1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Overview: 4 * This is the generic MTD driver for NAND flash devices. It should be 5 * capable of working with almost all NAND chips currently available. 6 * 7 * Additional technical information is available on 8 * http://www.linux-mtd.infradead.org/doc/nand.html 9 * 10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 12 * 13 * Credits: 14 * David Woodhouse for adding multichip support 15 * 16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 17 * rework for 2K page size chips 18 * 19 * TODO: 20 * Enable cached programming for 2k page size chips 21 * Check, if mtd->ecctype should be set to MTD_ECC_HW 22 * if we have HW ECC support. 23 * BBT table is not serialized, has to be fixed 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/module.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/sched.h> 33 #include <linux/slab.h> 34 #include <linux/mm.h> 35 #include <linux/types.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/nand_ecc.h> 38 #include <linux/mtd/nand_bch.h> 39 #include <linux/interrupt.h> 40 #include <linux/bitops.h> 41 #include <linux/io.h> 42 #include <linux/mtd/partitions.h> 43 #include <linux/of.h> 44 #include <linux/gpio/consumer.h> 45 46 #include "internals.h" 47 48 /* Define default oob placement schemes for large and small page devices */ 49 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, 50 struct mtd_oob_region *oobregion) 51 { 52 struct nand_chip *chip = mtd_to_nand(mtd); 53 struct nand_ecc_ctrl *ecc = &chip->ecc; 54 55 if (section > 1) 56 return -ERANGE; 57 58 if (!section) { 59 oobregion->offset = 0; 60 if (mtd->oobsize == 16) 61 oobregion->length = 4; 62 else 63 oobregion->length = 3; 64 } else { 65 if (mtd->oobsize == 8) 66 return -ERANGE; 67 68 oobregion->offset = 6; 69 oobregion->length = ecc->total - 4; 70 } 71 72 return 0; 73 } 74 75 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, 76 struct mtd_oob_region *oobregion) 77 { 78 if (section > 1) 79 return -ERANGE; 80 81 if (mtd->oobsize == 16) { 82 if (section) 83 return -ERANGE; 84 85 oobregion->length = 8; 86 oobregion->offset = 8; 87 } else { 88 oobregion->length = 2; 89 if (!section) 90 oobregion->offset = 3; 91 else 92 oobregion->offset = 6; 93 } 94 95 return 0; 96 } 97 98 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { 99 .ecc = nand_ooblayout_ecc_sp, 100 .free = nand_ooblayout_free_sp, 101 }; 102 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); 103 104 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, 105 struct mtd_oob_region *oobregion) 106 { 107 struct nand_chip *chip = mtd_to_nand(mtd); 108 struct nand_ecc_ctrl *ecc = &chip->ecc; 109 110 if (section || !ecc->total) 111 return -ERANGE; 112 113 oobregion->length = ecc->total; 114 oobregion->offset = mtd->oobsize - oobregion->length; 115 116 return 0; 117 } 118 119 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, 120 struct mtd_oob_region *oobregion) 121 { 122 struct nand_chip *chip = mtd_to_nand(mtd); 123 struct nand_ecc_ctrl *ecc = &chip->ecc; 124 125 if (section) 126 return -ERANGE; 127 128 oobregion->length = mtd->oobsize - ecc->total - 2; 129 oobregion->offset = 2; 130 131 return 0; 132 } 133 134 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { 135 .ecc = nand_ooblayout_ecc_lp, 136 .free = nand_ooblayout_free_lp, 137 }; 138 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); 139 140 /* 141 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC 142 * are placed at a fixed offset. 143 */ 144 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, 145 struct mtd_oob_region *oobregion) 146 { 147 struct nand_chip *chip = mtd_to_nand(mtd); 148 struct nand_ecc_ctrl *ecc = &chip->ecc; 149 150 if (section) 151 return -ERANGE; 152 153 switch (mtd->oobsize) { 154 case 64: 155 oobregion->offset = 40; 156 break; 157 case 128: 158 oobregion->offset = 80; 159 break; 160 default: 161 return -EINVAL; 162 } 163 164 oobregion->length = ecc->total; 165 if (oobregion->offset + oobregion->length > mtd->oobsize) 166 return -ERANGE; 167 168 return 0; 169 } 170 171 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, 172 struct mtd_oob_region *oobregion) 173 { 174 struct nand_chip *chip = mtd_to_nand(mtd); 175 struct nand_ecc_ctrl *ecc = &chip->ecc; 176 int ecc_offset = 0; 177 178 if (section < 0 || section > 1) 179 return -ERANGE; 180 181 switch (mtd->oobsize) { 182 case 64: 183 ecc_offset = 40; 184 break; 185 case 128: 186 ecc_offset = 80; 187 break; 188 default: 189 return -EINVAL; 190 } 191 192 if (section == 0) { 193 oobregion->offset = 2; 194 oobregion->length = ecc_offset - 2; 195 } else { 196 oobregion->offset = ecc_offset + ecc->total; 197 oobregion->length = mtd->oobsize - oobregion->offset; 198 } 199 200 return 0; 201 } 202 203 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { 204 .ecc = nand_ooblayout_ecc_lp_hamming, 205 .free = nand_ooblayout_free_lp_hamming, 206 }; 207 208 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) 209 { 210 int ret = 0; 211 212 /* Start address must align on block boundary */ 213 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 214 pr_debug("%s: unaligned address\n", __func__); 215 ret = -EINVAL; 216 } 217 218 /* Length must align on block boundary */ 219 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 220 pr_debug("%s: length not block aligned\n", __func__); 221 ret = -EINVAL; 222 } 223 224 return ret; 225 } 226 227 /** 228 * nand_select_target() - Select a NAND target (A.K.A. die) 229 * @chip: NAND chip object 230 * @cs: the CS line to select. Note that this CS id is always from the chip 231 * PoV, not the controller one 232 * 233 * Select a NAND target so that further operations executed on @chip go to the 234 * selected NAND target. 235 */ 236 void nand_select_target(struct nand_chip *chip, unsigned int cs) 237 { 238 /* 239 * cs should always lie between 0 and nanddev_ntargets(), when that's 240 * not the case it's a bug and the caller should be fixed. 241 */ 242 if (WARN_ON(cs > nanddev_ntargets(&chip->base))) 243 return; 244 245 chip->cur_cs = cs; 246 247 if (chip->legacy.select_chip) 248 chip->legacy.select_chip(chip, cs); 249 } 250 EXPORT_SYMBOL_GPL(nand_select_target); 251 252 /** 253 * nand_deselect_target() - Deselect the currently selected target 254 * @chip: NAND chip object 255 * 256 * Deselect the currently selected NAND target. The result of operations 257 * executed on @chip after the target has been deselected is undefined. 258 */ 259 void nand_deselect_target(struct nand_chip *chip) 260 { 261 if (chip->legacy.select_chip) 262 chip->legacy.select_chip(chip, -1); 263 264 chip->cur_cs = -1; 265 } 266 EXPORT_SYMBOL_GPL(nand_deselect_target); 267 268 /** 269 * nand_release_device - [GENERIC] release chip 270 * @chip: NAND chip object 271 * 272 * Release chip lock and wake up anyone waiting on the device. 273 */ 274 static void nand_release_device(struct nand_chip *chip) 275 { 276 /* Release the controller and the chip */ 277 mutex_unlock(&chip->controller->lock); 278 mutex_unlock(&chip->lock); 279 } 280 281 /** 282 * nand_bbm_get_next_page - Get the next page for bad block markers 283 * @chip: NAND chip object 284 * @page: First page to start checking for bad block marker usage 285 * 286 * Returns an integer that corresponds to the page offset within a block, for 287 * a page that is used to store bad block markers. If no more pages are 288 * available, -EINVAL is returned. 289 */ 290 int nand_bbm_get_next_page(struct nand_chip *chip, int page) 291 { 292 struct mtd_info *mtd = nand_to_mtd(chip); 293 int last_page = ((mtd->erasesize - mtd->writesize) >> 294 chip->page_shift) & chip->pagemask; 295 296 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) 297 return 0; 298 else if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) 299 return 1; 300 else if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) 301 return last_page; 302 303 return -EINVAL; 304 } 305 306 /** 307 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 308 * @chip: NAND chip object 309 * @ofs: offset from device start 310 * 311 * Check, if the block is bad. 312 */ 313 static int nand_block_bad(struct nand_chip *chip, loff_t ofs) 314 { 315 int first_page, page_offset; 316 int res; 317 u8 bad; 318 319 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; 320 page_offset = nand_bbm_get_next_page(chip, 0); 321 322 while (page_offset >= 0) { 323 res = chip->ecc.read_oob(chip, first_page + page_offset); 324 if (res < 0) 325 return res; 326 327 bad = chip->oob_poi[chip->badblockpos]; 328 329 if (likely(chip->badblockbits == 8)) 330 res = bad != 0xFF; 331 else 332 res = hweight8(bad) < chip->badblockbits; 333 if (res) 334 return res; 335 336 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 337 } 338 339 return 0; 340 } 341 342 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) 343 { 344 if (chip->legacy.block_bad) 345 return chip->legacy.block_bad(chip, ofs); 346 347 return nand_block_bad(chip, ofs); 348 } 349 350 /** 351 * nand_get_device - [GENERIC] Get chip for selected access 352 * @chip: NAND chip structure 353 * 354 * Lock the device and its controller for exclusive access 355 * 356 * Return: -EBUSY if the chip has been suspended, 0 otherwise 357 */ 358 static int nand_get_device(struct nand_chip *chip) 359 { 360 mutex_lock(&chip->lock); 361 if (chip->suspended) { 362 mutex_unlock(&chip->lock); 363 return -EBUSY; 364 } 365 mutex_lock(&chip->controller->lock); 366 367 return 0; 368 } 369 370 /** 371 * nand_check_wp - [GENERIC] check if the chip is write protected 372 * @chip: NAND chip object 373 * 374 * Check, if the device is write protected. The function expects, that the 375 * device is already selected. 376 */ 377 static int nand_check_wp(struct nand_chip *chip) 378 { 379 u8 status; 380 int ret; 381 382 /* Broken xD cards report WP despite being writable */ 383 if (chip->options & NAND_BROKEN_XD) 384 return 0; 385 386 /* Check the WP bit */ 387 ret = nand_status_op(chip, &status); 388 if (ret) 389 return ret; 390 391 return status & NAND_STATUS_WP ? 0 : 1; 392 } 393 394 /** 395 * nand_fill_oob - [INTERN] Transfer client buffer to oob 396 * @chip: NAND chip object 397 * @oob: oob data buffer 398 * @len: oob data write length 399 * @ops: oob ops structure 400 */ 401 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, 402 struct mtd_oob_ops *ops) 403 { 404 struct mtd_info *mtd = nand_to_mtd(chip); 405 int ret; 406 407 /* 408 * Initialise to all 0xFF, to avoid the possibility of left over OOB 409 * data from a previous OOB read. 410 */ 411 memset(chip->oob_poi, 0xff, mtd->oobsize); 412 413 switch (ops->mode) { 414 415 case MTD_OPS_PLACE_OOB: 416 case MTD_OPS_RAW: 417 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 418 return oob + len; 419 420 case MTD_OPS_AUTO_OOB: 421 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 422 ops->ooboffs, len); 423 BUG_ON(ret); 424 return oob + len; 425 426 default: 427 BUG(); 428 } 429 return NULL; 430 } 431 432 /** 433 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 434 * @chip: NAND chip object 435 * @to: offset to write to 436 * @ops: oob operation description structure 437 * 438 * NAND write out-of-band. 439 */ 440 static int nand_do_write_oob(struct nand_chip *chip, loff_t to, 441 struct mtd_oob_ops *ops) 442 { 443 struct mtd_info *mtd = nand_to_mtd(chip); 444 int chipnr, page, status, len, ret; 445 446 pr_debug("%s: to = 0x%08x, len = %i\n", 447 __func__, (unsigned int)to, (int)ops->ooblen); 448 449 len = mtd_oobavail(mtd, ops); 450 451 /* Do not allow write past end of page */ 452 if ((ops->ooboffs + ops->ooblen) > len) { 453 pr_debug("%s: attempt to write past end of page\n", 454 __func__); 455 return -EINVAL; 456 } 457 458 chipnr = (int)(to >> chip->chip_shift); 459 460 /* 461 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 462 * of my DiskOnChip 2000 test units) will clear the whole data page too 463 * if we don't do this. I have no clue why, but I seem to have 'fixed' 464 * it in the doc2000 driver in August 1999. dwmw2. 465 */ 466 ret = nand_reset(chip, chipnr); 467 if (ret) 468 return ret; 469 470 nand_select_target(chip, chipnr); 471 472 /* Shift to get page */ 473 page = (int)(to >> chip->page_shift); 474 475 /* Check, if it is write protected */ 476 if (nand_check_wp(chip)) { 477 nand_deselect_target(chip); 478 return -EROFS; 479 } 480 481 /* Invalidate the page cache, if we write to the cached page */ 482 if (page == chip->pagecache.page) 483 chip->pagecache.page = -1; 484 485 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); 486 487 if (ops->mode == MTD_OPS_RAW) 488 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); 489 else 490 status = chip->ecc.write_oob(chip, page & chip->pagemask); 491 492 nand_deselect_target(chip); 493 494 if (status) 495 return status; 496 497 ops->oobretlen = ops->ooblen; 498 499 return 0; 500 } 501 502 /** 503 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 504 * @chip: NAND chip object 505 * @ofs: offset from device start 506 * 507 * This is the default implementation, which can be overridden by a hardware 508 * specific driver. It provides the details for writing a bad block marker to a 509 * block. 510 */ 511 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) 512 { 513 struct mtd_info *mtd = nand_to_mtd(chip); 514 struct mtd_oob_ops ops; 515 uint8_t buf[2] = { 0, 0 }; 516 int ret = 0, res, page_offset; 517 518 memset(&ops, 0, sizeof(ops)); 519 ops.oobbuf = buf; 520 ops.ooboffs = chip->badblockpos; 521 if (chip->options & NAND_BUSWIDTH_16) { 522 ops.ooboffs &= ~0x01; 523 ops.len = ops.ooblen = 2; 524 } else { 525 ops.len = ops.ooblen = 1; 526 } 527 ops.mode = MTD_OPS_PLACE_OOB; 528 529 page_offset = nand_bbm_get_next_page(chip, 0); 530 531 while (page_offset >= 0) { 532 res = nand_do_write_oob(chip, 533 ofs + (page_offset * mtd->writesize), 534 &ops); 535 536 if (!ret) 537 ret = res; 538 539 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 540 } 541 542 return ret; 543 } 544 545 /** 546 * nand_markbad_bbm - mark a block by updating the BBM 547 * @chip: NAND chip object 548 * @ofs: offset of the block to mark bad 549 */ 550 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) 551 { 552 if (chip->legacy.block_markbad) 553 return chip->legacy.block_markbad(chip, ofs); 554 555 return nand_default_block_markbad(chip, ofs); 556 } 557 558 /** 559 * nand_block_markbad_lowlevel - mark a block bad 560 * @chip: NAND chip object 561 * @ofs: offset from device start 562 * 563 * This function performs the generic NAND bad block marking steps (i.e., bad 564 * block table(s) and/or marker(s)). We only allow the hardware driver to 565 * specify how to write bad block markers to OOB (chip->legacy.block_markbad). 566 * 567 * We try operations in the following order: 568 * 569 * (1) erase the affected block, to allow OOB marker to be written cleanly 570 * (2) write bad block marker to OOB area of affected block (unless flag 571 * NAND_BBT_NO_OOB_BBM is present) 572 * (3) update the BBT 573 * 574 * Note that we retain the first error encountered in (2) or (3), finish the 575 * procedures, and dump the error in the end. 576 */ 577 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) 578 { 579 struct mtd_info *mtd = nand_to_mtd(chip); 580 int res, ret = 0; 581 582 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 583 struct erase_info einfo; 584 585 /* Attempt erase before marking OOB */ 586 memset(&einfo, 0, sizeof(einfo)); 587 einfo.addr = ofs; 588 einfo.len = 1ULL << chip->phys_erase_shift; 589 nand_erase_nand(chip, &einfo, 0); 590 591 /* Write bad block marker to OOB */ 592 ret = nand_get_device(chip); 593 if (ret) 594 return ret; 595 596 ret = nand_markbad_bbm(chip, ofs); 597 nand_release_device(chip); 598 } 599 600 /* Mark block bad in BBT */ 601 if (chip->bbt) { 602 res = nand_markbad_bbt(chip, ofs); 603 if (!ret) 604 ret = res; 605 } 606 607 if (!ret) 608 mtd->ecc_stats.badblocks++; 609 610 return ret; 611 } 612 613 /** 614 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 615 * @mtd: MTD device structure 616 * @ofs: offset from device start 617 * 618 * Check if the block is marked as reserved. 619 */ 620 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 621 { 622 struct nand_chip *chip = mtd_to_nand(mtd); 623 624 if (!chip->bbt) 625 return 0; 626 /* Return info from the table */ 627 return nand_isreserved_bbt(chip, ofs); 628 } 629 630 /** 631 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 632 * @chip: NAND chip object 633 * @ofs: offset from device start 634 * @allowbbt: 1, if its allowed to access the bbt area 635 * 636 * Check, if the block is bad. Either by reading the bad block table or 637 * calling of the scan function. 638 */ 639 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) 640 { 641 /* Return info from the table */ 642 if (chip->bbt) 643 return nand_isbad_bbt(chip, ofs, allowbbt); 644 645 return nand_isbad_bbm(chip, ofs); 646 } 647 648 /** 649 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 650 * @chip: NAND chip structure 651 * @timeout_ms: Timeout in ms 652 * 653 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 654 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 655 * returned. 656 * 657 * This helper is intended to be used when the controller does not have access 658 * to the NAND R/B pin. 659 * 660 * Be aware that calling this helper from an ->exec_op() implementation means 661 * ->exec_op() must be re-entrant. 662 * 663 * Return 0 if the NAND chip is ready, a negative error otherwise. 664 */ 665 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 666 { 667 const struct nand_sdr_timings *timings; 668 u8 status = 0; 669 int ret; 670 671 if (!nand_has_exec_op(chip)) 672 return -ENOTSUPP; 673 674 /* Wait tWB before polling the STATUS reg. */ 675 timings = nand_get_sdr_timings(&chip->data_interface); 676 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 677 678 ret = nand_status_op(chip, NULL); 679 if (ret) 680 return ret; 681 682 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); 683 do { 684 ret = nand_read_data_op(chip, &status, sizeof(status), true); 685 if (ret) 686 break; 687 688 if (status & NAND_STATUS_READY) 689 break; 690 691 /* 692 * Typical lowest execution time for a tR on most NANDs is 10us, 693 * use this as polling delay before doing something smarter (ie. 694 * deriving a delay from the timeout value, timeout_ms/ratio). 695 */ 696 udelay(10); 697 } while (time_before(jiffies, timeout_ms)); 698 699 /* 700 * We have to exit READ_STATUS mode in order to read real data on the 701 * bus in case the WAITRDY instruction is preceding a DATA_IN 702 * instruction. 703 */ 704 nand_exit_status_op(chip); 705 706 if (ret) 707 return ret; 708 709 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 710 }; 711 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 712 713 /** 714 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready 715 * @chip: NAND chip structure 716 * @gpiod: GPIO descriptor of R/B pin 717 * @timeout_ms: Timeout in ms 718 * 719 * Poll the R/B GPIO pin until it becomes ready. If that does not happen 720 * whitin the specified timeout, -ETIMEDOUT is returned. 721 * 722 * This helper is intended to be used when the controller has access to the 723 * NAND R/B pin over GPIO. 724 * 725 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. 726 */ 727 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 728 unsigned long timeout_ms) 729 { 730 /* Wait until R/B pin indicates chip is ready or timeout occurs */ 731 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); 732 do { 733 if (gpiod_get_value_cansleep(gpiod)) 734 return 0; 735 736 cond_resched(); 737 } while (time_before(jiffies, timeout_ms)); 738 739 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; 740 }; 741 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); 742 743 /** 744 * panic_nand_wait - [GENERIC] wait until the command is done 745 * @chip: NAND chip structure 746 * @timeo: timeout 747 * 748 * Wait for command done. This is a helper function for nand_wait used when 749 * we are in interrupt context. May happen when in panic and trying to write 750 * an oops through mtdoops. 751 */ 752 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) 753 { 754 int i; 755 for (i = 0; i < timeo; i++) { 756 if (chip->legacy.dev_ready) { 757 if (chip->legacy.dev_ready(chip)) 758 break; 759 } else { 760 int ret; 761 u8 status; 762 763 ret = nand_read_data_op(chip, &status, sizeof(status), 764 true); 765 if (ret) 766 return; 767 768 if (status & NAND_STATUS_READY) 769 break; 770 } 771 mdelay(1); 772 } 773 } 774 775 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 776 { 777 return (chip->parameters.supports_set_get_features && 778 test_bit(addr, chip->parameters.get_feature_list)); 779 } 780 781 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 782 { 783 return (chip->parameters.supports_set_get_features && 784 test_bit(addr, chip->parameters.set_feature_list)); 785 } 786 787 /** 788 * nand_reset_data_interface - Reset data interface and timings 789 * @chip: The NAND chip 790 * @chipnr: Internal die id 791 * 792 * Reset the Data interface and timings to ONFI mode 0. 793 * 794 * Returns 0 for success or negative error code otherwise. 795 */ 796 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) 797 { 798 int ret; 799 800 if (!nand_has_setup_data_iface(chip)) 801 return 0; 802 803 /* 804 * The ONFI specification says: 805 * " 806 * To transition from NV-DDR or NV-DDR2 to the SDR data 807 * interface, the host shall use the Reset (FFh) command 808 * using SDR timing mode 0. A device in any timing mode is 809 * required to recognize Reset (FFh) command issued in SDR 810 * timing mode 0. 