1 /* 2 * Overview: 3 * This is the generic MTD driver for NAND flash devices. It should be 4 * capable of working with almost all NAND chips currently available. 5 * 6 * Additional technical information is available on 7 * http://www.linux-mtd.infradead.org/doc/nand.html 8 * 9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 11 * 12 * Credits: 13 * David Woodhouse for adding multichip support 14 * 15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 16 * rework for 2K page size chips 17 * 18 * TODO: 19 * Enable cached programming for 2k page size chips 20 * Check, if mtd->ecctype should be set to MTD_ECC_HW 21 * if we have HW ECC support. 22 * BBT table is not serialized, has to be fixed 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License version 2 as 26 * published by the Free Software Foundation. 27 * 28 */ 29 30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 31 32 #include <linux/module.h> 33 #include <linux/delay.h> 34 #include <linux/errno.h> 35 #include <linux/err.h> 36 #include <linux/sched.h> 37 #include <linux/slab.h> 38 #include <linux/mm.h> 39 #include <linux/nmi.h> 40 #include <linux/types.h> 41 #include <linux/mtd/mtd.h> 42 #include <linux/mtd/rawnand.h> 43 #include <linux/mtd/nand_ecc.h> 44 #include <linux/mtd/nand_bch.h> 45 #include <linux/interrupt.h> 46 #include <linux/bitops.h> 47 #include <linux/io.h> 48 #include <linux/mtd/partitions.h> 49 #include <linux/of.h> 50 51 static int nand_get_device(struct mtd_info *mtd, int new_state); 52 53 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, 54 struct mtd_oob_ops *ops); 55 56 /* Define default oob placement schemes for large and small page devices */ 57 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, 58 struct mtd_oob_region *oobregion) 59 { 60 struct nand_chip *chip = mtd_to_nand(mtd); 61 struct nand_ecc_ctrl *ecc = &chip->ecc; 62 63 if (section > 1) 64 return -ERANGE; 65 66 if (!section) { 67 oobregion->offset = 0; 68 if (mtd->oobsize == 16) 69 oobregion->length = 4; 70 else 71 oobregion->length = 3; 72 } else { 73 if (mtd->oobsize == 8) 74 return -ERANGE; 75 76 oobregion->offset = 6; 77 oobregion->length = ecc->total - 4; 78 } 79 80 return 0; 81 } 82 83 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, 84 struct mtd_oob_region *oobregion) 85 { 86 if (section > 1) 87 return -ERANGE; 88 89 if (mtd->oobsize == 16) { 90 if (section) 91 return -ERANGE; 92 93 oobregion->length = 8; 94 oobregion->offset = 8; 95 } else { 96 oobregion->length = 2; 97 if (!section) 98 oobregion->offset = 3; 99 else 100 oobregion->offset = 6; 101 } 102 103 return 0; 104 } 105 106 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { 107 .ecc = nand_ooblayout_ecc_sp, 108 .free = nand_ooblayout_free_sp, 109 }; 110 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); 111 112 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, 113 struct mtd_oob_region *oobregion) 114 { 115 struct nand_chip *chip = mtd_to_nand(mtd); 116 struct nand_ecc_ctrl *ecc = &chip->ecc; 117 118 if (section || !ecc->total) 119 return -ERANGE; 120 121 oobregion->length = ecc->total; 122 oobregion->offset = mtd->oobsize - oobregion->length; 123 124 return 0; 125 } 126 127 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, 128 struct mtd_oob_region *oobregion) 129 { 130 struct nand_chip *chip = mtd_to_nand(mtd); 131 struct nand_ecc_ctrl *ecc = &chip->ecc; 132 133 if (section) 134 return -ERANGE; 135 136 oobregion->length = mtd->oobsize - ecc->total - 2; 137 oobregion->offset = 2; 138 139 return 0; 140 } 141 142 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { 143 .ecc = nand_ooblayout_ecc_lp, 144 .free = nand_ooblayout_free_lp, 145 }; 146 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); 147 148 /* 149 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC 150 * are placed at a fixed offset. 151 */ 152 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, 153 struct mtd_oob_region *oobregion) 154 { 155 struct nand_chip *chip = mtd_to_nand(mtd); 156 struct nand_ecc_ctrl *ecc = &chip->ecc; 157 158 if (section) 159 return -ERANGE; 160 161 switch (mtd->oobsize) { 162 case 64: 163 oobregion->offset = 40; 164 break; 165 case 128: 166 oobregion->offset = 80; 167 break; 168 default: 169 return -EINVAL; 170 } 171 172 oobregion->length = ecc->total; 173 if (oobregion->offset + oobregion->length > mtd->oobsize) 174 return -ERANGE; 175 176 return 0; 177 } 178 179 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, 180 struct mtd_oob_region *oobregion) 181 { 182 struct nand_chip *chip = mtd_to_nand(mtd); 183 struct nand_ecc_ctrl *ecc = &chip->ecc; 184 int ecc_offset = 0; 185 186 if (section < 0 || section > 1) 187 return -ERANGE; 188 189 switch (mtd->oobsize) { 190 case 64: 191 ecc_offset = 40; 192 break; 193 case 128: 194 ecc_offset = 80; 195 break; 196 default: 197 return -EINVAL; 198 } 199 200 if (section == 0) { 201 oobregion->offset = 2; 202 oobregion->length = ecc_offset - 2; 203 } else { 204 oobregion->offset = ecc_offset + ecc->total; 205 oobregion->length = mtd->oobsize - oobregion->offset; 206 } 207 208 return 0; 209 } 210 211 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { 212 .ecc = nand_ooblayout_ecc_lp_hamming, 213 .free = nand_ooblayout_free_lp_hamming, 214 }; 215 216 static int check_offs_len(struct mtd_info *mtd, 217 loff_t ofs, uint64_t len) 218 { 219 struct nand_chip *chip = mtd_to_nand(mtd); 220 int ret = 0; 221 222 /* Start address must align on block boundary */ 223 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 224 pr_debug("%s: unaligned address\n", __func__); 225 ret = -EINVAL; 226 } 227 228 /* Length must align on block boundary */ 229 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 230 pr_debug("%s: length not block aligned\n", __func__); 231 ret = -EINVAL; 232 } 233 234 return ret; 235 } 236 237 /** 238 * nand_release_device - [GENERIC] release chip 239 * @mtd: MTD device structure 240 * 241 * Release chip lock and wake up anyone waiting on the device. 242 */ 243 static void nand_release_device(struct mtd_info *mtd) 244 { 245 struct nand_chip *chip = mtd_to_nand(mtd); 246 247 /* Release the controller and the chip */ 248 spin_lock(&chip->controller->lock); 249 chip->controller->active = NULL; 250 chip->state = FL_READY; 251 wake_up(&chip->controller->wq); 252 spin_unlock(&chip->controller->lock); 253 } 254 255 /** 256 * nand_read_byte - [DEFAULT] read one byte from the chip 257 * @mtd: MTD device structure 258 * 259 * Default read function for 8bit buswidth 260 */ 261 static uint8_t nand_read_byte(struct mtd_info *mtd) 262 { 263 struct nand_chip *chip = mtd_to_nand(mtd); 264 return readb(chip->IO_ADDR_R); 265 } 266 267 /** 268 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip 269 * @mtd: MTD device structure 270 * 271 * Default read function for 16bit buswidth with endianness conversion. 272 * 273 */ 274 static uint8_t nand_read_byte16(struct mtd_info *mtd) 275 { 276 struct nand_chip *chip = mtd_to_nand(mtd); 277 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R)); 278 } 279 280 /** 281 * nand_read_word - [DEFAULT] read one word from the chip 282 * @mtd: MTD device structure 283 * 284 * Default read function for 16bit buswidth without endianness conversion. 285 */ 286 static u16 nand_read_word(struct mtd_info *mtd) 287 { 288 struct nand_chip *chip = mtd_to_nand(mtd); 289 return readw(chip->IO_ADDR_R); 290 } 291 292 /** 293 * nand_select_chip - [DEFAULT] control CE line 294 * @mtd: MTD device structure 295 * @chipnr: chipnumber to select, -1 for deselect 296 * 297 * Default select function for 1 chip devices. 298 */ 299 static void nand_select_chip(struct mtd_info *mtd, int chipnr) 300 { 301 struct nand_chip *chip = mtd_to_nand(mtd); 302 303 switch (chipnr) { 304 case -1: 305 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); 306 break; 307 case 0: 308 break; 309 310 default: 311 BUG(); 312 } 313 } 314 315 /** 316 * nand_write_byte - [DEFAULT] write single byte to chip 317 * @mtd: MTD device structure 318 * @byte: value to write 319 * 320 * Default function to write a byte to I/O[7:0] 321 */ 322 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte) 323 { 324 struct nand_chip *chip = mtd_to_nand(mtd); 325 326 chip->write_buf(mtd, &byte, 1); 327 } 328 329 /** 330 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 331 * @mtd: MTD device structure 332 * @byte: value to write 333 * 334 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. 335 */ 336 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte) 337 { 338 struct nand_chip *chip = mtd_to_nand(mtd); 339 uint16_t word = byte; 340 341 /* 342 * It's not entirely clear what should happen to I/O[15:8] when writing 343 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: 344 * 345 * When the host supports a 16-bit bus width, only data is 346 * transferred at the 16-bit width. All address and command line 347 * transfers shall use only the lower 8-bits of the data bus. During 348 * command transfers, the host may place any value on the upper 349 * 8-bits of the data bus. During address transfers, the host shall 350 * set the upper 8-bits of the data bus to 00h. 351 * 352 * One user of the write_byte callback is nand_set_features. The 353 * four parameters are specified to be written to I/O[7:0], but this is 354 * neither an address nor a command transfer. Let's assume a 0 on the 355 * upper I/O lines is OK. 356 */ 357 chip->write_buf(mtd, (uint8_t *)&word, 2); 358 } 359 360 /** 361 * nand_write_buf - [DEFAULT] write buffer to chip 362 * @mtd: MTD device structure 363 * @buf: data buffer 364 * @len: number of bytes to write 365 * 366 * Default write function for 8bit buswidth. 367 */ 368 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) 369 { 370 struct nand_chip *chip = mtd_to_nand(mtd); 371 372 iowrite8_rep(chip->IO_ADDR_W, buf, len); 373 } 374 375 /** 376 * nand_read_buf - [DEFAULT] read chip data into buffer 377 * @mtd: MTD device structure 378 * @buf: buffer to store date 379 * @len: number of bytes to read 380 * 381 * Default read function for 8bit buswidth. 382 */ 383 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) 384 { 385 struct nand_chip *chip = mtd_to_nand(mtd); 386 387 ioread8_rep(chip->IO_ADDR_R, buf, len); 388 } 389 390 /** 391 * nand_write_buf16 - [DEFAULT] write buffer to chip 392 * @mtd: MTD device structure 393 * @buf: data buffer 394 * @len: number of bytes to write 395 * 396 * Default write function for 16bit buswidth. 397 */ 398 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) 399 { 400 struct nand_chip *chip = mtd_to_nand(mtd); 401 u16 *p = (u16 *) buf; 402 403 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1); 404 } 405 406 /** 407 * nand_read_buf16 - [DEFAULT] read chip data into buffer 408 * @mtd: MTD device structure 409 * @buf: buffer to store date 410 * @len: number of bytes to read 411 * 412 * Default read function for 16bit buswidth. 413 */ 414 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) 415 { 416 struct nand_chip *chip = mtd_to_nand(mtd); 417 u16 *p = (u16 *) buf; 418 419 ioread16_rep(chip->IO_ADDR_R, p, len >> 1); 420 } 421 422 /** 423 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 424 * @mtd: MTD device structure 425 * @ofs: offset from device start 426 * 427 * Check, if the block is bad. 428 */ 429 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs) 430 { 431 int page, page_end, res; 432 struct nand_chip *chip = mtd_to_nand(mtd); 433 u8 bad; 434 435 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) 436 ofs += mtd->erasesize - mtd->writesize; 437 438 page = (int)(ofs >> chip->page_shift) & chip->pagemask; 439 page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1); 440 441 for (; page < page_end; page++) { 442 res = chip->ecc.read_oob(mtd, chip, page); 443 if (res < 0) 444 return res; 445 446 bad = chip->oob_poi[chip->badblockpos]; 447 448 if (likely(chip->badblockbits == 8)) 449 res = bad != 0xFF; 450 else 451 res = hweight8(bad) < chip->badblockbits; 452 if (res) 453 return res; 454 } 455 456 return 0; 457 } 458 459 /** 460 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 461 * @mtd: MTD device structure 462 * @ofs: offset from device start 463 * 464 * This is the default implementation, which can be overridden by a hardware 465 * specific driver. It provides the details for writing a bad block marker to a 466 * block. 467 */ 468 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) 469 { 470 struct nand_chip *chip = mtd_to_nand(mtd); 471 struct mtd_oob_ops ops; 472 uint8_t buf[2] = { 0, 0 }; 473 int ret = 0, res, i = 0; 474 475 memset(&ops, 0, sizeof(ops)); 476 ops.oobbuf = buf; 477 ops.ooboffs = chip->badblockpos; 478 if (chip->options & NAND_BUSWIDTH_16) { 479 ops.ooboffs &= ~0x01; 480 ops.len = ops.ooblen = 2; 481 } else { 482 ops.len = ops.ooblen = 1; 483 } 484 ops.mode = MTD_OPS_PLACE_OOB; 485 486 /* Write to first/last page(s) if necessary */ 487 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) 488 ofs += mtd->erasesize - mtd->writesize; 489 do { 490 res = nand_do_write_oob(mtd, ofs, &ops); 491 if (!ret) 492 ret = res; 493 494 i++; 495 ofs += mtd->writesize; 496 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); 497 498 return ret; 499 } 500 501 /** 502 * nand_block_markbad_lowlevel - mark a block bad 503 * @mtd: MTD device structure 504 * @ofs: offset from device start 505 * 506 * This function performs the generic NAND bad block marking steps (i.e., bad 507 * block table(s) and/or marker(s)). We only allow the hardware driver to 508 * specify how to write bad block markers to OOB (chip->block_markbad). 