xref: /openbmc/linux/drivers/mtd/nand/raw/nand_base.c (revision 58f9d806)
1 /*
2  *  Overview:
3  *   This is the generic MTD driver for NAND flash devices. It should be
4  *   capable of working with almost all NAND chips currently available.
5  *
6  *	Additional technical information is available on
7  *	http://www.linux-mtd.infradead.org/doc/nand.html
8  *
9  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
11  *
12  *  Credits:
13  *	David Woodhouse for adding multichip support
14  *
15  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16  *	rework for 2K page size chips
17  *
18  *  TODO:
19  *	Enable cached programming for 2k page size chips
20  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21  *	if we have HW ECC support.
22  *	BBT table is not serialized, has to be fixed
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29 
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #include <linux/interrupt.h>
44 #include <linux/bitops.h>
45 #include <linux/io.h>
46 #include <linux/mtd/partitions.h>
47 #include <linux/of.h>
48 
49 #include "internals.h"
50 
51 static int nand_get_device(struct mtd_info *mtd, int new_state);
52 
53 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
54 			     struct mtd_oob_ops *ops);
55 
56 /* Define default oob placement schemes for large and small page devices */
57 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
58 				 struct mtd_oob_region *oobregion)
59 {
60 	struct nand_chip *chip = mtd_to_nand(mtd);
61 	struct nand_ecc_ctrl *ecc = &chip->ecc;
62 
63 	if (section > 1)
64 		return -ERANGE;
65 
66 	if (!section) {
67 		oobregion->offset = 0;
68 		if (mtd->oobsize == 16)
69 			oobregion->length = 4;
70 		else
71 			oobregion->length = 3;
72 	} else {
73 		if (mtd->oobsize == 8)
74 			return -ERANGE;
75 
76 		oobregion->offset = 6;
77 		oobregion->length = ecc->total - 4;
78 	}
79 
80 	return 0;
81 }
82 
83 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
84 				  struct mtd_oob_region *oobregion)
85 {
86 	if (section > 1)
87 		return -ERANGE;
88 
89 	if (mtd->oobsize == 16) {
90 		if (section)
91 			return -ERANGE;
92 
93 		oobregion->length = 8;
94 		oobregion->offset = 8;
95 	} else {
96 		oobregion->length = 2;
97 		if (!section)
98 			oobregion->offset = 3;
99 		else
100 			oobregion->offset = 6;
101 	}
102 
103 	return 0;
104 }
105 
106 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
107 	.ecc = nand_ooblayout_ecc_sp,
108 	.free = nand_ooblayout_free_sp,
109 };
110 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
111 
112 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
113 				 struct mtd_oob_region *oobregion)
114 {
115 	struct nand_chip *chip = mtd_to_nand(mtd);
116 	struct nand_ecc_ctrl *ecc = &chip->ecc;
117 
118 	if (section || !ecc->total)
119 		return -ERANGE;
120 
121 	oobregion->length = ecc->total;
122 	oobregion->offset = mtd->oobsize - oobregion->length;
123 
124 	return 0;
125 }
126 
127 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
128 				  struct mtd_oob_region *oobregion)
129 {
130 	struct nand_chip *chip = mtd_to_nand(mtd);
131 	struct nand_ecc_ctrl *ecc = &chip->ecc;
132 
133 	if (section)
134 		return -ERANGE;
135 
136 	oobregion->length = mtd->oobsize - ecc->total - 2;
137 	oobregion->offset = 2;
138 
139 	return 0;
140 }
141 
142 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
143 	.ecc = nand_ooblayout_ecc_lp,
144 	.free = nand_ooblayout_free_lp,
145 };
146 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
147 
148 /*
149  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
150  * are placed at a fixed offset.
151  */
152 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
153 					 struct mtd_oob_region *oobregion)
154 {
155 	struct nand_chip *chip = mtd_to_nand(mtd);
156 	struct nand_ecc_ctrl *ecc = &chip->ecc;
157 
158 	if (section)
159 		return -ERANGE;
160 
161 	switch (mtd->oobsize) {
162 	case 64:
163 		oobregion->offset = 40;
164 		break;
165 	case 128:
166 		oobregion->offset = 80;
167 		break;
168 	default:
169 		return -EINVAL;
170 	}
171 
172 	oobregion->length = ecc->total;
173 	if (oobregion->offset + oobregion->length > mtd->oobsize)
174 		return -ERANGE;
175 
176 	return 0;
177 }
178 
179 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
180 					  struct mtd_oob_region *oobregion)
181 {
182 	struct nand_chip *chip = mtd_to_nand(mtd);
183 	struct nand_ecc_ctrl *ecc = &chip->ecc;
184 	int ecc_offset = 0;
185 
186 	if (section < 0 || section > 1)
187 		return -ERANGE;
188 
189 	switch (mtd->oobsize) {
190 	case 64:
191 		ecc_offset = 40;
192 		break;
193 	case 128:
194 		ecc_offset = 80;
195 		break;
196 	default:
197 		return -EINVAL;
198 	}
199 
200 	if (section == 0) {
201 		oobregion->offset = 2;
202 		oobregion->length = ecc_offset - 2;
203 	} else {
204 		oobregion->offset = ecc_offset + ecc->total;
205 		oobregion->length = mtd->oobsize - oobregion->offset;
206 	}
207 
208 	return 0;
209 }
210 
211 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
212 	.ecc = nand_ooblayout_ecc_lp_hamming,
213 	.free = nand_ooblayout_free_lp_hamming,
214 };
215 
216 static int check_offs_len(struct mtd_info *mtd,
217 					loff_t ofs, uint64_t len)
218 {
219 	struct nand_chip *chip = mtd_to_nand(mtd);
220 	int ret = 0;
221 
222 	/* Start address must align on block boundary */
223 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
224 		pr_debug("%s: unaligned address\n", __func__);
225 		ret = -EINVAL;
226 	}
227 
228 	/* Length must align on block boundary */
229 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
230 		pr_debug("%s: length not block aligned\n", __func__);
231 		ret = -EINVAL;
232 	}
233 
234 	return ret;
235 }
236 
237 /**
238  * nand_release_device - [GENERIC] release chip
239  * @mtd: MTD device structure
240  *
241  * Release chip lock and wake up anyone waiting on the device.
242  */
243 static void nand_release_device(struct mtd_info *mtd)
244 {
245 	struct nand_chip *chip = mtd_to_nand(mtd);
246 
247 	/* Release the controller and the chip */
248 	spin_lock(&chip->controller->lock);
249 	chip->controller->active = NULL;
250 	chip->state = FL_READY;
251 	wake_up(&chip->controller->wq);
252 	spin_unlock(&chip->controller->lock);
253 }
254 
255 /**
256  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
257  * @chip: NAND chip object
258  * @ofs: offset from device start
259  *
260  * Check, if the block is bad.
261  */
262 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
263 {
264 	struct mtd_info *mtd = nand_to_mtd(chip);
265 	int page, page_end, res;
266 	u8 bad;
267 
268 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
269 		ofs += mtd->erasesize - mtd->writesize;
270 
271 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
272 	page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
273 
274 	for (; page < page_end; page++) {
275 		res = chip->ecc.read_oob(chip, page);
276 		if (res < 0)
277 			return res;
278 
279 		bad = chip->oob_poi[chip->badblockpos];
280 
281 		if (likely(chip->badblockbits == 8))
282 			res = bad != 0xFF;
283 		else
284 			res = hweight8(bad) < chip->badblockbits;
285 		if (res)
286 			return res;
287 	}
288 
289 	return 0;
290 }
291 
292 /**
293  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
294  * @chip: NAND chip object
295  * @ofs: offset from device start
296  *
297  * This is the default implementation, which can be overridden by a hardware
298  * specific driver. It provides the details for writing a bad block marker to a
299  * block.
300  */
301 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
302 {
303 	struct mtd_info *mtd = nand_to_mtd(chip);
304 	struct mtd_oob_ops ops;
305 	uint8_t buf[2] = { 0, 0 };
306 	int ret = 0, res, i = 0;
307 
308 	memset(&ops, 0, sizeof(ops));
309 	ops.oobbuf = buf;
310 	ops.ooboffs = chip->badblockpos;
311 	if (chip->options & NAND_BUSWIDTH_16) {
312 		ops.ooboffs &= ~0x01;
313 		ops.len = ops.ooblen = 2;
314 	} else {
315 		ops.len = ops.ooblen = 1;
316 	}
317 	ops.mode = MTD_OPS_PLACE_OOB;
318 
319 	/* Write to first/last page(s) if necessary */
320 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
321 		ofs += mtd->erasesize - mtd->writesize;
322 	do {
323 		res = nand_do_write_oob(mtd, ofs, &ops);
324 		if (!ret)
325 			ret = res;
326 
327 		i++;
328 		ofs += mtd->writesize;
329 	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
330 
331 	return ret;
332 }
333 
334 /**
335  * nand_markbad_bbm - mark a block by updating the BBM
336  * @chip: NAND chip object
337  * @ofs: offset of the block to mark bad
338  */
339 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
340 {
341 	if (chip->legacy.block_markbad)
342 		return chip->legacy.block_markbad(chip, ofs);
343 
344 	return nand_default_block_markbad(chip, ofs);
345 }
346 
347 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
348 {
349 	if (chip->legacy.block_bad)
350 		return chip->legacy.block_bad(chip, ofs);
351 
352 	return nand_block_bad(chip, ofs);
353 }
354 
355 /**
356  * nand_block_markbad_lowlevel - mark a block bad
357  * @mtd: MTD device structure
358  * @ofs: offset from device start
359  *
360  * This function performs the generic NAND bad block marking steps (i.e., bad
361  * block table(s) and/or marker(s)). We only allow the hardware driver to
362  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
363  *
364  * We try operations in the following order:
365  *
366  *  (1) erase the affected block, to allow OOB marker to be written cleanly
367  *  (2) write bad block marker to OOB area of affected block (unless flag
368  *      NAND_BBT_NO_OOB_BBM is present)
369  *  (3) update the BBT
370  *
371  * Note that we retain the first error encountered in (2) or (3), finish the
372  * procedures, and dump the error in the end.
373 */
374 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
375 {
376 	struct nand_chip *chip = mtd_to_nand(mtd);
377 	int res, ret = 0;
378 
379 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
380 		struct erase_info einfo;
381 
382 		/* Attempt erase before marking OOB */
383 		memset(&einfo, 0, sizeof(einfo));
384 		einfo.addr = ofs;
385 		einfo.len = 1ULL << chip->phys_erase_shift;
386 		nand_erase_nand(chip, &einfo, 0);
387 
388 		/* Write bad block marker to OOB */
389 		nand_get_device(mtd, FL_WRITING);
390 		ret = nand_markbad_bbm(chip, ofs);
391 		nand_release_device(mtd);
392 	}
393 
394 	/* Mark block bad in BBT */
395 	if (chip->bbt) {
396 		res = nand_markbad_bbt(chip, ofs);
397 		if (!ret)
398 			ret = res;
399 	}
400 
401 	if (!ret)
402 		mtd->ecc_stats.badblocks++;
403 
404 	return ret;
405 }
406 
407 /**
408  * nand_check_wp - [GENERIC] check if the chip is write protected
409  * @mtd: MTD device structure
410  *
411  * Check, if the device is write protected. The function expects, that the
412  * device is already selected.
413  */
414 static int nand_check_wp(struct mtd_info *mtd)
415 {
416 	struct nand_chip *chip = mtd_to_nand(mtd);
417 	u8 status;
418 	int ret;
419 
420 	/* Broken xD cards report WP despite being writable */
421 	if (chip->options & NAND_BROKEN_XD)
422 		return 0;
423 
424 	/* Check the WP bit */
425 	ret = nand_status_op(chip, &status);
426 	if (ret)
427 		return ret;
428 
429 	return status & NAND_STATUS_WP ? 0 : 1;
430 }
431 
432 /**
433  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
434  * @mtd: MTD device structure
435  * @ofs: offset from device start
436  *
437  * Check if the block is marked as reserved.
438  */
439 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
440 {
441 	struct nand_chip *chip = mtd_to_nand(mtd);
442 
443 	if (!chip->bbt)
444 		return 0;
445 	/* Return info from the table */
446 	return nand_isreserved_bbt(chip, ofs);
447 }
448 
449 /**
450  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
451  * @mtd: MTD device structure
452  * @ofs: offset from device start
453  * @allowbbt: 1, if its allowed to access the bbt area
454  *
455  * Check, if the block is bad. Either by reading the bad block table or
456  * calling of the scan function.
457  */
458 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
459 {
460 	struct nand_chip *chip = mtd_to_nand(mtd);
461 
462 	/* Return info from the table */
463 	if (chip->bbt)
464 		return nand_isbad_bbt(chip, ofs, allowbbt);
465 
466 	return nand_isbad_bbm(chip, ofs);
467 }
468 
469 /**
470  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
471  * @chip: NAND chip structure
472  * @timeout_ms: Timeout in ms
473  *
474  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
475  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
476  * returned.
477  *
478  * This helper is intended to be used when the controller does not have access
479  * to the NAND R/B pin.
480  *
481  * Be aware that calling this helper from an ->exec_op() implementation means
482  * ->exec_op() must be re-entrant.
483  *
484  * Return 0 if the NAND chip is ready, a negative error otherwise.
485  */
486 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
487 {
488 	const struct nand_sdr_timings *timings;
489 	u8 status = 0;
490 	int ret;
491 
492 	if (!chip->exec_op)
493 		return -ENOTSUPP;
494 
495 	/* Wait tWB before polling the STATUS reg. */
496 	timings = nand_get_sdr_timings(&chip->data_interface);
497 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
498 
499 	ret = nand_status_op(chip, NULL);
500 	if (ret)
501 		return ret;
502 
503 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
504 	do {
505 		ret = nand_read_data_op(chip, &status, sizeof(status), true);
506 		if (ret)
507 			break;
508 
509 		if (status & NAND_STATUS_READY)
510 			break;
511 
512 		/*
513 		 * Typical lowest execution time for a tR on most NANDs is 10us,
514 		 * use this as polling delay before doing something smarter (ie.
515 		 * deriving a delay from the timeout value, timeout_ms/ratio).
516 		 */
517 		udelay(10);
518 	} while	(time_before(jiffies, timeout_ms));
519 
520 	/*
521 	 * We have to exit READ_STATUS mode in order to read real data on the
522 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
523 	 * instruction.
524 	 */
525 	nand_exit_status_op(chip);
526 
527 	if (ret)
528 		return ret;
529 
530 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
531 };
532 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
533 
534 /**
535  * panic_nand_get_device - [GENERIC] Get chip for selected access
536  * @chip: the nand chip descriptor
537  * @mtd: MTD device structure
538  * @new_state: the state which is requested
539  *
540  * Used when in panic, no locks are taken.
541  */
542 static void panic_nand_get_device(struct nand_chip *chip,
543 		      struct mtd_info *mtd, int new_state)
544 {
545 	/* Hardware controller shared among independent devices */
546 	chip->controller->active = chip;
547 	chip->state = new_state;
548 }
549 
550 /**
551  * nand_get_device - [GENERIC] Get chip for selected access
552  * @mtd: MTD device structure
553  * @new_state: the state which is requested
554  *
555  * Get the device and lock it for exclusive access
556  */
557 static int
558 nand_get_device(struct mtd_info *mtd, int new_state)
559 {
560 	struct nand_chip *chip = mtd_to_nand(mtd);
561 	spinlock_t *lock = &chip->controller->lock;
562 	wait_queue_head_t *wq = &chip->controller->wq;
563 	DECLARE_WAITQUEUE(wait, current);
564 retry:
565 	spin_lock(lock);
566 
567 	/* Hardware controller shared among independent devices */
568 	if (!chip->controller->active)
569 		chip->controller->active = chip;
570 
571 	if (chip->controller->active == chip && chip->state == FL_READY) {
572 		chip->state = new_state;
573 		spin_unlock(lock);
574 		return 0;
575 	}
576 	if (new_state == FL_PM_SUSPENDED) {
577 		if (chip->controller->active->state == FL_PM_SUSPENDED) {
578 			chip->state = FL_PM_SUSPENDED;
579 			spin_unlock(lock);
580 			return 0;
581 		}
582 	}
583 	set_current_state(TASK_UNINTERRUPTIBLE);
584 	add_wait_queue(wq, &wait);
585 	spin_unlock(lock);
586 	schedule();
587 	remove_wait_queue(wq, &wait);
588 	goto retry;
589 }
590 
591 /**
592  * panic_nand_wait - [GENERIC] wait until the command is done
593  * @chip: NAND chip structure
594  * @timeo: timeout
595  *
596  * Wait for command done. This is a helper function for nand_wait used when
597  * we are in interrupt context. May happen when in panic and trying to write
598  * an oops through mtdoops.
599  */
600 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
601 {
602 	int i;
603 	for (i = 0; i < timeo; i++) {
604 		if (chip->legacy.dev_ready) {
605 			if (chip->legacy.dev_ready(chip))
606 				break;
607 		} else {
608 			int ret;
609 			u8 status;
610 
611 			ret = nand_read_data_op(chip, &status, sizeof(status),
612 						true);
613 			if (ret)
614 				return;
615 
616 			if (status & NAND_STATUS_READY)
617 				break;
618 		}
619 		mdelay(1);
620 	}
621 }
622 
623 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
624 {
625 	return (chip->parameters.supports_set_get_features &&
626 		test_bit(addr, chip->parameters.get_feature_list));
627 }
628 
629 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
630 {
631 	return (chip->parameters.supports_set_get_features &&
632 		test_bit(addr, chip->parameters.set_feature_list));
633 }
634 
635 /**
636  * nand_reset_data_interface - Reset data interface and timings
637  * @chip: The NAND chip
638  * @chipnr: Internal die id
639  *
640  * Reset the Data interface and timings to ONFI mode 0.
641  *
642  * Returns 0 for success or negative error code otherwise.
643  */
644 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
645 {
646 	int ret;
647 
648 	if (!chip->setup_data_interface)
649 		return 0;
650 
651 	/*
652 	 * The ONFI specification says:
653 	 * "
654 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
655 	 * interface, the host shall use the Reset (FFh) command
656 	 * using SDR timing mode 0. A device in any timing mode is
657 	 * required to recognize Reset (FFh) command issued in SDR
658 	 * timing mode 0.
659 	 * "
660 	 *
661 	 * Configure the data interface in SDR mode and set the
662 	 * timings to timing mode 0.
663 	 */
664 
665 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
666 	ret = chip->setup_data_interface(chip, chipnr, &chip->data_interface);
667 	if (ret)
668 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
669 
670 	return ret;
671 }
672 
673 /**
674  * nand_setup_data_interface - Setup the best data interface and timings
675  * @chip: The NAND chip
676  * @chipnr: Internal die id
677  *
678  * Find and configure the best data interface and NAND timings supported by
679  * the chip and the driver.
680  * First tries to retrieve supported timing modes from ONFI information,
681  * and if the NAND chip does not support ONFI, relies on the
682  * ->onfi_timing_mode_default specified in the nand_ids table.
683  *
684  * Returns 0 for success or negative error code otherwise.
685  */
686 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
687 {
688 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
689 		chip->onfi_timing_mode_default,
690 	};
691 	int ret;
692 
693 	if (!chip->setup_data_interface)
694 		return 0;
695 
696 	/* Change the mode on the chip side (if supported by the NAND chip) */
697 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
698 		chip->select_chip(chip, chipnr);
699 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
700 					tmode_param);
701 		chip->select_chip(chip, -1);
702 		if (ret)
703 			return ret;
704 	}
705 
706 	/* Change the mode on the controller side */
707 	ret = chip->setup_data_interface(chip, chipnr, &chip->data_interface);
708 	if (ret)
709 		return ret;
710 
711 	/* Check the mode has been accepted by the chip, if supported */
712 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
713 		return 0;
714 
715 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
716 	chip->select_chip(chip, chipnr);
717 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
718 				tmode_param);
719 	chip->select_chip(chip, -1);
720 	if (ret)
721 		goto err_reset_chip;
722 
723 	if (tmode_param[0] != chip->onfi_timing_mode_default) {
724 		pr_warn("timing mode %d not acknowledged by the NAND chip\n",
725 			chip->onfi_timing_mode_default);
726 		goto err_reset_chip;
727 	}
728 
729 	return 0;
730 
731 err_reset_chip:
732 	/*
733 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
734 	 * timing mode.
735 	 */
736 	nand_reset_data_interface(chip, chipnr);
737 	chip->select_chip(chip, chipnr);
738 	nand_reset_op(chip);
739 	chip->select_chip(chip, -1);
740 
741 	return ret;
742 }
743 
744 /**
745  * nand_init_data_interface - find the best data interface and timings
746  * @chip: The NAND chip
747  *
748  * Find the best data interface and NAND timings supported by the chip
749  * and the driver.
750  * First tries to retrieve supported timing modes from ONFI information,
751  * and if the NAND chip does not support ONFI, relies on the
752  * ->onfi_timing_mode_default specified in the nand_ids table. After this
753  * function nand_chip->data_interface is initialized with the best timing mode
754  * available.
755  *
756  * Returns 0 for success or negative error code otherwise.
757  */
758 static int nand_init_data_interface(struct nand_chip *chip)
759 {
760 	int modes, mode, ret;
761 
762 	if (!chip->setup_data_interface)
763 		return 0;
764 
765 	/*
766 	 * First try to identify the best timings from ONFI parameters and
767 	 * if the NAND does not support ONFI, fallback to the default ONFI
768 	 * timing mode.
769 	 */
770 	if (chip->parameters.onfi) {
771 		modes = chip->parameters.onfi->async_timing_mode;
772 	} else {
773 		if (!chip->onfi_timing_mode_default)
774 			return 0;
775 
776 		modes = GENMASK(chip->onfi_timing_mode_default, 0);
777 	}
778 
779 	for (mode = fls(modes) - 1; mode >= 0; mode--) {
780 		ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
781 		if (ret)
782 			continue;
783 
784 		/*
785 		 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
786 		 * controller supports the requested timings.
787 		 */
788 		ret = chip->setup_data_interface(chip,
789 						 NAND_DATA_IFACE_CHECK_ONLY,
790 						 &chip->data_interface);
791 		if (!ret) {
792 			chip->onfi_timing_mode_default = mode;
793 			break;
794 		}
795 	}
796 
797 	return 0;
798 }
799 
800 /**
801  * nand_fill_column_cycles - fill the column cycles of an address
802  * @chip: The NAND chip
803  * @addrs: Array of address cycles to fill
804  * @offset_in_page: The offset in the page
805  *
806  * Fills the first or the first two bytes of the @addrs field depending
807  * on the NAND bus width and the page size.