811 * " 812 * 813 * Configure the data interface in SDR mode and set the 814 * timings to timing mode 0. 815 */ 816 817 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 818 ret = chip->controller->ops->setup_data_interface(chip, chipnr, 819 &chip->data_interface); 820 if (ret) 821 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 822 823 return ret; 824 } 825 826 /** 827 * nand_setup_data_interface - Setup the best data interface and timings 828 * @chip: The NAND chip 829 * @chipnr: Internal die id 830 * 831 * Find and configure the best data interface and NAND timings supported by 832 * the chip and the driver. 833 * First tries to retrieve supported timing modes from ONFI information, 834 * and if the NAND chip does not support ONFI, relies on the 835 * ->onfi_timing_mode_default specified in the nand_ids table. 836 * 837 * Returns 0 for success or negative error code otherwise. 838 */ 839 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) 840 { 841 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { 842 chip->onfi_timing_mode_default, 843 }; 844 int ret; 845 846 if (!nand_has_setup_data_iface(chip)) 847 return 0; 848 849 /* Change the mode on the chip side (if supported by the NAND chip) */ 850 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 851 nand_select_target(chip, chipnr); 852 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 853 tmode_param); 854 nand_deselect_target(chip); 855 if (ret) 856 return ret; 857 } 858 859 /* Change the mode on the controller side */ 860 ret = chip->controller->ops->setup_data_interface(chip, chipnr, 861 &chip->data_interface); 862 if (ret) 863 return ret; 864 865 /* Check the mode has been accepted by the chip, if supported */ 866 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 867 return 0; 868 869 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 870 nand_select_target(chip, chipnr); 871 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 872 tmode_param); 873 nand_deselect_target(chip); 874 if (ret) 875 goto err_reset_chip; 876 877 if (tmode_param[0] != chip->onfi_timing_mode_default) { 878 pr_warn("timing mode %d not acknowledged by the NAND chip\n", 879 chip->onfi_timing_mode_default); 880 goto err_reset_chip; 881 } 882 883 return 0; 884 885 err_reset_chip: 886 /* 887 * Fallback to mode 0 if the chip explicitly did not ack the chosen 888 * timing mode. 889 */ 890 nand_reset_data_interface(chip, chipnr); 891 nand_select_target(chip, chipnr); 892 nand_reset_op(chip); 893 nand_deselect_target(chip); 894 895 return ret; 896 } 897 898 /** 899 * nand_init_data_interface - find the best data interface and timings 900 * @chip: The NAND chip 901 * 902 * Find the best data interface and NAND timings supported by the chip 903 * and the driver. 904 * First tries to retrieve supported timing modes from ONFI information, 905 * and if the NAND chip does not support ONFI, relies on the 906 * ->onfi_timing_mode_default specified in the nand_ids table. After this 907 * function nand_chip->data_interface is initialized with the best timing mode 908 * available. 909 * 910 * Returns 0 for success or negative error code otherwise. 911 */ 912 static int nand_init_data_interface(struct nand_chip *chip) 913 { 914 int modes, mode, ret; 915 916 if (!nand_has_setup_data_iface(chip)) 917 return 0; 918 919 /* 920 * First try to identify the best timings from ONFI parameters and 921 * if the NAND does not support ONFI, fallback to the default ONFI 922 * timing mode. 923 */ 924 if (chip->parameters.onfi) { 925 modes = chip->parameters.onfi->async_timing_mode; 926 } else { 927 if (!chip->onfi_timing_mode_default) 928 return 0; 929 930 modes = GENMASK(chip->onfi_timing_mode_default, 0); 931 } 932 933 for (mode = fls(modes) - 1; mode >= 0; mode--) { 934 ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode); 935 if (ret) 936 continue; 937 938 /* 939 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the 940 * controller supports the requested timings. 941 */ 942 ret = chip->controller->ops->setup_data_interface(chip, 943 NAND_DATA_IFACE_CHECK_ONLY, 944 &chip->data_interface); 945 if (!ret) { 946 chip->onfi_timing_mode_default = mode; 947 break; 948 } 949 } 950 951 return 0; 952 } 953 954 /** 955 * nand_fill_column_cycles - fill the column cycles of an address 956 * @chip: The NAND chip 957 * @addrs: Array of address cycles to fill 958 * @offset_in_page: The offset in the page 959 * 960 * Fills the first or the first two bytes of the @addrs field depending 961 * on the NAND bus width and the page size. 962 * 963 * Returns the number of cycles needed to encode the column, or a negative 964 * error code in case one of the arguments is invalid. 965 */ 966 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 967 unsigned int offset_in_page) 968 { 969 struct mtd_info *mtd = nand_to_mtd(chip); 970 971 /* Make sure the offset is less than the actual page size. */ 972 if (offset_in_page > mtd->writesize + mtd->oobsize) 973 return -EINVAL; 974 975 /* 976 * On small page NANDs, there's a dedicated command to access the OOB 977 * area, and the column address is relative to the start of the OOB 978 * area, not the start of the page. Asjust the address accordingly. 979 */ 980 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 981 offset_in_page -= mtd->writesize; 982 983 /* 984 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 985 * wide, then it must be divided by 2. 986 */ 987 if (chip->options & NAND_BUSWIDTH_16) { 988 if (WARN_ON(offset_in_page % 2)) 989 return -EINVAL; 990 991 offset_in_page /= 2; 992 } 993 994 addrs[0] = offset_in_page; 995 996 /* 997 * Small page NANDs use 1 cycle for the columns, while large page NANDs 998 * need 2 999 */ 1000 if (mtd->writesize <= 512) 1001 return 1; 1002 1003 addrs[1] = offset_in_page >> 8; 1004 1005 return 2; 1006 } 1007 1008 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1009 unsigned int offset_in_page, void *buf, 1010 unsigned int len) 1011 { 1012 struct mtd_info *mtd = nand_to_mtd(chip); 1013 const struct nand_sdr_timings *sdr = 1014 nand_get_sdr_timings(&chip->data_interface); 1015 u8 addrs[4]; 1016 struct nand_op_instr instrs[] = { 1017 NAND_OP_CMD(NAND_CMD_READ0, 0), 1018 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), 1019 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1020 PSEC_TO_NSEC(sdr->tRR_min)), 1021 NAND_OP_DATA_IN(len, buf, 0), 1022 }; 1023 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1024 int ret; 1025 1026 /* Drop the DATA_IN instruction if len is set to 0. */ 1027 if (!len) 1028 op.ninstrs--; 1029 1030 if (offset_in_page >= mtd->writesize) 1031 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1032 else if (offset_in_page >= 256 && 1033 !(chip->options & NAND_BUSWIDTH_16)) 1034 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1035 1036 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1037 if (ret < 0) 1038 return ret; 1039 1040 addrs[1] = page; 1041 addrs[2] = page >> 8; 1042 1043 if (chip->options & NAND_ROW_ADDR_3) { 1044 addrs[3] = page >> 16; 1045 instrs[1].ctx.addr.naddrs++; 1046 } 1047 1048 return nand_exec_op(chip, &op); 1049 } 1050 1051 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1052 unsigned int offset_in_page, void *buf, 1053 unsigned int len) 1054 { 1055 const struct nand_sdr_timings *sdr = 1056 nand_get_sdr_timings(&chip->data_interface); 1057 u8 addrs[5]; 1058 struct nand_op_instr instrs[] = { 1059 NAND_OP_CMD(NAND_CMD_READ0, 0), 1060 NAND_OP_ADDR(4, addrs, 0), 1061 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), 1062 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1063 PSEC_TO_NSEC(sdr->tRR_min)), 1064 NAND_OP_DATA_IN(len, buf, 0), 1065 }; 1066 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1067 int ret; 1068 1069 /* Drop the DATA_IN instruction if len is set to 0. */ 1070 if (!len) 1071 op.ninstrs--; 1072 1073 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1074 if (ret < 0) 1075 return ret; 1076 1077 addrs[2] = page; 1078 addrs[3] = page >> 8; 1079 1080 if (chip->options & NAND_ROW_ADDR_3) { 1081 addrs[4] = page >> 16; 1082 instrs[1].ctx.addr.naddrs++; 1083 } 1084 1085 return nand_exec_op(chip, &op); 1086 } 1087 1088 /** 1089 * nand_read_page_op - Do a READ PAGE operation 1090 * @chip: The NAND chip 1091 * @page: page to read 1092 * @offset_in_page: offset within the page 1093 * @buf: buffer used to store the data 1094 * @len: length of the buffer 1095 * 1096 * This function issues a READ PAGE operation. 1097 * This function does not select/unselect the CS line. 1098 * 1099 * Returns 0 on success, a negative error code otherwise. 1100 */ 1101 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1102 unsigned int offset_in_page, void *buf, unsigned int len) 1103 { 1104 struct mtd_info *mtd = nand_to_mtd(chip); 1105 1106 if (len && !buf) 1107 return -EINVAL; 1108 1109 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1110 return -EINVAL; 1111 1112 if (nand_has_exec_op(chip)) { 1113 if (mtd->writesize > 512) 1114 return nand_lp_exec_read_page_op(chip, page, 1115 offset_in_page, buf, 1116 len); 1117 1118 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1119 buf, len); 1120 } 1121 1122 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); 1123 if (len) 1124 chip->legacy.read_buf(chip, buf, len); 1125 1126 return 0; 1127 } 1128 EXPORT_SYMBOL_GPL(nand_read_page_op); 1129 1130 /** 1131 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1132 * @chip: The NAND chip 1133 * @page: parameter page to read 1134 * @buf: buffer used to store the data 1135 * @len: length of the buffer 1136 * 1137 * This function issues a READ PARAMETER PAGE operation. 1138 * This function does not select/unselect the CS line. 1139 * 1140 * Returns 0 on success, a negative error code otherwise. 1141 */ 1142 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1143 unsigned int len) 1144 { 1145 unsigned int i; 1146 u8 *p = buf; 1147 1148 if (len && !buf) 1149 return -EINVAL; 1150 1151 if (nand_has_exec_op(chip)) { 1152 const struct nand_sdr_timings *sdr = 1153 nand_get_sdr_timings(&chip->data_interface); 1154 struct nand_op_instr instrs[] = { 1155 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1156 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), 1157 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1158 PSEC_TO_NSEC(sdr->tRR_min)), 1159 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1160 }; 1161 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1162 1163 /* Drop the DATA_IN instruction if len is set to 0. */ 1164 if (!len) 1165 op.ninstrs--; 1166 1167 return nand_exec_op(chip, &op); 1168 } 1169 1170 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); 1171 for (i = 0; i < len; i++) 1172 p[i] = chip->legacy.read_byte(chip); 1173 1174 return 0; 1175 } 1176 1177 /** 1178 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1179 * @chip: The NAND chip 1180 * @offset_in_page: offset within the page 1181 * @buf: buffer used to store the data 1182 * @len: length of the buffer 1183 * @force_8bit: force 8-bit bus access 1184 * 1185 * This function issues a CHANGE READ COLUMN operation. 1186 * This function does not select/unselect the CS line. 1187 * 1188 * Returns 0 on success, a negative error code otherwise. 1189 */ 1190 int nand_change_read_column_op(struct nand_chip *chip, 1191 unsigned int offset_in_page, void *buf, 1192 unsigned int len, bool force_8bit) 1193 { 1194 struct mtd_info *mtd = nand_to_mtd(chip); 1195 1196 if (len && !buf) 1197 return -EINVAL; 1198 1199 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1200 return -EINVAL; 1201 1202 /* Small page NANDs do not support column change. */ 1203 if (mtd->writesize <= 512) 1204 return -ENOTSUPP; 1205 1206 if (nand_has_exec_op(chip)) { 1207 const struct nand_sdr_timings *sdr = 1208 nand_get_sdr_timings(&chip->data_interface); 1209 u8 addrs[2] = {}; 1210 struct nand_op_instr instrs[] = { 1211 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1212 NAND_OP_ADDR(2, addrs, 0), 1213 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1214 PSEC_TO_NSEC(sdr->tCCS_min)), 1215 NAND_OP_DATA_IN(len, buf, 0), 1216 }; 1217 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1218 int ret; 1219 1220 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1221 if (ret < 0) 1222 return ret; 1223 1224 /* Drop the DATA_IN instruction if len is set to 0. */ 1225 if (!len) 1226 op.ninstrs--; 1227 1228 instrs[3].ctx.data.force_8bit = force_8bit; 1229 1230 return nand_exec_op(chip, &op); 1231 } 1232 1233 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); 1234 if (len) 1235 chip->legacy.read_buf(chip, buf, len); 1236 1237 return 0; 1238 } 1239 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1240 1241 /** 1242 * nand_read_oob_op - Do a READ OOB operation 1243 * @chip: The NAND chip 1244 * @page: page to read 1245 * @offset_in_oob: offset within the OOB area 1246 * @buf: buffer used to store the data 1247 * @len: length of the buffer 1248 * 1249 * This function issues a READ OOB operation. 1250 * This function does not select/unselect the CS line. 1251 * 1252 * Returns 0 on success, a negative error code otherwise. 1253 */ 1254 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1255 unsigned int offset_in_oob, void *buf, unsigned int len) 1256 { 1257 struct mtd_info *mtd = nand_to_mtd(chip); 1258 1259 if (len && !buf) 1260 return -EINVAL; 1261 1262 if (offset_in_oob + len > mtd->oobsize) 1263 return -EINVAL; 1264 1265 if (nand_has_exec_op(chip)) 1266 return nand_read_page_op(chip, page, 1267 mtd->writesize + offset_in_oob, 1268 buf, len); 1269 1270 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); 1271 if (len) 1272 chip->legacy.read_buf(chip, buf, len); 1273 1274 return 0; 1275 } 1276 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1277 1278 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1279 unsigned int offset_in_page, const void *buf, 1280 unsigned int len, bool prog) 1281 { 1282 struct mtd_info *mtd = nand_to_mtd(chip); 1283 const struct nand_sdr_timings *sdr = 1284 nand_get_sdr_timings(&chip->data_interface); 1285 u8 addrs[5] = {}; 1286 struct nand_op_instr instrs[] = { 1287 /* 1288 * The first instruction will be dropped if we're dealing 1289 * with a large page NAND and adjusted if we're dealing 1290 * with a small page NAND and the page offset is > 255. 1291 */ 1292 NAND_OP_CMD(NAND_CMD_READ0, 0), 1293 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1294 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), 1295 NAND_OP_DATA_OUT(len, buf, 0), 1296 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), 1297 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1298 }; 1299 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1300 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1301 int ret; 1302 u8 status; 1303 1304 if (naddrs < 0) 1305 return naddrs; 1306 1307 addrs[naddrs++] = page; 1308 addrs[naddrs++] = page >> 8; 1309 if (chip->options & NAND_ROW_ADDR_3) 1310 addrs[naddrs++] = page >> 16; 1311 1312 instrs[2].ctx.addr.naddrs = naddrs; 1313 1314 /* Drop the last two instructions if we're not programming the page. */ 1315 if (!prog) { 1316 op.ninstrs -= 2; 1317 /* Also drop the DATA_OUT instruction if empty. */ 1318 if (!len) 1319 op.ninstrs--; 1320 } 1321 1322 if (mtd->writesize <= 512) { 1323 /* 1324 * Small pages need some more tweaking: we have to adjust the 1325 * first instruction depending on the page offset we're trying 1326 * to access. 1327 */ 1328 if (offset_in_page >= mtd->writesize) 1329 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1330 else if (offset_in_page >= 256 && 1331 !(chip->options & NAND_BUSWIDTH_16)) 1332 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1333 } else { 1334 /* 1335 * Drop the first command if we're dealing with a large page 1336 * NAND. 1337 */ 1338 op.instrs++; 1339 op.ninstrs--; 1340 } 1341 1342 ret = nand_exec_op(chip, &op); 1343 if (!prog || ret) 1344 return ret; 1345 1346 ret = nand_status_op(chip, &status); 1347 if (ret) 1348 return ret; 1349 1350 return status; 1351 } 1352 1353 /** 1354 * nand_prog_page_begin_op - starts a PROG PAGE operation 1355 * @chip: The NAND chip 1356 * @page: page to write 1357 * @offset_in_page: offset within the page 1358 * @buf: buffer containing the data to write to the page 1359 * @len: length of the buffer 1360 * 1361 * This function issues the first half of a PROG PAGE operation. 1362 * This function does not select/unselect the CS line. 1363 * 1364 * Returns 0 on success, a negative error code otherwise. 1365 */ 1366 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1367 unsigned int offset_in_page, const void *buf, 1368 unsigned int len) 1369 { 1370 struct mtd_info *mtd = nand_to_mtd(chip); 1371 1372 if (len && !buf) 1373 return -EINVAL; 1374 1375 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1376 return -EINVAL; 1377 1378 if (nand_has_exec_op(chip)) 1379 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1380 len, false); 1381 1382 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); 1383 1384 if (buf) 1385 chip->legacy.write_buf(chip, buf, len); 1386 1387 return 0; 1388 } 1389 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1390 1391 /** 1392 * nand_prog_page_end_op - ends a PROG PAGE operation 1393 * @chip: The NAND chip 1394 * 1395 * This function issues the second half of a PROG PAGE operation. 1396 * This function does not select/unselect the CS line. 1397 * 1398 * Returns 0 on success, a negative error code otherwise. 1399 */ 1400 int nand_prog_page_end_op(struct nand_chip *chip) 1401 { 1402 int ret; 1403 u8 status; 1404 1405 if (nand_has_exec_op(chip)) { 1406 const struct nand_sdr_timings *sdr = 1407 nand_get_sdr_timings(&chip->data_interface); 1408 struct nand_op_instr instrs[] = { 1409 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1410 PSEC_TO_NSEC(sdr->tWB_max)), 1411 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1412 }; 1413 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1414 1415 ret = nand_exec_op(chip, &op); 1416 if (ret) 1417 return ret; 1418 1419 ret = nand_status_op(chip, &status); 1420 if (ret) 1421 return ret; 1422 } else { 1423 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1424 ret = chip->legacy.waitfunc(chip); 1425 if (ret < 0) 1426 return ret; 1427 1428 status = ret; 1429 } 1430 1431 if (status & NAND_STATUS_FAIL) 1432 return -EIO; 1433 1434 return 0; 1435 } 1436 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1437 1438 /** 1439 * nand_prog_page_op - Do a full PROG PAGE operation 1440 * @chip: The NAND chip 1441 * @page: page to write 1442 * @offset_in_page: offset within the page 1443 * @buf: buffer containing the data to write to the page 1444 * @len: length of the buffer 1445 * 1446 * This function issues a full PROG PAGE operation. 1447 * This function does not select/unselect the CS line. 1448 * 1449 * Returns 0 on success, a negative error code otherwise. 1450 */ 1451 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1452 unsigned int offset_in_page, const void *buf, 1453 unsigned int len) 1454 { 1455 struct mtd_info *mtd = nand_to_mtd(chip); 1456 int status; 1457 1458 if (!len || !buf) 1459 return -EINVAL; 1460 1461 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1462 return -EINVAL; 1463 1464 if (nand_has_exec_op(chip)) { 1465 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1466 len, true); 1467 } else { 1468 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, 1469 page); 1470 chip->legacy.write_buf(chip, buf, len); 1471 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1472 status = chip->legacy.waitfunc(chip); 1473 } 1474 1475 if (status & NAND_STATUS_FAIL) 1476 return -EIO; 1477 1478 return 0; 1479 } 1480 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1481 1482 /** 1483 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1484 * @chip: The NAND chip 1485 * @offset_in_page: offset within the page 1486 * @buf: buffer containing the data to send to the NAND 1487 * @len: length of the buffer 1488 * @force_8bit: force 8-bit bus access 1489 * 1490 * This function issues a CHANGE WRITE COLUMN operation. 1491 * This function does not select/unselect the CS line. 1492 * 1493 * Returns 0 on success, a negative error code otherwise. 1494 */ 1495 int nand_change_write_column_op(struct nand_chip *chip, 1496 unsigned int offset_in_page, 1497 const void *buf, unsigned int len, 1498 bool force_8bit) 1499 { 1500 struct mtd_info *mtd = nand_to_mtd(chip); 1501 1502 if (len && !buf) 1503 return -EINVAL; 1504 1505 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1506 return -EINVAL; 1507 1508 /* Small page NANDs do not support column change. */ 1509 if (mtd->writesize <= 512) 1510 return -ENOTSUPP; 1511 1512 if (nand_has_exec_op(chip)) { 1513 const struct nand_sdr_timings *sdr = 1514 nand_get_sdr_timings(&chip->data_interface); 1515 u8 addrs[2]; 1516 struct nand_op_instr instrs[] = { 1517 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1518 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), 1519 NAND_OP_DATA_OUT(len, buf, 0), 1520 }; 1521 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1522 int ret; 1523 1524 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1525 if (ret < 0) 1526 return ret; 1527 1528 instrs[2].ctx.data.force_8bit = force_8bit; 1529 1530 /* Drop the DATA_OUT instruction if len is set to 0. */ 1531 if (!len) 1532 op.ninstrs--; 1533 1534 return nand_exec_op(chip, &op); 1535 } 1536 1537 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); 1538 if (len) 1539 chip->legacy.write_buf(chip, buf, len); 1540 1541 return 0; 1542 } 1543 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1544 1545 /** 1546 * nand_readid_op - Do a READID operation 1547 * @chip: The NAND chip 1548 * @addr: address cycle to pass after the READID command 1549 * @buf: buffer used to store the ID 1550 * @len: length of the buffer 1551 * 1552 * This function sends a READID command and reads back the ID returned by the 1553 * NAND. 1554 * This function does not select/unselect the CS line. 1555 * 1556 * Returns 0 on success, a negative error code otherwise. 