509 * 510 * We try operations in the following order: 511 * 512 * (1) erase the affected block, to allow OOB marker to be written cleanly 513 * (2) write bad block marker to OOB area of affected block (unless flag 514 * NAND_BBT_NO_OOB_BBM is present) 515 * (3) update the BBT 516 * 517 * Note that we retain the first error encountered in (2) or (3), finish the 518 * procedures, and dump the error in the end. 519 */ 520 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs) 521 { 522 struct nand_chip *chip = mtd_to_nand(mtd); 523 int res, ret = 0; 524 525 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 526 struct erase_info einfo; 527 528 /* Attempt erase before marking OOB */ 529 memset(&einfo, 0, sizeof(einfo)); 530 einfo.addr = ofs; 531 einfo.len = 1ULL << chip->phys_erase_shift; 532 nand_erase_nand(mtd, &einfo, 0); 533 534 /* Write bad block marker to OOB */ 535 nand_get_device(mtd, FL_WRITING); 536 ret = chip->block_markbad(mtd, ofs); 537 nand_release_device(mtd); 538 } 539 540 /* Mark block bad in BBT */ 541 if (chip->bbt) { 542 res = nand_markbad_bbt(mtd, ofs); 543 if (!ret) 544 ret = res; 545 } 546 547 if (!ret) 548 mtd->ecc_stats.badblocks++; 549 550 return ret; 551 } 552 553 /** 554 * nand_check_wp - [GENERIC] check if the chip is write protected 555 * @mtd: MTD device structure 556 * 557 * Check, if the device is write protected. The function expects, that the 558 * device is already selected. 559 */ 560 static int nand_check_wp(struct mtd_info *mtd) 561 { 562 struct nand_chip *chip = mtd_to_nand(mtd); 563 u8 status; 564 int ret; 565 566 /* Broken xD cards report WP despite being writable */ 567 if (chip->options & NAND_BROKEN_XD) 568 return 0; 569 570 /* Check the WP bit */ 571 ret = nand_status_op(chip, &status); 572 if (ret) 573 return ret; 574 575 return status & NAND_STATUS_WP ? 0 : 1; 576 } 577 578 /** 579 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 580 * @mtd: MTD device structure 581 * @ofs: offset from device start 582 * 583 * Check if the block is marked as reserved. 584 */ 585 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 586 { 587 struct nand_chip *chip = mtd_to_nand(mtd); 588 589 if (!chip->bbt) 590 return 0; 591 /* Return info from the table */ 592 return nand_isreserved_bbt(mtd, ofs); 593 } 594 595 /** 596 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 597 * @mtd: MTD device structure 598 * @ofs: offset from device start 599 * @allowbbt: 1, if its allowed to access the bbt area 600 * 601 * Check, if the block is bad. Either by reading the bad block table or 602 * calling of the scan function. 603 */ 604 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt) 605 { 606 struct nand_chip *chip = mtd_to_nand(mtd); 607 608 if (!chip->bbt) 609 return chip->block_bad(mtd, ofs); 610 611 /* Return info from the table */ 612 return nand_isbad_bbt(mtd, ofs, allowbbt); 613 } 614 615 /** 616 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. 617 * @mtd: MTD device structure 618 * @timeo: Timeout 619 * 620 * Helper function for nand_wait_ready used when needing to wait in interrupt 621 * context. 622 */ 623 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) 624 { 625 struct nand_chip *chip = mtd_to_nand(mtd); 626 int i; 627 628 /* Wait for the device to get ready */ 629 for (i = 0; i < timeo; i++) { 630 if (chip->dev_ready(mtd)) 631 break; 632 touch_softlockup_watchdog(); 633 mdelay(1); 634 } 635 } 636 637 /** 638 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. 639 * @mtd: MTD device structure 640 * 641 * Wait for the ready pin after a command, and warn if a timeout occurs. 642 */ 643 void nand_wait_ready(struct mtd_info *mtd) 644 { 645 struct nand_chip *chip = mtd_to_nand(mtd); 646 unsigned long timeo = 400; 647 648 if (in_interrupt() || oops_in_progress) 649 return panic_nand_wait_ready(mtd, timeo); 650 651 /* Wait until command is processed or timeout occurs */ 652 timeo = jiffies + msecs_to_jiffies(timeo); 653 do { 654 if (chip->dev_ready(mtd)) 655 return; 656 cond_resched(); 657 } while (time_before(jiffies, timeo)); 658 659 if (!chip->dev_ready(mtd)) 660 pr_warn_ratelimited("timeout while waiting for chip to become ready\n"); 661 } 662 EXPORT_SYMBOL_GPL(nand_wait_ready); 663 664 /** 665 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. 666 * @mtd: MTD device structure 667 * @timeo: Timeout in ms 668 * 669 * Wait for status ready (i.e. command done) or timeout. 670 */ 671 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo) 672 { 673 register struct nand_chip *chip = mtd_to_nand(mtd); 674 int ret; 675 676 timeo = jiffies + msecs_to_jiffies(timeo); 677 do { 678 u8 status; 679 680 ret = nand_read_data_op(chip, &status, sizeof(status), true); 681 if (ret) 682 return; 683 684 if (status & NAND_STATUS_READY) 685 break; 686 touch_softlockup_watchdog(); 687 } while (time_before(jiffies, timeo)); 688 }; 689 690 /** 691 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 692 * @chip: NAND chip structure 693 * @timeout_ms: Timeout in ms 694 * 695 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 696 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 697 * returned. 698 * 699 * This helper is intended to be used when the controller does not have access 700 * to the NAND R/B pin. 701 * 702 * Be aware that calling this helper from an ->exec_op() implementation means 703 * ->exec_op() must be re-entrant. 704 * 705 * Return 0 if the NAND chip is ready, a negative error otherwise. 706 */ 707 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 708 { 709 const struct nand_sdr_timings *timings; 710 u8 status = 0; 711 int ret; 712 713 if (!chip->exec_op) 714 return -ENOTSUPP; 715 716 /* Wait tWB before polling the STATUS reg. */ 717 timings = nand_get_sdr_timings(&chip->data_interface); 718 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 719 720 ret = nand_status_op(chip, NULL); 721 if (ret) 722 return ret; 723 724 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); 725 do { 726 ret = nand_read_data_op(chip, &status, sizeof(status), true); 727 if (ret) 728 break; 729 730 if (status & NAND_STATUS_READY) 731 break; 732 733 /* 734 * Typical lowest execution time for a tR on most NANDs is 10us, 735 * use this as polling delay before doing something smarter (ie. 736 * deriving a delay from the timeout value, timeout_ms/ratio). 737 */ 738 udelay(10); 739 } while (time_before(jiffies, timeout_ms)); 740 741 /* 742 * We have to exit READ_STATUS mode in order to read real data on the 743 * bus in case the WAITRDY instruction is preceding a DATA_IN 744 * instruction. 745 */ 746 nand_exit_status_op(chip); 747 748 if (ret) 749 return ret; 750 751 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 752 }; 753 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 754 755 /** 756 * nand_command - [DEFAULT] Send command to NAND device 757 * @mtd: MTD device structure 758 * @command: the command to be sent 759 * @column: the column address for this command, -1 if none 760 * @page_addr: the page address for this command, -1 if none 761 * 762 * Send command to NAND device. This function is used for small page devices 763 * (512 Bytes per page). 764 */ 765 static void nand_command(struct mtd_info *mtd, unsigned int command, 766 int column, int page_addr) 767 { 768 register struct nand_chip *chip = mtd_to_nand(mtd); 769 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; 770 771 /* Write out the command to the device */ 772 if (command == NAND_CMD_SEQIN) { 773 int readcmd; 774 775 if (column >= mtd->writesize) { 776 /* OOB area */ 777 column -= mtd->writesize; 778 readcmd = NAND_CMD_READOOB; 779 } else if (column < 256) { 780 /* First 256 bytes --> READ0 */ 781 readcmd = NAND_CMD_READ0; 782 } else { 783 column -= 256; 784 readcmd = NAND_CMD_READ1; 785 } 786 chip->cmd_ctrl(mtd, readcmd, ctrl); 787 ctrl &= ~NAND_CTRL_CHANGE; 788 } 789 if (command != NAND_CMD_NONE) 790 chip->cmd_ctrl(mtd, command, ctrl); 791 792 /* Address cycle, when necessary */ 793 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; 794 /* Serially input address */ 795 if (column != -1) { 796 /* Adjust columns for 16 bit buswidth */ 797 if (chip->options & NAND_BUSWIDTH_16 && 798 !nand_opcode_8bits(command)) 799 column >>= 1; 800 chip->cmd_ctrl(mtd, column, ctrl); 801 ctrl &= ~NAND_CTRL_CHANGE; 802 } 803 if (page_addr != -1) { 804 chip->cmd_ctrl(mtd, page_addr, ctrl); 805 ctrl &= ~NAND_CTRL_CHANGE; 806 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl); 807 if (chip->options & NAND_ROW_ADDR_3) 808 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl); 809 } 810 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 811 812 /* 813 * Program and erase have their own busy handlers status and sequential 814 * in needs no delay 815 */ 816 switch (command) { 817 818 case NAND_CMD_NONE: 819 case NAND_CMD_PAGEPROG: 820 case NAND_CMD_ERASE1: 821 case NAND_CMD_ERASE2: 822 case NAND_CMD_SEQIN: 823 case NAND_CMD_STATUS: 824 case NAND_CMD_READID: 825 case NAND_CMD_SET_FEATURES: 826 return; 827 828 case NAND_CMD_RESET: 829 if (chip->dev_ready) 830 break; 831 udelay(chip->chip_delay); 832 chip->cmd_ctrl(mtd, NAND_CMD_STATUS, 833 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 834 chip->cmd_ctrl(mtd, 835 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 836 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ 837 nand_wait_status_ready(mtd, 250); 838 return; 839 840 /* This applies to read commands */ 841 case NAND_CMD_READ0: 842 /* 843 * READ0 is sometimes used to exit GET STATUS mode. When this 844 * is the case no address cycles are requested, and we can use 845 * this information to detect that we should not wait for the 846 * device to be ready. 847 */ 848 if (column == -1 && page_addr == -1) 849 return; 850 851 default: 852 /* 853 * If we don't have access to the busy pin, we apply the given 854 * command delay 855 */ 856 if (!chip->dev_ready) { 857 udelay(chip->chip_delay); 858 return; 859 } 860 } 861 /* 862 * Apply this short delay always to ensure that we do wait tWB in 863 * any case on any machine. 864 */ 865 ndelay(100); 866 867 nand_wait_ready(mtd); 868 } 869 870 static void nand_ccs_delay(struct nand_chip *chip) 871 { 872 /* 873 * The controller already takes care of waiting for tCCS when the RNDIN 874 * or RNDOUT command is sent, return directly. 875 */ 876 if (!(chip->options & NAND_WAIT_TCCS)) 877 return; 878 879 /* 880 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns 881 * (which should be safe for all NANDs). 882 */ 883 if (chip->setup_data_interface) 884 ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000); 885 else 886 ndelay(500); 887 } 888 889 /** 890 * nand_command_lp - [DEFAULT] Send command to NAND large page device 891 * @mtd: MTD device structure 892 * @command: the command to be sent 893 * @column: the column address for this command, -1 if none 894 * @page_addr: the page address for this command, -1 if none 895 * 896 * Send command to NAND device. This is the version for the new large page 897 * devices. We don't have the separate regions as we have in the small page 898 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. 899 */ 900 static void nand_command_lp(struct mtd_info *mtd, unsigned int command, 901 int column, int page_addr) 902 { 903 register struct nand_chip *chip = mtd_to_nand(mtd); 904 905 /* Emulate NAND_CMD_READOOB */ 906 if (command == NAND_CMD_READOOB) { 907 column += mtd->writesize; 908 command = NAND_CMD_READ0; 909 } 910 911 /* Command latch cycle */ 912 if (command != NAND_CMD_NONE) 913 chip->cmd_ctrl(mtd, command, 914 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 915 916 if (column != -1 || page_addr != -1) { 917 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; 918 919 /* Serially input address */ 920 if (column != -1) { 921 /* Adjust columns for 16 bit buswidth */ 922 if (chip->options & NAND_BUSWIDTH_16 && 923 !nand_opcode_8bits(command)) 924 column >>= 1; 925 chip->cmd_ctrl(mtd, column, ctrl); 926 ctrl &= ~NAND_CTRL_CHANGE; 927 928 /* Only output a single addr cycle for 8bits opcodes. */ 929 if (!nand_opcode_8bits(command)) 930 chip->cmd_ctrl(mtd, column >> 8, ctrl); 931 } 932 if (page_addr != -1) { 933 chip->cmd_ctrl(mtd, page_addr, ctrl); 934 chip->cmd_ctrl(mtd, page_addr >> 8, 935 NAND_NCE | NAND_ALE); 936 if (chip->options & NAND_ROW_ADDR_3) 937 chip->cmd_ctrl(mtd, page_addr >> 16, 938 NAND_NCE | NAND_ALE); 939 } 940 } 941 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 942 943 /* 944 * Program and erase have their own busy handlers status, sequential 945 * in and status need no delay. 946 */ 947 switch (command) { 948 949 case NAND_CMD_NONE: 950 case NAND_CMD_CACHEDPROG: 951 case NAND_CMD_PAGEPROG: 952 case NAND_CMD_ERASE1: 953 case NAND_CMD_ERASE2: 954 case NAND_CMD_SEQIN: 955 case NAND_CMD_STATUS: 956 case NAND_CMD_READID: 957 case NAND_CMD_SET_FEATURES: 958 return; 959 960 case NAND_CMD_RNDIN: 961 nand_ccs_delay(chip); 962 return; 963 964 case NAND_CMD_RESET: 965 if (chip->dev_ready) 966 break; 967 udelay(chip->chip_delay); 968 chip->cmd_ctrl(mtd, NAND_CMD_STATUS, 969 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 970 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 971 NAND_NCE | NAND_CTRL_CHANGE); 972 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ 973 nand_wait_status_ready(mtd, 250); 974 return; 975 976 case NAND_CMD_RNDOUT: 977 /* No ready / busy check necessary */ 978 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART, 979 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 980 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 981 NAND_NCE | NAND_CTRL_CHANGE); 982 983 nand_ccs_delay(chip); 984 return; 985 986 case NAND_CMD_READ0: 987 /* 988 * READ0 is sometimes used to exit GET STATUS mode. When this 989 * is the case no address cycles are requested, and we can use 990 * this information to detect that READSTART should not be 991 * issued. 992 */ 993 if (column == -1 && page_addr == -1) 994 return; 995 996 chip->cmd_ctrl(mtd, NAND_CMD_READSTART, 997 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); 998 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 999 NAND_NCE | NAND_CTRL_CHANGE); 1000 1001 /* This applies to read commands */ 1002 default: 1003 /* 1004 * If we don't have access to the busy pin, we apply the given 1005 * command delay. 1006 */ 1007 if (!chip->dev_ready) { 1008 udelay(chip->chip_delay); 1009 return; 1010 } 1011 } 1012 1013 /* 1014 * Apply this short delay always to ensure that we do wait tWB in 1015 * any case on any machine. 1016 */ 1017 ndelay(100); 1018 1019 nand_wait_ready(mtd); 1020 } 1021 1022 /** 1023 * panic_nand_get_device - [GENERIC] Get chip for selected access 1024 * @chip: the nand chip descriptor 1025 * @mtd: MTD device structure 1026 * @new_state: the state which is requested 1027 * 1028 * Used when in panic, no locks are taken. 