xref: /openbmc/linux/drivers/mtd/nand/raw/nand_base.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  *  Overview:
3  *   This is the generic MTD driver for NAND flash devices. It should be
4  *   capable of working with almost all NAND chips currently available.
5  *
6  *	Additional technical information is available on
7  *	http://www.linux-mtd.infradead.org/doc/nand.html
8  *
9  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
11  *
12  *  Credits:
13  *	David Woodhouse for adding multichip support
14  *
15  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16  *	rework for 2K page size chips
17  *
18  *  TODO:
19  *	Enable cached programming for 2k page size chips
20  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21  *	if we have HW ECC support.
22  *	BBT table is not serialized, has to be fixed
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29 
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/nmi.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/rawnand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/nand_bch.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/mtd/partitions.h>
49 #include <linux/of.h>
50 
51 static int nand_get_device(struct mtd_info *mtd, int new_state);
52 
53 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
54 			     struct mtd_oob_ops *ops);
55 
56 /* Define default oob placement schemes for large and small page devices */
57 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
58 				 struct mtd_oob_region *oobregion)
59 {
60 	struct nand_chip *chip = mtd_to_nand(mtd);
61 	struct nand_ecc_ctrl *ecc = &chip->ecc;
62 
63 	if (section > 1)
64 		return -ERANGE;
65 
66 	if (!section) {
67 		oobregion->offset = 0;
68 		if (mtd->oobsize == 16)
69 			oobregion->length = 4;
70 		else
71 			oobregion->length = 3;
72 	} else {
73 		if (mtd->oobsize == 8)
74 			return -ERANGE;
75 
76 		oobregion->offset = 6;
77 		oobregion->length = ecc->total - 4;
78 	}
79 
80 	return 0;
81 }
82 
83 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
84 				  struct mtd_oob_region *oobregion)
85 {
86 	if (section > 1)
87 		return -ERANGE;
88 
89 	if (mtd->oobsize == 16) {
90 		if (section)
91 			return -ERANGE;
92 
93 		oobregion->length = 8;
94 		oobregion->offset = 8;
95 	} else {
96 		oobregion->length = 2;
97 		if (!section)
98 			oobregion->offset = 3;
99 		else
100 			oobregion->offset = 6;
101 	}
102 
103 	return 0;
104 }
105 
106 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
107 	.ecc = nand_ooblayout_ecc_sp,
108 	.free = nand_ooblayout_free_sp,
109 };
110 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
111 
112 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
113 				 struct mtd_oob_region *oobregion)
114 {
115 	struct nand_chip *chip = mtd_to_nand(mtd);
116 	struct nand_ecc_ctrl *ecc = &chip->ecc;
117 
118 	if (section || !ecc->total)
119 		return -ERANGE;
120 
121 	oobregion->length = ecc->total;
122 	oobregion->offset = mtd->oobsize - oobregion->length;
123 
124 	return 0;
125 }
126 
127 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
128 				  struct mtd_oob_region *oobregion)
129 {
130 	struct nand_chip *chip = mtd_to_nand(mtd);
131 	struct nand_ecc_ctrl *ecc = &chip->ecc;
132 
133 	if (section)
134 		return -ERANGE;
135 
136 	oobregion->length = mtd->oobsize - ecc->total - 2;
137 	oobregion->offset = 2;
138 
139 	return 0;
140 }
141 
142 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
143 	.ecc = nand_ooblayout_ecc_lp,
144 	.free = nand_ooblayout_free_lp,
145 };
146 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
147 
148 /*
149  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
150  * are placed at a fixed offset.
151  */
152 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
153 					 struct mtd_oob_region *oobregion)
154 {
155 	struct nand_chip *chip = mtd_to_nand(mtd);
156 	struct nand_ecc_ctrl *ecc = &chip->ecc;
157 
158 	if (section)
159 		return -ERANGE;
160 
161 	switch (mtd->oobsize) {
162 	case 64:
163 		oobregion->offset = 40;
164 		break;
165 	case 128:
166 		oobregion->offset = 80;
167 		break;
168 	default:
169 		return -EINVAL;
170 	}
171 
172 	oobregion->length = ecc->total;
173 	if (oobregion->offset + oobregion->length > mtd->oobsize)
174 		return -ERANGE;
175 
176 	return 0;
177 }
178 
179 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
180 					  struct mtd_oob_region *oobregion)
181 {
182 	struct nand_chip *chip = mtd_to_nand(mtd);
183 	struct nand_ecc_ctrl *ecc = &chip->ecc;
184 	int ecc_offset = 0;
185 
186 	if (section < 0 || section > 1)
187 		return -ERANGE;
188 
189 	switch (mtd->oobsize) {
190 	case 64:
191 		ecc_offset = 40;
192 		break;
193 	case 128:
194 		ecc_offset = 80;
195 		break;
196 	default:
197 		return -EINVAL;
198 	}
199 
200 	if (section == 0) {
201 		oobregion->offset = 2;
202 		oobregion->length = ecc_offset - 2;
203 	} else {
204 		oobregion->offset = ecc_offset + ecc->total;
205 		oobregion->length = mtd->oobsize - oobregion->offset;
206 	}
207 
208 	return 0;
209 }
210 
211 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
212 	.ecc = nand_ooblayout_ecc_lp_hamming,
213 	.free = nand_ooblayout_free_lp_hamming,
214 };
215 
216 static int check_offs_len(struct mtd_info *mtd,
217 					loff_t ofs, uint64_t len)
218 {
219 	struct nand_chip *chip = mtd_to_nand(mtd);
220 	int ret = 0;
221 
222 	/* Start address must align on block boundary */
223 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
224 		pr_debug("%s: unaligned address\n", __func__);
225 		ret = -EINVAL;
226 	}
227 
228 	/* Length must align on block boundary */
229 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
230 		pr_debug("%s: length not block aligned\n", __func__);
231 		ret = -EINVAL;
232 	}
233 
234 	return ret;
235 }
236 
237 /**
238  * nand_release_device - [GENERIC] release chip
239  * @mtd: MTD device structure
240  *
241  * Release chip lock and wake up anyone waiting on the device.
242  */
243 static void nand_release_device(struct mtd_info *mtd)
244 {
245 	struct nand_chip *chip = mtd_to_nand(mtd);
246 
247 	/* Release the controller and the chip */
248 	spin_lock(&chip->controller->lock);
249 	chip->controller->active = NULL;
250 	chip->state = FL_READY;
251 	wake_up(&chip->controller->wq);
252 	spin_unlock(&chip->controller->lock);
253 }
254 
255 /**
256  * nand_read_byte - [DEFAULT] read one byte from the chip
257  * @mtd: MTD device structure
258  *
259  * Default read function for 8bit buswidth
260  */
261 static uint8_t nand_read_byte(struct mtd_info *mtd)
262 {
263 	struct nand_chip *chip = mtd_to_nand(mtd);
264 	return readb(chip->IO_ADDR_R);
265 }
266 
267 /**
268  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
269  * @mtd: MTD device structure
270  *
271  * Default read function for 16bit buswidth with endianness conversion.
272  *
273  */
274 static uint8_t nand_read_byte16(struct mtd_info *mtd)
275 {
276 	struct nand_chip *chip = mtd_to_nand(mtd);
277 	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
278 }
279 
280 /**
281  * nand_read_word - [DEFAULT] read one word from the chip
282  * @mtd: MTD device structure
283  *
284  * Default read function for 16bit buswidth without endianness conversion.
285  */
286 static u16 nand_read_word(struct mtd_info *mtd)
287 {
288 	struct nand_chip *chip = mtd_to_nand(mtd);
289 	return readw(chip->IO_ADDR_R);
290 }
291 
292 /**
293  * nand_select_chip - [DEFAULT] control CE line
294  * @mtd: MTD device structure
295  * @chipnr: chipnumber to select, -1 for deselect
296  *
297  * Default select function for 1 chip devices.
298  */
299 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
300 {
301 	struct nand_chip *chip = mtd_to_nand(mtd);
302 
303 	switch (chipnr) {
304 	case -1:
305 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
306 		break;
307 	case 0:
308 		break;
309 
310 	default:
311 		BUG();
312 	}
313 }
314 
315 /**
316  * nand_write_byte - [DEFAULT] write single byte to chip
317  * @mtd: MTD device structure
318  * @byte: value to write
319  *
320  * Default function to write a byte to I/O[7:0]
321  */
322 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
323 {
324 	struct nand_chip *chip = mtd_to_nand(mtd);
325 
326 	chip->write_buf(mtd, &byte, 1);
327 }
328 
329 /**
330  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
331  * @mtd: MTD device structure
332  * @byte: value to write
333  *
334  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
335  */
336 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
337 {
338 	struct nand_chip *chip = mtd_to_nand(mtd);
339 	uint16_t word = byte;
340 
341 	/*
342 	 * It's not entirely clear what should happen to I/O[15:8] when writing
343 	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
344 	 *
345 	 *    When the host supports a 16-bit bus width, only data is
346 	 *    transferred at the 16-bit width. All address and command line
347 	 *    transfers shall use only the lower 8-bits of the data bus. During
348 	 *    command transfers, the host may place any value on the upper
349 	 *    8-bits of the data bus. During address transfers, the host shall
350 	 *    set the upper 8-bits of the data bus to 00h.
351 	 *
352 	 * One user of the write_byte callback is nand_set_features. The
353 	 * four parameters are specified to be written to I/O[7:0], but this is
354 	 * neither an address nor a command transfer. Let's assume a 0 on the
355 	 * upper I/O lines is OK.
356 	 */
357 	chip->write_buf(mtd, (uint8_t *)&word, 2);
358 }
359 
360 /**
361  * nand_write_buf - [DEFAULT] write buffer to chip
362  * @mtd: MTD device structure
363  * @buf: data buffer
364  * @len: number of bytes to write
365  *
366  * Default write function for 8bit buswidth.
367  */
368 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
369 {
370 	struct nand_chip *chip = mtd_to_nand(mtd);
371 
372 	iowrite8_rep(chip->IO_ADDR_W, buf, len);
373 }
374 
375 /**
376  * nand_read_buf - [DEFAULT] read chip data into buffer
377  * @mtd: MTD device structure
378  * @buf: buffer to store date
379  * @len: number of bytes to read
380  *
381  * Default read function for 8bit buswidth.
382  */
383 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
384 {
385 	struct nand_chip *chip = mtd_to_nand(mtd);
386 
387 	ioread8_rep(chip->IO_ADDR_R, buf, len);
388 }
389 
390 /**
391  * nand_write_buf16 - [DEFAULT] write buffer to chip
392  * @mtd: MTD device structure
393  * @buf: data buffer
394  * @len: number of bytes to write
395  *
396  * Default write function for 16bit buswidth.
397  */
398 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
399 {
400 	struct nand_chip *chip = mtd_to_nand(mtd);
401 	u16 *p = (u16 *) buf;
402 
403 	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
404 }
405 
406 /**
407  * nand_read_buf16 - [DEFAULT] read chip data into buffer
408  * @mtd: MTD device structure
409  * @buf: buffer to store date
410  * @len: number of bytes to read
411  *
412  * Default read function for 16bit buswidth.
413  */
414 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
415 {
416 	struct nand_chip *chip = mtd_to_nand(mtd);
417 	u16 *p = (u16 *) buf;
418 
419 	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
420 }
421 
422 /**
423  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
424  * @mtd: MTD device structure
425  * @ofs: offset from device start
426  *
427  * Check, if the block is bad.
428  */
429 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
430 {
431 	int page, page_end, res;
432 	struct nand_chip *chip = mtd_to_nand(mtd);
433 	u8 bad;
434 
435 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
436 		ofs += mtd->erasesize - mtd->writesize;
437 
438 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
439 	page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
440 
441 	for (; page < page_end; page++) {
442 		res = chip->ecc.read_oob(mtd, chip, page);
443 		if (res < 0)
444 			return res;
445 
446 		bad = chip->oob_poi[chip->badblockpos];
447 
448 		if (likely(chip->badblockbits == 8))
449 			res = bad != 0xFF;
450 		else
451 			res = hweight8(bad) < chip->badblockbits;
452 		if (res)
453 			return res;
454 	}
455 
456 	return 0;
457 }
458 
459 /**
460  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
461  * @mtd: MTD device structure
462  * @ofs: offset from device start
463  *
464  * This is the default implementation, which can be overridden by a hardware
465  * specific driver. It provides the details for writing a bad block marker to a
466  * block.
467  */
468 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
469 {
470 	struct nand_chip *chip = mtd_to_nand(mtd);
471 	struct mtd_oob_ops ops;
472 	uint8_t buf[2] = { 0, 0 };
473 	int ret = 0, res, i = 0;
474 
475 	memset(&ops, 0, sizeof(ops));
476 	ops.oobbuf = buf;
477 	ops.ooboffs = chip->badblockpos;
478 	if (chip->options & NAND_BUSWIDTH_16) {
479 		ops.ooboffs &= ~0x01;
480 		ops.len = ops.ooblen = 2;
481 	} else {
482 		ops.len = ops.ooblen = 1;
483 	}
484 	ops.mode = MTD_OPS_PLACE_OOB;
485 
486 	/* Write to first/last page(s) if necessary */
487 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
488 		ofs += mtd->erasesize - mtd->writesize;
489 	do {
490 		res = nand_do_write_oob(mtd, ofs, &ops);
491 		if (!ret)
492 			ret = res;
493 
494 		i++;
495 		ofs += mtd->writesize;
496 	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
497 
498 	return ret;
499 }
500 
501 /**
502  * nand_block_markbad_lowlevel - mark a block bad
503  * @mtd: MTD device structure
504  * @ofs: offset from device start
505  *
506  * This function performs the generic NAND bad block marking steps (i.e., bad
507  * block table(s) and/or marker(s)). We only allow the hardware driver to
508  * specify how to write bad block markers to OOB (chip->block_markbad).
509  *
510  * We try operations in the following order:
511  *
512  *  (1) erase the affected block, to allow OOB marker to be written cleanly
513  *  (2) write bad block marker to OOB area of affected block (unless flag
514  *      NAND_BBT_NO_OOB_BBM is present)
515  *  (3) update the BBT
516  *
517  * Note that we retain the first error encountered in (2) or (3), finish the
518  * procedures, and dump the error in the end.
519 */
520 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
521 {
522 	struct nand_chip *chip = mtd_to_nand(mtd);
523 	int res, ret = 0;
524 
525 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
526 		struct erase_info einfo;
527 
528 		/* Attempt erase before marking OOB */
529 		memset(&einfo, 0, sizeof(einfo));
530 		einfo.addr = ofs;
531 		einfo.len = 1ULL << chip->phys_erase_shift;
532 		nand_erase_nand(mtd, &einfo, 0);
533 
534 		/* Write bad block marker to OOB */
535 		nand_get_device(mtd, FL_WRITING);
536 		ret = chip->block_markbad(mtd, ofs);
537 		nand_release_device(mtd);
538 	}
539 
540 	/* Mark block bad in BBT */
541 	if (chip->bbt) {
542 		res = nand_markbad_bbt(mtd, ofs);
543 		if (!ret)
544 			ret = res;
545 	}
546 
547 	if (!ret)
548 		mtd->ecc_stats.badblocks++;
549 
550 	return ret;
551 }
552 
553 /**
554  * nand_check_wp - [GENERIC] check if the chip is write protected
555  * @mtd: MTD device structure
556  *
557  * Check, if the device is write protected. The function expects, that the
558  * device is already selected.
559  */
560 static int nand_check_wp(struct mtd_info *mtd)
561 {
562 	struct nand_chip *chip = mtd_to_nand(mtd);
563 	u8 status;
564 	int ret;
565 
566 	/* Broken xD cards report WP despite being writable */
567 	if (chip->options & NAND_BROKEN_XD)
568 		return 0;
569 
570 	/* Check the WP bit */
571 	ret = nand_status_op(chip, &status);
572 	if (ret)
573 		return ret;
574 
575 	return status & NAND_STATUS_WP ? 0 : 1;
576 }
577 
578 /**
579  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
580  * @mtd: MTD device structure
581  * @ofs: offset from device start
582  *
583  * Check if the block is marked as reserved.
584  */
585 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
586 {
587 	struct nand_chip *chip = mtd_to_nand(mtd);
588 
589 	if (!chip->bbt)
590 		return 0;
591 	/* Return info from the table */
592 	return nand_isreserved_bbt(mtd, ofs);
593 }
594 
595 /**
596  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
597  * @mtd: MTD device structure
598  * @ofs: offset from device start
599  * @allowbbt: 1, if its allowed to access the bbt area
600  *
601  * Check, if the block is bad. Either by reading the bad block table or
602  * calling of the scan function.
603  */
604 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
605 {
606 	struct nand_chip *chip = mtd_to_nand(mtd);
607 
608 	if (!chip->bbt)
609 		return chip->block_bad(mtd, ofs);
610 
611 	/* Return info from the table */
612 	return nand_isbad_bbt(mtd, ofs, allowbbt);
613 }
614 
615 /**
616  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
617  * @mtd: MTD device structure
618  * @timeo: Timeout
619  *
620  * Helper function for nand_wait_ready used when needing to wait in interrupt
621  * context.
622  */
623 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
624 {
625 	struct nand_chip *chip = mtd_to_nand(mtd);
626 	int i;
627 
628 	/* Wait for the device to get ready */
629 	for (i = 0; i < timeo; i++) {
630 		if (chip->dev_ready(mtd))
631 			break;
632 		touch_softlockup_watchdog();
633 		mdelay(1);
634 	}
635 }
636 
637 /**
638  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
639  * @mtd: MTD device structure
640  *
641  * Wait for the ready pin after a command, and warn if a timeout occurs.
642  */
643 void nand_wait_ready(struct mtd_info *mtd)
644 {
645 	struct nand_chip *chip = mtd_to_nand(mtd);
646 	unsigned long timeo = 400;
647 
648 	if (in_interrupt() || oops_in_progress)
649 		return panic_nand_wait_ready(mtd, timeo);
650 
651 	/* Wait until command is processed or timeout occurs */
652 	timeo = jiffies + msecs_to_jiffies(timeo);
653 	do {
654 		if (chip->dev_ready(mtd))
655 			return;
656 		cond_resched();
657 	} while (time_before(jiffies, timeo));
658 
659 	if (!chip->dev_ready(mtd))
660 		pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
661 }
662 EXPORT_SYMBOL_GPL(nand_wait_ready);
663 
664 /**
665  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
666  * @mtd: MTD device structure
667  * @timeo: Timeout in ms
668  *
669  * Wait for status ready (i.e. command done) or timeout.
670  */
671 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
672 {
673 	register struct nand_chip *chip = mtd_to_nand(mtd);
674 	int ret;
675 
676 	timeo = jiffies + msecs_to_jiffies(timeo);
677 	do {
678 		u8 status;
679 
680 		ret = nand_read_data_op(chip, &status, sizeof(status), true);
681 		if (ret)
682 			return;
683 
684 		if (status & NAND_STATUS_READY)
685 			break;
686 		touch_softlockup_watchdog();
687 	} while (time_before(jiffies, timeo));
688 };
689 
690 /**
691  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
692  * @chip: NAND chip structure
693  * @timeout_ms: Timeout in ms
694  *
695  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
696  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
697  * returned.
698  *
699  * This helper is intended to be used when the controller does not have access
700  * to the NAND R/B pin.
701  *
702  * Be aware that calling this helper from an ->exec_op() implementation means
703  * ->exec_op() must be re-entrant.
704  *
705  * Return 0 if the NAND chip is ready, a negative error otherwise.
706  */
707 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
708 {
709 	const struct nand_sdr_timings *timings;
710 	u8 status = 0;
711 	int ret;
712 
713 	if (!chip->exec_op)
714 		return -ENOTSUPP;
715 
716 	/* Wait tWB before polling the STATUS reg. */
717 	timings = nand_get_sdr_timings(&chip->data_interface);
718 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
719 
720 	ret = nand_status_op(chip, NULL);
721 	if (ret)
722 		return ret;
723 
724 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
725 	do {
726 		ret = nand_read_data_op(chip, &status, sizeof(status), true);
727 		if (ret)
728 			break;
729 
730 		if (status & NAND_STATUS_READY)
731 			break;
732 
733 		/*
734 		 * Typical lowest execution time for a tR on most NANDs is 10us,
735 		 * use this as polling delay before doing something smarter (ie.
736 		 * deriving a delay from the timeout value, timeout_ms/ratio).
737 		 */
738 		udelay(10);
739 	} while	(time_before(jiffies, timeout_ms));
740 
741 	/*
742 	 * We have to exit READ_STATUS mode in order to read real data on the
743 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
744 	 * instruction.
745 	 */
746 	nand_exit_status_op(chip);
747 
748 	if (ret)
749 		return ret;
750 
751 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
752 };
753 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
754 
755 /**
756  * nand_command - [DEFAULT] Send command to NAND device
757  * @mtd: MTD device structure
758  * @command: the command to be sent
759  * @column: the column address for this command, -1 if none
760  * @page_addr: the page address for this command, -1 if none
761  *
762  * Send command to NAND device. This function is used for small page devices
763  * (512 Bytes per page).
764  */
765 static void nand_command(struct mtd_info *mtd, unsigned int command,
766 			 int column, int page_addr)
767 {
768 	register struct nand_chip *chip = mtd_to_nand(mtd);
769 	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
770 
771 	/* Write out the command to the device */
772 	if (command == NAND_CMD_SEQIN) {
773 		int readcmd;
774 
775 		if (column >= mtd->writesize) {
776 			/* OOB area */
777 			column -= mtd->writesize;
778 			readcmd = NAND_CMD_READOOB;
779 		} else if (column < 256) {
780 			/* First 256 bytes --> READ0 */
781 			readcmd = NAND_CMD_READ0;
782 		} else {
783 			column -= 256;
784 			readcmd = NAND_CMD_READ1;
785 		}
786 		chip->cmd_ctrl(mtd, readcmd, ctrl);
787 		ctrl &= ~NAND_CTRL_CHANGE;
788 	}
789 	if (command != NAND_CMD_NONE)
790 		chip->cmd_ctrl(mtd, command, ctrl);
791 
792 	/* Address cycle, when necessary */
793 	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
794 	/* Serially input address */
795 	if (column != -1) {
796 		/* Adjust columns for 16 bit buswidth */
797 		if (chip->options & NAND_BUSWIDTH_16 &&
798 				!nand_opcode_8bits(command))
799 			column >>= 1;
800 		chip->cmd_ctrl(mtd, column, ctrl);
801 		ctrl &= ~NAND_CTRL_CHANGE;
802 	}
803 	if (page_addr != -1) {
804 		chip->cmd_ctrl(mtd, page_addr, ctrl);
805 		ctrl &= ~NAND_CTRL_CHANGE;
806 		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
807 		if (chip->options & NAND_ROW_ADDR_3)
808 			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
809 	}
810 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
811 
812 	/*
813 	 * Program and erase have their own busy handlers status and sequential
814 	 * in needs no delay
815 	 */
816 	switch (command) {
817 
818 	case NAND_CMD_NONE:
819 	case NAND_CMD_PAGEPROG:
820 	case NAND_CMD_ERASE1:
821 	case NAND_CMD_ERASE2:
822 	case NAND_CMD_SEQIN:
823 	case NAND_CMD_STATUS:
824 	case NAND_CMD_READID:
825 	case NAND_CMD_SET_FEATURES:
826 		return;
827 
828 	case NAND_CMD_RESET:
829 		if (chip->dev_ready)
830 			break;
831 		udelay(chip->chip_delay);
832 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
833 			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
834 		chip->cmd_ctrl(mtd,
835 			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
836 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
837 		nand_wait_status_ready(mtd, 250);
838 		return;
839 
840 		/* This applies to read commands */
841 	case NAND_CMD_READ0:
842 		/*
843 		 * READ0 is sometimes used to exit GET STATUS mode. When this
844 		 * is the case no address cycles are requested, and we can use
845 		 * this information to detect that we should not wait for the
846 		 * device to be ready.
847 		 */
848 		if (column == -1 && page_addr == -1)
849 			return;
850 
851 	default:
852 		/*
853 		 * If we don't have access to the busy pin, we apply the given
854 		 * command delay
855 		 */
856 		if (!chip->dev_ready) {
857 			udelay(chip->chip_delay);
858 			return;
859 		}
860 	}
861 	/*
862 	 * Apply this short delay always to ensure that we do wait tWB in
863 	 * any case on any machine.
864 	 */
865 	ndelay(100);
866 
867 	nand_wait_ready(mtd);
868 }
869 
870 static void nand_ccs_delay(struct nand_chip *chip)
871 {
872 	/*
873 	 * The controller already takes care of waiting for tCCS when the RNDIN
874 	 * or RNDOUT command is sent, return directly.
875 	 */
876 	if (!(chip->options & NAND_WAIT_TCCS))
877 		return;
878 
879 	/*
880 	 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
881 	 * (which should be safe for all NANDs).
882 	 */
883 	if (chip->setup_data_interface)
884 		ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
885 	else
886 		ndelay(500);
887 }
888 
889 /**
890  * nand_command_lp - [DEFAULT] Send command to NAND large page device
891  * @mtd: MTD device structure
892  * @command: the command to be sent
893  * @column: the column address for this command, -1 if none
894  * @page_addr: the page address for this command, -1 if none
895  *
896  * Send command to NAND device. This is the version for the new large page
897  * devices. We don't have the separate regions as we have in the small page
898  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
899  */
900 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
901 			    int column, int page_addr)
902 {
903 	register struct nand_chip *chip = mtd_to_nand(mtd);
904 
905 	/* Emulate NAND_CMD_READOOB */
906 	if (command == NAND_CMD_READOOB) {
907 		column += mtd->writesize;
908 		command = NAND_CMD_READ0;
909 	}
910 
911 	/* Command latch cycle */
912 	if (command != NAND_CMD_NONE)
913 		chip->cmd_ctrl(mtd, command,
914 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
915 
916 	if (column != -1 || page_addr != -1) {
917 		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
918 
919 		/* Serially input address */
920 		if (column != -1) {
921 			/* Adjust columns for 16 bit buswidth */
922 			if (chip->options & NAND_BUSWIDTH_16 &&
923 					!nand_opcode_8bits(command))
924 				column >>= 1;
925 			chip->cmd_ctrl(mtd, column, ctrl);
926 			ctrl &= ~NAND_CTRL_CHANGE;
927 
928 			/* Only output a single addr cycle for 8bits opcodes. */
929 			if (!nand_opcode_8bits(command))
930 				chip->cmd_ctrl(mtd, column >> 8, ctrl);
931 		}
932 		if (page_addr != -1) {
933 			chip->cmd_ctrl(mtd, page_addr, ctrl);
934 			chip->cmd_ctrl(mtd, page_addr >> 8,
935 				       NAND_NCE | NAND_ALE);
936 			if (chip->options & NAND_ROW_ADDR_3)
937 				chip->cmd_ctrl(mtd, page_addr >> 16,
938 					       NAND_NCE | NAND_ALE);
939 		}
940 	}
941 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
942 
943 	/*
944 	 * Program and erase have their own busy handlers status, sequential
945 	 * in and status need no delay.