808  *
809  * Returns the number of cycles needed to encode the column, or a negative
810  * error code in case one of the arguments is invalid.
811  */
812 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
813 				   unsigned int offset_in_page)
814 {
815 	struct mtd_info *mtd = nand_to_mtd(chip);
816 
817 	/* Make sure the offset is less than the actual page size. */
818 	if (offset_in_page > mtd->writesize + mtd->oobsize)
819 		return -EINVAL;
820 
821 	/*
822 	 * On small page NANDs, there's a dedicated command to access the OOB
823 	 * area, and the column address is relative to the start of the OOB
824 	 * area, not the start of the page. Asjust the address accordingly.
825 	 */
826 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
827 		offset_in_page -= mtd->writesize;
828 
829 	/*
830 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
831 	 * wide, then it must be divided by 2.
832 	 */
833 	if (chip->options & NAND_BUSWIDTH_16) {
834 		if (WARN_ON(offset_in_page % 2))
835 			return -EINVAL;
836 
837 		offset_in_page /= 2;
838 	}
839 
840 	addrs[0] = offset_in_page;
841 
842 	/*
843 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
844 	 * need 2
845 	 */
846 	if (mtd->writesize <= 512)
847 		return 1;
848 
849 	addrs[1] = offset_in_page >> 8;
850 
851 	return 2;
852 }
853 
854 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
855 				     unsigned int offset_in_page, void *buf,
856 				     unsigned int len)
857 {
858 	struct mtd_info *mtd = nand_to_mtd(chip);
859 	const struct nand_sdr_timings *sdr =
860 		nand_get_sdr_timings(&chip->data_interface);
861 	u8 addrs[4];
862 	struct nand_op_instr instrs[] = {
863 		NAND_OP_CMD(NAND_CMD_READ0, 0),
864 		NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
865 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
866 				 PSEC_TO_NSEC(sdr->tRR_min)),
867 		NAND_OP_DATA_IN(len, buf, 0),
868 	};
869 	struct nand_operation op = NAND_OPERATION(instrs);
870 	int ret;
871 
872 	/* Drop the DATA_IN instruction if len is set to 0. */
873 	if (!len)
874 		op.ninstrs--;
875 
876 	if (offset_in_page >= mtd->writesize)
877 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
878 	else if (offset_in_page >= 256 &&
879 		 !(chip->options & NAND_BUSWIDTH_16))
880 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
881 
882 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
883 	if (ret < 0)
884 		return ret;
885 
886 	addrs[1] = page;
887 	addrs[2] = page >> 8;
888 
889 	if (chip->options & NAND_ROW_ADDR_3) {
890 		addrs[3] = page >> 16;
891 		instrs[1].ctx.addr.naddrs++;
892 	}
893 
894 	return nand_exec_op(chip, &op);
895 }
896 
897 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
898 				     unsigned int offset_in_page, void *buf,
899 				     unsigned int len)
900 {
901 	const struct nand_sdr_timings *sdr =
902 		nand_get_sdr_timings(&chip->data_interface);
903 	u8 addrs[5];
904 	struct nand_op_instr instrs[] = {
905 		NAND_OP_CMD(NAND_CMD_READ0, 0),
906 		NAND_OP_ADDR(4, addrs, 0),
907 		NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
908 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
909 				 PSEC_TO_NSEC(sdr->tRR_min)),
910 		NAND_OP_DATA_IN(len, buf, 0),
911 	};
912 	struct nand_operation op = NAND_OPERATION(instrs);
913 	int ret;
914 
915 	/* Drop the DATA_IN instruction if len is set to 0. */
916 	if (!len)
917 		op.ninstrs--;
918 
919 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
920 	if (ret < 0)
921 		return ret;
922 
923 	addrs[2] = page;
924 	addrs[3] = page >> 8;
925 
926 	if (chip->options & NAND_ROW_ADDR_3) {
927 		addrs[4] = page >> 16;
928 		instrs[1].ctx.addr.naddrs++;
929 	}
930 
931 	return nand_exec_op(chip, &op);
932 }
933 
934 /**
935  * nand_read_page_op - Do a READ PAGE operation
936  * @chip: The NAND chip
937  * @page: page to read
938  * @offset_in_page: offset within the page
939  * @buf: buffer used to store the data
940  * @len: length of the buffer
941  *
942  * This function issues a READ PAGE operation.
943  * This function does not select/unselect the CS line.
944  *
945  * Returns 0 on success, a negative error code otherwise.
946  */
947 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
948 		      unsigned int offset_in_page, void *buf, unsigned int len)
949 {
950 	struct mtd_info *mtd = nand_to_mtd(chip);
951 
952 	if (len && !buf)
953 		return -EINVAL;
954 
955 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
956 		return -EINVAL;
957 
958 	if (chip->exec_op) {
959 		if (mtd->writesize > 512)
960 			return nand_lp_exec_read_page_op(chip, page,
961 							 offset_in_page, buf,
962 							 len);
963 
964 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
965 						 buf, len);
966 	}
967 
968 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
969 	if (len)
970 		chip->legacy.read_buf(chip, buf, len);
971 
972 	return 0;
973 }
974 EXPORT_SYMBOL_GPL(nand_read_page_op);
975 
976 /**
977  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
978  * @chip: The NAND chip
979  * @page: parameter page to read
980  * @buf: buffer used to store the data
981  * @len: length of the buffer
982  *
983  * This function issues a READ PARAMETER PAGE operation.
984  * This function does not select/unselect the CS line.
985  *
986  * Returns 0 on success, a negative error code otherwise.
987  */
988 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
989 			    unsigned int len)
990 {
991 	unsigned int i;
992 	u8 *p = buf;
993 
994 	if (len && !buf)
995 		return -EINVAL;
996 
997 	if (chip->exec_op) {
998 		const struct nand_sdr_timings *sdr =
999 			nand_get_sdr_timings(&chip->data_interface);
1000 		struct nand_op_instr instrs[] = {
1001 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1002 			NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1003 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1004 					 PSEC_TO_NSEC(sdr->tRR_min)),
1005 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1006 		};
1007 		struct nand_operation op = NAND_OPERATION(instrs);
1008 
1009 		/* Drop the DATA_IN instruction if len is set to 0. */
1010 		if (!len)
1011 			op.ninstrs--;
1012 
1013 		return nand_exec_op(chip, &op);
1014 	}
1015 
1016 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1017 	for (i = 0; i < len; i++)
1018 		p[i] = chip->legacy.read_byte(chip);
1019 
1020 	return 0;
1021 }
1022 
1023 /**
1024  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1025  * @chip: The NAND chip
1026  * @offset_in_page: offset within the page
1027  * @buf: buffer used to store the data
1028  * @len: length of the buffer
1029  * @force_8bit: force 8-bit bus access
1030  *
1031  * This function issues a CHANGE READ COLUMN operation.
1032  * This function does not select/unselect the CS line.
1033  *
1034  * Returns 0 on success, a negative error code otherwise.
1035  */
1036 int nand_change_read_column_op(struct nand_chip *chip,
1037 			       unsigned int offset_in_page, void *buf,
1038 			       unsigned int len, bool force_8bit)
1039 {
1040 	struct mtd_info *mtd = nand_to_mtd(chip);
1041 
1042 	if (len && !buf)
1043 		return -EINVAL;
1044 
1045 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1046 		return -EINVAL;
1047 
1048 	/* Small page NANDs do not support column change. */
1049 	if (mtd->writesize <= 512)
1050 		return -ENOTSUPP;
1051 
1052 	if (chip->exec_op) {
1053 		const struct nand_sdr_timings *sdr =
1054 			nand_get_sdr_timings(&chip->data_interface);
1055 		u8 addrs[2] = {};
1056 		struct nand_op_instr instrs[] = {
1057 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1058 			NAND_OP_ADDR(2, addrs, 0),
1059 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1060 				    PSEC_TO_NSEC(sdr->tCCS_min)),
1061 			NAND_OP_DATA_IN(len, buf, 0),
1062 		};
1063 		struct nand_operation op = NAND_OPERATION(instrs);
1064 		int ret;
1065 
1066 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1067 		if (ret < 0)
1068 			return ret;
1069 
1070 		/* Drop the DATA_IN instruction if len is set to 0. */
1071 		if (!len)
1072 			op.ninstrs--;
1073 
1074 		instrs[3].ctx.data.force_8bit = force_8bit;
1075 
1076 		return nand_exec_op(chip, &op);
1077 	}
1078 
1079 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1080 	if (len)
1081 		chip->legacy.read_buf(chip, buf, len);
1082 
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1086 
1087 /**
1088  * nand_read_oob_op - Do a READ OOB operation
1089  * @chip: The NAND chip
1090  * @page: page to read
1091  * @offset_in_oob: offset within the OOB area
1092  * @buf: buffer used to store the data
1093  * @len: length of the buffer
1094  *
1095  * This function issues a READ OOB operation.
1096  * This function does not select/unselect the CS line.
1097  *
1098  * Returns 0 on success, a negative error code otherwise.
1099  */
1100 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1101 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1102 {
1103 	struct mtd_info *mtd = nand_to_mtd(chip);
1104 
1105 	if (len && !buf)
1106 		return -EINVAL;
1107 
1108 	if (offset_in_oob + len > mtd->oobsize)
1109 		return -EINVAL;
1110 
1111 	if (chip->exec_op)
1112 		return nand_read_page_op(chip, page,
1113 					 mtd->writesize + offset_in_oob,
1114 					 buf, len);
1115 
1116 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1117 	if (len)
1118 		chip->legacy.read_buf(chip, buf, len);
1119 
1120 	return 0;
1121 }
1122 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1123 
1124 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1125 				  unsigned int offset_in_page, const void *buf,
1126 				  unsigned int len, bool prog)
1127 {
1128 	struct mtd_info *mtd = nand_to_mtd(chip);
1129 	const struct nand_sdr_timings *sdr =
1130 		nand_get_sdr_timings(&chip->data_interface);
1131 	u8 addrs[5] = {};
1132 	struct nand_op_instr instrs[] = {
1133 		/*
1134 		 * The first instruction will be dropped if we're dealing
1135 		 * with a large page NAND and adjusted if we're dealing
1136 		 * with a small page NAND and the page offset is > 255.
1137 		 */
1138 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1139 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1140 		NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1141 		NAND_OP_DATA_OUT(len, buf, 0),
1142 		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1143 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1144 	};
1145 	struct nand_operation op = NAND_OPERATION(instrs);
1146 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1147 	int ret;
1148 	u8 status;
1149 
1150 	if (naddrs < 0)
1151 		return naddrs;
1152 
1153 	addrs[naddrs++] = page;
1154 	addrs[naddrs++] = page >> 8;
1155 	if (chip->options & NAND_ROW_ADDR_3)
1156 		addrs[naddrs++] = page >> 16;
1157 
1158 	instrs[2].ctx.addr.naddrs = naddrs;
1159 
1160 	/* Drop the last two instructions if we're not programming the page. */
1161 	if (!prog) {
1162 		op.ninstrs -= 2;
1163 		/* Also drop the DATA_OUT instruction if empty. */
1164 		if (!len)
1165 			op.ninstrs--;
1166 	}
1167 
1168 	if (mtd->writesize <= 512) {
1169 		/*
1170 		 * Small pages need some more tweaking: we have to adjust the
1171 		 * first instruction depending on the page offset we're trying
1172 		 * to access.
1173 		 */
1174 		if (offset_in_page >= mtd->writesize)
1175 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1176 		else if (offset_in_page >= 256 &&
1177 			 !(chip->options & NAND_BUSWIDTH_16))
1178 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1179 	} else {
1180 		/*
1181 		 * Drop the first command if we're dealing with a large page
1182 		 * NAND.
1183 		 */
1184 		op.instrs++;
1185 		op.ninstrs--;
1186 	}
1187 
1188 	ret = nand_exec_op(chip, &op);
1189 	if (!prog || ret)
1190 		return ret;
1191 
1192 	ret = nand_status_op(chip, &status);
1193 	if (ret)
1194 		return ret;
1195 
1196 	return status;
1197 }
1198 
1199 /**
1200  * nand_prog_page_begin_op - starts a PROG PAGE operation
1201  * @chip: The NAND chip
1202  * @page: page to write
1203  * @offset_in_page: offset within the page
1204  * @buf: buffer containing the data to write to the page
1205  * @len: length of the buffer
1206  *
1207  * This function issues the first half of a PROG PAGE operation.
1208  * This function does not select/unselect the CS line.
1209  *
1210  * Returns 0 on success, a negative error code otherwise.
1211  */
1212 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1213 			    unsigned int offset_in_page, const void *buf,
1214 			    unsigned int len)
1215 {
1216 	struct mtd_info *mtd = nand_to_mtd(chip);
1217 
1218 	if (len && !buf)
1219 		return -EINVAL;
1220 
1221 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1222 		return -EINVAL;
1223 
1224 	if (chip->exec_op)
1225 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1226 					      len, false);
1227 
1228 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1229 
1230 	if (buf)
1231 		chip->legacy.write_buf(chip, buf, len);
1232 
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1236 
1237 /**
1238  * nand_prog_page_end_op - ends a PROG PAGE operation
1239  * @chip: The NAND chip
1240  *
1241  * This function issues the second half of a PROG PAGE operation.
1242  * This function does not select/unselect the CS line.
1243  *
1244  * Returns 0 on success, a negative error code otherwise.
1245  */
1246 int nand_prog_page_end_op(struct nand_chip *chip)
1247 {
1248 	int ret;
1249 	u8 status;
1250 
1251 	if (chip->exec_op) {
1252 		const struct nand_sdr_timings *sdr =
1253 			nand_get_sdr_timings(&chip->data_interface);
1254 		struct nand_op_instr instrs[] = {
1255 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1256 				    PSEC_TO_NSEC(sdr->tWB_max)),
1257 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1258 		};
1259 		struct nand_operation op = NAND_OPERATION(instrs);
1260 
1261 		ret = nand_exec_op(chip, &op);
1262 		if (ret)
1263 			return ret;
1264 
1265 		ret = nand_status_op(chip, &status);
1266 		if (ret)
1267 			return ret;
1268 	} else {
1269 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1270 		ret = chip->legacy.waitfunc(chip);
1271 		if (ret < 0)
1272 			return ret;
1273 
1274 		status = ret;
1275 	}
1276 
1277 	if (status & NAND_STATUS_FAIL)
1278 		return -EIO;
1279 
1280 	return 0;
1281 }
1282 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1283 
1284 /**
1285  * nand_prog_page_op - Do a full PROG PAGE operation
1286  * @chip: The NAND chip
1287  * @page: page to write
1288  * @offset_in_page: offset within the page
1289  * @buf: buffer containing the data to write to the page
1290  * @len: length of the buffer
1291  *
1292  * This function issues a full PROG PAGE operation.
1293  * This function does not select/unselect the CS line.
1294  *
1295  * Returns 0 on success, a negative error code otherwise.
1296  */
1297 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1298 		      unsigned int offset_in_page, const void *buf,
1299 		      unsigned int len)
1300 {
1301 	struct mtd_info *mtd = nand_to_mtd(chip);
1302 	int status;
1303 
1304 	if (!len || !buf)
1305 		return -EINVAL;
1306 
1307 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1308 		return -EINVAL;
1309 
1310 	if (chip->exec_op) {
1311 		status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1312 						len, true);
1313 	} else {
1314 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1315 				     page);
1316 		chip->legacy.write_buf(chip, buf, len);
1317 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1318 		status = chip->legacy.waitfunc(chip);
1319 	}
1320 
1321 	if (status & NAND_STATUS_FAIL)
1322 		return -EIO;
1323 
1324 	return 0;
1325 }
1326 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1327 
1328 /**
1329  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1330  * @chip: The NAND chip
1331  * @offset_in_page: offset within the page
1332  * @buf: buffer containing the data to send to the NAND
1333  * @len: length of the buffer
1334  * @force_8bit: force 8-bit bus access
1335  *
1336  * This function issues a CHANGE WRITE COLUMN operation.
1337  * This function does not select/unselect the CS line.
1338  *
1339  * Returns 0 on success, a negative error code otherwise.
1340  */
1341 int nand_change_write_column_op(struct nand_chip *chip,
1342 				unsigned int offset_in_page,
1343 				const void *buf, unsigned int len,
1344 				bool force_8bit)
1345 {
1346 	struct mtd_info *mtd = nand_to_mtd(chip);
1347 
1348 	if (len && !buf)
1349 		return -EINVAL;
1350 
1351 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1352 		return -EINVAL;
1353 
1354 	/* Small page NANDs do not support column change. */
1355 	if (mtd->writesize <= 512)
1356 		return -ENOTSUPP;
1357 
1358 	if (chip->exec_op) {
1359 		const struct nand_sdr_timings *sdr =
1360 			nand_get_sdr_timings(&chip->data_interface);
1361 		u8 addrs[2];
1362 		struct nand_op_instr instrs[] = {
1363 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1364 			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1365 			NAND_OP_DATA_OUT(len, buf, 0),
1366 		};
1367 		struct nand_operation op = NAND_OPERATION(instrs);
1368 		int ret;
1369 
1370 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1371 		if (ret < 0)
1372 			return ret;
1373 
1374 		instrs[2].ctx.data.force_8bit = force_8bit;
1375 
1376 		/* Drop the DATA_OUT instruction if len is set to 0. */
1377 		if (!len)
1378 			op.ninstrs--;
1379 
1380 		return nand_exec_op(chip, &op);
1381 	}
1382 
1383 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1384 	if (len)
1385 		chip->legacy.write_buf(chip, buf, len);
1386 
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1390 
1391 /**
1392  * nand_readid_op - Do a READID operation
1393  * @chip: The NAND chip
1394  * @addr: address cycle to pass after the READID command
1395  * @buf: buffer used to store the ID
1396  * @len: length of the buffer
1397  *
1398  * This function sends a READID command and reads back the ID returned by the
1399  * NAND.
1400  * This function does not select/unselect the CS line.
1401  *
1402  * Returns 0 on success, a negative error code otherwise.
1403  */
1404 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1405 		   unsigned int len)
1406 {
1407 	unsigned int i;
1408 	u8 *id = buf;
1409 
1410 	if (len && !buf)
1411 		return -EINVAL;
1412 
1413 	if (chip->exec_op) {
1414 		const struct nand_sdr_timings *sdr =
1415 			nand_get_sdr_timings(&chip->data_interface);
1416 		struct nand_op_instr instrs[] = {
1417 			NAND_OP_CMD(NAND_CMD_READID, 0),
1418 			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1419 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1420 		};
1421 		struct nand_operation op = NAND_OPERATION(instrs);
1422 
1423 		/* Drop the DATA_IN instruction if len is set to 0. */
1424 		if (!len)
1425 			op.ninstrs--;
1426 
1427 		return nand_exec_op(chip, &op);
1428 	}
1429 
1430 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1431 
1432 	for (i = 0; i < len; i++)
1433 		id[i] = chip->legacy.read_byte(chip);
1434 
1435 	return 0;
1436 }
1437 EXPORT_SYMBOL_GPL(nand_readid_op);
1438 
1439 /**
1440  * nand_status_op - Do a STATUS operation
1441  * @chip: The NAND chip
1442  * @status: out variable to store the NAND status
1443  *
1444  * This function sends a STATUS command and reads back the status returned by
1445  * the NAND.
1446  * This function does not select/unselect the CS line.
1447  *
1448  * Returns 0 on success, a negative error code otherwise.
1449  */
1450 int nand_status_op(struct nand_chip *chip, u8 *status)
1451 {
1452 	if (chip->exec_op) {
1453 		const struct nand_sdr_timings *sdr =
1454 			nand_get_sdr_timings(&chip->data_interface);
1455 		struct nand_op_instr instrs[] = {
1456 			NAND_OP_CMD(NAND_CMD_STATUS,
1457 				    PSEC_TO_NSEC(sdr->tADL_min)),
1458 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1459 		};
1460 		struct nand_operation op = NAND_OPERATION(instrs);
1461 
1462 		if (!status)
1463 			op.ninstrs--;
1464 
1465 		return nand_exec_op(chip, &op);
1466 	}
1467 
1468 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1469 	if (status)
1470 		*status = chip->legacy.read_byte(chip);
1471 
1472 	return 0;
1473 }
1474 EXPORT_SYMBOL_GPL(nand_status_op);
1475 
1476 /**
1477  * nand_exit_status_op - Exit a STATUS operation
1478  * @chip: The NAND chip
1479  *
1480  * This function sends a READ0 command to cancel the effect of the STATUS
1481  * command to avoid reading only the status until a new read command is sent.
1482  *
1483  * This function does not select/unselect the CS line.
1484  *
1485  * Returns 0 on success, a negative error code otherwise.
1486  */
1487 int nand_exit_status_op(struct nand_chip *chip)
1488 {
1489 	if (chip->exec_op) {
1490 		struct nand_op_instr instrs[] = {
1491 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1492 		};
1493 		struct nand_operation op = NAND_OPERATION(instrs);
1494 
1495 		return nand_exec_op(chip, &op);
1496 	}
1497 
1498 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1499 
1500 	return 0;
1501 }
1502 
1503 /**
1504  * nand_erase_op - Do an erase operation
1505  * @chip: The NAND chip
1506  * @eraseblock: block to erase
1507  *
1508  * This function sends an ERASE command and waits for the NAND to be ready
1509  * before returning.
1510  * This function does not select/unselect the CS line.
1511  *
1512  * Returns 0 on success, a negative error code otherwise.
1513  */
1514 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1515 {
1516 	unsigned int page = eraseblock <<
1517 			    (chip->phys_erase_shift - chip->page_shift);
1518 	int ret;
1519 	u8 status;
1520 
1521 	if (chip->exec_op) {
1522 		const struct nand_sdr_timings *sdr =
1523 			nand_get_sdr_timings(&chip->data_interface);
1524 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1525 		struct nand_op_instr instrs[] = {
1526 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1527 			NAND_OP_ADDR(2, addrs, 0),
1528 			NAND_OP_CMD(NAND_CMD_ERASE2,
1529 				    PSEC_TO_MSEC(sdr->tWB_max)),
1530 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1531 		};
1532 		struct nand_operation op = NAND_OPERATION(instrs);
1533 
1534 		if (chip->options & NAND_ROW_ADDR_3)
1535 			instrs[1].ctx.addr.naddrs++;
1536 
1537 		ret = nand_exec_op(chip, &op);
1538 		if (ret)
1539 			return ret;
1540 
1541 		ret = nand_status_op(chip, &status);
1542 		if (ret)
1543 			return ret;
1544 	} else {
1545 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1546 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1547 
1548 		ret = chip->legacy.waitfunc(chip);
1549 		if (ret < 0)
1550 			return ret;
1551 
1552 		status = ret;
1553 	}
1554 
1555 	if (status & NAND_STATUS_FAIL)
1556 		return -EIO;
1557 
1558 	return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(nand_erase_op);
1561 
1562 /**
1563  * nand_set_features_op - Do a SET FEATURES operation
1564  * @chip: The NAND chip
1565  * @feature: feature id
1566  * @data: 4 bytes of data
1567  *
1568  * This function sends a SET FEATURES command and waits for the NAND to be
1569  * ready before returning.