1029 */ 1030 static void panic_nand_get_device(struct nand_chip *chip, 1031 struct mtd_info *mtd, int new_state) 1032 { 1033 /* Hardware controller shared among independent devices */ 1034 chip->controller->active = chip; 1035 chip->state = new_state; 1036 } 1037 1038 /** 1039 * nand_get_device - [GENERIC] Get chip for selected access 1040 * @mtd: MTD device structure 1041 * @new_state: the state which is requested 1042 * 1043 * Get the device and lock it for exclusive access 1044 */ 1045 static int 1046 nand_get_device(struct mtd_info *mtd, int new_state) 1047 { 1048 struct nand_chip *chip = mtd_to_nand(mtd); 1049 spinlock_t *lock = &chip->controller->lock; 1050 wait_queue_head_t *wq = &chip->controller->wq; 1051 DECLARE_WAITQUEUE(wait, current); 1052 retry: 1053 spin_lock(lock); 1054 1055 /* Hardware controller shared among independent devices */ 1056 if (!chip->controller->active) 1057 chip->controller->active = chip; 1058 1059 if (chip->controller->active == chip && chip->state == FL_READY) { 1060 chip->state = new_state; 1061 spin_unlock(lock); 1062 return 0; 1063 } 1064 if (new_state == FL_PM_SUSPENDED) { 1065 if (chip->controller->active->state == FL_PM_SUSPENDED) { 1066 chip->state = FL_PM_SUSPENDED; 1067 spin_unlock(lock); 1068 return 0; 1069 } 1070 } 1071 set_current_state(TASK_UNINTERRUPTIBLE); 1072 add_wait_queue(wq, &wait); 1073 spin_unlock(lock); 1074 schedule(); 1075 remove_wait_queue(wq, &wait); 1076 goto retry; 1077 } 1078 1079 /** 1080 * panic_nand_wait - [GENERIC] wait until the command is done 1081 * @mtd: MTD device structure 1082 * @chip: NAND chip structure 1083 * @timeo: timeout 1084 * 1085 * Wait for command done. This is a helper function for nand_wait used when 1086 * we are in interrupt context. May happen when in panic and trying to write 1087 * an oops through mtdoops. 1088 */ 1089 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, 1090 unsigned long timeo) 1091 { 1092 int i; 1093 for (i = 0; i < timeo; i++) { 1094 if (chip->dev_ready) { 1095 if (chip->dev_ready(mtd)) 1096 break; 1097 } else { 1098 int ret; 1099 u8 status; 1100 1101 ret = nand_read_data_op(chip, &status, sizeof(status), 1102 true); 1103 if (ret) 1104 return; 1105 1106 if (status & NAND_STATUS_READY) 1107 break; 1108 } 1109 mdelay(1); 1110 } 1111 } 1112 1113 /** 1114 * nand_wait - [DEFAULT] wait until the command is done 1115 * @mtd: MTD device structure 1116 * @chip: NAND chip structure 1117 * 1118 * Wait for command done. This applies to erase and program only. 1119 */ 1120 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) 1121 { 1122 1123 unsigned long timeo = 400; 1124 u8 status; 1125 int ret; 1126 1127 /* 1128 * Apply this short delay always to ensure that we do wait tWB in any 1129 * case on any machine. 1130 */ 1131 ndelay(100); 1132 1133 ret = nand_status_op(chip, NULL); 1134 if (ret) 1135 return ret; 1136 1137 if (in_interrupt() || oops_in_progress) 1138 panic_nand_wait(mtd, chip, timeo); 1139 else { 1140 timeo = jiffies + msecs_to_jiffies(timeo); 1141 do { 1142 if (chip->dev_ready) { 1143 if (chip->dev_ready(mtd)) 1144 break; 1145 } else { 1146 ret = nand_read_data_op(chip, &status, 1147 sizeof(status), true); 1148 if (ret) 1149 return ret; 1150 1151 if (status & NAND_STATUS_READY) 1152 break; 1153 } 1154 cond_resched(); 1155 } while (time_before(jiffies, timeo)); 1156 } 1157 1158 ret = nand_read_data_op(chip, &status, sizeof(status), true); 1159 if (ret) 1160 return ret; 1161 1162 /* This can happen if in case of timeout or buggy dev_ready */ 1163 WARN_ON(!(status & NAND_STATUS_READY)); 1164 return status; 1165 } 1166 1167 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 1168 { 1169 return (chip->parameters.supports_set_get_features && 1170 test_bit(addr, chip->parameters.get_feature_list)); 1171 } 1172 1173 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 1174 { 1175 return (chip->parameters.supports_set_get_features && 1176 test_bit(addr, chip->parameters.set_feature_list)); 1177 } 1178 1179 /** 1180 * nand_get_features - wrapper to perform a GET_FEATURE 1181 * @chip: NAND chip info structure 1182 * @addr: feature address 1183 * @subfeature_param: the subfeature parameters, a four bytes array 1184 * 1185 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 1186 * operation cannot be handled. 1187 */ 1188 int nand_get_features(struct nand_chip *chip, int addr, 1189 u8 *subfeature_param) 1190 { 1191 struct mtd_info *mtd = nand_to_mtd(chip); 1192 1193 if (!nand_supports_get_features(chip, addr)) 1194 return -ENOTSUPP; 1195 1196 return chip->get_features(mtd, chip, addr, subfeature_param); 1197 } 1198 EXPORT_SYMBOL_GPL(nand_get_features); 1199 1200 /** 1201 * nand_set_features - wrapper to perform a SET_FEATURE 1202 * @chip: NAND chip info structure 1203 * @addr: feature address 1204 * @subfeature_param: the subfeature parameters, a four bytes array 1205 * 1206 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 1207 * operation cannot be handled. 1208 */ 1209 int nand_set_features(struct nand_chip *chip, int addr, 1210 u8 *subfeature_param) 1211 { 1212 struct mtd_info *mtd = nand_to_mtd(chip); 1213 1214 if (!nand_supports_set_features(chip, addr)) 1215 return -ENOTSUPP; 1216 1217 return chip->set_features(mtd, chip, addr, subfeature_param); 1218 } 1219 EXPORT_SYMBOL_GPL(nand_set_features); 1220 1221 /** 1222 * nand_reset_data_interface - Reset data interface and timings 1223 * @chip: The NAND chip 1224 * @chipnr: Internal die id 1225 * 1226 * Reset the Data interface and timings to ONFI mode 0. 1227 * 1228 * Returns 0 for success or negative error code otherwise. 1229 */ 1230 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) 1231 { 1232 struct mtd_info *mtd = nand_to_mtd(chip); 1233 int ret; 1234 1235 if (!chip->setup_data_interface) 1236 return 0; 1237 1238 /* 1239 * The ONFI specification says: 1240 * " 1241 * To transition from NV-DDR or NV-DDR2 to the SDR data 1242 * interface, the host shall use the Reset (FFh) command 1243 * using SDR timing mode 0. A device in any timing mode is 1244 * required to recognize Reset (FFh) command issued in SDR 1245 * timing mode 0. 1246 * " 1247 * 1248 * Configure the data interface in SDR mode and set the 1249 * timings to timing mode 0. 1250 */ 1251 1252 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 1253 ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); 1254 if (ret) 1255 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 1256 1257 return ret; 1258 } 1259 1260 /** 1261 * nand_setup_data_interface - Setup the best data interface and timings 1262 * @chip: The NAND chip 1263 * @chipnr: Internal die id 1264 * 1265 * Find and configure the best data interface and NAND timings supported by 1266 * the chip and the driver. 1267 * First tries to retrieve supported timing modes from ONFI information, 1268 * and if the NAND chip does not support ONFI, relies on the 1269 * ->onfi_timing_mode_default specified in the nand_ids table. 1270 * 1271 * Returns 0 for success or negative error code otherwise. 1272 */ 1273 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) 1274 { 1275 struct mtd_info *mtd = nand_to_mtd(chip); 1276 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { 1277 chip->onfi_timing_mode_default, 1278 }; 1279 int ret; 1280 1281 if (!chip->setup_data_interface) 1282 return 0; 1283 1284 /* Change the mode on the chip side (if supported by the NAND chip) */ 1285 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 1286 chip->select_chip(mtd, chipnr); 1287 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 1288 tmode_param); 1289 chip->select_chip(mtd, -1); 1290 if (ret) 1291 return ret; 1292 } 1293 1294 /* Change the mode on the controller side */ 1295 ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); 1296 if (ret) 1297 return ret; 1298 1299 /* Check the mode has been accepted by the chip, if supported */ 1300 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 1301 return 0; 1302 1303 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 1304 chip->select_chip(mtd, chipnr); 1305 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 1306 tmode_param); 1307 chip->select_chip(mtd, -1); 1308 if (ret) 1309 goto err_reset_chip; 1310 1311 if (tmode_param[0] != chip->onfi_timing_mode_default) { 1312 pr_warn("timing mode %d not acknowledged by the NAND chip\n", 1313 chip->onfi_timing_mode_default); 1314 goto err_reset_chip; 1315 } 1316 1317 return 0; 1318 1319 err_reset_chip: 1320 /* 1321 * Fallback to mode 0 if the chip explicitly did not ack the chosen 1322 * timing mode. 1323 */ 1324 nand_reset_data_interface(chip, chipnr); 1325 chip->select_chip(mtd, chipnr); 1326 nand_reset_op(chip); 1327 chip->select_chip(mtd, -1); 1328 1329 return ret; 1330 } 1331 1332 /** 1333 * nand_init_data_interface - find the best data interface and timings 1334 * @chip: The NAND chip 1335 * 1336 * Find the best data interface and NAND timings supported by the chip 1337 * and the driver. 1338 * First tries to retrieve supported timing modes from ONFI information, 1339 * and if the NAND chip does not support ONFI, relies on the 1340 * ->onfi_timing_mode_default specified in the nand_ids table. After this 1341 * function nand_chip->data_interface is initialized with the best timing mode 1342 * available. 1343 * 1344 * Returns 0 for success or negative error code otherwise. 1345 */ 1346 static int nand_init_data_interface(struct nand_chip *chip) 1347 { 1348 struct mtd_info *mtd = nand_to_mtd(chip); 1349 int modes, mode, ret; 1350 1351 if (!chip->setup_data_interface) 1352 return 0; 1353 1354 /* 1355 * First try to identify the best timings from ONFI parameters and 1356 * if the NAND does not support ONFI, fallback to the default ONFI 1357 * timing mode. 1358 */ 1359 modes = onfi_get_async_timing_mode(chip); 1360 if (modes == ONFI_TIMING_MODE_UNKNOWN) { 1361 if (!chip->onfi_timing_mode_default) 1362 return 0; 1363 1364 modes = GENMASK(chip->onfi_timing_mode_default, 0); 1365 } 1366 1367 1368 for (mode = fls(modes) - 1; mode >= 0; mode--) { 1369 ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode); 1370 if (ret) 1371 continue; 1372 1373 /* 1374 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the 1375 * controller supports the requested timings. 1376 */ 1377 ret = chip->setup_data_interface(mtd, 1378 NAND_DATA_IFACE_CHECK_ONLY, 1379 &chip->data_interface); 1380 if (!ret) { 1381 chip->onfi_timing_mode_default = mode; 1382 break; 1383 } 1384 } 1385 1386 return 0; 1387 } 1388 1389 /** 1390 * nand_fill_column_cycles - fill the column cycles of an address 1391 * @chip: The NAND chip 1392 * @addrs: Array of address cycles to fill 1393 * @offset_in_page: The offset in the page 1394 * 1395 * Fills the first or the first two bytes of the @addrs field depending 1396 * on the NAND bus width and the page size. 1397 * 1398 * Returns the number of cycles needed to encode the column, or a negative 1399 * error code in case one of the arguments is invalid. 1400 */ 1401 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 1402 unsigned int offset_in_page) 1403 { 1404 struct mtd_info *mtd = nand_to_mtd(chip); 1405 1406 /* Make sure the offset is less than the actual page size. */ 1407 if (offset_in_page > mtd->writesize + mtd->oobsize) 1408 return -EINVAL; 1409 1410 /* 1411 * On small page NANDs, there's a dedicated command to access the OOB 1412 * area, and the column address is relative to the start of the OOB 1413 * area, not the start of the page. Asjust the address accordingly. 1414 */ 1415 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 1416 offset_in_page -= mtd->writesize; 1417 1418 /* 1419 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 1420 * wide, then it must be divided by 2. 1421 */ 1422 if (chip->options & NAND_BUSWIDTH_16) { 1423 if (WARN_ON(offset_in_page % 2)) 1424 return -EINVAL; 1425 1426 offset_in_page /= 2; 1427 } 1428 1429 addrs[0] = offset_in_page; 1430 1431 /* 1432 * Small page NANDs use 1 cycle for the columns, while large page NANDs 1433 * need 2 1434 */ 1435 if (mtd->writesize <= 512) 1436 return 1; 1437 1438 addrs[1] = offset_in_page >> 8; 1439 1440 return 2; 1441 } 1442 1443 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1444 unsigned int offset_in_page, void *buf, 1445 unsigned int len) 1446 { 1447 struct mtd_info *mtd = nand_to_mtd(chip); 1448 const struct nand_sdr_timings *sdr = 1449 nand_get_sdr_timings(&chip->data_interface); 1450 u8 addrs[4]; 1451 struct nand_op_instr instrs[] = { 1452 NAND_OP_CMD(NAND_CMD_READ0, 0), 1453 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), 1454 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1455 PSEC_TO_NSEC(sdr->tRR_min)), 1456 NAND_OP_DATA_IN(len, buf, 0), 1457 }; 1458 struct nand_operation op = NAND_OPERATION(instrs); 1459 int ret; 1460 1461 /* Drop the DATA_IN instruction if len is set to 0. */ 1462 if (!len) 1463 op.ninstrs--; 1464 1465 if (offset_in_page >= mtd->writesize) 1466 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1467 else if (offset_in_page >= 256 && 1468 !(chip->options & NAND_BUSWIDTH_16)) 1469 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1470 1471 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1472 if (ret < 0) 1473 return ret; 1474 1475 addrs[1] = page; 1476 addrs[2] = page >> 8; 1477 1478 if (chip->options & NAND_ROW_ADDR_3) { 1479 addrs[3] = page >> 16; 1480 instrs[1].ctx.addr.naddrs++; 1481 } 1482 1483 return nand_exec_op(chip, &op); 1484 } 1485 1486 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1487 unsigned int offset_in_page, void *buf, 1488 unsigned int len) 1489 { 1490 const struct nand_sdr_timings *sdr = 1491 nand_get_sdr_timings(&chip->data_interface); 1492 u8 addrs[5]; 1493 struct nand_op_instr instrs[] = { 1494 NAND_OP_CMD(NAND_CMD_READ0, 0), 1495 NAND_OP_ADDR(4, addrs, 0), 1496 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), 1497 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1498 PSEC_TO_NSEC(sdr->tRR_min)), 1499 NAND_OP_DATA_IN(len, buf, 0), 1500 }; 1501 struct nand_operation op = NAND_OPERATION(instrs); 1502 int ret; 1503 1504 /* Drop the DATA_IN instruction if len is set to 0. */ 1505 if (!len) 1506 op.ninstrs--; 1507 1508 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1509 if (ret < 0) 1510 return ret; 1511 1512 addrs[2] = page; 1513 addrs[3] = page >> 8; 1514 1515 if (chip->options & NAND_ROW_ADDR_3) { 1516 addrs[4] = page >> 16; 1517 instrs[1].ctx.addr.naddrs++; 1518 } 1519 1520 return nand_exec_op(chip, &op); 1521 } 1522 1523 /** 1524 * nand_read_page_op - Do a READ PAGE operation 1525 * @chip: The NAND chip 1526 * @page: page to read 1527 * @offset_in_page: offset within the page 1528 * @buf: buffer used to store the data 1529 * @len: length of the buffer 1530 * 1531 * This function issues a READ PAGE operation. 