946 	 */
947 	switch (command) {
948 
949 	case NAND_CMD_NONE:
950 	case NAND_CMD_CACHEDPROG:
951 	case NAND_CMD_PAGEPROG:
952 	case NAND_CMD_ERASE1:
953 	case NAND_CMD_ERASE2:
954 	case NAND_CMD_SEQIN:
955 	case NAND_CMD_STATUS:
956 	case NAND_CMD_READID:
957 	case NAND_CMD_SET_FEATURES:
958 		return;
959 
960 	case NAND_CMD_RNDIN:
961 		nand_ccs_delay(chip);
962 		return;
963 
964 	case NAND_CMD_RESET:
965 		if (chip->dev_ready)
966 			break;
967 		udelay(chip->chip_delay);
968 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
969 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
970 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
971 			       NAND_NCE | NAND_CTRL_CHANGE);
972 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
973 		nand_wait_status_ready(mtd, 250);
974 		return;
975 
976 	case NAND_CMD_RNDOUT:
977 		/* No ready / busy check necessary */
978 		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
979 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
980 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
981 			       NAND_NCE | NAND_CTRL_CHANGE);
982 
983 		nand_ccs_delay(chip);
984 		return;
985 
986 	case NAND_CMD_READ0:
987 		/*
988 		 * READ0 is sometimes used to exit GET STATUS mode. When this
989 		 * is the case no address cycles are requested, and we can use
990 		 * this information to detect that READSTART should not be
991 		 * issued.
992 		 */
993 		if (column == -1 && page_addr == -1)
994 			return;
995 
996 		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
997 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
998 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
999 			       NAND_NCE | NAND_CTRL_CHANGE);
1000 
1001 		/* This applies to read commands */
1002 	default:
1003 		/*
1004 		 * If we don't have access to the busy pin, we apply the given
1005 		 * command delay.
1006 		 */
1007 		if (!chip->dev_ready) {
1008 			udelay(chip->chip_delay);
1009 			return;
1010 		}
1011 	}
1012 
1013 	/*
1014 	 * Apply this short delay always to ensure that we do wait tWB in
1015 	 * any case on any machine.
1016 	 */
1017 	ndelay(100);
1018 
1019 	nand_wait_ready(mtd);
1020 }
1021 
1022 /**
1023  * panic_nand_get_device - [GENERIC] Get chip for selected access
1024  * @chip: the nand chip descriptor
1025  * @mtd: MTD device structure
1026  * @new_state: the state which is requested
1027  *
1028  * Used when in panic, no locks are taken.
1029  */
1030 static void panic_nand_get_device(struct nand_chip *chip,
1031 		      struct mtd_info *mtd, int new_state)
1032 {
1033 	/* Hardware controller shared among independent devices */
1034 	chip->controller->active = chip;
1035 	chip->state = new_state;
1036 }
1037 
1038 /**
1039  * nand_get_device - [GENERIC] Get chip for selected access
1040  * @mtd: MTD device structure
1041  * @new_state: the state which is requested
1042  *
1043  * Get the device and lock it for exclusive access
1044  */
1045 static int
1046 nand_get_device(struct mtd_info *mtd, int new_state)
1047 {
1048 	struct nand_chip *chip = mtd_to_nand(mtd);
1049 	spinlock_t *lock = &chip->controller->lock;
1050 	wait_queue_head_t *wq = &chip->controller->wq;
1051 	DECLARE_WAITQUEUE(wait, current);
1052 retry:
1053 	spin_lock(lock);
1054 
1055 	/* Hardware controller shared among independent devices */
1056 	if (!chip->controller->active)
1057 		chip->controller->active = chip;
1058 
1059 	if (chip->controller->active == chip && chip->state == FL_READY) {
1060 		chip->state = new_state;
1061 		spin_unlock(lock);
1062 		return 0;
1063 	}
1064 	if (new_state == FL_PM_SUSPENDED) {
1065 		if (chip->controller->active->state == FL_PM_SUSPENDED) {
1066 			chip->state = FL_PM_SUSPENDED;
1067 			spin_unlock(lock);
1068 			return 0;
1069 		}
1070 	}
1071 	set_current_state(TASK_UNINTERRUPTIBLE);
1072 	add_wait_queue(wq, &wait);
1073 	spin_unlock(lock);
1074 	schedule();
1075 	remove_wait_queue(wq, &wait);
1076 	goto retry;
1077 }
1078 
1079 /**
1080  * panic_nand_wait - [GENERIC] wait until the command is done
1081  * @mtd: MTD device structure
1082  * @chip: NAND chip structure
1083  * @timeo: timeout
1084  *
1085  * Wait for command done. This is a helper function for nand_wait used when
1086  * we are in interrupt context. May happen when in panic and trying to write
1087  * an oops through mtdoops.
1088  */
1089 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
1090 			    unsigned long timeo)
1091 {
1092 	int i;
1093 	for (i = 0; i < timeo; i++) {
1094 		if (chip->dev_ready) {
1095 			if (chip->dev_ready(mtd))
1096 				break;
1097 		} else {
1098 			int ret;
1099 			u8 status;
1100 
1101 			ret = nand_read_data_op(chip, &status, sizeof(status),
1102 						true);
1103 			if (ret)
1104 				return;
1105 
1106 			if (status & NAND_STATUS_READY)
1107 				break;
1108 		}
1109 		mdelay(1);
1110 	}
1111 }
1112 
1113 /**
1114  * nand_wait - [DEFAULT] wait until the command is done
1115  * @mtd: MTD device structure
1116  * @chip: NAND chip structure
1117  *
1118  * Wait for command done. This applies to erase and program only.
1119  */
1120 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1121 {
1122 
1123 	unsigned long timeo = 400;
1124 	u8 status;
1125 	int ret;
1126 
1127 	/*
1128 	 * Apply this short delay always to ensure that we do wait tWB in any
1129 	 * case on any machine.
1130 	 */
1131 	ndelay(100);
1132 
1133 	ret = nand_status_op(chip, NULL);
1134 	if (ret)
1135 		return ret;
1136 
1137 	if (in_interrupt() || oops_in_progress)
1138 		panic_nand_wait(mtd, chip, timeo);
1139 	else {
1140 		timeo = jiffies + msecs_to_jiffies(timeo);
1141 		do {
1142 			if (chip->dev_ready) {
1143 				if (chip->dev_ready(mtd))
1144 					break;
1145 			} else {
1146 				ret = nand_read_data_op(chip, &status,
1147 							sizeof(status), true);
1148 				if (ret)
1149 					return ret;
1150 
1151 				if (status & NAND_STATUS_READY)
1152 					break;
1153 			}
1154 			cond_resched();
1155 		} while (time_before(jiffies, timeo));
1156 	}
1157 
1158 	ret = nand_read_data_op(chip, &status, sizeof(status), true);
1159 	if (ret)
1160 		return ret;
1161 
1162 	/* This can happen if in case of timeout or buggy dev_ready */
1163 	WARN_ON(!(status & NAND_STATUS_READY));
1164 	return status;
1165 }
1166 
1167 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
1168 {
1169 	return (chip->parameters.supports_set_get_features &&
1170 		test_bit(addr, chip->parameters.get_feature_list));
1171 }
1172 
1173 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
1174 {
1175 	return (chip->parameters.supports_set_get_features &&
1176 		test_bit(addr, chip->parameters.set_feature_list));
1177 }
1178 
1179 /**
1180  * nand_get_features - wrapper to perform a GET_FEATURE
1181  * @chip: NAND chip info structure
1182  * @addr: feature address
1183  * @subfeature_param: the subfeature parameters, a four bytes array
1184  *
1185  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
1186  * operation cannot be handled.
1187  */
1188 int nand_get_features(struct nand_chip *chip, int addr,
1189 		      u8 *subfeature_param)
1190 {
1191 	struct mtd_info *mtd = nand_to_mtd(chip);
1192 
1193 	if (!nand_supports_get_features(chip, addr))
1194 		return -ENOTSUPP;
1195 
1196 	return chip->get_features(mtd, chip, addr, subfeature_param);
1197 }
1198 EXPORT_SYMBOL_GPL(nand_get_features);
1199 
1200 /**
1201  * nand_set_features - wrapper to perform a SET_FEATURE
1202  * @chip: NAND chip info structure
1203  * @addr: feature address
1204  * @subfeature_param: the subfeature parameters, a four bytes array
1205  *
1206  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
1207  * operation cannot be handled.
1208  */
1209 int nand_set_features(struct nand_chip *chip, int addr,
1210 		      u8 *subfeature_param)
1211 {
1212 	struct mtd_info *mtd = nand_to_mtd(chip);
1213 
1214 	if (!nand_supports_set_features(chip, addr))
1215 		return -ENOTSUPP;
1216 
1217 	return chip->set_features(mtd, chip, addr, subfeature_param);
1218 }
1219 EXPORT_SYMBOL_GPL(nand_set_features);
1220 
1221 /**
1222  * nand_reset_data_interface - Reset data interface and timings
1223  * @chip: The NAND chip
1224  * @chipnr: Internal die id
1225  *
1226  * Reset the Data interface and timings to ONFI mode 0.
1227  *
1228  * Returns 0 for success or negative error code otherwise.
1229  */
1230 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
1231 {
1232 	struct mtd_info *mtd = nand_to_mtd(chip);
1233 	int ret;
1234 
1235 	if (!chip->setup_data_interface)
1236 		return 0;
1237 
1238 	/*
1239 	 * The ONFI specification says:
1240 	 * "
1241 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
1242 	 * interface, the host shall use the Reset (FFh) command
1243 	 * using SDR timing mode 0. A device in any timing mode is
1244 	 * required to recognize Reset (FFh) command issued in SDR
1245 	 * timing mode 0.
1246 	 * "
1247 	 *
1248 	 * Configure the data interface in SDR mode and set the
1249 	 * timings to timing mode 0.
1250 	 */
1251 
1252 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
1253 	ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
1254 	if (ret)
1255 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
1256 
1257 	return ret;
1258 }
1259 
1260 /**
1261  * nand_setup_data_interface - Setup the best data interface and timings
1262  * @chip: The NAND chip
1263  * @chipnr: Internal die id
1264  *
1265  * Find and configure the best data interface and NAND timings supported by
1266  * the chip and the driver.
1267  * First tries to retrieve supported timing modes from ONFI information,
1268  * and if the NAND chip does not support ONFI, relies on the
1269  * ->onfi_timing_mode_default specified in the nand_ids table.
1270  *
1271  * Returns 0 for success or negative error code otherwise.
1272  */
1273 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
1274 {
1275 	struct mtd_info *mtd = nand_to_mtd(chip);
1276 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
1277 		chip->onfi_timing_mode_default,
1278 	};
1279 	int ret;
1280 
1281 	if (!chip->setup_data_interface)
1282 		return 0;
1283 
1284 	/* Change the mode on the chip side (if supported by the NAND chip) */
1285 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
1286 		chip->select_chip(mtd, chipnr);
1287 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
1288 					tmode_param);
1289 		chip->select_chip(mtd, -1);
1290 		if (ret)
1291 			return ret;
1292 	}
1293 
1294 	/* Change the mode on the controller side */
1295 	ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
1296 	if (ret)
1297 		return ret;
1298 
1299 	/* Check the mode has been accepted by the chip, if supported */
1300 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
1301 		return 0;
1302 
1303 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
1304 	chip->select_chip(mtd, chipnr);
1305 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
1306 				tmode_param);
1307 	chip->select_chip(mtd, -1);
1308 	if (ret)
1309 		goto err_reset_chip;
1310 
1311 	if (tmode_param[0] != chip->onfi_timing_mode_default) {
1312 		pr_warn("timing mode %d not acknowledged by the NAND chip\n",
1313 			chip->onfi_timing_mode_default);
1314 		goto err_reset_chip;
1315 	}
1316 
1317 	return 0;
1318 
1319 err_reset_chip:
1320 	/*
1321 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
1322 	 * timing mode.
1323 	 */
1324 	nand_reset_data_interface(chip, chipnr);
1325 	chip->select_chip(mtd, chipnr);
1326 	nand_reset_op(chip);
1327 	chip->select_chip(mtd, -1);
1328 
1329 	return ret;
1330 }
1331 
1332 /**
1333  * nand_init_data_interface - find the best data interface and timings
1334  * @chip: The NAND chip
1335  *
1336  * Find the best data interface and NAND timings supported by the chip
1337  * and the driver.
1338  * First tries to retrieve supported timing modes from ONFI information,
1339  * and if the NAND chip does not support ONFI, relies on the
1340  * ->onfi_timing_mode_default specified in the nand_ids table. After this
1341  * function nand_chip->data_interface is initialized with the best timing mode
1342  * available.
1343  *
1344  * Returns 0 for success or negative error code otherwise.
1345  */
1346 static int nand_init_data_interface(struct nand_chip *chip)
1347 {
1348 	struct mtd_info *mtd = nand_to_mtd(chip);
1349 	int modes, mode, ret;
1350 
1351 	if (!chip->setup_data_interface)
1352 		return 0;
1353 
1354 	/*
1355 	 * First try to identify the best timings from ONFI parameters and
1356 	 * if the NAND does not support ONFI, fallback to the default ONFI
1357 	 * timing mode.
1358 	 */
1359 	modes = onfi_get_async_timing_mode(chip);
1360 	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1361 		if (!chip->onfi_timing_mode_default)
1362 			return 0;
1363 
1364 		modes = GENMASK(chip->onfi_timing_mode_default, 0);
1365 	}
1366 
1367 
1368 	for (mode = fls(modes) - 1; mode >= 0; mode--) {
1369 		ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
1370 		if (ret)
1371 			continue;
1372 
1373 		/*
1374 		 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
1375 		 * controller supports the requested timings.
1376 		 */
1377 		ret = chip->setup_data_interface(mtd,
1378 						 NAND_DATA_IFACE_CHECK_ONLY,
1379 						 &chip->data_interface);
1380 		if (!ret) {
1381 			chip->onfi_timing_mode_default = mode;
1382 			break;
1383 		}
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 /**
1390  * nand_fill_column_cycles - fill the column cycles of an address
1391  * @chip: The NAND chip
1392  * @addrs: Array of address cycles to fill
1393  * @offset_in_page: The offset in the page
1394  *
1395  * Fills the first or the first two bytes of the @addrs field depending
1396  * on the NAND bus width and the page size.
1397  *
1398  * Returns the number of cycles needed to encode the column, or a negative
1399  * error code in case one of the arguments is invalid.
1400  */
1401 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1402 				   unsigned int offset_in_page)
1403 {
1404 	struct mtd_info *mtd = nand_to_mtd(chip);
1405 
1406 	/* Make sure the offset is less than the actual page size. */
1407 	if (offset_in_page > mtd->writesize + mtd->oobsize)
1408 		return -EINVAL;
1409 
1410 	/*
1411 	 * On small page NANDs, there's a dedicated command to access the OOB
1412 	 * area, and the column address is relative to the start of the OOB
1413 	 * area, not the start of the page. Asjust the address accordingly.
1414 	 */
1415 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1416 		offset_in_page -= mtd->writesize;
1417 
1418 	/*
1419 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1420 	 * wide, then it must be divided by 2.
1421 	 */
1422 	if (chip->options & NAND_BUSWIDTH_16) {
1423 		if (WARN_ON(offset_in_page % 2))
1424 			return -EINVAL;
1425 
1426 		offset_in_page /= 2;
1427 	}
1428 
1429 	addrs[0] = offset_in_page;
1430 
1431 	/*
1432 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1433 	 * need 2
1434 	 */
1435 	if (mtd->writesize <= 512)
1436 		return 1;
1437 
1438 	addrs[1] = offset_in_page >> 8;
1439 
1440 	return 2;
1441 }
1442 
1443 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1444 				     unsigned int offset_in_page, void *buf,
1445 				     unsigned int len)
1446 {
1447 	struct mtd_info *mtd = nand_to_mtd(chip);
1448 	const struct nand_sdr_timings *sdr =
1449 		nand_get_sdr_timings(&chip->data_interface);
1450 	u8 addrs[4];
1451 	struct nand_op_instr instrs[] = {
1452 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1453 		NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1454 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1455 				 PSEC_TO_NSEC(sdr->tRR_min)),
1456 		NAND_OP_DATA_IN(len, buf, 0),
1457 	};
1458 	struct nand_operation op = NAND_OPERATION(instrs);
1459 	int ret;
1460 
1461 	/* Drop the DATA_IN instruction if len is set to 0. */
1462 	if (!len)
1463 		op.ninstrs--;
1464 
1465 	if (offset_in_page >= mtd->writesize)
1466 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1467 	else if (offset_in_page >= 256 &&
1468 		 !(chip->options & NAND_BUSWIDTH_16))
1469 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1470 
1471 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1472 	if (ret < 0)
1473 		return ret;
1474 
1475 	addrs[1] = page;
1476 	addrs[2] = page >> 8;
1477 
1478 	if (chip->options & NAND_ROW_ADDR_3) {
1479 		addrs[3] = page >> 16;
1480 		instrs[1].ctx.addr.naddrs++;
1481 	}
1482 
1483 	return nand_exec_op(chip, &op);
1484 }
1485 
1486 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1487 				     unsigned int offset_in_page, void *buf,
1488 				     unsigned int len)
1489 {
1490 	const struct nand_sdr_timings *sdr =
1491 		nand_get_sdr_timings(&chip->data_interface);
1492 	u8 addrs[5];
1493 	struct nand_op_instr instrs[] = {
1494 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1495 		NAND_OP_ADDR(4, addrs, 0),
1496 		NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1497 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1498 				 PSEC_TO_NSEC(sdr->tRR_min)),
1499 		NAND_OP_DATA_IN(len, buf, 0),
1500 	};
1501 	struct nand_operation op = NAND_OPERATION(instrs);
1502 	int ret;
1503 
1504 	/* Drop the DATA_IN instruction if len is set to 0. */
1505 	if (!len)
1506 		op.ninstrs--;
1507 
1508 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1509 	if (ret < 0)
1510 		return ret;
1511 
1512 	addrs[2] = page;
1513 	addrs[3] = page >> 8;
1514 
1515 	if (chip->options & NAND_ROW_ADDR_3) {
1516 		addrs[4] = page >> 16;
1517 		instrs[1].ctx.addr.naddrs++;
1518 	}
1519 
1520 	return nand_exec_op(chip, &op);
1521 }
1522 
1523 /**
1524  * nand_read_page_op - Do a READ PAGE operation
1525  * @chip: The NAND chip
1526  * @page: page to read
1527  * @offset_in_page: offset within the page
1528  * @buf: buffer used to store the data
1529  * @len: length of the buffer
1530  *
1531  * This function issues a READ PAGE operation.
1532  * This function does not select/unselect the CS line.
1533  *
1534  * Returns 0 on success, a negative error code otherwise.
1535  */
1536 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1537 		      unsigned int offset_in_page, void *buf, unsigned int len)
1538 {
1539 	struct mtd_info *mtd = nand_to_mtd(chip);
1540 
1541 	if (len && !buf)
1542 		return -EINVAL;
1543 
1544 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1545 		return -EINVAL;
1546 
1547 	if (chip->exec_op) {
1548 		if (mtd->writesize > 512)
1549 			return nand_lp_exec_read_page_op(chip, page,
1550 							 offset_in_page, buf,
1551 							 len);
1552 
1553 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1554 						 buf, len);
1555 	}
1556 
1557 	chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
1558 	if (len)
1559 		chip->read_buf(mtd, buf, len);
1560 
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(nand_read_page_op);
1564 
1565 /**
1566  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1567  * @chip: The NAND chip
1568  * @page: parameter page to read
1569  * @buf: buffer used to store the data
1570  * @len: length of the buffer
1571  *
1572  * This function issues a READ PARAMETER PAGE operation.
1573  * This function does not select/unselect the CS line.
1574  *
1575  * Returns 0 on success, a negative error code otherwise.
1576  */
1577 static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1578 				   unsigned int len)
1579 {
1580 	struct mtd_info *mtd = nand_to_mtd(chip);
1581 	unsigned int i;
1582 	u8 *p = buf;
1583 
1584 	if (len && !buf)
1585 		return -EINVAL;
1586 
1587 	if (chip->exec_op) {
1588 		const struct nand_sdr_timings *sdr =
1589 			nand_get_sdr_timings(&chip->data_interface);
1590 		struct nand_op_instr instrs[] = {
1591 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1592 			NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1593 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1594 					 PSEC_TO_NSEC(sdr->tRR_min)),
1595 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1596 		};
1597 		struct nand_operation op = NAND_OPERATION(instrs);
1598 
1599 		/* Drop the DATA_IN instruction if len is set to 0. */
1600 		if (!len)
1601 			op.ninstrs--;
1602 
1603 		return nand_exec_op(chip, &op);
1604 	}
1605 
1606 	chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
1607 	for (i = 0; i < len; i++)
1608 		p[i] = chip->read_byte(mtd);
1609 
1610 	return 0;
1611 }
1612 
1613 /**
1614  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1615  * @chip: The NAND chip
1616  * @offset_in_page: offset within the page
1617  * @buf: buffer used to store the data
1618  * @len: length of the buffer
1619  * @force_8bit: force 8-bit bus access
1620  *
1621  * This function issues a CHANGE READ COLUMN operation.
1622  * This function does not select/unselect the CS line.
1623  *
1624  * Returns 0 on success, a negative error code otherwise.
1625  */
1626 int nand_change_read_column_op(struct nand_chip *chip,
1627 			       unsigned int offset_in_page, void *buf,
1628 			       unsigned int len, bool force_8bit)
1629 {
1630 	struct mtd_info *mtd = nand_to_mtd(chip);
1631 
1632 	if (len && !buf)
1633 		return -EINVAL;
1634 
1635 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1636 		return -EINVAL;
1637 
1638 	/* Small page NANDs do not support column change. */
1639 	if (mtd->writesize <= 512)
1640 		return -ENOTSUPP;
1641 
1642 	if (chip->exec_op) {
1643 		const struct nand_sdr_timings *sdr =
1644 			nand_get_sdr_timings(&chip->data_interface);
1645 		u8 addrs[2] = {};
1646 		struct nand_op_instr instrs[] = {
1647 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1648 			NAND_OP_ADDR(2, addrs, 0),
1649 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1650 				    PSEC_TO_NSEC(sdr->tCCS_min)),
1651 			NAND_OP_DATA_IN(len, buf, 0),
1652 		};
1653 		struct nand_operation op = NAND_OPERATION(instrs);
1654 		int ret;
1655 
1656 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1657 		if (ret < 0)
1658 			return ret;
1659 
1660 		/* Drop the DATA_IN instruction if len is set to 0. */
1661 		if (!len)
1662 			op.ninstrs--;
1663 
1664 		instrs[3].ctx.data.force_8bit = force_8bit;
1665 
1666 		return nand_exec_op(chip, &op);
1667 	}
1668 
1669 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
1670 	if (len)
1671 		chip->read_buf(mtd, buf, len);
1672 
1673 	return 0;
1674 }
1675 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1676 
1677 /**
1678  * nand_read_oob_op - Do a READ OOB operation
1679  * @chip: The NAND chip
1680  * @page: page to read
1681  * @offset_in_oob: offset within the OOB area
1682  * @buf: buffer used to store the data
1683  * @len: length of the buffer
1684  *
1685  * This function issues a READ OOB operation.
1686  * This function does not select/unselect the CS line.
1687  *
1688  * Returns 0 on success, a negative error code otherwise.
1689  */
1690 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1691 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1692 {
1693 	struct mtd_info *mtd = nand_to_mtd(chip);
1694 
1695 	if (len && !buf)
1696 		return -EINVAL;
1697 
1698 	if (offset_in_oob + len > mtd->oobsize)
1699 		return -EINVAL;
1700 
1701 	if (chip->exec_op)
1702 		return nand_read_page_op(chip, page,
1703 					 mtd->writesize + offset_in_oob,
1704 					 buf, len);
1705 
1706 	chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
1707 	if (len)
1708 		chip->read_buf(mtd, buf, len);
1709 
1710 	return 0;
1711 }
1712 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1713 
1714 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1715 				  unsigned int offset_in_page, const void *buf,
1716 				  unsigned int len, bool prog)
1717 {
1718 	struct mtd_info *mtd = nand_to_mtd(chip);
1719 	const struct nand_sdr_timings *sdr =
1720 		nand_get_sdr_timings(&chip->data_interface);
1721 	u8 addrs[5] = {};
1722 	struct nand_op_instr instrs[] = {
1723 		/*
1724 		 * The first instruction will be dropped if we're dealing
1725 		 * with a large page NAND and adjusted if we're dealing
1726 		 * with a small page NAND and the page offset is > 255.
1727 		 */
1728 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1729 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1730 		NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1731 		NAND_OP_DATA_OUT(len, buf, 0),
1732 		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1733 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1734 	};
1735 	struct nand_operation op = NAND_OPERATION(instrs);
1736 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1737 	int ret;
1738 	u8 status;
1739 
1740 	if (naddrs < 0)
1741 		return naddrs;
1742 
1743 	addrs[naddrs++] = page;
1744 	addrs[naddrs++] = page >> 8;
1745 	if (chip->options & NAND_ROW_ADDR_3)
1746 		addrs[naddrs++] = page >> 16;
1747 
1748 	instrs[2].ctx.addr.naddrs = naddrs;
1749 
1750 	/* Drop the last two instructions if we're not programming the page. */
1751 	if (!prog) {
1752 		op.ninstrs -= 2;
1753 		/* Also drop the DATA_OUT instruction if empty. */
1754 		if (!len)
1755 			op.ninstrs--;
1756 	}
1757 
1758 	if (mtd->writesize <= 512) {
1759 		/*
1760 		 * Small pages need some more tweaking: we have to adjust the
1761 		 * first instruction depending on the page offset we're trying
1762 		 * to access.
1763 		 */
1764 		if (offset_in_page >= mtd->writesize)
1765 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1766 		else if (offset_in_page >= 256 &&
1767 			 !(chip->options & NAND_BUSWIDTH_16))
1768 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1769 	} else {
1770 		/*
1771 		 * Drop the first command if we're dealing with a large page
1772 		 * NAND.
1773 		 */
1774 		op.instrs++;
1775 		op.ninstrs--;
1776 	}
1777 
1778 	ret = nand_exec_op(chip, &op);
1779 	if (!prog || ret)
1780 		return ret;
1781 
1782 	ret = nand_status_op(chip, &status);
1783 	if (ret)
1784 		return ret;
1785 
1786 	return status;
1787 }
1788 
1789 /**
1790  * nand_prog_page_begin_op - starts a PROG PAGE operation
1791  * @chip: The NAND chip
1792  * @page: page to write
1793  * @offset_in_page: offset within the page
1794  * @buf: buffer containing the data to write to the page
1795  * @len: length of the buffer
1796  *
1797  * This function issues the first half of a PROG PAGE operation.
1798  * This function does not select/unselect the CS line.
1799  *
1800  * Returns 0 on success, a negative error code otherwise.