1570  * This function does not select/unselect the CS line.
1571  *
1572  * Returns 0 on success, a negative error code otherwise.
1573  */
1574 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1575 				const void *data)
1576 {
1577 	const u8 *params = data;
1578 	int i, ret;
1579 
1580 	if (chip->exec_op) {
1581 		const struct nand_sdr_timings *sdr =
1582 			nand_get_sdr_timings(&chip->data_interface);
1583 		struct nand_op_instr instrs[] = {
1584 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1585 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1586 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1587 					      PSEC_TO_NSEC(sdr->tWB_max)),
1588 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1589 		};
1590 		struct nand_operation op = NAND_OPERATION(instrs);
1591 
1592 		return nand_exec_op(chip, &op);
1593 	}
1594 
1595 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1596 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1597 		chip->legacy.write_byte(chip, params[i]);
1598 
1599 	ret = chip->legacy.waitfunc(chip);
1600 	if (ret < 0)
1601 		return ret;
1602 
1603 	if (ret & NAND_STATUS_FAIL)
1604 		return -EIO;
1605 
1606 	return 0;
1607 }
1608 
1609 /**
1610  * nand_get_features_op - Do a GET FEATURES operation
1611  * @chip: The NAND chip
1612  * @feature: feature id
1613  * @data: 4 bytes of data
1614  *
1615  * This function sends a GET FEATURES command and waits for the NAND to be
1616  * ready before returning.
1617  * This function does not select/unselect the CS line.
1618  *
1619  * Returns 0 on success, a negative error code otherwise.
1620  */
1621 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1622 				void *data)
1623 {
1624 	u8 *params = data;
1625 	int i;
1626 
1627 	if (chip->exec_op) {
1628 		const struct nand_sdr_timings *sdr =
1629 			nand_get_sdr_timings(&chip->data_interface);
1630 		struct nand_op_instr instrs[] = {
1631 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1632 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1633 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1634 					 PSEC_TO_NSEC(sdr->tRR_min)),
1635 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1636 					     data, 0),
1637 		};
1638 		struct nand_operation op = NAND_OPERATION(instrs);
1639 
1640 		return nand_exec_op(chip, &op);
1641 	}
1642 
1643 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1644 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1645 		params[i] = chip->legacy.read_byte(chip);
1646 
1647 	return 0;
1648 }
1649 
1650 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1651 			    unsigned int delay_ns)
1652 {
1653 	if (chip->exec_op) {
1654 		struct nand_op_instr instrs[] = {
1655 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1656 					 PSEC_TO_NSEC(delay_ns)),
1657 		};
1658 		struct nand_operation op = NAND_OPERATION(instrs);
1659 
1660 		return nand_exec_op(chip, &op);
1661 	}
1662 
1663 	/* Apply delay or wait for ready/busy pin */
1664 	if (!chip->legacy.dev_ready)
1665 		udelay(chip->legacy.chip_delay);
1666 	else
1667 		nand_wait_ready(chip);
1668 
1669 	return 0;
1670 }
1671 
1672 /**
1673  * nand_reset_op - Do a reset operation
1674  * @chip: The NAND chip
1675  *
1676  * This function sends a RESET command and waits for the NAND to be ready
1677  * before returning.
1678  * This function does not select/unselect the CS line.
1679  *
1680  * Returns 0 on success, a negative error code otherwise.
1681  */
1682 int nand_reset_op(struct nand_chip *chip)
1683 {
1684 	if (chip->exec_op) {
1685 		const struct nand_sdr_timings *sdr =
1686 			nand_get_sdr_timings(&chip->data_interface);
1687 		struct nand_op_instr instrs[] = {
1688 			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1689 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1690 		};
1691 		struct nand_operation op = NAND_OPERATION(instrs);
1692 
1693 		return nand_exec_op(chip, &op);
1694 	}
1695 
1696 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
1697 
1698 	return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(nand_reset_op);
1701 
1702 /**
1703  * nand_read_data_op - Read data from the NAND
1704  * @chip: The NAND chip
1705  * @buf: buffer used to store the data
1706  * @len: length of the buffer
1707  * @force_8bit: force 8-bit bus access
1708  *
1709  * This function does a raw data read on the bus. Usually used after launching
1710  * another NAND operation like nand_read_page_op().
1711  * This function does not select/unselect the CS line.
1712  *
1713  * Returns 0 on success, a negative error code otherwise.
1714  */
1715 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1716 		      bool force_8bit)
1717 {
1718 	if (!len || !buf)
1719 		return -EINVAL;
1720 
1721 	if (chip->exec_op) {
1722 		struct nand_op_instr instrs[] = {
1723 			NAND_OP_DATA_IN(len, buf, 0),
1724 		};
1725 		struct nand_operation op = NAND_OPERATION(instrs);
1726 
1727 		instrs[0].ctx.data.force_8bit = force_8bit;
1728 
1729 		return nand_exec_op(chip, &op);
1730 	}
1731 
1732 	if (force_8bit) {
1733 		u8 *p = buf;
1734 		unsigned int i;
1735 
1736 		for (i = 0; i < len; i++)
1737 			p[i] = chip->legacy.read_byte(chip);
1738 	} else {
1739 		chip->legacy.read_buf(chip, buf, len);
1740 	}
1741 
1742 	return 0;
1743 }
1744 EXPORT_SYMBOL_GPL(nand_read_data_op);
1745 
1746 /**
1747  * nand_write_data_op - Write data from the NAND
1748  * @chip: The NAND chip
1749  * @buf: buffer containing the data to send on the bus
1750  * @len: length of the buffer
1751  * @force_8bit: force 8-bit bus access
1752  *
1753  * This function does a raw data write on the bus. Usually used after launching
1754  * another NAND operation like nand_write_page_begin_op().
1755  * This function does not select/unselect the CS line.
1756  *
1757  * Returns 0 on success, a negative error code otherwise.
1758  */
1759 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1760 		       unsigned int len, bool force_8bit)
1761 {
1762 	if (!len || !buf)
1763 		return -EINVAL;
1764 
1765 	if (chip->exec_op) {
1766 		struct nand_op_instr instrs[] = {
1767 			NAND_OP_DATA_OUT(len, buf, 0),
1768 		};
1769 		struct nand_operation op = NAND_OPERATION(instrs);
1770 
1771 		instrs[0].ctx.data.force_8bit = force_8bit;
1772 
1773 		return nand_exec_op(chip, &op);
1774 	}
1775 
1776 	if (force_8bit) {
1777 		const u8 *p = buf;
1778 		unsigned int i;
1779 
1780 		for (i = 0; i < len; i++)
1781 			chip->legacy.write_byte(chip, p[i]);
1782 	} else {
1783 		chip->legacy.write_buf(chip, buf, len);
1784 	}
1785 
1786 	return 0;
1787 }
1788 EXPORT_SYMBOL_GPL(nand_write_data_op);
1789 
1790 /**
1791  * struct nand_op_parser_ctx - Context used by the parser
1792  * @instrs: array of all the instructions that must be addressed
1793  * @ninstrs: length of the @instrs array
1794  * @subop: Sub-operation to be passed to the NAND controller
1795  *
1796  * This structure is used by the core to split NAND operations into
1797  * sub-operations that can be handled by the NAND controller.
1798  */
1799 struct nand_op_parser_ctx {
1800 	const struct nand_op_instr *instrs;
1801 	unsigned int ninstrs;
1802 	struct nand_subop subop;
1803 };
1804 
1805 /**
1806  * nand_op_parser_must_split_instr - Checks if an instruction must be split
1807  * @pat: the parser pattern element that matches @instr
1808  * @instr: pointer to the instruction to check
1809  * @start_offset: this is an in/out parameter. If @instr has already been
1810  *		  split, then @start_offset is the offset from which to start
1811  *		  (either an address cycle or an offset in the data buffer).
1812  *		  Conversely, if the function returns true (ie. instr must be
1813  *		  split), this parameter is updated to point to the first
1814  *		  data/address cycle that has not been taken care of.
1815  *
1816  * Some NAND controllers are limited and cannot send X address cycles with a
1817  * unique operation, or cannot read/write more than Y bytes at the same time.
1818  * In this case, split the instruction that does not fit in a single
1819  * controller-operation into two or more chunks.
1820  *
1821  * Returns true if the instruction must be split, false otherwise.
1822  * The @start_offset parameter is also updated to the offset at which the next
1823  * bundle of instruction must start (if an address or a data instruction).
1824  */
1825 static bool
1826 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
1827 				const struct nand_op_instr *instr,
1828 				unsigned int *start_offset)
1829 {
1830 	switch (pat->type) {
1831 	case NAND_OP_ADDR_INSTR:
1832 		if (!pat->ctx.addr.maxcycles)
1833 			break;
1834 
1835 		if (instr->ctx.addr.naddrs - *start_offset >
1836 		    pat->ctx.addr.maxcycles) {
1837 			*start_offset += pat->ctx.addr.maxcycles;
1838 			return true;
1839 		}
1840 		break;
1841 
1842 	case NAND_OP_DATA_IN_INSTR:
1843 	case NAND_OP_DATA_OUT_INSTR:
1844 		if (!pat->ctx.data.maxlen)
1845 			break;
1846 
1847 		if (instr->ctx.data.len - *start_offset >
1848 		    pat->ctx.data.maxlen) {
1849 			*start_offset += pat->ctx.data.maxlen;
1850 			return true;
1851 		}
1852 		break;
1853 
1854 	default:
1855 		break;
1856 	}
1857 
1858 	return false;
1859 }
1860 
1861 /**
1862  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
1863  *			      remaining in the parser context
1864  * @pat: the pattern to test
1865  * @ctx: the parser context structure to match with the pattern @pat
1866  *
1867  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
1868  * Returns true if this is the case, false ortherwise. When true is returned,
1869  * @ctx->subop is updated with the set of instructions to be passed to the
1870  * controller driver.
1871  */
1872 static bool
1873 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
1874 			 struct nand_op_parser_ctx *ctx)
1875 {
1876 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
1877 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
1878 	const struct nand_op_instr *instr = ctx->subop.instrs;
1879 	unsigned int i, ninstrs;
1880 
1881 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
1882 		/*
1883 		 * The pattern instruction does not match the operation
1884 		 * instruction. If the instruction is marked optional in the
1885 		 * pattern definition, we skip the pattern element and continue
1886 		 * to the next one. If the element is mandatory, there's no
1887 		 * match and we can return false directly.
1888 		 */
1889 		if (instr->type != pat->elems[i].type) {
1890 			if (!pat->elems[i].optional)
1891 				return false;
1892 
1893 			continue;
1894 		}
1895 
1896 		/*
1897 		 * Now check the pattern element constraints. If the pattern is
1898 		 * not able to handle the whole instruction in a single step,
1899 		 * we have to split it.
1900 		 * The last_instr_end_off value comes back updated to point to
1901 		 * the position where we have to split the instruction (the
1902 		 * start of the next subop chunk).
1903 		 */
1904 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
1905 						    &instr_offset)) {
1906 			ninstrs++;
1907 			i++;
1908 			break;
1909 		}
1910 
1911 		instr++;
1912 		ninstrs++;
1913 		instr_offset = 0;
1914 	}
1915 
1916 	/*
1917 	 * This can happen if all instructions of a pattern are optional.
1918 	 * Still, if there's not at least one instruction handled by this
1919 	 * pattern, this is not a match, and we should try the next one (if
1920 	 * any).
1921 	 */
1922 	if (!ninstrs)
1923 		return false;
1924 
1925 	/*
1926 	 * We had a match on the pattern head, but the pattern may be longer
1927 	 * than the instructions we're asked to execute. We need to make sure
1928 	 * there's no mandatory elements in the pattern tail.
1929 	 */
1930 	for (; i < pat->nelems; i++) {
1931 		if (!pat->elems[i].optional)
1932 			return false;
1933 	}
1934 
1935 	/*
1936 	 * We have a match: update the subop structure accordingly and return
1937 	 * true.
1938 	 */
1939 	ctx->subop.ninstrs = ninstrs;
1940 	ctx->subop.last_instr_end_off = instr_offset;
1941 
1942 	return true;
1943 }
1944 
1945 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
1946 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
1947 {
1948 	const struct nand_op_instr *instr;
1949 	char *prefix = "      ";
1950 	unsigned int i;
1951 
1952 	pr_debug("executing subop:\n");
1953 
1954 	for (i = 0; i < ctx->ninstrs; i++) {
1955 		instr = &ctx->instrs[i];
1956 
1957 		if (instr == &ctx->subop.instrs[0])
1958 			prefix = "    ->";
1959 
1960 		switch (instr->type) {
1961 		case NAND_OP_CMD_INSTR:
1962 			pr_debug("%sCMD      [0x%02x]\n", prefix,
1963 				 instr->ctx.cmd.opcode);
1964 			break;
1965 		case NAND_OP_ADDR_INSTR:
1966 			pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
1967 				 instr->ctx.addr.naddrs,
1968 				 instr->ctx.addr.naddrs < 64 ?
1969 				 instr->ctx.addr.naddrs : 64,
1970 				 instr->ctx.addr.addrs);
1971 			break;
1972 		case NAND_OP_DATA_IN_INSTR:
1973 			pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
1974 				 instr->ctx.data.len,
1975 				 instr->ctx.data.force_8bit ?
1976 				 ", force 8-bit" : "");
1977 			break;
1978 		case NAND_OP_DATA_OUT_INSTR:
1979 			pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
1980 				 instr->ctx.data.len,
1981 				 instr->ctx.data.force_8bit ?
1982 				 ", force 8-bit" : "");
1983 			break;
1984 		case NAND_OP_WAITRDY_INSTR:
1985 			pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
1986 				 instr->ctx.waitrdy.timeout_ms);
1987 			break;
1988 		}
1989 
1990 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
1991 			prefix = "      ";
1992 	}
1993 }
1994 #else
1995 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
1996 {
1997 	/* NOP */
1998 }
1999 #endif
2000 
2001 /**
2002  * nand_op_parser_exec_op - exec_op parser
2003  * @chip: the NAND chip
2004  * @parser: patterns description provided by the controller driver
2005  * @op: the NAND operation to address
2006  * @check_only: when true, the function only checks if @op can be handled but
2007  *		does not execute the operation
2008  *
2009  * Helper function designed to ease integration of NAND controller drivers that
2010  * only support a limited set of instruction sequences. The supported sequences
2011  * are described in @parser, and the framework takes care of splitting @op into
2012  * multiple sub-operations (if required) and pass them back to the ->exec()
2013  * callback of the matching pattern if @check_only is set to false.
2014  *
2015  * NAND controller drivers should call this function from their own ->exec_op()
2016  * implementation.
2017  *
2018  * Returns 0 on success, a negative error code otherwise. A failure can be
2019  * caused by an unsupported operation (none of the supported patterns is able
2020  * to handle the requested operation), or an error returned by one of the
2021  * matching pattern->exec() hook.
2022  */
2023 int nand_op_parser_exec_op(struct nand_chip *chip,
2024 			   const struct nand_op_parser *parser,
2025 			   const struct nand_operation *op, bool check_only)
2026 {
2027 	struct nand_op_parser_ctx ctx = {
2028 		.subop.instrs = op->instrs,
2029 		.instrs = op->instrs,
2030 		.ninstrs = op->ninstrs,
2031 	};
2032 	unsigned int i;
2033 
2034 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2035 		int ret;
2036 
2037 		for (i = 0; i < parser->npatterns; i++) {
2038 			const struct nand_op_parser_pattern *pattern;
2039 
2040 			pattern = &parser->patterns[i];
2041 			if (!nand_op_parser_match_pat(pattern, &ctx))
2042 				continue;
2043 
2044 			nand_op_parser_trace(&ctx);
2045 
2046 			if (check_only)
2047 				break;
2048 
2049 			ret = pattern->exec(chip, &ctx.subop);
2050 			if (ret)
2051 				return ret;
2052 
2053 			break;
2054 		}
2055 
2056 		if (i == parser->npatterns) {
2057 			pr_debug("->exec_op() parser: pattern not found!\n");
2058 			return -ENOTSUPP;
2059 		}
2060 
2061 		/*
2062 		 * Update the context structure by pointing to the start of the
2063 		 * next subop.
2064 		 */
2065 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2066 		if (ctx.subop.last_instr_end_off)
2067 			ctx.subop.instrs -= 1;
2068 
2069 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2070 	}
2071 
2072 	return 0;
2073 }
2074 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2075 
2076 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2077 {
2078 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2079 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2080 }
2081 
2082 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2083 				      unsigned int instr_idx)
2084 {
2085 	return subop && instr_idx < subop->ninstrs;
2086 }
2087 
2088 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2089 					     unsigned int instr_idx)
2090 {
2091 	if (instr_idx)
2092 		return 0;
2093 
2094 	return subop->first_instr_start_off;
2095 }
2096 
2097 /**
2098  * nand_subop_get_addr_start_off - Get the start offset in an address array
2099  * @subop: The entire sub-operation
2100  * @instr_idx: Index of the instruction inside the sub-operation
2101  *
2102  * During driver development, one could be tempted to directly use the
2103  * ->addr.addrs field of address instructions. This is wrong as address
2104  * instructions might be split.
2105  *
2106  * Given an address instruction, returns the offset of the first cycle to issue.
2107  */
2108 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2109 					   unsigned int instr_idx)
2110 {
2111 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2112 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2113 		return 0;
2114 
2115 	return nand_subop_get_start_off(subop, instr_idx);
2116 }
2117 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2118 
2119 /**
2120  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2121  * @subop: The entire sub-operation
2122  * @instr_idx: Index of the instruction inside the sub-operation
2123  *
2124  * During driver development, one could be tempted to directly use the
2125  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2126  * might be split.
2127  *
2128  * Given an address instruction, returns the number of address cycle to issue.
2129  */
2130 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2131 					 unsigned int instr_idx)
2132 {
2133 	int start_off, end_off;
2134 
2135 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2136 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2137 		return 0;
2138 
2139 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2140 
2141 	if (instr_idx == subop->ninstrs - 1 &&
2142 	    subop->last_instr_end_off)
2143 		end_off = subop->last_instr_end_off;
2144 	else
2145 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2146 
2147 	return end_off - start_off;
2148 }
2149 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2150 
2151 /**
2152  * nand_subop_get_data_start_off - Get the start offset in a data array
2153  * @subop: The entire sub-operation
2154  * @instr_idx: Index of the instruction inside the sub-operation
2155  *
2156  * During driver development, one could be tempted to directly use the
2157  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2158  * instructions might be split.
2159  *
2160  * Given a data instruction, returns the offset to start from.
2161  */
2162 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2163 					   unsigned int instr_idx)
2164 {
2165 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2166 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2167 		return 0;
2168 
2169 	return nand_subop_get_start_off(subop, instr_idx);
2170 }
2171 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2172 
2173 /**
2174  * nand_subop_get_data_len - Get the number of bytes to retrieve
2175  * @subop: The entire sub-operation
2176  * @instr_idx: Index of the instruction inside the sub-operation
2177  *
2178  * During driver development, one could be tempted to directly use the
2179  * ->data->len field of a data instruction. This is wrong as data instructions
2180  * might be split.
2181  *
2182  * Returns the length of the chunk of data to send/receive.
2183  */
2184 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2185 				     unsigned int instr_idx)
2186 {
2187 	int start_off = 0, end_off;
2188 
2189 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2190 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2191 		return 0;
2192 
2193 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2194 
2195 	if (instr_idx == subop->ninstrs - 1 &&
2196 	    subop->last_instr_end_off)
2197 		end_off = subop->last_instr_end_off;
2198 	else
2199 		end_off = subop->instrs[instr_idx].ctx.data.len;
2200 
2201 	return end_off - start_off;
2202 }
2203 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2204 
2205 /**
2206  * nand_reset - Reset and initialize a NAND device
2207  * @chip: The NAND chip
2208  * @chipnr: Internal die id
2209  *
2210  * Save the timings data structure, then apply SDR timings mode 0 (see
2211  * nand_reset_data_interface for details), do the reset operation, and
2212  * apply back the previous timings.
2213  *
2214  * Returns 0 on success, a negative error code otherwise.
2215  */
2216 int nand_reset(struct nand_chip *chip, int chipnr)
2217 {
2218 	struct nand_data_interface saved_data_intf = chip->data_interface;
2219 	int ret;
2220 
2221 	ret = nand_reset_data_interface(chip, chipnr);
2222 	if (ret)
2223 		return ret;
2224 
2225 	/*
2226 	 * The CS line has to be released before we can apply the new NAND
2227 	 * interface settings, hence this weird ->select_chip() dance.
2228 	 */
2229 	chip->select_chip(chip, chipnr);
2230 	ret = nand_reset_op(chip);
2231 	chip->select_chip(chip, -1);
2232 	if (ret)
2233 		return ret;
2234 
2235 	/*
2236 	 * A nand_reset_data_interface() put both the NAND chip and the NAND
2237 	 * controller in timings mode 0. If the default mode for this chip is
2238 	 * also 0, no need to proceed to the change again. Plus, at probe time,
2239 	 * nand_setup_data_interface() uses ->set/get_features() which would
2240 	 * fail anyway as the parameter page is not available yet.
2241 	 */
2242 	if (!chip->onfi_timing_mode_default)
2243 		return 0;
2244 
2245 	chip->data_interface = saved_data_intf;
2246 	ret = nand_setup_data_interface(chip, chipnr);
2247 	if (ret)
2248 		return ret;
2249 
2250 	return 0;
2251 }
2252 EXPORT_SYMBOL_GPL(nand_reset);
2253 
2254 /**
2255  * nand_get_features - wrapper to perform a GET_FEATURE
2256  * @chip: NAND chip info structure
2257  * @addr: feature address
2258  * @subfeature_param: the subfeature parameters, a four bytes array
2259  *
2260  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2261  * operation cannot be handled.