1532 * This function does not select/unselect the CS line. 1533 * 1534 * Returns 0 on success, a negative error code otherwise. 1535 */ 1536 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1537 unsigned int offset_in_page, void *buf, unsigned int len) 1538 { 1539 struct mtd_info *mtd = nand_to_mtd(chip); 1540 1541 if (len && !buf) 1542 return -EINVAL; 1543 1544 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1545 return -EINVAL; 1546 1547 if (chip->exec_op) { 1548 if (mtd->writesize > 512) 1549 return nand_lp_exec_read_page_op(chip, page, 1550 offset_in_page, buf, 1551 len); 1552 1553 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1554 buf, len); 1555 } 1556 1557 chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page); 1558 if (len) 1559 chip->read_buf(mtd, buf, len); 1560 1561 return 0; 1562 } 1563 EXPORT_SYMBOL_GPL(nand_read_page_op); 1564 1565 /** 1566 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1567 * @chip: The NAND chip 1568 * @page: parameter page to read 1569 * @buf: buffer used to store the data 1570 * @len: length of the buffer 1571 * 1572 * This function issues a READ PARAMETER PAGE operation. 1573 * This function does not select/unselect the CS line. 1574 * 1575 * Returns 0 on success, a negative error code otherwise. 1576 */ 1577 static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1578 unsigned int len) 1579 { 1580 struct mtd_info *mtd = nand_to_mtd(chip); 1581 unsigned int i; 1582 u8 *p = buf; 1583 1584 if (len && !buf) 1585 return -EINVAL; 1586 1587 if (chip->exec_op) { 1588 const struct nand_sdr_timings *sdr = 1589 nand_get_sdr_timings(&chip->data_interface); 1590 struct nand_op_instr instrs[] = { 1591 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1592 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), 1593 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1594 PSEC_TO_NSEC(sdr->tRR_min)), 1595 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1596 }; 1597 struct nand_operation op = NAND_OPERATION(instrs); 1598 1599 /* Drop the DATA_IN instruction if len is set to 0. */ 1600 if (!len) 1601 op.ninstrs--; 1602 1603 return nand_exec_op(chip, &op); 1604 } 1605 1606 chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1); 1607 for (i = 0; i < len; i++) 1608 p[i] = chip->read_byte(mtd); 1609 1610 return 0; 1611 } 1612 1613 /** 1614 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1615 * @chip: The NAND chip 1616 * @offset_in_page: offset within the page 1617 * @buf: buffer used to store the data 1618 * @len: length of the buffer 1619 * @force_8bit: force 8-bit bus access 1620 * 1621 * This function issues a CHANGE READ COLUMN operation. 1622 * This function does not select/unselect the CS line. 1623 * 1624 * Returns 0 on success, a negative error code otherwise. 1625 */ 1626 int nand_change_read_column_op(struct nand_chip *chip, 1627 unsigned int offset_in_page, void *buf, 1628 unsigned int len, bool force_8bit) 1629 { 1630 struct mtd_info *mtd = nand_to_mtd(chip); 1631 1632 if (len && !buf) 1633 return -EINVAL; 1634 1635 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1636 return -EINVAL; 1637 1638 /* Small page NANDs do not support column change. */ 1639 if (mtd->writesize <= 512) 1640 return -ENOTSUPP; 1641 1642 if (chip->exec_op) { 1643 const struct nand_sdr_timings *sdr = 1644 nand_get_sdr_timings(&chip->data_interface); 1645 u8 addrs[2] = {}; 1646 struct nand_op_instr instrs[] = { 1647 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1648 NAND_OP_ADDR(2, addrs, 0), 1649 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1650 PSEC_TO_NSEC(sdr->tCCS_min)), 1651 NAND_OP_DATA_IN(len, buf, 0), 1652 }; 1653 struct nand_operation op = NAND_OPERATION(instrs); 1654 int ret; 1655 1656 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1657 if (ret < 0) 1658 return ret; 1659 1660 /* Drop the DATA_IN instruction if len is set to 0. */ 1661 if (!len) 1662 op.ninstrs--; 1663 1664 instrs[3].ctx.data.force_8bit = force_8bit; 1665 1666 return nand_exec_op(chip, &op); 1667 } 1668 1669 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1); 1670 if (len) 1671 chip->read_buf(mtd, buf, len); 1672 1673 return 0; 1674 } 1675 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1676 1677 /** 1678 * nand_read_oob_op - Do a READ OOB operation 1679 * @chip: The NAND chip 1680 * @page: page to read 1681 * @offset_in_oob: offset within the OOB area 1682 * @buf: buffer used to store the data 1683 * @len: length of the buffer 1684 * 1685 * This function issues a READ OOB operation. 1686 * This function does not select/unselect the CS line. 1687 * 1688 * Returns 0 on success, a negative error code otherwise. 1689 */ 1690 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1691 unsigned int offset_in_oob, void *buf, unsigned int len) 1692 { 1693 struct mtd_info *mtd = nand_to_mtd(chip); 1694 1695 if (len && !buf) 1696 return -EINVAL; 1697 1698 if (offset_in_oob + len > mtd->oobsize) 1699 return -EINVAL; 1700 1701 if (chip->exec_op) 1702 return nand_read_page_op(chip, page, 1703 mtd->writesize + offset_in_oob, 1704 buf, len); 1705 1706 chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page); 1707 if (len) 1708 chip->read_buf(mtd, buf, len); 1709 1710 return 0; 1711 } 1712 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1713 1714 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1715 unsigned int offset_in_page, const void *buf, 1716 unsigned int len, bool prog) 1717 { 1718 struct mtd_info *mtd = nand_to_mtd(chip); 1719 const struct nand_sdr_timings *sdr = 1720 nand_get_sdr_timings(&chip->data_interface); 1721 u8 addrs[5] = {}; 1722 struct nand_op_instr instrs[] = { 1723 /* 1724 * The first instruction will be dropped if we're dealing 1725 * with a large page NAND and adjusted if we're dealing 1726 * with a small page NAND and the page offset is > 255. 1727 */ 1728 NAND_OP_CMD(NAND_CMD_READ0, 0), 1729 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1730 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), 1731 NAND_OP_DATA_OUT(len, buf, 0), 1732 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), 1733 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1734 }; 1735 struct nand_operation op = NAND_OPERATION(instrs); 1736 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1737 int ret; 1738 u8 status; 1739 1740 if (naddrs < 0) 1741 return naddrs; 1742 1743 addrs[naddrs++] = page; 1744 addrs[naddrs++] = page >> 8; 1745 if (chip->options & NAND_ROW_ADDR_3) 1746 addrs[naddrs++] = page >> 16; 1747 1748 instrs[2].ctx.addr.naddrs = naddrs; 1749 1750 /* Drop the last two instructions if we're not programming the page. */ 1751 if (!prog) { 1752 op.ninstrs -= 2; 1753 /* Also drop the DATA_OUT instruction if empty. */ 1754 if (!len) 1755 op.ninstrs--; 1756 } 1757 1758 if (mtd->writesize <= 512) { 1759 /* 1760 * Small pages need some more tweaking: we have to adjust the 1761 * first instruction depending on the page offset we're trying 1762 * to access. 1763 */ 1764 if (offset_in_page >= mtd->writesize) 1765 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1766 else if (offset_in_page >= 256 && 1767 !(chip->options & NAND_BUSWIDTH_16)) 1768 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1769 } else { 1770 /* 1771 * Drop the first command if we're dealing with a large page 1772 * NAND. 1773 */ 1774 op.instrs++; 1775 op.ninstrs--; 1776 } 1777 1778 ret = nand_exec_op(chip, &op); 1779 if (!prog || ret) 1780 return ret; 1781 1782 ret = nand_status_op(chip, &status); 1783 if (ret) 1784 return ret; 1785 1786 return status; 1787 } 1788 1789 /** 1790 * nand_prog_page_begin_op - starts a PROG PAGE operation 1791 * @chip: The NAND chip 1792 * @page: page to write 1793 * @offset_in_page: offset within the page 1794 * @buf: buffer containing the data to write to the page 1795 * @len: length of the buffer 1796 * 1797 * This function issues the first half of a PROG PAGE operation. 1798 * This function does not select/unselect the CS line. 1799 * 1800 * Returns 0 on success, a negative error code otherwise. 1801 */ 1802 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1803 unsigned int offset_in_page, const void *buf, 1804 unsigned int len) 1805 { 1806 struct mtd_info *mtd = nand_to_mtd(chip); 1807 1808 if (len && !buf) 1809 return -EINVAL; 1810 1811 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1812 return -EINVAL; 1813 1814 if (chip->exec_op) 1815 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1816 len, false); 1817 1818 chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); 1819 1820 if (buf) 1821 chip->write_buf(mtd, buf, len); 1822 1823 return 0; 1824 } 1825 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1826 1827 /** 1828 * nand_prog_page_end_op - ends a PROG PAGE operation 1829 * @chip: The NAND chip 1830 * 1831 * This function issues the second half of a PROG PAGE operation. 1832 * This function does not select/unselect the CS line. 1833 * 1834 * Returns 0 on success, a negative error code otherwise. 1835 */ 1836 int nand_prog_page_end_op(struct nand_chip *chip) 1837 { 1838 struct mtd_info *mtd = nand_to_mtd(chip); 1839 int ret; 1840 u8 status; 1841 1842 if (chip->exec_op) { 1843 const struct nand_sdr_timings *sdr = 1844 nand_get_sdr_timings(&chip->data_interface); 1845 struct nand_op_instr instrs[] = { 1846 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1847 PSEC_TO_NSEC(sdr->tWB_max)), 1848 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1849 }; 1850 struct nand_operation op = NAND_OPERATION(instrs); 1851 1852 ret = nand_exec_op(chip, &op); 1853 if (ret) 1854 return ret; 1855 1856 ret = nand_status_op(chip, &status); 1857 if (ret) 1858 return ret; 1859 } else { 1860 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); 1861 ret = chip->waitfunc(mtd, chip); 1862 if (ret < 0) 1863 return ret; 1864 1865 status = ret; 1866 } 1867 1868 if (status & NAND_STATUS_FAIL) 1869 return -EIO; 1870 1871 return 0; 1872 } 1873 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1874 1875 /** 1876 * nand_prog_page_op - Do a full PROG PAGE operation 1877 * @chip: The NAND chip 1878 * @page: page to write 1879 * @offset_in_page: offset within the page 1880 * @buf: buffer containing the data to write to the page 1881 * @len: length of the buffer 1882 * 1883 * This function issues a full PROG PAGE operation. 1884 * This function does not select/unselect the CS line. 1885 * 1886 * Returns 0 on success, a negative error code otherwise. 1887 */ 1888 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1889 unsigned int offset_in_page, const void *buf, 1890 unsigned int len) 1891 { 1892 struct mtd_info *mtd = nand_to_mtd(chip); 1893 int status; 1894 1895 if (!len || !buf) 1896 return -EINVAL; 1897 1898 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1899 return -EINVAL; 1900 1901 if (chip->exec_op) { 1902 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1903 len, true); 1904 } else { 1905 chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); 1906 chip->write_buf(mtd, buf, len); 1907 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); 1908 status = chip->waitfunc(mtd, chip); 1909 } 1910 1911 if (status & NAND_STATUS_FAIL) 1912 return -EIO; 1913 1914 return 0; 1915 } 1916 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1917 1918 /** 1919 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1920 * @chip: The NAND chip 1921 * @offset_in_page: offset within the page 1922 * @buf: buffer containing the data to send to the NAND 1923 * @len: length of the buffer 1924 * @force_8bit: force 8-bit bus access 1925 * 1926 * This function issues a CHANGE WRITE COLUMN operation. 1927 * This function does not select/unselect the CS line. 1928 * 1929 * Returns 0 on success, a negative error code otherwise. 1930 */ 1931 int nand_change_write_column_op(struct nand_chip *chip, 1932 unsigned int offset_in_page, 1933 const void *buf, unsigned int len, 1934 bool force_8bit) 1935 { 1936 struct mtd_info *mtd = nand_to_mtd(chip); 1937 1938 if (len && !buf) 1939 return -EINVAL; 1940 1941 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1942 return -EINVAL; 1943 1944 /* Small page NANDs do not support column change. */ 1945 if (mtd->writesize <= 512) 1946 return -ENOTSUPP; 1947 1948 if (chip->exec_op) { 1949 const struct nand_sdr_timings *sdr = 1950 nand_get_sdr_timings(&chip->data_interface); 1951 u8 addrs[2]; 1952 struct nand_op_instr instrs[] = { 1953 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1954 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), 1955 NAND_OP_DATA_OUT(len, buf, 0), 1956 }; 1957 struct nand_operation op = NAND_OPERATION(instrs); 1958 int ret; 1959 1960 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1961 if (ret < 0) 1962 return ret; 1963 1964 instrs[2].ctx.data.force_8bit = force_8bit; 1965 1966 /* Drop the DATA_OUT instruction if len is set to 0. */ 1967 if (!len) 1968 op.ninstrs--; 1969 1970 return nand_exec_op(chip, &op); 1971 } 1972 1973 chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1); 1974 if (len) 1975 chip->write_buf(mtd, buf, len); 1976 1977 return 0; 1978 } 1979 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1980 1981 /** 1982 * nand_readid_op - Do a READID operation 1983 * @chip: The NAND chip 1984 * @addr: address cycle to pass after the READID command 1985 * @buf: buffer used to store the ID 1986 * @len: length of the buffer 1987 * 1988 * This function sends a READID command and reads back the ID returned by the 1989 * NAND. 1990 * This function does not select/unselect the CS line. 1991 * 1992 * Returns 0 on success, a negative error code otherwise. 