1801  */
1802 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1803 			    unsigned int offset_in_page, const void *buf,
1804 			    unsigned int len)
1805 {
1806 	struct mtd_info *mtd = nand_to_mtd(chip);
1807 
1808 	if (len && !buf)
1809 		return -EINVAL;
1810 
1811 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1812 		return -EINVAL;
1813 
1814 	if (chip->exec_op)
1815 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1816 					      len, false);
1817 
1818 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1819 
1820 	if (buf)
1821 		chip->write_buf(mtd, buf, len);
1822 
1823 	return 0;
1824 }
1825 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1826 
1827 /**
1828  * nand_prog_page_end_op - ends a PROG PAGE operation
1829  * @chip: The NAND chip
1830  *
1831  * This function issues the second half of a PROG PAGE operation.
1832  * This function does not select/unselect the CS line.
1833  *
1834  * Returns 0 on success, a negative error code otherwise.
1835  */
1836 int nand_prog_page_end_op(struct nand_chip *chip)
1837 {
1838 	struct mtd_info *mtd = nand_to_mtd(chip);
1839 	int ret;
1840 	u8 status;
1841 
1842 	if (chip->exec_op) {
1843 		const struct nand_sdr_timings *sdr =
1844 			nand_get_sdr_timings(&chip->data_interface);
1845 		struct nand_op_instr instrs[] = {
1846 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1847 				    PSEC_TO_NSEC(sdr->tWB_max)),
1848 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1849 		};
1850 		struct nand_operation op = NAND_OPERATION(instrs);
1851 
1852 		ret = nand_exec_op(chip, &op);
1853 		if (ret)
1854 			return ret;
1855 
1856 		ret = nand_status_op(chip, &status);
1857 		if (ret)
1858 			return ret;
1859 	} else {
1860 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1861 		ret = chip->waitfunc(mtd, chip);
1862 		if (ret < 0)
1863 			return ret;
1864 
1865 		status = ret;
1866 	}
1867 
1868 	if (status & NAND_STATUS_FAIL)
1869 		return -EIO;
1870 
1871 	return 0;
1872 }
1873 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1874 
1875 /**
1876  * nand_prog_page_op - Do a full PROG PAGE operation
1877  * @chip: The NAND chip
1878  * @page: page to write
1879  * @offset_in_page: offset within the page
1880  * @buf: buffer containing the data to write to the page
1881  * @len: length of the buffer
1882  *
1883  * This function issues a full PROG PAGE operation.
1884  * This function does not select/unselect the CS line.
1885  *
1886  * Returns 0 on success, a negative error code otherwise.
1887  */
1888 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1889 		      unsigned int offset_in_page, const void *buf,
1890 		      unsigned int len)
1891 {
1892 	struct mtd_info *mtd = nand_to_mtd(chip);
1893 	int status;
1894 
1895 	if (!len || !buf)
1896 		return -EINVAL;
1897 
1898 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1899 		return -EINVAL;
1900 
1901 	if (chip->exec_op) {
1902 		status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1903 						len, true);
1904 	} else {
1905 		chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
1906 		chip->write_buf(mtd, buf, len);
1907 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1908 		status = chip->waitfunc(mtd, chip);
1909 	}
1910 
1911 	if (status & NAND_STATUS_FAIL)
1912 		return -EIO;
1913 
1914 	return 0;
1915 }
1916 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1917 
1918 /**
1919  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1920  * @chip: The NAND chip
1921  * @offset_in_page: offset within the page
1922  * @buf: buffer containing the data to send to the NAND
1923  * @len: length of the buffer
1924  * @force_8bit: force 8-bit bus access
1925  *
1926  * This function issues a CHANGE WRITE COLUMN operation.
1927  * This function does not select/unselect the CS line.
1928  *
1929  * Returns 0 on success, a negative error code otherwise.
1930  */
1931 int nand_change_write_column_op(struct nand_chip *chip,
1932 				unsigned int offset_in_page,
1933 				const void *buf, unsigned int len,
1934 				bool force_8bit)
1935 {
1936 	struct mtd_info *mtd = nand_to_mtd(chip);
1937 
1938 	if (len && !buf)
1939 		return -EINVAL;
1940 
1941 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1942 		return -EINVAL;
1943 
1944 	/* Small page NANDs do not support column change. */
1945 	if (mtd->writesize <= 512)
1946 		return -ENOTSUPP;
1947 
1948 	if (chip->exec_op) {
1949 		const struct nand_sdr_timings *sdr =
1950 			nand_get_sdr_timings(&chip->data_interface);
1951 		u8 addrs[2];
1952 		struct nand_op_instr instrs[] = {
1953 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1954 			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1955 			NAND_OP_DATA_OUT(len, buf, 0),
1956 		};
1957 		struct nand_operation op = NAND_OPERATION(instrs);
1958 		int ret;
1959 
1960 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1961 		if (ret < 0)
1962 			return ret;
1963 
1964 		instrs[2].ctx.data.force_8bit = force_8bit;
1965 
1966 		/* Drop the DATA_OUT instruction if len is set to 0. */
1967 		if (!len)
1968 			op.ninstrs--;
1969 
1970 		return nand_exec_op(chip, &op);
1971 	}
1972 
1973 	chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
1974 	if (len)
1975 		chip->write_buf(mtd, buf, len);
1976 
1977 	return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1980 
1981 /**
1982  * nand_readid_op - Do a READID operation
1983  * @chip: The NAND chip
1984  * @addr: address cycle to pass after the READID command
1985  * @buf: buffer used to store the ID
1986  * @len: length of the buffer
1987  *
1988  * This function sends a READID command and reads back the ID returned by the
1989  * NAND.
1990  * This function does not select/unselect the CS line.
1991  *
1992  * Returns 0 on success, a negative error code otherwise.
1993  */
1994 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1995 		   unsigned int len)
1996 {
1997 	struct mtd_info *mtd = nand_to_mtd(chip);
1998 	unsigned int i;
1999 	u8 *id = buf;
2000 
2001 	if (len && !buf)
2002 		return -EINVAL;
2003 
2004 	if (chip->exec_op) {
2005 		const struct nand_sdr_timings *sdr =
2006 			nand_get_sdr_timings(&chip->data_interface);
2007 		struct nand_op_instr instrs[] = {
2008 			NAND_OP_CMD(NAND_CMD_READID, 0),
2009 			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
2010 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
2011 		};
2012 		struct nand_operation op = NAND_OPERATION(instrs);
2013 
2014 		/* Drop the DATA_IN instruction if len is set to 0. */
2015 		if (!len)
2016 			op.ninstrs--;
2017 
2018 		return nand_exec_op(chip, &op);
2019 	}
2020 
2021 	chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
2022 
2023 	for (i = 0; i < len; i++)
2024 		id[i] = chip->read_byte(mtd);
2025 
2026 	return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(nand_readid_op);
2029 
2030 /**
2031  * nand_status_op - Do a STATUS operation
2032  * @chip: The NAND chip
2033  * @status: out variable to store the NAND status
2034  *
2035  * This function sends a STATUS command and reads back the status returned by
2036  * the NAND.
2037  * This function does not select/unselect the CS line.
2038  *
2039  * Returns 0 on success, a negative error code otherwise.
2040  */
2041 int nand_status_op(struct nand_chip *chip, u8 *status)
2042 {
2043 	struct mtd_info *mtd = nand_to_mtd(chip);
2044 
2045 	if (chip->exec_op) {
2046 		const struct nand_sdr_timings *sdr =
2047 			nand_get_sdr_timings(&chip->data_interface);
2048 		struct nand_op_instr instrs[] = {
2049 			NAND_OP_CMD(NAND_CMD_STATUS,
2050 				    PSEC_TO_NSEC(sdr->tADL_min)),
2051 			NAND_OP_8BIT_DATA_IN(1, status, 0),
2052 		};
2053 		struct nand_operation op = NAND_OPERATION(instrs);
2054 
2055 		if (!status)
2056 			op.ninstrs--;
2057 
2058 		return nand_exec_op(chip, &op);
2059 	}
2060 
2061 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
2062 	if (status)
2063 		*status = chip->read_byte(mtd);
2064 
2065 	return 0;
2066 }
2067 EXPORT_SYMBOL_GPL(nand_status_op);
2068 
2069 /**
2070  * nand_exit_status_op - Exit a STATUS operation
2071  * @chip: The NAND chip
2072  *
2073  * This function sends a READ0 command to cancel the effect of the STATUS
2074  * command to avoid reading only the status until a new read command is sent.
2075  *
2076  * This function does not select/unselect the CS line.
2077  *
2078  * Returns 0 on success, a negative error code otherwise.
2079  */
2080 int nand_exit_status_op(struct nand_chip *chip)
2081 {
2082 	struct mtd_info *mtd = nand_to_mtd(chip);
2083 
2084 	if (chip->exec_op) {
2085 		struct nand_op_instr instrs[] = {
2086 			NAND_OP_CMD(NAND_CMD_READ0, 0),
2087 		};
2088 		struct nand_operation op = NAND_OPERATION(instrs);
2089 
2090 		return nand_exec_op(chip, &op);
2091 	}
2092 
2093 	chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
2094 
2095 	return 0;
2096 }
2097 EXPORT_SYMBOL_GPL(nand_exit_status_op);
2098 
2099 /**
2100  * nand_erase_op - Do an erase operation
2101  * @chip: The NAND chip
2102  * @eraseblock: block to erase
2103  *
2104  * This function sends an ERASE command and waits for the NAND to be ready
2105  * before returning.
2106  * This function does not select/unselect the CS line.
2107  *
2108  * Returns 0 on success, a negative error code otherwise.
2109  */
2110 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
2111 {
2112 	struct mtd_info *mtd = nand_to_mtd(chip);
2113 	unsigned int page = eraseblock <<
2114 			    (chip->phys_erase_shift - chip->page_shift);
2115 	int ret;
2116 	u8 status;
2117 
2118 	if (chip->exec_op) {
2119 		const struct nand_sdr_timings *sdr =
2120 			nand_get_sdr_timings(&chip->data_interface);
2121 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
2122 		struct nand_op_instr instrs[] = {
2123 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
2124 			NAND_OP_ADDR(2, addrs, 0),
2125 			NAND_OP_CMD(NAND_CMD_ERASE2,
2126 				    PSEC_TO_MSEC(sdr->tWB_max)),
2127 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
2128 		};
2129 		struct nand_operation op = NAND_OPERATION(instrs);
2130 
2131 		if (chip->options & NAND_ROW_ADDR_3)
2132 			instrs[1].ctx.addr.naddrs++;
2133 
2134 		ret = nand_exec_op(chip, &op);
2135 		if (ret)
2136 			return ret;
2137 
2138 		ret = nand_status_op(chip, &status);
2139 		if (ret)
2140 			return ret;
2141 	} else {
2142 		chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2143 		chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2144 
2145 		ret = chip->waitfunc(mtd, chip);
2146 		if (ret < 0)
2147 			return ret;
2148 
2149 		status = ret;
2150 	}
2151 
2152 	if (status & NAND_STATUS_FAIL)
2153 		return -EIO;
2154 
2155 	return 0;
2156 }
2157 EXPORT_SYMBOL_GPL(nand_erase_op);
2158 
2159 /**
2160  * nand_set_features_op - Do a SET FEATURES operation
2161  * @chip: The NAND chip
2162  * @feature: feature id
2163  * @data: 4 bytes of data
2164  *
2165  * This function sends a SET FEATURES command and waits for the NAND to be
2166  * ready before returning.
2167  * This function does not select/unselect the CS line.
2168  *
2169  * Returns 0 on success, a negative error code otherwise.
2170  */
2171 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
2172 				const void *data)
2173 {
2174 	struct mtd_info *mtd = nand_to_mtd(chip);
2175 	const u8 *params = data;
2176 	int i, ret;
2177 
2178 	if (chip->exec_op) {
2179 		const struct nand_sdr_timings *sdr =
2180 			nand_get_sdr_timings(&chip->data_interface);
2181 		struct nand_op_instr instrs[] = {
2182 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2183 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
2184 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2185 					      PSEC_TO_NSEC(sdr->tWB_max)),
2186 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
2187 		};
2188 		struct nand_operation op = NAND_OPERATION(instrs);
2189 
2190 		return nand_exec_op(chip, &op);
2191 	}
2192 
2193 	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
2194 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2195 		chip->write_byte(mtd, params[i]);
2196 
2197 	ret = chip->waitfunc(mtd, chip);
2198 	if (ret < 0)
2199 		return ret;
2200 
2201 	if (ret & NAND_STATUS_FAIL)
2202 		return -EIO;
2203 
2204 	return 0;
2205 }
2206 
2207 /**
2208  * nand_get_features_op - Do a GET FEATURES operation
2209  * @chip: The NAND chip
2210  * @feature: feature id
2211  * @data: 4 bytes of data
2212  *
2213  * This function sends a GET FEATURES command and waits for the NAND to be
2214  * ready before returning.
2215  * This function does not select/unselect the CS line.
2216  *
2217  * Returns 0 on success, a negative error code otherwise.
2218  */
2219 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2220 				void *data)
2221 {
2222 	struct mtd_info *mtd = nand_to_mtd(chip);
2223 	u8 *params = data;
2224 	int i;
2225 
2226 	if (chip->exec_op) {
2227 		const struct nand_sdr_timings *sdr =
2228 			nand_get_sdr_timings(&chip->data_interface);
2229 		struct nand_op_instr instrs[] = {
2230 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2231 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
2232 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
2233 					 PSEC_TO_NSEC(sdr->tRR_min)),
2234 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2235 					     data, 0),
2236 		};
2237 		struct nand_operation op = NAND_OPERATION(instrs);
2238 
2239 		return nand_exec_op(chip, &op);
2240 	}
2241 
2242 	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
2243 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2244 		params[i] = chip->read_byte(mtd);
2245 
2246 	return 0;
2247 }
2248 
2249 /**
2250  * nand_reset_op - Do a reset operation
2251  * @chip: The NAND chip
2252  *
2253  * This function sends a RESET command and waits for the NAND to be ready
2254  * before returning.
2255  * This function does not select/unselect the CS line.
2256  *
2257  * Returns 0 on success, a negative error code otherwise.
2258  */
2259 int nand_reset_op(struct nand_chip *chip)
2260 {
2261 	struct mtd_info *mtd = nand_to_mtd(chip);
2262 
2263 	if (chip->exec_op) {
2264 		const struct nand_sdr_timings *sdr =
2265 			nand_get_sdr_timings(&chip->data_interface);
2266 		struct nand_op_instr instrs[] = {
2267 			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
2268 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
2269 		};
2270 		struct nand_operation op = NAND_OPERATION(instrs);
2271 
2272 		return nand_exec_op(chip, &op);
2273 	}
2274 
2275 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2276 
2277 	return 0;
2278 }
2279 EXPORT_SYMBOL_GPL(nand_reset_op);
2280 
2281 /**
2282  * nand_read_data_op - Read data from the NAND
2283  * @chip: The NAND chip
2284  * @buf: buffer used to store the data
2285  * @len: length of the buffer
2286  * @force_8bit: force 8-bit bus access
2287  *
2288  * This function does a raw data read on the bus. Usually used after launching
2289  * another NAND operation like nand_read_page_op().
2290  * This function does not select/unselect the CS line.
2291  *
2292  * Returns 0 on success, a negative error code otherwise.
2293  */
2294 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2295 		      bool force_8bit)
2296 {
2297 	struct mtd_info *mtd = nand_to_mtd(chip);
2298 
2299 	if (!len || !buf)
2300 		return -EINVAL;
2301 
2302 	if (chip->exec_op) {
2303 		struct nand_op_instr instrs[] = {
2304 			NAND_OP_DATA_IN(len, buf, 0),
2305 		};
2306 		struct nand_operation op = NAND_OPERATION(instrs);
2307 
2308 		instrs[0].ctx.data.force_8bit = force_8bit;
2309 
2310 		return nand_exec_op(chip, &op);
2311 	}
2312 
2313 	if (force_8bit) {
2314 		u8 *p = buf;
2315 		unsigned int i;
2316 
2317 		for (i = 0; i < len; i++)
2318 			p[i] = chip->read_byte(mtd);
2319 	} else {
2320 		chip->read_buf(mtd, buf, len);
2321 	}
2322 
2323 	return 0;
2324 }
2325 EXPORT_SYMBOL_GPL(nand_read_data_op);
2326 
2327 /**
2328  * nand_write_data_op - Write data from the NAND
2329  * @chip: The NAND chip
2330  * @buf: buffer containing the data to send on the bus
2331  * @len: length of the buffer
2332  * @force_8bit: force 8-bit bus access
2333  *
2334  * This function does a raw data write on the bus. Usually used after launching
2335  * another NAND operation like nand_write_page_begin_op().
2336  * This function does not select/unselect the CS line.
2337  *
2338  * Returns 0 on success, a negative error code otherwise.
2339  */
2340 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2341 		       unsigned int len, bool force_8bit)
2342 {
2343 	struct mtd_info *mtd = nand_to_mtd(chip);
2344 
2345 	if (!len || !buf)
2346 		return -EINVAL;
2347 
2348 	if (chip->exec_op) {
2349 		struct nand_op_instr instrs[] = {
2350 			NAND_OP_DATA_OUT(len, buf, 0),
2351 		};
2352 		struct nand_operation op = NAND_OPERATION(instrs);
2353 
2354 		instrs[0].ctx.data.force_8bit = force_8bit;
2355 
2356 		return nand_exec_op(chip, &op);
2357 	}
2358 
2359 	if (force_8bit) {
2360 		const u8 *p = buf;
2361 		unsigned int i;
2362 
2363 		for (i = 0; i < len; i++)
2364 			chip->write_byte(mtd, p[i]);
2365 	} else {
2366 		chip->write_buf(mtd, buf, len);
2367 	}
2368 
2369 	return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(nand_write_data_op);
2372 
2373 /**
2374  * struct nand_op_parser_ctx - Context used by the parser
2375  * @instrs: array of all the instructions that must be addressed
2376  * @ninstrs: length of the @instrs array
2377  * @subop: Sub-operation to be passed to the NAND controller
2378  *
2379  * This structure is used by the core to split NAND operations into
2380  * sub-operations that can be handled by the NAND controller.
2381  */
2382 struct nand_op_parser_ctx {
2383 	const struct nand_op_instr *instrs;
2384 	unsigned int ninstrs;
2385 	struct nand_subop subop;
2386 };
2387 
2388 /**
2389  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2390  * @pat: the parser pattern element that matches @instr
2391  * @instr: pointer to the instruction to check
2392  * @start_offset: this is an in/out parameter. If @instr has already been
2393  *		  split, then @start_offset is the offset from which to start
2394  *		  (either an address cycle or an offset in the data buffer).
2395  *		  Conversely, if the function returns true (ie. instr must be
2396  *		  split), this parameter is updated to point to the first
2397  *		  data/address cycle that has not been taken care of.
2398  *
2399  * Some NAND controllers are limited and cannot send X address cycles with a
2400  * unique operation, or cannot read/write more than Y bytes at the same time.
2401  * In this case, split the instruction that does not fit in a single
2402  * controller-operation into two or more chunks.
2403  *
2404  * Returns true if the instruction must be split, false otherwise.
2405  * The @start_offset parameter is also updated to the offset at which the next
2406  * bundle of instruction must start (if an address or a data instruction).
2407  */
2408 static bool
2409 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2410 				const struct nand_op_instr *instr,
2411 				unsigned int *start_offset)
2412 {
2413 	switch (pat->type) {
2414 	case NAND_OP_ADDR_INSTR:
2415 		if (!pat->ctx.addr.maxcycles)
2416 			break;
2417 
2418 		if (instr->ctx.addr.naddrs - *start_offset >
2419 		    pat->ctx.addr.maxcycles) {
2420 			*start_offset += pat->ctx.addr.maxcycles;
2421 			return true;
2422 		}
2423 		break;
2424 
2425 	case NAND_OP_DATA_IN_INSTR:
2426 	case NAND_OP_DATA_OUT_INSTR:
2427 		if (!pat->ctx.data.maxlen)
2428 			break;
2429 
2430 		if (instr->ctx.data.len - *start_offset >
2431 		    pat->ctx.data.maxlen) {
2432 			*start_offset += pat->ctx.data.maxlen;
2433 			return true;
2434 		}
2435 		break;
2436 
2437 	default:
2438 		break;
2439 	}
2440 
2441 	return false;
2442 }
2443 
2444 /**
2445  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2446  *			      remaining in the parser context
2447  * @pat: the pattern to test
2448  * @ctx: the parser context structure to match with the pattern @pat
2449  *
2450  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2451  * Returns true if this is the case, false ortherwise. When true is returned,
2452  * @ctx->subop is updated with the set of instructions to be passed to the
2453  * controller driver.
2454  */
2455 static bool
2456 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2457 			 struct nand_op_parser_ctx *ctx)
2458 {
2459 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2460 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2461 	const struct nand_op_instr *instr = ctx->subop.instrs;
2462 	unsigned int i, ninstrs;
2463 
2464 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2465 		/*
2466 		 * The pattern instruction does not match the operation
2467 		 * instruction. If the instruction is marked optional in the
2468 		 * pattern definition, we skip the pattern element and continue
2469 		 * to the next one. If the element is mandatory, there's no
2470 		 * match and we can return false directly.
2471 		 */
2472 		if (instr->type != pat->elems[i].type) {
2473 			if (!pat->elems[i].optional)
2474 				return false;
2475 
2476 			continue;
2477 		}
2478 
2479 		/*
2480 		 * Now check the pattern element constraints. If the pattern is
2481 		 * not able to handle the whole instruction in a single step,
2482 		 * we have to split it.
2483 		 * The last_instr_end_off value comes back updated to point to
2484 		 * the position where we have to split the instruction (the
2485 		 * start of the next subop chunk).
2486 		 */
2487 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2488 						    &instr_offset)) {
2489 			ninstrs++;
2490 			i++;
2491 			break;
2492 		}
2493 
2494 		instr++;
2495 		ninstrs++;
2496 		instr_offset = 0;
2497 	}
2498 
2499 	/*
2500 	 * This can happen if all instructions of a pattern are optional.
2501 	 * Still, if there's not at least one instruction handled by this
2502 	 * pattern, this is not a match, and we should try the next one (if
2503 	 * any).
2504 	 */
2505 	if (!ninstrs)
2506 		return false;
2507 
2508 	/*
2509 	 * We had a match on the pattern head, but the pattern may be longer
2510 	 * than the instructions we're asked to execute. We need to make sure
2511 	 * there's no mandatory elements in the pattern tail.
2512 	 */
2513 	for (; i < pat->nelems; i++) {
2514 		if (!pat->elems[i].optional)
2515 			return false;
2516 	}
2517 
2518 	/*
2519 	 * We have a match: update the subop structure accordingly and return
2520 	 * true.
2521 	 */
2522 	ctx->subop.ninstrs = ninstrs;
2523 	ctx->subop.last_instr_end_off = instr_offset;
2524 
2525 	return true;
2526 }
2527 
2528 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2529 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2530 {
2531 	const struct nand_op_instr *instr;
2532 	char *prefix = "      ";
2533 	unsigned int i;
2534 
2535 	pr_debug("executing subop:\n");
2536 
2537 	for (i = 0; i < ctx->ninstrs; i++) {
2538 		instr = &ctx->instrs[i];
2539 
2540 		if (instr == &ctx->subop.instrs[0])
2541 			prefix = "    ->";
2542 
2543 		switch (instr->type) {
2544 		case NAND_OP_CMD_INSTR:
2545 			pr_debug("%sCMD      [0x%02x]\n", prefix,
2546 				 instr->ctx.cmd.opcode);
2547 			break;
2548 		case NAND_OP_ADDR_INSTR:
2549 			pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
2550 				 instr->ctx.addr.naddrs,
2551 				 instr->ctx.addr.naddrs < 64 ?
2552 				 instr->ctx.addr.naddrs : 64,
2553 				 instr->ctx.addr.addrs);
2554 			break;
2555 		case NAND_OP_DATA_IN_INSTR:
2556 			pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
2557 				 instr->ctx.data.len,
2558 				 instr->ctx.data.force_8bit ?
2559 				 ", force 8-bit" : "");
2560 			break;
2561 		case NAND_OP_DATA_OUT_INSTR:
2562 			pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
2563 				 instr->ctx.data.len,
2564 				 instr->ctx.data.force_8bit ?
2565 				 ", force 8-bit" : "");
2566 			break;
2567 		case NAND_OP_WAITRDY_INSTR:
2568 			pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
2569 				 instr->ctx.waitrdy.timeout_ms);
2570 			break;
2571 		}
2572 
2573 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2574 			prefix = "      ";
2575 	}
2576 }
2577 #else
2578 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2579 {
2580 	/* NOP */
2581 }
2582 #endif
2583 
2584 /**
2585  * nand_op_parser_exec_op - exec_op parser
2586  * @chip: the NAND chip
2587  * @parser: patterns description provided by the controller driver
2588  * @op: the NAND operation to address
2589  * @check_only: when true, the function only checks if @op can be handled but
2590  *		does not execute the operation
2591  *
2592  * Helper function designed to ease integration of NAND controller drivers that
2593  * only support a limited set of instruction sequences. The supported sequences
2594  * are described in @parser, and the framework takes care of splitting @op into
2595  * multiple sub-operations (if required) and pass them back to the ->exec()
2596  * callback of the matching pattern if @check_only is set to false.
2597  *
2598  * NAND controller drivers should call this function from their own ->exec_op()
2599  * implementation.
2600  *
2601  * Returns 0 on success, a negative error code otherwise. A failure can be
2602  * caused by an unsupported operation (none of the supported patterns is able
2603  * to handle the requested operation), or an error returned by one of the
2604  * matching pattern->exec() hook.
2605  */
2606 int nand_op_parser_exec_op(struct nand_chip *chip,
2607 			   const struct nand_op_parser *parser,
2608 			   const struct nand_operation *op, bool check_only)
2609 {
2610 	struct nand_op_parser_ctx ctx = {
2611 		.subop.instrs = op->instrs,
2612 		.instrs = op->instrs,
2613 		.ninstrs = op->ninstrs,
2614 	};
2615 	unsigned int i;
2616 
2617 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2618 		int ret;
2619 
2620 		for (i = 0; i < parser->npatterns; i++) {
2621 			const struct nand_op_parser_pattern *pattern;
2622 
2623 			pattern = &parser->patterns[i];
2624 			if (!nand_op_parser_match_pat(pattern, &ctx))
2625 				continue;
2626 
2627 			nand_op_parser_trace(&ctx);
2628 
2629 			if (check_only)
2630 				break;
2631 
2632 			ret = pattern->exec(chip, &ctx.subop);
2633 			if (ret)
2634 				return ret;
2635 
2636 			break;
2637 		}
2638 
2639 		if (i == parser->npatterns) {
2640 			pr_debug("->exec_op() parser: pattern not found!\n");
2641 			return -ENOTSUPP;
2642 		}
2643 
2644 		/*
2645 		 * Update the context structure by pointing to the start of the
2646 		 * next subop.