1557 */ 1558 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1559 unsigned int len) 1560 { 1561 unsigned int i; 1562 u8 *id = buf; 1563 1564 if (len && !buf) 1565 return -EINVAL; 1566 1567 if (nand_has_exec_op(chip)) { 1568 const struct nand_sdr_timings *sdr = 1569 nand_get_sdr_timings(&chip->data_interface); 1570 struct nand_op_instr instrs[] = { 1571 NAND_OP_CMD(NAND_CMD_READID, 0), 1572 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), 1573 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1574 }; 1575 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1576 1577 /* Drop the DATA_IN instruction if len is set to 0. */ 1578 if (!len) 1579 op.ninstrs--; 1580 1581 return nand_exec_op(chip, &op); 1582 } 1583 1584 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); 1585 1586 for (i = 0; i < len; i++) 1587 id[i] = chip->legacy.read_byte(chip); 1588 1589 return 0; 1590 } 1591 EXPORT_SYMBOL_GPL(nand_readid_op); 1592 1593 /** 1594 * nand_status_op - Do a STATUS operation 1595 * @chip: The NAND chip 1596 * @status: out variable to store the NAND status 1597 * 1598 * This function sends a STATUS command and reads back the status returned by 1599 * the NAND. 1600 * This function does not select/unselect the CS line. 1601 * 1602 * Returns 0 on success, a negative error code otherwise. 1603 */ 1604 int nand_status_op(struct nand_chip *chip, u8 *status) 1605 { 1606 if (nand_has_exec_op(chip)) { 1607 const struct nand_sdr_timings *sdr = 1608 nand_get_sdr_timings(&chip->data_interface); 1609 struct nand_op_instr instrs[] = { 1610 NAND_OP_CMD(NAND_CMD_STATUS, 1611 PSEC_TO_NSEC(sdr->tADL_min)), 1612 NAND_OP_8BIT_DATA_IN(1, status, 0), 1613 }; 1614 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1615 1616 if (!status) 1617 op.ninstrs--; 1618 1619 return nand_exec_op(chip, &op); 1620 } 1621 1622 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); 1623 if (status) 1624 *status = chip->legacy.read_byte(chip); 1625 1626 return 0; 1627 } 1628 EXPORT_SYMBOL_GPL(nand_status_op); 1629 1630 /** 1631 * nand_exit_status_op - Exit a STATUS operation 1632 * @chip: The NAND chip 1633 * 1634 * This function sends a READ0 command to cancel the effect of the STATUS 1635 * command to avoid reading only the status until a new read command is sent. 1636 * 1637 * This function does not select/unselect the CS line. 1638 * 1639 * Returns 0 on success, a negative error code otherwise. 1640 */ 1641 int nand_exit_status_op(struct nand_chip *chip) 1642 { 1643 if (nand_has_exec_op(chip)) { 1644 struct nand_op_instr instrs[] = { 1645 NAND_OP_CMD(NAND_CMD_READ0, 0), 1646 }; 1647 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1648 1649 return nand_exec_op(chip, &op); 1650 } 1651 1652 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); 1653 1654 return 0; 1655 } 1656 1657 /** 1658 * nand_erase_op - Do an erase operation 1659 * @chip: The NAND chip 1660 * @eraseblock: block to erase 1661 * 1662 * This function sends an ERASE command and waits for the NAND to be ready 1663 * before returning. 1664 * This function does not select/unselect the CS line. 1665 * 1666 * Returns 0 on success, a negative error code otherwise. 1667 */ 1668 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 1669 { 1670 unsigned int page = eraseblock << 1671 (chip->phys_erase_shift - chip->page_shift); 1672 int ret; 1673 u8 status; 1674 1675 if (nand_has_exec_op(chip)) { 1676 const struct nand_sdr_timings *sdr = 1677 nand_get_sdr_timings(&chip->data_interface); 1678 u8 addrs[3] = { page, page >> 8, page >> 16 }; 1679 struct nand_op_instr instrs[] = { 1680 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 1681 NAND_OP_ADDR(2, addrs, 0), 1682 NAND_OP_CMD(NAND_CMD_ERASE2, 1683 PSEC_TO_MSEC(sdr->tWB_max)), 1684 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), 1685 }; 1686 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1687 1688 if (chip->options & NAND_ROW_ADDR_3) 1689 instrs[1].ctx.addr.naddrs++; 1690 1691 ret = nand_exec_op(chip, &op); 1692 if (ret) 1693 return ret; 1694 1695 ret = nand_status_op(chip, &status); 1696 if (ret) 1697 return ret; 1698 } else { 1699 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); 1700 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); 1701 1702 ret = chip->legacy.waitfunc(chip); 1703 if (ret < 0) 1704 return ret; 1705 1706 status = ret; 1707 } 1708 1709 if (status & NAND_STATUS_FAIL) 1710 return -EIO; 1711 1712 return 0; 1713 } 1714 EXPORT_SYMBOL_GPL(nand_erase_op); 1715 1716 /** 1717 * nand_set_features_op - Do a SET FEATURES operation 1718 * @chip: The NAND chip 1719 * @feature: feature id 1720 * @data: 4 bytes of data 1721 * 1722 * This function sends a SET FEATURES command and waits for the NAND to be 1723 * ready before returning. 1724 * This function does not select/unselect the CS line. 1725 * 1726 * Returns 0 on success, a negative error code otherwise. 1727 */ 1728 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 1729 const void *data) 1730 { 1731 const u8 *params = data; 1732 int i, ret; 1733 1734 if (nand_has_exec_op(chip)) { 1735 const struct nand_sdr_timings *sdr = 1736 nand_get_sdr_timings(&chip->data_interface); 1737 struct nand_op_instr instrs[] = { 1738 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 1739 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), 1740 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 1741 PSEC_TO_NSEC(sdr->tWB_max)), 1742 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), 1743 }; 1744 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1745 1746 return nand_exec_op(chip, &op); 1747 } 1748 1749 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); 1750 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1751 chip->legacy.write_byte(chip, params[i]); 1752 1753 ret = chip->legacy.waitfunc(chip); 1754 if (ret < 0) 1755 return ret; 1756 1757 if (ret & NAND_STATUS_FAIL) 1758 return -EIO; 1759 1760 return 0; 1761 } 1762 1763 /** 1764 * nand_get_features_op - Do a GET FEATURES operation 1765 * @chip: The NAND chip 1766 * @feature: feature id 1767 * @data: 4 bytes of data 1768 * 1769 * This function sends a GET FEATURES command and waits for the NAND to be 1770 * ready before returning. 1771 * This function does not select/unselect the CS line. 1772 * 1773 * Returns 0 on success, a negative error code otherwise. 1774 */ 1775 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 1776 void *data) 1777 { 1778 u8 *params = data; 1779 int i; 1780 1781 if (nand_has_exec_op(chip)) { 1782 const struct nand_sdr_timings *sdr = 1783 nand_get_sdr_timings(&chip->data_interface); 1784 struct nand_op_instr instrs[] = { 1785 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 1786 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), 1787 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 1788 PSEC_TO_NSEC(sdr->tRR_min)), 1789 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 1790 data, 0), 1791 }; 1792 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1793 1794 return nand_exec_op(chip, &op); 1795 } 1796 1797 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); 1798 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1799 params[i] = chip->legacy.read_byte(chip); 1800 1801 return 0; 1802 } 1803 1804 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, 1805 unsigned int delay_ns) 1806 { 1807 if (nand_has_exec_op(chip)) { 1808 struct nand_op_instr instrs[] = { 1809 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), 1810 PSEC_TO_NSEC(delay_ns)), 1811 }; 1812 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1813 1814 return nand_exec_op(chip, &op); 1815 } 1816 1817 /* Apply delay or wait for ready/busy pin */ 1818 if (!chip->legacy.dev_ready) 1819 udelay(chip->legacy.chip_delay); 1820 else 1821 nand_wait_ready(chip); 1822 1823 return 0; 1824 } 1825 1826 /** 1827 * nand_reset_op - Do a reset operation 1828 * @chip: The NAND chip 1829 * 1830 * This function sends a RESET command and waits for the NAND to be ready 1831 * before returning. 1832 * This function does not select/unselect the CS line. 1833 * 1834 * Returns 0 on success, a negative error code otherwise. 1835 */ 1836 int nand_reset_op(struct nand_chip *chip) 1837 { 1838 if (nand_has_exec_op(chip)) { 1839 const struct nand_sdr_timings *sdr = 1840 nand_get_sdr_timings(&chip->data_interface); 1841 struct nand_op_instr instrs[] = { 1842 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), 1843 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), 1844 }; 1845 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1846 1847 return nand_exec_op(chip, &op); 1848 } 1849 1850 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); 1851 1852 return 0; 1853 } 1854 EXPORT_SYMBOL_GPL(nand_reset_op); 1855 1856 /** 1857 * nand_read_data_op - Read data from the NAND 1858 * @chip: The NAND chip 1859 * @buf: buffer used to store the data 1860 * @len: length of the buffer 1861 * @force_8bit: force 8-bit bus access 1862 * 1863 * This function does a raw data read on the bus. Usually used after launching 1864 * another NAND operation like nand_read_page_op(). 1865 * This function does not select/unselect the CS line. 1866 * 1867 * Returns 0 on success, a negative error code otherwise. 1868 */ 1869 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1870 bool force_8bit) 1871 { 1872 if (!len || !buf) 1873 return -EINVAL; 1874 1875 if (nand_has_exec_op(chip)) { 1876 struct nand_op_instr instrs[] = { 1877 NAND_OP_DATA_IN(len, buf, 0), 1878 }; 1879 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1880 1881 instrs[0].ctx.data.force_8bit = force_8bit; 1882 1883 return nand_exec_op(chip, &op); 1884 } 1885 1886 if (force_8bit) { 1887 u8 *p = buf; 1888 unsigned int i; 1889 1890 for (i = 0; i < len; i++) 1891 p[i] = chip->legacy.read_byte(chip); 1892 } else { 1893 chip->legacy.read_buf(chip, buf, len); 1894 } 1895 1896 return 0; 1897 } 1898 EXPORT_SYMBOL_GPL(nand_read_data_op); 1899 1900 /** 1901 * nand_write_data_op - Write data from the NAND 1902 * @chip: The NAND chip 1903 * @buf: buffer containing the data to send on the bus 1904 * @len: length of the buffer 1905 * @force_8bit: force 8-bit bus access 1906 * 1907 * This function does a raw data write on the bus. Usually used after launching 1908 * another NAND operation like nand_write_page_begin_op(). 1909 * This function does not select/unselect the CS line. 1910 * 1911 * Returns 0 on success, a negative error code otherwise. 1912 */ 1913 int nand_write_data_op(struct nand_chip *chip, const void *buf, 1914 unsigned int len, bool force_8bit) 1915 { 1916 if (!len || !buf) 1917 return -EINVAL; 1918 1919 if (nand_has_exec_op(chip)) { 1920 struct nand_op_instr instrs[] = { 1921 NAND_OP_DATA_OUT(len, buf, 0), 1922 }; 1923 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1924 1925 instrs[0].ctx.data.force_8bit = force_8bit; 1926 1927 return nand_exec_op(chip, &op); 1928 } 1929 1930 if (force_8bit) { 1931 const u8 *p = buf; 1932 unsigned int i; 1933 1934 for (i = 0; i < len; i++) 1935 chip->legacy.write_byte(chip, p[i]); 1936 } else { 1937 chip->legacy.write_buf(chip, buf, len); 1938 } 1939 1940 return 0; 1941 } 1942 EXPORT_SYMBOL_GPL(nand_write_data_op); 1943 1944 /** 1945 * struct nand_op_parser_ctx - Context used by the parser 1946 * @instrs: array of all the instructions that must be addressed 1947 * @ninstrs: length of the @instrs array 1948 * @subop: Sub-operation to be passed to the NAND controller 1949 * 1950 * This structure is used by the core to split NAND operations into 1951 * sub-operations that can be handled by the NAND controller. 1952 */ 1953 struct nand_op_parser_ctx { 1954 const struct nand_op_instr *instrs; 1955 unsigned int ninstrs; 1956 struct nand_subop subop; 1957 }; 1958 1959 /** 1960 * nand_op_parser_must_split_instr - Checks if an instruction must be split 1961 * @pat: the parser pattern element that matches @instr 1962 * @instr: pointer to the instruction to check 1963 * @start_offset: this is an in/out parameter. If @instr has already been 1964 * split, then @start_offset is the offset from which to start 1965 * (either an address cycle or an offset in the data buffer). 1966 * Conversely, if the function returns true (ie. instr must be 1967 * split), this parameter is updated to point to the first 1968 * data/address cycle that has not been taken care of. 1969 * 1970 * Some NAND controllers are limited and cannot send X address cycles with a 1971 * unique operation, or cannot read/write more than Y bytes at the same time. 1972 * In this case, split the instruction that does not fit in a single 1973 * controller-operation into two or more chunks. 1974 * 1975 * Returns true if the instruction must be split, false otherwise. 1976 * The @start_offset parameter is also updated to the offset at which the next 1977 * bundle of instruction must start (if an address or a data instruction). 1978 */ 1979 static bool 1980 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 1981 const struct nand_op_instr *instr, 1982 unsigned int *start_offset) 1983 { 1984 switch (pat->type) { 1985 case NAND_OP_ADDR_INSTR: 1986 if (!pat->ctx.addr.maxcycles) 1987 break; 1988 1989 if (instr->ctx.addr.naddrs - *start_offset > 1990 pat->ctx.addr.maxcycles) { 1991 *start_offset += pat->ctx.addr.maxcycles; 1992 return true; 1993 } 1994 break; 1995 1996 case NAND_OP_DATA_IN_INSTR: 1997 case NAND_OP_DATA_OUT_INSTR: 1998 if (!pat->ctx.data.maxlen) 1999 break; 2000 2001 if (instr->ctx.data.len - *start_offset > 2002 pat->ctx.data.maxlen) { 2003 *start_offset += pat->ctx.data.maxlen; 2004 return true; 2005 } 2006 break; 2007 2008 default: 2009 break; 2010 } 2011 2012 return false; 2013 } 2014 2015 /** 2016 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2017 * remaining in the parser context 2018 * @pat: the pattern to test 2019 * @ctx: the parser context structure to match with the pattern @pat 2020 * 2021 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2022 * Returns true if this is the case, false ortherwise. When true is returned, 2023 * @ctx->subop is updated with the set of instructions to be passed to the 2024 * controller driver. 2025 */ 2026 static bool 2027 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2028 struct nand_op_parser_ctx *ctx) 2029 { 2030 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2031 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2032 const struct nand_op_instr *instr = ctx->subop.instrs; 2033 unsigned int i, ninstrs; 2034 2035 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2036 /* 2037 * The pattern instruction does not match the operation 2038 * instruction. If the instruction is marked optional in the 2039 * pattern definition, we skip the pattern element and continue 2040 * to the next one. If the element is mandatory, there's no 2041 * match and we can return false directly. 2042 */ 2043 if (instr->type != pat->elems[i].type) { 2044 if (!pat->elems[i].optional) 2045 return false; 2046 2047 continue; 2048 } 2049 2050 /* 2051 * Now check the pattern element constraints. If the pattern is 2052 * not able to handle the whole instruction in a single step, 2053 * we have to split it. 2054 * The last_instr_end_off value comes back updated to point to 2055 * the position where we have to split the instruction (the 2056 * start of the next subop chunk). 2057 */ 2058 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2059 &instr_offset)) { 2060 ninstrs++; 2061 i++; 2062 break; 2063 } 2064 2065 instr++; 2066 ninstrs++; 2067 instr_offset = 0; 2068 } 2069 2070 /* 2071 * This can happen if all instructions of a pattern are optional. 2072 * Still, if there's not at least one instruction handled by this 2073 * pattern, this is not a match, and we should try the next one (if 2074 * any). 2075 */ 2076 if (!ninstrs) 2077 return false; 2078 2079 /* 2080 * We had a match on the pattern head, but the pattern may be longer 2081 * than the instructions we're asked to execute. We need to make sure 2082 * there's no mandatory elements in the pattern tail. 2083 */ 2084 for (; i < pat->nelems; i++) { 2085 if (!pat->elems[i].optional) 2086 return false; 2087 } 2088 2089 /* 2090 * We have a match: update the subop structure accordingly and return 2091 * true. 2092 */ 2093 ctx->subop.ninstrs = ninstrs; 2094 ctx->subop.last_instr_end_off = instr_offset; 2095 2096 return true; 2097 } 2098 2099 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2100 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2101 { 2102 const struct nand_op_instr *instr; 2103 char *prefix = " "; 2104 unsigned int i; 2105 2106 pr_debug("executing subop:\n"); 2107 2108 for (i = 0; i < ctx->ninstrs; i++) { 2109 instr = &ctx->instrs[i]; 2110 2111 if (instr == &ctx->subop.instrs[0]) 2112 prefix = " ->"; 2113 2114 switch (instr->type) { 2115 case NAND_OP_CMD_INSTR: 2116 pr_debug("%sCMD [0x%02x]\n", prefix, 2117 instr->ctx.cmd.opcode); 2118 break; 2119 case NAND_OP_ADDR_INSTR: 2120 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, 2121 instr->ctx.addr.naddrs, 2122 instr->ctx.addr.naddrs < 64 ? 2123 instr->ctx.addr.naddrs : 64, 2124 instr->ctx.addr.addrs); 2125 break; 2126 case NAND_OP_DATA_IN_INSTR: 2127 pr_debug("%sDATA_IN [%d B%s]\n", prefix, 2128 instr->ctx.data.len, 2129 instr->ctx.data.force_8bit ? 2130 ", force 8-bit" : ""); 2131 break; 2132 case NAND_OP_DATA_OUT_INSTR: 2133 pr_debug("%sDATA_OUT [%d B%s]\n", prefix, 2134 instr->ctx.data.len, 2135 instr->ctx.data.force_8bit ? 2136 ", force 8-bit" : ""); 2137 break; 2138 case NAND_OP_WAITRDY_INSTR: 2139 pr_debug("%sWAITRDY [max %d ms]\n", prefix, 2140 instr->ctx.waitrdy.timeout_ms); 2141 break; 2142 } 2143 2144 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2145 prefix = " "; 2146 } 2147 } 2148 #else 2149 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2150 { 2151 /* NOP */ 2152 } 2153 #endif 2154 2155 /** 2156 * nand_op_parser_exec_op - exec_op parser 2157 * @chip: the NAND chip 2158 * @parser: patterns description provided by the controller driver 2159 * @op: the NAND operation to address 2160 * @check_only: when true, the function only checks if @op can be handled but 2161 * does not execute the operation 2162 * 2163 * Helper function designed to ease integration of NAND controller drivers that 2164 * only support a limited set of instruction sequences. The supported sequences 2165 * are described in @parser, and the framework takes care of splitting @op into 2166 * multiple sub-operations (if required) and pass them back to the ->exec() 2167 * callback of the matching pattern if @check_only is set to false. 2168 * 2169 * NAND controller drivers should call this function from their own ->exec_op() 2170 * implementation. 2171 * 2172 * Returns 0 on success, a negative error code otherwise. A failure can be 2173 * caused by an unsupported operation (none of the supported patterns is able 2174 * to handle the requested operation), or an error returned by one of the 2175 * matching pattern->exec() hook. 2176 */ 2177 int nand_op_parser_exec_op(struct nand_chip *chip, 2178 const struct nand_op_parser *parser, 2179 const struct nand_operation *op, bool check_only) 2180 { 2181 struct nand_op_parser_ctx ctx = { 2182 .subop.instrs = op->instrs, 2183 .instrs = op->instrs, 2184 .ninstrs = op->ninstrs, 2185 }; 2186 unsigned int i; 2187 2188 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2189 int ret; 2190 2191 for (i = 0; i < parser->npatterns; i++) { 2192 const struct nand_op_parser_pattern *pattern; 2193 2194 pattern = &parser->patterns[i]; 2195 if (!nand_op_parser_match_pat(pattern, &ctx)) 2196 continue; 2197 2198 nand_op_parser_trace(&ctx); 2199 2200 if (check_only) 2201 break; 2202 2203 ret = pattern->exec(chip, &ctx.subop); 2204 if (ret) 2205 return ret; 2206 2207 break; 2208 } 2209 2210 if (i == parser->npatterns) { 2211 pr_debug("->exec_op() parser: pattern not found!\n"); 2212 return -ENOTSUPP; 2213 } 2214 2215 /* 2216 * Update the context structure by pointing to the start of the 2217 * next subop. 2218 */ 2219 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2220 if (ctx.subop.last_instr_end_off) 2221 ctx.subop.instrs -= 1; 2222 2223 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2224 } 2225 2226 return 0; 2227 } 2228 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2229 2230 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2231 { 2232 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2233 instr->type == NAND_OP_DATA_OUT_INSTR); 2234 } 2235 2236 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2237 unsigned int instr_idx) 2238 { 2239 return subop && instr_idx < subop->ninstrs; 2240 } 2241 2242 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2243 unsigned int instr_idx) 2244 { 2245 if (instr_idx) 2246 return 0; 2247 2248 return subop->first_instr_start_off; 2249 } 2250 2251 /** 2252 * nand_subop_get_addr_start_off - Get the start offset in an address array 2253 * @subop: The entire sub-operation 2254 * @instr_idx: Index of the instruction inside the sub-operation 2255 * 2256 * During driver development, one could be tempted to directly use the 2257 * ->addr.addrs field of address instructions. This is wrong as address 2258 * instructions might be split. 