1993 */ 1994 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1995 unsigned int len) 1996 { 1997 struct mtd_info *mtd = nand_to_mtd(chip); 1998 unsigned int i; 1999 u8 *id = buf; 2000 2001 if (len && !buf) 2002 return -EINVAL; 2003 2004 if (chip->exec_op) { 2005 const struct nand_sdr_timings *sdr = 2006 nand_get_sdr_timings(&chip->data_interface); 2007 struct nand_op_instr instrs[] = { 2008 NAND_OP_CMD(NAND_CMD_READID, 0), 2009 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), 2010 NAND_OP_8BIT_DATA_IN(len, buf, 0), 2011 }; 2012 struct nand_operation op = NAND_OPERATION(instrs); 2013 2014 /* Drop the DATA_IN instruction if len is set to 0. */ 2015 if (!len) 2016 op.ninstrs--; 2017 2018 return nand_exec_op(chip, &op); 2019 } 2020 2021 chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1); 2022 2023 for (i = 0; i < len; i++) 2024 id[i] = chip->read_byte(mtd); 2025 2026 return 0; 2027 } 2028 EXPORT_SYMBOL_GPL(nand_readid_op); 2029 2030 /** 2031 * nand_status_op - Do a STATUS operation 2032 * @chip: The NAND chip 2033 * @status: out variable to store the NAND status 2034 * 2035 * This function sends a STATUS command and reads back the status returned by 2036 * the NAND. 2037 * This function does not select/unselect the CS line. 2038 * 2039 * Returns 0 on success, a negative error code otherwise. 2040 */ 2041 int nand_status_op(struct nand_chip *chip, u8 *status) 2042 { 2043 struct mtd_info *mtd = nand_to_mtd(chip); 2044 2045 if (chip->exec_op) { 2046 const struct nand_sdr_timings *sdr = 2047 nand_get_sdr_timings(&chip->data_interface); 2048 struct nand_op_instr instrs[] = { 2049 NAND_OP_CMD(NAND_CMD_STATUS, 2050 PSEC_TO_NSEC(sdr->tADL_min)), 2051 NAND_OP_8BIT_DATA_IN(1, status, 0), 2052 }; 2053 struct nand_operation op = NAND_OPERATION(instrs); 2054 2055 if (!status) 2056 op.ninstrs--; 2057 2058 return nand_exec_op(chip, &op); 2059 } 2060 2061 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); 2062 if (status) 2063 *status = chip->read_byte(mtd); 2064 2065 return 0; 2066 } 2067 EXPORT_SYMBOL_GPL(nand_status_op); 2068 2069 /** 2070 * nand_exit_status_op - Exit a STATUS operation 2071 * @chip: The NAND chip 2072 * 2073 * This function sends a READ0 command to cancel the effect of the STATUS 2074 * command to avoid reading only the status until a new read command is sent. 2075 * 2076 * This function does not select/unselect the CS line. 2077 * 2078 * Returns 0 on success, a negative error code otherwise. 2079 */ 2080 int nand_exit_status_op(struct nand_chip *chip) 2081 { 2082 struct mtd_info *mtd = nand_to_mtd(chip); 2083 2084 if (chip->exec_op) { 2085 struct nand_op_instr instrs[] = { 2086 NAND_OP_CMD(NAND_CMD_READ0, 0), 2087 }; 2088 struct nand_operation op = NAND_OPERATION(instrs); 2089 2090 return nand_exec_op(chip, &op); 2091 } 2092 2093 chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1); 2094 2095 return 0; 2096 } 2097 EXPORT_SYMBOL_GPL(nand_exit_status_op); 2098 2099 /** 2100 * nand_erase_op - Do an erase operation 2101 * @chip: The NAND chip 2102 * @eraseblock: block to erase 2103 * 2104 * This function sends an ERASE command and waits for the NAND to be ready 2105 * before returning. 2106 * This function does not select/unselect the CS line. 2107 * 2108 * Returns 0 on success, a negative error code otherwise. 2109 */ 2110 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 2111 { 2112 struct mtd_info *mtd = nand_to_mtd(chip); 2113 unsigned int page = eraseblock << 2114 (chip->phys_erase_shift - chip->page_shift); 2115 int ret; 2116 u8 status; 2117 2118 if (chip->exec_op) { 2119 const struct nand_sdr_timings *sdr = 2120 nand_get_sdr_timings(&chip->data_interface); 2121 u8 addrs[3] = { page, page >> 8, page >> 16 }; 2122 struct nand_op_instr instrs[] = { 2123 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 2124 NAND_OP_ADDR(2, addrs, 0), 2125 NAND_OP_CMD(NAND_CMD_ERASE2, 2126 PSEC_TO_MSEC(sdr->tWB_max)), 2127 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), 2128 }; 2129 struct nand_operation op = NAND_OPERATION(instrs); 2130 2131 if (chip->options & NAND_ROW_ADDR_3) 2132 instrs[1].ctx.addr.naddrs++; 2133 2134 ret = nand_exec_op(chip, &op); 2135 if (ret) 2136 return ret; 2137 2138 ret = nand_status_op(chip, &status); 2139 if (ret) 2140 return ret; 2141 } else { 2142 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); 2143 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); 2144 2145 ret = chip->waitfunc(mtd, chip); 2146 if (ret < 0) 2147 return ret; 2148 2149 status = ret; 2150 } 2151 2152 if (status & NAND_STATUS_FAIL) 2153 return -EIO; 2154 2155 return 0; 2156 } 2157 EXPORT_SYMBOL_GPL(nand_erase_op); 2158 2159 /** 2160 * nand_set_features_op - Do a SET FEATURES operation 2161 * @chip: The NAND chip 2162 * @feature: feature id 2163 * @data: 4 bytes of data 2164 * 2165 * This function sends a SET FEATURES command and waits for the NAND to be 2166 * ready before returning. 2167 * This function does not select/unselect the CS line. 2168 * 2169 * Returns 0 on success, a negative error code otherwise. 2170 */ 2171 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 2172 const void *data) 2173 { 2174 struct mtd_info *mtd = nand_to_mtd(chip); 2175 const u8 *params = data; 2176 int i, ret; 2177 2178 if (chip->exec_op) { 2179 const struct nand_sdr_timings *sdr = 2180 nand_get_sdr_timings(&chip->data_interface); 2181 struct nand_op_instr instrs[] = { 2182 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 2183 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), 2184 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 2185 PSEC_TO_NSEC(sdr->tWB_max)), 2186 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), 2187 }; 2188 struct nand_operation op = NAND_OPERATION(instrs); 2189 2190 return nand_exec_op(chip, &op); 2191 } 2192 2193 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1); 2194 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 2195 chip->write_byte(mtd, params[i]); 2196 2197 ret = chip->waitfunc(mtd, chip); 2198 if (ret < 0) 2199 return ret; 2200 2201 if (ret & NAND_STATUS_FAIL) 2202 return -EIO; 2203 2204 return 0; 2205 } 2206 2207 /** 2208 * nand_get_features_op - Do a GET FEATURES operation 2209 * @chip: The NAND chip 2210 * @feature: feature id 2211 * @data: 4 bytes of data 2212 * 2213 * This function sends a GET FEATURES command and waits for the NAND to be 2214 * ready before returning. 2215 * This function does not select/unselect the CS line. 2216 * 2217 * Returns 0 on success, a negative error code otherwise. 2218 */ 2219 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 2220 void *data) 2221 { 2222 struct mtd_info *mtd = nand_to_mtd(chip); 2223 u8 *params = data; 2224 int i; 2225 2226 if (chip->exec_op) { 2227 const struct nand_sdr_timings *sdr = 2228 nand_get_sdr_timings(&chip->data_interface); 2229 struct nand_op_instr instrs[] = { 2230 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 2231 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), 2232 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 2233 PSEC_TO_NSEC(sdr->tRR_min)), 2234 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 2235 data, 0), 2236 }; 2237 struct nand_operation op = NAND_OPERATION(instrs); 2238 2239 return nand_exec_op(chip, &op); 2240 } 2241 2242 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1); 2243 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 2244 params[i] = chip->read_byte(mtd); 2245 2246 return 0; 2247 } 2248 2249 /** 2250 * nand_reset_op - Do a reset operation 2251 * @chip: The NAND chip 2252 * 2253 * This function sends a RESET command and waits for the NAND to be ready 2254 * before returning. 2255 * This function does not select/unselect the CS line. 2256 * 2257 * Returns 0 on success, a negative error code otherwise. 2258 */ 2259 int nand_reset_op(struct nand_chip *chip) 2260 { 2261 struct mtd_info *mtd = nand_to_mtd(chip); 2262 2263 if (chip->exec_op) { 2264 const struct nand_sdr_timings *sdr = 2265 nand_get_sdr_timings(&chip->data_interface); 2266 struct nand_op_instr instrs[] = { 2267 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), 2268 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), 2269 }; 2270 struct nand_operation op = NAND_OPERATION(instrs); 2271 2272 return nand_exec_op(chip, &op); 2273 } 2274 2275 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); 2276 2277 return 0; 2278 } 2279 EXPORT_SYMBOL_GPL(nand_reset_op); 2280 2281 /** 2282 * nand_read_data_op - Read data from the NAND 2283 * @chip: The NAND chip 2284 * @buf: buffer used to store the data 2285 * @len: length of the buffer 2286 * @force_8bit: force 8-bit bus access 2287 * 2288 * This function does a raw data read on the bus. Usually used after launching 2289 * another NAND operation like nand_read_page_op(). 2290 * This function does not select/unselect the CS line. 2291 * 2292 * Returns 0 on success, a negative error code otherwise. 2293 */ 2294 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 2295 bool force_8bit) 2296 { 2297 struct mtd_info *mtd = nand_to_mtd(chip); 2298 2299 if (!len || !buf) 2300 return -EINVAL; 2301 2302 if (chip->exec_op) { 2303 struct nand_op_instr instrs[] = { 2304 NAND_OP_DATA_IN(len, buf, 0), 2305 }; 2306 struct nand_operation op = NAND_OPERATION(instrs); 2307 2308 instrs[0].ctx.data.force_8bit = force_8bit; 2309 2310 return nand_exec_op(chip, &op); 2311 } 2312 2313 if (force_8bit) { 2314 u8 *p = buf; 2315 unsigned int i; 2316 2317 for (i = 0; i < len; i++) 2318 p[i] = chip->read_byte(mtd); 2319 } else { 2320 chip->read_buf(mtd, buf, len); 2321 } 2322 2323 return 0; 2324 } 2325 EXPORT_SYMBOL_GPL(nand_read_data_op); 2326 2327 /** 2328 * nand_write_data_op - Write data from the NAND 2329 * @chip: The NAND chip 2330 * @buf: buffer containing the data to send on the bus 2331 * @len: length of the buffer 2332 * @force_8bit: force 8-bit bus access 2333 * 2334 * This function does a raw data write on the bus. Usually used after launching 2335 * another NAND operation like nand_write_page_begin_op(). 2336 * This function does not select/unselect the CS line. 2337 * 2338 * Returns 0 on success, a negative error code otherwise. 2339 */ 2340 int nand_write_data_op(struct nand_chip *chip, const void *buf, 2341 unsigned int len, bool force_8bit) 2342 { 2343 struct mtd_info *mtd = nand_to_mtd(chip); 2344 2345 if (!len || !buf) 2346 return -EINVAL; 2347 2348 if (chip->exec_op) { 2349 struct nand_op_instr instrs[] = { 2350 NAND_OP_DATA_OUT(len, buf, 0), 2351 }; 2352 struct nand_operation op = NAND_OPERATION(instrs); 2353 2354 instrs[0].ctx.data.force_8bit = force_8bit; 2355 2356 return nand_exec_op(chip, &op); 2357 } 2358 2359 if (force_8bit) { 2360 const u8 *p = buf; 2361 unsigned int i; 2362 2363 for (i = 0; i < len; i++) 2364 chip->write_byte(mtd, p[i]); 2365 } else { 2366 chip->write_buf(mtd, buf, len); 2367 } 2368 2369 return 0; 2370 } 2371 EXPORT_SYMBOL_GPL(nand_write_data_op); 2372 2373 /** 2374 * struct nand_op_parser_ctx - Context used by the parser 2375 * @instrs: array of all the instructions that must be addressed 2376 * @ninstrs: length of the @instrs array 2377 * @subop: Sub-operation to be passed to the NAND controller 2378 * 2379 * This structure is used by the core to split NAND operations into 2380 * sub-operations that can be handled by the NAND controller. 2381 */ 2382 struct nand_op_parser_ctx { 2383 const struct nand_op_instr *instrs; 2384 unsigned int ninstrs; 2385 struct nand_subop subop; 2386 }; 2387 2388 /** 2389 * nand_op_parser_must_split_instr - Checks if an instruction must be split 2390 * @pat: the parser pattern element that matches @instr 2391 * @instr: pointer to the instruction to check 2392 * @start_offset: this is an in/out parameter. If @instr has already been 2393 * split, then @start_offset is the offset from which to start 2394 * (either an address cycle or an offset in the data buffer). 2395 * Conversely, if the function returns true (ie. instr must be 2396 * split), this parameter is updated to point to the first 2397 * data/address cycle that has not been taken care of. 2398 * 2399 * Some NAND controllers are limited and cannot send X address cycles with a 2400 * unique operation, or cannot read/write more than Y bytes at the same time. 2401 * In this case, split the instruction that does not fit in a single 2402 * controller-operation into two or more chunks. 2403 * 2404 * Returns true if the instruction must be split, false otherwise. 2405 * The @start_offset parameter is also updated to the offset at which the next 2406 * bundle of instruction must start (if an address or a data instruction). 2407 */ 2408 static bool 2409 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 2410 const struct nand_op_instr *instr, 2411 unsigned int *start_offset) 2412 { 2413 switch (pat->type) { 2414 case NAND_OP_ADDR_INSTR: 2415 if (!pat->ctx.addr.maxcycles) 2416 break; 2417 2418 if (instr->ctx.addr.naddrs - *start_offset > 2419 pat->ctx.addr.maxcycles) { 2420 *start_offset += pat->ctx.addr.maxcycles; 2421 return true; 2422 } 2423 break; 2424 2425 case NAND_OP_DATA_IN_INSTR: 2426 case NAND_OP_DATA_OUT_INSTR: 2427 if (!pat->ctx.data.maxlen) 2428 break; 2429 2430 if (instr->ctx.data.len - *start_offset > 2431 pat->ctx.data.maxlen) { 2432 *start_offset += pat->ctx.data.maxlen; 2433 return true; 2434 } 2435 break; 2436 2437 default: 2438 break; 2439 } 2440 2441 return false; 2442 } 2443 2444 /** 2445 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2446 * remaining in the parser context 2447 * @pat: the pattern to test 2448 * @ctx: the parser context structure to match with the pattern @pat 2449 * 2450 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2451 * Returns true if this is the case, false ortherwise. When true is returned, 2452 * @ctx->subop is updated with the set of instructions to be passed to the 2453 * controller driver. 