2647 		 */
2648 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2649 		if (ctx.subop.last_instr_end_off)
2650 			ctx.subop.instrs -= 1;
2651 
2652 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2653 	}
2654 
2655 	return 0;
2656 }
2657 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2658 
2659 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2660 {
2661 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2662 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2663 }
2664 
2665 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2666 				      unsigned int instr_idx)
2667 {
2668 	return subop && instr_idx < subop->ninstrs;
2669 }
2670 
2671 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2672 					     unsigned int instr_idx)
2673 {
2674 	if (instr_idx)
2675 		return 0;
2676 
2677 	return subop->first_instr_start_off;
2678 }
2679 
2680 /**
2681  * nand_subop_get_addr_start_off - Get the start offset in an address array
2682  * @subop: The entire sub-operation
2683  * @instr_idx: Index of the instruction inside the sub-operation
2684  *
2685  * During driver development, one could be tempted to directly use the
2686  * ->addr.addrs field of address instructions. This is wrong as address
2687  * instructions might be split.
2688  *
2689  * Given an address instruction, returns the offset of the first cycle to issue.
2690  */
2691 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2692 					   unsigned int instr_idx)
2693 {
2694 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2695 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2696 		return 0;
2697 
2698 	return nand_subop_get_start_off(subop, instr_idx);
2699 }
2700 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2701 
2702 /**
2703  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2704  * @subop: The entire sub-operation
2705  * @instr_idx: Index of the instruction inside the sub-operation
2706  *
2707  * During driver development, one could be tempted to directly use the
2708  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2709  * might be split.
2710  *
2711  * Given an address instruction, returns the number of address cycle to issue.
2712  */
2713 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2714 					 unsigned int instr_idx)
2715 {
2716 	int start_off, end_off;
2717 
2718 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2719 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2720 		return 0;
2721 
2722 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2723 
2724 	if (instr_idx == subop->ninstrs - 1 &&
2725 	    subop->last_instr_end_off)
2726 		end_off = subop->last_instr_end_off;
2727 	else
2728 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2729 
2730 	return end_off - start_off;
2731 }
2732 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2733 
2734 /**
2735  * nand_subop_get_data_start_off - Get the start offset in a data array
2736  * @subop: The entire sub-operation
2737  * @instr_idx: Index of the instruction inside the sub-operation
2738  *
2739  * During driver development, one could be tempted to directly use the
2740  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2741  * instructions might be split.
2742  *
2743  * Given a data instruction, returns the offset to start from.
2744  */
2745 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2746 					   unsigned int instr_idx)
2747 {
2748 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2749 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2750 		return 0;
2751 
2752 	return nand_subop_get_start_off(subop, instr_idx);
2753 }
2754 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2755 
2756 /**
2757  * nand_subop_get_data_len - Get the number of bytes to retrieve
2758  * @subop: The entire sub-operation
2759  * @instr_idx: Index of the instruction inside the sub-operation
2760  *
2761  * During driver development, one could be tempted to directly use the
2762  * ->data->len field of a data instruction. This is wrong as data instructions
2763  * might be split.
2764  *
2765  * Returns the length of the chunk of data to send/receive.
2766  */
2767 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2768 				     unsigned int instr_idx)
2769 {
2770 	int start_off = 0, end_off;
2771 
2772 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2773 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2774 		return 0;
2775 
2776 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2777 
2778 	if (instr_idx == subop->ninstrs - 1 &&
2779 	    subop->last_instr_end_off)
2780 		end_off = subop->last_instr_end_off;
2781 	else
2782 		end_off = subop->instrs[instr_idx].ctx.data.len;
2783 
2784 	return end_off - start_off;
2785 }
2786 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2787 
2788 /**
2789  * nand_reset - Reset and initialize a NAND device
2790  * @chip: The NAND chip
2791  * @chipnr: Internal die id
2792  *
2793  * Save the timings data structure, then apply SDR timings mode 0 (see
2794  * nand_reset_data_interface for details), do the reset operation, and
2795  * apply back the previous timings.
2796  *
2797  * Returns 0 on success, a negative error code otherwise.
2798  */
2799 int nand_reset(struct nand_chip *chip, int chipnr)
2800 {
2801 	struct mtd_info *mtd = nand_to_mtd(chip);
2802 	struct nand_data_interface saved_data_intf = chip->data_interface;
2803 	int ret;
2804 
2805 	ret = nand_reset_data_interface(chip, chipnr);
2806 	if (ret)
2807 		return ret;
2808 
2809 	/*
2810 	 * The CS line has to be released before we can apply the new NAND
2811 	 * interface settings, hence this weird ->select_chip() dance.
2812 	 */
2813 	chip->select_chip(mtd, chipnr);
2814 	ret = nand_reset_op(chip);
2815 	chip->select_chip(mtd, -1);
2816 	if (ret)
2817 		return ret;
2818 
2819 	/*
2820 	 * A nand_reset_data_interface() put both the NAND chip and the NAND
2821 	 * controller in timings mode 0. If the default mode for this chip is
2822 	 * also 0, no need to proceed to the change again. Plus, at probe time,
2823 	 * nand_setup_data_interface() uses ->set/get_features() which would
2824 	 * fail anyway as the parameter page is not available yet.
2825 	 */
2826 	if (!chip->onfi_timing_mode_default)
2827 		return 0;
2828 
2829 	chip->data_interface = saved_data_intf;
2830 	ret = nand_setup_data_interface(chip, chipnr);
2831 	if (ret)
2832 		return ret;
2833 
2834 	return 0;
2835 }
2836 EXPORT_SYMBOL_GPL(nand_reset);
2837 
2838 /**
2839  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2840  * @buf: buffer to test
2841  * @len: buffer length
2842  * @bitflips_threshold: maximum number of bitflips
2843  *
2844  * Check if a buffer contains only 0xff, which means the underlying region
2845  * has been erased and is ready to be programmed.
2846  * The bitflips_threshold specify the maximum number of bitflips before
2847  * considering the region is not erased.
2848  * Note: The logic of this function has been extracted from the memweight
2849  * implementation, except that nand_check_erased_buf function exit before
2850  * testing the whole buffer if the number of bitflips exceed the
2851  * bitflips_threshold value.
2852  *
2853  * Returns a positive number of bitflips less than or equal to
2854  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2855  * threshold.
2856  */
2857 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2858 {
2859 	const unsigned char *bitmap = buf;
2860 	int bitflips = 0;
2861 	int weight;
2862 
2863 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2864 	     len--, bitmap++) {
2865 		weight = hweight8(*bitmap);
2866 		bitflips += BITS_PER_BYTE - weight;
2867 		if (unlikely(bitflips > bitflips_threshold))
2868 			return -EBADMSG;
2869 	}
2870 
2871 	for (; len >= sizeof(long);
2872 	     len -= sizeof(long), bitmap += sizeof(long)) {
2873 		unsigned long d = *((unsigned long *)bitmap);
2874 		if (d == ~0UL)
2875 			continue;
2876 		weight = hweight_long(d);
2877 		bitflips += BITS_PER_LONG - weight;
2878 		if (unlikely(bitflips > bitflips_threshold))
2879 			return -EBADMSG;
2880 	}
2881 
2882 	for (; len > 0; len--, bitmap++) {
2883 		weight = hweight8(*bitmap);
2884 		bitflips += BITS_PER_BYTE - weight;
2885 		if (unlikely(bitflips > bitflips_threshold))
2886 			return -EBADMSG;
2887 	}
2888 
2889 	return bitflips;
2890 }
2891 
2892 /**
2893  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2894  *				 0xff data
2895  * @data: data buffer to test
2896  * @datalen: data length
2897  * @ecc: ECC buffer
2898  * @ecclen: ECC length
2899  * @extraoob: extra OOB buffer
2900  * @extraooblen: extra OOB length
2901  * @bitflips_threshold: maximum number of bitflips
2902  *
2903  * Check if a data buffer and its associated ECC and OOB data contains only
2904  * 0xff pattern, which means the underlying region has been erased and is
2905  * ready to be programmed.
2906  * The bitflips_threshold specify the maximum number of bitflips before
2907  * considering the region as not erased.
2908  *
2909  * Note:
2910  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2911  *    different from the NAND page size. When fixing bitflips, ECC engines will
2912  *    report the number of errors per chunk, and the NAND core infrastructure
2913  *    expect you to return the maximum number of bitflips for the whole page.
2914  *    This is why you should always use this function on a single chunk and
2915  *    not on the whole page. After checking each chunk you should update your
2916  *    max_bitflips value accordingly.
2917  * 2/ When checking for bitflips in erased pages you should not only check
2918  *    the payload data but also their associated ECC data, because a user might
2919  *    have programmed almost all bits to 1 but a few. In this case, we
2920  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2921  *    this case.
2922  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2923  *    data are protected by the ECC engine.
2924  *    It could also be used if you support subpages and want to attach some
2925  *    extra OOB data to an ECC chunk.
2926  *
2927  * Returns a positive number of bitflips less than or equal to
2928  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2929  * threshold. In case of success, the passed buffers are filled with 0xff.
2930  */
2931 int nand_check_erased_ecc_chunk(void *data, int datalen,
2932 				void *ecc, int ecclen,
2933 				void *extraoob, int extraooblen,
2934 				int bitflips_threshold)
2935 {
2936 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2937 
2938 	data_bitflips = nand_check_erased_buf(data, datalen,
2939 					      bitflips_threshold);
2940 	if (data_bitflips < 0)
2941 		return data_bitflips;
2942 
2943 	bitflips_threshold -= data_bitflips;
2944 
2945 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2946 	if (ecc_bitflips < 0)
2947 		return ecc_bitflips;
2948 
2949 	bitflips_threshold -= ecc_bitflips;
2950 
2951 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2952 						  bitflips_threshold);
2953 	if (extraoob_bitflips < 0)
2954 		return extraoob_bitflips;
2955 
2956 	if (data_bitflips)
2957 		memset(data, 0xff, datalen);
2958 
2959 	if (ecc_bitflips)
2960 		memset(ecc, 0xff, ecclen);
2961 
2962 	if (extraoob_bitflips)
2963 		memset(extraoob, 0xff, extraooblen);
2964 
2965 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2966 }
2967 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2968 
2969 /**
2970  * nand_read_page_raw_notsupp - dummy read raw page function
2971  * @mtd: mtd info structure
2972  * @chip: nand chip info structure
2973  * @buf: buffer to store read data
2974  * @oob_required: caller requires OOB data read to chip->oob_poi
2975  * @page: page number to read
2976  *
2977  * Returns -ENOTSUPP unconditionally.
2978  */
2979 int nand_read_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
2980 			       u8 *buf, int oob_required, int page)
2981 {
2982 	return -ENOTSUPP;
2983 }
2984 EXPORT_SYMBOL(nand_read_page_raw_notsupp);
2985 
2986 /**
2987  * nand_read_page_raw - [INTERN] read raw page data without ecc
2988  * @mtd: mtd info structure
2989  * @chip: nand chip info structure
2990  * @buf: buffer to store read data
2991  * @oob_required: caller requires OOB data read to chip->oob_poi
2992  * @page: page number to read
2993  *
2994  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2995  */
2996 int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2997 		       uint8_t *buf, int oob_required, int page)
2998 {
2999 	int ret;
3000 
3001 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
3002 	if (ret)
3003 		return ret;
3004 
3005 	if (oob_required) {
3006 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
3007 					false);
3008 		if (ret)
3009 			return ret;
3010 	}
3011 
3012 	return 0;
3013 }
3014 EXPORT_SYMBOL(nand_read_page_raw);
3015 
3016 /**
3017  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
3018  * @mtd: mtd info structure
3019  * @chip: nand chip info structure
3020  * @buf: buffer to store read data
3021  * @oob_required: caller requires OOB data read to chip->oob_poi
3022  * @page: page number to read
3023  *
3024  * We need a special oob layout and handling even when OOB isn't used.
3025  */
3026 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
3027 				       struct nand_chip *chip, uint8_t *buf,
3028 				       int oob_required, int page)
3029 {
3030 	int eccsize = chip->ecc.size;
3031 	int eccbytes = chip->ecc.bytes;
3032 	uint8_t *oob = chip->oob_poi;
3033 	int steps, size, ret;
3034 
3035 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3036 	if (ret)
3037 		return ret;
3038 
3039 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3040 		ret = nand_read_data_op(chip, buf, eccsize, false);
3041 		if (ret)
3042 			return ret;
3043 
3044 		buf += eccsize;
3045 
3046 		if (chip->ecc.prepad) {
3047 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3048 						false);
3049 			if (ret)
3050 				return ret;
3051 
3052 			oob += chip->ecc.prepad;
3053 		}
3054 
3055 		ret = nand_read_data_op(chip, oob, eccbytes, false);
3056 		if (ret)
3057 			return ret;
3058 
3059 		oob += eccbytes;
3060 
3061 		if (chip->ecc.postpad) {
3062 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3063 						false);
3064 			if (ret)
3065 				return ret;
3066 
3067 			oob += chip->ecc.postpad;
3068 		}
3069 	}
3070 
3071 	size = mtd->oobsize - (oob - chip->oob_poi);
3072 	if (size) {
3073 		ret = nand_read_data_op(chip, oob, size, false);
3074 		if (ret)
3075 			return ret;
3076 	}
3077 
3078 	return 0;
3079 }
3080 
3081 /**
3082  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3083  * @mtd: mtd info structure
3084  * @chip: nand chip info structure
3085  * @buf: buffer to store read data
3086  * @oob_required: caller requires OOB data read to chip->oob_poi
3087  * @page: page number to read
3088  */
3089 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
3090 				uint8_t *buf, int oob_required, int page)
3091 {
3092 	int i, eccsize = chip->ecc.size, ret;
3093 	int eccbytes = chip->ecc.bytes;
3094 	int eccsteps = chip->ecc.steps;
3095 	uint8_t *p = buf;
3096 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3097 	uint8_t *ecc_code = chip->ecc.code_buf;
3098 	unsigned int max_bitflips = 0;
3099 
3100 	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
3101 
3102 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3103 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3104 
3105 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3106 					 chip->ecc.total);
3107 	if (ret)
3108 		return ret;
3109 
3110 	eccsteps = chip->ecc.steps;
3111 	p = buf;
3112 
3113 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3114 		int stat;
3115 
3116 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3117 		if (stat < 0) {
3118 			mtd->ecc_stats.failed++;
3119 		} else {
3120 			mtd->ecc_stats.corrected += stat;
3121 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3122 		}
3123 	}
3124 	return max_bitflips;
3125 }
3126 
3127 /**
3128  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3129  * @mtd: mtd info structure
3130  * @chip: nand chip info structure
3131  * @data_offs: offset of requested data within the page
3132  * @readlen: data length
3133  * @bufpoi: buffer to store read data
3134  * @page: page number to read
3135  */
3136 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
3137 			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
3138 			int page)
3139 {
3140 	int start_step, end_step, num_steps, ret;
3141 	uint8_t *p;
3142 	int data_col_addr, i, gaps = 0;
3143 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3144 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3145 	int index, section = 0;
3146 	unsigned int max_bitflips = 0;
3147 	struct mtd_oob_region oobregion = { };
3148 
3149 	/* Column address within the page aligned to ECC size (256bytes) */
3150 	start_step = data_offs / chip->ecc.size;
3151 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
3152 	num_steps = end_step - start_step + 1;
3153 	index = start_step * chip->ecc.bytes;
3154 
3155 	/* Data size aligned to ECC ecc.size */
3156 	datafrag_len = num_steps * chip->ecc.size;
3157 	eccfrag_len = num_steps * chip->ecc.bytes;
3158 
3159 	data_col_addr = start_step * chip->ecc.size;
3160 	/* If we read not a page aligned data */
3161 	p = bufpoi + data_col_addr;
3162 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3163 	if (ret)
3164 		return ret;
3165 
3166 	/* Calculate ECC */
3167 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3168 		chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]);
3169 
3170 	/*
3171 	 * The performance is faster if we position offsets according to
3172 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3173 	 */
3174 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3175 	if (ret)
3176 		return ret;
3177 
3178 	if (oobregion.length < eccfrag_len)
3179 		gaps = 1;
3180 
3181 	if (gaps) {
3182 		ret = nand_change_read_column_op(chip, mtd->writesize,
3183 						 chip->oob_poi, mtd->oobsize,
3184 						 false);
3185 		if (ret)
3186 			return ret;
3187 	} else {
3188 		/*
3189 		 * Send the command to read the particular ECC bytes take care
3190 		 * about buswidth alignment in read_buf.
3191 		 */
3192 		aligned_pos = oobregion.offset & ~(busw - 1);
3193 		aligned_len = eccfrag_len;
3194 		if (oobregion.offset & (busw - 1))
3195 			aligned_len++;
3196 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3197 		    (busw - 1))
3198 			aligned_len++;
3199 
3200 		ret = nand_change_read_column_op(chip,
3201 						 mtd->writesize + aligned_pos,
3202 						 &chip->oob_poi[aligned_pos],
3203 						 aligned_len, false);
3204 		if (ret)
3205 			return ret;
3206 	}
3207 
3208 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3209 					 chip->oob_poi, index, eccfrag_len);
3210 	if (ret)
3211 		return ret;
3212 
3213 	p = bufpoi + data_col_addr;
3214 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3215 		int stat;
3216 
3217 		stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i],
3218 					 &chip->ecc.calc_buf[i]);
3219 		if (stat == -EBADMSG &&
3220 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3221 			/* check for empty pages with bitflips */
3222 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3223 						&chip->ecc.code_buf[i],
3224 						chip->ecc.bytes,
3225 						NULL, 0,
3226 						chip->ecc.strength);
3227 		}
3228 
3229 		if (stat < 0) {
3230 			mtd->ecc_stats.failed++;
3231 		} else {
3232 			mtd->ecc_stats.corrected += stat;
3233 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3234 		}
3235 	}
3236 	return max_bitflips;
3237 }
3238 
3239 /**
3240  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3241  * @mtd: mtd info structure
3242  * @chip: nand chip info structure
3243  * @buf: buffer to store read data
3244  * @oob_required: caller requires OOB data read to chip->oob_poi
3245  * @page: page number to read
3246  *
3247  * Not for syndrome calculating ECC controllers which need a special oob layout.
3248  */
3249 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
3250 				uint8_t *buf, int oob_required, int page)
3251 {
3252 	int i, eccsize = chip->ecc.size, ret;
3253 	int eccbytes = chip->ecc.bytes;
3254 	int eccsteps = chip->ecc.steps;
3255 	uint8_t *p = buf;
3256 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3257 	uint8_t *ecc_code = chip->ecc.code_buf;
3258 	unsigned int max_bitflips = 0;
3259 
3260 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3261 	if (ret)
3262 		return ret;
3263 
3264 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3265 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
3266 
3267 		ret = nand_read_data_op(chip, p, eccsize, false);
3268 		if (ret)
3269 			return ret;
3270 
3271 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3272 	}
3273 
3274 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3275 	if (ret)
3276 		return ret;
3277 
3278 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3279 					 chip->ecc.total);
3280 	if (ret)
3281 		return ret;
3282 
3283 	eccsteps = chip->ecc.steps;
3284 	p = buf;
3285 
3286 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3287 		int stat;
3288 
3289 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3290 		if (stat == -EBADMSG &&
3291 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3292 			/* check for empty pages with bitflips */
3293 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3294 						&ecc_code[i], eccbytes,
3295 						NULL, 0,
3296 						chip->ecc.strength);
3297 		}
3298 
3299 		if (stat < 0) {
3300 			mtd->ecc_stats.failed++;
3301 		} else {
3302 			mtd->ecc_stats.corrected += stat;
3303 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3304 		}
3305 	}
3306 	return max_bitflips;
3307 }
3308 
3309 /**
3310  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
3311  * @mtd: mtd info structure
3312  * @chip: nand chip info structure
3313  * @buf: buffer to store read data
3314  * @oob_required: caller requires OOB data read to chip->oob_poi
3315  * @page: page number to read
3316  *
3317  * Hardware ECC for large page chips, require OOB to be read first. For this
3318  * ECC mode, the write_page method is re-used from ECC_HW. These methods
3319  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
3320  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
3321  * the data area, by overwriting the NAND manufacturer bad block markings.
3322  */
3323 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
3324 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
3325 {
3326 	int i, eccsize = chip->ecc.size, ret;
3327 	int eccbytes = chip->ecc.bytes;
3328 	int eccsteps = chip->ecc.steps;
3329 	uint8_t *p = buf;
3330 	uint8_t *ecc_code = chip->ecc.code_buf;
3331 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3332 	unsigned int max_bitflips = 0;
3333 
3334 	/* Read the OOB area first */
3335 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3336 	if (ret)
3337 		return ret;
3338 
3339 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3340 	if (ret)
3341 		return ret;
3342 
3343 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3344 					 chip->ecc.total);
3345 	if (ret)
3346 		return ret;
3347 
3348 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3349 		int stat;
3350 
3351 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
3352 
3353 		ret = nand_read_data_op(chip, p, eccsize, false);
3354 		if (ret)
3355 			return ret;
3356 
3357 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
3358 
3359 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3360 		if (stat == -EBADMSG &&
3361 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3362 			/* check for empty pages with bitflips */
3363 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3364 						&ecc_code[i], eccbytes,
3365 						NULL, 0,
3366 						chip->ecc.strength);
3367 		}
3368 
3369 		if (stat < 0) {
3370 			mtd->ecc_stats.failed++;
3371 		} else {
3372 			mtd->ecc_stats.corrected += stat;
3373 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3374 		}
3375 	}
3376 	return max_bitflips;
3377 }
3378 
3379 /**
3380  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3381  * @mtd: mtd info structure
3382  * @chip: nand chip info structure
3383  * @buf: buffer to store read data
3384  * @oob_required: caller requires OOB data read to chip->oob_poi
3385  * @page: page number to read
3386  *
3387  * The hw generator calculates the error syndrome automatically. Therefore we
3388  * need a special oob layout and handling.
3389  */
3390 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3391 				   uint8_t *buf, int oob_required, int page)
3392 {
3393 	int ret, i, eccsize = chip->ecc.size;
3394 	int eccbytes = chip->ecc.bytes;
3395 	int eccsteps = chip->ecc.steps;
3396 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3397 	uint8_t *p = buf;
3398 	uint8_t *oob = chip->oob_poi;
3399 	unsigned int max_bitflips = 0;
3400 
3401 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3402 	if (ret)
3403 		return ret;
3404 
3405 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3406 		int stat;
3407 
3408 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
3409 
3410 		ret = nand_read_data_op(chip, p, eccsize, false);
3411 		if (ret)
3412 			return ret;
3413 
3414 		if (chip->ecc.prepad) {
3415 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3416 						false);
3417 			if (ret)
3418 				return ret;
3419 
3420 			oob += chip->ecc.prepad;
3421 		}
3422 
3423 		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
3424 
3425 		ret = nand_read_data_op(chip, oob, eccbytes, false);
3426 		if (ret)
3427 			return ret;
3428 
3429 		stat = chip->ecc.correct(mtd, p, oob, NULL);
3430 
3431 		oob += eccbytes;
3432 
3433 		if (chip->ecc.postpad) {
3434 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3435 						false);
3436 			if (ret)
3437 				return ret;
3438 
3439 			oob += chip->ecc.postpad;
3440 		}
3441 
3442 		if (stat == -EBADMSG &&
3443 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3444 			/* check for empty pages with bitflips */
3445 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3446 							   oob - eccpadbytes,
3447 							   eccpadbytes,
3448 							   NULL, 0,
3449 							   chip->ecc.strength);
3450 		}
3451 
3452 		if (stat < 0) {
3453 			mtd->ecc_stats.failed++;
3454 		} else {
3455 			mtd->ecc_stats.corrected += stat;
3456 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3457 		}
3458 	}
3459 
3460 	/* Calculate remaining oob bytes */
3461 	i = mtd->oobsize - (oob - chip->oob_poi);
3462 	if (i) {
3463 		ret = nand_read_data_op(chip, oob, i, false);
3464 		if (ret)
3465 			return ret;
3466 	}
3467 
3468 	return max_bitflips;
3469 }
3470 
3471 /**
3472  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3473  * @mtd: mtd info structure
3474  * @oob: oob destination address
3475  * @ops: oob ops structure
3476  * @len: size of oob to transfer
3477  */
3478 static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
3479 				  struct mtd_oob_ops *ops, size_t len)
3480 {
3481 	struct nand_chip *chip = mtd_to_nand(mtd);
3482 	int ret;
3483 
3484 	switch (ops->mode) {
3485 
3486 	case MTD_OPS_PLACE_OOB:
3487 	case MTD_OPS_RAW:
3488 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3489 		return oob + len;
3490 
3491 	case MTD_OPS_AUTO_OOB:
3492 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3493 						  ops->ooboffs, len);
3494 		BUG_ON(ret);
3495 		return oob + len;
3496 
3497 	default:
3498 		BUG();
3499 	}
3500 	return NULL;
3501 }
3502 
3503 /**
3504  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3505  * @mtd: MTD device structure
3506  * @retry_mode: the retry mode to use
3507  *
3508  * Some vendors supply a special command to shift the Vt threshold, to be used
3509  * when there are too many bitflips in a page (i.e., ECC error). After setting
3510  * a new threshold, the host should retry reading the page.
3511  */
3512 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
3513 {
3514 	struct nand_chip *chip = mtd_to_nand(mtd);
3515 
3516 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3517 
3518 	if (retry_mode >= chip->read_retries)
3519 		return -EINVAL;
3520 
3521 	if (!chip->setup_read_retry)
3522 		return -EOPNOTSUPP;
3523 
3524 	return chip->setup_read_retry(mtd, retry_mode);
3525 }
3526 
3527 /**
3528  * nand_do_read_ops - [INTERN] Read data with ECC
3529  * @mtd: MTD device structure
3530  * @from: offset to read from
3531  * @ops: oob ops structure
3532  *
3533  * Internal function. Called with chip held.
3534  */
3535 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
3536 			    struct mtd_oob_ops *ops)
3537 {
3538 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3539 	struct nand_chip *chip = mtd_to_nand(mtd);
3540 	int ret = 0;
3541 	uint32_t readlen = ops->len;
3542 	uint32_t oobreadlen = ops->ooblen;
3543 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3544 
3545 	uint8_t *bufpoi, *oob, *buf;
3546 	int use_bufpoi;
3547 	unsigned int max_bitflips = 0;
3548 	int retry_mode = 0;
3549 	bool ecc_fail = false;
3550 
3551 	chipnr = (int)(from >> chip->chip_shift);
3552 	chip->select_chip(mtd, chipnr);
3553 
3554 	realpage = (int)(from >> chip->page_shift);
3555 	page = realpage & chip->pagemask;
3556 
3557 	col = (int)(from & (mtd->writesize - 1));
3558 
3559 	buf = ops->datbuf;
3560 	oob = ops->oobbuf;
3561 	oob_required = oob ? 1 : 0;
3562 
3563 	while (1) {
3564 		unsigned int ecc_failures = mtd->ecc_stats.failed;
3565 
3566 		bytes = min(mtd->writesize - col, readlen);
3567 		aligned = (bytes == mtd->writesize);
3568 
3569 		if (!aligned)
3570 			use_bufpoi = 1;
3571 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3572 			use_bufpoi = !virt_addr_valid(buf) ||
3573 				     !IS_ALIGNED((unsigned long)buf,
3574 						 chip->buf_align);
3575 		else
3576 			use_bufpoi = 0;
3577 
3578 		/* Is the current page in the buffer? */
3579 		if (realpage != chip->pagebuf || oob) {
3580 			bufpoi = use_bufpoi ? chip->data_buf : buf;
3581 
3582 			if (use_bufpoi && aligned)
3583 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3584 						 __func__, buf);
3585 
3586 read_retry:
3587 			/*
3588 			 * Now read the page into the buffer.  Absent an error,
3589 			 * the read methods return max bitflips per ecc step.