2262  */
2263 int nand_get_features(struct nand_chip *chip, int addr,
2264 		      u8 *subfeature_param)
2265 {
2266 	if (!nand_supports_get_features(chip, addr))
2267 		return -ENOTSUPP;
2268 
2269 	if (chip->legacy.get_features)
2270 		return chip->legacy.get_features(chip, addr, subfeature_param);
2271 
2272 	return nand_get_features_op(chip, addr, subfeature_param);
2273 }
2274 
2275 /**
2276  * nand_set_features - wrapper to perform a SET_FEATURE
2277  * @chip: NAND chip info structure
2278  * @addr: feature address
2279  * @subfeature_param: the subfeature parameters, a four bytes array
2280  *
2281  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2282  * operation cannot be handled.
2283  */
2284 int nand_set_features(struct nand_chip *chip, int addr,
2285 		      u8 *subfeature_param)
2286 {
2287 	if (!nand_supports_set_features(chip, addr))
2288 		return -ENOTSUPP;
2289 
2290 	if (chip->legacy.set_features)
2291 		return chip->legacy.set_features(chip, addr, subfeature_param);
2292 
2293 	return nand_set_features_op(chip, addr, subfeature_param);
2294 }
2295 
2296 /**
2297  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2298  * @buf: buffer to test
2299  * @len: buffer length
2300  * @bitflips_threshold: maximum number of bitflips
2301  *
2302  * Check if a buffer contains only 0xff, which means the underlying region
2303  * has been erased and is ready to be programmed.
2304  * The bitflips_threshold specify the maximum number of bitflips before
2305  * considering the region is not erased.
2306  * Note: The logic of this function has been extracted from the memweight
2307  * implementation, except that nand_check_erased_buf function exit before
2308  * testing the whole buffer if the number of bitflips exceed the
2309  * bitflips_threshold value.
2310  *
2311  * Returns a positive number of bitflips less than or equal to
2312  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2313  * threshold.
2314  */
2315 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2316 {
2317 	const unsigned char *bitmap = buf;
2318 	int bitflips = 0;
2319 	int weight;
2320 
2321 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2322 	     len--, bitmap++) {
2323 		weight = hweight8(*bitmap);
2324 		bitflips += BITS_PER_BYTE - weight;
2325 		if (unlikely(bitflips > bitflips_threshold))
2326 			return -EBADMSG;
2327 	}
2328 
2329 	for (; len >= sizeof(long);
2330 	     len -= sizeof(long), bitmap += sizeof(long)) {
2331 		unsigned long d = *((unsigned long *)bitmap);
2332 		if (d == ~0UL)
2333 			continue;
2334 		weight = hweight_long(d);
2335 		bitflips += BITS_PER_LONG - weight;
2336 		if (unlikely(bitflips > bitflips_threshold))
2337 			return -EBADMSG;
2338 	}
2339 
2340 	for (; len > 0; len--, bitmap++) {
2341 		weight = hweight8(*bitmap);
2342 		bitflips += BITS_PER_BYTE - weight;
2343 		if (unlikely(bitflips > bitflips_threshold))
2344 			return -EBADMSG;
2345 	}
2346 
2347 	return bitflips;
2348 }
2349 
2350 /**
2351  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2352  *				 0xff data
2353  * @data: data buffer to test
2354  * @datalen: data length
2355  * @ecc: ECC buffer
2356  * @ecclen: ECC length
2357  * @extraoob: extra OOB buffer
2358  * @extraooblen: extra OOB length
2359  * @bitflips_threshold: maximum number of bitflips
2360  *
2361  * Check if a data buffer and its associated ECC and OOB data contains only
2362  * 0xff pattern, which means the underlying region has been erased and is
2363  * ready to be programmed.
2364  * The bitflips_threshold specify the maximum number of bitflips before
2365  * considering the region as not erased.
2366  *
2367  * Note:
2368  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2369  *    different from the NAND page size. When fixing bitflips, ECC engines will
2370  *    report the number of errors per chunk, and the NAND core infrastructure
2371  *    expect you to return the maximum number of bitflips for the whole page.
2372  *    This is why you should always use this function on a single chunk and
2373  *    not on the whole page. After checking each chunk you should update your
2374  *    max_bitflips value accordingly.
2375  * 2/ When checking for bitflips in erased pages you should not only check
2376  *    the payload data but also their associated ECC data, because a user might
2377  *    have programmed almost all bits to 1 but a few. In this case, we
2378  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2379  *    this case.
2380  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2381  *    data are protected by the ECC engine.
2382  *    It could also be used if you support subpages and want to attach some
2383  *    extra OOB data to an ECC chunk.
2384  *
2385  * Returns a positive number of bitflips less than or equal to
2386  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2387  * threshold. In case of success, the passed buffers are filled with 0xff.
2388  */
2389 int nand_check_erased_ecc_chunk(void *data, int datalen,
2390 				void *ecc, int ecclen,
2391 				void *extraoob, int extraooblen,
2392 				int bitflips_threshold)
2393 {
2394 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2395 
2396 	data_bitflips = nand_check_erased_buf(data, datalen,
2397 					      bitflips_threshold);
2398 	if (data_bitflips < 0)
2399 		return data_bitflips;
2400 
2401 	bitflips_threshold -= data_bitflips;
2402 
2403 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2404 	if (ecc_bitflips < 0)
2405 		return ecc_bitflips;
2406 
2407 	bitflips_threshold -= ecc_bitflips;
2408 
2409 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2410 						  bitflips_threshold);
2411 	if (extraoob_bitflips < 0)
2412 		return extraoob_bitflips;
2413 
2414 	if (data_bitflips)
2415 		memset(data, 0xff, datalen);
2416 
2417 	if (ecc_bitflips)
2418 		memset(ecc, 0xff, ecclen);
2419 
2420 	if (extraoob_bitflips)
2421 		memset(extraoob, 0xff, extraooblen);
2422 
2423 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2424 }
2425 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2426 
2427 /**
2428  * nand_read_page_raw_notsupp - dummy read raw page function
2429  * @chip: nand chip info structure
2430  * @buf: buffer to store read data
2431  * @oob_required: caller requires OOB data read to chip->oob_poi
2432  * @page: page number to read
2433  *
2434  * Returns -ENOTSUPP unconditionally.
2435  */
2436 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2437 			       int oob_required, int page)
2438 {
2439 	return -ENOTSUPP;
2440 }
2441 
2442 /**
2443  * nand_read_page_raw - [INTERN] read raw page data without ecc
2444  * @chip: nand chip info structure
2445  * @buf: buffer to store read data
2446  * @oob_required: caller requires OOB data read to chip->oob_poi
2447  * @page: page number to read
2448  *
2449  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2450  */
2451 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2452 		       int page)
2453 {
2454 	struct mtd_info *mtd = nand_to_mtd(chip);
2455 	int ret;
2456 
2457 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2458 	if (ret)
2459 		return ret;
2460 
2461 	if (oob_required) {
2462 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2463 					false);
2464 		if (ret)
2465 			return ret;
2466 	}
2467 
2468 	return 0;
2469 }
2470 EXPORT_SYMBOL(nand_read_page_raw);
2471 
2472 /**
2473  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2474  * @chip: nand chip info structure
2475  * @buf: buffer to store read data
2476  * @oob_required: caller requires OOB data read to chip->oob_poi
2477  * @page: page number to read
2478  *
2479  * We need a special oob layout and handling even when OOB isn't used.
2480  */
2481 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2482 				       int oob_required, int page)
2483 {
2484 	struct mtd_info *mtd = nand_to_mtd(chip);
2485 	int eccsize = chip->ecc.size;
2486 	int eccbytes = chip->ecc.bytes;
2487 	uint8_t *oob = chip->oob_poi;
2488 	int steps, size, ret;
2489 
2490 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2491 	if (ret)
2492 		return ret;
2493 
2494 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2495 		ret = nand_read_data_op(chip, buf, eccsize, false);
2496 		if (ret)
2497 			return ret;
2498 
2499 		buf += eccsize;
2500 
2501 		if (chip->ecc.prepad) {
2502 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2503 						false);
2504 			if (ret)
2505 				return ret;
2506 
2507 			oob += chip->ecc.prepad;
2508 		}
2509 
2510 		ret = nand_read_data_op(chip, oob, eccbytes, false);
2511 		if (ret)
2512 			return ret;
2513 
2514 		oob += eccbytes;
2515 
2516 		if (chip->ecc.postpad) {
2517 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2518 						false);
2519 			if (ret)
2520 				return ret;
2521 
2522 			oob += chip->ecc.postpad;
2523 		}
2524 	}
2525 
2526 	size = mtd->oobsize - (oob - chip->oob_poi);
2527 	if (size) {
2528 		ret = nand_read_data_op(chip, oob, size, false);
2529 		if (ret)
2530 			return ret;
2531 	}
2532 
2533 	return 0;
2534 }
2535 
2536 /**
2537  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2538  * @chip: nand chip info structure
2539  * @buf: buffer to store read data
2540  * @oob_required: caller requires OOB data read to chip->oob_poi
2541  * @page: page number to read
2542  */
2543 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2544 				int oob_required, int page)
2545 {
2546 	struct mtd_info *mtd = nand_to_mtd(chip);
2547 	int i, eccsize = chip->ecc.size, ret;
2548 	int eccbytes = chip->ecc.bytes;
2549 	int eccsteps = chip->ecc.steps;
2550 	uint8_t *p = buf;
2551 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2552 	uint8_t *ecc_code = chip->ecc.code_buf;
2553 	unsigned int max_bitflips = 0;
2554 
2555 	chip->ecc.read_page_raw(chip, buf, 1, page);
2556 
2557 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2558 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2559 
2560 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2561 					 chip->ecc.total);
2562 	if (ret)
2563 		return ret;
2564 
2565 	eccsteps = chip->ecc.steps;
2566 	p = buf;
2567 
2568 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2569 		int stat;
2570 
2571 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2572 		if (stat < 0) {
2573 			mtd->ecc_stats.failed++;
2574 		} else {
2575 			mtd->ecc_stats.corrected += stat;
2576 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2577 		}
2578 	}
2579 	return max_bitflips;
2580 }
2581 
2582 /**
2583  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2584  * @chip: nand chip info structure
2585  * @data_offs: offset of requested data within the page
2586  * @readlen: data length
2587  * @bufpoi: buffer to store read data
2588  * @page: page number to read
2589  */
2590 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2591 			     uint32_t readlen, uint8_t *bufpoi, int page)
2592 {
2593 	struct mtd_info *mtd = nand_to_mtd(chip);
2594 	int start_step, end_step, num_steps, ret;
2595 	uint8_t *p;
2596 	int data_col_addr, i, gaps = 0;
2597 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2598 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2599 	int index, section = 0;
2600 	unsigned int max_bitflips = 0;
2601 	struct mtd_oob_region oobregion = { };
2602 
2603 	/* Column address within the page aligned to ECC size (256bytes) */
2604 	start_step = data_offs / chip->ecc.size;
2605 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
2606 	num_steps = end_step - start_step + 1;
2607 	index = start_step * chip->ecc.bytes;
2608 
2609 	/* Data size aligned to ECC ecc.size */
2610 	datafrag_len = num_steps * chip->ecc.size;
2611 	eccfrag_len = num_steps * chip->ecc.bytes;
2612 
2613 	data_col_addr = start_step * chip->ecc.size;
2614 	/* If we read not a page aligned data */
2615 	p = bufpoi + data_col_addr;
2616 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2617 	if (ret)
2618 		return ret;
2619 
2620 	/* Calculate ECC */
2621 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2622 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2623 
2624 	/*
2625 	 * The performance is faster if we position offsets according to
2626 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2627 	 */
2628 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2629 	if (ret)
2630 		return ret;
2631 
2632 	if (oobregion.length < eccfrag_len)
2633 		gaps = 1;
2634 
2635 	if (gaps) {
2636 		ret = nand_change_read_column_op(chip, mtd->writesize,
2637 						 chip->oob_poi, mtd->oobsize,
2638 						 false);
2639 		if (ret)
2640 			return ret;
2641 	} else {
2642 		/*
2643 		 * Send the command to read the particular ECC bytes take care
2644 		 * about buswidth alignment in read_buf.
2645 		 */
2646 		aligned_pos = oobregion.offset & ~(busw - 1);
2647 		aligned_len = eccfrag_len;
2648 		if (oobregion.offset & (busw - 1))
2649 			aligned_len++;
2650 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2651 		    (busw - 1))
2652 			aligned_len++;
2653 
2654 		ret = nand_change_read_column_op(chip,
2655 						 mtd->writesize + aligned_pos,
2656 						 &chip->oob_poi[aligned_pos],
2657 						 aligned_len, false);
2658 		if (ret)
2659 			return ret;
2660 	}
2661 
2662 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
2663 					 chip->oob_poi, index, eccfrag_len);
2664 	if (ret)
2665 		return ret;
2666 
2667 	p = bufpoi + data_col_addr;
2668 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
2669 		int stat;
2670 
2671 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
2672 					 &chip->ecc.calc_buf[i]);
2673 		if (stat == -EBADMSG &&
2674 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2675 			/* check for empty pages with bitflips */
2676 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2677 						&chip->ecc.code_buf[i],
2678 						chip->ecc.bytes,
2679 						NULL, 0,
2680 						chip->ecc.strength);
2681 		}
2682 
2683 		if (stat < 0) {
2684 			mtd->ecc_stats.failed++;
2685 		} else {
2686 			mtd->ecc_stats.corrected += stat;
2687 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2688 		}
2689 	}
2690 	return max_bitflips;
2691 }
2692 
2693 /**
2694  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2695  * @chip: nand chip info structure
2696  * @buf: buffer to store read data
2697  * @oob_required: caller requires OOB data read to chip->oob_poi
2698  * @page: page number to read
2699  *
2700  * Not for syndrome calculating ECC controllers which need a special oob layout.
2701  */
2702 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
2703 				int oob_required, int page)
2704 {
2705 	struct mtd_info *mtd = nand_to_mtd(chip);
2706 	int i, eccsize = chip->ecc.size, ret;
2707 	int eccbytes = chip->ecc.bytes;
2708 	int eccsteps = chip->ecc.steps;
2709 	uint8_t *p = buf;
2710 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2711 	uint8_t *ecc_code = chip->ecc.code_buf;
2712 	unsigned int max_bitflips = 0;
2713 
2714 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2715 	if (ret)
2716 		return ret;
2717 
2718 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2719 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2720 
2721 		ret = nand_read_data_op(chip, p, eccsize, false);
2722 		if (ret)
2723 			return ret;
2724 
2725 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2726 	}
2727 
2728 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
2729 	if (ret)
2730 		return ret;
2731 
2732 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2733 					 chip->ecc.total);
2734 	if (ret)
2735 		return ret;
2736 
2737 	eccsteps = chip->ecc.steps;
2738 	p = buf;
2739 
2740 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2741 		int stat;
2742 
2743 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2744 		if (stat == -EBADMSG &&
2745 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2746 			/* check for empty pages with bitflips */
2747 			stat = nand_check_erased_ecc_chunk(p, eccsize,
2748 						&ecc_code[i], eccbytes,
2749 						NULL, 0,
2750 						chip->ecc.strength);
2751 		}
2752 
2753 		if (stat < 0) {
2754 			mtd->ecc_stats.failed++;
2755 		} else {
2756 			mtd->ecc_stats.corrected += stat;
2757 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2758 		}
2759 	}
2760 	return max_bitflips;
2761 }
2762 
2763 /**
2764  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
2765  * @chip: nand chip info structure
2766  * @buf: buffer to store read data
2767  * @oob_required: caller requires OOB data read to chip->oob_poi
2768  * @page: page number to read
2769  *
2770  * Hardware ECC for large page chips, require OOB to be read first. For this
2771  * ECC mode, the write_page method is re-used from ECC_HW. These methods
2772  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
2773  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
2774  * the data area, by overwriting the NAND manufacturer bad block markings.
2775  */
2776 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
2777 					  int oob_required, int page)
2778 {
2779 	struct mtd_info *mtd = nand_to_mtd(chip);
2780 	int i, eccsize = chip->ecc.size, ret;
2781 	int eccbytes = chip->ecc.bytes;
2782 	int eccsteps = chip->ecc.steps;
2783 	uint8_t *p = buf;
2784 	uint8_t *ecc_code = chip->ecc.code_buf;
2785 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2786 	unsigned int max_bitflips = 0;
2787 
2788 	/* Read the OOB area first */
2789 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
2790 	if (ret)
2791 		return ret;
2792 
2793 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2794 	if (ret)
2795 		return ret;
2796 
2797 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2798 					 chip->ecc.total);
2799 	if (ret)
2800 		return ret;
2801 
2802 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2803 		int stat;
2804 
2805 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2806 
2807 		ret = nand_read_data_op(chip, p, eccsize, false);
2808 		if (ret)
2809 			return ret;
2810 
2811 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2812 
2813 		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
2814 		if (stat == -EBADMSG &&
2815 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2816 			/* check for empty pages with bitflips */
2817 			stat = nand_check_erased_ecc_chunk(p, eccsize,
2818 						&ecc_code[i], eccbytes,
2819 						NULL, 0,
2820 						chip->ecc.strength);
2821 		}
2822 
2823 		if (stat < 0) {
2824 			mtd->ecc_stats.failed++;
2825 		} else {
2826 			mtd->ecc_stats.corrected += stat;
2827 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2828 		}
2829 	}
2830 	return max_bitflips;
2831 }
2832 
2833 /**
2834  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
2835  * @chip: nand chip info structure
2836  * @buf: buffer to store read data
2837  * @oob_required: caller requires OOB data read to chip->oob_poi
2838  * @page: page number to read
2839  *
2840  * The hw generator calculates the error syndrome automatically. Therefore we
2841  * need a special oob layout and handling.
2842  */
2843 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
2844 				   int oob_required, int page)
2845 {
2846 	struct mtd_info *mtd = nand_to_mtd(chip);
2847 	int ret, i, eccsize = chip->ecc.size;
2848 	int eccbytes = chip->ecc.bytes;
2849 	int eccsteps = chip->ecc.steps;
2850 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
2851 	uint8_t *p = buf;
2852 	uint8_t *oob = chip->oob_poi;
2853 	unsigned int max_bitflips = 0;
2854 
2855 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2856 	if (ret)
2857 		return ret;
2858 
2859 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2860 		int stat;
2861 
2862 		chip->ecc.hwctl(chip, NAND_ECC_READ);
2863 
2864 		ret = nand_read_data_op(chip, p, eccsize, false);
2865 		if (ret)
2866 			return ret;
2867 
2868 		if (chip->ecc.prepad) {
2869 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2870 						false);
2871 			if (ret)
2872 				return ret;
2873 
2874 			oob += chip->ecc.prepad;
2875 		}
2876 
2877 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
2878 
2879 		ret = nand_read_data_op(chip, oob, eccbytes, false);
2880 		if (ret)
2881 			return ret;
2882 
2883 		stat = chip->ecc.correct(chip, p, oob, NULL);
2884 
2885 		oob += eccbytes;
2886 
2887 		if (chip->ecc.postpad) {
2888 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2889 						false);
2890 			if (ret)
2891 				return ret;
2892 
2893 			oob += chip->ecc.postpad;
2894 		}
2895 
2896 		if (stat == -EBADMSG &&
2897 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2898 			/* check for empty pages with bitflips */
2899 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2900 							   oob - eccpadbytes,
2901 							   eccpadbytes,
2902 							   NULL, 0,
2903 							   chip->ecc.strength);
2904 		}
2905 
2906 		if (stat < 0) {
2907 			mtd->ecc_stats.failed++;
2908 		} else {
2909 			mtd->ecc_stats.corrected += stat;
2910 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2911 		}
2912 	}
2913 
2914 	/* Calculate remaining oob bytes */
2915 	i = mtd->oobsize - (oob - chip->oob_poi);
2916 	if (i) {
2917 		ret = nand_read_data_op(chip, oob, i, false);
2918 		if (ret)
2919 			return ret;
2920 	}
2921 
2922 	return max_bitflips;
2923 }
2924 
2925 /**
2926  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
2927  * @mtd: mtd info structure
2928  * @oob: oob destination address
2929  * @ops: oob ops structure
2930  * @len: size of oob to transfer
2931  */
2932 static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
2933 				  struct mtd_oob_ops *ops, size_t len)
2934 {
2935 	struct nand_chip *chip = mtd_to_nand(mtd);
2936 	int ret;
2937 
2938 	switch (ops->mode) {
2939 
2940 	case MTD_OPS_PLACE_OOB:
2941 	case MTD_OPS_RAW:
2942 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
2943 		return oob + len;
2944 
2945 	case MTD_OPS_AUTO_OOB:
2946 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
2947 						  ops->ooboffs, len);
2948 		BUG_ON(ret);
2949 		return oob + len;
2950 
2951 	default:
2952 		BUG();
2953 	}
2954 	return NULL;
2955 }
2956 
2957 /**
2958  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
2959  * @chip: NAND chip object
2960  * @retry_mode: the retry mode to use
2961  *
2962  * Some vendors supply a special command to shift the Vt threshold, to be used
2963  * when there are too many bitflips in a page (i.e., ECC error). After setting
2964  * a new threshold, the host should retry reading the page.
2965  */
2966 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
2967 {
2968 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
2969 
2970 	if (retry_mode >= chip->read_retries)
2971 		return -EINVAL;
2972 
2973 	if (!chip->setup_read_retry)
2974 		return -EOPNOTSUPP;
2975 
2976 	return chip->setup_read_retry(chip, retry_mode);
2977 }
2978 
2979 static void nand_wait_readrdy(struct nand_chip *chip)
2980 {
2981 	const struct nand_sdr_timings *sdr;
2982 
2983 	if (!(chip->options & NAND_NEED_READRDY))
2984 		return;
2985 
2986 	sdr = nand_get_sdr_timings(&chip->data_interface);
2987 	WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
2988 }
2989 
2990 /**
2991  * nand_do_read_ops - [INTERN] Read data with ECC
2992  * @mtd: MTD device structure
2993  * @from: offset to read from
2994  * @ops: oob ops structure
2995  *
2996  * Internal function. Called with chip held.