2454 */ 2455 static bool 2456 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2457 struct nand_op_parser_ctx *ctx) 2458 { 2459 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2460 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2461 const struct nand_op_instr *instr = ctx->subop.instrs; 2462 unsigned int i, ninstrs; 2463 2464 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2465 /* 2466 * The pattern instruction does not match the operation 2467 * instruction. If the instruction is marked optional in the 2468 * pattern definition, we skip the pattern element and continue 2469 * to the next one. If the element is mandatory, there's no 2470 * match and we can return false directly. 2471 */ 2472 if (instr->type != pat->elems[i].type) { 2473 if (!pat->elems[i].optional) 2474 return false; 2475 2476 continue; 2477 } 2478 2479 /* 2480 * Now check the pattern element constraints. If the pattern is 2481 * not able to handle the whole instruction in a single step, 2482 * we have to split it. 2483 * The last_instr_end_off value comes back updated to point to 2484 * the position where we have to split the instruction (the 2485 * start of the next subop chunk). 2486 */ 2487 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2488 &instr_offset)) { 2489 ninstrs++; 2490 i++; 2491 break; 2492 } 2493 2494 instr++; 2495 ninstrs++; 2496 instr_offset = 0; 2497 } 2498 2499 /* 2500 * This can happen if all instructions of a pattern are optional. 2501 * Still, if there's not at least one instruction handled by this 2502 * pattern, this is not a match, and we should try the next one (if 2503 * any). 2504 */ 2505 if (!ninstrs) 2506 return false; 2507 2508 /* 2509 * We had a match on the pattern head, but the pattern may be longer 2510 * than the instructions we're asked to execute. We need to make sure 2511 * there's no mandatory elements in the pattern tail. 2512 */ 2513 for (; i < pat->nelems; i++) { 2514 if (!pat->elems[i].optional) 2515 return false; 2516 } 2517 2518 /* 2519 * We have a match: update the subop structure accordingly and return 2520 * true. 2521 */ 2522 ctx->subop.ninstrs = ninstrs; 2523 ctx->subop.last_instr_end_off = instr_offset; 2524 2525 return true; 2526 } 2527 2528 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2529 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2530 { 2531 const struct nand_op_instr *instr; 2532 char *prefix = " "; 2533 unsigned int i; 2534 2535 pr_debug("executing subop:\n"); 2536 2537 for (i = 0; i < ctx->ninstrs; i++) { 2538 instr = &ctx->instrs[i]; 2539 2540 if (instr == &ctx->subop.instrs[0]) 2541 prefix = " ->"; 2542 2543 switch (instr->type) { 2544 case NAND_OP_CMD_INSTR: 2545 pr_debug("%sCMD [0x%02x]\n", prefix, 2546 instr->ctx.cmd.opcode); 2547 break; 2548 case NAND_OP_ADDR_INSTR: 2549 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, 2550 instr->ctx.addr.naddrs, 2551 instr->ctx.addr.naddrs < 64 ? 2552 instr->ctx.addr.naddrs : 64, 2553 instr->ctx.addr.addrs); 2554 break; 2555 case NAND_OP_DATA_IN_INSTR: 2556 pr_debug("%sDATA_IN [%d B%s]\n", prefix, 2557 instr->ctx.data.len, 2558 instr->ctx.data.force_8bit ? 2559 ", force 8-bit" : ""); 2560 break; 2561 case NAND_OP_DATA_OUT_INSTR: 2562 pr_debug("%sDATA_OUT [%d B%s]\n", prefix, 2563 instr->ctx.data.len, 2564 instr->ctx.data.force_8bit ? 2565 ", force 8-bit" : ""); 2566 break; 2567 case NAND_OP_WAITRDY_INSTR: 2568 pr_debug("%sWAITRDY [max %d ms]\n", prefix, 2569 instr->ctx.waitrdy.timeout_ms); 2570 break; 2571 } 2572 2573 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2574 prefix = " "; 2575 } 2576 } 2577 #else 2578 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2579 { 2580 /* NOP */ 2581 } 2582 #endif 2583 2584 /** 2585 * nand_op_parser_exec_op - exec_op parser 2586 * @chip: the NAND chip 2587 * @parser: patterns description provided by the controller driver 2588 * @op: the NAND operation to address 2589 * @check_only: when true, the function only checks if @op can be handled but 2590 * does not execute the operation 2591 * 2592 * Helper function designed to ease integration of NAND controller drivers that 2593 * only support a limited set of instruction sequences. The supported sequences 2594 * are described in @parser, and the framework takes care of splitting @op into 2595 * multiple sub-operations (if required) and pass them back to the ->exec() 2596 * callback of the matching pattern if @check_only is set to false. 2597 * 2598 * NAND controller drivers should call this function from their own ->exec_op() 2599 * implementation. 2600 * 2601 * Returns 0 on success, a negative error code otherwise. A failure can be 2602 * caused by an unsupported operation (none of the supported patterns is able 2603 * to handle the requested operation), or an error returned by one of the 2604 * matching pattern->exec() hook. 2605 */ 2606 int nand_op_parser_exec_op(struct nand_chip *chip, 2607 const struct nand_op_parser *parser, 2608 const struct nand_operation *op, bool check_only) 2609 { 2610 struct nand_op_parser_ctx ctx = { 2611 .subop.instrs = op->instrs, 2612 .instrs = op->instrs, 2613 .ninstrs = op->ninstrs, 2614 }; 2615 unsigned int i; 2616 2617 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2618 int ret; 2619 2620 for (i = 0; i < parser->npatterns; i++) { 2621 const struct nand_op_parser_pattern *pattern; 2622 2623 pattern = &parser->patterns[i]; 2624 if (!nand_op_parser_match_pat(pattern, &ctx)) 2625 continue; 2626 2627 nand_op_parser_trace(&ctx); 2628 2629 if (check_only) 2630 break; 2631 2632 ret = pattern->exec(chip, &ctx.subop); 2633 if (ret) 2634 return ret; 2635 2636 break; 2637 } 2638 2639 if (i == parser->npatterns) { 2640 pr_debug("->exec_op() parser: pattern not found!\n"); 2641 return -ENOTSUPP; 2642 } 2643 2644 /* 2645 * Update the context structure by pointing to the start of the 2646 * next subop. 2647 */ 2648 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2649 if (ctx.subop.last_instr_end_off) 2650 ctx.subop.instrs -= 1; 2651 2652 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2653 } 2654 2655 return 0; 2656 } 2657 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2658 2659 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2660 { 2661 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2662 instr->type == NAND_OP_DATA_OUT_INSTR); 2663 } 2664 2665 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2666 unsigned int instr_idx) 2667 { 2668 return subop && instr_idx < subop->ninstrs; 2669 } 2670 2671 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2672 unsigned int instr_idx) 2673 { 2674 if (instr_idx) 2675 return 0; 2676 2677 return subop->first_instr_start_off; 2678 } 2679 2680 /** 2681 * nand_subop_get_addr_start_off - Get the start offset in an address array 2682 * @subop: The entire sub-operation 2683 * @instr_idx: Index of the instruction inside the sub-operation 2684 * 2685 * During driver development, one could be tempted to directly use the 2686 * ->addr.addrs field of address instructions. This is wrong as address 2687 * instructions might be split. 2688 * 2689 * Given an address instruction, returns the offset of the first cycle to issue. 2690 */ 2691 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2692 unsigned int instr_idx) 2693 { 2694 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2695 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2696 return 0; 2697 2698 return nand_subop_get_start_off(subop, instr_idx); 2699 } 2700 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2701 2702 /** 2703 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2704 * @subop: The entire sub-operation 2705 * @instr_idx: Index of the instruction inside the sub-operation 2706 * 2707 * During driver development, one could be tempted to directly use the 2708 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2709 * might be split. 2710 * 2711 * Given an address instruction, returns the number of address cycle to issue. 2712 */ 2713 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2714 unsigned int instr_idx) 2715 { 2716 int start_off, end_off; 2717 2718 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2719 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2720 return 0; 2721 2722 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2723 2724 if (instr_idx == subop->ninstrs - 1 && 2725 subop->last_instr_end_off) 2726 end_off = subop->last_instr_end_off; 2727 else 2728 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2729 2730 return end_off - start_off; 2731 } 2732 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2733 2734 /** 2735 * nand_subop_get_data_start_off - Get the start offset in a data array 2736 * @subop: The entire sub-operation 2737 * @instr_idx: Index of the instruction inside the sub-operation 2738 * 2739 * During driver development, one could be tempted to directly use the 2740 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2741 * instructions might be split. 2742 * 2743 * Given a data instruction, returns the offset to start from. 2744 */ 2745 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2746 unsigned int instr_idx) 2747 { 2748 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2749 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2750 return 0; 2751 2752 return nand_subop_get_start_off(subop, instr_idx); 2753 } 2754 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2755 2756 /** 2757 * nand_subop_get_data_len - Get the number of bytes to retrieve 2758 * @subop: The entire sub-operation 2759 * @instr_idx: Index of the instruction inside the sub-operation 2760 * 2761 * During driver development, one could be tempted to directly use the 2762 * ->data->len field of a data instruction. This is wrong as data instructions 2763 * might be split. 2764 * 2765 * Returns the length of the chunk of data to send/receive. 2766 */ 2767 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2768 unsigned int instr_idx) 2769 { 2770 int start_off = 0, end_off; 2771 2772 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2773 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2774 return 0; 2775 2776 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2777 2778 if (instr_idx == subop->ninstrs - 1 && 2779 subop->last_instr_end_off) 2780 end_off = subop->last_instr_end_off; 2781 else 2782 end_off = subop->instrs[instr_idx].ctx.data.len; 2783 2784 return end_off - start_off; 2785 } 2786 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2787 2788 /** 2789 * nand_reset - Reset and initialize a NAND device 2790 * @chip: The NAND chip 2791 * @chipnr: Internal die id 2792 * 2793 * Save the timings data structure, then apply SDR timings mode 0 (see 2794 * nand_reset_data_interface for details), do the reset operation, and 2795 * apply back the previous timings. 2796 * 2797 * Returns 0 on success, a negative error code otherwise. 2798 */ 2799 int nand_reset(struct nand_chip *chip, int chipnr) 2800 { 2801 struct mtd_info *mtd = nand_to_mtd(chip); 2802 struct nand_data_interface saved_data_intf = chip->data_interface; 2803 int ret; 2804 2805 ret = nand_reset_data_interface(chip, chipnr); 2806 if (ret) 2807 return ret; 2808 2809 /* 2810 * The CS line has to be released before we can apply the new NAND 2811 * interface settings, hence this weird ->select_chip() dance. 2812 */ 2813 chip->select_chip(mtd, chipnr); 2814 ret = nand_reset_op(chip); 2815 chip->select_chip(mtd, -1); 2816 if (ret) 2817 return ret; 2818 2819 /* 2820 * A nand_reset_data_interface() put both the NAND chip and the NAND 2821 * controller in timings mode 0. If the default mode for this chip is 2822 * also 0, no need to proceed to the change again. Plus, at probe time, 2823 * nand_setup_data_interface() uses ->set/get_features() which would 2824 * fail anyway as the parameter page is not available yet. 2825 */ 2826 if (!chip->onfi_timing_mode_default) 2827 return 0; 2828 2829 chip->data_interface = saved_data_intf; 2830 ret = nand_setup_data_interface(chip, chipnr); 2831 if (ret) 2832 return ret; 2833 2834 return 0; 2835 } 2836 EXPORT_SYMBOL_GPL(nand_reset); 2837 2838 /** 2839 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2840 * @buf: buffer to test 2841 * @len: buffer length 2842 * @bitflips_threshold: maximum number of bitflips 2843 * 2844 * Check if a buffer contains only 0xff, which means the underlying region 2845 * has been erased and is ready to be programmed. 2846 * The bitflips_threshold specify the maximum number of bitflips before 2847 * considering the region is not erased. 2848 * Note: The logic of this function has been extracted from the memweight 2849 * implementation, except that nand_check_erased_buf function exit before 2850 * testing the whole buffer if the number of bitflips exceed the 2851 * bitflips_threshold value. 2852 * 2853 * Returns a positive number of bitflips less than or equal to 2854 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2855 * threshold. 2856 */ 2857 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2858 { 2859 const unsigned char *bitmap = buf; 2860 int bitflips = 0; 2861 int weight; 2862 2863 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2864 len--, bitmap++) { 2865 weight = hweight8(*bitmap); 2866 bitflips += BITS_PER_BYTE - weight; 2867 if (unlikely(bitflips > bitflips_threshold)) 2868 return -EBADMSG; 2869 } 2870 2871 for (; len >= sizeof(long); 2872 len -= sizeof(long), bitmap += sizeof(long)) { 2873 unsigned long d = *((unsigned long *)bitmap); 2874 if (d == ~0UL) 2875 continue; 2876 weight = hweight_long(d); 2877 bitflips += BITS_PER_LONG - weight; 2878 if (unlikely(bitflips > bitflips_threshold)) 2879 return -EBADMSG; 2880 } 2881 2882 for (; len > 0; len--, bitmap++) { 2883 weight = hweight8(*bitmap); 2884 bitflips += BITS_PER_BYTE - weight; 2885 if (unlikely(bitflips > bitflips_threshold)) 2886 return -EBADMSG; 2887 } 2888 2889 return bitflips; 2890 } 2891 2892 /** 2893 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2894 * 0xff data 2895 * @data: data buffer to test 2896 * @datalen: data length 2897 * @ecc: ECC buffer 2898 * @ecclen: ECC length 2899 * @extraoob: extra OOB buffer 2900 * @extraooblen: extra OOB length 2901 * @bitflips_threshold: maximum number of bitflips 2902 * 2903 * Check if a data buffer and its associated ECC and OOB data contains only 2904 * 0xff pattern, which means the underlying region has been erased and is 2905 * ready to be programmed. 