3590 			 */
3591 			if (unlikely(ops->mode == MTD_OPS_RAW))
3592 				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
3593 							      oob_required,
3594 							      page);
3595 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3596 				 !oob)
3597 				ret = chip->ecc.read_subpage(mtd, chip,
3598 							col, bytes, bufpoi,
3599 							page);
3600 			else
3601 				ret = chip->ecc.read_page(mtd, chip, bufpoi,
3602 							  oob_required, page);
3603 			if (ret < 0) {
3604 				if (use_bufpoi)
3605 					/* Invalidate page cache */
3606 					chip->pagebuf = -1;
3607 				break;
3608 			}
3609 
3610 			/* Transfer not aligned data */
3611 			if (use_bufpoi) {
3612 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3613 				    !(mtd->ecc_stats.failed - ecc_failures) &&
3614 				    (ops->mode != MTD_OPS_RAW)) {
3615 					chip->pagebuf = realpage;
3616 					chip->pagebuf_bitflips = ret;
3617 				} else {
3618 					/* Invalidate page cache */
3619 					chip->pagebuf = -1;
3620 				}
3621 				memcpy(buf, chip->data_buf + col, bytes);
3622 			}
3623 
3624 			if (unlikely(oob)) {
3625 				int toread = min(oobreadlen, max_oobsize);
3626 
3627 				if (toread) {
3628 					oob = nand_transfer_oob(mtd,
3629 						oob, ops, toread);
3630 					oobreadlen -= toread;
3631 				}
3632 			}
3633 
3634 			if (chip->options & NAND_NEED_READRDY) {
3635 				/* Apply delay or wait for ready/busy pin */
3636 				if (!chip->dev_ready)
3637 					udelay(chip->chip_delay);
3638 				else
3639 					nand_wait_ready(mtd);
3640 			}
3641 
3642 			if (mtd->ecc_stats.failed - ecc_failures) {
3643 				if (retry_mode + 1 < chip->read_retries) {
3644 					retry_mode++;
3645 					ret = nand_setup_read_retry(mtd,
3646 							retry_mode);
3647 					if (ret < 0)
3648 						break;
3649 
3650 					/* Reset failures; retry */
3651 					mtd->ecc_stats.failed = ecc_failures;
3652 					goto read_retry;
3653 				} else {
3654 					/* No more retry modes; real failure */
3655 					ecc_fail = true;
3656 				}
3657 			}
3658 
3659 			buf += bytes;
3660 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3661 		} else {
3662 			memcpy(buf, chip->data_buf + col, bytes);
3663 			buf += bytes;
3664 			max_bitflips = max_t(unsigned int, max_bitflips,
3665 					     chip->pagebuf_bitflips);
3666 		}
3667 
3668 		readlen -= bytes;
3669 
3670 		/* Reset to retry mode 0 */
3671 		if (retry_mode) {
3672 			ret = nand_setup_read_retry(mtd, 0);
3673 			if (ret < 0)
3674 				break;
3675 			retry_mode = 0;
3676 		}
3677 
3678 		if (!readlen)
3679 			break;
3680 
3681 		/* For subsequent reads align to page boundary */
3682 		col = 0;
3683 		/* Increment page address */
3684 		realpage++;
3685 
3686 		page = realpage & chip->pagemask;
3687 		/* Check, if we cross a chip boundary */
3688 		if (!page) {
3689 			chipnr++;
3690 			chip->select_chip(mtd, -1);
3691 			chip->select_chip(mtd, chipnr);
3692 		}
3693 	}
3694 	chip->select_chip(mtd, -1);
3695 
3696 	ops->retlen = ops->len - (size_t) readlen;
3697 	if (oob)
3698 		ops->oobretlen = ops->ooblen - oobreadlen;
3699 
3700 	if (ret < 0)
3701 		return ret;
3702 
3703 	if (ecc_fail)
3704 		return -EBADMSG;
3705 
3706 	return max_bitflips;
3707 }
3708 
3709 /**
3710  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3711  * @mtd: mtd info structure
3712  * @chip: nand chip info structure
3713  * @page: page number to read
3714  */
3715 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
3716 {
3717 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3718 }
3719 EXPORT_SYMBOL(nand_read_oob_std);
3720 
3721 /**
3722  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3723  *			    with syndromes
3724  * @mtd: mtd info structure
3725  * @chip: nand chip info structure
3726  * @page: page number to read
3727  */
3728 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3729 			   int page)
3730 {
3731 	int length = mtd->oobsize;
3732 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3733 	int eccsize = chip->ecc.size;
3734 	uint8_t *bufpoi = chip->oob_poi;
3735 	int i, toread, sndrnd = 0, pos, ret;
3736 
3737 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3738 	if (ret)
3739 		return ret;
3740 
3741 	for (i = 0; i < chip->ecc.steps; i++) {
3742 		if (sndrnd) {
3743 			int ret;
3744 
3745 			pos = eccsize + i * (eccsize + chunk);
3746 			if (mtd->writesize > 512)
3747 				ret = nand_change_read_column_op(chip, pos,
3748 								 NULL, 0,
3749 								 false);
3750 			else
3751 				ret = nand_read_page_op(chip, page, pos, NULL,
3752 							0);
3753 
3754 			if (ret)
3755 				return ret;
3756 		} else
3757 			sndrnd = 1;
3758 		toread = min_t(int, length, chunk);
3759 
3760 		ret = nand_read_data_op(chip, bufpoi, toread, false);
3761 		if (ret)
3762 			return ret;
3763 
3764 		bufpoi += toread;
3765 		length -= toread;
3766 	}
3767 	if (length > 0) {
3768 		ret = nand_read_data_op(chip, bufpoi, length, false);
3769 		if (ret)
3770 			return ret;
3771 	}
3772 
3773 	return 0;
3774 }
3775 EXPORT_SYMBOL(nand_read_oob_syndrome);
3776 
3777 /**
3778  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3779  * @mtd: mtd info structure
3780  * @chip: nand chip info structure
3781  * @page: page number to write
3782  */
3783 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
3784 {
3785 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3786 				 mtd->oobsize);
3787 }
3788 EXPORT_SYMBOL(nand_write_oob_std);
3789 
3790 /**
3791  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3792  *			     with syndrome - only for large page flash
3793  * @mtd: mtd info structure
3794  * @chip: nand chip info structure
3795  * @page: page number to write
3796  */
3797 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
3798 			    int page)
3799 {
3800 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3801 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3802 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3803 	const uint8_t *bufpoi = chip->oob_poi;
3804 
3805 	/*
3806 	 * data-ecc-data-ecc ... ecc-oob
3807 	 * or
3808 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3809 	 */
3810 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3811 		pos = steps * (eccsize + chunk);
3812 		steps = 0;
3813 	} else
3814 		pos = eccsize;
3815 
3816 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3817 	if (ret)
3818 		return ret;
3819 
3820 	for (i = 0; i < steps; i++) {
3821 		if (sndcmd) {
3822 			if (mtd->writesize <= 512) {
3823 				uint32_t fill = 0xFFFFFFFF;
3824 
3825 				len = eccsize;
3826 				while (len > 0) {
3827 					int num = min_t(int, len, 4);
3828 
3829 					ret = nand_write_data_op(chip, &fill,
3830 								 num, false);
3831 					if (ret)
3832 						return ret;
3833 
3834 					len -= num;
3835 				}
3836 			} else {
3837 				pos = eccsize + i * (eccsize + chunk);
3838 				ret = nand_change_write_column_op(chip, pos,
3839 								  NULL, 0,
3840 								  false);
3841 				if (ret)
3842 					return ret;
3843 			}
3844 		} else
3845 			sndcmd = 1;
3846 		len = min_t(int, length, chunk);
3847 
3848 		ret = nand_write_data_op(chip, bufpoi, len, false);
3849 		if (ret)
3850 			return ret;
3851 
3852 		bufpoi += len;
3853 		length -= len;
3854 	}
3855 	if (length > 0) {
3856 		ret = nand_write_data_op(chip, bufpoi, length, false);
3857 		if (ret)
3858 			return ret;
3859 	}
3860 
3861 	return nand_prog_page_end_op(chip);
3862 }
3863 EXPORT_SYMBOL(nand_write_oob_syndrome);
3864 
3865 /**
3866  * nand_do_read_oob - [INTERN] NAND read out-of-band
3867  * @mtd: MTD device structure
3868  * @from: offset to read from
3869  * @ops: oob operations description structure
3870  *
3871  * NAND read out-of-band data from the spare area.
3872  */
3873 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
3874 			    struct mtd_oob_ops *ops)
3875 {
3876 	unsigned int max_bitflips = 0;
3877 	int page, realpage, chipnr;
3878 	struct nand_chip *chip = mtd_to_nand(mtd);
3879 	struct mtd_ecc_stats stats;
3880 	int readlen = ops->ooblen;
3881 	int len;
3882 	uint8_t *buf = ops->oobbuf;
3883 	int ret = 0;
3884 
3885 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3886 			__func__, (unsigned long long)from, readlen);
3887 
3888 	stats = mtd->ecc_stats;
3889 
3890 	len = mtd_oobavail(mtd, ops);
3891 
3892 	chipnr = (int)(from >> chip->chip_shift);
3893 	chip->select_chip(mtd, chipnr);
3894 
3895 	/* Shift to get page */
3896 	realpage = (int)(from >> chip->page_shift);
3897 	page = realpage & chip->pagemask;
3898 
3899 	while (1) {
3900 		if (ops->mode == MTD_OPS_RAW)
3901 			ret = chip->ecc.read_oob_raw(mtd, chip, page);
3902 		else
3903 			ret = chip->ecc.read_oob(mtd, chip, page);
3904 
3905 		if (ret < 0)
3906 			break;
3907 
3908 		len = min(len, readlen);
3909 		buf = nand_transfer_oob(mtd, buf, ops, len);
3910 
3911 		if (chip->options & NAND_NEED_READRDY) {
3912 			/* Apply delay or wait for ready/busy pin */
3913 			if (!chip->dev_ready)
3914 				udelay(chip->chip_delay);
3915 			else
3916 				nand_wait_ready(mtd);
3917 		}
3918 
3919 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3920 
3921 		readlen -= len;
3922 		if (!readlen)
3923 			break;
3924 
3925 		/* Increment page address */
3926 		realpage++;
3927 
3928 		page = realpage & chip->pagemask;
3929 		/* Check, if we cross a chip boundary */
3930 		if (!page) {
3931 			chipnr++;
3932 			chip->select_chip(mtd, -1);
3933 			chip->select_chip(mtd, chipnr);
3934 		}
3935 	}
3936 	chip->select_chip(mtd, -1);
3937 
3938 	ops->oobretlen = ops->ooblen - readlen;
3939 
3940 	if (ret < 0)
3941 		return ret;
3942 
3943 	if (mtd->ecc_stats.failed - stats.failed)
3944 		return -EBADMSG;
3945 
3946 	return max_bitflips;
3947 }
3948 
3949 /**
3950  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3951  * @mtd: MTD device structure
3952  * @from: offset to read from
3953  * @ops: oob operation description structure
3954  *
3955  * NAND read data and/or out-of-band data.
3956  */
3957 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3958 			 struct mtd_oob_ops *ops)
3959 {
3960 	int ret;
3961 
3962 	ops->retlen = 0;
3963 
3964 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3965 	    ops->mode != MTD_OPS_AUTO_OOB &&
3966 	    ops->mode != MTD_OPS_RAW)
3967 		return -ENOTSUPP;
3968 
3969 	nand_get_device(mtd, FL_READING);
3970 
3971 	if (!ops->datbuf)
3972 		ret = nand_do_read_oob(mtd, from, ops);
3973 	else
3974 		ret = nand_do_read_ops(mtd, from, ops);
3975 
3976 	nand_release_device(mtd);
3977 	return ret;
3978 }
3979 
3980 /**
3981  * nand_write_page_raw_notsupp - dummy raw page write function
3982  * @mtd: mtd info structure
3983  * @chip: nand chip info structure
3984  * @buf: data buffer
3985  * @oob_required: must write chip->oob_poi to OOB
3986  * @page: page number to write
3987  *
3988  * Returns -ENOTSUPP unconditionally.
3989  */
3990 int nand_write_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
3991 				const u8 *buf, int oob_required, int page)
3992 {
3993 	return -ENOTSUPP;
3994 }
3995 EXPORT_SYMBOL(nand_write_page_raw_notsupp);
3996 
3997 /**
3998  * nand_write_page_raw - [INTERN] raw page write function
3999  * @mtd: mtd info structure
4000  * @chip: nand chip info structure
4001  * @buf: data buffer
4002  * @oob_required: must write chip->oob_poi to OOB
4003  * @page: page number to write
4004  *
4005  * Not for syndrome calculating ECC controllers, which use a special oob layout.
4006  */
4007 int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
4008 			const uint8_t *buf, int oob_required, int page)
4009 {
4010 	int ret;
4011 
4012 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
4013 	if (ret)
4014 		return ret;
4015 
4016 	if (oob_required) {
4017 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
4018 					 false);
4019 		if (ret)
4020 			return ret;
4021 	}
4022 
4023 	return nand_prog_page_end_op(chip);
4024 }
4025 EXPORT_SYMBOL(nand_write_page_raw);
4026 
4027 /**
4028  * nand_write_page_raw_syndrome - [INTERN] raw page write function
4029  * @mtd: mtd info structure
4030  * @chip: nand chip info structure
4031  * @buf: data buffer
4032  * @oob_required: must write chip->oob_poi to OOB
4033  * @page: page number to write
4034  *
4035  * We need a special oob layout and handling even when ECC isn't checked.
4036  */
4037 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
4038 					struct nand_chip *chip,
4039 					const uint8_t *buf, int oob_required,
4040 					int page)
4041 {
4042 	int eccsize = chip->ecc.size;
4043 	int eccbytes = chip->ecc.bytes;
4044 	uint8_t *oob = chip->oob_poi;
4045 	int steps, size, ret;
4046 
4047 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4048 	if (ret)
4049 		return ret;
4050 
4051 	for (steps = chip->ecc.steps; steps > 0; steps--) {
4052 		ret = nand_write_data_op(chip, buf, eccsize, false);
4053 		if (ret)
4054 			return ret;
4055 
4056 		buf += eccsize;
4057 
4058 		if (chip->ecc.prepad) {
4059 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4060 						 false);
4061 			if (ret)
4062 				return ret;
4063 
4064 			oob += chip->ecc.prepad;
4065 		}
4066 
4067 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4068 		if (ret)
4069 			return ret;
4070 
4071 		oob += eccbytes;
4072 
4073 		if (chip->ecc.postpad) {
4074 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4075 						 false);
4076 			if (ret)
4077 				return ret;
4078 
4079 			oob += chip->ecc.postpad;
4080 		}
4081 	}
4082 
4083 	size = mtd->oobsize - (oob - chip->oob_poi);
4084 	if (size) {
4085 		ret = nand_write_data_op(chip, oob, size, false);
4086 		if (ret)
4087 			return ret;
4088 	}
4089 
4090 	return nand_prog_page_end_op(chip);
4091 }
4092 /**
4093  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4094  * @mtd: mtd info structure
4095  * @chip: nand chip info structure
4096  * @buf: data buffer
4097  * @oob_required: must write chip->oob_poi to OOB
4098  * @page: page number to write
4099  */
4100 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
4101 				 const uint8_t *buf, int oob_required,
4102 				 int page)
4103 {
4104 	int i, eccsize = chip->ecc.size, ret;
4105 	int eccbytes = chip->ecc.bytes;
4106 	int eccsteps = chip->ecc.steps;
4107 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4108 	const uint8_t *p = buf;
4109 
4110 	/* Software ECC calculation */
4111 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4112 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
4113 
4114 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4115 					 chip->ecc.total);
4116 	if (ret)
4117 		return ret;
4118 
4119 	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
4120 }
4121 
4122 /**
4123  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4124  * @mtd: mtd info structure
4125  * @chip: nand chip info structure
4126  * @buf: data buffer
4127  * @oob_required: must write chip->oob_poi to OOB
4128  * @page: page number to write
4129  */
4130 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
4131 				  const uint8_t *buf, int oob_required,
4132 				  int page)
4133 {
4134 	int i, eccsize = chip->ecc.size, ret;
4135 	int eccbytes = chip->ecc.bytes;
4136 	int eccsteps = chip->ecc.steps;
4137 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4138 	const uint8_t *p = buf;
4139 
4140 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4141 	if (ret)
4142 		return ret;
4143 
4144 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4145 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
4146 
4147 		ret = nand_write_data_op(chip, p, eccsize, false);
4148 		if (ret)
4149 			return ret;
4150 
4151 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
4152 	}
4153 
4154 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4155 					 chip->ecc.total);
4156 	if (ret)
4157 		return ret;
4158 
4159 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4160 	if (ret)
4161 		return ret;
4162 
4163 	return nand_prog_page_end_op(chip);
4164 }
4165 
4166 
4167 /**
4168  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4169  * @mtd:	mtd info structure
4170  * @chip:	nand chip info structure
4171  * @offset:	column address of subpage within the page
4172  * @data_len:	data length
4173  * @buf:	data buffer
4174  * @oob_required: must write chip->oob_poi to OOB
4175  * @page: page number to write
4176  */
4177 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
4178 				struct nand_chip *chip, uint32_t offset,
4179 				uint32_t data_len, const uint8_t *buf,
4180 				int oob_required, int page)
4181 {
4182 	uint8_t *oob_buf  = chip->oob_poi;
4183 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4184 	int ecc_size      = chip->ecc.size;
4185 	int ecc_bytes     = chip->ecc.bytes;
4186 	int ecc_steps     = chip->ecc.steps;
4187 	uint32_t start_step = offset / ecc_size;
4188 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4189 	int oob_bytes       = mtd->oobsize / ecc_steps;
4190 	int step, ret;
4191 
4192 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4193 	if (ret)
4194 		return ret;
4195 
4196 	for (step = 0; step < ecc_steps; step++) {
4197 		/* configure controller for WRITE access */
4198 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
4199 
4200 		/* write data (untouched subpages already masked by 0xFF) */
4201 		ret = nand_write_data_op(chip, buf, ecc_size, false);
4202 		if (ret)
4203 			return ret;
4204 
4205 		/* mask ECC of un-touched subpages by padding 0xFF */
4206 		if ((step < start_step) || (step > end_step))
4207 			memset(ecc_calc, 0xff, ecc_bytes);
4208 		else
4209 			chip->ecc.calculate(mtd, buf, ecc_calc);
4210 
4211 		/* mask OOB of un-touched subpages by padding 0xFF */
4212 		/* if oob_required, preserve OOB metadata of written subpage */
4213 		if (!oob_required || (step < start_step) || (step > end_step))
4214 			memset(oob_buf, 0xff, oob_bytes);
4215 
4216 		buf += ecc_size;
4217 		ecc_calc += ecc_bytes;
4218 		oob_buf  += oob_bytes;
4219 	}
4220 
4221 	/* copy calculated ECC for whole page to chip->buffer->oob */
4222 	/* this include masked-value(0xFF) for unwritten subpages */
4223 	ecc_calc = chip->ecc.calc_buf;
4224 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4225 					 chip->ecc.total);
4226 	if (ret)
4227 		return ret;
4228 
4229 	/* write OOB buffer to NAND device */
4230 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4231 	if (ret)
4232 		return ret;
4233 
4234 	return nand_prog_page_end_op(chip);
4235 }
4236 
4237 
4238 /**
4239  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4240  * @mtd: mtd info structure
4241  * @chip: nand chip info structure
4242  * @buf: data buffer
4243  * @oob_required: must write chip->oob_poi to OOB
4244  * @page: page number to write
4245  *
4246  * The hw generator calculates the error syndrome automatically. Therefore we
4247  * need a special oob layout and handling.
4248  */
4249 static int nand_write_page_syndrome(struct mtd_info *mtd,
4250 				    struct nand_chip *chip,
4251 				    const uint8_t *buf, int oob_required,
4252 				    int page)
4253 {
4254 	int i, eccsize = chip->ecc.size;
4255 	int eccbytes = chip->ecc.bytes;
4256 	int eccsteps = chip->ecc.steps;
4257 	const uint8_t *p = buf;
4258 	uint8_t *oob = chip->oob_poi;
4259 	int ret;
4260 
4261 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4262 	if (ret)
4263 		return ret;
4264 
4265 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4266 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
4267 
4268 		ret = nand_write_data_op(chip, p, eccsize, false);
4269 		if (ret)
4270 			return ret;
4271 
4272 		if (chip->ecc.prepad) {
4273 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4274 						 false);
4275 			if (ret)
4276 				return ret;
4277 
4278 			oob += chip->ecc.prepad;
4279 		}
4280 
4281 		chip->ecc.calculate(mtd, p, oob);
4282 
4283 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4284 		if (ret)
4285 			return ret;
4286 
4287 		oob += eccbytes;
4288 
4289 		if (chip->ecc.postpad) {
4290 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4291 						 false);
4292 			if (ret)
4293 				return ret;
4294 
4295 			oob += chip->ecc.postpad;
4296 		}
4297 	}
4298 
4299 	/* Calculate remaining oob bytes */
4300 	i = mtd->oobsize - (oob - chip->oob_poi);
4301 	if (i) {
4302 		ret = nand_write_data_op(chip, oob, i, false);
4303 		if (ret)
4304 			return ret;
4305 	}
4306 
4307 	return nand_prog_page_end_op(chip);
4308 }
4309 
4310 /**
4311  * nand_write_page - write one page
4312  * @mtd: MTD device structure
4313  * @chip: NAND chip descriptor
4314  * @offset: address offset within the page
4315  * @data_len: length of actual data to be written
4316  * @buf: the data to write
4317  * @oob_required: must write chip->oob_poi to OOB
4318  * @page: page number to write
4319  * @raw: use _raw version of write_page
4320  */
4321 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
4322 		uint32_t offset, int data_len, const uint8_t *buf,
4323 		int oob_required, int page, int raw)
4324 {
4325 	int status, subpage;
4326 
4327 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4328 		chip->ecc.write_subpage)
4329 		subpage = offset || (data_len < mtd->writesize);
4330 	else
4331 		subpage = 0;
4332 
4333 	if (unlikely(raw))
4334 		status = chip->ecc.write_page_raw(mtd, chip, buf,
4335 						  oob_required, page);
4336 	else if (subpage)
4337 		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
4338 						 buf, oob_required, page);
4339 	else
4340 		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
4341 					      page);
4342 
4343 	if (status < 0)
4344 		return status;
4345 
4346 	return 0;
4347 }
4348 
4349 /**
4350  * nand_fill_oob - [INTERN] Transfer client buffer to oob
4351  * @mtd: MTD device structure
4352  * @oob: oob data buffer
4353  * @len: oob data write length
4354  * @ops: oob ops structure
4355  */
4356 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
4357 			      struct mtd_oob_ops *ops)
4358 {
4359 	struct nand_chip *chip = mtd_to_nand(mtd);
4360 	int ret;
4361 
4362 	/*
4363 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
4364 	 * data from a previous OOB read.
4365 	 */
4366 	memset(chip->oob_poi, 0xff, mtd->oobsize);
4367 
4368 	switch (ops->mode) {
4369 
4370 	case MTD_OPS_PLACE_OOB:
4371 	case MTD_OPS_RAW:
4372 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
4373 		return oob + len;
4374 
4375 	case MTD_OPS_AUTO_OOB:
4376 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
4377 						  ops->ooboffs, len);
4378 		BUG_ON(ret);
4379 		return oob + len;
4380 
4381 	default:
4382 		BUG();
4383 	}
4384 	return NULL;
4385 }
4386 
4387 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4388 
4389 /**
4390  * nand_do_write_ops - [INTERN] NAND write with ECC
4391  * @mtd: MTD device structure
4392  * @to: offset to write to
4393  * @ops: oob operations description structure
4394  *
4395  * NAND write with ECC.
4396  */
4397 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
4398 			     struct mtd_oob_ops *ops)
4399 {
4400 	int chipnr, realpage, page, column;
4401 	struct nand_chip *chip = mtd_to_nand(mtd);
4402 	uint32_t writelen = ops->len;
4403 
4404 	uint32_t oobwritelen = ops->ooblen;
4405 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4406 
4407 	uint8_t *oob = ops->oobbuf;
4408 	uint8_t *buf = ops->datbuf;
4409 	int ret;
4410 	int oob_required = oob ? 1 : 0;
4411 
4412 	ops->retlen = 0;
4413 	if (!writelen)
4414 		return 0;
4415 
4416 	/* Reject writes, which are not page aligned */
4417 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4418 		pr_notice("%s: attempt to write non page aligned data\n",
4419 			   __func__);
4420 		return -EINVAL;
4421 	}
4422 
4423 	column = to & (mtd->writesize - 1);
4424 
4425 	chipnr = (int)(to >> chip->chip_shift);
4426 	chip->select_chip(mtd, chipnr);
4427 
4428 	/* Check, if it is write protected */
4429 	if (nand_check_wp(mtd)) {
4430 		ret = -EIO;
4431 		goto err_out;
4432 	}
4433 
4434 	realpage = (int)(to >> chip->page_shift);
4435 	page = realpage & chip->pagemask;
4436 
4437 	/* Invalidate the page cache, when we write to the cached page */
4438 	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
4439 	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
4440 		chip->pagebuf = -1;
4441 
4442 	/* Don't allow multipage oob writes with offset */
4443 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4444 		ret = -EINVAL;
4445 		goto err_out;
4446 	}
4447 
4448 	while (1) {
4449 		int bytes = mtd->writesize;
4450 		uint8_t *wbuf = buf;
4451 		int use_bufpoi;
4452 		int part_pagewr = (column || writelen < mtd->writesize);
4453 
4454 		if (part_pagewr)
4455 			use_bufpoi = 1;
4456 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
4457 			use_bufpoi = !virt_addr_valid(buf) ||
4458 				     !IS_ALIGNED((unsigned long)buf,
4459 						 chip->buf_align);
4460 		else
4461 			use_bufpoi = 0;
4462 
4463 		/* Partial page write?, or need to use bounce buffer */
4464 		if (use_bufpoi) {
4465 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4466 					 __func__, buf);
4467 			if (part_pagewr)
4468 				bytes = min_t(int, bytes - column, writelen);
4469 			chip->pagebuf = -1;
4470 			memset(chip->data_buf, 0xff, mtd->writesize);
4471 			memcpy(&chip->data_buf[column], buf, bytes);
4472 			wbuf = chip->data_buf;
4473 		}
4474 
4475 		if (unlikely(oob)) {
4476 			size_t len = min(oobwritelen, oobmaxlen);
4477 			oob = nand_fill_oob(mtd, oob, len, ops);
4478 			oobwritelen -= len;
4479 		} else {
4480 			/* We still need to erase leftover OOB data */
4481 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4482 		}
4483 
4484 		ret = nand_write_page(mtd, chip, column, bytes, wbuf,
4485 				      oob_required, page,
4486 				      (ops->mode == MTD_OPS_RAW));
4487 		if (ret)
4488 			break;
4489 
4490 		writelen -= bytes;
4491 		if (!writelen)
4492 			break;
4493 
4494 		column = 0;
4495 		buf += bytes;
4496 		realpage++;
4497 
4498 		page = realpage & chip->pagemask;
4499 		/* Check, if we cross a chip boundary */
4500 		if (!page) {
4501 			chipnr++;
4502 			chip->select_chip(mtd, -1);
4503 			chip->select_chip(mtd, chipnr);
4504 		}
4505 	}
4506 
4507 	ops->retlen = ops->len - writelen;
4508 	if (unlikely(oob))
4509 		ops->oobretlen = ops->ooblen;
4510 
4511 err_out:
4512 	chip->select_chip(mtd, -1);
4513 	return ret;
4514 }
4515 
4516 /**
4517  * panic_nand_write - [MTD Interface] NAND write with ECC
4518  * @mtd: MTD device structure
4519  * @to: offset to write to
4520  * @len: number of bytes to write
4521  * @retlen: pointer to variable to store the number of written bytes
4522  * @buf: the data to write
4523  *
4524  * NAND write with ECC. Used when performing writes in interrupt context, this
4525  * may for example be called by mtdoops when writing an oops while in panic.