2997  */
2998 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
2999 			    struct mtd_oob_ops *ops)
3000 {
3001 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3002 	struct nand_chip *chip = mtd_to_nand(mtd);
3003 	int ret = 0;
3004 	uint32_t readlen = ops->len;
3005 	uint32_t oobreadlen = ops->ooblen;
3006 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3007 
3008 	uint8_t *bufpoi, *oob, *buf;
3009 	int use_bufpoi;
3010 	unsigned int max_bitflips = 0;
3011 	int retry_mode = 0;
3012 	bool ecc_fail = false;
3013 
3014 	chipnr = (int)(from >> chip->chip_shift);
3015 	chip->select_chip(chip, chipnr);
3016 
3017 	realpage = (int)(from >> chip->page_shift);
3018 	page = realpage & chip->pagemask;
3019 
3020 	col = (int)(from & (mtd->writesize - 1));
3021 
3022 	buf = ops->datbuf;
3023 	oob = ops->oobbuf;
3024 	oob_required = oob ? 1 : 0;
3025 
3026 	while (1) {
3027 		unsigned int ecc_failures = mtd->ecc_stats.failed;
3028 
3029 		bytes = min(mtd->writesize - col, readlen);
3030 		aligned = (bytes == mtd->writesize);
3031 
3032 		if (!aligned)
3033 			use_bufpoi = 1;
3034 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3035 			use_bufpoi = !virt_addr_valid(buf) ||
3036 				     !IS_ALIGNED((unsigned long)buf,
3037 						 chip->buf_align);
3038 		else
3039 			use_bufpoi = 0;
3040 
3041 		/* Is the current page in the buffer? */
3042 		if (realpage != chip->pagebuf || oob) {
3043 			bufpoi = use_bufpoi ? chip->data_buf : buf;
3044 
3045 			if (use_bufpoi && aligned)
3046 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3047 						 __func__, buf);
3048 
3049 read_retry:
3050 			/*
3051 			 * Now read the page into the buffer.  Absent an error,
3052 			 * the read methods return max bitflips per ecc step.
3053 			 */
3054 			if (unlikely(ops->mode == MTD_OPS_RAW))
3055 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3056 							      oob_required,
3057 							      page);
3058 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3059 				 !oob)
3060 				ret = chip->ecc.read_subpage(chip, col, bytes,
3061 							     bufpoi, page);
3062 			else
3063 				ret = chip->ecc.read_page(chip, bufpoi,
3064 							  oob_required, page);
3065 			if (ret < 0) {
3066 				if (use_bufpoi)
3067 					/* Invalidate page cache */
3068 					chip->pagebuf = -1;
3069 				break;
3070 			}
3071 
3072 			/* Transfer not aligned data */
3073 			if (use_bufpoi) {
3074 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3075 				    !(mtd->ecc_stats.failed - ecc_failures) &&
3076 				    (ops->mode != MTD_OPS_RAW)) {
3077 					chip->pagebuf = realpage;
3078 					chip->pagebuf_bitflips = ret;
3079 				} else {
3080 					/* Invalidate page cache */
3081 					chip->pagebuf = -1;
3082 				}
3083 				memcpy(buf, chip->data_buf + col, bytes);
3084 			}
3085 
3086 			if (unlikely(oob)) {
3087 				int toread = min(oobreadlen, max_oobsize);
3088 
3089 				if (toread) {
3090 					oob = nand_transfer_oob(mtd,
3091 						oob, ops, toread);
3092 					oobreadlen -= toread;
3093 				}
3094 			}
3095 
3096 			nand_wait_readrdy(chip);
3097 
3098 			if (mtd->ecc_stats.failed - ecc_failures) {
3099 				if (retry_mode + 1 < chip->read_retries) {
3100 					retry_mode++;
3101 					ret = nand_setup_read_retry(chip,
3102 							retry_mode);
3103 					if (ret < 0)
3104 						break;
3105 
3106 					/* Reset failures; retry */
3107 					mtd->ecc_stats.failed = ecc_failures;
3108 					goto read_retry;
3109 				} else {
3110 					/* No more retry modes; real failure */
3111 					ecc_fail = true;
3112 				}
3113 			}
3114 
3115 			buf += bytes;
3116 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3117 		} else {
3118 			memcpy(buf, chip->data_buf + col, bytes);
3119 			buf += bytes;
3120 			max_bitflips = max_t(unsigned int, max_bitflips,
3121 					     chip->pagebuf_bitflips);
3122 		}
3123 
3124 		readlen -= bytes;
3125 
3126 		/* Reset to retry mode 0 */
3127 		if (retry_mode) {
3128 			ret = nand_setup_read_retry(chip, 0);
3129 			if (ret < 0)
3130 				break;
3131 			retry_mode = 0;
3132 		}
3133 
3134 		if (!readlen)
3135 			break;
3136 
3137 		/* For subsequent reads align to page boundary */
3138 		col = 0;
3139 		/* Increment page address */
3140 		realpage++;
3141 
3142 		page = realpage & chip->pagemask;
3143 		/* Check, if we cross a chip boundary */
3144 		if (!page) {
3145 			chipnr++;
3146 			chip->select_chip(chip, -1);
3147 			chip->select_chip(chip, chipnr);
3148 		}
3149 	}
3150 	chip->select_chip(chip, -1);
3151 
3152 	ops->retlen = ops->len - (size_t) readlen;
3153 	if (oob)
3154 		ops->oobretlen = ops->ooblen - oobreadlen;
3155 
3156 	if (ret < 0)
3157 		return ret;
3158 
3159 	if (ecc_fail)
3160 		return -EBADMSG;
3161 
3162 	return max_bitflips;
3163 }
3164 
3165 /**
3166  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3167  * @chip: nand chip info structure
3168  * @page: page number to read
3169  */
3170 int nand_read_oob_std(struct nand_chip *chip, int page)
3171 {
3172 	struct mtd_info *mtd = nand_to_mtd(chip);
3173 
3174 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3175 }
3176 EXPORT_SYMBOL(nand_read_oob_std);
3177 
3178 /**
3179  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3180  *			    with syndromes
3181  * @chip: nand chip info structure
3182  * @page: page number to read
3183  */
3184 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3185 {
3186 	struct mtd_info *mtd = nand_to_mtd(chip);
3187 	int length = mtd->oobsize;
3188 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3189 	int eccsize = chip->ecc.size;
3190 	uint8_t *bufpoi = chip->oob_poi;
3191 	int i, toread, sndrnd = 0, pos, ret;
3192 
3193 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3194 	if (ret)
3195 		return ret;
3196 
3197 	for (i = 0; i < chip->ecc.steps; i++) {
3198 		if (sndrnd) {
3199 			int ret;
3200 
3201 			pos = eccsize + i * (eccsize + chunk);
3202 			if (mtd->writesize > 512)
3203 				ret = nand_change_read_column_op(chip, pos,
3204 								 NULL, 0,
3205 								 false);
3206 			else
3207 				ret = nand_read_page_op(chip, page, pos, NULL,
3208 							0);
3209 
3210 			if (ret)
3211 				return ret;
3212 		} else
3213 			sndrnd = 1;
3214 		toread = min_t(int, length, chunk);
3215 
3216 		ret = nand_read_data_op(chip, bufpoi, toread, false);
3217 		if (ret)
3218 			return ret;
3219 
3220 		bufpoi += toread;
3221 		length -= toread;
3222 	}
3223 	if (length > 0) {
3224 		ret = nand_read_data_op(chip, bufpoi, length, false);
3225 		if (ret)
3226 			return ret;
3227 	}
3228 
3229 	return 0;
3230 }
3231 
3232 /**
3233  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3234  * @chip: nand chip info structure
3235  * @page: page number to write
3236  */
3237 int nand_write_oob_std(struct nand_chip *chip, int page)
3238 {
3239 	struct mtd_info *mtd = nand_to_mtd(chip);
3240 
3241 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3242 				 mtd->oobsize);
3243 }
3244 EXPORT_SYMBOL(nand_write_oob_std);
3245 
3246 /**
3247  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3248  *			     with syndrome - only for large page flash
3249  * @chip: nand chip info structure
3250  * @page: page number to write
3251  */
3252 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3253 {
3254 	struct mtd_info *mtd = nand_to_mtd(chip);
3255 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3256 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3257 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3258 	const uint8_t *bufpoi = chip->oob_poi;
3259 
3260 	/*
3261 	 * data-ecc-data-ecc ... ecc-oob
3262 	 * or
3263 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3264 	 */
3265 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3266 		pos = steps * (eccsize + chunk);
3267 		steps = 0;
3268 	} else
3269 		pos = eccsize;
3270 
3271 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3272 	if (ret)
3273 		return ret;
3274 
3275 	for (i = 0; i < steps; i++) {
3276 		if (sndcmd) {
3277 			if (mtd->writesize <= 512) {
3278 				uint32_t fill = 0xFFFFFFFF;
3279 
3280 				len = eccsize;
3281 				while (len > 0) {
3282 					int num = min_t(int, len, 4);
3283 
3284 					ret = nand_write_data_op(chip, &fill,
3285 								 num, false);
3286 					if (ret)
3287 						return ret;
3288 
3289 					len -= num;
3290 				}
3291 			} else {
3292 				pos = eccsize + i * (eccsize + chunk);
3293 				ret = nand_change_write_column_op(chip, pos,
3294 								  NULL, 0,
3295 								  false);
3296 				if (ret)
3297 					return ret;
3298 			}
3299 		} else
3300 			sndcmd = 1;
3301 		len = min_t(int, length, chunk);
3302 
3303 		ret = nand_write_data_op(chip, bufpoi, len, false);
3304 		if (ret)
3305 			return ret;
3306 
3307 		bufpoi += len;
3308 		length -= len;
3309 	}
3310 	if (length > 0) {
3311 		ret = nand_write_data_op(chip, bufpoi, length, false);
3312 		if (ret)
3313 			return ret;
3314 	}
3315 
3316 	return nand_prog_page_end_op(chip);
3317 }
3318 
3319 /**
3320  * nand_do_read_oob - [INTERN] NAND read out-of-band
3321  * @mtd: MTD device structure
3322  * @from: offset to read from
3323  * @ops: oob operations description structure
3324  *
3325  * NAND read out-of-band data from the spare area.
3326  */
3327 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
3328 			    struct mtd_oob_ops *ops)
3329 {
3330 	unsigned int max_bitflips = 0;
3331 	int page, realpage, chipnr;
3332 	struct nand_chip *chip = mtd_to_nand(mtd);
3333 	struct mtd_ecc_stats stats;
3334 	int readlen = ops->ooblen;
3335 	int len;
3336 	uint8_t *buf = ops->oobbuf;
3337 	int ret = 0;
3338 
3339 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3340 			__func__, (unsigned long long)from, readlen);
3341 
3342 	stats = mtd->ecc_stats;
3343 
3344 	len = mtd_oobavail(mtd, ops);
3345 
3346 	chipnr = (int)(from >> chip->chip_shift);
3347 	chip->select_chip(chip, chipnr);
3348 
3349 	/* Shift to get page */
3350 	realpage = (int)(from >> chip->page_shift);
3351 	page = realpage & chip->pagemask;
3352 
3353 	while (1) {
3354 		if (ops->mode == MTD_OPS_RAW)
3355 			ret = chip->ecc.read_oob_raw(chip, page);
3356 		else
3357 			ret = chip->ecc.read_oob(chip, page);
3358 
3359 		if (ret < 0)
3360 			break;
3361 
3362 		len = min(len, readlen);
3363 		buf = nand_transfer_oob(mtd, buf, ops, len);
3364 
3365 		nand_wait_readrdy(chip);
3366 
3367 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3368 
3369 		readlen -= len;
3370 		if (!readlen)
3371 			break;
3372 
3373 		/* Increment page address */
3374 		realpage++;
3375 
3376 		page = realpage & chip->pagemask;
3377 		/* Check, if we cross a chip boundary */
3378 		if (!page) {
3379 			chipnr++;
3380 			chip->select_chip(chip, -1);
3381 			chip->select_chip(chip, chipnr);
3382 		}
3383 	}
3384 	chip->select_chip(chip, -1);
3385 
3386 	ops->oobretlen = ops->ooblen - readlen;
3387 
3388 	if (ret < 0)
3389 		return ret;
3390 
3391 	if (mtd->ecc_stats.failed - stats.failed)
3392 		return -EBADMSG;
3393 
3394 	return max_bitflips;
3395 }
3396 
3397 /**
3398  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3399  * @mtd: MTD device structure
3400  * @from: offset to read from
3401  * @ops: oob operation description structure
3402  *
3403  * NAND read data and/or out-of-band data.
3404  */
3405 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3406 			 struct mtd_oob_ops *ops)
3407 {
3408 	int ret;
3409 
3410 	ops->retlen = 0;
3411 
3412 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3413 	    ops->mode != MTD_OPS_AUTO_OOB &&
3414 	    ops->mode != MTD_OPS_RAW)
3415 		return -ENOTSUPP;
3416 
3417 	nand_get_device(mtd, FL_READING);
3418 
3419 	if (!ops->datbuf)
3420 		ret = nand_do_read_oob(mtd, from, ops);
3421 	else
3422 		ret = nand_do_read_ops(mtd, from, ops);
3423 
3424 	nand_release_device(mtd);
3425 	return ret;
3426 }
3427 
3428 /**
3429  * nand_write_page_raw_notsupp - dummy raw page write function
3430  * @chip: nand chip info structure
3431  * @buf: data buffer
3432  * @oob_required: must write chip->oob_poi to OOB
3433  * @page: page number to write
3434  *
3435  * Returns -ENOTSUPP unconditionally.
3436  */
3437 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3438 				int oob_required, int page)
3439 {
3440 	return -ENOTSUPP;
3441 }
3442 
3443 /**
3444  * nand_write_page_raw - [INTERN] raw page write function
3445  * @chip: nand chip info structure
3446  * @buf: data buffer
3447  * @oob_required: must write chip->oob_poi to OOB
3448  * @page: page number to write
3449  *
3450  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3451  */
3452 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3453 			int oob_required, int page)
3454 {
3455 	struct mtd_info *mtd = nand_to_mtd(chip);
3456 	int ret;
3457 
3458 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3459 	if (ret)
3460 		return ret;
3461 
3462 	if (oob_required) {
3463 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3464 					 false);
3465 		if (ret)
3466 			return ret;
3467 	}
3468 
3469 	return nand_prog_page_end_op(chip);
3470 }
3471 EXPORT_SYMBOL(nand_write_page_raw);
3472 
3473 /**
3474  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3475  * @chip: nand chip info structure
3476  * @buf: data buffer
3477  * @oob_required: must write chip->oob_poi to OOB
3478  * @page: page number to write
3479  *
3480  * We need a special oob layout and handling even when ECC isn't checked.
3481  */
3482 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3483 					const uint8_t *buf, int oob_required,
3484 					int page)
3485 {
3486 	struct mtd_info *mtd = nand_to_mtd(chip);
3487 	int eccsize = chip->ecc.size;
3488 	int eccbytes = chip->ecc.bytes;
3489 	uint8_t *oob = chip->oob_poi;
3490 	int steps, size, ret;
3491 
3492 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3493 	if (ret)
3494 		return ret;
3495 
3496 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3497 		ret = nand_write_data_op(chip, buf, eccsize, false);
3498 		if (ret)
3499 			return ret;
3500 
3501 		buf += eccsize;
3502 
3503 		if (chip->ecc.prepad) {
3504 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3505 						 false);
3506 			if (ret)
3507 				return ret;
3508 
3509 			oob += chip->ecc.prepad;
3510 		}
3511 
3512 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3513 		if (ret)
3514 			return ret;
3515 
3516 		oob += eccbytes;
3517 
3518 		if (chip->ecc.postpad) {
3519 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3520 						 false);
3521 			if (ret)
3522 				return ret;
3523 
3524 			oob += chip->ecc.postpad;
3525 		}
3526 	}
3527 
3528 	size = mtd->oobsize - (oob - chip->oob_poi);
3529 	if (size) {
3530 		ret = nand_write_data_op(chip, oob, size, false);
3531 		if (ret)
3532 			return ret;
3533 	}
3534 
3535 	return nand_prog_page_end_op(chip);
3536 }
3537 /**
3538  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3539  * @chip: nand chip info structure
3540  * @buf: data buffer
3541  * @oob_required: must write chip->oob_poi to OOB
3542  * @page: page number to write
3543  */
3544 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3545 				 int oob_required, int page)
3546 {
3547 	struct mtd_info *mtd = nand_to_mtd(chip);
3548 	int i, eccsize = chip->ecc.size, ret;
3549 	int eccbytes = chip->ecc.bytes;
3550 	int eccsteps = chip->ecc.steps;
3551 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3552 	const uint8_t *p = buf;
3553 
3554 	/* Software ECC calculation */
3555 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3556 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3557 
3558 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3559 					 chip->ecc.total);
3560 	if (ret)
3561 		return ret;
3562 
3563 	return chip->ecc.write_page_raw(chip, buf, 1, page);
3564 }
3565 
3566 /**
3567  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3568  * @chip: nand chip info structure
3569  * @buf: data buffer
3570  * @oob_required: must write chip->oob_poi to OOB
3571  * @page: page number to write
3572  */
3573 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3574 				 int oob_required, int page)
3575 {
3576 	struct mtd_info *mtd = nand_to_mtd(chip);
3577 	int i, eccsize = chip->ecc.size, ret;
3578 	int eccbytes = chip->ecc.bytes;
3579 	int eccsteps = chip->ecc.steps;
3580 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3581 	const uint8_t *p = buf;
3582 
3583 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3584 	if (ret)
3585 		return ret;
3586 
3587 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3588 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3589 
3590 		ret = nand_write_data_op(chip, p, eccsize, false);
3591 		if (ret)
3592 			return ret;
3593 
3594 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3595 	}
3596 
3597 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3598 					 chip->ecc.total);
3599 	if (ret)
3600 		return ret;
3601 
3602 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3603 	if (ret)
3604 		return ret;
3605 
3606 	return nand_prog_page_end_op(chip);
3607 }
3608 
3609 
3610 /**
3611  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3612  * @chip:	nand chip info structure
3613  * @offset:	column address of subpage within the page
3614  * @data_len:	data length
3615  * @buf:	data buffer
3616  * @oob_required: must write chip->oob_poi to OOB
3617  * @page: page number to write
3618  */
3619 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3620 				    uint32_t data_len, const uint8_t *buf,
3621 				    int oob_required, int page)
3622 {
3623 	struct mtd_info *mtd = nand_to_mtd(chip);
3624 	uint8_t *oob_buf  = chip->oob_poi;
3625 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3626 	int ecc_size      = chip->ecc.size;
3627 	int ecc_bytes     = chip->ecc.bytes;
3628 	int ecc_steps     = chip->ecc.steps;
3629 	uint32_t start_step = offset / ecc_size;
3630 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
3631 	int oob_bytes       = mtd->oobsize / ecc_steps;
3632 	int step, ret;
3633 
3634 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3635 	if (ret)
3636 		return ret;
3637 
3638 	for (step = 0; step < ecc_steps; step++) {
3639 		/* configure controller for WRITE access */
3640 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3641 
3642 		/* write data (untouched subpages already masked by 0xFF) */
3643 		ret = nand_write_data_op(chip, buf, ecc_size, false);
3644 		if (ret)
3645 			return ret;
3646 
3647 		/* mask ECC of un-touched subpages by padding 0xFF */
3648 		if ((step < start_step) || (step > end_step))
3649 			memset(ecc_calc, 0xff, ecc_bytes);
3650 		else
3651 			chip->ecc.calculate(chip, buf, ecc_calc);
3652 
3653 		/* mask OOB of un-touched subpages by padding 0xFF */
3654 		/* if oob_required, preserve OOB metadata of written subpage */
3655 		if (!oob_required || (step < start_step) || (step > end_step))
3656 			memset(oob_buf, 0xff, oob_bytes);
3657 
3658 		buf += ecc_size;
3659 		ecc_calc += ecc_bytes;
3660 		oob_buf  += oob_bytes;
3661 	}
3662 
3663 	/* copy calculated ECC for whole page to chip->buffer->oob */
3664 	/* this include masked-value(0xFF) for unwritten subpages */
3665 	ecc_calc = chip->ecc.calc_buf;
3666 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3667 					 chip->ecc.total);
3668 	if (ret)
3669 		return ret;
3670 
3671 	/* write OOB buffer to NAND device */
3672 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3673 	if (ret)
3674 		return ret;
3675 
3676 	return nand_prog_page_end_op(chip);
3677 }
3678 
3679 
3680 /**
3681  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3682  * @chip: nand chip info structure
3683  * @buf: data buffer
3684  * @oob_required: must write chip->oob_poi to OOB
3685  * @page: page number to write
3686  *
3687  * The hw generator calculates the error syndrome automatically. Therefore we
3688  * need a special oob layout and handling.
3689  */
3690 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
3691 				    int oob_required, int page)
3692 {
3693 	struct mtd_info *mtd = nand_to_mtd(chip);
3694 	int i, eccsize = chip->ecc.size;
3695 	int eccbytes = chip->ecc.bytes;
3696 	int eccsteps = chip->ecc.steps;
3697 	const uint8_t *p = buf;
3698 	uint8_t *oob = chip->oob_poi;
3699 	int ret;
3700 
3701 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3702 	if (ret)
3703 		return ret;
3704 
3705 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3706 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3707 
3708 		ret = nand_write_data_op(chip, p, eccsize, false);
3709 		if (ret)
3710 			return ret;
3711 
3712 		if (chip->ecc.prepad) {
3713 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3714 						 false);
3715 			if (ret)
3716 				return ret;
3717 
3718 			oob += chip->ecc.prepad;
3719 		}
3720 
3721 		chip->ecc.calculate(chip, p, oob);
3722 
3723 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3724 		if (ret)
3725 			return ret;
3726 
3727 		oob += eccbytes;
3728 
3729 		if (chip->ecc.postpad) {
3730 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3731 						 false);
3732 			if (ret)
3733 				return ret;
3734 
3735 			oob += chip->ecc.postpad;
3736 		}
3737 	}
3738 
3739 	/* Calculate remaining oob bytes */
3740 	i = mtd->oobsize - (oob - chip->oob_poi);
3741 	if (i) {
3742 		ret = nand_write_data_op(chip, oob, i, false);
3743 		if (ret)
3744 			return ret;
3745 	}
3746 
3747 	return nand_prog_page_end_op(chip);
3748 }
3749 
3750 /**
3751  * nand_write_page - write one page
3752  * @mtd: MTD device structure
3753  * @chip: NAND chip descriptor
3754  * @offset: address offset within the page
3755  * @data_len: length of actual data to be written
3756  * @buf: the data to write
3757  * @oob_required: must write chip->oob_poi to OOB
3758  * @page: page number to write
3759  * @raw: use _raw version of write_page
3760  */
3761 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
3762 		uint32_t offset, int data_len, const uint8_t *buf,
3763 		int oob_required, int page, int raw)
3764 {
3765 	int status, subpage;
3766 
3767 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3768 		chip->ecc.write_subpage)
3769 		subpage = offset || (data_len < mtd->writesize);
3770 	else
3771 		subpage = 0;
3772 
3773 	if (unlikely(raw))
3774 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
3775 						  page);
3776 	else if (subpage)
3777 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
3778 						 oob_required, page);
3779 	else
3780 		status = chip->ecc.write_page(chip, buf, oob_required, page);
3781 
3782 	if (status < 0)
3783 		return status;
3784 
3785 	return 0;
3786 }
3787 
3788 /**
3789  * nand_fill_oob - [INTERN] Transfer client buffer to oob
3790  * @mtd: MTD device structure
3791  * @oob: oob data buffer
3792  * @len: oob data write length
3793  * @ops: oob ops structure
3794  */
3795 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
3796 			      struct mtd_oob_ops *ops)
3797 {
3798 	struct nand_chip *chip = mtd_to_nand(mtd);
3799 	int ret;
3800 
3801 	/*
3802 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
3803 	 * data from a previous OOB read.