2259 * 2260 * Given an address instruction, returns the offset of the first cycle to issue. 2261 */ 2262 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2263 unsigned int instr_idx) 2264 { 2265 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2266 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2267 return 0; 2268 2269 return nand_subop_get_start_off(subop, instr_idx); 2270 } 2271 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2272 2273 /** 2274 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2275 * @subop: The entire sub-operation 2276 * @instr_idx: Index of the instruction inside the sub-operation 2277 * 2278 * During driver development, one could be tempted to directly use the 2279 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2280 * might be split. 2281 * 2282 * Given an address instruction, returns the number of address cycle to issue. 2283 */ 2284 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2285 unsigned int instr_idx) 2286 { 2287 int start_off, end_off; 2288 2289 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2290 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2291 return 0; 2292 2293 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2294 2295 if (instr_idx == subop->ninstrs - 1 && 2296 subop->last_instr_end_off) 2297 end_off = subop->last_instr_end_off; 2298 else 2299 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2300 2301 return end_off - start_off; 2302 } 2303 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2304 2305 /** 2306 * nand_subop_get_data_start_off - Get the start offset in a data array 2307 * @subop: The entire sub-operation 2308 * @instr_idx: Index of the instruction inside the sub-operation 2309 * 2310 * During driver development, one could be tempted to directly use the 2311 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2312 * instructions might be split. 2313 * 2314 * Given a data instruction, returns the offset to start from. 2315 */ 2316 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2317 unsigned int instr_idx) 2318 { 2319 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2320 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2321 return 0; 2322 2323 return nand_subop_get_start_off(subop, instr_idx); 2324 } 2325 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2326 2327 /** 2328 * nand_subop_get_data_len - Get the number of bytes to retrieve 2329 * @subop: The entire sub-operation 2330 * @instr_idx: Index of the instruction inside the sub-operation 2331 * 2332 * During driver development, one could be tempted to directly use the 2333 * ->data->len field of a data instruction. This is wrong as data instructions 2334 * might be split. 2335 * 2336 * Returns the length of the chunk of data to send/receive. 2337 */ 2338 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2339 unsigned int instr_idx) 2340 { 2341 int start_off = 0, end_off; 2342 2343 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2344 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2345 return 0; 2346 2347 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2348 2349 if (instr_idx == subop->ninstrs - 1 && 2350 subop->last_instr_end_off) 2351 end_off = subop->last_instr_end_off; 2352 else 2353 end_off = subop->instrs[instr_idx].ctx.data.len; 2354 2355 return end_off - start_off; 2356 } 2357 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2358 2359 /** 2360 * nand_reset - Reset and initialize a NAND device 2361 * @chip: The NAND chip 2362 * @chipnr: Internal die id 2363 * 2364 * Save the timings data structure, then apply SDR timings mode 0 (see 2365 * nand_reset_data_interface for details), do the reset operation, and 2366 * apply back the previous timings. 2367 * 2368 * Returns 0 on success, a negative error code otherwise. 2369 */ 2370 int nand_reset(struct nand_chip *chip, int chipnr) 2371 { 2372 struct nand_data_interface saved_data_intf = chip->data_interface; 2373 int ret; 2374 2375 ret = nand_reset_data_interface(chip, chipnr); 2376 if (ret) 2377 return ret; 2378 2379 /* 2380 * The CS line has to be released before we can apply the new NAND 2381 * interface settings, hence this weird nand_select_target() 2382 * nand_deselect_target() dance. 2383 */ 2384 nand_select_target(chip, chipnr); 2385 ret = nand_reset_op(chip); 2386 nand_deselect_target(chip); 2387 if (ret) 2388 return ret; 2389 2390 /* 2391 * A nand_reset_data_interface() put both the NAND chip and the NAND 2392 * controller in timings mode 0. If the default mode for this chip is 2393 * also 0, no need to proceed to the change again. Plus, at probe time, 2394 * nand_setup_data_interface() uses ->set/get_features() which would 2395 * fail anyway as the parameter page is not available yet. 2396 */ 2397 if (!chip->onfi_timing_mode_default) 2398 return 0; 2399 2400 chip->data_interface = saved_data_intf; 2401 ret = nand_setup_data_interface(chip, chipnr); 2402 if (ret) 2403 return ret; 2404 2405 return 0; 2406 } 2407 EXPORT_SYMBOL_GPL(nand_reset); 2408 2409 /** 2410 * nand_get_features - wrapper to perform a GET_FEATURE 2411 * @chip: NAND chip info structure 2412 * @addr: feature address 2413 * @subfeature_param: the subfeature parameters, a four bytes array 2414 * 2415 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2416 * operation cannot be handled. 2417 */ 2418 int nand_get_features(struct nand_chip *chip, int addr, 2419 u8 *subfeature_param) 2420 { 2421 if (!nand_supports_get_features(chip, addr)) 2422 return -ENOTSUPP; 2423 2424 if (chip->legacy.get_features) 2425 return chip->legacy.get_features(chip, addr, subfeature_param); 2426 2427 return nand_get_features_op(chip, addr, subfeature_param); 2428 } 2429 2430 /** 2431 * nand_set_features - wrapper to perform a SET_FEATURE 2432 * @chip: NAND chip info structure 2433 * @addr: feature address 2434 * @subfeature_param: the subfeature parameters, a four bytes array 2435 * 2436 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2437 * operation cannot be handled. 2438 */ 2439 int nand_set_features(struct nand_chip *chip, int addr, 2440 u8 *subfeature_param) 2441 { 2442 if (!nand_supports_set_features(chip, addr)) 2443 return -ENOTSUPP; 2444 2445 if (chip->legacy.set_features) 2446 return chip->legacy.set_features(chip, addr, subfeature_param); 2447 2448 return nand_set_features_op(chip, addr, subfeature_param); 2449 } 2450 2451 /** 2452 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2453 * @buf: buffer to test 2454 * @len: buffer length 2455 * @bitflips_threshold: maximum number of bitflips 2456 * 2457 * Check if a buffer contains only 0xff, which means the underlying region 2458 * has been erased and is ready to be programmed. 2459 * The bitflips_threshold specify the maximum number of bitflips before 2460 * considering the region is not erased. 2461 * Note: The logic of this function has been extracted from the memweight 2462 * implementation, except that nand_check_erased_buf function exit before 2463 * testing the whole buffer if the number of bitflips exceed the 2464 * bitflips_threshold value. 2465 * 2466 * Returns a positive number of bitflips less than or equal to 2467 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2468 * threshold. 2469 */ 2470 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2471 { 2472 const unsigned char *bitmap = buf; 2473 int bitflips = 0; 2474 int weight; 2475 2476 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2477 len--, bitmap++) { 2478 weight = hweight8(*bitmap); 2479 bitflips += BITS_PER_BYTE - weight; 2480 if (unlikely(bitflips > bitflips_threshold)) 2481 return -EBADMSG; 2482 } 2483 2484 for (; len >= sizeof(long); 2485 len -= sizeof(long), bitmap += sizeof(long)) { 2486 unsigned long d = *((unsigned long *)bitmap); 2487 if (d == ~0UL) 2488 continue; 2489 weight = hweight_long(d); 2490 bitflips += BITS_PER_LONG - weight; 2491 if (unlikely(bitflips > bitflips_threshold)) 2492 return -EBADMSG; 2493 } 2494 2495 for (; len > 0; len--, bitmap++) { 2496 weight = hweight8(*bitmap); 2497 bitflips += BITS_PER_BYTE - weight; 2498 if (unlikely(bitflips > bitflips_threshold)) 2499 return -EBADMSG; 2500 } 2501 2502 return bitflips; 2503 } 2504 2505 /** 2506 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2507 * 0xff data 2508 * @data: data buffer to test 2509 * @datalen: data length 2510 * @ecc: ECC buffer 2511 * @ecclen: ECC length 2512 * @extraoob: extra OOB buffer 2513 * @extraooblen: extra OOB length 2514 * @bitflips_threshold: maximum number of bitflips 2515 * 2516 * Check if a data buffer and its associated ECC and OOB data contains only 2517 * 0xff pattern, which means the underlying region has been erased and is 2518 * ready to be programmed. 2519 * The bitflips_threshold specify the maximum number of bitflips before 2520 * considering the region as not erased. 2521 * 2522 * Note: 2523 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2524 * different from the NAND page size. When fixing bitflips, ECC engines will 2525 * report the number of errors per chunk, and the NAND core infrastructure 2526 * expect you to return the maximum number of bitflips for the whole page. 2527 * This is why you should always use this function on a single chunk and 2528 * not on the whole page. After checking each chunk you should update your 2529 * max_bitflips value accordingly. 2530 * 2/ When checking for bitflips in erased pages you should not only check 2531 * the payload data but also their associated ECC data, because a user might 2532 * have programmed almost all bits to 1 but a few. In this case, we 2533 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2534 * this case. 2535 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2536 * data are protected by the ECC engine. 2537 * It could also be used if you support subpages and want to attach some 2538 * extra OOB data to an ECC chunk. 2539 * 2540 * Returns a positive number of bitflips less than or equal to 2541 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2542 * threshold. In case of success, the passed buffers are filled with 0xff. 2543 */ 2544 int nand_check_erased_ecc_chunk(void *data, int datalen, 2545 void *ecc, int ecclen, 2546 void *extraoob, int extraooblen, 2547 int bitflips_threshold) 2548 { 2549 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2550 2551 data_bitflips = nand_check_erased_buf(data, datalen, 2552 bitflips_threshold); 2553 if (data_bitflips < 0) 2554 return data_bitflips; 2555 2556 bitflips_threshold -= data_bitflips; 2557 2558 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2559 if (ecc_bitflips < 0) 2560 return ecc_bitflips; 2561 2562 bitflips_threshold -= ecc_bitflips; 2563 2564 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2565 bitflips_threshold); 2566 if (extraoob_bitflips < 0) 2567 return extraoob_bitflips; 2568 2569 if (data_bitflips) 2570 memset(data, 0xff, datalen); 2571 2572 if (ecc_bitflips) 2573 memset(ecc, 0xff, ecclen); 2574 2575 if (extraoob_bitflips) 2576 memset(extraoob, 0xff, extraooblen); 2577 2578 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2579 } 2580 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2581 2582 /** 2583 * nand_read_page_raw_notsupp - dummy read raw page function 2584 * @chip: nand chip info structure 2585 * @buf: buffer to store read data 2586 * @oob_required: caller requires OOB data read to chip->oob_poi 2587 * @page: page number to read 2588 * 2589 * Returns -ENOTSUPP unconditionally. 2590 */ 2591 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, 2592 int oob_required, int page) 2593 { 2594 return -ENOTSUPP; 2595 } 2596 2597 /** 2598 * nand_read_page_raw - [INTERN] read raw page data without ecc 2599 * @chip: nand chip info structure 2600 * @buf: buffer to store read data 2601 * @oob_required: caller requires OOB data read to chip->oob_poi 2602 * @page: page number to read 2603 * 2604 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2605 */ 2606 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 2607 int page) 2608 { 2609 struct mtd_info *mtd = nand_to_mtd(chip); 2610 int ret; 2611 2612 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2613 if (ret) 2614 return ret; 2615 2616 if (oob_required) { 2617 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2618 false); 2619 if (ret) 2620 return ret; 2621 } 2622 2623 return 0; 2624 } 2625 EXPORT_SYMBOL(nand_read_page_raw); 2626 2627 /** 2628 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 2629 * @chip: nand chip info structure 2630 * @buf: buffer to store read data 2631 * @oob_required: caller requires OOB data read to chip->oob_poi 2632 * @page: page number to read 2633 * 2634 * We need a special oob layout and handling even when OOB isn't used. 2635 */ 2636 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, 2637 int oob_required, int page) 2638 { 2639 struct mtd_info *mtd = nand_to_mtd(chip); 2640 int eccsize = chip->ecc.size; 2641 int eccbytes = chip->ecc.bytes; 2642 uint8_t *oob = chip->oob_poi; 2643 int steps, size, ret; 2644 2645 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2646 if (ret) 2647 return ret; 2648 2649 for (steps = chip->ecc.steps; steps > 0; steps--) { 2650 ret = nand_read_data_op(chip, buf, eccsize, false); 2651 if (ret) 2652 return ret; 2653 2654 buf += eccsize; 2655 2656 if (chip->ecc.prepad) { 2657 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 2658 false); 2659 if (ret) 2660 return ret; 2661 2662 oob += chip->ecc.prepad; 2663 } 2664 2665 ret = nand_read_data_op(chip, oob, eccbytes, false); 2666 if (ret) 2667 return ret; 2668 2669 oob += eccbytes; 2670 2671 if (chip->ecc.postpad) { 2672 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 2673 false); 2674 if (ret) 2675 return ret; 2676 2677 oob += chip->ecc.postpad; 2678 } 2679 } 2680 2681 size = mtd->oobsize - (oob - chip->oob_poi); 2682 if (size) { 2683 ret = nand_read_data_op(chip, oob, size, false); 2684 if (ret) 2685 return ret; 2686 } 2687 2688 return 0; 2689 } 2690 2691 /** 2692 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 2693 * @chip: nand chip info structure 2694 * @buf: buffer to store read data 2695 * @oob_required: caller requires OOB data read to chip->oob_poi 2696 * @page: page number to read 2697 */ 2698 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, 2699 int oob_required, int page) 2700 { 2701 struct mtd_info *mtd = nand_to_mtd(chip); 2702 int i, eccsize = chip->ecc.size, ret; 2703 int eccbytes = chip->ecc.bytes; 2704 int eccsteps = chip->ecc.steps; 2705 uint8_t *p = buf; 2706 uint8_t *ecc_calc = chip->ecc.calc_buf; 2707 uint8_t *ecc_code = chip->ecc.code_buf; 2708 unsigned int max_bitflips = 0; 2709 2710 chip->ecc.read_page_raw(chip, buf, 1, page); 2711 2712 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 2713 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2714 2715 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2716 chip->ecc.total); 2717 if (ret) 2718 return ret; 2719 2720 eccsteps = chip->ecc.steps; 2721 p = buf; 2722 2723 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2724 int stat; 2725 2726 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2727 if (stat < 0) { 2728 mtd->ecc_stats.failed++; 2729 } else { 2730 mtd->ecc_stats.corrected += stat; 2731 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2732 } 2733 } 2734 return max_bitflips; 2735 } 2736 2737 /** 2738 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 2739 * @chip: nand chip info structure 2740 * @data_offs: offset of requested data within the page 2741 * @readlen: data length 2742 * @bufpoi: buffer to store read data 2743 * @page: page number to read 2744 */ 2745 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, 2746 uint32_t readlen, uint8_t *bufpoi, int page) 2747 { 2748 struct mtd_info *mtd = nand_to_mtd(chip); 2749 int start_step, end_step, num_steps, ret; 2750 uint8_t *p; 2751 int data_col_addr, i, gaps = 0; 2752 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 2753 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 2754 int index, section = 0; 2755 unsigned int max_bitflips = 0; 2756 struct mtd_oob_region oobregion = { }; 2757 2758 /* Column address within the page aligned to ECC size (256bytes) */ 2759 start_step = data_offs / chip->ecc.size; 2760 end_step = (data_offs + readlen - 1) / chip->ecc.size; 2761 num_steps = end_step - start_step + 1; 2762 index = start_step * chip->ecc.bytes; 2763 2764 /* Data size aligned to ECC ecc.size */ 2765 datafrag_len = num_steps * chip->ecc.size; 2766 eccfrag_len = num_steps * chip->ecc.bytes; 2767 2768 data_col_addr = start_step * chip->ecc.size; 2769 /* If we read not a page aligned data */ 2770 p = bufpoi + data_col_addr; 2771 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 2772 if (ret) 2773 return ret; 2774 2775 /* Calculate ECC */ 2776 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 2777 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); 2778 2779 /* 2780 * The performance is faster if we position offsets according to 2781 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 2782 */ 2783 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 2784 if (ret) 2785 return ret; 2786 2787 if (oobregion.length < eccfrag_len) 2788 gaps = 1; 2789 2790 if (gaps) { 2791 ret = nand_change_read_column_op(chip, mtd->writesize, 2792 chip->oob_poi, mtd->oobsize, 2793 false); 2794 if (ret) 2795 return ret; 2796 } else { 2797 /* 2798 * Send the command to read the particular ECC bytes take care 2799 * about buswidth alignment in read_buf. 2800 */ 2801 aligned_pos = oobregion.offset & ~(busw - 1); 2802 aligned_len = eccfrag_len; 2803 if (oobregion.offset & (busw - 1)) 2804 aligned_len++; 2805 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 2806 (busw - 1)) 2807 aligned_len++; 2808 2809 ret = nand_change_read_column_op(chip, 2810 mtd->writesize + aligned_pos, 2811 &chip->oob_poi[aligned_pos], 2812 aligned_len, false); 2813 if (ret) 2814 return ret; 2815 } 2816 2817 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 2818 chip->oob_poi, index, eccfrag_len); 2819 if (ret) 2820 return ret; 2821 2822 p = bufpoi + data_col_addr; 2823 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 2824 int stat; 2825 2826 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], 2827 &chip->ecc.calc_buf[i]); 2828 if (stat == -EBADMSG && 2829 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2830 /* check for empty pages with bitflips */ 2831 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 2832 &chip->ecc.code_buf[i], 2833 chip->ecc.bytes, 2834 NULL, 0, 2835 chip->ecc.strength); 2836 } 2837 2838 if (stat < 0) { 2839 mtd->ecc_stats.failed++; 2840 } else { 2841 mtd->ecc_stats.corrected += stat; 2842 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2843 } 2844 } 2845 return max_bitflips; 2846 } 2847 2848 /** 2849 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 2850 * @chip: nand chip info structure 2851 * @buf: buffer to store read data 2852 * @oob_required: caller requires OOB data read to chip->oob_poi 2853 * @page: page number to read 2854 * 2855 * Not for syndrome calculating ECC controllers which need a special oob layout. 2856 */ 2857 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, 2858 int oob_required, int page) 2859 { 2860 struct mtd_info *mtd = nand_to_mtd(chip); 2861 int i, eccsize = chip->ecc.size, ret; 2862 int eccbytes = chip->ecc.bytes; 2863 int eccsteps = chip->ecc.steps; 2864 uint8_t *p = buf; 2865 uint8_t *ecc_calc = chip->ecc.calc_buf; 2866 uint8_t *ecc_code = chip->ecc.code_buf; 2867 unsigned int max_bitflips = 0; 2868 2869 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2870 if (ret) 2871 return ret; 2872 2873 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2874 chip->ecc.hwctl(chip, NAND_ECC_READ); 2875 2876 ret = nand_read_data_op(chip, p, eccsize, false); 2877 if (ret) 2878 return ret; 2879 2880 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2881 } 2882 2883 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false); 2884 if (ret) 2885 return ret; 2886 2887 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2888 chip->ecc.total); 2889 if (ret) 2890 return ret; 2891 2892 eccsteps = chip->ecc.steps; 2893 p = buf; 2894 2895 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2896 int stat; 2897 2898 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2899 if (stat == -EBADMSG && 2900 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2901 /* check for empty pages with bitflips */ 2902 stat = nand_check_erased_ecc_chunk(p, eccsize, 2903 &ecc_code[i], eccbytes, 2904 NULL, 0, 2905 chip->ecc.strength); 2906 } 2907 2908 if (stat < 0) { 2909 mtd->ecc_stats.failed++; 2910 } else { 2911 mtd->ecc_stats.corrected += stat; 2912 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2913 } 2914 } 2915 return max_bitflips; 2916 } 2917 2918 /** 2919 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first 2920 * @chip: nand chip info structure 2921 * @buf: buffer to store read data 2922 * @oob_required: caller requires OOB data read to chip->oob_poi 2923 * @page: page number to read 2924 * 2925 * Hardware ECC for large page chips, require OOB to be read first. For this 2926 * ECC mode, the write_page method is re-used from ECC_HW. These methods 2927 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with 2928 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from 2929 * the data area, by overwriting the NAND manufacturer bad block markings. 