4526  */
4527 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4528 			    size_t *retlen, const uint8_t *buf)
4529 {
4530 	struct nand_chip *chip = mtd_to_nand(mtd);
4531 	int chipnr = (int)(to >> chip->chip_shift);
4532 	struct mtd_oob_ops ops;
4533 	int ret;
4534 
4535 	/* Grab the device */
4536 	panic_nand_get_device(chip, mtd, FL_WRITING);
4537 
4538 	chip->select_chip(mtd, chipnr);
4539 
4540 	/* Wait for the device to get ready */
4541 	panic_nand_wait(mtd, chip, 400);
4542 
4543 	memset(&ops, 0, sizeof(ops));
4544 	ops.len = len;
4545 	ops.datbuf = (uint8_t *)buf;
4546 	ops.mode = MTD_OPS_PLACE_OOB;
4547 
4548 	ret = nand_do_write_ops(mtd, to, &ops);
4549 
4550 	*retlen = ops.retlen;
4551 	return ret;
4552 }
4553 
4554 /**
4555  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
4556  * @mtd: MTD device structure
4557  * @to: offset to write to
4558  * @ops: oob operation description structure
4559  *
4560  * NAND write out-of-band.
4561  */
4562 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
4563 			     struct mtd_oob_ops *ops)
4564 {
4565 	int chipnr, page, status, len;
4566 	struct nand_chip *chip = mtd_to_nand(mtd);
4567 
4568 	pr_debug("%s: to = 0x%08x, len = %i\n",
4569 			 __func__, (unsigned int)to, (int)ops->ooblen);
4570 
4571 	len = mtd_oobavail(mtd, ops);
4572 
4573 	/* Do not allow write past end of page */
4574 	if ((ops->ooboffs + ops->ooblen) > len) {
4575 		pr_debug("%s: attempt to write past end of page\n",
4576 				__func__);
4577 		return -EINVAL;
4578 	}
4579 
4580 	chipnr = (int)(to >> chip->chip_shift);
4581 
4582 	/*
4583 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
4584 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
4585 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
4586 	 * it in the doc2000 driver in August 1999.  dwmw2.
4587 	 */
4588 	nand_reset(chip, chipnr);
4589 
4590 	chip->select_chip(mtd, chipnr);
4591 
4592 	/* Shift to get page */
4593 	page = (int)(to >> chip->page_shift);
4594 
4595 	/* Check, if it is write protected */
4596 	if (nand_check_wp(mtd)) {
4597 		chip->select_chip(mtd, -1);
4598 		return -EROFS;
4599 	}
4600 
4601 	/* Invalidate the page cache, if we write to the cached page */
4602 	if (page == chip->pagebuf)
4603 		chip->pagebuf = -1;
4604 
4605 	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
4606 
4607 	if (ops->mode == MTD_OPS_RAW)
4608 		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
4609 	else
4610 		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
4611 
4612 	chip->select_chip(mtd, -1);
4613 
4614 	if (status)
4615 		return status;
4616 
4617 	ops->oobretlen = ops->ooblen;
4618 
4619 	return 0;
4620 }
4621 
4622 /**
4623  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4624  * @mtd: MTD device structure
4625  * @to: offset to write to
4626  * @ops: oob operation description structure
4627  */
4628 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4629 			  struct mtd_oob_ops *ops)
4630 {
4631 	int ret = -ENOTSUPP;
4632 
4633 	ops->retlen = 0;
4634 
4635 	nand_get_device(mtd, FL_WRITING);
4636 
4637 	switch (ops->mode) {
4638 	case MTD_OPS_PLACE_OOB:
4639 	case MTD_OPS_AUTO_OOB:
4640 	case MTD_OPS_RAW:
4641 		break;
4642 
4643 	default:
4644 		goto out;
4645 	}
4646 
4647 	if (!ops->datbuf)
4648 		ret = nand_do_write_oob(mtd, to, ops);
4649 	else
4650 		ret = nand_do_write_ops(mtd, to, ops);
4651 
4652 out:
4653 	nand_release_device(mtd);
4654 	return ret;
4655 }
4656 
4657 /**
4658  * single_erase - [GENERIC] NAND standard block erase command function
4659  * @mtd: MTD device structure
4660  * @page: the page address of the block which will be erased
4661  *
4662  * Standard erase command for NAND chips. Returns NAND status.
4663  */
4664 static int single_erase(struct mtd_info *mtd, int page)
4665 {
4666 	struct nand_chip *chip = mtd_to_nand(mtd);
4667 	unsigned int eraseblock;
4668 
4669 	/* Send commands to erase a block */
4670 	eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
4671 
4672 	return nand_erase_op(chip, eraseblock);
4673 }
4674 
4675 /**
4676  * nand_erase - [MTD Interface] erase block(s)
4677  * @mtd: MTD device structure
4678  * @instr: erase instruction
4679  *
4680  * Erase one ore more blocks.
4681  */
4682 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4683 {
4684 	return nand_erase_nand(mtd, instr, 0);
4685 }
4686 
4687 /**
4688  * nand_erase_nand - [INTERN] erase block(s)
4689  * @mtd: MTD device structure
4690  * @instr: erase instruction
4691  * @allowbbt: allow erasing the bbt area
4692  *
4693  * Erase one ore more blocks.
4694  */
4695 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
4696 		    int allowbbt)
4697 {
4698 	int page, status, pages_per_block, ret, chipnr;
4699 	struct nand_chip *chip = mtd_to_nand(mtd);
4700 	loff_t len;
4701 
4702 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4703 			__func__, (unsigned long long)instr->addr,
4704 			(unsigned long long)instr->len);
4705 
4706 	if (check_offs_len(mtd, instr->addr, instr->len))
4707 		return -EINVAL;
4708 
4709 	/* Grab the lock and see if the device is available */
4710 	nand_get_device(mtd, FL_ERASING);
4711 
4712 	/* Shift to get first page */
4713 	page = (int)(instr->addr >> chip->page_shift);
4714 	chipnr = (int)(instr->addr >> chip->chip_shift);
4715 
4716 	/* Calculate pages in each block */
4717 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4718 
4719 	/* Select the NAND device */
4720 	chip->select_chip(mtd, chipnr);
4721 
4722 	/* Check, if it is write protected */
4723 	if (nand_check_wp(mtd)) {
4724 		pr_debug("%s: device is write protected!\n",
4725 				__func__);
4726 		ret = -EIO;
4727 		goto erase_exit;
4728 	}
4729 
4730 	/* Loop through the pages */
4731 	len = instr->len;
4732 
4733 	while (len) {
4734 		/* Check if we have a bad block, we do not erase bad blocks! */
4735 		if (nand_block_checkbad(mtd, ((loff_t) page) <<
4736 					chip->page_shift, allowbbt)) {
4737 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4738 				    __func__, page);
4739 			ret = -EIO;
4740 			goto erase_exit;
4741 		}
4742 
4743 		/*
4744 		 * Invalidate the page cache, if we erase the block which
4745 		 * contains the current cached page.
4746 		 */
4747 		if (page <= chip->pagebuf && chip->pagebuf <
4748 		    (page + pages_per_block))
4749 			chip->pagebuf = -1;
4750 
4751 		status = chip->erase(mtd, page & chip->pagemask);
4752 
4753 		/* See if block erase succeeded */
4754 		if (status) {
4755 			pr_debug("%s: failed erase, page 0x%08x\n",
4756 					__func__, page);
4757 			ret = -EIO;
4758 			instr->fail_addr =
4759 				((loff_t)page << chip->page_shift);
4760 			goto erase_exit;
4761 		}
4762 
4763 		/* Increment page address and decrement length */
4764 		len -= (1ULL << chip->phys_erase_shift);
4765 		page += pages_per_block;
4766 
4767 		/* Check, if we cross a chip boundary */
4768 		if (len && !(page & chip->pagemask)) {
4769 			chipnr++;
4770 			chip->select_chip(mtd, -1);
4771 			chip->select_chip(mtd, chipnr);
4772 		}
4773 	}
4774 
4775 	ret = 0;
4776 erase_exit:
4777 
4778 	/* Deselect and wake up anyone waiting on the device */
4779 	chip->select_chip(mtd, -1);
4780 	nand_release_device(mtd);
4781 
4782 	/* Return more or less happy */
4783 	return ret;
4784 }
4785 
4786 /**
4787  * nand_sync - [MTD Interface] sync
4788  * @mtd: MTD device structure
4789  *
4790  * Sync is actually a wait for chip ready function.
4791  */
4792 static void nand_sync(struct mtd_info *mtd)
4793 {
4794 	pr_debug("%s: called\n", __func__);
4795 
4796 	/* Grab the lock and see if the device is available */
4797 	nand_get_device(mtd, FL_SYNCING);
4798 	/* Release it and go back */
4799 	nand_release_device(mtd);
4800 }
4801 
4802 /**
4803  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4804  * @mtd: MTD device structure
4805  * @offs: offset relative to mtd start
4806  */
4807 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4808 {
4809 	struct nand_chip *chip = mtd_to_nand(mtd);
4810 	int chipnr = (int)(offs >> chip->chip_shift);
4811 	int ret;
4812 
4813 	/* Select the NAND device */
4814 	nand_get_device(mtd, FL_READING);
4815 	chip->select_chip(mtd, chipnr);
4816 
4817 	ret = nand_block_checkbad(mtd, offs, 0);
4818 
4819 	chip->select_chip(mtd, -1);
4820 	nand_release_device(mtd);
4821 
4822 	return ret;
4823 }
4824 
4825 /**
4826  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4827  * @mtd: MTD device structure
4828  * @ofs: offset relative to mtd start
4829  */
4830 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4831 {
4832 	int ret;
4833 
4834 	ret = nand_block_isbad(mtd, ofs);
4835 	if (ret) {
4836 		/* If it was bad already, return success and do nothing */
4837 		if (ret > 0)
4838 			return 0;
4839 		return ret;
4840 	}
4841 
4842 	return nand_block_markbad_lowlevel(mtd, ofs);
4843 }
4844 
4845 /**
4846  * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
4847  * @mtd: MTD device structure
4848  * @ofs: offset relative to mtd start
4849  * @len: length of mtd
4850  */
4851 static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
4852 {
4853 	struct nand_chip *chip = mtd_to_nand(mtd);
4854 	u32 part_start_block;
4855 	u32 part_end_block;
4856 	u32 part_start_die;
4857 	u32 part_end_die;
4858 
4859 	/*
4860 	 * max_bb_per_die and blocks_per_die used to determine
4861 	 * the maximum bad block count.
4862 	 */
4863 	if (!chip->max_bb_per_die || !chip->blocks_per_die)
4864 		return -ENOTSUPP;
4865 
4866 	/* Get the start and end of the partition in erase blocks. */
4867 	part_start_block = mtd_div_by_eb(ofs, mtd);
4868 	part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
4869 
4870 	/* Get the start and end LUNs of the partition. */
4871 	part_start_die = part_start_block / chip->blocks_per_die;
4872 	part_end_die = part_end_block / chip->blocks_per_die;
4873 
4874 	/*
4875 	 * Look up the bad blocks per unit and multiply by the number of units
4876 	 * that the partition spans.
4877 	 */
4878 	return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
4879 }
4880 
4881 /**
4882  * nand_default_set_features- [REPLACEABLE] set NAND chip features
4883  * @mtd: MTD device structure
4884  * @chip: nand chip info structure
4885  * @addr: feature address.
4886  * @subfeature_param: the subfeature parameters, a four bytes array.
4887  */
4888 static int nand_default_set_features(struct mtd_info *mtd,
4889 				     struct nand_chip *chip, int addr,
4890 				     uint8_t *subfeature_param)
4891 {
4892 	return nand_set_features_op(chip, addr, subfeature_param);
4893 }
4894 
4895 /**
4896  * nand_default_get_features- [REPLACEABLE] get NAND chip features
4897  * @mtd: MTD device structure
4898  * @chip: nand chip info structure
4899  * @addr: feature address.
4900  * @subfeature_param: the subfeature parameters, a four bytes array.
4901  */
4902 static int nand_default_get_features(struct mtd_info *mtd,
4903 				     struct nand_chip *chip, int addr,
4904 				     uint8_t *subfeature_param)
4905 {
4906 	return nand_get_features_op(chip, addr, subfeature_param);
4907 }
4908 
4909 /**
4910  * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
4911  * @mtd: MTD device structure
4912  * @chip: nand chip info structure
4913  * @addr: feature address.
4914  * @subfeature_param: the subfeature parameters, a four bytes array.
4915  *
4916  * Should be used by NAND controller drivers that do not support the SET/GET
4917  * FEATURES operations.
4918  */
4919 int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
4920 				  int addr, u8 *subfeature_param)
4921 {
4922 	return -ENOTSUPP;
4923 }
4924 EXPORT_SYMBOL(nand_get_set_features_notsupp);
4925 
4926 /**
4927  * nand_suspend - [MTD Interface] Suspend the NAND flash
4928  * @mtd: MTD device structure
4929  */
4930 static int nand_suspend(struct mtd_info *mtd)
4931 {
4932 	return nand_get_device(mtd, FL_PM_SUSPENDED);
4933 }
4934 
4935 /**
4936  * nand_resume - [MTD Interface] Resume the NAND flash
4937  * @mtd: MTD device structure
4938  */
4939 static void nand_resume(struct mtd_info *mtd)
4940 {
4941 	struct nand_chip *chip = mtd_to_nand(mtd);
4942 
4943 	if (chip->state == FL_PM_SUSPENDED)
4944 		nand_release_device(mtd);
4945 	else
4946 		pr_err("%s called for a chip which is not in suspended state\n",
4947 			__func__);
4948 }
4949 
4950 /**
4951  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4952  *                 prevent further operations
4953  * @mtd: MTD device structure
4954  */
4955 static void nand_shutdown(struct mtd_info *mtd)
4956 {
4957 	nand_get_device(mtd, FL_PM_SUSPENDED);
4958 }
4959 
4960 /* Set default functions */
4961 static void nand_set_defaults(struct nand_chip *chip)
4962 {
4963 	unsigned int busw = chip->options & NAND_BUSWIDTH_16;
4964 
4965 	/* check for proper chip_delay setup, set 20us if not */
4966 	if (!chip->chip_delay)
4967 		chip->chip_delay = 20;
4968 
4969 	/* check, if a user supplied command function given */
4970 	if (!chip->cmdfunc && !chip->exec_op)
4971 		chip->cmdfunc = nand_command;
4972 
4973 	/* check, if a user supplied wait function given */
4974 	if (chip->waitfunc == NULL)
4975 		chip->waitfunc = nand_wait;
4976 
4977 	if (!chip->select_chip)
4978 		chip->select_chip = nand_select_chip;
4979 
4980 	/* set for ONFI nand */
4981 	if (!chip->set_features)
4982 		chip->set_features = nand_default_set_features;
4983 	if (!chip->get_features)
4984 		chip->get_features = nand_default_get_features;
4985 
4986 	/* If called twice, pointers that depend on busw may need to be reset */
4987 	if (!chip->read_byte || chip->read_byte == nand_read_byte)
4988 		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
4989 	if (!chip->read_word)
4990 		chip->read_word = nand_read_word;
4991 	if (!chip->block_bad)
4992 		chip->block_bad = nand_block_bad;
4993 	if (!chip->block_markbad)
4994 		chip->block_markbad = nand_default_block_markbad;
4995 	if (!chip->write_buf || chip->write_buf == nand_write_buf)
4996 		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
4997 	if (!chip->write_byte || chip->write_byte == nand_write_byte)
4998 		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
4999 	if (!chip->read_buf || chip->read_buf == nand_read_buf)
5000 		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
5001 
5002 	if (!chip->controller) {
5003 		chip->controller = &chip->dummy_controller;
5004 		nand_controller_init(chip->controller);
5005 	}
5006 
5007 	if (!chip->buf_align)
5008 		chip->buf_align = 1;
5009 }
5010 
5011 /* Sanitize ONFI strings so we can safely print them */
5012 static void sanitize_string(uint8_t *s, size_t len)
5013 {
5014 	ssize_t i;
5015 
5016 	/* Null terminate */
5017 	s[len - 1] = 0;
5018 
5019 	/* Remove non printable chars */
5020 	for (i = 0; i < len - 1; i++) {
5021 		if (s[i] < ' ' || s[i] > 127)
5022 			s[i] = '?';
5023 	}
5024 
5025 	/* Remove trailing spaces */
5026 	strim(s);
5027 }
5028 
5029 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
5030 {
5031 	int i;
5032 	while (len--) {
5033 		crc ^= *p++ << 8;
5034 		for (i = 0; i < 8; i++)
5035 			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
5036 	}
5037 
5038 	return crc;
5039 }
5040 
5041 /* Parse the Extended Parameter Page. */
5042 static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
5043 					    struct nand_onfi_params *p)
5044 {
5045 	struct onfi_ext_param_page *ep;
5046 	struct onfi_ext_section *s;
5047 	struct onfi_ext_ecc_info *ecc;
5048 	uint8_t *cursor;
5049 	int ret;
5050 	int len;
5051 	int i;
5052 
5053 	len = le16_to_cpu(p->ext_param_page_length) * 16;
5054 	ep = kmalloc(len, GFP_KERNEL);
5055 	if (!ep)
5056 		return -ENOMEM;
5057 
5058 	/* Send our own NAND_CMD_PARAM. */
5059 	ret = nand_read_param_page_op(chip, 0, NULL, 0);
5060 	if (ret)
5061 		goto ext_out;
5062 
5063 	/* Use the Change Read Column command to skip the ONFI param pages. */
5064 	ret = nand_change_read_column_op(chip,
5065 					 sizeof(*p) * p->num_of_param_pages,
5066 					 ep, len, true);
5067 	if (ret)
5068 		goto ext_out;
5069 
5070 	ret = -EINVAL;
5071 	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
5072 		!= le16_to_cpu(ep->crc))) {
5073 		pr_debug("fail in the CRC.\n");
5074 		goto ext_out;
5075 	}
5076 
5077 	/*
5078 	 * Check the signature.
5079 	 * Do not strictly follow the ONFI spec, maybe changed in future.
5080 	 */
5081 	if (strncmp(ep->sig, "EPPS", 4)) {
5082 		pr_debug("The signature is invalid.\n");
5083 		goto ext_out;
5084 	}
5085 
5086 	/* find the ECC section. */
5087 	cursor = (uint8_t *)(ep + 1);
5088 	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
5089 		s = ep->sections + i;
5090 		if (s->type == ONFI_SECTION_TYPE_2)
5091 			break;
5092 		cursor += s->length * 16;
5093 	}
5094 	if (i == ONFI_EXT_SECTION_MAX) {
5095 		pr_debug("We can not find the ECC section.\n");
5096 		goto ext_out;
5097 	}
5098 
5099 	/* get the info we want. */
5100 	ecc = (struct onfi_ext_ecc_info *)cursor;
5101 
5102 	if (!ecc->codeword_size) {
5103 		pr_debug("Invalid codeword size\n");
5104 		goto ext_out;
5105 	}
5106 
5107 	chip->ecc_strength_ds = ecc->ecc_bits;
5108 	chip->ecc_step_ds = 1 << ecc->codeword_size;
5109 	ret = 0;
5110 
5111 ext_out:
5112 	kfree(ep);
5113 	return ret;
5114 }
5115 
5116 /*
5117  * Recover data with bit-wise majority
5118  */
5119 static void nand_bit_wise_majority(const void **srcbufs,
5120 				   unsigned int nsrcbufs,
5121 				   void *dstbuf,
5122 				   unsigned int bufsize)
5123 {
5124 	int i, j, k;
5125 
5126 	for (i = 0; i < bufsize; i++) {
5127 		u8 val = 0;
5128 
5129 		for (j = 0; j < 8; j++) {
5130 			unsigned int cnt = 0;
5131 
5132 			for (k = 0; k < nsrcbufs; k++) {
5133 				const u8 *srcbuf = srcbufs[k];
5134 
5135 				if (srcbuf[i] & BIT(j))
5136 					cnt++;
5137 			}
5138 
5139 			if (cnt > nsrcbufs / 2)
5140 				val |= BIT(j);
5141 		}
5142 
5143 		((u8 *)dstbuf)[i] = val;
5144 	}
5145 }
5146 
5147 /*
5148  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
5149  */
5150 static int nand_flash_detect_onfi(struct nand_chip *chip)
5151 {
5152 	struct mtd_info *mtd = nand_to_mtd(chip);
5153 	struct nand_onfi_params *p;
5154 	struct onfi_params *onfi;
5155 	int onfi_version = 0;
5156 	char id[4];
5157 	int i, ret, val;
5158 
5159 	/* Try ONFI for unknown chip or LP */
5160 	ret = nand_readid_op(chip, 0x20, id, sizeof(id));
5161 	if (ret || strncmp(id, "ONFI", 4))
5162 		return 0;
5163 
5164 	/* ONFI chip: allocate a buffer to hold its parameter page */
5165 	p = kzalloc((sizeof(*p) * 3), GFP_KERNEL);
5166 	if (!p)
5167 		return -ENOMEM;
5168 
5169 	ret = nand_read_param_page_op(chip, 0, NULL, 0);
5170 	if (ret) {
5171 		ret = 0;
5172 		goto free_onfi_param_page;
5173 	}
5174 
5175 	for (i = 0; i < 3; i++) {
5176 		ret = nand_read_data_op(chip, &p[i], sizeof(*p), true);
5177 		if (ret) {
5178 			ret = 0;
5179 			goto free_onfi_param_page;
5180 		}
5181 
5182 		if (onfi_crc16(ONFI_CRC_BASE, (u8 *)&p[i], 254) ==
5183 				le16_to_cpu(p->crc)) {
5184 			if (i)
5185 				memcpy(p, &p[i], sizeof(*p));
5186 			break;
5187 		}
5188 	}
5189 
5190 	if (i == 3) {
5191 		const void *srcbufs[3] = {p, p + 1, p + 2};
5192 
5193 		pr_warn("Could not find a valid ONFI parameter page, trying bit-wise majority to recover it\n");
5194 		nand_bit_wise_majority(srcbufs, ARRAY_SIZE(srcbufs), p,
5195 				       sizeof(*p));
5196 
5197 		if (onfi_crc16(ONFI_CRC_BASE, (u8 *)p, 254) !=
5198 				le16_to_cpu(p->crc)) {
5199 			pr_err("ONFI parameter recovery failed, aborting\n");
5200 			goto free_onfi_param_page;
5201 		}
5202 	}
5203 
5204 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5205 	    chip->manufacturer.desc->ops->fixup_onfi_param_page)
5206 		chip->manufacturer.desc->ops->fixup_onfi_param_page(chip, p);
5207 
5208 	/* Check version */
5209 	val = le16_to_cpu(p->revision);
5210 	if (val & ONFI_VERSION_2_3)
5211 		onfi_version = 23;
5212 	else if (val & ONFI_VERSION_2_2)
5213 		onfi_version = 22;
5214 	else if (val & ONFI_VERSION_2_1)
5215 		onfi_version = 21;
5216 	else if (val & ONFI_VERSION_2_0)
5217 		onfi_version = 20;
5218 	else if (val & ONFI_VERSION_1_0)
5219 		onfi_version = 10;
5220 
5221 	if (!onfi_version) {
5222 		pr_info("unsupported ONFI version: %d\n", val);
5223 		goto free_onfi_param_page;
5224 	}
5225 
5226 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
5227 	sanitize_string(p->model, sizeof(p->model));
5228 	chip->parameters.model = kstrdup(p->model, GFP_KERNEL);
5229 	if (!chip->parameters.model) {
5230 		ret = -ENOMEM;
5231 		goto free_onfi_param_page;
5232 	}
5233 
5234 	mtd->writesize = le32_to_cpu(p->byte_per_page);
5235 
5236 	/*
5237 	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
5238 	 * (don't ask me who thought of this...). MTD assumes that these
5239 	 * dimensions will be power-of-2, so just truncate the remaining area.
5240 	 */
5241 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
5242 	mtd->erasesize *= mtd->writesize;
5243 
5244 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
5245 
5246 	/* See erasesize comment */
5247 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
5248 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
5249 	chip->bits_per_cell = p->bits_per_cell;
5250 
5251 	chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
5252 	chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
5253 
5254 	if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS)
5255 		chip->options |= NAND_BUSWIDTH_16;
5256 
5257 	if (p->ecc_bits != 0xff) {
5258 		chip->ecc_strength_ds = p->ecc_bits;
5259 		chip->ecc_step_ds = 512;
5260 	} else if (onfi_version >= 21 &&
5261 		(le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
5262 
5263 		/*
5264 		 * The nand_flash_detect_ext_param_page() uses the
5265 		 * Change Read Column command which maybe not supported
5266 		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
5267 		 * now. We do not replace user supplied command function.