3804 	 */
3805 	memset(chip->oob_poi, 0xff, mtd->oobsize);
3806 
3807 	switch (ops->mode) {
3808 
3809 	case MTD_OPS_PLACE_OOB:
3810 	case MTD_OPS_RAW:
3811 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
3812 		return oob + len;
3813 
3814 	case MTD_OPS_AUTO_OOB:
3815 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
3816 						  ops->ooboffs, len);
3817 		BUG_ON(ret);
3818 		return oob + len;
3819 
3820 	default:
3821 		BUG();
3822 	}
3823 	return NULL;
3824 }
3825 
3826 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
3827 
3828 /**
3829  * nand_do_write_ops - [INTERN] NAND write with ECC
3830  * @mtd: MTD device structure
3831  * @to: offset to write to
3832  * @ops: oob operations description structure
3833  *
3834  * NAND write with ECC.
3835  */
3836 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
3837 			     struct mtd_oob_ops *ops)
3838 {
3839 	int chipnr, realpage, page, column;
3840 	struct nand_chip *chip = mtd_to_nand(mtd);
3841 	uint32_t writelen = ops->len;
3842 
3843 	uint32_t oobwritelen = ops->ooblen;
3844 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
3845 
3846 	uint8_t *oob = ops->oobbuf;
3847 	uint8_t *buf = ops->datbuf;
3848 	int ret;
3849 	int oob_required = oob ? 1 : 0;
3850 
3851 	ops->retlen = 0;
3852 	if (!writelen)
3853 		return 0;
3854 
3855 	/* Reject writes, which are not page aligned */
3856 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
3857 		pr_notice("%s: attempt to write non page aligned data\n",
3858 			   __func__);
3859 		return -EINVAL;
3860 	}
3861 
3862 	column = to & (mtd->writesize - 1);
3863 
3864 	chipnr = (int)(to >> chip->chip_shift);
3865 	chip->select_chip(chip, chipnr);
3866 
3867 	/* Check, if it is write protected */
3868 	if (nand_check_wp(mtd)) {
3869 		ret = -EIO;
3870 		goto err_out;
3871 	}
3872 
3873 	realpage = (int)(to >> chip->page_shift);
3874 	page = realpage & chip->pagemask;
3875 
3876 	/* Invalidate the page cache, when we write to the cached page */
3877 	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
3878 	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
3879 		chip->pagebuf = -1;
3880 
3881 	/* Don't allow multipage oob writes with offset */
3882 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
3883 		ret = -EINVAL;
3884 		goto err_out;
3885 	}
3886 
3887 	while (1) {
3888 		int bytes = mtd->writesize;
3889 		uint8_t *wbuf = buf;
3890 		int use_bufpoi;
3891 		int part_pagewr = (column || writelen < mtd->writesize);
3892 
3893 		if (part_pagewr)
3894 			use_bufpoi = 1;
3895 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3896 			use_bufpoi = !virt_addr_valid(buf) ||
3897 				     !IS_ALIGNED((unsigned long)buf,
3898 						 chip->buf_align);
3899 		else
3900 			use_bufpoi = 0;
3901 
3902 		/* Partial page write?, or need to use bounce buffer */
3903 		if (use_bufpoi) {
3904 			pr_debug("%s: using write bounce buffer for buf@%p\n",
3905 					 __func__, buf);
3906 			if (part_pagewr)
3907 				bytes = min_t(int, bytes - column, writelen);
3908 			chip->pagebuf = -1;
3909 			memset(chip->data_buf, 0xff, mtd->writesize);
3910 			memcpy(&chip->data_buf[column], buf, bytes);
3911 			wbuf = chip->data_buf;
3912 		}
3913 
3914 		if (unlikely(oob)) {
3915 			size_t len = min(oobwritelen, oobmaxlen);
3916 			oob = nand_fill_oob(mtd, oob, len, ops);
3917 			oobwritelen -= len;
3918 		} else {
3919 			/* We still need to erase leftover OOB data */
3920 			memset(chip->oob_poi, 0xff, mtd->oobsize);
3921 		}
3922 
3923 		ret = nand_write_page(mtd, chip, column, bytes, wbuf,
3924 				      oob_required, page,
3925 				      (ops->mode == MTD_OPS_RAW));
3926 		if (ret)
3927 			break;
3928 
3929 		writelen -= bytes;
3930 		if (!writelen)
3931 			break;
3932 
3933 		column = 0;
3934 		buf += bytes;
3935 		realpage++;
3936 
3937 		page = realpage & chip->pagemask;
3938 		/* Check, if we cross a chip boundary */
3939 		if (!page) {
3940 			chipnr++;
3941 			chip->select_chip(chip, -1);
3942 			chip->select_chip(chip, chipnr);
3943 		}
3944 	}
3945 
3946 	ops->retlen = ops->len - writelen;
3947 	if (unlikely(oob))
3948 		ops->oobretlen = ops->ooblen;
3949 
3950 err_out:
3951 	chip->select_chip(chip, -1);
3952 	return ret;
3953 }
3954 
3955 /**
3956  * panic_nand_write - [MTD Interface] NAND write with ECC
3957  * @mtd: MTD device structure
3958  * @to: offset to write to
3959  * @len: number of bytes to write
3960  * @retlen: pointer to variable to store the number of written bytes
3961  * @buf: the data to write
3962  *
3963  * NAND write with ECC. Used when performing writes in interrupt context, this
3964  * may for example be called by mtdoops when writing an oops while in panic.
3965  */
3966 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
3967 			    size_t *retlen, const uint8_t *buf)
3968 {
3969 	struct nand_chip *chip = mtd_to_nand(mtd);
3970 	int chipnr = (int)(to >> chip->chip_shift);
3971 	struct mtd_oob_ops ops;
3972 	int ret;
3973 
3974 	/* Grab the device */
3975 	panic_nand_get_device(chip, mtd, FL_WRITING);
3976 
3977 	chip->select_chip(chip, chipnr);
3978 
3979 	/* Wait for the device to get ready */
3980 	panic_nand_wait(chip, 400);
3981 
3982 	memset(&ops, 0, sizeof(ops));
3983 	ops.len = len;
3984 	ops.datbuf = (uint8_t *)buf;
3985 	ops.mode = MTD_OPS_PLACE_OOB;
3986 
3987 	ret = nand_do_write_ops(mtd, to, &ops);
3988 
3989 	*retlen = ops.retlen;
3990 	return ret;
3991 }
3992 
3993 /**
3994  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
3995  * @mtd: MTD device structure
3996  * @to: offset to write to
3997  * @ops: oob operation description structure
3998  *
3999  * NAND write out-of-band.
4000  */
4001 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
4002 			     struct mtd_oob_ops *ops)
4003 {
4004 	int chipnr, page, status, len;
4005 	struct nand_chip *chip = mtd_to_nand(mtd);
4006 
4007 	pr_debug("%s: to = 0x%08x, len = %i\n",
4008 			 __func__, (unsigned int)to, (int)ops->ooblen);
4009 
4010 	len = mtd_oobavail(mtd, ops);
4011 
4012 	/* Do not allow write past end of page */
4013 	if ((ops->ooboffs + ops->ooblen) > len) {
4014 		pr_debug("%s: attempt to write past end of page\n",
4015 				__func__);
4016 		return -EINVAL;
4017 	}
4018 
4019 	chipnr = (int)(to >> chip->chip_shift);
4020 
4021 	/*
4022 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
4023 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
4024 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
4025 	 * it in the doc2000 driver in August 1999.  dwmw2.
4026 	 */
4027 	nand_reset(chip, chipnr);
4028 
4029 	chip->select_chip(chip, chipnr);
4030 
4031 	/* Shift to get page */
4032 	page = (int)(to >> chip->page_shift);
4033 
4034 	/* Check, if it is write protected */
4035 	if (nand_check_wp(mtd)) {
4036 		chip->select_chip(chip, -1);
4037 		return -EROFS;
4038 	}
4039 
4040 	/* Invalidate the page cache, if we write to the cached page */
4041 	if (page == chip->pagebuf)
4042 		chip->pagebuf = -1;
4043 
4044 	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
4045 
4046 	if (ops->mode == MTD_OPS_RAW)
4047 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
4048 	else
4049 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
4050 
4051 	chip->select_chip(chip, -1);
4052 
4053 	if (status)
4054 		return status;
4055 
4056 	ops->oobretlen = ops->ooblen;
4057 
4058 	return 0;
4059 }
4060 
4061 /**
4062  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4063  * @mtd: MTD device structure
4064  * @to: offset to write to
4065  * @ops: oob operation description structure
4066  */
4067 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4068 			  struct mtd_oob_ops *ops)
4069 {
4070 	int ret = -ENOTSUPP;
4071 
4072 	ops->retlen = 0;
4073 
4074 	nand_get_device(mtd, FL_WRITING);
4075 
4076 	switch (ops->mode) {
4077 	case MTD_OPS_PLACE_OOB:
4078 	case MTD_OPS_AUTO_OOB:
4079 	case MTD_OPS_RAW:
4080 		break;
4081 
4082 	default:
4083 		goto out;
4084 	}
4085 
4086 	if (!ops->datbuf)
4087 		ret = nand_do_write_oob(mtd, to, ops);
4088 	else
4089 		ret = nand_do_write_ops(mtd, to, ops);
4090 
4091 out:
4092 	nand_release_device(mtd);
4093 	return ret;
4094 }
4095 
4096 /**
4097  * single_erase - [GENERIC] NAND standard block erase command function
4098  * @chip: NAND chip object
4099  * @page: the page address of the block which will be erased
4100  *
4101  * Standard erase command for NAND chips. Returns NAND status.
4102  */
4103 static int single_erase(struct nand_chip *chip, int page)
4104 {
4105 	unsigned int eraseblock;
4106 
4107 	/* Send commands to erase a block */
4108 	eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
4109 
4110 	return nand_erase_op(chip, eraseblock);
4111 }
4112 
4113 /**
4114  * nand_erase - [MTD Interface] erase block(s)
4115  * @mtd: MTD device structure
4116  * @instr: erase instruction
4117  *
4118  * Erase one ore more blocks.
4119  */
4120 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4121 {
4122 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4123 }
4124 
4125 /**
4126  * nand_erase_nand - [INTERN] erase block(s)
4127  * @chip: NAND chip object
4128  * @instr: erase instruction
4129  * @allowbbt: allow erasing the bbt area
4130  *
4131  * Erase one ore more blocks.
4132  */
4133 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4134 		    int allowbbt)
4135 {
4136 	struct mtd_info *mtd = nand_to_mtd(chip);
4137 	int page, status, pages_per_block, ret, chipnr;
4138 	loff_t len;
4139 
4140 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4141 			__func__, (unsigned long long)instr->addr,
4142 			(unsigned long long)instr->len);
4143 
4144 	if (check_offs_len(mtd, instr->addr, instr->len))
4145 		return -EINVAL;
4146 
4147 	/* Grab the lock and see if the device is available */
4148 	nand_get_device(mtd, FL_ERASING);
4149 
4150 	/* Shift to get first page */
4151 	page = (int)(instr->addr >> chip->page_shift);
4152 	chipnr = (int)(instr->addr >> chip->chip_shift);
4153 
4154 	/* Calculate pages in each block */
4155 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4156 
4157 	/* Select the NAND device */
4158 	chip->select_chip(chip, chipnr);
4159 
4160 	/* Check, if it is write protected */
4161 	if (nand_check_wp(mtd)) {
4162 		pr_debug("%s: device is write protected!\n",
4163 				__func__);
4164 		ret = -EIO;
4165 		goto erase_exit;
4166 	}
4167 
4168 	/* Loop through the pages */
4169 	len = instr->len;
4170 
4171 	while (len) {
4172 		/* Check if we have a bad block, we do not erase bad blocks! */
4173 		if (nand_block_checkbad(mtd, ((loff_t) page) <<
4174 					chip->page_shift, allowbbt)) {
4175 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4176 				    __func__, page);
4177 			ret = -EIO;
4178 			goto erase_exit;
4179 		}
4180 
4181 		/*
4182 		 * Invalidate the page cache, if we erase the block which
4183 		 * contains the current cached page.
4184 		 */
4185 		if (page <= chip->pagebuf && chip->pagebuf <
4186 		    (page + pages_per_block))
4187 			chip->pagebuf = -1;
4188 
4189 		if (chip->legacy.erase)
4190 			status = chip->legacy.erase(chip,
4191 						    page & chip->pagemask);
4192 		else
4193 			status = single_erase(chip, page & chip->pagemask);
4194 
4195 		/* See if block erase succeeded */
4196 		if (status) {
4197 			pr_debug("%s: failed erase, page 0x%08x\n",
4198 					__func__, page);
4199 			ret = -EIO;
4200 			instr->fail_addr =
4201 				((loff_t)page << chip->page_shift);
4202 			goto erase_exit;
4203 		}
4204 
4205 		/* Increment page address and decrement length */
4206 		len -= (1ULL << chip->phys_erase_shift);
4207 		page += pages_per_block;
4208 
4209 		/* Check, if we cross a chip boundary */
4210 		if (len && !(page & chip->pagemask)) {
4211 			chipnr++;
4212 			chip->select_chip(chip, -1);
4213 			chip->select_chip(chip, chipnr);
4214 		}
4215 	}
4216 
4217 	ret = 0;
4218 erase_exit:
4219 
4220 	/* Deselect and wake up anyone waiting on the device */
4221 	chip->select_chip(chip, -1);
4222 	nand_release_device(mtd);
4223 
4224 	/* Return more or less happy */
4225 	return ret;
4226 }
4227 
4228 /**
4229  * nand_sync - [MTD Interface] sync
4230  * @mtd: MTD device structure
4231  *
4232  * Sync is actually a wait for chip ready function.
4233  */
4234 static void nand_sync(struct mtd_info *mtd)
4235 {
4236 	pr_debug("%s: called\n", __func__);
4237 
4238 	/* Grab the lock and see if the device is available */
4239 	nand_get_device(mtd, FL_SYNCING);
4240 	/* Release it and go back */
4241 	nand_release_device(mtd);
4242 }
4243 
4244 /**
4245  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4246  * @mtd: MTD device structure
4247  * @offs: offset relative to mtd start
4248  */
4249 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4250 {
4251 	struct nand_chip *chip = mtd_to_nand(mtd);
4252 	int chipnr = (int)(offs >> chip->chip_shift);
4253 	int ret;
4254 
4255 	/* Select the NAND device */
4256 	nand_get_device(mtd, FL_READING);
4257 	chip->select_chip(chip, chipnr);
4258 
4259 	ret = nand_block_checkbad(mtd, offs, 0);
4260 
4261 	chip->select_chip(chip, -1);
4262 	nand_release_device(mtd);
4263 
4264 	return ret;
4265 }
4266 
4267 /**
4268  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4269  * @mtd: MTD device structure
4270  * @ofs: offset relative to mtd start
4271  */
4272 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4273 {
4274 	int ret;
4275 
4276 	ret = nand_block_isbad(mtd, ofs);
4277 	if (ret) {
4278 		/* If it was bad already, return success and do nothing */
4279 		if (ret > 0)
4280 			return 0;
4281 		return ret;
4282 	}
4283 
4284 	return nand_block_markbad_lowlevel(mtd, ofs);
4285 }
4286 
4287 /**
4288  * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
4289  * @mtd: MTD device structure
4290  * @ofs: offset relative to mtd start
4291  * @len: length of mtd
4292  */
4293 static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
4294 {
4295 	struct nand_chip *chip = mtd_to_nand(mtd);
4296 	u32 part_start_block;
4297 	u32 part_end_block;
4298 	u32 part_start_die;
4299 	u32 part_end_die;
4300 
4301 	/*
4302 	 * max_bb_per_die and blocks_per_die used to determine
4303 	 * the maximum bad block count.
4304 	 */
4305 	if (!chip->max_bb_per_die || !chip->blocks_per_die)
4306 		return -ENOTSUPP;
4307 
4308 	/* Get the start and end of the partition in erase blocks. */
4309 	part_start_block = mtd_div_by_eb(ofs, mtd);
4310 	part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
4311 
4312 	/* Get the start and end LUNs of the partition. */
4313 	part_start_die = part_start_block / chip->blocks_per_die;
4314 	part_end_die = part_end_block / chip->blocks_per_die;
4315 
4316 	/*
4317 	 * Look up the bad blocks per unit and multiply by the number of units
4318 	 * that the partition spans.
4319 	 */
4320 	return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
4321 }
4322 
4323 /**
4324  * nand_suspend - [MTD Interface] Suspend the NAND flash
4325  * @mtd: MTD device structure
4326  */
4327 static int nand_suspend(struct mtd_info *mtd)
4328 {
4329 	return nand_get_device(mtd, FL_PM_SUSPENDED);
4330 }
4331 
4332 /**
4333  * nand_resume - [MTD Interface] Resume the NAND flash
4334  * @mtd: MTD device structure
4335  */
4336 static void nand_resume(struct mtd_info *mtd)
4337 {
4338 	struct nand_chip *chip = mtd_to_nand(mtd);
4339 
4340 	if (chip->state == FL_PM_SUSPENDED)
4341 		nand_release_device(mtd);
4342 	else
4343 		pr_err("%s called for a chip which is not in suspended state\n",
4344 			__func__);
4345 }
4346 
4347 /**
4348  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4349  *                 prevent further operations
4350  * @mtd: MTD device structure
4351  */
4352 static void nand_shutdown(struct mtd_info *mtd)
4353 {
4354 	nand_get_device(mtd, FL_PM_SUSPENDED);
4355 }
4356 
4357 /* Set default functions */
4358 static void nand_set_defaults(struct nand_chip *chip)
4359 {
4360 	nand_legacy_set_defaults(chip);
4361 
4362 	if (!chip->controller) {
4363 		chip->controller = &chip->dummy_controller;
4364 		nand_controller_init(chip->controller);
4365 	}
4366 
4367 	if (!chip->buf_align)
4368 		chip->buf_align = 1;
4369 }
4370 
4371 /* Sanitize ONFI strings so we can safely print them */
4372 void sanitize_string(uint8_t *s, size_t len)
4373 {
4374 	ssize_t i;
4375 
4376 	/* Null terminate */
4377 	s[len - 1] = 0;
4378 
4379 	/* Remove non printable chars */
4380 	for (i = 0; i < len - 1; i++) {
4381 		if (s[i] < ' ' || s[i] > 127)
4382 			s[i] = '?';
4383 	}
4384 
4385 	/* Remove trailing spaces */
4386 	strim(s);
4387 }
4388 
4389 /*
4390  * nand_id_has_period - Check if an ID string has a given wraparound period
4391  * @id_data: the ID string
4392  * @arrlen: the length of the @id_data array
4393  * @period: the period of repitition
4394  *
4395  * Check if an ID string is repeated within a given sequence of bytes at
4396  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4397  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4398  * if the repetition has a period of @period; otherwise, returns zero.
4399  */
4400 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4401 {
4402 	int i, j;
4403 	for (i = 0; i < period; i++)
4404 		for (j = i + period; j < arrlen; j += period)
4405 			if (id_data[i] != id_data[j])
4406 				return 0;
4407 	return 1;
4408 }
4409 
4410 /*
4411  * nand_id_len - Get the length of an ID string returned by CMD_READID
4412  * @id_data: the ID string
4413  * @arrlen: the length of the @id_data array
4414 
4415  * Returns the length of the ID string, according to known wraparound/trailing
4416  * zero patterns. If no pattern exists, returns the length of the array.
4417  */
4418 static int nand_id_len(u8 *id_data, int arrlen)
4419 {
4420 	int last_nonzero, period;
4421 
4422 	/* Find last non-zero byte */
4423 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4424 		if (id_data[last_nonzero])
4425 			break;
4426 
4427 	/* All zeros */
4428 	if (last_nonzero < 0)
4429 		return 0;
4430 
4431 	/* Calculate wraparound period */
4432 	for (period = 1; period < arrlen; period++)
4433 		if (nand_id_has_period(id_data, arrlen, period))
4434 			break;
4435 
4436 	/* There's a repeated pattern */
4437 	if (period < arrlen)
4438 		return period;
4439 
4440 	/* There are trailing zeros */
4441 	if (last_nonzero < arrlen - 1)
4442 		return last_nonzero + 1;
4443 
4444 	/* No pattern detected */
4445 	return arrlen;
4446 }
4447 
4448 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4449 static int nand_get_bits_per_cell(u8 cellinfo)
4450 {
4451 	int bits;
4452 
4453 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4454 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4455 	return bits + 1;
4456 }
4457 
4458 /*
4459  * Many new NAND share similar device ID codes, which represent the size of the
4460  * chip. The rest of the parameters must be decoded according to generic or
4461  * manufacturer-specific "extended ID" decoding patterns.
4462  */
4463 void nand_decode_ext_id(struct nand_chip *chip)
4464 {
4465 	struct mtd_info *mtd = nand_to_mtd(chip);
4466 	int extid;
4467 	u8 *id_data = chip->id.data;
4468 	/* The 3rd id byte holds MLC / multichip data */
4469 	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4470 	/* The 4th id byte is the important one */
4471 	extid = id_data[3];
4472 
4473 	/* Calc pagesize */
4474 	mtd->writesize = 1024 << (extid & 0x03);
4475 	extid >>= 2;
4476 	/* Calc oobsize */
4477 	mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4478 	extid >>= 2;
4479 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4480 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4481 	extid >>= 2;
4482 	/* Get buswidth information */
4483 	if (extid & 0x1)
4484 		chip->options |= NAND_BUSWIDTH_16;
4485 }
4486 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4487 
4488 /*
4489  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4490  * decodes a matching ID table entry and assigns the MTD size parameters for
4491  * the chip.