2930 */ 2931 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, 2932 int oob_required, int page) 2933 { 2934 struct mtd_info *mtd = nand_to_mtd(chip); 2935 int i, eccsize = chip->ecc.size, ret; 2936 int eccbytes = chip->ecc.bytes; 2937 int eccsteps = chip->ecc.steps; 2938 uint8_t *p = buf; 2939 uint8_t *ecc_code = chip->ecc.code_buf; 2940 uint8_t *ecc_calc = chip->ecc.calc_buf; 2941 unsigned int max_bitflips = 0; 2942 2943 /* Read the OOB area first */ 2944 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 2945 if (ret) 2946 return ret; 2947 2948 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2949 if (ret) 2950 return ret; 2951 2952 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2953 chip->ecc.total); 2954 if (ret) 2955 return ret; 2956 2957 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2958 int stat; 2959 2960 chip->ecc.hwctl(chip, NAND_ECC_READ); 2961 2962 ret = nand_read_data_op(chip, p, eccsize, false); 2963 if (ret) 2964 return ret; 2965 2966 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2967 2968 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); 2969 if (stat == -EBADMSG && 2970 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 2971 /* check for empty pages with bitflips */ 2972 stat = nand_check_erased_ecc_chunk(p, eccsize, 2973 &ecc_code[i], eccbytes, 2974 NULL, 0, 2975 chip->ecc.strength); 2976 } 2977 2978 if (stat < 0) { 2979 mtd->ecc_stats.failed++; 2980 } else { 2981 mtd->ecc_stats.corrected += stat; 2982 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2983 } 2984 } 2985 return max_bitflips; 2986 } 2987 2988 /** 2989 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 2990 * @chip: nand chip info structure 2991 * @buf: buffer to store read data 2992 * @oob_required: caller requires OOB data read to chip->oob_poi 2993 * @page: page number to read 2994 * 2995 * The hw generator calculates the error syndrome automatically. Therefore we 2996 * need a special oob layout and handling. 2997 */ 2998 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 2999 int oob_required, int page) 3000 { 3001 struct mtd_info *mtd = nand_to_mtd(chip); 3002 int ret, i, eccsize = chip->ecc.size; 3003 int eccbytes = chip->ecc.bytes; 3004 int eccsteps = chip->ecc.steps; 3005 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 3006 uint8_t *p = buf; 3007 uint8_t *oob = chip->oob_poi; 3008 unsigned int max_bitflips = 0; 3009 3010 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3011 if (ret) 3012 return ret; 3013 3014 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3015 int stat; 3016 3017 chip->ecc.hwctl(chip, NAND_ECC_READ); 3018 3019 ret = nand_read_data_op(chip, p, eccsize, false); 3020 if (ret) 3021 return ret; 3022 3023 if (chip->ecc.prepad) { 3024 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3025 false); 3026 if (ret) 3027 return ret; 3028 3029 oob += chip->ecc.prepad; 3030 } 3031 3032 chip->ecc.hwctl(chip, NAND_ECC_READSYN); 3033 3034 ret = nand_read_data_op(chip, oob, eccbytes, false); 3035 if (ret) 3036 return ret; 3037 3038 stat = chip->ecc.correct(chip, p, oob, NULL); 3039 3040 oob += eccbytes; 3041 3042 if (chip->ecc.postpad) { 3043 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3044 false); 3045 if (ret) 3046 return ret; 3047 3048 oob += chip->ecc.postpad; 3049 } 3050 3051 if (stat == -EBADMSG && 3052 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3053 /* check for empty pages with bitflips */ 3054 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3055 oob - eccpadbytes, 3056 eccpadbytes, 3057 NULL, 0, 3058 chip->ecc.strength); 3059 } 3060 3061 if (stat < 0) { 3062 mtd->ecc_stats.failed++; 3063 } else { 3064 mtd->ecc_stats.corrected += stat; 3065 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3066 } 3067 } 3068 3069 /* Calculate remaining oob bytes */ 3070 i = mtd->oobsize - (oob - chip->oob_poi); 3071 if (i) { 3072 ret = nand_read_data_op(chip, oob, i, false); 3073 if (ret) 3074 return ret; 3075 } 3076 3077 return max_bitflips; 3078 } 3079 3080 /** 3081 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3082 * @chip: NAND chip object 3083 * @oob: oob destination address 3084 * @ops: oob ops structure 3085 * @len: size of oob to transfer 3086 */ 3087 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, 3088 struct mtd_oob_ops *ops, size_t len) 3089 { 3090 struct mtd_info *mtd = nand_to_mtd(chip); 3091 int ret; 3092 3093 switch (ops->mode) { 3094 3095 case MTD_OPS_PLACE_OOB: 3096 case MTD_OPS_RAW: 3097 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3098 return oob + len; 3099 3100 case MTD_OPS_AUTO_OOB: 3101 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3102 ops->ooboffs, len); 3103 BUG_ON(ret); 3104 return oob + len; 3105 3106 default: 3107 BUG(); 3108 } 3109 return NULL; 3110 } 3111 3112 /** 3113 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3114 * @chip: NAND chip object 3115 * @retry_mode: the retry mode to use 3116 * 3117 * Some vendors supply a special command to shift the Vt threshold, to be used 3118 * when there are too many bitflips in a page (i.e., ECC error). After setting 3119 * a new threshold, the host should retry reading the page. 3120 */ 3121 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) 3122 { 3123 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3124 3125 if (retry_mode >= chip->read_retries) 3126 return -EINVAL; 3127 3128 if (!chip->setup_read_retry) 3129 return -EOPNOTSUPP; 3130 3131 return chip->setup_read_retry(chip, retry_mode); 3132 } 3133 3134 static void nand_wait_readrdy(struct nand_chip *chip) 3135 { 3136 const struct nand_sdr_timings *sdr; 3137 3138 if (!(chip->options & NAND_NEED_READRDY)) 3139 return; 3140 3141 sdr = nand_get_sdr_timings(&chip->data_interface); 3142 WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0)); 3143 } 3144 3145 /** 3146 * nand_do_read_ops - [INTERN] Read data with ECC 3147 * @chip: NAND chip object 3148 * @from: offset to read from 3149 * @ops: oob ops structure 3150 * 3151 * Internal function. Called with chip held. 3152 */ 3153 static int nand_do_read_ops(struct nand_chip *chip, loff_t from, 3154 struct mtd_oob_ops *ops) 3155 { 3156 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3157 struct mtd_info *mtd = nand_to_mtd(chip); 3158 int ret = 0; 3159 uint32_t readlen = ops->len; 3160 uint32_t oobreadlen = ops->ooblen; 3161 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3162 3163 uint8_t *bufpoi, *oob, *buf; 3164 int use_bufpoi; 3165 unsigned int max_bitflips = 0; 3166 int retry_mode = 0; 3167 bool ecc_fail = false; 3168 3169 chipnr = (int)(from >> chip->chip_shift); 3170 nand_select_target(chip, chipnr); 3171 3172 realpage = (int)(from >> chip->page_shift); 3173 page = realpage & chip->pagemask; 3174 3175 col = (int)(from & (mtd->writesize - 1)); 3176 3177 buf = ops->datbuf; 3178 oob = ops->oobbuf; 3179 oob_required = oob ? 1 : 0; 3180 3181 while (1) { 3182 unsigned int ecc_failures = mtd->ecc_stats.failed; 3183 3184 bytes = min(mtd->writesize - col, readlen); 3185 aligned = (bytes == mtd->writesize); 3186 3187 if (!aligned) 3188 use_bufpoi = 1; 3189 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 3190 use_bufpoi = !virt_addr_valid(buf) || 3191 !IS_ALIGNED((unsigned long)buf, 3192 chip->buf_align); 3193 else 3194 use_bufpoi = 0; 3195 3196 /* Is the current page in the buffer? */ 3197 if (realpage != chip->pagecache.page || oob) { 3198 bufpoi = use_bufpoi ? chip->data_buf : buf; 3199 3200 if (use_bufpoi && aligned) 3201 pr_debug("%s: using read bounce buffer for buf@%p\n", 3202 __func__, buf); 3203 3204 read_retry: 3205 /* 3206 * Now read the page into the buffer. Absent an error, 3207 * the read methods return max bitflips per ecc step. 3208 */ 3209 if (unlikely(ops->mode == MTD_OPS_RAW)) 3210 ret = chip->ecc.read_page_raw(chip, bufpoi, 3211 oob_required, 3212 page); 3213 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3214 !oob) 3215 ret = chip->ecc.read_subpage(chip, col, bytes, 3216 bufpoi, page); 3217 else 3218 ret = chip->ecc.read_page(chip, bufpoi, 3219 oob_required, page); 3220 if (ret < 0) { 3221 if (use_bufpoi) 3222 /* Invalidate page cache */ 3223 chip->pagecache.page = -1; 3224 break; 3225 } 3226 3227 /* Transfer not aligned data */ 3228 if (use_bufpoi) { 3229 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3230 !(mtd->ecc_stats.failed - ecc_failures) && 3231 (ops->mode != MTD_OPS_RAW)) { 3232 chip->pagecache.page = realpage; 3233 chip->pagecache.bitflips = ret; 3234 } else { 3235 /* Invalidate page cache */ 3236 chip->pagecache.page = -1; 3237 } 3238 memcpy(buf, chip->data_buf + col, bytes); 3239 } 3240 3241 if (unlikely(oob)) { 3242 int toread = min(oobreadlen, max_oobsize); 3243 3244 if (toread) { 3245 oob = nand_transfer_oob(chip, oob, ops, 3246 toread); 3247 oobreadlen -= toread; 3248 } 3249 } 3250 3251 nand_wait_readrdy(chip); 3252 3253 if (mtd->ecc_stats.failed - ecc_failures) { 3254 if (retry_mode + 1 < chip->read_retries) { 3255 retry_mode++; 3256 ret = nand_setup_read_retry(chip, 3257 retry_mode); 3258 if (ret < 0) 3259 break; 3260 3261 /* Reset failures; retry */ 3262 mtd->ecc_stats.failed = ecc_failures; 3263 goto read_retry; 3264 } else { 3265 /* No more retry modes; real failure */ 3266 ecc_fail = true; 3267 } 3268 } 3269 3270 buf += bytes; 3271 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3272 } else { 3273 memcpy(buf, chip->data_buf + col, bytes); 3274 buf += bytes; 3275 max_bitflips = max_t(unsigned int, max_bitflips, 3276 chip->pagecache.bitflips); 3277 } 3278 3279 readlen -= bytes; 3280 3281 /* Reset to retry mode 0 */ 3282 if (retry_mode) { 3283 ret = nand_setup_read_retry(chip, 0); 3284 if (ret < 0) 3285 break; 3286 retry_mode = 0; 3287 } 3288 3289 if (!readlen) 3290 break; 3291 3292 /* For subsequent reads align to page boundary */ 3293 col = 0; 3294 /* Increment page address */ 3295 realpage++; 3296 3297 page = realpage & chip->pagemask; 3298 /* Check, if we cross a chip boundary */ 3299 if (!page) { 3300 chipnr++; 3301 nand_deselect_target(chip); 3302 nand_select_target(chip, chipnr); 3303 } 3304 } 3305 nand_deselect_target(chip); 3306 3307 ops->retlen = ops->len - (size_t) readlen; 3308 if (oob) 3309 ops->oobretlen = ops->ooblen - oobreadlen; 3310 3311 if (ret < 0) 3312 return ret; 3313 3314 if (ecc_fail) 3315 return -EBADMSG; 3316 3317 return max_bitflips; 3318 } 3319 3320 /** 3321 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3322 * @chip: nand chip info structure 3323 * @page: page number to read 3324 */ 3325 int nand_read_oob_std(struct nand_chip *chip, int page) 3326 { 3327 struct mtd_info *mtd = nand_to_mtd(chip); 3328 3329 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3330 } 3331 EXPORT_SYMBOL(nand_read_oob_std); 3332 3333 /** 3334 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3335 * with syndromes 3336 * @chip: nand chip info structure 3337 * @page: page number to read 3338 */ 3339 static int nand_read_oob_syndrome(struct nand_chip *chip, int page) 3340 { 3341 struct mtd_info *mtd = nand_to_mtd(chip); 3342 int length = mtd->oobsize; 3343 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3344 int eccsize = chip->ecc.size; 3345 uint8_t *bufpoi = chip->oob_poi; 3346 int i, toread, sndrnd = 0, pos, ret; 3347 3348 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3349 if (ret) 3350 return ret; 3351 3352 for (i = 0; i < chip->ecc.steps; i++) { 3353 if (sndrnd) { 3354 int ret; 3355 3356 pos = eccsize + i * (eccsize + chunk); 3357 if (mtd->writesize > 512) 3358 ret = nand_change_read_column_op(chip, pos, 3359 NULL, 0, 3360 false); 3361 else 3362 ret = nand_read_page_op(chip, page, pos, NULL, 3363 0); 3364 3365 if (ret) 3366 return ret; 3367 } else 3368 sndrnd = 1; 3369 toread = min_t(int, length, chunk); 3370 3371 ret = nand_read_data_op(chip, bufpoi, toread, false); 3372 if (ret) 3373 return ret; 3374 3375 bufpoi += toread; 3376 length -= toread; 3377 } 3378 if (length > 0) { 3379 ret = nand_read_data_op(chip, bufpoi, length, false); 3380 if (ret) 3381 return ret; 3382 } 3383 3384 return 0; 3385 } 3386 3387 /** 3388 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3389 * @chip: nand chip info structure 3390 * @page: page number to write 3391 */ 3392 int nand_write_oob_std(struct nand_chip *chip, int page) 3393 { 3394 struct mtd_info *mtd = nand_to_mtd(chip); 3395 3396 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3397 mtd->oobsize); 3398 } 3399 EXPORT_SYMBOL(nand_write_oob_std); 3400 3401 /** 3402 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3403 * with syndrome - only for large page flash 3404 * @chip: nand chip info structure 3405 * @page: page number to write 3406 */ 3407 static int nand_write_oob_syndrome(struct nand_chip *chip, int page) 3408 { 3409 struct mtd_info *mtd = nand_to_mtd(chip); 3410 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3411 int eccsize = chip->ecc.size, length = mtd->oobsize; 3412 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3413 const uint8_t *bufpoi = chip->oob_poi; 3414 3415 /* 3416 * data-ecc-data-ecc ... ecc-oob 3417 * or 3418 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3419 */ 3420 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3421 pos = steps * (eccsize + chunk); 3422 steps = 0; 3423 } else 3424 pos = eccsize; 3425 3426 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3427 if (ret) 3428 return ret; 3429 3430 for (i = 0; i < steps; i++) { 3431 if (sndcmd) { 3432 if (mtd->writesize <= 512) { 3433 uint32_t fill = 0xFFFFFFFF; 3434 3435 len = eccsize; 3436 while (len > 0) { 3437 int num = min_t(int, len, 4); 3438 3439 ret = nand_write_data_op(chip, &fill, 3440 num, false); 3441 if (ret) 3442 return ret; 3443 3444 len -= num; 3445 } 3446 } else { 3447 pos = eccsize + i * (eccsize + chunk); 3448 ret = nand_change_write_column_op(chip, pos, 3449 NULL, 0, 3450 false); 3451 if (ret) 3452 return ret; 3453 } 3454 } else 3455 sndcmd = 1; 3456 len = min_t(int, length, chunk); 3457 3458 ret = nand_write_data_op(chip, bufpoi, len, false); 3459 if (ret) 3460 return ret; 3461 3462 bufpoi += len; 3463 length -= len; 3464 } 3465 if (length > 0) { 3466 ret = nand_write_data_op(chip, bufpoi, length, false); 3467 if (ret) 3468 return ret; 3469 } 3470 3471 return nand_prog_page_end_op(chip); 3472 } 3473 3474 /** 3475 * nand_do_read_oob - [INTERN] NAND read out-of-band 3476 * @chip: NAND chip object 3477 * @from: offset to read from 3478 * @ops: oob operations description structure 3479 * 3480 * NAND read out-of-band data from the spare area. 3481 */ 3482 static int nand_do_read_oob(struct nand_chip *chip, loff_t from, 3483 struct mtd_oob_ops *ops) 3484 { 3485 struct mtd_info *mtd = nand_to_mtd(chip); 3486 unsigned int max_bitflips = 0; 3487 int page, realpage, chipnr; 3488 struct mtd_ecc_stats stats; 3489 int readlen = ops->ooblen; 3490 int len; 3491 uint8_t *buf = ops->oobbuf; 3492 int ret = 0; 3493 3494 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3495 __func__, (unsigned long long)from, readlen); 3496 3497 stats = mtd->ecc_stats; 3498 3499 len = mtd_oobavail(mtd, ops); 3500 3501 chipnr = (int)(from >> chip->chip_shift); 3502 nand_select_target(chip, chipnr); 3503 3504 /* Shift to get page */ 3505 realpage = (int)(from >> chip->page_shift); 3506 page = realpage & chip->pagemask; 3507 3508 while (1) { 3509 if (ops->mode == MTD_OPS_RAW) 3510 ret = chip->ecc.read_oob_raw(chip, page); 3511 else 3512 ret = chip->ecc.read_oob(chip, page); 3513 3514 if (ret < 0) 3515 break; 3516 3517 len = min(len, readlen); 3518 buf = nand_transfer_oob(chip, buf, ops, len); 3519 3520 nand_wait_readrdy(chip); 3521 3522 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3523 3524 readlen -= len; 3525 if (!readlen) 3526 break; 3527 3528 /* Increment page address */ 3529 realpage++; 3530 3531 page = realpage & chip->pagemask; 3532 /* Check, if we cross a chip boundary */ 3533 if (!page) { 3534 chipnr++; 3535 nand_deselect_target(chip); 3536 nand_select_target(chip, chipnr); 3537 } 3538 } 3539 nand_deselect_target(chip); 3540 3541 ops->oobretlen = ops->ooblen - readlen; 3542 3543 if (ret < 0) 3544 return ret; 3545 3546 if (mtd->ecc_stats.failed - stats.failed) 3547 return -EBADMSG; 3548 3549 return max_bitflips; 3550 } 3551 3552 /** 3553 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3554 * @mtd: MTD device structure 3555 * @from: offset to read from 3556 * @ops: oob operation description structure 3557 * 3558 * NAND read data and/or out-of-band data. 3559 */ 3560 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3561 struct mtd_oob_ops *ops) 3562 { 3563 struct nand_chip *chip = mtd_to_nand(mtd); 3564 int ret; 3565 3566 ops->retlen = 0; 3567 3568 if (ops->mode != MTD_OPS_PLACE_OOB && 3569 ops->mode != MTD_OPS_AUTO_OOB && 3570 ops->mode != MTD_OPS_RAW) 3571 return -ENOTSUPP; 3572 3573 ret = nand_get_device(chip); 3574 if (ret) 3575 return ret; 3576 3577 if (!ops->datbuf) 3578 ret = nand_do_read_oob(chip, from, ops); 3579 else 3580 ret = nand_do_read_ops(chip, from, ops); 3581 3582 nand_release_device(chip); 3583 return ret; 3584 } 3585 3586 /** 3587 * nand_write_page_raw_notsupp - dummy raw page write function 3588 * @chip: nand chip info structure 3589 * @buf: data buffer 3590 * @oob_required: must write chip->oob_poi to OOB 3591 * @page: page number to write 3592 * 3593 * Returns -ENOTSUPP unconditionally. 3594 */ 3595 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, 3596 int oob_required, int page) 3597 { 3598 return -ENOTSUPP; 3599 } 3600 3601 /** 3602 * nand_write_page_raw - [INTERN] raw page write function 3603 * @chip: nand chip info structure 3604 * @buf: data buffer 3605 * @oob_required: must write chip->oob_poi to OOB 3606 * @page: page number to write 3607 * 3608 * Not for syndrome calculating ECC controllers, which use a special oob layout. 3609 */ 3610 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 3611 int oob_required, int page) 3612 { 3613 struct mtd_info *mtd = nand_to_mtd(chip); 3614 int ret; 3615 3616 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 3617 if (ret) 3618 return ret; 3619 3620 if (oob_required) { 3621 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 3622 false); 3623 if (ret) 3624 return ret; 3625 } 3626 3627 return nand_prog_page_end_op(chip); 3628 } 3629 EXPORT_SYMBOL(nand_write_page_raw); 3630 3631 /** 3632 * nand_write_page_raw_syndrome - [INTERN] raw page write function 3633 * @chip: nand chip info structure 3634 * @buf: data buffer 3635 * @oob_required: must write chip->oob_poi to OOB 3636 * @page: page number to write 3637 * 3638 * We need a special oob layout and handling even when ECC isn't checked. 