590 
6591 static int nand_attach(struct nand_chip *chip)
6592 {
6593 	if (chip->controller->ops && chip->controller->ops->attach_chip)
6594 		return chip->controller->ops->attach_chip(chip);
6595 
6596 	return 0;
6597 }
6598 
6599 static void nand_detach(struct nand_chip *chip)
6600 {
6601 	if (chip->controller->ops && chip->controller->ops->detach_chip)
6602 		chip->controller->ops->detach_chip(chip);
6603 }
6604 
6605 /**
6606  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6607  * @chip: NAND chip object
6608  * @maxchips: number of chips to scan for.
6609  * @ids: optional flash IDs table
6610  *
6611  * This fills out all the uninitialized function pointers with the defaults.
6612  * The flash ID is read and the mtd/chip structures are filled with the
6613  * appropriate values.
6614  */
6615 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6616 		       struct nand_flash_dev *ids)
6617 {
6618 	int ret;
6619 
6620 	if (!maxchips)
6621 		return -EINVAL;
6622 
6623 	ret = nand_scan_ident(chip, maxchips, ids);
6624 	if (ret)
6625 		return ret;
6626 
6627 	ret = nand_attach(chip);
6628 	if (ret)
6629 		goto cleanup_ident;
6630 
6631 	ret = nand_scan_tail(chip);
6632 	if (ret)
6633 		goto detach_chip;
6634 
6635 	return 0;
6636 
6637 detach_chip:
6638 	nand_detach(chip);
6639 cleanup_ident:
6640 	nand_scan_ident_cleanup(chip);
6641 
6642 	return ret;
6643 }
6644 EXPORT_SYMBOL(nand_scan_with_ids);
6645 
6646 /**
6647  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6648  * @chip: NAND chip object
6649  */
6650 void nand_cleanup(struct nand_chip *chip)
6651 {
6652 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6653 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6654 			rawnand_sw_hamming_cleanup(chip);
6655 		else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6656 			rawnand_sw_bch_cleanup(chip);
6657 	}
6658 
6659 	nanddev_cleanup(&chip->base);
6660 
6661 	/* Free secure regions data */
6662 	kfree(chip->secure_regions);
6663 
6664 	/* Free bad block table memory */
6665 	kfree(chip->bbt);
6666 	kfree(chip->data_buf);
6667 	kfree(chip->ecc.code_buf);
6668 	kfree(chip->ecc.calc_buf);
6669 
6670 	/* Free bad block descriptor memory */
6671 	if (chip->badblock_pattern && chip->badblock_pattern->options
6672 			& NAND_BBT_DYNAMICSTRUCT)
6673 		kfree(chip->badblock_pattern);
6674 
6675 	/* Free the data interface */
6676 	kfree(chip->best_interface_config);
6677 
6678 	/* Free manufacturer priv data. */
6679 	nand_manufacturer_cleanup(chip);
6680 
6681 	/* Free controller specific allocations after chip identification */
6682 	nand_detach(chip);
6683 
6684 	/* Free identification phase allocations */
6685 	nand_scan_ident_cleanup(chip);
6686 }
6687 
6688 EXPORT_SYMBOL_GPL(nand_cleanup);
6689 
6690 MODULE_LICENSE("GPL");
6691 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6692 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6693 MODULE_DESCRIPTION("Generic NAND flash driver code");
6694