5268 		 */
5269 		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
5270 			chip->cmdfunc = nand_command_lp;
5271 
5272 		/* The Extended Parameter Page is supported since ONFI 2.1. */
5273 		if (nand_flash_detect_ext_param_page(chip, p))
5274 			pr_warn("Failed to detect ONFI extended param page\n");
5275 	} else {
5276 		pr_warn("Could not retrieve ONFI ECC requirements\n");
5277 	}
5278 
5279 	/* Save some parameters from the parameter page for future use */
5280 	if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) {
5281 		chip->parameters.supports_set_get_features = true;
5282 		bitmap_set(chip->parameters.get_feature_list,
5283 			   ONFI_FEATURE_ADDR_TIMING_MODE, 1);
5284 		bitmap_set(chip->parameters.set_feature_list,
5285 			   ONFI_FEATURE_ADDR_TIMING_MODE, 1);
5286 	}
5287 
5288 	onfi = kzalloc(sizeof(*onfi), GFP_KERNEL);
5289 	if (!onfi) {
5290 		ret = -ENOMEM;
5291 		goto free_model;
5292 	}
5293 
5294 	onfi->version = onfi_version;
5295 	onfi->tPROG = le16_to_cpu(p->t_prog);
5296 	onfi->tBERS = le16_to_cpu(p->t_bers);
5297 	onfi->tR = le16_to_cpu(p->t_r);
5298 	onfi->tCCS = le16_to_cpu(p->t_ccs);
5299 	onfi->async_timing_mode = le16_to_cpu(p->async_timing_mode);
5300 	onfi->vendor_revision = le16_to_cpu(p->vendor_revision);
5301 	memcpy(onfi->vendor, p->vendor, sizeof(p->vendor));
5302 	chip->parameters.onfi = onfi;
5303 
5304 	/* Identification done, free the full ONFI parameter page and exit */
5305 	kfree(p);
5306 
5307 	return 1;
5308 
5309 free_model:
5310 	kfree(chip->parameters.model);
5311 free_onfi_param_page:
5312 	kfree(p);
5313 
5314 	return ret;
5315 }
5316 
5317 /*
5318  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
5319  */
5320 static int nand_flash_detect_jedec(struct nand_chip *chip)
5321 {
5322 	struct mtd_info *mtd = nand_to_mtd(chip);
5323 	struct nand_jedec_params *p;
5324 	struct jedec_ecc_info *ecc;
5325 	int jedec_version = 0;
5326 	char id[5];
5327 	int i, val, ret;
5328 
5329 	/* Try JEDEC for unknown chip or LP */
5330 	ret = nand_readid_op(chip, 0x40, id, sizeof(id));
5331 	if (ret || strncmp(id, "JEDEC", sizeof(id)))
5332 		return 0;
5333 
5334 	/* JEDEC chip: allocate a buffer to hold its parameter page */
5335 	p = kzalloc(sizeof(*p), GFP_KERNEL);
5336 	if (!p)
5337 		return -ENOMEM;
5338 
5339 	ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
5340 	if (ret) {
5341 		ret = 0;
5342 		goto free_jedec_param_page;
5343 	}
5344 
5345 	for (i = 0; i < 3; i++) {
5346 		ret = nand_read_data_op(chip, p, sizeof(*p), true);
5347 		if (ret) {
5348 			ret = 0;
5349 			goto free_jedec_param_page;
5350 		}
5351 
5352 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
5353 				le16_to_cpu(p->crc))
5354 			break;
5355 	}
5356 
5357 	if (i == 3) {
5358 		pr_err("Could not find valid JEDEC parameter page; aborting\n");
5359 		goto free_jedec_param_page;
5360 	}
5361 
5362 	/* Check version */
5363 	val = le16_to_cpu(p->revision);
5364 	if (val & (1 << 2))
5365 		jedec_version = 10;
5366 	else if (val & (1 << 1))
5367 		jedec_version = 1; /* vendor specific version */
5368 
5369 	if (!jedec_version) {
5370 		pr_info("unsupported JEDEC version: %d\n", val);
5371 		goto free_jedec_param_page;
5372 	}
5373 
5374 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
5375 	sanitize_string(p->model, sizeof(p->model));
5376 	chip->parameters.model = kstrdup(p->model, GFP_KERNEL);
5377 	if (!chip->parameters.model) {
5378 		ret = -ENOMEM;
5379 		goto free_jedec_param_page;
5380 	}
5381 
5382 	mtd->writesize = le32_to_cpu(p->byte_per_page);
5383 
5384 	/* Please reference to the comment for nand_flash_detect_onfi. */
5385 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
5386 	mtd->erasesize *= mtd->writesize;
5387 
5388 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
5389 
5390 	/* Please reference to the comment for nand_flash_detect_onfi. */
5391 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
5392 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
5393 	chip->bits_per_cell = p->bits_per_cell;
5394 
5395 	if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS)
5396 		chip->options |= NAND_BUSWIDTH_16;
5397 
5398 	/* ECC info */
5399 	ecc = &p->ecc_info[0];
5400 
5401 	if (ecc->codeword_size >= 9) {
5402 		chip->ecc_strength_ds = ecc->ecc_bits;
5403 		chip->ecc_step_ds = 1 << ecc->codeword_size;
5404 	} else {
5405 		pr_warn("Invalid codeword size\n");
5406 	}
5407 
5408 free_jedec_param_page:
5409 	kfree(p);
5410 	return ret;
5411 }
5412 
5413 /*
5414  * nand_id_has_period - Check if an ID string has a given wraparound period
5415  * @id_data: the ID string
5416  * @arrlen: the length of the @id_data array
5417  * @period: the period of repitition
5418  *
5419  * Check if an ID string is repeated within a given sequence of bytes at
5420  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
5421  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
5422  * if the repetition has a period of @period; otherwise, returns zero.
5423  */
5424 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
5425 {
5426 	int i, j;
5427 	for (i = 0; i < period; i++)
5428 		for (j = i + period; j < arrlen; j += period)
5429 			if (id_data[i] != id_data[j])
5430 				return 0;
5431 	return 1;
5432 }
5433 
5434 /*
5435  * nand_id_len - Get the length of an ID string returned by CMD_READID
5436  * @id_data: the ID string
5437  * @arrlen: the length of the @id_data array
5438 
5439  * Returns the length of the ID string, according to known wraparound/trailing
5440  * zero patterns. If no pattern exists, returns the length of the array.
5441  */
5442 static int nand_id_len(u8 *id_data, int arrlen)
5443 {
5444 	int last_nonzero, period;
5445 
5446 	/* Find last non-zero byte */
5447 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
5448 		if (id_data[last_nonzero])
5449 			break;
5450 
5451 	/* All zeros */
5452 	if (last_nonzero < 0)
5453 		return 0;
5454 
5455 	/* Calculate wraparound period */
5456 	for (period = 1; period < arrlen; period++)
5457 		if (nand_id_has_period(id_data, arrlen, period))
5458 			break;
5459 
5460 	/* There's a repeated pattern */
5461 	if (period < arrlen)
5462 		return period;
5463 
5464 	/* There are trailing zeros */
5465 	if (last_nonzero < arrlen - 1)
5466 		return last_nonzero + 1;
5467 
5468 	/* No pattern detected */
5469 	return arrlen;
5470 }
5471 
5472 /* Extract the bits of per cell from the 3rd byte of the extended ID */
5473 static int nand_get_bits_per_cell(u8 cellinfo)
5474 {
5475 	int bits;
5476 
5477 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
5478 	bits >>= NAND_CI_CELLTYPE_SHIFT;
5479 	return bits + 1;
5480 }
5481 
5482 /*
5483  * Many new NAND share similar device ID codes, which represent the size of the
5484  * chip. The rest of the parameters must be decoded according to generic or
5485  * manufacturer-specific "extended ID" decoding patterns.
5486  */
5487 void nand_decode_ext_id(struct nand_chip *chip)
5488 {
5489 	struct mtd_info *mtd = nand_to_mtd(chip);
5490 	int extid;
5491 	u8 *id_data = chip->id.data;
5492 	/* The 3rd id byte holds MLC / multichip data */
5493 	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5494 	/* The 4th id byte is the important one */
5495 	extid = id_data[3];
5496 
5497 	/* Calc pagesize */
5498 	mtd->writesize = 1024 << (extid & 0x03);
5499 	extid >>= 2;
5500 	/* Calc oobsize */
5501 	mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
5502 	extid >>= 2;
5503 	/* Calc blocksize. Blocksize is multiples of 64KiB */
5504 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
5505 	extid >>= 2;
5506 	/* Get buswidth information */
5507 	if (extid & 0x1)
5508 		chip->options |= NAND_BUSWIDTH_16;
5509 }
5510 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5511 
5512 /*
5513  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5514  * decodes a matching ID table entry and assigns the MTD size parameters for
5515  * the chip.
5516  */
5517 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5518 {
5519 	struct mtd_info *mtd = nand_to_mtd(chip);
5520 
5521 	mtd->erasesize = type->erasesize;
5522 	mtd->writesize = type->pagesize;
5523 	mtd->oobsize = mtd->writesize / 32;
5524 
5525 	/* All legacy ID NAND are small-page, SLC */
5526 	chip->bits_per_cell = 1;
5527 }
5528 
5529 /*
5530  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5531  * heuristic patterns using various detected parameters (e.g., manufacturer,
5532  * page size, cell-type information).
5533  */
5534 static void nand_decode_bbm_options(struct nand_chip *chip)
5535 {
5536 	struct mtd_info *mtd = nand_to_mtd(chip);
5537 
5538 	/* Set the bad block position */
5539 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5540 		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
5541 	else
5542 		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
5543 }
5544 
5545 static inline bool is_full_id_nand(struct nand_flash_dev *type)
5546 {
5547 	return type->id_len;
5548 }
5549 
5550 static bool find_full_id_nand(struct nand_chip *chip,
5551 			      struct nand_flash_dev *type)
5552 {
5553 	struct mtd_info *mtd = nand_to_mtd(chip);
5554 	u8 *id_data = chip->id.data;
5555 
5556 	if (!strncmp(type->id, id_data, type->id_len)) {
5557 		mtd->writesize = type->pagesize;
5558 		mtd->erasesize = type->erasesize;
5559 		mtd->oobsize = type->oobsize;
5560 
5561 		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5562 		chip->chipsize = (uint64_t)type->chipsize << 20;
5563 		chip->options |= type->options;
5564 		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
5565 		chip->ecc_step_ds = NAND_ECC_STEP(type);
5566 		chip->onfi_timing_mode_default =
5567 					type->onfi_timing_mode_default;
5568 
5569 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5570 		if (!chip->parameters.model)
5571 			return false;
5572 
5573 		return true;
5574 	}
5575 	return false;
5576 }
5577 
5578 /*
5579  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5580  * compliant and does not have a full-id or legacy-id entry in the nand_ids
5581  * table.
5582  */
5583 static void nand_manufacturer_detect(struct nand_chip *chip)
5584 {
5585 	/*
5586 	 * Try manufacturer detection if available and use
5587 	 * nand_decode_ext_id() otherwise.
5588 	 */
5589 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5590 	    chip->manufacturer.desc->ops->detect) {
5591 		/* The 3rd id byte holds MLC / multichip data */
5592 		chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5593 		chip->manufacturer.desc->ops->detect(chip);
5594 	} else {
5595 		nand_decode_ext_id(chip);
5596 	}
5597 }
5598 
5599 /*
5600  * Manufacturer initialization. This function is called for all NANDs including
5601  * ONFI and JEDEC compliant ones.
5602  * Manufacturer drivers should put all their specific initialization code in
5603  * their ->init() hook.
5604  */
5605 static int nand_manufacturer_init(struct nand_chip *chip)
5606 {
5607 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5608 	    !chip->manufacturer.desc->ops->init)
5609 		return 0;
5610 
5611 	return chip->manufacturer.desc->ops->init(chip);
5612 }
5613 
5614 /*
5615  * Manufacturer cleanup. This function is called for all NANDs including
5616  * ONFI and JEDEC compliant ones.
5617  * Manufacturer drivers should put all their specific cleanup code in their
5618  * ->cleanup() hook.
5619  */
5620 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5621 {
5622 	/* Release manufacturer private data */
5623 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5624 	    chip->manufacturer.desc->ops->cleanup)
5625 		chip->manufacturer.desc->ops->cleanup(chip);
5626 }
5627 
5628 /*
5629  * Get the flash and manufacturer id and lookup if the type is supported.
5630  */
5631 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5632 {
5633 	const struct nand_manufacturer *manufacturer;
5634 	struct mtd_info *mtd = nand_to_mtd(chip);
5635 	int busw, ret;
5636 	u8 *id_data = chip->id.data;
5637 	u8 maf_id, dev_id;
5638 
5639 	/*
5640 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5641 	 * after power-up.
5642 	 */
5643 	ret = nand_reset(chip, 0);
5644 	if (ret)
5645 		return ret;
5646 
5647 	/* Select the device */
5648 	chip->select_chip(mtd, 0);
5649 
5650 	/* Send the command for reading device ID */
5651 	ret = nand_readid_op(chip, 0, id_data, 2);
5652 	if (ret)
5653 		return ret;
5654 
5655 	/* Read manufacturer and device IDs */
5656 	maf_id = id_data[0];
5657 	dev_id = id_data[1];
5658 
5659 	/*
5660 	 * Try again to make sure, as some systems the bus-hold or other
5661 	 * interface concerns can cause random data which looks like a
5662 	 * possibly credible NAND flash to appear. If the two results do
5663 	 * not match, ignore the device completely.
5664 	 */
5665 
5666 	/* Read entire ID string */
5667 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5668 	if (ret)
5669 		return ret;
5670 
5671 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
5672 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5673 			maf_id, dev_id, id_data[0], id_data[1]);
5674 		return -ENODEV;
5675 	}
5676 
5677 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5678 
5679 	/* Try to identify manufacturer */
5680 	manufacturer = nand_get_manufacturer(maf_id);
5681 	chip->manufacturer.desc = manufacturer;
5682 
5683 	if (!type)
5684 		type = nand_flash_ids;
5685 
5686 	/*
5687 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5688 	 * override it.
5689 	 * This is required to make sure initial NAND bus width set by the
5690 	 * NAND controller driver is coherent with the real NAND bus width
5691 	 * (extracted by auto-detection code).
5692 	 */
5693 	busw = chip->options & NAND_BUSWIDTH_16;
5694 
5695 	/*
5696 	 * The flag is only set (never cleared), reset it to its default value
5697 	 * before starting auto-detection.
5698 	 */
5699 	chip->options &= ~NAND_BUSWIDTH_16;
5700 
5701 	for (; type->name != NULL; type++) {
5702 		if (is_full_id_nand(type)) {
5703 			if (find_full_id_nand(chip, type))
5704 				goto ident_done;
5705 		} else if (dev_id == type->dev_id) {
5706 			break;
5707 		}
5708 	}
5709 
5710 	if (!type->name || !type->pagesize) {
5711 		/* Check if the chip is ONFI compliant */
5712 		ret = nand_flash_detect_onfi(chip);
5713 		if (ret < 0)
5714 			return ret;
5715 		else if (ret)
5716 			goto ident_done;
5717 
5718 		/* Check if the chip is JEDEC compliant */
5719 		ret = nand_flash_detect_jedec(chip);
5720 		if (ret < 0)
5721 			return ret;
5722 		else if (ret)
5723 			goto ident_done;
5724 	}
5725 
5726 	if (!type->name)
5727 		return -ENODEV;
5728 
5729 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5730 	if (!chip->parameters.model)
5731 		return -ENOMEM;
5732 
5733 	chip->chipsize = (uint64_t)type->chipsize << 20;
5734 
5735 	if (!type->pagesize)
5736 		nand_manufacturer_detect(chip);
5737 	else
5738 		nand_decode_id(chip, type);
5739 
5740 	/* Get chip options */
5741 	chip->options |= type->options;
5742 
5743 ident_done:
5744 	if (!mtd->name)
5745 		mtd->name = chip->parameters.model;
5746 
5747 	if (chip->options & NAND_BUSWIDTH_AUTO) {
5748 		WARN_ON(busw & NAND_BUSWIDTH_16);
5749 		nand_set_defaults(chip);
5750 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5751 		/*
5752 		 * Check, if buswidth is correct. Hardware drivers should set
5753 		 * chip correct!
5754 		 */
5755 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5756 			maf_id, dev_id);
5757 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5758 			mtd->name);
5759 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5760 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5761 		ret = -EINVAL;
5762 
5763 		goto free_detect_allocation;
5764 	}
5765 
5766 	nand_decode_bbm_options(chip);
5767 
5768 	/* Calculate the address shift from the page size */
5769 	chip->page_shift = ffs(mtd->writesize) - 1;
5770 	/* Convert chipsize to number of pages per chip -1 */
5771 	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
5772 
5773 	chip->bbt_erase_shift = chip->phys_erase_shift =
5774 		ffs(mtd->erasesize) - 1;
5775 	if (chip->chipsize & 0xffffffff)
5776 		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
5777 	else {
5778 		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
5779 		chip->chip_shift += 32 - 1;
5780 	}
5781 
5782 	if (chip->chip_shift - chip->page_shift > 16)
5783 		chip->options |= NAND_ROW_ADDR_3;
5784 
5785 	chip->badblockbits = 8;
5786 	chip->erase = single_erase;
5787 
5788 	/* Do not replace user supplied command function! */
5789 	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
5790 		chip->cmdfunc = nand_command_lp;
5791 
5792 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5793 		maf_id, dev_id);
5794 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
5795 		chip->parameters.model);
5796 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5797 		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5798 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5799 	return 0;
5800 
5801 free_detect_allocation:
5802 	kfree(chip->parameters.model);
5803 
5804 	return ret;
5805 }
5806 
5807 static const char * const nand_ecc_modes[] = {
5808 	[NAND_ECC_NONE]		= "none",
5809 	[NAND_ECC_SOFT]		= "soft",
5810 	[NAND_ECC_HW]		= "hw",
5811 	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5812 	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
5813 	[NAND_ECC_ON_DIE]	= "on-die",
5814 };
5815 
5816 static int of_get_nand_ecc_mode(struct device_node *np)
5817 {
5818 	const char *pm;
5819 	int err, i;
5820 
5821 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5822 	if (err < 0)
5823 		return err;
5824 
5825 	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
5826 		if (!strcasecmp(pm, nand_ecc_modes[i]))
5827 			return i;
5828 
5829 	/*
5830 	 * For backward compatibility we support few obsoleted values that don't
5831 	 * have their mappings into nand_ecc_modes_t anymore (they were merged
5832 	 * with other enums).
5833 	 */
5834 	if (!strcasecmp(pm, "soft_bch"))
5835 		return NAND_ECC_SOFT;
5836 
5837 	return -ENODEV;
5838 }
5839 
5840 static const char * const nand_ecc_algos[] = {
5841 	[NAND_ECC_HAMMING]	= "hamming",
5842 	[NAND_ECC_BCH]		= "bch",
5843 	[NAND_ECC_RS]		= "rs",
5844 };
5845 
5846 static int of_get_nand_ecc_algo(struct device_node *np)
5847 {
5848 	const char *pm;
5849 	int err, i;
5850 
5851 	err = of_property_read_string(np, "nand-ecc-algo", &pm);
5852 	if (!err) {
5853 		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
5854 			if (!strcasecmp(pm, nand_ecc_algos[i]))
5855 				return i;
5856 		return -ENODEV;
5857 	}
5858 
5859 	/*
5860 	 * For backward compatibility we also read "nand-ecc-mode" checking
5861 	 * for some obsoleted values that were specifying ECC algorithm.
5862 	 */
5863 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5864 	if (err < 0)
5865 		return err;
5866 
5867 	if (!strcasecmp(pm, "soft"))
5868 		return NAND_ECC_HAMMING;
5869 	else if (!strcasecmp(pm, "soft_bch"))
5870 		return NAND_ECC_BCH;
5871 
5872 	return -ENODEV;
5873 }
5874 
5875 static int of_get_nand_ecc_step_size(struct device_node *np)
5876 {
5877 	int ret;
5878 	u32 val;
5879 
5880 	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
5881 	return ret ? ret : val;
5882 }
5883 
5884 static int of_get_nand_ecc_strength(struct device_node *np)
5885 {
5886 	int ret;
5887 	u32 val;
5888 
5889 	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
5890 	return ret ? ret : val;
5891 }
5892 
5893 static int of_get_nand_bus_width(struct device_node *np)
5894 {
5895 	u32 val;
5896 
5897 	if (of_property_read_u32(np, "nand-bus-width", &val))
5898 		return 8;
5899 
5900 	switch (val) {
5901 	case 8:
5902 	case 16:
5903 		return val;
5904 	default:
5905 		return -EIO;
5906 	}
5907 }
5908 
5909 static bool of_get_nand_on_flash_bbt(struct device_node *np)
5910 {
5911 	return of_property_read_bool(np, "nand-on-flash-bbt");
5912 }
5913 
5914 static int nand_dt_init(struct nand_chip *chip)
5915 {
5916 	struct device_node *dn = nand_get_flash_node(chip);
5917 	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
5918 
5919 	if (!dn)
5920 		return 0;
5921 
5922 	if (of_get_nand_bus_width(dn) == 16)
5923 		chip->options |= NAND_BUSWIDTH_16;
5924 
5925 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5926 		chip->options |= NAND_IS_BOOT_MEDIUM;
5927 
5928 	if (of_get_nand_on_flash_bbt(dn))
5929 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5930 
5931 	ecc_mode = of_get_nand_ecc_mode(dn);
5932 	ecc_algo = of_get_nand_ecc_algo(dn);
5933 	ecc_strength = of_get_nand_ecc_strength(dn);
5934 	ecc_step = of_get_nand_ecc_step_size(dn);
5935 
5936 	if (ecc_mode >= 0)
5937 		chip->ecc.mode = ecc_mode;
5938 
5939 	if (ecc_algo >= 0)
5940 		chip->ecc.algo = ecc_algo;
5941 
5942 	if (ecc_strength >= 0)
5943 		chip->ecc.strength = ecc_strength;
5944 
5945 	if (ecc_step > 0)
5946 		chip->ecc.size = ecc_step;
5947 
5948 	if (of_property_read_bool(dn, "nand-ecc-maximize"))
5949 		chip->ecc.options |= NAND_ECC_MAXIMIZE;
5950 
5951 	return 0;
5952 }
5953 
5954 /**
5955  * nand_scan_ident - Scan for the NAND device
5956  * @mtd: MTD device structure
5957  * @maxchips: number of chips to scan for
5958  * @table: alternative NAND ID table
5959  *
5960  * This is the first phase of the normal nand_scan() function. It reads the
5961  * flash ID and sets up MTD fields accordingly.
5962  *
5963  * This helper used to be called directly from controller drivers that needed
5964  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5965  * prevented dynamic allocations during this phase which was unconvenient and
5966  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5967  */
5968 static int nand_scan_ident(struct mtd_info *mtd, int maxchips,
5969 			   struct nand_flash_dev *table)
5970 {
5971 	int i, nand_maf_id, nand_dev_id;
5972 	struct nand_chip *chip = mtd_to_nand(mtd);
5973 	int ret;
5974 
5975 	/* Enforce the right timings for reset/detection */
5976 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5977 
5978 	ret = nand_dt_init(chip);
5979 	if (ret)
5980 		return ret;
5981 
5982 	if (!mtd->name && mtd->dev.parent)
5983 		mtd->name = dev_name(mtd->dev.parent);
5984 
5985 	/*
5986 	 * ->cmdfunc() is legacy and will only be used if ->exec_op() is not
5987 	 * populated.
5988 	 */
5989 	if (!chip->exec_op) {
5990 		/*
5991 		 * Default functions assigned for ->cmdfunc() and
5992 		 * ->select_chip() both expect ->cmd_ctrl() to be populated.
5993 		 */
5994 		if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
5995 			pr_err("->cmd_ctrl() should be provided\n");
5996 			return -EINVAL;
5997 		}
5998 	}
5999 
6000 	/* Set the default functions */
6001 	nand_set_defaults(chip);
6002 
6003 	/* Read the flash type */
6004 	ret = nand_detect(chip, table);
6005 	if (ret) {
6006 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
6007 			pr_warn("No NAND device found\n");
6008 		chip->select_chip(mtd, -1);
6009 		return ret;
6010 	}
6011 
6012 	nand_maf_id = chip->id.data[0];
6013 	nand_dev_id = chip->id.data[1];
6014 
6015 	chip->select_chip(mtd, -1);
6016 
6017 	/* Check for a chip array */
6018 	for (i = 1; i < maxchips; i++) {
6019 		u8 id[2];
6020 
6021 		/* See comment in nand_get_flash_type for reset */
6022 		nand_reset(chip, i);
6023 
6024 		chip->select_chip(mtd, i);
6025 		/* Send the command for reading device ID */
6026 		nand_readid_op(chip, 0, id, sizeof(id));
6027 		/* Read manufacturer and device IDs */
6028 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
6029 			chip->select_chip(mtd, -1);
6030 			break;
6031 		}
6032 		chip->select_chip(mtd, -1);
6033 	}
6034 	if (i > 1)
6035 		pr_info("%d chips detected\n", i);
6036 
6037 	/* Store the number of chips and calc total size for mtd */
6038 	chip->numchips = i;
6039 	mtd->size = i * chip->chipsize;
6040 
6041 	return 0;
6042 }
6043 
6044 static void nand_scan_ident_cleanup(struct nand_chip *chip)
6045 {
6046 	kfree(chip->parameters.model);
6047 	kfree(chip->parameters.onfi);
6048 }
6049 
6050 static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
6051 {
6052 	struct nand_chip *chip = mtd_to_nand(mtd);
6053 	struct nand_ecc_ctrl *ecc = &chip->ecc;
6054 
6055 	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
6056 		return -EINVAL;
6057 
6058 	switch (ecc->algo) {
6059 	case NAND_ECC_HAMMING:
6060 		ecc->calculate = nand_calculate_ecc;
6061 		ecc->correct = nand_correct_data;
6062 		ecc->read_page = nand_read_page_swecc;
6063 		ecc->read_subpage = nand_read_subpage;
6064 		ecc->write_page = nand_write_page_swecc;
6065 		ecc->read_page_raw = nand_read_page_raw;
6066 		ecc->write_page_raw = nand_write_page_raw;
6067 		ecc->read_oob = nand_read_oob_std;
6068 		ecc->write_oob = nand_write_oob_std;
6069 		if (!ecc->size)
6070 			ecc->size = 256;
6071 		ecc->bytes = 3;
6072 		ecc->strength = 1;
6073 		return 0;
6074 	case NAND_ECC_BCH:
6075 		if (!mtd_nand_has_bch()) {
6076 			WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
6077 			return -EINVAL;
6078 		}
6079 		ecc->calculate = nand_bch_calculate_ecc;
6080 		ecc->correct = nand_bch_correct_data;
6081 		ecc->read_page = nand_read_page_swecc;
6082 		ecc->read_subpage = nand_read_subpage;
6083 		ecc->write_page = nand_write_page_swecc;
6084 		ecc->read_page_raw = nand_read_page_raw;
6085 		ecc->write_page_raw = nand_write_page_raw;
6086 		ecc->read_oob = nand_read_oob_std;
6087 		ecc->write_oob = nand_write_oob_std;
6088 
6089 		/*
6090 		* Board driver should supply ecc.size and ecc.strength
6091 		* values to select how many bits are correctable.
6092 		* Otherwise, default to 4 bits for large page devices.