3639 */ 3640 static int nand_write_page_raw_syndrome(struct nand_chip *chip, 3641 const uint8_t *buf, int oob_required, 3642 int page) 3643 { 3644 struct mtd_info *mtd = nand_to_mtd(chip); 3645 int eccsize = chip->ecc.size; 3646 int eccbytes = chip->ecc.bytes; 3647 uint8_t *oob = chip->oob_poi; 3648 int steps, size, ret; 3649 3650 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3651 if (ret) 3652 return ret; 3653 3654 for (steps = chip->ecc.steps; steps > 0; steps--) { 3655 ret = nand_write_data_op(chip, buf, eccsize, false); 3656 if (ret) 3657 return ret; 3658 3659 buf += eccsize; 3660 3661 if (chip->ecc.prepad) { 3662 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3663 false); 3664 if (ret) 3665 return ret; 3666 3667 oob += chip->ecc.prepad; 3668 } 3669 3670 ret = nand_write_data_op(chip, oob, eccbytes, false); 3671 if (ret) 3672 return ret; 3673 3674 oob += eccbytes; 3675 3676 if (chip->ecc.postpad) { 3677 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3678 false); 3679 if (ret) 3680 return ret; 3681 3682 oob += chip->ecc.postpad; 3683 } 3684 } 3685 3686 size = mtd->oobsize - (oob - chip->oob_poi); 3687 if (size) { 3688 ret = nand_write_data_op(chip, oob, size, false); 3689 if (ret) 3690 return ret; 3691 } 3692 3693 return nand_prog_page_end_op(chip); 3694 } 3695 /** 3696 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 3697 * @chip: nand chip info structure 3698 * @buf: data buffer 3699 * @oob_required: must write chip->oob_poi to OOB 3700 * @page: page number to write 3701 */ 3702 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, 3703 int oob_required, int page) 3704 { 3705 struct mtd_info *mtd = nand_to_mtd(chip); 3706 int i, eccsize = chip->ecc.size, ret; 3707 int eccbytes = chip->ecc.bytes; 3708 int eccsteps = chip->ecc.steps; 3709 uint8_t *ecc_calc = chip->ecc.calc_buf; 3710 const uint8_t *p = buf; 3711 3712 /* Software ECC calculation */ 3713 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3714 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3715 3716 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3717 chip->ecc.total); 3718 if (ret) 3719 return ret; 3720 3721 return chip->ecc.write_page_raw(chip, buf, 1, page); 3722 } 3723 3724 /** 3725 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 3726 * @chip: nand chip info structure 3727 * @buf: data buffer 3728 * @oob_required: must write chip->oob_poi to OOB 3729 * @page: page number to write 3730 */ 3731 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, 3732 int oob_required, int page) 3733 { 3734 struct mtd_info *mtd = nand_to_mtd(chip); 3735 int i, eccsize = chip->ecc.size, ret; 3736 int eccbytes = chip->ecc.bytes; 3737 int eccsteps = chip->ecc.steps; 3738 uint8_t *ecc_calc = chip->ecc.calc_buf; 3739 const uint8_t *p = buf; 3740 3741 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3742 if (ret) 3743 return ret; 3744 3745 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3746 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3747 3748 ret = nand_write_data_op(chip, p, eccsize, false); 3749 if (ret) 3750 return ret; 3751 3752 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3753 } 3754 3755 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3756 chip->ecc.total); 3757 if (ret) 3758 return ret; 3759 3760 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3761 if (ret) 3762 return ret; 3763 3764 return nand_prog_page_end_op(chip); 3765 } 3766 3767 3768 /** 3769 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 3770 * @chip: nand chip info structure 3771 * @offset: column address of subpage within the page 3772 * @data_len: data length 3773 * @buf: data buffer 3774 * @oob_required: must write chip->oob_poi to OOB 3775 * @page: page number to write 3776 */ 3777 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, 3778 uint32_t data_len, const uint8_t *buf, 3779 int oob_required, int page) 3780 { 3781 struct mtd_info *mtd = nand_to_mtd(chip); 3782 uint8_t *oob_buf = chip->oob_poi; 3783 uint8_t *ecc_calc = chip->ecc.calc_buf; 3784 int ecc_size = chip->ecc.size; 3785 int ecc_bytes = chip->ecc.bytes; 3786 int ecc_steps = chip->ecc.steps; 3787 uint32_t start_step = offset / ecc_size; 3788 uint32_t end_step = (offset + data_len - 1) / ecc_size; 3789 int oob_bytes = mtd->oobsize / ecc_steps; 3790 int step, ret; 3791 3792 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3793 if (ret) 3794 return ret; 3795 3796 for (step = 0; step < ecc_steps; step++) { 3797 /* configure controller for WRITE access */ 3798 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3799 3800 /* write data (untouched subpages already masked by 0xFF) */ 3801 ret = nand_write_data_op(chip, buf, ecc_size, false); 3802 if (ret) 3803 return ret; 3804 3805 /* mask ECC of un-touched subpages by padding 0xFF */ 3806 if ((step < start_step) || (step > end_step)) 3807 memset(ecc_calc, 0xff, ecc_bytes); 3808 else 3809 chip->ecc.calculate(chip, buf, ecc_calc); 3810 3811 /* mask OOB of un-touched subpages by padding 0xFF */ 3812 /* if oob_required, preserve OOB metadata of written subpage */ 3813 if (!oob_required || (step < start_step) || (step > end_step)) 3814 memset(oob_buf, 0xff, oob_bytes); 3815 3816 buf += ecc_size; 3817 ecc_calc += ecc_bytes; 3818 oob_buf += oob_bytes; 3819 } 3820 3821 /* copy calculated ECC for whole page to chip->buffer->oob */ 3822 /* this include masked-value(0xFF) for unwritten subpages */ 3823 ecc_calc = chip->ecc.calc_buf; 3824 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3825 chip->ecc.total); 3826 if (ret) 3827 return ret; 3828 3829 /* write OOB buffer to NAND device */ 3830 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3831 if (ret) 3832 return ret; 3833 3834 return nand_prog_page_end_op(chip); 3835 } 3836 3837 3838 /** 3839 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 3840 * @chip: nand chip info structure 3841 * @buf: data buffer 3842 * @oob_required: must write chip->oob_poi to OOB 3843 * @page: page number to write 3844 * 3845 * The hw generator calculates the error syndrome automatically. Therefore we 3846 * need a special oob layout and handling. 3847 */ 3848 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, 3849 int oob_required, int page) 3850 { 3851 struct mtd_info *mtd = nand_to_mtd(chip); 3852 int i, eccsize = chip->ecc.size; 3853 int eccbytes = chip->ecc.bytes; 3854 int eccsteps = chip->ecc.steps; 3855 const uint8_t *p = buf; 3856 uint8_t *oob = chip->oob_poi; 3857 int ret; 3858 3859 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3860 if (ret) 3861 return ret; 3862 3863 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3864 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3865 3866 ret = nand_write_data_op(chip, p, eccsize, false); 3867 if (ret) 3868 return ret; 3869 3870 if (chip->ecc.prepad) { 3871 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3872 false); 3873 if (ret) 3874 return ret; 3875 3876 oob += chip->ecc.prepad; 3877 } 3878 3879 chip->ecc.calculate(chip, p, oob); 3880 3881 ret = nand_write_data_op(chip, oob, eccbytes, false); 3882 if (ret) 3883 return ret; 3884 3885 oob += eccbytes; 3886 3887 if (chip->ecc.postpad) { 3888 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3889 false); 3890 if (ret) 3891 return ret; 3892 3893 oob += chip->ecc.postpad; 3894 } 3895 } 3896 3897 /* Calculate remaining oob bytes */ 3898 i = mtd->oobsize - (oob - chip->oob_poi); 3899 if (i) { 3900 ret = nand_write_data_op(chip, oob, i, false); 3901 if (ret) 3902 return ret; 3903 } 3904 3905 return nand_prog_page_end_op(chip); 3906 } 3907 3908 /** 3909 * nand_write_page - write one page 3910 * @chip: NAND chip descriptor 3911 * @offset: address offset within the page 3912 * @data_len: length of actual data to be written 3913 * @buf: the data to write 3914 * @oob_required: must write chip->oob_poi to OOB 3915 * @page: page number to write 3916 * @raw: use _raw version of write_page 3917 */ 3918 static int nand_write_page(struct nand_chip *chip, uint32_t offset, 3919 int data_len, const uint8_t *buf, int oob_required, 3920 int page, int raw) 3921 { 3922 struct mtd_info *mtd = nand_to_mtd(chip); 3923 int status, subpage; 3924 3925 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 3926 chip->ecc.write_subpage) 3927 subpage = offset || (data_len < mtd->writesize); 3928 else 3929 subpage = 0; 3930 3931 if (unlikely(raw)) 3932 status = chip->ecc.write_page_raw(chip, buf, oob_required, 3933 page); 3934 else if (subpage) 3935 status = chip->ecc.write_subpage(chip, offset, data_len, buf, 3936 oob_required, page); 3937 else 3938 status = chip->ecc.write_page(chip, buf, oob_required, page); 3939 3940 if (status < 0) 3941 return status; 3942 3943 return 0; 3944 } 3945 3946 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 3947 3948 /** 3949 * nand_do_write_ops - [INTERN] NAND write with ECC 3950 * @chip: NAND chip object 3951 * @to: offset to write to 3952 * @ops: oob operations description structure 3953 * 3954 * NAND write with ECC. 3955 */ 3956 static int nand_do_write_ops(struct nand_chip *chip, loff_t to, 3957 struct mtd_oob_ops *ops) 3958 { 3959 struct mtd_info *mtd = nand_to_mtd(chip); 3960 int chipnr, realpage, page, column; 3961 uint32_t writelen = ops->len; 3962 3963 uint32_t oobwritelen = ops->ooblen; 3964 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 3965 3966 uint8_t *oob = ops->oobbuf; 3967 uint8_t *buf = ops->datbuf; 3968 int ret; 3969 int oob_required = oob ? 1 : 0; 3970 3971 ops->retlen = 0; 3972 if (!writelen) 3973 return 0; 3974 3975 /* Reject writes, which are not page aligned */ 3976 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 3977 pr_notice("%s: attempt to write non page aligned data\n", 3978 __func__); 3979 return -EINVAL; 3980 } 3981 3982 column = to & (mtd->writesize - 1); 3983 3984 chipnr = (int)(to >> chip->chip_shift); 3985 nand_select_target(chip, chipnr); 3986 3987 /* Check, if it is write protected */ 3988 if (nand_check_wp(chip)) { 3989 ret = -EIO; 3990 goto err_out; 3991 } 3992 3993 realpage = (int)(to >> chip->page_shift); 3994 page = realpage & chip->pagemask; 3995 3996 /* Invalidate the page cache, when we write to the cached page */ 3997 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && 3998 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) 3999 chip->pagecache.page = -1; 4000 4001 /* Don't allow multipage oob writes with offset */ 4002 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4003 ret = -EINVAL; 4004 goto err_out; 4005 } 4006 4007 while (1) { 4008 int bytes = mtd->writesize; 4009 uint8_t *wbuf = buf; 4010 int use_bufpoi; 4011 int part_pagewr = (column || writelen < mtd->writesize); 4012 4013 if (part_pagewr) 4014 use_bufpoi = 1; 4015 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 4016 use_bufpoi = !virt_addr_valid(buf) || 4017 !IS_ALIGNED((unsigned long)buf, 4018 chip->buf_align); 4019 else 4020 use_bufpoi = 0; 4021 4022 /* Partial page write?, or need to use bounce buffer */ 4023 if (use_bufpoi) { 4024 pr_debug("%s: using write bounce buffer for buf@%p\n", 4025 __func__, buf); 4026 if (part_pagewr) 4027 bytes = min_t(int, bytes - column, writelen); 4028 wbuf = nand_get_data_buf(chip); 4029 memset(wbuf, 0xff, mtd->writesize); 4030 memcpy(&wbuf[column], buf, bytes); 4031 } 4032 4033 if (unlikely(oob)) { 4034 size_t len = min(oobwritelen, oobmaxlen); 4035 oob = nand_fill_oob(chip, oob, len, ops); 4036 oobwritelen -= len; 4037 } else { 4038 /* We still need to erase leftover OOB data */ 4039 memset(chip->oob_poi, 0xff, mtd->oobsize); 4040 } 4041 4042 ret = nand_write_page(chip, column, bytes, wbuf, 4043 oob_required, page, 4044 (ops->mode == MTD_OPS_RAW)); 4045 if (ret) 4046 break; 4047 4048 writelen -= bytes; 4049 if (!writelen) 4050 break; 4051 4052 column = 0; 4053 buf += bytes; 4054 realpage++; 4055 4056 page = realpage & chip->pagemask; 4057 /* Check, if we cross a chip boundary */ 4058 if (!page) { 4059 chipnr++; 4060 nand_deselect_target(chip); 4061 nand_select_target(chip, chipnr); 4062 } 4063 } 4064 4065 ops->retlen = ops->len - writelen; 4066 if (unlikely(oob)) 4067 ops->oobretlen = ops->ooblen; 4068 4069 err_out: 4070 nand_deselect_target(chip); 4071 return ret; 4072 } 4073 4074 /** 4075 * panic_nand_write - [MTD Interface] NAND write with ECC 4076 * @mtd: MTD device structure 4077 * @to: offset to write to 4078 * @len: number of bytes to write 4079 * @retlen: pointer to variable to store the number of written bytes 4080 * @buf: the data to write 4081 * 4082 * NAND write with ECC. Used when performing writes in interrupt context, this 4083 * may for example be called by mtdoops when writing an oops while in panic. 4084 */ 4085 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4086 size_t *retlen, const uint8_t *buf) 4087 { 4088 struct nand_chip *chip = mtd_to_nand(mtd); 4089 int chipnr = (int)(to >> chip->chip_shift); 4090 struct mtd_oob_ops ops; 4091 int ret; 4092 4093 nand_select_target(chip, chipnr); 4094 4095 /* Wait for the device to get ready */ 4096 panic_nand_wait(chip, 400); 4097 4098 memset(&ops, 0, sizeof(ops)); 4099 ops.len = len; 4100 ops.datbuf = (uint8_t *)buf; 4101 ops.mode = MTD_OPS_PLACE_OOB; 4102 4103 ret = nand_do_write_ops(chip, to, &ops); 4104 4105 *retlen = ops.retlen; 4106 return ret; 4107 } 4108 4109 /** 4110 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4111 * @mtd: MTD device structure 4112 * @to: offset to write to 4113 * @ops: oob operation description structure 4114 */ 4115 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4116 struct mtd_oob_ops *ops) 4117 { 4118 struct nand_chip *chip = mtd_to_nand(mtd); 4119 int ret = -ENOTSUPP; 4120 4121 ops->retlen = 0; 4122 4123 ret = nand_get_device(chip); 4124 if (ret) 4125 return ret; 4126 4127 switch (ops->mode) { 4128 case MTD_OPS_PLACE_OOB: 4129 case MTD_OPS_AUTO_OOB: 4130 case MTD_OPS_RAW: 4131 break; 4132 4133 default: 4134 goto out; 4135 } 4136 4137 if (!ops->datbuf) 4138 ret = nand_do_write_oob(chip, to, ops); 4139 else 4140 ret = nand_do_write_ops(chip, to, ops); 4141 4142 out: 4143 nand_release_device(chip); 4144 return ret; 4145 } 4146 4147 /** 4148 * nand_erase - [MTD Interface] erase block(s) 4149 * @mtd: MTD device structure 4150 * @instr: erase instruction 4151 * 4152 * Erase one ore more blocks. 4153 */ 4154 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4155 { 4156 return nand_erase_nand(mtd_to_nand(mtd), instr, 0); 4157 } 4158 4159 /** 4160 * nand_erase_nand - [INTERN] erase block(s) 4161 * @chip: NAND chip object 4162 * @instr: erase instruction 4163 * @allowbbt: allow erasing the bbt area 4164 * 4165 * Erase one ore more blocks. 4166 */ 4167 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, 4168 int allowbbt) 4169 { 4170 int page, pages_per_block, ret, chipnr; 4171 loff_t len; 4172 4173 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4174 __func__, (unsigned long long)instr->addr, 4175 (unsigned long long)instr->len); 4176 4177 if (check_offs_len(chip, instr->addr, instr->len)) 4178 return -EINVAL; 4179 4180 /* Grab the lock and see if the device is available */ 4181 ret = nand_get_device(chip); 4182 if (ret) 4183 return ret; 4184 4185 /* Shift to get first page */ 4186 page = (int)(instr->addr >> chip->page_shift); 4187 chipnr = (int)(instr->addr >> chip->chip_shift); 4188 4189 /* Calculate pages in each block */ 4190 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4191 4192 /* Select the NAND device */ 4193 nand_select_target(chip, chipnr); 4194 4195 /* Check, if it is write protected */ 4196 if (nand_check_wp(chip)) { 4197 pr_debug("%s: device is write protected!\n", 4198 __func__); 4199 ret = -EIO; 4200 goto erase_exit; 4201 } 4202 4203 /* Loop through the pages */ 4204 len = instr->len; 4205 4206 while (len) { 4207 /* Check if we have a bad block, we do not erase bad blocks! */ 4208 if (nand_block_checkbad(chip, ((loff_t) page) << 4209 chip->page_shift, allowbbt)) { 4210 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", 4211 __func__, page); 4212 ret = -EIO; 4213 goto erase_exit; 4214 } 4215 4216 /* 4217 * Invalidate the page cache, if we erase the block which 4218 * contains the current cached page. 4219 */ 4220 if (page <= chip->pagecache.page && chip->pagecache.page < 4221 (page + pages_per_block)) 4222 chip->pagecache.page = -1; 4223 4224 ret = nand_erase_op(chip, (page & chip->pagemask) >> 4225 (chip->phys_erase_shift - chip->page_shift)); 4226 if (ret) { 4227 pr_debug("%s: failed erase, page 0x%08x\n", 4228 __func__, page); 4229 instr->fail_addr = 4230 ((loff_t)page << chip->page_shift); 4231 goto erase_exit; 4232 } 4233 4234 /* Increment page address and decrement length */ 4235 len -= (1ULL << chip->phys_erase_shift); 4236 page += pages_per_block; 4237 4238 /* Check, if we cross a chip boundary */ 4239 if (len && !(page & chip->pagemask)) { 4240 chipnr++; 4241 nand_deselect_target(chip); 4242 nand_select_target(chip, chipnr); 4243 } 4244 } 4245 4246 ret = 0; 4247 erase_exit: 4248 4249 /* Deselect and wake up anyone waiting on the device */ 4250 nand_deselect_target(chip); 4251 nand_release_device(chip); 4252 4253 /* Return more or less happy */ 4254 return ret; 4255 } 4256 4257 /** 4258 * nand_sync - [MTD Interface] sync 4259 * @mtd: MTD device structure 4260 * 4261 * Sync is actually a wait for chip ready function. 4262 */ 4263 static void nand_sync(struct mtd_info *mtd) 4264 { 4265 struct nand_chip *chip = mtd_to_nand(mtd); 4266 4267 pr_debug("%s: called\n", __func__); 4268 4269 /* Grab the lock and see if the device is available */ 4270 WARN_ON(nand_get_device(chip)); 4271 /* Release it and go back */ 4272 nand_release_device(chip); 4273 } 4274 4275 /** 4276 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4277 * @mtd: MTD device structure 4278 * @offs: offset relative to mtd start 4279 */ 4280 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4281 { 4282 struct nand_chip *chip = mtd_to_nand(mtd); 4283 int chipnr = (int)(offs >> chip->chip_shift); 4284 int ret; 4285 4286 /* Select the NAND device */ 4287 ret = nand_get_device(chip); 4288 if (ret) 4289 return ret; 4290 4291 nand_select_target(chip, chipnr); 4292 4293 ret = nand_block_checkbad(chip, offs, 0); 4294 4295 nand_deselect_target(chip); 4296 nand_release_device(chip); 4297 4298 return ret; 4299 } 4300 4301 /** 4302 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4303 * @mtd: MTD device structure 4304 * @ofs: offset relative to mtd start 4305 */ 4306 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4307 { 4308 int ret; 4309 4310 ret = nand_block_isbad(mtd, ofs); 4311 if (ret) { 4312 /* If it was bad already, return success and do nothing */ 4313 if (ret > 0) 4314 return 0; 4315 return ret; 4316 } 4317 4318 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); 4319 } 4320 4321 /** 4322 * nand_suspend - [MTD Interface] Suspend the NAND flash 4323 * @mtd: MTD device structure 4324 */ 4325 static int nand_suspend(struct mtd_info *mtd) 4326 { 4327 struct nand_chip *chip = mtd_to_nand(mtd); 4328 4329 mutex_lock(&chip->lock); 4330 chip->suspended = 1; 4331 mutex_unlock(&chip->lock); 4332 4333 return 0; 4334 } 4335 4336 /** 4337 * nand_resume - [MTD Interface] Resume the NAND flash 4338 * @mtd: MTD device structure 4339 */ 4340 static void nand_resume(struct mtd_info *mtd) 4341 { 4342 struct nand_chip *chip = mtd_to_nand(mtd); 4343 4344 mutex_lock(&chip->lock); 4345 if (chip->suspended) 4346 chip->suspended = 0; 4347 else 4348 pr_err("%s called for a chip which is not in suspended state\n", 4349 __func__); 4350 mutex_unlock(&chip->lock); 4351 } 4352 4353 /** 4354 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4355 * prevent further operations 4356 * @mtd: MTD device structure 4357 */ 4358 static void nand_shutdown(struct mtd_info *mtd) 4359 { 4360 nand_suspend(mtd); 4361 } 4362 4363 /* Set default functions */ 4364 static void nand_set_defaults(struct nand_chip *chip) 4365 { 4366 /* If no controller is provided, use the dummy, legacy one. */ 4367 if (!chip->controller) { 4368 chip->controller = &chip->legacy.dummy_controller; 4369 nand_controller_init(chip->controller); 4370 } 4371 4372 nand_legacy_set_defaults(chip); 4373 4374 if (!chip->buf_align) 4375 chip->buf_align = 1; 4376 } 4377 4378 /* Sanitize ONFI strings so we can safely print them */ 4379 void sanitize_string(uint8_t *s, size_t len) 4380 { 4381 ssize_t i; 4382 4383 /* Null terminate */ 4384 s[len - 1] = 0; 4385 4386 /* Remove non printable chars */ 4387 for (i = 0; i < len - 1; i++) { 4388 if (s[i] < ' ' || s[i] > 127) 4389 s[i] = '?'; 4390 } 4391 4392 /* Remove trailing spaces */ 4393 strim(s); 4394 } 4395 4396 /* 4397 * nand_id_has_period - Check if an ID string has a given wraparound period 4398 * @id_data: the ID string 4399 * @arrlen: the length of the @id_data array 4400 * @period: the period of repitition 4401 * 4402 * Check if an ID string is repeated within a given sequence of bytes at 4403 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 4404 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 4405 * if the repetition has a period of @period; otherwise, returns zero. 4406 */ 4407 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 4408 { 4409 int i, j; 4410 for (i = 0; i < period; i++) 4411 for (j = i + period; j < arrlen; j += period) 4412 if (id_data[i] != id_data[j]) 4413 return 0; 4414 return 1; 4415 } 4416 4417 /* 4418 * nand_id_len - Get the length of an ID string returned by CMD_READID 4419 * @id_data: the ID string 4420 * @arrlen: the length of the @id_data array 4421 4422 * Returns the length of the ID string, according to known wraparound/trailing 4423 * zero patterns. If no pattern exists, returns the length of the array. 4424 */ 4425 static int nand_id_len(u8 *id_data, int arrlen) 4426 { 4427 int last_nonzero, period; 4428 4429 /* Find last non-zero byte */ 4430 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 4431 if (id_data[last_nonzero]) 4432 break; 4433 4434 /* All zeros */ 4435 if (last_nonzero < 0) 4436 return 0; 4437 4438 /* Calculate wraparound period */ 4439 for (period = 1; period < arrlen; period++) 4440 if (nand_id_has_period(id_data, arrlen, period)) 4441 break; 4442 4443 /* There's a repeated pattern */ 4444 if (period < arrlen) 4445 return period; 4446 4447 /* There are trailing zeros */ 4448 if (last_nonzero < arrlen - 1) 4449 return last_nonzero + 1; 4450 4451 /* No pattern detected */ 4452 return arrlen; 4453 } 4454 4455 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 4456 static int nand_get_bits_per_cell(u8 cellinfo) 4457 { 4458 int bits; 4459 4460 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 4461 bits >>= NAND_CI_CELLTYPE_SHIFT; 4462 return bits + 1; 4463 } 4464 4465 /* 4466 * Many new NAND share similar device ID codes, which represent the size of the 4467 * chip. The rest of the parameters must be decoded according to generic or 4468 * manufacturer-specific "extended ID" decoding patterns. 4469 */ 4470 void nand_decode_ext_id(struct nand_chip *chip) 4471 { 4472 struct nand_memory_organization *memorg; 4473 struct mtd_info *mtd = nand_to_mtd(chip); 4474 int extid; 4475 u8 *id_data = chip->id.data; 4476 4477 memorg = nanddev_get_memorg(&chip->base); 4478 4479 /* The 3rd id byte holds MLC / multichip data */ 4480 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4481 /* The 4th id byte is the important one */ 4482 extid = id_data[3]; 4483 4484 /* Calc pagesize */ 4485 memorg->pagesize = 1024 << (extid & 0x03); 4486 mtd->writesize = memorg->pagesize; 4487 extid >>= 2; 4488 /* Calc oobsize */ 4489 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 4490 mtd->oobsize = memorg->oobsize; 4491 extid >>= 2; 4492 /* Calc blocksize. Blocksize is multiples of 64KiB */ 4493 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / 4494 memorg->pagesize; 4495 mtd->erasesize = (64 * 1024) << (extid & 0x03); 4496 extid >>= 2; 4497 /* Get buswidth information */ 4498 if (extid & 0x1) 4499 chip->options |= NAND_BUSWIDTH_16; 4500 } 4501 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 4502 4503 /* 4504 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 4505 * decodes a matching ID table entry and assigns the MTD size parameters for 4506 * the chip. 4507 */ 4508 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 4509 { 4510 struct mtd_info *mtd = nand_to_mtd(chip); 4511 struct nand_memory_organization *memorg; 4512 4513 memorg = nanddev_get_memorg(&chip->base); 4514 4515 memorg->pages_per_eraseblock = type->erasesize / type->pagesize; 4516 mtd->erasesize = type->erasesize; 4517 memorg->pagesize = type->pagesize; 4518 mtd->writesize = memorg->pagesize; 4519 memorg->oobsize = memorg->pagesize / 32; 4520 mtd->oobsize = memorg->oobsize; 4521 4522 /* All legacy ID NAND are small-page, SLC */ 4523 memorg->bits_per_cell = 1; 4524 } 4525 4526 /* 4527 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 4528 * heuristic patterns using various detected parameters (e.g., manufacturer, 4529 * page size, cell-type information). 