4492  */
4493 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4494 {
4495 	struct mtd_info *mtd = nand_to_mtd(chip);
4496 
4497 	mtd->erasesize = type->erasesize;
4498 	mtd->writesize = type->pagesize;
4499 	mtd->oobsize = mtd->writesize / 32;
4500 
4501 	/* All legacy ID NAND are small-page, SLC */
4502 	chip->bits_per_cell = 1;
4503 }
4504 
4505 /*
4506  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4507  * heuristic patterns using various detected parameters (e.g., manufacturer,
4508  * page size, cell-type information).
4509  */
4510 static void nand_decode_bbm_options(struct nand_chip *chip)
4511 {
4512 	struct mtd_info *mtd = nand_to_mtd(chip);
4513 
4514 	/* Set the bad block position */
4515 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4516 		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
4517 	else
4518 		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
4519 }
4520 
4521 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4522 {
4523 	return type->id_len;
4524 }
4525 
4526 static bool find_full_id_nand(struct nand_chip *chip,
4527 			      struct nand_flash_dev *type)
4528 {
4529 	struct mtd_info *mtd = nand_to_mtd(chip);
4530 	u8 *id_data = chip->id.data;
4531 
4532 	if (!strncmp(type->id, id_data, type->id_len)) {
4533 		mtd->writesize = type->pagesize;
4534 		mtd->erasesize = type->erasesize;
4535 		mtd->oobsize = type->oobsize;
4536 
4537 		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4538 		chip->chipsize = (uint64_t)type->chipsize << 20;
4539 		chip->options |= type->options;
4540 		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
4541 		chip->ecc_step_ds = NAND_ECC_STEP(type);
4542 		chip->onfi_timing_mode_default =
4543 					type->onfi_timing_mode_default;
4544 
4545 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4546 		if (!chip->parameters.model)
4547 			return false;
4548 
4549 		return true;
4550 	}
4551 	return false;
4552 }
4553 
4554 /*
4555  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4556  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4557  * table.
4558  */
4559 static void nand_manufacturer_detect(struct nand_chip *chip)
4560 {
4561 	/*
4562 	 * Try manufacturer detection if available and use
4563 	 * nand_decode_ext_id() otherwise.
4564 	 */
4565 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4566 	    chip->manufacturer.desc->ops->detect) {
4567 		/* The 3rd id byte holds MLC / multichip data */
4568 		chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4569 		chip->manufacturer.desc->ops->detect(chip);
4570 	} else {
4571 		nand_decode_ext_id(chip);
4572 	}
4573 }
4574 
4575 /*
4576  * Manufacturer initialization. This function is called for all NANDs including
4577  * ONFI and JEDEC compliant ones.
4578  * Manufacturer drivers should put all their specific initialization code in
4579  * their ->init() hook.
4580  */
4581 static int nand_manufacturer_init(struct nand_chip *chip)
4582 {
4583 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4584 	    !chip->manufacturer.desc->ops->init)
4585 		return 0;
4586 
4587 	return chip->manufacturer.desc->ops->init(chip);
4588 }
4589 
4590 /*
4591  * Manufacturer cleanup. This function is called for all NANDs including
4592  * ONFI and JEDEC compliant ones.
4593  * Manufacturer drivers should put all their specific cleanup code in their
4594  * ->cleanup() hook.
4595  */
4596 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4597 {
4598 	/* Release manufacturer private data */
4599 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4600 	    chip->manufacturer.desc->ops->cleanup)
4601 		chip->manufacturer.desc->ops->cleanup(chip);
4602 }
4603 
4604 static const char *
4605 nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
4606 {
4607 	return manufacturer ? manufacturer->name : "Unknown";
4608 }
4609 
4610 /*
4611  * Get the flash and manufacturer id and lookup if the type is supported.
4612  */
4613 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4614 {
4615 	const struct nand_manufacturer *manufacturer;
4616 	struct mtd_info *mtd = nand_to_mtd(chip);
4617 	int busw, ret;
4618 	u8 *id_data = chip->id.data;
4619 	u8 maf_id, dev_id;
4620 
4621 	/*
4622 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4623 	 * after power-up.
4624 	 */
4625 	ret = nand_reset(chip, 0);
4626 	if (ret)
4627 		return ret;
4628 
4629 	/* Select the device */
4630 	chip->select_chip(chip, 0);
4631 
4632 	/* Send the command for reading device ID */
4633 	ret = nand_readid_op(chip, 0, id_data, 2);
4634 	if (ret)
4635 		return ret;
4636 
4637 	/* Read manufacturer and device IDs */
4638 	maf_id = id_data[0];
4639 	dev_id = id_data[1];
4640 
4641 	/*
4642 	 * Try again to make sure, as some systems the bus-hold or other
4643 	 * interface concerns can cause random data which looks like a
4644 	 * possibly credible NAND flash to appear. If the two results do
4645 	 * not match, ignore the device completely.
4646 	 */
4647 
4648 	/* Read entire ID string */
4649 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4650 	if (ret)
4651 		return ret;
4652 
4653 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
4654 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4655 			maf_id, dev_id, id_data[0], id_data[1]);
4656 		return -ENODEV;
4657 	}
4658 
4659 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4660 
4661 	/* Try to identify manufacturer */
4662 	manufacturer = nand_get_manufacturer(maf_id);
4663 	chip->manufacturer.desc = manufacturer;
4664 
4665 	if (!type)
4666 		type = nand_flash_ids;
4667 
4668 	/*
4669 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4670 	 * override it.
4671 	 * This is required to make sure initial NAND bus width set by the
4672 	 * NAND controller driver is coherent with the real NAND bus width
4673 	 * (extracted by auto-detection code).
4674 	 */
4675 	busw = chip->options & NAND_BUSWIDTH_16;
4676 
4677 	/*
4678 	 * The flag is only set (never cleared), reset it to its default value
4679 	 * before starting auto-detection.
4680 	 */
4681 	chip->options &= ~NAND_BUSWIDTH_16;
4682 
4683 	for (; type->name != NULL; type++) {
4684 		if (is_full_id_nand(type)) {
4685 			if (find_full_id_nand(chip, type))
4686 				goto ident_done;
4687 		} else if (dev_id == type->dev_id) {
4688 			break;
4689 		}
4690 	}
4691 
4692 	if (!type->name || !type->pagesize) {
4693 		/* Check if the chip is ONFI compliant */
4694 		ret = nand_onfi_detect(chip);
4695 		if (ret < 0)
4696 			return ret;
4697 		else if (ret)
4698 			goto ident_done;
4699 
4700 		/* Check if the chip is JEDEC compliant */
4701 		ret = nand_jedec_detect(chip);
4702 		if (ret < 0)
4703 			return ret;
4704 		else if (ret)
4705 			goto ident_done;
4706 	}
4707 
4708 	if (!type->name)
4709 		return -ENODEV;
4710 
4711 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4712 	if (!chip->parameters.model)
4713 		return -ENOMEM;
4714 
4715 	chip->chipsize = (uint64_t)type->chipsize << 20;
4716 
4717 	if (!type->pagesize)
4718 		nand_manufacturer_detect(chip);
4719 	else
4720 		nand_decode_id(chip, type);
4721 
4722 	/* Get chip options */
4723 	chip->options |= type->options;
4724 
4725 ident_done:
4726 	if (!mtd->name)
4727 		mtd->name = chip->parameters.model;
4728 
4729 	if (chip->options & NAND_BUSWIDTH_AUTO) {
4730 		WARN_ON(busw & NAND_BUSWIDTH_16);
4731 		nand_set_defaults(chip);
4732 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4733 		/*
4734 		 * Check, if buswidth is correct. Hardware drivers should set
4735 		 * chip correct!
4736 		 */
4737 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4738 			maf_id, dev_id);
4739 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4740 			mtd->name);
4741 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4742 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4743 		ret = -EINVAL;
4744 
4745 		goto free_detect_allocation;
4746 	}
4747 
4748 	nand_decode_bbm_options(chip);
4749 
4750 	/* Calculate the address shift from the page size */
4751 	chip->page_shift = ffs(mtd->writesize) - 1;
4752 	/* Convert chipsize to number of pages per chip -1 */
4753 	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
4754 
4755 	chip->bbt_erase_shift = chip->phys_erase_shift =
4756 		ffs(mtd->erasesize) - 1;
4757 	if (chip->chipsize & 0xffffffff)
4758 		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
4759 	else {
4760 		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
4761 		chip->chip_shift += 32 - 1;
4762 	}
4763 
4764 	if (chip->chip_shift - chip->page_shift > 16)
4765 		chip->options |= NAND_ROW_ADDR_3;
4766 
4767 	chip->badblockbits = 8;
4768 
4769 	nand_legacy_adjust_cmdfunc(chip);
4770 
4771 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4772 		maf_id, dev_id);
4773 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4774 		chip->parameters.model);
4775 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4776 		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4777 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4778 	return 0;
4779 
4780 free_detect_allocation:
4781 	kfree(chip->parameters.model);
4782 
4783 	return ret;
4784 }
4785 
4786 static const char * const nand_ecc_modes[] = {
4787 	[NAND_ECC_NONE]		= "none",
4788 	[NAND_ECC_SOFT]		= "soft",
4789 	[NAND_ECC_HW]		= "hw",
4790 	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
4791 	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
4792 	[NAND_ECC_ON_DIE]	= "on-die",
4793 };
4794 
4795 static int of_get_nand_ecc_mode(struct device_node *np)
4796 {
4797 	const char *pm;
4798 	int err, i;
4799 
4800 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4801 	if (err < 0)
4802 		return err;
4803 
4804 	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4805 		if (!strcasecmp(pm, nand_ecc_modes[i]))
4806 			return i;
4807 
4808 	/*
4809 	 * For backward compatibility we support few obsoleted values that don't
4810 	 * have their mappings into nand_ecc_modes_t anymore (they were merged
4811 	 * with other enums).
4812 	 */
4813 	if (!strcasecmp(pm, "soft_bch"))
4814 		return NAND_ECC_SOFT;
4815 
4816 	return -ENODEV;
4817 }
4818 
4819 static const char * const nand_ecc_algos[] = {
4820 	[NAND_ECC_HAMMING]	= "hamming",
4821 	[NAND_ECC_BCH]		= "bch",
4822 	[NAND_ECC_RS]		= "rs",
4823 };
4824 
4825 static int of_get_nand_ecc_algo(struct device_node *np)
4826 {
4827 	const char *pm;
4828 	int err, i;
4829 
4830 	err = of_property_read_string(np, "nand-ecc-algo", &pm);
4831 	if (!err) {
4832 		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4833 			if (!strcasecmp(pm, nand_ecc_algos[i]))
4834 				return i;
4835 		return -ENODEV;
4836 	}
4837 
4838 	/*
4839 	 * For backward compatibility we also read "nand-ecc-mode" checking
4840 	 * for some obsoleted values that were specifying ECC algorithm.
4841 	 */
4842 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
4843 	if (err < 0)
4844 		return err;
4845 
4846 	if (!strcasecmp(pm, "soft"))
4847 		return NAND_ECC_HAMMING;
4848 	else if (!strcasecmp(pm, "soft_bch"))
4849 		return NAND_ECC_BCH;
4850 
4851 	return -ENODEV;
4852 }
4853 
4854 static int of_get_nand_ecc_step_size(struct device_node *np)
4855 {
4856 	int ret;
4857 	u32 val;
4858 
4859 	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4860 	return ret ? ret : val;
4861 }
4862 
4863 static int of_get_nand_ecc_strength(struct device_node *np)
4864 {
4865 	int ret;
4866 	u32 val;
4867 
4868 	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4869 	return ret ? ret : val;
4870 }
4871 
4872 static int of_get_nand_bus_width(struct device_node *np)
4873 {
4874 	u32 val;
4875 
4876 	if (of_property_read_u32(np, "nand-bus-width", &val))
4877 		return 8;
4878 
4879 	switch (val) {
4880 	case 8:
4881 	case 16:
4882 		return val;
4883 	default:
4884 		return -EIO;
4885 	}
4886 }
4887 
4888 static bool of_get_nand_on_flash_bbt(struct device_node *np)
4889 {
4890 	return of_property_read_bool(np, "nand-on-flash-bbt");
4891 }
4892 
4893 static int nand_dt_init(struct nand_chip *chip)
4894 {
4895 	struct device_node *dn = nand_get_flash_node(chip);
4896 	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4897 
4898 	if (!dn)
4899 		return 0;
4900 
4901 	if (of_get_nand_bus_width(dn) == 16)
4902 		chip->options |= NAND_BUSWIDTH_16;
4903 
4904 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
4905 		chip->options |= NAND_IS_BOOT_MEDIUM;
4906 
4907 	if (of_get_nand_on_flash_bbt(dn))
4908 		chip->bbt_options |= NAND_BBT_USE_FLASH;
4909 
4910 	ecc_mode = of_get_nand_ecc_mode(dn);
4911 	ecc_algo = of_get_nand_ecc_algo(dn);
4912 	ecc_strength = of_get_nand_ecc_strength(dn);
4913 	ecc_step = of_get_nand_ecc_step_size(dn);
4914 
4915 	if (ecc_mode >= 0)
4916 		chip->ecc.mode = ecc_mode;
4917 
4918 	if (ecc_algo >= 0)
4919 		chip->ecc.algo = ecc_algo;
4920 
4921 	if (ecc_strength >= 0)
4922 		chip->ecc.strength = ecc_strength;
4923 
4924 	if (ecc_step > 0)
4925 		chip->ecc.size = ecc_step;
4926 
4927 	if (of_property_read_bool(dn, "nand-ecc-maximize"))
4928 		chip->ecc.options |= NAND_ECC_MAXIMIZE;
4929 
4930 	return 0;
4931 }
4932 
4933 /**
4934  * nand_scan_ident - Scan for the NAND device
4935  * @chip: NAND chip object
4936  * @maxchips: number of chips to scan for
4937  * @table: alternative NAND ID table
4938  *
4939  * This is the first phase of the normal nand_scan() function. It reads the
4940  * flash ID and sets up MTD fields accordingly.
4941  *
4942  * This helper used to be called directly from controller drivers that needed
4943  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
4944  * prevented dynamic allocations during this phase which was unconvenient and
4945  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
4946  */
4947 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
4948 			   struct nand_flash_dev *table)
4949 {
4950 	struct mtd_info *mtd = nand_to_mtd(chip);
4951 	int nand_maf_id, nand_dev_id;
4952 	unsigned int i;
4953 	int ret;
4954 
4955 	/* Enforce the right timings for reset/detection */
4956 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
4957 
4958 	ret = nand_dt_init(chip);
4959 	if (ret)
4960 		return ret;
4961 
4962 	if (!mtd->name && mtd->dev.parent)
4963 		mtd->name = dev_name(mtd->dev.parent);
4964 
4965 	if (chip->exec_op && !chip->select_chip) {
4966 		pr_err("->select_chip() is mandatory when implementing ->exec_op()\n");
4967 		return -EINVAL;
4968 	}
4969 
4970 	ret = nand_legacy_check_hooks(chip);
4971 	if (ret)
4972 		return ret;
4973 
4974 	/* Set the default functions */
4975 	nand_set_defaults(chip);
4976 
4977 	/* Read the flash type */
4978 	ret = nand_detect(chip, table);
4979 	if (ret) {
4980 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4981 			pr_warn("No NAND device found\n");
4982 		chip->select_chip(chip, -1);
4983 		return ret;
4984 	}
4985 
4986 	nand_maf_id = chip->id.data[0];
4987 	nand_dev_id = chip->id.data[1];
4988 
4989 	chip->select_chip(chip, -1);
4990 
4991 	/* Check for a chip array */
4992 	for (i = 1; i < maxchips; i++) {
4993 		u8 id[2];
4994 
4995 		/* See comment in nand_get_flash_type for reset */
4996 		nand_reset(chip, i);
4997 
4998 		chip->select_chip(chip, i);
4999 		/* Send the command for reading device ID */
5000 		nand_readid_op(chip, 0, id, sizeof(id));
5001 		/* Read manufacturer and device IDs */
5002 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5003 			chip->select_chip(chip, -1);
5004 			break;
5005 		}
5006 		chip->select_chip(chip, -1);
5007 	}
5008 	if (i > 1)
5009 		pr_info("%d chips detected\n", i);
5010 
5011 	/* Store the number of chips and calc total size for mtd */
5012 	chip->numchips = i;
5013 	mtd->size = i * chip->chipsize;
5014 
5015 	return 0;
5016 }
5017 
5018 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5019 {
5020 	kfree(chip->parameters.model);
5021 	kfree(chip->parameters.onfi);
5022 }
5023 
5024 static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
5025 {
5026 	struct nand_chip *chip = mtd_to_nand(mtd);
5027 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5028 
5029 	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5030 		return -EINVAL;
5031 
5032 	switch (ecc->algo) {
5033 	case NAND_ECC_HAMMING:
5034 		ecc->calculate = nand_calculate_ecc;
5035 		ecc->correct = nand_correct_data;
5036 		ecc->read_page = nand_read_page_swecc;
5037 		ecc->read_subpage = nand_read_subpage;
5038 		ecc->write_page = nand_write_page_swecc;
5039 		ecc->read_page_raw = nand_read_page_raw;
5040 		ecc->write_page_raw = nand_write_page_raw;
5041 		ecc->read_oob = nand_read_oob_std;
5042 		ecc->write_oob = nand_write_oob_std;
5043 		if (!ecc->size)
5044 			ecc->size = 256;
5045 		ecc->bytes = 3;
5046 		ecc->strength = 1;
5047 
5048 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC))
5049 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5050 
5051 		return 0;
5052 	case NAND_ECC_BCH:
5053 		if (!mtd_nand_has_bch()) {
5054 			WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
5055 			return -EINVAL;
5056 		}
5057 		ecc->calculate = nand_bch_calculate_ecc;
5058 		ecc->correct = nand_bch_correct_data;
5059 		ecc->read_page = nand_read_page_swecc;
5060 		ecc->read_subpage = nand_read_subpage;
5061 		ecc->write_page = nand_write_page_swecc;
5062 		ecc->read_page_raw = nand_read_page_raw;
5063 		ecc->write_page_raw = nand_write_page_raw;
5064 		ecc->read_oob = nand_read_oob_std;
5065 		ecc->write_oob = nand_write_oob_std;
5066 
5067 		/*
5068 		* Board driver should supply ecc.size and ecc.strength
5069 		* values to select how many bits are correctable.
5070 		* Otherwise, default to 4 bits for large page devices.
5071 		*/
5072 		if (!ecc->size && (mtd->oobsize >= 64)) {
5073 			ecc->size = 512;
5074 			ecc->strength = 4;
5075 		}
5076 
5077 		/*
5078 		 * if no ecc placement scheme was provided pickup the default
5079 		 * large page one.
5080 		 */
5081 		if (!mtd->ooblayout) {
5082 			/* handle large page devices only */
5083 			if (mtd->oobsize < 64) {
5084 				WARN(1, "OOB layout is required when using software BCH on small pages\n");
5085 				return -EINVAL;
5086 			}
5087 
5088 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
5089 
5090 		}
5091 
5092 		/*
5093 		 * We can only maximize ECC config when the default layout is
5094 		 * used, otherwise we don't know how many bytes can really be
5095 		 * used.
5096 		 */
5097 		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
5098 		    ecc->options & NAND_ECC_MAXIMIZE) {
5099 			int steps, bytes;
5100 
5101 			/* Always prefer 1k blocks over 512bytes ones */
5102 			ecc->size = 1024;
5103 			steps = mtd->writesize / ecc->size;
5104 
5105 			/* Reserve 2 bytes for the BBM */
5106 			bytes = (mtd->oobsize - 2) / steps;
5107 			ecc->strength = bytes * 8 / fls(8 * ecc->size);
5108 		}
5109 
5110 		/* See nand_bch_init() for details. */
5111 		ecc->bytes = 0;
5112 		ecc->priv = nand_bch_init(mtd);
5113 		if (!ecc->priv) {
5114 			WARN(1, "BCH ECC initialization failed!\n");
5115 			return -EINVAL;
5116 		}
5117 		return 0;
5118 	default:
5119 		WARN(1, "Unsupported ECC algorithm!\n");
5120 		return -EINVAL;
5121 	}
5122 }
5123 
5124 /**
5125  * nand_check_ecc_caps - check the sanity of preset ECC settings
5126  * @chip: nand chip info structure
5127  * @caps: ECC caps info structure
5128  * @oobavail: OOB size that the ECC engine can use
5129  *
5130  * When ECC step size and strength are already set, check if they are supported
5131  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5132  * On success, the calculated ECC bytes is set.
5133  */
5134 static int
5135 nand_check_ecc_caps(struct nand_chip *chip,
5136 		    const struct nand_ecc_caps *caps, int oobavail)
5137 {
5138 	struct mtd_info *mtd = nand_to_mtd(chip);
5139 	const struct nand_ecc_step_info *stepinfo;
5140 	int preset_step = chip->ecc.size;
5141 	int preset_strength = chip->ecc.strength;
5142 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5143 	int i, j;
5144 
5145 	for (i = 0; i < caps->nstepinfos; i++) {
5146 		stepinfo = &caps->stepinfos[i];
5147 
5148 		if (stepinfo->stepsize != preset_step)
5149 			continue;
5150 
5151 		for (j = 0; j < stepinfo->nstrengths; j++) {
5152 			if (stepinfo->strengths[j] != preset_strength)
5153 				continue;
5154 
5155 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
5156 							 preset_strength);
5157 			if (WARN_ON_ONCE(ecc_bytes < 0))
5158 				return ecc_bytes;
5159 
5160 			if (ecc_bytes * nsteps > oobavail) {
5161 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5162 				       preset_step, preset_strength);
5163 				return -ENOSPC;
5164 			}
5165 
5166 			chip->ecc.bytes = ecc_bytes;
5167 
5168 			return 0;
5169 		}
5170 	}
5171 
5172 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5173 	       preset_step, preset_strength);
5174 
5175 	return -ENOTSUPP;
5176 }
5177 
5178 /**
5179  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5180  * @chip: nand chip info structure
5181  * @caps: ECC engine caps info structure
5182  * @oobavail: OOB size that the ECC engine can use
5183  *
5184  * If a chip's ECC requirement is provided, try to meet it with the least
5185  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5186  * On success, the chosen ECC settings are set.