2906 * The bitflips_threshold specify the maximum number of bitflips before 2907 * considering the region as not erased. 2908 * 2909 * Note: 2910 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2911 * different from the NAND page size. When fixing bitflips, ECC engines will 2912 * report the number of errors per chunk, and the NAND core infrastructure 2913 * expect you to return the maximum number of bitflips for the whole page. 2914 * This is why you should always use this function on a single chunk and 2915 * not on the whole page. After checking each chunk you should update your 2916 * max_bitflips value accordingly. 2917 * 2/ When checking for bitflips in erased pages you should not only check 2918 * the payload data but also their associated ECC data, because a user might 2919 * have programmed almost all bits to 1 but a few. In this case, we 2920 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2921 * this case. 2922 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2923 * data are protected by the ECC engine. 2924 * It could also be used if you support subpages and want to attach some 2925 * extra OOB data to an ECC chunk. 2926 * 2927 * Returns a positive number of bitflips less than or equal to 2928 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2929 * threshold. In case of success, the passed buffers are filled with 0xff. 2930 */ 2931 int nand_check_erased_ecc_chunk(void *data, int datalen, 2932 void *ecc, int ecclen, 2933 void *extraoob, int extraooblen, 2934 int bitflips_threshold) 2935 { 2936 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2937 2938 data_bitflips = nand_check_erased_buf(data, datalen, 2939 bitflips_threshold); 2940 if (data_bitflips < 0) 2941 return data_bitflips; 2942 2943 bitflips_threshold -= data_bitflips; 2944 2945 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2946 if (ecc_bitflips < 0) 2947 return ecc_bitflips; 2948 2949 bitflips_threshold -= ecc_bitflips; 2950 2951 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2952 bitflips_threshold); 2953 if (extraoob_bitflips < 0) 2954 return extraoob_bitflips; 2955 2956 if (data_bitflips) 2957 memset(data, 0xff, datalen); 2958 2959 if (ecc_bitflips) 2960 memset(ecc, 0xff, ecclen); 2961 2962 if (extraoob_bitflips) 2963 memset(extraoob, 0xff, extraooblen); 2964 2965 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2966 } 2967 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2968 2969 /** 2970 * nand_read_page_raw_notsupp - dummy read raw page function 2971 * @mtd: mtd info structure 2972 * @chip: nand chip info structure 2973 * @buf: buffer to store read data 2974 * @oob_required: caller requires OOB data read to chip->oob_poi 2975 * @page: page number to read 2976 * 2977 * Returns -ENOTSUPP unconditionally. 2978 */ 2979 int nand_read_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip, 2980 u8 *buf, int oob_required, int page) 2981 { 2982 return -ENOTSUPP; 2983 } 2984 EXPORT_SYMBOL(nand_read_page_raw_notsupp); 2985 2986 /** 2987 * nand_read_page_raw - [INTERN] read raw page data without ecc 2988 * @mtd: mtd info structure 2989 * @chip: nand chip info structure 2990 * @buf: buffer to store read data 2991 * @oob_required: caller requires OOB data read to chip->oob_poi 2992 * @page: page number to read 2993 * 2994 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2995 */ 2996 int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, 2997 uint8_t *buf, int oob_required, int page) 2998 { 2999 int ret; 3000 3001 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 3002 if (ret) 3003 return ret; 3004 3005 if (oob_required) { 3006 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 3007 false); 3008 if (ret) 3009 return ret; 3010 } 3011 3012 return 0; 3013 } 3014 EXPORT_SYMBOL(nand_read_page_raw); 3015 3016 /** 3017 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 3018 * @mtd: mtd info structure 3019 * @chip: nand chip info structure 3020 * @buf: buffer to store read data 3021 * @oob_required: caller requires OOB data read to chip->oob_poi 3022 * @page: page number to read 3023 * 3024 * We need a special oob layout and handling even when OOB isn't used. 3025 */ 3026 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, 3027 struct nand_chip *chip, uint8_t *buf, 3028 int oob_required, int page) 3029 { 3030 int eccsize = chip->ecc.size; 3031 int eccbytes = chip->ecc.bytes; 3032 uint8_t *oob = chip->oob_poi; 3033 int steps, size, ret; 3034 3035 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3036 if (ret) 3037 return ret; 3038 3039 for (steps = chip->ecc.steps; steps > 0; steps--) { 3040 ret = nand_read_data_op(chip, buf, eccsize, false); 3041 if (ret) 3042 return ret; 3043 3044 buf += eccsize; 3045 3046 if (chip->ecc.prepad) { 3047 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3048 false); 3049 if (ret) 3050 return ret; 3051 3052 oob += chip->ecc.prepad; 3053 } 3054 3055 ret = nand_read_data_op(chip, oob, eccbytes, false); 3056 if (ret) 3057 return ret; 3058 3059 oob += eccbytes; 3060 3061 if (chip->ecc.postpad) { 3062 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3063 false); 3064 if (ret) 3065 return ret; 3066 3067 oob += chip->ecc.postpad; 3068 } 3069 } 3070 3071 size = mtd->oobsize - (oob - chip->oob_poi); 3072 if (size) { 3073 ret = nand_read_data_op(chip, oob, size, false); 3074 if (ret) 3075 return ret; 3076 } 3077 3078 return 0; 3079 } 3080 3081 /** 3082 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 3083 * @mtd: mtd info structure 3084 * @chip: nand chip info structure 3085 * @buf: buffer to store read data 3086 * @oob_required: caller requires OOB data read to chip->oob_poi 3087 * @page: page number to read 3088 */ 3089 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, 3090 uint8_t *buf, int oob_required, int page) 3091 { 3092 int i, eccsize = chip->ecc.size, ret; 3093 int eccbytes = chip->ecc.bytes; 3094 int eccsteps = chip->ecc.steps; 3095 uint8_t *p = buf; 3096 uint8_t *ecc_calc = chip->ecc.calc_buf; 3097 uint8_t *ecc_code = chip->ecc.code_buf; 3098 unsigned int max_bitflips = 0; 3099 3100 chip->ecc.read_page_raw(mtd, chip, buf, 1, page); 3101 3102 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3103 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 3104 3105 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3106 chip->ecc.total); 3107 if (ret) 3108 return ret; 3109 3110 eccsteps = chip->ecc.steps; 3111 p = buf; 3112 3113 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3114 int stat; 3115 3116 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); 3117 if (stat < 0) { 3118 mtd->ecc_stats.failed++; 3119 } else { 3120 mtd->ecc_stats.corrected += stat; 3121 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3122 } 3123 } 3124 return max_bitflips; 3125 } 3126 3127 /** 3128 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 3129 * @mtd: mtd info structure 3130 * @chip: nand chip info structure 3131 * @data_offs: offset of requested data within the page 3132 * @readlen: data length 3133 * @bufpoi: buffer to store read data 3134 * @page: page number to read 3135 */ 3136 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, 3137 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi, 3138 int page) 3139 { 3140 int start_step, end_step, num_steps, ret; 3141 uint8_t *p; 3142 int data_col_addr, i, gaps = 0; 3143 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 3144 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 3145 int index, section = 0; 3146 unsigned int max_bitflips = 0; 3147 struct mtd_oob_region oobregion = { }; 3148 3149 /* Column address within the page aligned to ECC size (256bytes) */ 3150 start_step = data_offs / chip->ecc.size; 3151 end_step = (data_offs + readlen - 1) / chip->ecc.size; 3152 num_steps = end_step - start_step + 1; 3153 index = start_step * chip->ecc.bytes; 3154 3155 /* Data size aligned to ECC ecc.size */ 3156 datafrag_len = num_steps * chip->ecc.size; 3157 eccfrag_len = num_steps * chip->ecc.bytes; 3158 3159 data_col_addr = start_step * chip->ecc.size; 3160 /* If we read not a page aligned data */ 3161 p = bufpoi + data_col_addr; 3162 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 3163 if (ret) 3164 return ret; 3165 3166 /* Calculate ECC */ 3167 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 3168 chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]); 3169 3170 /* 3171 * The performance is faster if we position offsets according to 3172 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 3173 */ 3174 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 3175 if (ret) 3176 return ret; 3177 3178 if (oobregion.length < eccfrag_len) 3179 gaps = 1; 3180 3181 if (gaps) { 3182 ret = nand_change_read_column_op(chip, mtd->writesize, 3183 chip->oob_poi, mtd->oobsize, 3184 false); 3185 if (ret) 3186 return ret; 3187 } else { 3188 /* 3189 * Send the command to read the particular ECC bytes take care 3190 * about buswidth alignment in read_buf. 3191 */ 3192 aligned_pos = oobregion.offset & ~(busw - 1); 3193 aligned_len = eccfrag_len; 3194 if (oobregion.offset & (busw - 1)) 3195 aligned_len++; 3196 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 3197 (busw - 1)) 3198 aligned_len++; 3199 3200 ret = nand_change_read_column_op(chip, 3201 mtd->writesize + aligned_pos, 3202 &chip->oob_poi[aligned_pos], 3203 aligned_len, false); 3204 if (ret) 3205 return ret; 3206 } 3207 3208 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 3209 chip->oob_poi, index, eccfrag_len); 3210 if (ret) 3211 return ret; 3212 3213 p = bufpoi + data_col_addr; 3214 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 3215 int stat; 3216 3217 stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i], 3218 &chip->ecc.calc_buf[i]); 3219 if (stat == -EBADMSG && 3220 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3221 /* check for empty pages with bitflips */ 3222 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3223 &chip->ecc.code_buf[i], 3224 chip->ecc.bytes, 3225 NULL, 0, 3226 chip->ecc.strength); 3227 } 3228 3229 if (stat < 0) { 3230 mtd->ecc_stats.failed++; 3231 } else { 3232 mtd->ecc_stats.corrected += stat; 3233 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3234 } 3235 } 3236 return max_bitflips; 3237 } 3238 3239 /** 3240 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 3241 * @mtd: mtd info structure 3242 * @chip: nand chip info structure 3243 * @buf: buffer to store read data 3244 * @oob_required: caller requires OOB data read to chip->oob_poi 3245 * @page: page number to read 3246 * 3247 * Not for syndrome calculating ECC controllers which need a special oob layout. 3248 */ 3249 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, 3250 uint8_t *buf, int oob_required, int page) 3251 { 3252 int i, eccsize = chip->ecc.size, ret; 3253 int eccbytes = chip->ecc.bytes; 3254 int eccsteps = chip->ecc.steps; 3255 uint8_t *p = buf; 3256 uint8_t *ecc_calc = chip->ecc.calc_buf; 3257 uint8_t *ecc_code = chip->ecc.code_buf; 3258 unsigned int max_bitflips = 0; 3259 3260 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3261 if (ret) 3262 return ret; 3263 3264 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3265 chip->ecc.hwctl(mtd, NAND_ECC_READ); 3266 3267 ret = nand_read_data_op(chip, p, eccsize, false); 3268 if (ret) 3269 return ret; 3270 3271 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 3272 } 3273 3274 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3275 if (ret) 3276 return ret; 3277 3278 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3279 chip->ecc.total); 3280 if (ret) 3281 return ret; 3282 3283 eccsteps = chip->ecc.steps; 3284 p = buf; 3285 3286 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3287 int stat; 3288 3289 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); 3290 if (stat == -EBADMSG && 3291 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3292 /* check for empty pages with bitflips */ 3293 stat = nand_check_erased_ecc_chunk(p, eccsize, 3294 &ecc_code[i], eccbytes, 3295 NULL, 0, 3296 chip->ecc.strength); 3297 } 3298 3299 if (stat < 0) { 3300 mtd->ecc_stats.failed++; 3301 } else { 3302 mtd->ecc_stats.corrected += stat; 3303 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3304 } 3305 } 3306 return max_bitflips; 3307 } 3308 3309 /** 3310 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first 3311 * @mtd: mtd info structure 3312 * @chip: nand chip info structure 3313 * @buf: buffer to store read data 3314 * @oob_required: caller requires OOB data read to chip->oob_poi 3315 * @page: page number to read 3316 * 3317 * Hardware ECC for large page chips, require OOB to be read first. For this 3318 * ECC mode, the write_page method is re-used from ECC_HW. These methods 3319 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with 3320 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from 3321 * the data area, by overwriting the NAND manufacturer bad block markings. 3322 */ 3323 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, 3324 struct nand_chip *chip, uint8_t *buf, int oob_required, int page) 3325 { 3326 int i, eccsize = chip->ecc.size, ret; 3327 int eccbytes = chip->ecc.bytes; 3328 int eccsteps = chip->ecc.steps; 3329 uint8_t *p = buf; 3330 uint8_t *ecc_code = chip->ecc.code_buf; 3331 uint8_t *ecc_calc = chip->ecc.calc_buf; 3332 unsigned int max_bitflips = 0; 3333 3334 /* Read the OOB area first */ 3335 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3336 if (ret) 3337 return ret; 3338 3339 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3340 if (ret) 3341 return ret; 3342 3343 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3344 chip->ecc.total); 3345 if (ret) 3346 return ret; 3347 3348 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3349 int stat; 3350 3351 chip->ecc.hwctl(mtd, NAND_ECC_READ); 3352 3353 ret = nand_read_data_op(chip, p, eccsize, false); 3354 if (ret) 3355 return ret; 3356 3357 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 3358 3359 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); 3360 if (stat == -EBADMSG && 3361 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3362 /* check for empty pages with bitflips */ 3363 stat = nand_check_erased_ecc_chunk(p, eccsize, 3364 &ecc_code[i], eccbytes, 3365 NULL, 0, 3366 chip->ecc.strength); 3367 } 3368 3369 if (stat < 0) { 3370 mtd->ecc_stats.failed++; 3371 } else { 3372 mtd->ecc_stats.corrected += stat; 3373 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3374 } 3375 } 3376 return max_bitflips; 3377 } 3378 3379 /** 3380 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 3381 * @mtd: mtd info structure 3382 * @chip: nand chip info structure 3383 * @buf: buffer to store read data 3384 * @oob_required: caller requires OOB data read to chip->oob_poi 3385 * @page: page number to read 3386 * 3387 * The hw generator calculates the error syndrome automatically. Therefore we 3388 * need a special oob layout and handling. 