4530 */ 4531 static void nand_decode_bbm_options(struct nand_chip *chip) 4532 { 4533 struct mtd_info *mtd = nand_to_mtd(chip); 4534 4535 /* Set the bad block position */ 4536 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 4537 chip->badblockpos = NAND_BBM_POS_LARGE; 4538 else 4539 chip->badblockpos = NAND_BBM_POS_SMALL; 4540 } 4541 4542 static inline bool is_full_id_nand(struct nand_flash_dev *type) 4543 { 4544 return type->id_len; 4545 } 4546 4547 static bool find_full_id_nand(struct nand_chip *chip, 4548 struct nand_flash_dev *type) 4549 { 4550 struct mtd_info *mtd = nand_to_mtd(chip); 4551 struct nand_memory_organization *memorg; 4552 u8 *id_data = chip->id.data; 4553 4554 memorg = nanddev_get_memorg(&chip->base); 4555 4556 if (!strncmp(type->id, id_data, type->id_len)) { 4557 memorg->pagesize = type->pagesize; 4558 mtd->writesize = memorg->pagesize; 4559 memorg->pages_per_eraseblock = type->erasesize / 4560 type->pagesize; 4561 mtd->erasesize = type->erasesize; 4562 memorg->oobsize = type->oobsize; 4563 mtd->oobsize = memorg->oobsize; 4564 4565 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4566 memorg->eraseblocks_per_lun = 4567 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 4568 memorg->pagesize * 4569 memorg->pages_per_eraseblock); 4570 chip->options |= type->options; 4571 chip->base.eccreq.strength = NAND_ECC_STRENGTH(type); 4572 chip->base.eccreq.step_size = NAND_ECC_STEP(type); 4573 chip->onfi_timing_mode_default = 4574 type->onfi_timing_mode_default; 4575 4576 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4577 if (!chip->parameters.model) 4578 return false; 4579 4580 return true; 4581 } 4582 return false; 4583 } 4584 4585 /* 4586 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 4587 * compliant and does not have a full-id or legacy-id entry in the nand_ids 4588 * table. 4589 */ 4590 static void nand_manufacturer_detect(struct nand_chip *chip) 4591 { 4592 /* 4593 * Try manufacturer detection if available and use 4594 * nand_decode_ext_id() otherwise. 4595 */ 4596 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4597 chip->manufacturer.desc->ops->detect) { 4598 struct nand_memory_organization *memorg; 4599 4600 memorg = nanddev_get_memorg(&chip->base); 4601 4602 /* The 3rd id byte holds MLC / multichip data */ 4603 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 4604 chip->manufacturer.desc->ops->detect(chip); 4605 } else { 4606 nand_decode_ext_id(chip); 4607 } 4608 } 4609 4610 /* 4611 * Manufacturer initialization. This function is called for all NANDs including 4612 * ONFI and JEDEC compliant ones. 4613 * Manufacturer drivers should put all their specific initialization code in 4614 * their ->init() hook. 4615 */ 4616 static int nand_manufacturer_init(struct nand_chip *chip) 4617 { 4618 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 4619 !chip->manufacturer.desc->ops->init) 4620 return 0; 4621 4622 return chip->manufacturer.desc->ops->init(chip); 4623 } 4624 4625 /* 4626 * Manufacturer cleanup. This function is called for all NANDs including 4627 * ONFI and JEDEC compliant ones. 4628 * Manufacturer drivers should put all their specific cleanup code in their 4629 * ->cleanup() hook. 4630 */ 4631 static void nand_manufacturer_cleanup(struct nand_chip *chip) 4632 { 4633 /* Release manufacturer private data */ 4634 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4635 chip->manufacturer.desc->ops->cleanup) 4636 chip->manufacturer.desc->ops->cleanup(chip); 4637 } 4638 4639 static const char * 4640 nand_manufacturer_name(const struct nand_manufacturer *manufacturer) 4641 { 4642 return manufacturer ? manufacturer->name : "Unknown"; 4643 } 4644 4645 /* 4646 * Get the flash and manufacturer id and lookup if the type is supported. 4647 */ 4648 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 4649 { 4650 const struct nand_manufacturer *manufacturer; 4651 struct mtd_info *mtd = nand_to_mtd(chip); 4652 struct nand_memory_organization *memorg; 4653 int busw, ret; 4654 u8 *id_data = chip->id.data; 4655 u8 maf_id, dev_id; 4656 u64 targetsize; 4657 4658 /* 4659 * Let's start by initializing memorg fields that might be left 4660 * unassigned by the ID-based detection logic. 4661 */ 4662 memorg = nanddev_get_memorg(&chip->base); 4663 memorg->planes_per_lun = 1; 4664 memorg->luns_per_target = 1; 4665 memorg->ntargets = 1; 4666 4667 /* 4668 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 4669 * after power-up. 4670 */ 4671 ret = nand_reset(chip, 0); 4672 if (ret) 4673 return ret; 4674 4675 /* Select the device */ 4676 nand_select_target(chip, 0); 4677 4678 /* Send the command for reading device ID */ 4679 ret = nand_readid_op(chip, 0, id_data, 2); 4680 if (ret) 4681 return ret; 4682 4683 /* Read manufacturer and device IDs */ 4684 maf_id = id_data[0]; 4685 dev_id = id_data[1]; 4686 4687 /* 4688 * Try again to make sure, as some systems the bus-hold or other 4689 * interface concerns can cause random data which looks like a 4690 * possibly credible NAND flash to appear. If the two results do 4691 * not match, ignore the device completely. 4692 */ 4693 4694 /* Read entire ID string */ 4695 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 4696 if (ret) 4697 return ret; 4698 4699 if (id_data[0] != maf_id || id_data[1] != dev_id) { 4700 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 4701 maf_id, dev_id, id_data[0], id_data[1]); 4702 return -ENODEV; 4703 } 4704 4705 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 4706 4707 /* Try to identify manufacturer */ 4708 manufacturer = nand_get_manufacturer(maf_id); 4709 chip->manufacturer.desc = manufacturer; 4710 4711 if (!type) 4712 type = nand_flash_ids; 4713 4714 /* 4715 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 4716 * override it. 4717 * This is required to make sure initial NAND bus width set by the 4718 * NAND controller driver is coherent with the real NAND bus width 4719 * (extracted by auto-detection code). 4720 */ 4721 busw = chip->options & NAND_BUSWIDTH_16; 4722 4723 /* 4724 * The flag is only set (never cleared), reset it to its default value 4725 * before starting auto-detection. 4726 */ 4727 chip->options &= ~NAND_BUSWIDTH_16; 4728 4729 for (; type->name != NULL; type++) { 4730 if (is_full_id_nand(type)) { 4731 if (find_full_id_nand(chip, type)) 4732 goto ident_done; 4733 } else if (dev_id == type->dev_id) { 4734 break; 4735 } 4736 } 4737 4738 if (!type->name || !type->pagesize) { 4739 /* Check if the chip is ONFI compliant */ 4740 ret = nand_onfi_detect(chip); 4741 if (ret < 0) 4742 return ret; 4743 else if (ret) 4744 goto ident_done; 4745 4746 /* Check if the chip is JEDEC compliant */ 4747 ret = nand_jedec_detect(chip); 4748 if (ret < 0) 4749 return ret; 4750 else if (ret) 4751 goto ident_done; 4752 } 4753 4754 if (!type->name) 4755 return -ENODEV; 4756 4757 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4758 if (!chip->parameters.model) 4759 return -ENOMEM; 4760 4761 if (!type->pagesize) 4762 nand_manufacturer_detect(chip); 4763 else 4764 nand_decode_id(chip, type); 4765 4766 /* Get chip options */ 4767 chip->options |= type->options; 4768 4769 memorg->eraseblocks_per_lun = 4770 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 4771 memorg->pagesize * 4772 memorg->pages_per_eraseblock); 4773 4774 ident_done: 4775 if (!mtd->name) 4776 mtd->name = chip->parameters.model; 4777 4778 if (chip->options & NAND_BUSWIDTH_AUTO) { 4779 WARN_ON(busw & NAND_BUSWIDTH_16); 4780 nand_set_defaults(chip); 4781 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 4782 /* 4783 * Check, if buswidth is correct. Hardware drivers should set 4784 * chip correct! 4785 */ 4786 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4787 maf_id, dev_id); 4788 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 4789 mtd->name); 4790 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 4791 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 4792 ret = -EINVAL; 4793 4794 goto free_detect_allocation; 4795 } 4796 4797 nand_decode_bbm_options(chip); 4798 4799 /* Calculate the address shift from the page size */ 4800 chip->page_shift = ffs(mtd->writesize) - 1; 4801 /* Convert chipsize to number of pages per chip -1 */ 4802 targetsize = nanddev_target_size(&chip->base); 4803 chip->pagemask = (targetsize >> chip->page_shift) - 1; 4804 4805 chip->bbt_erase_shift = chip->phys_erase_shift = 4806 ffs(mtd->erasesize) - 1; 4807 if (targetsize & 0xffffffff) 4808 chip->chip_shift = ffs((unsigned)targetsize) - 1; 4809 else { 4810 chip->chip_shift = ffs((unsigned)(targetsize >> 32)); 4811 chip->chip_shift += 32 - 1; 4812 } 4813 4814 if (chip->chip_shift - chip->page_shift > 16) 4815 chip->options |= NAND_ROW_ADDR_3; 4816 4817 chip->badblockbits = 8; 4818 4819 nand_legacy_adjust_cmdfunc(chip); 4820 4821 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4822 maf_id, dev_id); 4823 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 4824 chip->parameters.model); 4825 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 4826 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 4827 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 4828 return 0; 4829 4830 free_detect_allocation: 4831 kfree(chip->parameters.model); 4832 4833 return ret; 4834 } 4835 4836 static const char * const nand_ecc_modes[] = { 4837 [NAND_ECC_NONE] = "none", 4838 [NAND_ECC_SOFT] = "soft", 4839 [NAND_ECC_HW] = "hw", 4840 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 4841 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first", 4842 [NAND_ECC_ON_DIE] = "on-die", 4843 }; 4844 4845 static int of_get_nand_ecc_mode(struct device_node *np) 4846 { 4847 const char *pm; 4848 int err, i; 4849 4850 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4851 if (err < 0) 4852 return err; 4853 4854 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++) 4855 if (!strcasecmp(pm, nand_ecc_modes[i])) 4856 return i; 4857 4858 /* 4859 * For backward compatibility we support few obsoleted values that don't 4860 * have their mappings into nand_ecc_modes_t anymore (they were merged 4861 * with other enums). 4862 */ 4863 if (!strcasecmp(pm, "soft_bch")) 4864 return NAND_ECC_SOFT; 4865 4866 return -ENODEV; 4867 } 4868 4869 static const char * const nand_ecc_algos[] = { 4870 [NAND_ECC_HAMMING] = "hamming", 4871 [NAND_ECC_BCH] = "bch", 4872 [NAND_ECC_RS] = "rs", 4873 }; 4874 4875 static int of_get_nand_ecc_algo(struct device_node *np) 4876 { 4877 const char *pm; 4878 int err, i; 4879 4880 err = of_property_read_string(np, "nand-ecc-algo", &pm); 4881 if (!err) { 4882 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++) 4883 if (!strcasecmp(pm, nand_ecc_algos[i])) 4884 return i; 4885 return -ENODEV; 4886 } 4887 4888 /* 4889 * For backward compatibility we also read "nand-ecc-mode" checking 4890 * for some obsoleted values that were specifying ECC algorithm. 4891 */ 4892 err = of_property_read_string(np, "nand-ecc-mode", &pm); 4893 if (err < 0) 4894 return err; 4895 4896 if (!strcasecmp(pm, "soft")) 4897 return NAND_ECC_HAMMING; 4898 else if (!strcasecmp(pm, "soft_bch")) 4899 return NAND_ECC_BCH; 4900 4901 return -ENODEV; 4902 } 4903 4904 static int of_get_nand_ecc_step_size(struct device_node *np) 4905 { 4906 int ret; 4907 u32 val; 4908 4909 ret = of_property_read_u32(np, "nand-ecc-step-size", &val); 4910 return ret ? ret : val; 4911 } 4912 4913 static int of_get_nand_ecc_strength(struct device_node *np) 4914 { 4915 int ret; 4916 u32 val; 4917 4918 ret = of_property_read_u32(np, "nand-ecc-strength", &val); 4919 return ret ? ret : val; 4920 } 4921 4922 static int of_get_nand_bus_width(struct device_node *np) 4923 { 4924 u32 val; 4925 4926 if (of_property_read_u32(np, "nand-bus-width", &val)) 4927 return 8; 4928 4929 switch (val) { 4930 case 8: 4931 case 16: 4932 return val; 4933 default: 4934 return -EIO; 4935 } 4936 } 4937 4938 static bool of_get_nand_on_flash_bbt(struct device_node *np) 4939 { 4940 return of_property_read_bool(np, "nand-on-flash-bbt"); 4941 } 4942 4943 static int nand_dt_init(struct nand_chip *chip) 4944 { 4945 struct device_node *dn = nand_get_flash_node(chip); 4946 int ecc_mode, ecc_algo, ecc_strength, ecc_step; 4947 4948 if (!dn) 4949 return 0; 4950 4951 if (of_get_nand_bus_width(dn) == 16) 4952 chip->options |= NAND_BUSWIDTH_16; 4953 4954 if (of_property_read_bool(dn, "nand-is-boot-medium")) 4955 chip->options |= NAND_IS_BOOT_MEDIUM; 4956 4957 if (of_get_nand_on_flash_bbt(dn)) 4958 chip->bbt_options |= NAND_BBT_USE_FLASH; 4959 4960 ecc_mode = of_get_nand_ecc_mode(dn); 4961 ecc_algo = of_get_nand_ecc_algo(dn); 4962 ecc_strength = of_get_nand_ecc_strength(dn); 4963 ecc_step = of_get_nand_ecc_step_size(dn); 4964 4965 if (ecc_mode >= 0) 4966 chip->ecc.mode = ecc_mode; 4967 4968 if (ecc_algo >= 0) 4969 chip->ecc.algo = ecc_algo; 4970 4971 if (ecc_strength >= 0) 4972 chip->ecc.strength = ecc_strength; 4973 4974 if (ecc_step > 0) 4975 chip->ecc.size = ecc_step; 4976 4977 if (of_property_read_bool(dn, "nand-ecc-maximize")) 4978 chip->ecc.options |= NAND_ECC_MAXIMIZE; 4979 4980 return 0; 4981 } 4982 4983 /** 4984 * nand_scan_ident - Scan for the NAND device 4985 * @chip: NAND chip object 4986 * @maxchips: number of chips to scan for 4987 * @table: alternative NAND ID table 4988 * 4989 * This is the first phase of the normal nand_scan() function. It reads the 4990 * flash ID and sets up MTD fields accordingly. 4991 * 4992 * This helper used to be called directly from controller drivers that needed 4993 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 4994 * prevented dynamic allocations during this phase which was unconvenient and 4995 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 4996 */ 4997 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, 4998 struct nand_flash_dev *table) 4999 { 5000 struct mtd_info *mtd = nand_to_mtd(chip); 5001 struct nand_memory_organization *memorg; 5002 int nand_maf_id, nand_dev_id; 5003 unsigned int i; 5004 int ret; 5005 5006 memorg = nanddev_get_memorg(&chip->base); 5007 5008 /* Assume all dies are deselected when we enter nand_scan_ident(). */ 5009 chip->cur_cs = -1; 5010 5011 mutex_init(&chip->lock); 5012 5013 /* Enforce the right timings for reset/detection */ 5014 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 5015 5016 ret = nand_dt_init(chip); 5017 if (ret) 5018 return ret; 5019 5020 if (!mtd->name && mtd->dev.parent) 5021 mtd->name = dev_name(mtd->dev.parent); 5022 5023 /* Set the default functions */ 5024 nand_set_defaults(chip); 5025 5026 ret = nand_legacy_check_hooks(chip); 5027 if (ret) 5028 return ret; 5029 5030 /* Read the flash type */ 5031 ret = nand_detect(chip, table); 5032 if (ret) { 5033 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 5034 pr_warn("No NAND device found\n"); 5035 nand_deselect_target(chip); 5036 return ret; 5037 } 5038 5039 nand_maf_id = chip->id.data[0]; 5040 nand_dev_id = chip->id.data[1]; 5041 5042 nand_deselect_target(chip); 5043 5044 /* Check for a chip array */ 5045 for (i = 1; i < maxchips; i++) { 5046 u8 id[2]; 5047 5048 /* See comment in nand_get_flash_type for reset */ 5049 ret = nand_reset(chip, i); 5050 if (ret) 5051 break; 5052 5053 nand_select_target(chip, i); 5054 /* Send the command for reading device ID */ 5055 ret = nand_readid_op(chip, 0, id, sizeof(id)); 5056 if (ret) 5057 break; 5058 /* Read manufacturer and device IDs */ 5059 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5060 nand_deselect_target(chip); 5061 break; 5062 } 5063 nand_deselect_target(chip); 5064 } 5065 if (i > 1) 5066 pr_info("%d chips detected\n", i); 5067 5068 /* Store the number of chips and calc total size for mtd */ 5069 memorg->ntargets = i; 5070 mtd->size = i * nanddev_target_size(&chip->base); 5071 5072 return 0; 5073 } 5074 5075 static void nand_scan_ident_cleanup(struct nand_chip *chip) 5076 { 5077 kfree(chip->parameters.model); 5078 kfree(chip->parameters.onfi); 5079 } 5080 5081 static int nand_set_ecc_soft_ops(struct nand_chip *chip) 5082 { 5083 struct mtd_info *mtd = nand_to_mtd(chip); 5084 struct nand_ecc_ctrl *ecc = &chip->ecc; 5085 5086 if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) 5087 return -EINVAL; 5088 5089 switch (ecc->algo) { 5090 case NAND_ECC_HAMMING: 5091 ecc->calculate = nand_calculate_ecc; 5092 ecc->correct = nand_correct_data; 5093 ecc->read_page = nand_read_page_swecc; 5094 ecc->read_subpage = nand_read_subpage; 5095 ecc->write_page = nand_write_page_swecc; 5096 ecc->read_page_raw = nand_read_page_raw; 5097 ecc->write_page_raw = nand_write_page_raw; 5098 ecc->read_oob = nand_read_oob_std; 5099 ecc->write_oob = nand_write_oob_std; 5100 if (!ecc->size) 5101 ecc->size = 256; 5102 ecc->bytes = 3; 5103 ecc->strength = 1; 5104 5105 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) 5106 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 5107 5108 return 0; 5109 case NAND_ECC_BCH: 5110 if (!mtd_nand_has_bch()) { 5111 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); 5112 return -EINVAL; 5113 } 5114 ecc->calculate = nand_bch_calculate_ecc; 5115 ecc->correct = nand_bch_correct_data; 5116 ecc->read_page = nand_read_page_swecc; 5117 ecc->read_subpage = nand_read_subpage; 5118 ecc->write_page = nand_write_page_swecc; 5119 ecc->read_page_raw = nand_read_page_raw; 5120 ecc->write_page_raw = nand_write_page_raw; 5121 ecc->read_oob = nand_read_oob_std; 5122 ecc->write_oob = nand_write_oob_std; 5123 5124 /* 5125 * Board driver should supply ecc.size and ecc.strength 5126 * values to select how many bits are correctable. 5127 * Otherwise, default to 4 bits for large page devices. 5128 */ 5129 if (!ecc->size && (mtd->oobsize >= 64)) { 5130 ecc->size = 512; 5131 ecc->strength = 4; 5132 } 5133 5134 /* 5135 * if no ecc placement scheme was provided pickup the default 5136 * large page one. 5137 */ 5138 if (!mtd->ooblayout) { 5139 /* handle large page devices only */ 5140 if (mtd->oobsize < 64) { 5141 WARN(1, "OOB layout is required when using software BCH on small pages\n"); 5142 return -EINVAL; 5143 } 5144 5145 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 5146 5147 } 5148 5149 /* 5150 * We can only maximize ECC config when the default layout is 5151 * used, otherwise we don't know how many bytes can really be 5152 * used. 5153 */ 5154 if (mtd->ooblayout == &nand_ooblayout_lp_ops && 5155 ecc->options & NAND_ECC_MAXIMIZE) { 5156 int steps, bytes; 5157 5158 /* Always prefer 1k blocks over 512bytes ones */ 5159 ecc->size = 1024; 5160 steps = mtd->writesize / ecc->size; 5161 5162 /* Reserve 2 bytes for the BBM */ 5163 bytes = (mtd->oobsize - 2) / steps; 5164 ecc->strength = bytes * 8 / fls(8 * ecc->size); 5165 } 5166 5167 /* See nand_bch_init() for details. */ 5168 ecc->bytes = 0; 5169 ecc->priv = nand_bch_init(mtd); 5170 if (!ecc->priv) { 5171 WARN(1, "BCH ECC initialization failed!\n"); 5172 return -EINVAL; 5173 } 5174 return 0; 5175 default: 5176 WARN(1, "Unsupported ECC algorithm!\n"); 5177 return -EINVAL; 5178 } 5179 } 5180 5181 /** 5182 * nand_check_ecc_caps - check the sanity of preset ECC settings 5183 * @chip: nand chip info structure 5184 * @caps: ECC caps info structure 5185 * @oobavail: OOB size that the ECC engine can use 5186 * 5187 * When ECC step size and strength are already set, check if they are supported 5188 * by the controller and the calculated ECC bytes fit within the chip's OOB. 5189 * On success, the calculated ECC bytes is set. 5190 */ 5191 static int 5192 nand_check_ecc_caps(struct nand_chip *chip, 5193 const struct nand_ecc_caps *caps, int oobavail) 5194 { 5195 struct mtd_info *mtd = nand_to_mtd(chip); 5196 const struct nand_ecc_step_info *stepinfo; 5197 int preset_step = chip->ecc.size; 5198 int preset_strength = chip->ecc.strength; 5199 int ecc_bytes, nsteps = mtd->writesize / preset_step; 5200 int i, j; 5201 5202 for (i = 0; i < caps->nstepinfos; i++) { 5203 stepinfo = &caps->stepinfos[i]; 5204 5205 if (stepinfo->stepsize != preset_step) 5206 continue; 5207 5208 for (j = 0; j < stepinfo->nstrengths; j++) { 5209 if (stepinfo->strengths[j] != preset_strength) 5210 continue; 5211 5212 ecc_bytes = caps->calc_ecc_bytes(preset_step, 5213 preset_strength); 5214 if (WARN_ON_ONCE(ecc_bytes < 0)) 5215 return ecc_bytes; 5216 5217 if (ecc_bytes * nsteps > oobavail) { 5218 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 5219 preset_step, preset_strength); 5220 return -ENOSPC; 5221 } 5222 5223 chip->ecc.bytes = ecc_bytes; 5224 5225 return 0; 5226 } 5227 } 5228 5229 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 5230 preset_step, preset_strength); 5231 5232 return -ENOTSUPP; 5233 } 5234 5235 /** 5236 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 5237 * @chip: nand chip info structure 5238 * @caps: ECC engine caps info structure 5239 * @oobavail: OOB size that the ECC engine can use 5240 * 5241 * If a chip's ECC requirement is provided, try to meet it with the least 5242 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 5243 * On success, the chosen ECC settings are set. 5244 */ 5245 static int 5246 nand_match_ecc_req(struct nand_chip *chip, 5247 const struct nand_ecc_caps *caps, int oobavail) 5248 { 5249 struct mtd_info *mtd = nand_to_mtd(chip); 5250 const struct nand_ecc_step_info *stepinfo; 5251 int req_step = chip->base.eccreq.step_size; 5252 int req_strength = chip->base.eccreq.strength; 5253 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 5254 int best_step, best_strength, best_ecc_bytes; 5255 int best_ecc_bytes_total = INT_MAX; 5256 int i, j; 5257 5258 /* No information provided by the NAND chip */ 5259 if (!req_step || !req_strength) 5260 return -ENOTSUPP; 5261 5262 /* number of correctable bits the chip requires in a page */ 5263 req_corr = mtd->writesize / req_step * req_strength; 5264 5265 for (i = 0; i < caps->nstepinfos; i++) { 5266 stepinfo = &caps->stepinfos[i]; 5267 step_size = stepinfo->stepsize; 5268 5269 for (j = 0; j < stepinfo->nstrengths; j++) { 5270 strength = stepinfo->strengths[j]; 5271 5272 /* 5273 * If both step size and strength are smaller than the 5274 * chip's requirement, it is not easy to compare the 5275 * resulted reliability. 