6093 		*/
6094 		if (!ecc->size && (mtd->oobsize >= 64)) {
6095 			ecc->size = 512;
6096 			ecc->strength = 4;
6097 		}
6098 
6099 		/*
6100 		 * if no ecc placement scheme was provided pickup the default
6101 		 * large page one.
6102 		 */
6103 		if (!mtd->ooblayout) {
6104 			/* handle large page devices only */
6105 			if (mtd->oobsize < 64) {
6106 				WARN(1, "OOB layout is required when using software BCH on small pages\n");
6107 				return -EINVAL;
6108 			}
6109 
6110 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
6111 
6112 		}
6113 
6114 		/*
6115 		 * We can only maximize ECC config when the default layout is
6116 		 * used, otherwise we don't know how many bytes can really be
6117 		 * used.
6118 		 */
6119 		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
6120 		    ecc->options & NAND_ECC_MAXIMIZE) {
6121 			int steps, bytes;
6122 
6123 			/* Always prefer 1k blocks over 512bytes ones */
6124 			ecc->size = 1024;
6125 			steps = mtd->writesize / ecc->size;
6126 
6127 			/* Reserve 2 bytes for the BBM */
6128 			bytes = (mtd->oobsize - 2) / steps;
6129 			ecc->strength = bytes * 8 / fls(8 * ecc->size);
6130 		}
6131 
6132 		/* See nand_bch_init() for details. */
6133 		ecc->bytes = 0;
6134 		ecc->priv = nand_bch_init(mtd);
6135 		if (!ecc->priv) {
6136 			WARN(1, "BCH ECC initialization failed!\n");
6137 			return -EINVAL;
6138 		}
6139 		return 0;
6140 	default:
6141 		WARN(1, "Unsupported ECC algorithm!\n");
6142 		return -EINVAL;
6143 	}
6144 }
6145 
6146 /**
6147  * nand_check_ecc_caps - check the sanity of preset ECC settings
6148  * @chip: nand chip info structure
6149  * @caps: ECC caps info structure
6150  * @oobavail: OOB size that the ECC engine can use
6151  *
6152  * When ECC step size and strength are already set, check if they are supported
6153  * by the controller and the calculated ECC bytes fit within the chip's OOB.
6154  * On success, the calculated ECC bytes is set.
6155  */
6156 static int
6157 nand_check_ecc_caps(struct nand_chip *chip,
6158 		    const struct nand_ecc_caps *caps, int oobavail)
6159 {
6160 	struct mtd_info *mtd = nand_to_mtd(chip);
6161 	const struct nand_ecc_step_info *stepinfo;
6162 	int preset_step = chip->ecc.size;
6163 	int preset_strength = chip->ecc.strength;
6164 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
6165 	int i, j;
6166 
6167 	for (i = 0; i < caps->nstepinfos; i++) {
6168 		stepinfo = &caps->stepinfos[i];
6169 
6170 		if (stepinfo->stepsize != preset_step)
6171 			continue;
6172 
6173 		for (j = 0; j < stepinfo->nstrengths; j++) {
6174 			if (stepinfo->strengths[j] != preset_strength)
6175 				continue;
6176 
6177 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
6178 							 preset_strength);
6179 			if (WARN_ON_ONCE(ecc_bytes < 0))
6180 				return ecc_bytes;
6181 
6182 			if (ecc_bytes * nsteps > oobavail) {
6183 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6184 				       preset_step, preset_strength);
6185 				return -ENOSPC;
6186 			}
6187 
6188 			chip->ecc.bytes = ecc_bytes;
6189 
6190 			return 0;
6191 		}
6192 	}
6193 
6194 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6195 	       preset_step, preset_strength);
6196 
6197 	return -ENOTSUPP;
6198 }
6199 
6200 /**
6201  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6202  * @chip: nand chip info structure
6203  * @caps: ECC engine caps info structure
6204  * @oobavail: OOB size that the ECC engine can use
6205  *
6206  * If a chip's ECC requirement is provided, try to meet it with the least
6207  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6208  * On success, the chosen ECC settings are set.
6209  */
6210 static int
6211 nand_match_ecc_req(struct nand_chip *chip,
6212 		   const struct nand_ecc_caps *caps, int oobavail)
6213 {
6214 	struct mtd_info *mtd = nand_to_mtd(chip);
6215 	const struct nand_ecc_step_info *stepinfo;
6216 	int req_step = chip->ecc_step_ds;
6217 	int req_strength = chip->ecc_strength_ds;
6218 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6219 	int best_step, best_strength, best_ecc_bytes;
6220 	int best_ecc_bytes_total = INT_MAX;
6221 	int i, j;
6222 
6223 	/* No information provided by the NAND chip */
6224 	if (!req_step || !req_strength)
6225 		return -ENOTSUPP;
6226 
6227 	/* number of correctable bits the chip requires in a page */
6228 	req_corr = mtd->writesize / req_step * req_strength;
6229 
6230 	for (i = 0; i < caps->nstepinfos; i++) {
6231 		stepinfo = &caps->stepinfos[i];
6232 		step_size = stepinfo->stepsize;
6233 
6234 		for (j = 0; j < stepinfo->nstrengths; j++) {
6235 			strength = stepinfo->strengths[j];
6236 
6237 			/*
6238 			 * If both step size and strength are smaller than the
6239 			 * chip's requirement, it is not easy to compare the
6240 			 * resulted reliability.
6241 			 */
6242 			if (step_size < req_step && strength < req_strength)
6243 				continue;
6244 
6245 			if (mtd->writesize % step_size)
6246 				continue;
6247 
6248 			nsteps = mtd->writesize / step_size;
6249 
6250 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6251 			if (WARN_ON_ONCE(ecc_bytes < 0))
6252 				continue;
6253 			ecc_bytes_total = ecc_bytes * nsteps;
6254 
6255 			if (ecc_bytes_total > oobavail ||
6256 			    strength * nsteps < req_corr)
6257 				continue;
6258 
6259 			/*
6260 			 * We assume the best is to meet the chip's requrement
6261 			 * with the least number of ECC bytes.
6262 			 */
6263 			if (ecc_bytes_total < best_ecc_bytes_total) {
6264 				best_ecc_bytes_total = ecc_bytes_total;
6265 				best_step = step_size;
6266 				best_strength = strength;
6267 				best_ecc_bytes = ecc_bytes;
6268 			}
6269 		}
6270 	}
6271 
6272 	if (best_ecc_bytes_total == INT_MAX)
6273 		return -ENOTSUPP;
6274 
6275 	chip->ecc.size = best_step;
6276 	chip->ecc.strength = best_strength;
6277 	chip->ecc.bytes = best_ecc_bytes;
6278 
6279 	return 0;
6280 }
6281 
6282 /**
6283  * nand_maximize_ecc - choose the max ECC strength available
6284  * @chip: nand chip info structure
6285  * @caps: ECC engine caps info structure
6286  * @oobavail: OOB size that the ECC engine can use
6287  *
6288  * Choose the max ECC strength that is supported on the controller, and can fit
6289  * within the chip's OOB.  On success, the chosen ECC settings are set.
6290  */
6291 static int
6292 nand_maximize_ecc(struct nand_chip *chip,
6293 		  const struct nand_ecc_caps *caps, int oobavail)
6294 {
6295 	struct mtd_info *mtd = nand_to_mtd(chip);
6296 	const struct nand_ecc_step_info *stepinfo;
6297 	int step_size, strength, nsteps, ecc_bytes, corr;
6298 	int best_corr = 0;
6299 	int best_step = 0;
6300 	int best_strength, best_ecc_bytes;
6301 	int i, j;
6302 
6303 	for (i = 0; i < caps->nstepinfos; i++) {
6304 		stepinfo = &caps->stepinfos[i];
6305 		step_size = stepinfo->stepsize;
6306 
6307 		/* If chip->ecc.size is already set, respect it */
6308 		if (chip->ecc.size && step_size != chip->ecc.size)
6309 			continue;
6310 
6311 		for (j = 0; j < stepinfo->nstrengths; j++) {
6312 			strength = stepinfo->strengths[j];
6313 
6314 			if (mtd->writesize % step_size)
6315 				continue;
6316 
6317 			nsteps = mtd->writesize / step_size;
6318 
6319 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6320 			if (WARN_ON_ONCE(ecc_bytes < 0))
6321 				continue;
6322 
6323 			if (ecc_bytes * nsteps > oobavail)
6324 				continue;
6325 
6326 			corr = strength * nsteps;
6327 
6328 			/*
6329 			 * If the number of correctable bits is the same,
6330 			 * bigger step_size has more reliability.
6331 			 */
6332 			if (corr > best_corr ||
6333 			    (corr == best_corr && step_size > best_step)) {
6334 				best_corr = corr;
6335 				best_step = step_size;
6336 				best_strength = strength;
6337 				best_ecc_bytes = ecc_bytes;
6338 			}
6339 		}
6340 	}
6341 
6342 	if (!best_corr)
6343 		return -ENOTSUPP;
6344 
6345 	chip->ecc.size = best_step;
6346 	chip->ecc.strength = best_strength;
6347 	chip->ecc.bytes = best_ecc_bytes;
6348 
6349 	return 0;
6350 }
6351 
6352 /**
6353  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6354  * @chip: nand chip info structure
6355  * @caps: ECC engine caps info structure
6356  * @oobavail: OOB size that the ECC engine can use
6357  *
6358  * Choose the ECC configuration according to following logic
6359  *
6360  * 1. If both ECC step size and ECC strength are already set (usually by DT)
6361  *    then check if it is supported by this controller.
6362  * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
6363  * 3. Otherwise, try to match the ECC step size and ECC strength closest
6364  *    to the chip's requirement. If available OOB size can't fit the chip
6365  *    requirement then fallback to the maximum ECC step size and ECC strength.
6366  *
6367  * On success, the chosen ECC settings are set.
6368  */
6369 int nand_ecc_choose_conf(struct nand_chip *chip,
6370 			 const struct nand_ecc_caps *caps, int oobavail)
6371 {
6372 	struct mtd_info *mtd = nand_to_mtd(chip);
6373 
6374 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6375 		return -EINVAL;
6376 
6377 	if (chip->ecc.size && chip->ecc.strength)
6378 		return nand_check_ecc_caps(chip, caps, oobavail);
6379 
6380 	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
6381 		return nand_maximize_ecc(chip, caps, oobavail);
6382 
6383 	if (!nand_match_ecc_req(chip, caps, oobavail))
6384 		return 0;
6385 
6386 	return nand_maximize_ecc(chip, caps, oobavail);
6387 }
6388 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6389 
6390 /*
6391  * Check if the chip configuration meet the datasheet requirements.
6392 
6393  * If our configuration corrects A bits per B bytes and the minimum
6394  * required correction level is X bits per Y bytes, then we must ensure
6395  * both of the following are true:
6396  *
6397  * (1) A / B >= X / Y
6398  * (2) A >= X
6399  *
6400  * Requirement (1) ensures we can correct for the required bitflip density.
6401  * Requirement (2) ensures we can correct even when all bitflips are clumped
6402  * in the same sector.
6403  */
6404 static bool nand_ecc_strength_good(struct mtd_info *mtd)
6405 {
6406 	struct nand_chip *chip = mtd_to_nand(mtd);
6407 	struct nand_ecc_ctrl *ecc = &chip->ecc;
6408 	int corr, ds_corr;
6409 
6410 	if (ecc->size == 0 || chip->ecc_step_ds == 0)
6411 		/* Not enough information */
6412 		return true;
6413 
6414 	/*
6415 	 * We get the number of corrected bits per page to compare
6416 	 * the correction density.
6417 	 */
6418 	corr = (mtd->writesize * ecc->strength) / ecc->size;
6419 	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
6420 
6421 	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
6422 }
6423 
6424 /**
6425  * nand_scan_tail - Scan for the NAND device
6426  * @mtd: MTD device structure
6427  *
6428  * This is the second phase of the normal nand_scan() function. It fills out
6429  * all the uninitialized function pointers with the defaults and scans for a
6430  * bad block table if appropriate.
6431  */
6432 static int nand_scan_tail(struct mtd_info *mtd)
6433 {
6434 	struct nand_chip *chip = mtd_to_nand(mtd);
6435 	struct nand_ecc_ctrl *ecc = &chip->ecc;
6436 	int ret, i;
6437 
6438 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
6439 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6440 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6441 		return -EINVAL;
6442 	}
6443 
6444 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6445 	if (!chip->data_buf)
6446 		return -ENOMEM;
6447 
6448 	/*
6449 	 * FIXME: some NAND manufacturer drivers expect the first die to be
6450 	 * selected when manufacturer->init() is called. They should be fixed
6451 	 * to explictly select the relevant die when interacting with the NAND
6452 	 * chip.
6453 	 */
6454 	chip->select_chip(mtd, 0);
6455 	ret = nand_manufacturer_init(chip);
6456 	chip->select_chip(mtd, -1);
6457 	if (ret)
6458 		goto err_free_buf;
6459 
6460 	/* Set the internal oob buffer location, just after the page data */
6461 	chip->oob_poi = chip->data_buf + mtd->writesize;
6462 
6463 	/*
6464 	 * If no default placement scheme is given, select an appropriate one.
6465 	 */
6466 	if (!mtd->ooblayout &&
6467 	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
6468 		switch (mtd->oobsize) {
6469 		case 8:
6470 		case 16:
6471 			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
6472 			break;
6473 		case 64:
6474 		case 128:
6475 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
6476 			break;
6477 		default:
6478 			/*
6479 			 * Expose the whole OOB area to users if ECC_NONE
6480 			 * is passed. We could do that for all kind of
6481 			 * ->oobsize, but we must keep the old large/small
6482 			 * page with ECC layout when ->oobsize <= 128 for
6483 			 * compatibility reasons.
6484 			 */
6485 			if (ecc->mode == NAND_ECC_NONE) {
6486 				mtd_set_ooblayout(mtd,
6487 						&nand_ooblayout_lp_ops);
6488 				break;
6489 			}
6490 
6491 			WARN(1, "No oob scheme defined for oobsize %d\n",
6492 				mtd->oobsize);
6493 			ret = -EINVAL;
6494 			goto err_nand_manuf_cleanup;
6495 		}
6496 	}
6497 
6498 	/*
6499 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6500 	 * selected and we have 256 byte pagesize fallback to software ECC
6501 	 */
6502 
6503 	switch (ecc->mode) {
6504 	case NAND_ECC_HW_OOB_FIRST:
6505 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
6506 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
6507 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
6508 			ret = -EINVAL;
6509 			goto err_nand_manuf_cleanup;
6510 		}
6511 		if (!ecc->read_page)
6512 			ecc->read_page = nand_read_page_hwecc_oob_first;
6513 
6514 	case NAND_ECC_HW:
6515 		/* Use standard hwecc read page function? */
6516 		if (!ecc->read_page)
6517 			ecc->read_page = nand_read_page_hwecc;
6518 		if (!ecc->write_page)
6519 			ecc->write_page = nand_write_page_hwecc;
6520 		if (!ecc->read_page_raw)
6521 			ecc->read_page_raw = nand_read_page_raw;
6522 		if (!ecc->write_page_raw)
6523 			ecc->write_page_raw = nand_write_page_raw;
6524 		if (!ecc->read_oob)
6525 			ecc->read_oob = nand_read_oob_std;
6526 		if (!ecc->write_oob)
6527 			ecc->write_oob = nand_write_oob_std;
6528 		if (!ecc->read_subpage)
6529 			ecc->read_subpage = nand_read_subpage;
6530 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
6531 			ecc->write_subpage = nand_write_subpage_hwecc;
6532 
6533 	case NAND_ECC_HW_SYNDROME:
6534 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
6535 		    (!ecc->read_page ||
6536 		     ecc->read_page == nand_read_page_hwecc ||
6537 		     !ecc->write_page ||
6538 		     ecc->write_page == nand_write_page_hwecc)) {
6539 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
6540 			ret = -EINVAL;
6541 			goto err_nand_manuf_cleanup;
6542 		}
6543 		/* Use standard syndrome read/write page function? */
6544 		if (!ecc->read_page)
6545 			ecc->read_page = nand_read_page_syndrome;
6546 		if (!ecc->write_page)
6547 			ecc->write_page = nand_write_page_syndrome;
6548 		if (!ecc->read_page_raw)
6549 			ecc->read_page_raw = nand_read_page_raw_syndrome;
6550 		if (!ecc->write_page_raw)
6551 			ecc->write_page_raw = nand_write_page_raw_syndrome;
6552 		if (!ecc->read_oob)
6553 			ecc->read_oob = nand_read_oob_syndrome;
6554 		if (!ecc->write_oob)
6555 			ecc->write_oob = nand_write_oob_syndrome;
6556 
6557 		if (mtd->writesize >= ecc->size) {
6558 			if (!ecc->strength) {
6559 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6560 				ret = -EINVAL;
6561 				goto err_nand_manuf_cleanup;
6562 			}
6563 			break;
6564 		}
6565 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6566 			ecc->size, mtd->writesize);
6567 		ecc->mode = NAND_ECC_SOFT;
6568 		ecc->algo = NAND_ECC_HAMMING;
6569 
6570 	case NAND_ECC_SOFT:
6571 		ret = nand_set_ecc_soft_ops(mtd);
6572 		if (ret) {
6573 			ret = -EINVAL;
6574 			goto err_nand_manuf_cleanup;
6575 		}
6576 		break;
6577 
6578 	case NAND_ECC_ON_DIE:
6579 		if (!ecc->read_page || !ecc->write_page) {
6580 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6581 			ret = -EINVAL;
6582 			goto err_nand_manuf_cleanup;
6583 		}
6584 		if (!ecc->read_oob)
6585 			ecc->read_oob = nand_read_oob_std;
6586 		if (!ecc->write_oob)
6587 			ecc->write_oob = nand_write_oob_std;
6588 		break;
6589 
6590 	case NAND_ECC_NONE:
6591 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
6592 		ecc->read_page = nand_read_page_raw;
6593 		ecc->write_page = nand_write_page_raw;
6594 		ecc->read_oob = nand_read_oob_std;
6595 		ecc->read_page_raw = nand_read_page_raw;
6596 		ecc->write_page_raw = nand_write_page_raw;
6597 		ecc->write_oob = nand_write_oob_std;
6598 		ecc->size = mtd->writesize;
6599 		ecc->bytes = 0;
6600 		ecc->strength = 0;
6601 		break;
6602 
6603 	default:
6604 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
6605 		ret = -EINVAL;
6606 		goto err_nand_manuf_cleanup;
6607 	}
6608 
6609 	if (ecc->correct || ecc->calculate) {
6610 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6611 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6612 		if (!ecc->calc_buf || !ecc->code_buf) {
6613 			ret = -ENOMEM;
6614 			goto err_nand_manuf_cleanup;
6615 		}
6616 	}
6617 
6618 	/* For many systems, the standard OOB write also works for raw */
6619 	if (!ecc->read_oob_raw)
6620 		ecc->read_oob_raw = ecc->read_oob;
6621 	if (!ecc->write_oob_raw)
6622 		ecc->write_oob_raw = ecc->write_oob;
6623 
6624 	/* propagate ecc info to mtd_info */
6625 	mtd->ecc_strength = ecc->strength;
6626 	mtd->ecc_step_size = ecc->size;
6627 
6628 	/*
6629 	 * Set the number of read / write steps for one page depending on ECC
6630 	 * mode.
6631 	 */
6632 	ecc->steps = mtd->writesize / ecc->size;
6633 	if (ecc->steps * ecc->size != mtd->writesize) {
6634 		WARN(1, "Invalid ECC parameters\n");
6635 		ret = -EINVAL;
6636 		goto err_nand_manuf_cleanup;
6637 	}
6638 	ecc->total = ecc->steps * ecc->bytes;
6639 	if (ecc->total > mtd->oobsize) {
6640 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6641 		ret = -EINVAL;
6642 		goto err_nand_manuf_cleanup;
6643 	}
6644 
6645 	/*
6646 	 * The number of bytes available for a client to place data into
6647 	 * the out of band area.
6648 	 */
6649 	ret = mtd_ooblayout_count_freebytes(mtd);
6650 	if (ret < 0)
6651 		ret = 0;
6652 
6653 	mtd->oobavail = ret;
6654 
6655 	/* ECC sanity check: warn if it's too weak */
6656 	if (!nand_ecc_strength_good(mtd))
6657 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
6658 			mtd->name);
6659 
6660 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6661 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6662 		switch (ecc->steps) {
6663 		case 2:
6664 			mtd->subpage_sft = 1;
6665 			break;
6666 		case 4:
6667 		case 8:
6668 		case 16:
6669 			mtd->subpage_sft = 2;
6670 			break;
6671 		}
6672 	}
6673 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6674 
6675 	/* Initialize state */
6676 	chip->state = FL_READY;
6677 
6678 	/* Invalidate the pagebuffer reference */
6679 	chip->pagebuf = -1;
6680 
6681 	/* Large page NAND with SOFT_ECC should support subpage reads */
6682 	switch (ecc->mode) {
6683 	case NAND_ECC_SOFT:
6684 		if (chip->page_shift > 9)
6685 			chip->options |= NAND_SUBPAGE_READ;
6686 		break;
6687 
6688 	default:
6689 		break;
6690 	}
6691 
6692 	/* Fill in remaining MTD driver data */
6693 	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
6694 	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
6695 						MTD_CAP_NANDFLASH;
6696 	mtd->_erase = nand_erase;
6697 	mtd->_point = NULL;
6698 	mtd->_unpoint = NULL;
6699 	mtd->_panic_write = panic_nand_write;
6700 	mtd->_read_oob = nand_read_oob;
6701 	mtd->_write_oob = nand_write_oob;
6702 	mtd->_sync = nand_sync;
6703 	mtd->_lock = NULL;
6704 	mtd->_unlock = NULL;
6705 	mtd->_suspend = nand_suspend;
6706 	mtd->_resume = nand_resume;
6707 	mtd->_reboot = nand_shutdown;
6708 	mtd->_block_isreserved = nand_block_isreserved;
6709 	mtd->_block_isbad = nand_block_isbad;
6710 	mtd->_block_markbad = nand_block_markbad;
6711 	mtd->_max_bad_blocks = nand_max_bad_blocks;
6712 	mtd->writebufsize = mtd->writesize;
6713 
6714 	/*
6715 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6716 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6717 	 * properly set.
6718 	 */
6719 	if (!mtd->bitflip_threshold)
6720 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6721 
6722 	/* Initialize the ->data_interface field. */
6723 	ret = nand_init_data_interface(chip);
6724 	if (ret)
6725 		goto err_nand_manuf_cleanup;
6726 
6727 	/* Enter fastest possible mode on all dies. */
6728 	for (i = 0; i < chip->numchips; i++) {
6729 		ret = nand_setup_data_interface(chip, i);
6730 		if (ret)
6731 			goto err_nand_manuf_cleanup;
6732 	}
6733 
6734 	/* Check, if we should skip the bad block table scan */
6735 	if (chip->options & NAND_SKIP_BBTSCAN)
6736 		return 0;
6737 
6738 	/* Build bad block table */
6739 	ret = nand_create_bbt(chip);
6740 	if (ret)
6741 		goto err_nand_manuf_cleanup;
6742 
6743 	return 0;
6744 
6745 
6746 err_nand_manuf_cleanup:
6747 	nand_manufacturer_cleanup(chip);
6748 
6749 err_free_buf:
6750 	kfree(chip->data_buf);
6751 	kfree(ecc->code_buf);
6752 	kfree(ecc->calc_buf);
6753 
6754 	return ret;
6755 }
6756 
6757 static int nand_attach(struct nand_chip *chip)
6758 {
6759 	if (chip->controller->ops && chip->controller->ops->attach_chip)
6760 		return chip->controller->ops->attach_chip(chip);
6761 
6762 	return 0;
6763 }
6764 
6765 static void nand_detach(struct nand_chip *chip)
6766 {
6767 	if (chip->controller->ops && chip->controller->ops->detach_chip)
6768 		chip->controller->ops->detach_chip(chip);
6769 }
6770 
6771 /**
6772  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6773  * @mtd: MTD device structure
6774  * @maxchips: number of chips to scan for. @nand_scan_ident() will not be run if
6775  *	      this parameter is zero (useful for specific drivers that must
6776  *	      handle this part of the process themselves, e.g docg4).
6777  * @ids: optional flash IDs table
6778  *
6779  * This fills out all the uninitialized function pointers with the defaults.
6780  * The flash ID is read and the mtd/chip structures are filled with the
6781  * appropriate values.
6782  */
6783 int nand_scan_with_ids(struct mtd_info *mtd, int maxchips,
6784 		       struct nand_flash_dev *ids)
6785 {
6786 	struct nand_chip *chip = mtd_to_nand(mtd);
6787 	int ret;
6788 
6789 	if (maxchips) {
6790 		ret = nand_scan_ident(mtd, maxchips, ids);
6791 		if (ret)
6792 			return ret;
6793 	}
6794 
6795 	ret = nand_attach(chip);
6796 	if (ret)
6797 		goto cleanup_ident;
6798 
6799 	ret = nand_scan_tail(mtd);
6800 	if (ret)
6801 		goto detach_chip;
6802 
6803 	return 0;
6804 
6805 detach_chip:
6806 	nand_detach(chip);
6807 cleanup_ident:
6808 	nand_scan_ident_cleanup(chip);
6809 
6810 	return ret;
6811 }
6812 EXPORT_SYMBOL(nand_scan_with_ids);
6813 
6814 /**
6815  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6816  * @chip: NAND chip object
6817  */
6818 void nand_cleanup(struct nand_chip *chip)
6819 {
6820 	if (chip->ecc.mode == NAND_ECC_SOFT &&
6821 	    chip->ecc.algo == NAND_ECC_BCH)
6822 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
6823 
6824 	/* Free bad block table memory */
6825 	kfree(chip->bbt);
6826 	kfree(chip->data_buf);
6827 	kfree(chip->ecc.code_buf);
6828 	kfree(chip->ecc.calc_buf);
6829 
6830 	/* Free bad block descriptor memory */
6831 	if (chip->badblock_pattern && chip->badblock_pattern->options
6832 			& NAND_BBT_DYNAMICSTRUCT)
6833 		kfree(chip->badblock_pattern);
6834 
6835 	/* Free manufacturer priv data. */
6836 	nand_manufacturer_cleanup(chip);
6837 
6838 	/* Free controller specific allocations after chip identification */
6839 	nand_detach(chip);
6840 
6841 	/* Free identification phase allocations */
6842 	nand_scan_ident_cleanup(chip);
6843 }
6844 
6845 EXPORT_SYMBOL_GPL(nand_cleanup);
6846 
6847 /**
6848  * nand_release - [NAND Interface] Unregister the MTD device and free resources
6849  *		  held by the NAND device
6850  * @mtd: MTD device structure
6851  */
6852 void nand_release(struct mtd_info *mtd)
6853 {
6854 	mtd_device_unregister(mtd);
6855 	nand_cleanup(mtd_to_nand(mtd));
6856 }
6857 EXPORT_SYMBOL_GPL(nand_release);
6858 
6859 MODULE_LICENSE("GPL");
6860 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6861 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6862 MODULE_DESCRIPTION("Generic NAND flash driver code");
6863