5187  */
5188 static int
5189 nand_match_ecc_req(struct nand_chip *chip,
5190 		   const struct nand_ecc_caps *caps, int oobavail)
5191 {
5192 	struct mtd_info *mtd = nand_to_mtd(chip);
5193 	const struct nand_ecc_step_info *stepinfo;
5194 	int req_step = chip->ecc_step_ds;
5195 	int req_strength = chip->ecc_strength_ds;
5196 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5197 	int best_step, best_strength, best_ecc_bytes;
5198 	int best_ecc_bytes_total = INT_MAX;
5199 	int i, j;
5200 
5201 	/* No information provided by the NAND chip */
5202 	if (!req_step || !req_strength)
5203 		return -ENOTSUPP;
5204 
5205 	/* number of correctable bits the chip requires in a page */
5206 	req_corr = mtd->writesize / req_step * req_strength;
5207 
5208 	for (i = 0; i < caps->nstepinfos; i++) {
5209 		stepinfo = &caps->stepinfos[i];
5210 		step_size = stepinfo->stepsize;
5211 
5212 		for (j = 0; j < stepinfo->nstrengths; j++) {
5213 			strength = stepinfo->strengths[j];
5214 
5215 			/*
5216 			 * If both step size and strength are smaller than the
5217 			 * chip's requirement, it is not easy to compare the
5218 			 * resulted reliability.
5219 			 */
5220 			if (step_size < req_step && strength < req_strength)
5221 				continue;
5222 
5223 			if (mtd->writesize % step_size)
5224 				continue;
5225 
5226 			nsteps = mtd->writesize / step_size;
5227 
5228 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5229 			if (WARN_ON_ONCE(ecc_bytes < 0))
5230 				continue;
5231 			ecc_bytes_total = ecc_bytes * nsteps;
5232 
5233 			if (ecc_bytes_total > oobavail ||
5234 			    strength * nsteps < req_corr)
5235 				continue;
5236 
5237 			/*
5238 			 * We assume the best is to meet the chip's requrement
5239 			 * with the least number of ECC bytes.
5240 			 */
5241 			if (ecc_bytes_total < best_ecc_bytes_total) {
5242 				best_ecc_bytes_total = ecc_bytes_total;
5243 				best_step = step_size;
5244 				best_strength = strength;
5245 				best_ecc_bytes = ecc_bytes;
5246 			}
5247 		}
5248 	}
5249 
5250 	if (best_ecc_bytes_total == INT_MAX)
5251 		return -ENOTSUPP;
5252 
5253 	chip->ecc.size = best_step;
5254 	chip->ecc.strength = best_strength;
5255 	chip->ecc.bytes = best_ecc_bytes;
5256 
5257 	return 0;
5258 }
5259 
5260 /**
5261  * nand_maximize_ecc - choose the max ECC strength available
5262  * @chip: nand chip info structure
5263  * @caps: ECC engine caps info structure
5264  * @oobavail: OOB size that the ECC engine can use
5265  *
5266  * Choose the max ECC strength that is supported on the controller, and can fit
5267  * within the chip's OOB.  On success, the chosen ECC settings are set.
5268  */
5269 static int
5270 nand_maximize_ecc(struct nand_chip *chip,
5271 		  const struct nand_ecc_caps *caps, int oobavail)
5272 {
5273 	struct mtd_info *mtd = nand_to_mtd(chip);
5274 	const struct nand_ecc_step_info *stepinfo;
5275 	int step_size, strength, nsteps, ecc_bytes, corr;
5276 	int best_corr = 0;
5277 	int best_step = 0;
5278 	int best_strength, best_ecc_bytes;
5279 	int i, j;
5280 
5281 	for (i = 0; i < caps->nstepinfos; i++) {
5282 		stepinfo = &caps->stepinfos[i];
5283 		step_size = stepinfo->stepsize;
5284 
5285 		/* If chip->ecc.size is already set, respect it */
5286 		if (chip->ecc.size && step_size != chip->ecc.size)
5287 			continue;
5288 
5289 		for (j = 0; j < stepinfo->nstrengths; j++) {
5290 			strength = stepinfo->strengths[j];
5291 
5292 			if (mtd->writesize % step_size)
5293 				continue;
5294 
5295 			nsteps = mtd->writesize / step_size;
5296 
5297 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5298 			if (WARN_ON_ONCE(ecc_bytes < 0))
5299 				continue;
5300 
5301 			if (ecc_bytes * nsteps > oobavail)
5302 				continue;
5303 
5304 			corr = strength * nsteps;
5305 
5306 			/*
5307 			 * If the number of correctable bits is the same,
5308 			 * bigger step_size has more reliability.
5309 			 */
5310 			if (corr > best_corr ||
5311 			    (corr == best_corr && step_size > best_step)) {
5312 				best_corr = corr;
5313 				best_step = step_size;
5314 				best_strength = strength;
5315 				best_ecc_bytes = ecc_bytes;
5316 			}
5317 		}
5318 	}
5319 
5320 	if (!best_corr)
5321 		return -ENOTSUPP;
5322 
5323 	chip->ecc.size = best_step;
5324 	chip->ecc.strength = best_strength;
5325 	chip->ecc.bytes = best_ecc_bytes;
5326 
5327 	return 0;
5328 }
5329 
5330 /**
5331  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5332  * @chip: nand chip info structure
5333  * @caps: ECC engine caps info structure
5334  * @oobavail: OOB size that the ECC engine can use
5335  *
5336  * Choose the ECC configuration according to following logic
5337  *
5338  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5339  *    then check if it is supported by this controller.
5340  * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
5341  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5342  *    to the chip's requirement. If available OOB size can't fit the chip
5343  *    requirement then fallback to the maximum ECC step size and ECC strength.
5344  *
5345  * On success, the chosen ECC settings are set.
5346  */
5347 int nand_ecc_choose_conf(struct nand_chip *chip,
5348 			 const struct nand_ecc_caps *caps, int oobavail)
5349 {
5350 	struct mtd_info *mtd = nand_to_mtd(chip);
5351 
5352 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5353 		return -EINVAL;
5354 
5355 	if (chip->ecc.size && chip->ecc.strength)
5356 		return nand_check_ecc_caps(chip, caps, oobavail);
5357 
5358 	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
5359 		return nand_maximize_ecc(chip, caps, oobavail);
5360 
5361 	if (!nand_match_ecc_req(chip, caps, oobavail))
5362 		return 0;
5363 
5364 	return nand_maximize_ecc(chip, caps, oobavail);
5365 }
5366 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5367 
5368 /*
5369  * Check if the chip configuration meet the datasheet requirements.
5370 
5371  * If our configuration corrects A bits per B bytes and the minimum
5372  * required correction level is X bits per Y bytes, then we must ensure
5373  * both of the following are true:
5374  *
5375  * (1) A / B >= X / Y
5376  * (2) A >= X
5377  *
5378  * Requirement (1) ensures we can correct for the required bitflip density.
5379  * Requirement (2) ensures we can correct even when all bitflips are clumped
5380  * in the same sector.
5381  */
5382 static bool nand_ecc_strength_good(struct mtd_info *mtd)
5383 {
5384 	struct nand_chip *chip = mtd_to_nand(mtd);
5385 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5386 	int corr, ds_corr;
5387 
5388 	if (ecc->size == 0 || chip->ecc_step_ds == 0)
5389 		/* Not enough information */
5390 		return true;
5391 
5392 	/*
5393 	 * We get the number of corrected bits per page to compare
5394 	 * the correction density.
5395 	 */
5396 	corr = (mtd->writesize * ecc->strength) / ecc->size;
5397 	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
5398 
5399 	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
5400 }
5401 
5402 /**
5403  * nand_scan_tail - Scan for the NAND device
5404  * @chip: NAND chip object
5405  *
5406  * This is the second phase of the normal nand_scan() function. It fills out
5407  * all the uninitialized function pointers with the defaults and scans for a
5408  * bad block table if appropriate.
5409  */
5410 static int nand_scan_tail(struct nand_chip *chip)
5411 {
5412 	struct mtd_info *mtd = nand_to_mtd(chip);
5413 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5414 	int ret, i;
5415 
5416 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
5417 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5418 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5419 		return -EINVAL;
5420 	}
5421 
5422 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5423 	if (!chip->data_buf)
5424 		return -ENOMEM;
5425 
5426 	/*
5427 	 * FIXME: some NAND manufacturer drivers expect the first die to be
5428 	 * selected when manufacturer->init() is called. They should be fixed
5429 	 * to explictly select the relevant die when interacting with the NAND
5430 	 * chip.
5431 	 */
5432 	chip->select_chip(chip, 0);
5433 	ret = nand_manufacturer_init(chip);
5434 	chip->select_chip(chip, -1);
5435 	if (ret)
5436 		goto err_free_buf;
5437 
5438 	/* Set the internal oob buffer location, just after the page data */
5439 	chip->oob_poi = chip->data_buf + mtd->writesize;
5440 
5441 	/*
5442 	 * If no default placement scheme is given, select an appropriate one.
5443 	 */
5444 	if (!mtd->ooblayout &&
5445 	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
5446 		switch (mtd->oobsize) {
5447 		case 8:
5448 		case 16:
5449 			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
5450 			break;
5451 		case 64:
5452 		case 128:
5453 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
5454 			break;
5455 		default:
5456 			/*
5457 			 * Expose the whole OOB area to users if ECC_NONE
5458 			 * is passed. We could do that for all kind of
5459 			 * ->oobsize, but we must keep the old large/small
5460 			 * page with ECC layout when ->oobsize <= 128 for
5461 			 * compatibility reasons.
5462 			 */
5463 			if (ecc->mode == NAND_ECC_NONE) {
5464 				mtd_set_ooblayout(mtd,
5465 						&nand_ooblayout_lp_ops);
5466 				break;
5467 			}
5468 
5469 			WARN(1, "No oob scheme defined for oobsize %d\n",
5470 				mtd->oobsize);
5471 			ret = -EINVAL;
5472 			goto err_nand_manuf_cleanup;
5473 		}
5474 	}
5475 
5476 	/*
5477 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5478 	 * selected and we have 256 byte pagesize fallback to software ECC
5479 	 */
5480 
5481 	switch (ecc->mode) {
5482 	case NAND_ECC_HW_OOB_FIRST:
5483 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
5484 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
5485 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5486 			ret = -EINVAL;
5487 			goto err_nand_manuf_cleanup;
5488 		}
5489 		if (!ecc->read_page)
5490 			ecc->read_page = nand_read_page_hwecc_oob_first;
5491 
5492 	case NAND_ECC_HW:
5493 		/* Use standard hwecc read page function? */
5494 		if (!ecc->read_page)
5495 			ecc->read_page = nand_read_page_hwecc;
5496 		if (!ecc->write_page)
5497 			ecc->write_page = nand_write_page_hwecc;
5498 		if (!ecc->read_page_raw)
5499 			ecc->read_page_raw = nand_read_page_raw;
5500 		if (!ecc->write_page_raw)
5501 			ecc->write_page_raw = nand_write_page_raw;
5502 		if (!ecc->read_oob)
5503 			ecc->read_oob = nand_read_oob_std;
5504 		if (!ecc->write_oob)
5505 			ecc->write_oob = nand_write_oob_std;
5506 		if (!ecc->read_subpage)
5507 			ecc->read_subpage = nand_read_subpage;
5508 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5509 			ecc->write_subpage = nand_write_subpage_hwecc;
5510 
5511 	case NAND_ECC_HW_SYNDROME:
5512 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5513 		    (!ecc->read_page ||
5514 		     ecc->read_page == nand_read_page_hwecc ||
5515 		     !ecc->write_page ||
5516 		     ecc->write_page == nand_write_page_hwecc)) {
5517 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5518 			ret = -EINVAL;
5519 			goto err_nand_manuf_cleanup;
5520 		}
5521 		/* Use standard syndrome read/write page function? */
5522 		if (!ecc->read_page)
5523 			ecc->read_page = nand_read_page_syndrome;
5524 		if (!ecc->write_page)
5525 			ecc->write_page = nand_write_page_syndrome;
5526 		if (!ecc->read_page_raw)
5527 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5528 		if (!ecc->write_page_raw)
5529 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5530 		if (!ecc->read_oob)
5531 			ecc->read_oob = nand_read_oob_syndrome;
5532 		if (!ecc->write_oob)
5533 			ecc->write_oob = nand_write_oob_syndrome;
5534 
5535 		if (mtd->writesize >= ecc->size) {
5536 			if (!ecc->strength) {
5537 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5538 				ret = -EINVAL;
5539 				goto err_nand_manuf_cleanup;
5540 			}
5541 			break;
5542 		}
5543 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5544 			ecc->size, mtd->writesize);
5545 		ecc->mode = NAND_ECC_SOFT;
5546 		ecc->algo = NAND_ECC_HAMMING;
5547 
5548 	case NAND_ECC_SOFT:
5549 		ret = nand_set_ecc_soft_ops(mtd);
5550 		if (ret) {
5551 			ret = -EINVAL;
5552 			goto err_nand_manuf_cleanup;
5553 		}
5554 		break;
5555 
5556 	case NAND_ECC_ON_DIE:
5557 		if (!ecc->read_page || !ecc->write_page) {
5558 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5559 			ret = -EINVAL;
5560 			goto err_nand_manuf_cleanup;
5561 		}
5562 		if (!ecc->read_oob)
5563 			ecc->read_oob = nand_read_oob_std;
5564 		if (!ecc->write_oob)
5565 			ecc->write_oob = nand_write_oob_std;
5566 		break;
5567 
5568 	case NAND_ECC_NONE:
5569 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5570 		ecc->read_page = nand_read_page_raw;
5571 		ecc->write_page = nand_write_page_raw;
5572 		ecc->read_oob = nand_read_oob_std;
5573 		ecc->read_page_raw = nand_read_page_raw;
5574 		ecc->write_page_raw = nand_write_page_raw;
5575 		ecc->write_oob = nand_write_oob_std;
5576 		ecc->size = mtd->writesize;
5577 		ecc->bytes = 0;
5578 		ecc->strength = 0;
5579 		break;
5580 
5581 	default:
5582 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5583 		ret = -EINVAL;
5584 		goto err_nand_manuf_cleanup;
5585 	}
5586 
5587 	if (ecc->correct || ecc->calculate) {
5588 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5589 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5590 		if (!ecc->calc_buf || !ecc->code_buf) {
5591 			ret = -ENOMEM;
5592 			goto err_nand_manuf_cleanup;
5593 		}
5594 	}
5595 
5596 	/* For many systems, the standard OOB write also works for raw */
5597 	if (!ecc->read_oob_raw)
5598 		ecc->read_oob_raw = ecc->read_oob;
5599 	if (!ecc->write_oob_raw)
5600 		ecc->write_oob_raw = ecc->write_oob;
5601 
5602 	/* propagate ecc info to mtd_info */
5603 	mtd->ecc_strength = ecc->strength;
5604 	mtd->ecc_step_size = ecc->size;
5605 
5606 	/*
5607 	 * Set the number of read / write steps for one page depending on ECC
5608 	 * mode.
5609 	 */
5610 	ecc->steps = mtd->writesize / ecc->size;
5611 	if (ecc->steps * ecc->size != mtd->writesize) {
5612 		WARN(1, "Invalid ECC parameters\n");
5613 		ret = -EINVAL;
5614 		goto err_nand_manuf_cleanup;
5615 	}
5616 	ecc->total = ecc->steps * ecc->bytes;
5617 	if (ecc->total > mtd->oobsize) {
5618 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5619 		ret = -EINVAL;
5620 		goto err_nand_manuf_cleanup;
5621 	}
5622 
5623 	/*
5624 	 * The number of bytes available for a client to place data into
5625 	 * the out of band area.
5626 	 */
5627 	ret = mtd_ooblayout_count_freebytes(mtd);
5628 	if (ret < 0)
5629 		ret = 0;
5630 
5631 	mtd->oobavail = ret;
5632 
5633 	/* ECC sanity check: warn if it's too weak */
5634 	if (!nand_ecc_strength_good(mtd))
5635 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
5636 			mtd->name);
5637 
5638 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5639 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5640 		switch (ecc->steps) {
5641 		case 2:
5642 			mtd->subpage_sft = 1;
5643 			break;
5644 		case 4:
5645 		case 8:
5646 		case 16:
5647 			mtd->subpage_sft = 2;
5648 			break;
5649 		}
5650 	}
5651 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5652 
5653 	/* Initialize state */
5654 	chip->state = FL_READY;
5655 
5656 	/* Invalidate the pagebuffer reference */
5657 	chip->pagebuf = -1;
5658 
5659 	/* Large page NAND with SOFT_ECC should support subpage reads */
5660 	switch (ecc->mode) {
5661 	case NAND_ECC_SOFT:
5662 		if (chip->page_shift > 9)
5663 			chip->options |= NAND_SUBPAGE_READ;
5664 		break;
5665 
5666 	default:
5667 		break;
5668 	}
5669 
5670 	/* Fill in remaining MTD driver data */
5671 	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
5672 	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
5673 						MTD_CAP_NANDFLASH;
5674 	mtd->_erase = nand_erase;
5675 	mtd->_point = NULL;
5676 	mtd->_unpoint = NULL;
5677 	mtd->_panic_write = panic_nand_write;
5678 	mtd->_read_oob = nand_read_oob;
5679 	mtd->_write_oob = nand_write_oob;
5680 	mtd->_sync = nand_sync;
5681 	mtd->_lock = NULL;
5682 	mtd->_unlock = NULL;
5683 	mtd->_suspend = nand_suspend;
5684 	mtd->_resume = nand_resume;
5685 	mtd->_reboot = nand_shutdown;
5686 	mtd->_block_isreserved = nand_block_isreserved;
5687 	mtd->_block_isbad = nand_block_isbad;
5688 	mtd->_block_markbad = nand_block_markbad;
5689 	mtd->_max_bad_blocks = nand_max_bad_blocks;
5690 	mtd->writebufsize = mtd->writesize;
5691 
5692 	/*
5693 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
5694 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5695 	 * properly set.
5696 	 */
5697 	if (!mtd->bitflip_threshold)
5698 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5699 
5700 	/* Initialize the ->data_interface field. */
5701 	ret = nand_init_data_interface(chip);
5702 	if (ret)
5703 		goto err_nand_manuf_cleanup;
5704 
5705 	/* Enter fastest possible mode on all dies. */
5706 	for (i = 0; i < chip->numchips; i++) {
5707 		ret = nand_setup_data_interface(chip, i);
5708 		if (ret)
5709 			goto err_nand_manuf_cleanup;
5710 	}
5711 
5712 	/* Check, if we should skip the bad block table scan */
5713 	if (chip->options & NAND_SKIP_BBTSCAN)
5714 		return 0;
5715 
5716 	/* Build bad block table */
5717 	ret = nand_create_bbt(chip);
5718 	if (ret)
5719 		goto err_nand_manuf_cleanup;
5720 
5721 	return 0;
5722 
5723 
5724 err_nand_manuf_cleanup:
5725 	nand_manufacturer_cleanup(chip);
5726 
5727 err_free_buf:
5728 	kfree(chip->data_buf);
5729 	kfree(ecc->code_buf);
5730 	kfree(ecc->calc_buf);
5731 
5732 	return ret;
5733 }
5734 
5735 static int nand_attach(struct nand_chip *chip)
5736 {
5737 	if (chip->controller->ops && chip->controller->ops->attach_chip)
5738 		return chip->controller->ops->attach_chip(chip);
5739 
5740 	return 0;
5741 }
5742 
5743 static void nand_detach(struct nand_chip *chip)
5744 {
5745 	if (chip->controller->ops && chip->controller->ops->detach_chip)
5746 		chip->controller->ops->detach_chip(chip);
5747 }
5748 
5749 /**
5750  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
5751  * @chip: NAND chip object
5752  * @maxchips: number of chips to scan for.
5753  * @ids: optional flash IDs table
5754  *
5755  * This fills out all the uninitialized function pointers with the defaults.
5756  * The flash ID is read and the mtd/chip structures are filled with the
5757  * appropriate values.
5758  */
5759 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
5760 		       struct nand_flash_dev *ids)
5761 {
5762 	int ret;
5763 
5764 	if (!maxchips)
5765 		return -EINVAL;
5766 
5767 	ret = nand_scan_ident(chip, maxchips, ids);
5768 	if (ret)
5769 		return ret;
5770 
5771 	ret = nand_attach(chip);
5772 	if (ret)
5773 		goto cleanup_ident;
5774 
5775 	ret = nand_scan_tail(chip);
5776 	if (ret)
5777 		goto detach_chip;
5778 
5779 	return 0;
5780 
5781 detach_chip:
5782 	nand_detach(chip);
5783 cleanup_ident:
5784 	nand_scan_ident_cleanup(chip);
5785 
5786 	return ret;
5787 }
5788 EXPORT_SYMBOL(nand_scan_with_ids);
5789 
5790 /**
5791  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
5792  * @chip: NAND chip object
5793  */
5794 void nand_cleanup(struct nand_chip *chip)
5795 {
5796 	if (chip->ecc.mode == NAND_ECC_SOFT &&
5797 	    chip->ecc.algo == NAND_ECC_BCH)
5798 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
5799 
5800 	/* Free bad block table memory */
5801 	kfree(chip->bbt);
5802 	kfree(chip->data_buf);
5803 	kfree(chip->ecc.code_buf);
5804 	kfree(chip->ecc.calc_buf);
5805 
5806 	/* Free bad block descriptor memory */
5807 	if (chip->badblock_pattern && chip->badblock_pattern->options
5808 			& NAND_BBT_DYNAMICSTRUCT)
5809 		kfree(chip->badblock_pattern);
5810 
5811 	/* Free manufacturer priv data. */
5812 	nand_manufacturer_cleanup(chip);
5813 
5814 	/* Free controller specific allocations after chip identification */
5815 	nand_detach(chip);
5816 
5817 	/* Free identification phase allocations */
5818 	nand_scan_ident_cleanup(chip);
5819 }
5820 
5821 EXPORT_SYMBOL_GPL(nand_cleanup);
5822 
5823 /**
5824  * nand_release - [NAND Interface] Unregister the MTD device and free resources
5825  *		  held by the NAND device
5826  * @chip: NAND chip object
5827  */
5828 void nand_release(struct nand_chip *chip)
5829 {
5830 	mtd_device_unregister(nand_to_mtd(chip));
5831 	nand_cleanup(chip);
5832 }
5833 EXPORT_SYMBOL_GPL(nand_release);
5834 
5835 MODULE_LICENSE("GPL");
5836 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5837 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
5838 MODULE_DESCRIPTION("Generic NAND flash driver code");
5839