5276 */ 5277 if (step_size < req_step && strength < req_strength) 5278 continue; 5279 5280 if (mtd->writesize % step_size) 5281 continue; 5282 5283 nsteps = mtd->writesize / step_size; 5284 5285 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5286 if (WARN_ON_ONCE(ecc_bytes < 0)) 5287 continue; 5288 ecc_bytes_total = ecc_bytes * nsteps; 5289 5290 if (ecc_bytes_total > oobavail || 5291 strength * nsteps < req_corr) 5292 continue; 5293 5294 /* 5295 * We assume the best is to meet the chip's requrement 5296 * with the least number of ECC bytes. 5297 */ 5298 if (ecc_bytes_total < best_ecc_bytes_total) { 5299 best_ecc_bytes_total = ecc_bytes_total; 5300 best_step = step_size; 5301 best_strength = strength; 5302 best_ecc_bytes = ecc_bytes; 5303 } 5304 } 5305 } 5306 5307 if (best_ecc_bytes_total == INT_MAX) 5308 return -ENOTSUPP; 5309 5310 chip->ecc.size = best_step; 5311 chip->ecc.strength = best_strength; 5312 chip->ecc.bytes = best_ecc_bytes; 5313 5314 return 0; 5315 } 5316 5317 /** 5318 * nand_maximize_ecc - choose the max ECC strength available 5319 * @chip: nand chip info structure 5320 * @caps: ECC engine caps info structure 5321 * @oobavail: OOB size that the ECC engine can use 5322 * 5323 * Choose the max ECC strength that is supported on the controller, and can fit 5324 * within the chip's OOB. On success, the chosen ECC settings are set. 5325 */ 5326 static int 5327 nand_maximize_ecc(struct nand_chip *chip, 5328 const struct nand_ecc_caps *caps, int oobavail) 5329 { 5330 struct mtd_info *mtd = nand_to_mtd(chip); 5331 const struct nand_ecc_step_info *stepinfo; 5332 int step_size, strength, nsteps, ecc_bytes, corr; 5333 int best_corr = 0; 5334 int best_step = 0; 5335 int best_strength, best_ecc_bytes; 5336 int i, j; 5337 5338 for (i = 0; i < caps->nstepinfos; i++) { 5339 stepinfo = &caps->stepinfos[i]; 5340 step_size = stepinfo->stepsize; 5341 5342 /* If chip->ecc.size is already set, respect it */ 5343 if (chip->ecc.size && step_size != chip->ecc.size) 5344 continue; 5345 5346 for (j = 0; j < stepinfo->nstrengths; j++) { 5347 strength = stepinfo->strengths[j]; 5348 5349 if (mtd->writesize % step_size) 5350 continue; 5351 5352 nsteps = mtd->writesize / step_size; 5353 5354 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5355 if (WARN_ON_ONCE(ecc_bytes < 0)) 5356 continue; 5357 5358 if (ecc_bytes * nsteps > oobavail) 5359 continue; 5360 5361 corr = strength * nsteps; 5362 5363 /* 5364 * If the number of correctable bits is the same, 5365 * bigger step_size has more reliability. 5366 */ 5367 if (corr > best_corr || 5368 (corr == best_corr && step_size > best_step)) { 5369 best_corr = corr; 5370 best_step = step_size; 5371 best_strength = strength; 5372 best_ecc_bytes = ecc_bytes; 5373 } 5374 } 5375 } 5376 5377 if (!best_corr) 5378 return -ENOTSUPP; 5379 5380 chip->ecc.size = best_step; 5381 chip->ecc.strength = best_strength; 5382 chip->ecc.bytes = best_ecc_bytes; 5383 5384 return 0; 5385 } 5386 5387 /** 5388 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 5389 * @chip: nand chip info structure 5390 * @caps: ECC engine caps info structure 5391 * @oobavail: OOB size that the ECC engine can use 5392 * 5393 * Choose the ECC configuration according to following logic 5394 * 5395 * 1. If both ECC step size and ECC strength are already set (usually by DT) 5396 * then check if it is supported by this controller. 5397 * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength. 5398 * 3. Otherwise, try to match the ECC step size and ECC strength closest 5399 * to the chip's requirement. If available OOB size can't fit the chip 5400 * requirement then fallback to the maximum ECC step size and ECC strength. 5401 * 5402 * On success, the chosen ECC settings are set. 5403 */ 5404 int nand_ecc_choose_conf(struct nand_chip *chip, 5405 const struct nand_ecc_caps *caps, int oobavail) 5406 { 5407 struct mtd_info *mtd = nand_to_mtd(chip); 5408 5409 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 5410 return -EINVAL; 5411 5412 if (chip->ecc.size && chip->ecc.strength) 5413 return nand_check_ecc_caps(chip, caps, oobavail); 5414 5415 if (chip->ecc.options & NAND_ECC_MAXIMIZE) 5416 return nand_maximize_ecc(chip, caps, oobavail); 5417 5418 if (!nand_match_ecc_req(chip, caps, oobavail)) 5419 return 0; 5420 5421 return nand_maximize_ecc(chip, caps, oobavail); 5422 } 5423 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 5424 5425 /* 5426 * Check if the chip configuration meet the datasheet requirements. 5427 5428 * If our configuration corrects A bits per B bytes and the minimum 5429 * required correction level is X bits per Y bytes, then we must ensure 5430 * both of the following are true: 5431 * 5432 * (1) A / B >= X / Y 5433 * (2) A >= X 5434 * 5435 * Requirement (1) ensures we can correct for the required bitflip density. 5436 * Requirement (2) ensures we can correct even when all bitflips are clumped 5437 * in the same sector. 5438 */ 5439 static bool nand_ecc_strength_good(struct nand_chip *chip) 5440 { 5441 struct mtd_info *mtd = nand_to_mtd(chip); 5442 struct nand_ecc_ctrl *ecc = &chip->ecc; 5443 int corr, ds_corr; 5444 5445 if (ecc->size == 0 || chip->base.eccreq.step_size == 0) 5446 /* Not enough information */ 5447 return true; 5448 5449 /* 5450 * We get the number of corrected bits per page to compare 5451 * the correction density. 5452 */ 5453 corr = (mtd->writesize * ecc->strength) / ecc->size; 5454 ds_corr = (mtd->writesize * chip->base.eccreq.strength) / 5455 chip->base.eccreq.step_size; 5456 5457 return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength; 5458 } 5459 5460 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) 5461 { 5462 struct nand_chip *chip = container_of(nand, struct nand_chip, 5463 base); 5464 unsigned int eb = nanddev_pos_to_row(nand, pos); 5465 int ret; 5466 5467 eb >>= nand->rowconv.eraseblock_addr_shift; 5468 5469 nand_select_target(chip, pos->target); 5470 ret = nand_erase_op(chip, eb); 5471 nand_deselect_target(chip); 5472 5473 return ret; 5474 } 5475 5476 static int rawnand_markbad(struct nand_device *nand, 5477 const struct nand_pos *pos) 5478 { 5479 struct nand_chip *chip = container_of(nand, struct nand_chip, 5480 base); 5481 5482 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 5483 } 5484 5485 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) 5486 { 5487 struct nand_chip *chip = container_of(nand, struct nand_chip, 5488 base); 5489 int ret; 5490 5491 nand_select_target(chip, pos->target); 5492 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 5493 nand_deselect_target(chip); 5494 5495 return ret; 5496 } 5497 5498 static const struct nand_ops rawnand_ops = { 5499 .erase = rawnand_erase, 5500 .markbad = rawnand_markbad, 5501 .isbad = rawnand_isbad, 5502 }; 5503 5504 /** 5505 * nand_scan_tail - Scan for the NAND device 5506 * @chip: NAND chip object 5507 * 5508 * This is the second phase of the normal nand_scan() function. It fills out 5509 * all the uninitialized function pointers with the defaults and scans for a 5510 * bad block table if appropriate. 5511 */ 5512 static int nand_scan_tail(struct nand_chip *chip) 5513 { 5514 struct mtd_info *mtd = nand_to_mtd(chip); 5515 struct nand_ecc_ctrl *ecc = &chip->ecc; 5516 int ret, i; 5517 5518 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 5519 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 5520 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 5521 return -EINVAL; 5522 } 5523 5524 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 5525 if (!chip->data_buf) 5526 return -ENOMEM; 5527 5528 /* 5529 * FIXME: some NAND manufacturer drivers expect the first die to be 5530 * selected when manufacturer->init() is called. They should be fixed 5531 * to explictly select the relevant die when interacting with the NAND 5532 * chip. 5533 */ 5534 nand_select_target(chip, 0); 5535 ret = nand_manufacturer_init(chip); 5536 nand_deselect_target(chip); 5537 if (ret) 5538 goto err_free_buf; 5539 5540 /* Set the internal oob buffer location, just after the page data */ 5541 chip->oob_poi = chip->data_buf + mtd->writesize; 5542 5543 /* 5544 * If no default placement scheme is given, select an appropriate one. 5545 */ 5546 if (!mtd->ooblayout && 5547 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { 5548 switch (mtd->oobsize) { 5549 case 8: 5550 case 16: 5551 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); 5552 break; 5553 case 64: 5554 case 128: 5555 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); 5556 break; 5557 default: 5558 /* 5559 * Expose the whole OOB area to users if ECC_NONE 5560 * is passed. We could do that for all kind of 5561 * ->oobsize, but we must keep the old large/small 5562 * page with ECC layout when ->oobsize <= 128 for 5563 * compatibility reasons. 5564 */ 5565 if (ecc->mode == NAND_ECC_NONE) { 5566 mtd_set_ooblayout(mtd, 5567 &nand_ooblayout_lp_ops); 5568 break; 5569 } 5570 5571 WARN(1, "No oob scheme defined for oobsize %d\n", 5572 mtd->oobsize); 5573 ret = -EINVAL; 5574 goto err_nand_manuf_cleanup; 5575 } 5576 } 5577 5578 /* 5579 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 5580 * selected and we have 256 byte pagesize fallback to software ECC 5581 */ 5582 5583 switch (ecc->mode) { 5584 case NAND_ECC_HW_OOB_FIRST: 5585 /* Similar to NAND_ECC_HW, but a separate read_page handle */ 5586 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { 5587 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5588 ret = -EINVAL; 5589 goto err_nand_manuf_cleanup; 5590 } 5591 if (!ecc->read_page) 5592 ecc->read_page = nand_read_page_hwecc_oob_first; 5593 /* fall through */ 5594 5595 case NAND_ECC_HW: 5596 /* Use standard hwecc read page function? */ 5597 if (!ecc->read_page) 5598 ecc->read_page = nand_read_page_hwecc; 5599 if (!ecc->write_page) 5600 ecc->write_page = nand_write_page_hwecc; 5601 if (!ecc->read_page_raw) 5602 ecc->read_page_raw = nand_read_page_raw; 5603 if (!ecc->write_page_raw) 5604 ecc->write_page_raw = nand_write_page_raw; 5605 if (!ecc->read_oob) 5606 ecc->read_oob = nand_read_oob_std; 5607 if (!ecc->write_oob) 5608 ecc->write_oob = nand_write_oob_std; 5609 if (!ecc->read_subpage) 5610 ecc->read_subpage = nand_read_subpage; 5611 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 5612 ecc->write_subpage = nand_write_subpage_hwecc; 5613 /* fall through */ 5614 5615 case NAND_ECC_HW_SYNDROME: 5616 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 5617 (!ecc->read_page || 5618 ecc->read_page == nand_read_page_hwecc || 5619 !ecc->write_page || 5620 ecc->write_page == nand_write_page_hwecc)) { 5621 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5622 ret = -EINVAL; 5623 goto err_nand_manuf_cleanup; 5624 } 5625 /* Use standard syndrome read/write page function? */ 5626 if (!ecc->read_page) 5627 ecc->read_page = nand_read_page_syndrome; 5628 if (!ecc->write_page) 5629 ecc->write_page = nand_write_page_syndrome; 5630 if (!ecc->read_page_raw) 5631 ecc->read_page_raw = nand_read_page_raw_syndrome; 5632 if (!ecc->write_page_raw) 5633 ecc->write_page_raw = nand_write_page_raw_syndrome; 5634 if (!ecc->read_oob) 5635 ecc->read_oob = nand_read_oob_syndrome; 5636 if (!ecc->write_oob) 5637 ecc->write_oob = nand_write_oob_syndrome; 5638 5639 if (mtd->writesize >= ecc->size) { 5640 if (!ecc->strength) { 5641 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 5642 ret = -EINVAL; 5643 goto err_nand_manuf_cleanup; 5644 } 5645 break; 5646 } 5647 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 5648 ecc->size, mtd->writesize); 5649 ecc->mode = NAND_ECC_SOFT; 5650 ecc->algo = NAND_ECC_HAMMING; 5651 /* fall through */ 5652 5653 case NAND_ECC_SOFT: 5654 ret = nand_set_ecc_soft_ops(chip); 5655 if (ret) { 5656 ret = -EINVAL; 5657 goto err_nand_manuf_cleanup; 5658 } 5659 break; 5660 5661 case NAND_ECC_ON_DIE: 5662 if (!ecc->read_page || !ecc->write_page) { 5663 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 5664 ret = -EINVAL; 5665 goto err_nand_manuf_cleanup; 5666 } 5667 if (!ecc->read_oob) 5668 ecc->read_oob = nand_read_oob_std; 5669 if (!ecc->write_oob) 5670 ecc->write_oob = nand_write_oob_std; 5671 break; 5672 5673 case NAND_ECC_NONE: 5674 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); 5675 ecc->read_page = nand_read_page_raw; 5676 ecc->write_page = nand_write_page_raw; 5677 ecc->read_oob = nand_read_oob_std; 5678 ecc->read_page_raw = nand_read_page_raw; 5679 ecc->write_page_raw = nand_write_page_raw; 5680 ecc->write_oob = nand_write_oob_std; 5681 ecc->size = mtd->writesize; 5682 ecc->bytes = 0; 5683 ecc->strength = 0; 5684 break; 5685 5686 default: 5687 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); 5688 ret = -EINVAL; 5689 goto err_nand_manuf_cleanup; 5690 } 5691 5692 if (ecc->correct || ecc->calculate) { 5693 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5694 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5695 if (!ecc->calc_buf || !ecc->code_buf) { 5696 ret = -ENOMEM; 5697 goto err_nand_manuf_cleanup; 5698 } 5699 } 5700 5701 /* For many systems, the standard OOB write also works for raw */ 5702 if (!ecc->read_oob_raw) 5703 ecc->read_oob_raw = ecc->read_oob; 5704 if (!ecc->write_oob_raw) 5705 ecc->write_oob_raw = ecc->write_oob; 5706 5707 /* propagate ecc info to mtd_info */ 5708 mtd->ecc_strength = ecc->strength; 5709 mtd->ecc_step_size = ecc->size; 5710 5711 /* 5712 * Set the number of read / write steps for one page depending on ECC 5713 * mode. 5714 */ 5715 ecc->steps = mtd->writesize / ecc->size; 5716 if (ecc->steps * ecc->size != mtd->writesize) { 5717 WARN(1, "Invalid ECC parameters\n"); 5718 ret = -EINVAL; 5719 goto err_nand_manuf_cleanup; 5720 } 5721 ecc->total = ecc->steps * ecc->bytes; 5722 if (ecc->total > mtd->oobsize) { 5723 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 5724 ret = -EINVAL; 5725 goto err_nand_manuf_cleanup; 5726 } 5727 5728 /* 5729 * The number of bytes available for a client to place data into 5730 * the out of band area. 5731 */ 5732 ret = mtd_ooblayout_count_freebytes(mtd); 5733 if (ret < 0) 5734 ret = 0; 5735 5736 mtd->oobavail = ret; 5737 5738 /* ECC sanity check: warn if it's too weak */ 5739 if (!nand_ecc_strength_good(chip)) 5740 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", 5741 mtd->name); 5742 5743 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 5744 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 5745 switch (ecc->steps) { 5746 case 2: 5747 mtd->subpage_sft = 1; 5748 break; 5749 case 4: 5750 case 8: 5751 case 16: 5752 mtd->subpage_sft = 2; 5753 break; 5754 } 5755 } 5756 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 5757 5758 /* Invalidate the pagebuffer reference */ 5759 chip->pagecache.page = -1; 5760 5761 /* Large page NAND with SOFT_ECC should support subpage reads */ 5762 switch (ecc->mode) { 5763 case NAND_ECC_SOFT: 5764 if (chip->page_shift > 9) 5765 chip->options |= NAND_SUBPAGE_READ; 5766 break; 5767 5768 default: 5769 break; 5770 } 5771 5772 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); 5773 if (ret) 5774 goto err_nand_manuf_cleanup; 5775 5776 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ 5777 if (chip->options & NAND_ROM) 5778 mtd->flags = MTD_CAP_ROM; 5779 5780 /* Fill in remaining MTD driver data */ 5781 mtd->_erase = nand_erase; 5782 mtd->_point = NULL; 5783 mtd->_unpoint = NULL; 5784 mtd->_panic_write = panic_nand_write; 5785 mtd->_read_oob = nand_read_oob; 5786 mtd->_write_oob = nand_write_oob; 5787 mtd->_sync = nand_sync; 5788 mtd->_lock = NULL; 5789 mtd->_unlock = NULL; 5790 mtd->_suspend = nand_suspend; 5791 mtd->_resume = nand_resume; 5792 mtd->_reboot = nand_shutdown; 5793 mtd->_block_isreserved = nand_block_isreserved; 5794 mtd->_block_isbad = nand_block_isbad; 5795 mtd->_block_markbad = nand_block_markbad; 5796 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; 5797 5798 /* 5799 * Initialize bitflip_threshold to its default prior scan_bbt() call. 5800 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 5801 * properly set. 5802 */ 5803 if (!mtd->bitflip_threshold) 5804 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 5805 5806 /* Initialize the ->data_interface field. */ 5807 ret = nand_init_data_interface(chip); 5808 if (ret) 5809 goto err_nanddev_cleanup; 5810 5811 /* Enter fastest possible mode on all dies. */ 5812 for (i = 0; i < nanddev_ntargets(&chip->base); i++) { 5813 ret = nand_setup_data_interface(chip, i); 5814 if (ret) 5815 goto err_nanddev_cleanup; 5816 } 5817 5818 /* Check, if we should skip the bad block table scan */ 5819 if (chip->options & NAND_SKIP_BBTSCAN) 5820 return 0; 5821 5822 /* Build bad block table */ 5823 ret = nand_create_bbt(chip); 5824 if (ret) 5825 goto err_nanddev_cleanup; 5826 5827 return 0; 5828 5829 5830 err_nanddev_cleanup: 5831 nanddev_cleanup(&chip->base); 5832 5833 err_nand_manuf_cleanup: 5834 nand_manufacturer_cleanup(chip); 5835 5836 err_free_buf: 5837 kfree(chip->data_buf); 5838 kfree(ecc->code_buf); 5839 kfree(ecc->calc_buf); 5840 5841 return ret; 5842 } 5843 5844 static int nand_attach(struct nand_chip *chip) 5845 { 5846 if (chip->controller->ops && chip->controller->ops->attach_chip) 5847 return chip->controller->ops->attach_chip(chip); 5848 5849 return 0; 5850 } 5851 5852 static void nand_detach(struct nand_chip *chip) 5853 { 5854 if (chip->controller->ops && chip->controller->ops->detach_chip) 5855 chip->controller->ops->detach_chip(chip); 5856 } 5857 5858 /** 5859 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 5860 * @chip: NAND chip object 5861 * @maxchips: number of chips to scan for. 5862 * @ids: optional flash IDs table 5863 * 5864 * This fills out all the uninitialized function pointers with the defaults. 5865 * The flash ID is read and the mtd/chip structures are filled with the 5866 * appropriate values. 5867 */ 5868 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, 5869 struct nand_flash_dev *ids) 5870 { 5871 int ret; 5872 5873 if (!maxchips) 5874 return -EINVAL; 5875 5876 ret = nand_scan_ident(chip, maxchips, ids); 5877 if (ret) 5878 return ret; 5879 5880 ret = nand_attach(chip); 5881 if (ret) 5882 goto cleanup_ident; 5883 5884 ret = nand_scan_tail(chip); 5885 if (ret) 5886 goto detach_chip; 5887 5888 return 0; 5889 5890 detach_chip: 5891 nand_detach(chip); 5892 cleanup_ident: 5893 nand_scan_ident_cleanup(chip); 5894 5895 return ret; 5896 } 5897 EXPORT_SYMBOL(nand_scan_with_ids); 5898 5899 /** 5900 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 5901 * @chip: NAND chip object 5902 */ 5903 void nand_cleanup(struct nand_chip *chip) 5904 { 5905 if (chip->ecc.mode == NAND_ECC_SOFT && 5906 chip->ecc.algo == NAND_ECC_BCH) 5907 nand_bch_free((struct nand_bch_control *)chip->ecc.priv); 5908 5909 /* Free bad block table memory */ 5910 kfree(chip->bbt); 5911 kfree(chip->data_buf); 5912 kfree(chip->ecc.code_buf); 5913 kfree(chip->ecc.calc_buf); 5914 5915 /* Free bad block descriptor memory */ 5916 if (chip->badblock_pattern && chip->badblock_pattern->options 5917 & NAND_BBT_DYNAMICSTRUCT) 5918 kfree(chip->badblock_pattern); 5919 5920 /* Free manufacturer priv data. */ 5921 nand_manufacturer_cleanup(chip); 5922 5923 /* Free controller specific allocations after chip identification */ 5924 nand_detach(chip); 5925 5926 /* Free identification phase allocations */ 5927 nand_scan_ident_cleanup(chip); 5928 } 5929 5930 EXPORT_SYMBOL_GPL(nand_cleanup); 5931 5932 /** 5933 * nand_release - [NAND Interface] Unregister the MTD device and free resources 5934 * held by the NAND device 5935 * @chip: NAND chip object 5936 */ 5937 void nand_release(struct nand_chip *chip) 5938 { 5939 mtd_device_unregister(nand_to_mtd(chip)); 5940 nand_cleanup(chip); 5941 } 5942 EXPORT_SYMBOL_GPL(nand_release); 5943 5944 MODULE_LICENSE("GPL"); 5945 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 5946 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 5947 MODULE_DESCRIPTION("Generic NAND flash driver code"); 5948