3389 */ 3390 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, 3391 uint8_t *buf, int oob_required, int page) 3392 { 3393 int ret, i, eccsize = chip->ecc.size; 3394 int eccbytes = chip->ecc.bytes; 3395 int eccsteps = chip->ecc.steps; 3396 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 3397 uint8_t *p = buf; 3398 uint8_t *oob = chip->oob_poi; 3399 unsigned int max_bitflips = 0; 3400 3401 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3402 if (ret) 3403 return ret; 3404 3405 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3406 int stat; 3407 3408 chip->ecc.hwctl(mtd, NAND_ECC_READ); 3409 3410 ret = nand_read_data_op(chip, p, eccsize, false); 3411 if (ret) 3412 return ret; 3413 3414 if (chip->ecc.prepad) { 3415 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3416 false); 3417 if (ret) 3418 return ret; 3419 3420 oob += chip->ecc.prepad; 3421 } 3422 3423 chip->ecc.hwctl(mtd, NAND_ECC_READSYN); 3424 3425 ret = nand_read_data_op(chip, oob, eccbytes, false); 3426 if (ret) 3427 return ret; 3428 3429 stat = chip->ecc.correct(mtd, p, oob, NULL); 3430 3431 oob += eccbytes; 3432 3433 if (chip->ecc.postpad) { 3434 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3435 false); 3436 if (ret) 3437 return ret; 3438 3439 oob += chip->ecc.postpad; 3440 } 3441 3442 if (stat == -EBADMSG && 3443 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3444 /* check for empty pages with bitflips */ 3445 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3446 oob - eccpadbytes, 3447 eccpadbytes, 3448 NULL, 0, 3449 chip->ecc.strength); 3450 } 3451 3452 if (stat < 0) { 3453 mtd->ecc_stats.failed++; 3454 } else { 3455 mtd->ecc_stats.corrected += stat; 3456 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3457 } 3458 } 3459 3460 /* Calculate remaining oob bytes */ 3461 i = mtd->oobsize - (oob - chip->oob_poi); 3462 if (i) { 3463 ret = nand_read_data_op(chip, oob, i, false); 3464 if (ret) 3465 return ret; 3466 } 3467 3468 return max_bitflips; 3469 } 3470 3471 /** 3472 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3473 * @mtd: mtd info structure 3474 * @oob: oob destination address 3475 * @ops: oob ops structure 3476 * @len: size of oob to transfer 3477 */ 3478 static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob, 3479 struct mtd_oob_ops *ops, size_t len) 3480 { 3481 struct nand_chip *chip = mtd_to_nand(mtd); 3482 int ret; 3483 3484 switch (ops->mode) { 3485 3486 case MTD_OPS_PLACE_OOB: 3487 case MTD_OPS_RAW: 3488 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3489 return oob + len; 3490 3491 case MTD_OPS_AUTO_OOB: 3492 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3493 ops->ooboffs, len); 3494 BUG_ON(ret); 3495 return oob + len; 3496 3497 default: 3498 BUG(); 3499 } 3500 return NULL; 3501 } 3502 3503 /** 3504 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3505 * @mtd: MTD device structure 3506 * @retry_mode: the retry mode to use 3507 * 3508 * Some vendors supply a special command to shift the Vt threshold, to be used 3509 * when there are too many bitflips in a page (i.e., ECC error). After setting 3510 * a new threshold, the host should retry reading the page. 3511 */ 3512 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) 3513 { 3514 struct nand_chip *chip = mtd_to_nand(mtd); 3515 3516 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3517 3518 if (retry_mode >= chip->read_retries) 3519 return -EINVAL; 3520 3521 if (!chip->setup_read_retry) 3522 return -EOPNOTSUPP; 3523 3524 return chip->setup_read_retry(mtd, retry_mode); 3525 } 3526 3527 /** 3528 * nand_do_read_ops - [INTERN] Read data with ECC 3529 * @mtd: MTD device structure 3530 * @from: offset to read from 3531 * @ops: oob ops structure 3532 * 3533 * Internal function. Called with chip held. 3534 */ 3535 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, 3536 struct mtd_oob_ops *ops) 3537 { 3538 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3539 struct nand_chip *chip = mtd_to_nand(mtd); 3540 int ret = 0; 3541 uint32_t readlen = ops->len; 3542 uint32_t oobreadlen = ops->ooblen; 3543 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3544 3545 uint8_t *bufpoi, *oob, *buf; 3546 int use_bufpoi; 3547 unsigned int max_bitflips = 0; 3548 int retry_mode = 0; 3549 bool ecc_fail = false; 3550 3551 chipnr = (int)(from >> chip->chip_shift); 3552 chip->select_chip(mtd, chipnr); 3553 3554 realpage = (int)(from >> chip->page_shift); 3555 page = realpage & chip->pagemask; 3556 3557 col = (int)(from & (mtd->writesize - 1)); 3558 3559 buf = ops->datbuf; 3560 oob = ops->oobbuf; 3561 oob_required = oob ? 1 : 0; 3562 3563 while (1) { 3564 unsigned int ecc_failures = mtd->ecc_stats.failed; 3565 3566 bytes = min(mtd->writesize - col, readlen); 3567 aligned = (bytes == mtd->writesize); 3568 3569 if (!aligned) 3570 use_bufpoi = 1; 3571 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 3572 use_bufpoi = !virt_addr_valid(buf) || 3573 !IS_ALIGNED((unsigned long)buf, 3574 chip->buf_align); 3575 else 3576 use_bufpoi = 0; 3577 3578 /* Is the current page in the buffer? */ 3579 if (realpage != chip->pagebuf || oob) { 3580 bufpoi = use_bufpoi ? chip->data_buf : buf; 3581 3582 if (use_bufpoi && aligned) 3583 pr_debug("%s: using read bounce buffer for buf@%p\n", 3584 __func__, buf); 3585 3586 read_retry: 3587 /* 3588 * Now read the page into the buffer. Absent an error, 3589 * the read methods return max bitflips per ecc step. 3590 */ 3591 if (unlikely(ops->mode == MTD_OPS_RAW)) 3592 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, 3593 oob_required, 3594 page); 3595 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3596 !oob) 3597 ret = chip->ecc.read_subpage(mtd, chip, 3598 col, bytes, bufpoi, 3599 page); 3600 else 3601 ret = chip->ecc.read_page(mtd, chip, bufpoi, 3602 oob_required, page); 3603 if (ret < 0) { 3604 if (use_bufpoi) 3605 /* Invalidate page cache */ 3606 chip->pagebuf = -1; 3607 break; 3608 } 3609 3610 /* Transfer not aligned data */ 3611 if (use_bufpoi) { 3612 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3613 !(mtd->ecc_stats.failed - ecc_failures) && 3614 (ops->mode != MTD_OPS_RAW)) { 3615 chip->pagebuf = realpage; 3616 chip->pagebuf_bitflips = ret; 3617 } else { 3618 /* Invalidate page cache */ 3619 chip->pagebuf = -1; 3620 } 3621 memcpy(buf, chip->data_buf + col, bytes); 3622 } 3623 3624 if (unlikely(oob)) { 3625 int toread = min(oobreadlen, max_oobsize); 3626 3627 if (toread) { 3628 oob = nand_transfer_oob(mtd, 3629 oob, ops, toread); 3630 oobreadlen -= toread; 3631 } 3632 } 3633 3634 if (chip->options & NAND_NEED_READRDY) { 3635 /* Apply delay or wait for ready/busy pin */ 3636 if (!chip->dev_ready) 3637 udelay(chip->chip_delay); 3638 else 3639 nand_wait_ready(mtd); 3640 } 3641 3642 if (mtd->ecc_stats.failed - ecc_failures) { 3643 if (retry_mode + 1 < chip->read_retries) { 3644 retry_mode++; 3645 ret = nand_setup_read_retry(mtd, 3646 retry_mode); 3647 if (ret < 0) 3648 break; 3649 3650 /* Reset failures; retry */ 3651 mtd->ecc_stats.failed = ecc_failures; 3652 goto read_retry; 3653 } else { 3654 /* No more retry modes; real failure */ 3655 ecc_fail = true; 3656 } 3657 } 3658 3659 buf += bytes; 3660 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3661 } else { 3662 memcpy(buf, chip->data_buf + col, bytes); 3663 buf += bytes; 3664 max_bitflips = max_t(unsigned int, max_bitflips, 3665 chip->pagebuf_bitflips); 3666 } 3667 3668 readlen -= bytes; 3669 3670 /* Reset to retry mode 0 */ 3671 if (retry_mode) { 3672 ret = nand_setup_read_retry(mtd, 0); 3673 if (ret < 0) 3674 break; 3675 retry_mode = 0; 3676 } 3677 3678 if (!readlen) 3679 break; 3680 3681 /* For subsequent reads align to page boundary */ 3682 col = 0; 3683 /* Increment page address */ 3684 realpage++; 3685 3686 page = realpage & chip->pagemask; 3687 /* Check, if we cross a chip boundary */ 3688 if (!page) { 3689 chipnr++; 3690 chip->select_chip(mtd, -1); 3691 chip->select_chip(mtd, chipnr); 3692 } 3693 } 3694 chip->select_chip(mtd, -1); 3695 3696 ops->retlen = ops->len - (size_t) readlen; 3697 if (oob) 3698 ops->oobretlen = ops->ooblen - oobreadlen; 3699 3700 if (ret < 0) 3701 return ret; 3702 3703 if (ecc_fail) 3704 return -EBADMSG; 3705 3706 return max_bitflips; 3707 } 3708 3709 /** 3710 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3711 * @mtd: mtd info structure 3712 * @chip: nand chip info structure 3713 * @page: page number to read 3714 */ 3715 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) 3716 { 3717 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3718 } 3719 EXPORT_SYMBOL(nand_read_oob_std); 3720 3721 /** 3722 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3723 * with syndromes 3724 * @mtd: mtd info structure 3725 * @chip: nand chip info structure 3726 * @page: page number to read 3727 */ 3728 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, 3729 int page) 3730 { 3731 int length = mtd->oobsize; 3732 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3733 int eccsize = chip->ecc.size; 3734 uint8_t *bufpoi = chip->oob_poi; 3735 int i, toread, sndrnd = 0, pos, ret; 3736 3737 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3738 if (ret) 3739 return ret; 3740 3741 for (i = 0; i < chip->ecc.steps; i++) { 3742 if (sndrnd) { 3743 int ret; 3744 3745 pos = eccsize + i * (eccsize + chunk); 3746 if (mtd->writesize > 512) 3747 ret = nand_change_read_column_op(chip, pos, 3748 NULL, 0, 3749 false); 3750 else 3751 ret = nand_read_page_op(chip, page, pos, NULL, 3752 0); 3753 3754 if (ret) 3755 return ret; 3756 } else 3757 sndrnd = 1; 3758 toread = min_t(int, length, chunk); 3759 3760 ret = nand_read_data_op(chip, bufpoi, toread, false); 3761 if (ret) 3762 return ret; 3763 3764 bufpoi += toread; 3765 length -= toread; 3766 } 3767 if (length > 0) { 3768 ret = nand_read_data_op(chip, bufpoi, length, false); 3769 if (ret) 3770 return ret; 3771 } 3772 3773 return 0; 3774 } 3775 EXPORT_SYMBOL(nand_read_oob_syndrome); 3776 3777 /** 3778 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3779 * @mtd: mtd info structure 3780 * @chip: nand chip info structure 3781 * @page: page number to write 3782 */ 3783 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) 3784 { 3785 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3786 mtd->oobsize); 3787 } 3788 EXPORT_SYMBOL(nand_write_oob_std); 3789 3790 /** 3791 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3792 * with syndrome - only for large page flash 3793 * @mtd: mtd info structure 3794 * @chip: nand chip info structure 3795 * @page: page number to write 3796 */ 3797 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, 3798 int page) 3799 { 3800 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3801 int eccsize = chip->ecc.size, length = mtd->oobsize; 3802 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3803 const uint8_t *bufpoi = chip->oob_poi; 3804 3805 /* 3806 * data-ecc-data-ecc ... ecc-oob 3807 * or 3808 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3809 */ 3810 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3811 pos = steps * (eccsize + chunk); 3812 steps = 0; 3813 } else 3814 pos = eccsize; 3815 3816 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3817 if (ret) 3818 return ret; 3819 3820 for (i = 0; i < steps; i++) { 3821 if (sndcmd) { 3822 if (mtd->writesize <= 512) { 3823 uint32_t fill = 0xFFFFFFFF; 3824 3825 len = eccsize; 3826 while (len > 0) { 3827 int num = min_t(int, len, 4); 3828 3829 ret = nand_write_data_op(chip, &fill, 3830 num, false); 3831 if (ret) 3832 return ret; 3833 3834 len -= num; 3835 } 3836 } else { 3837 pos = eccsize + i * (eccsize + chunk); 3838 ret = nand_change_write_column_op(chip, pos, 3839 NULL, 0, 3840 false); 3841 if (ret) 3842 return ret; 3843 } 3844 } else 3845 sndcmd = 1; 3846 len = min_t(int, length, chunk); 3847 3848 ret = nand_write_data_op(chip, bufpoi, len, false); 3849 if (ret) 3850 return ret; 3851 3852 bufpoi += len; 3853 length -= len; 3854 } 3855 if (length > 0) { 3856 ret = nand_write_data_op(chip, bufpoi, length, false); 3857 if (ret) 3858 return ret; 3859 } 3860 3861 return nand_prog_page_end_op(chip); 3862 } 3863 EXPORT_SYMBOL(nand_write_oob_syndrome); 3864 3865 /** 3866 * nand_do_read_oob - [INTERN] NAND read out-of-band 3867 * @mtd: MTD device structure 3868 * @from: offset to read from 3869 * @ops: oob operations description structure 3870 * 3871 * NAND read out-of-band data from the spare area. 3872 */ 3873 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, 3874 struct mtd_oob_ops *ops) 3875 { 3876 unsigned int max_bitflips = 0; 3877 int page, realpage, chipnr; 3878 struct nand_chip *chip = mtd_to_nand(mtd); 3879 struct mtd_ecc_stats stats; 3880 int readlen = ops->ooblen; 3881 int len; 3882 uint8_t *buf = ops->oobbuf; 3883 int ret = 0; 3884 3885 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3886 __func__, (unsigned long long)from, readlen); 3887 3888 stats = mtd->ecc_stats; 3889 3890 len = mtd_oobavail(mtd, ops); 3891 3892 chipnr = (int)(from >> chip->chip_shift); 3893 chip->select_chip(mtd, chipnr); 3894 3895 /* Shift to get page */ 3896 realpage = (int)(from >> chip->page_shift); 3897 page = realpage & chip->pagemask; 3898 3899 while (1) { 3900 if (ops->mode == MTD_OPS_RAW) 3901 ret = chip->ecc.read_oob_raw(mtd, chip, page); 3902 else 3903 ret = chip->ecc.read_oob(mtd, chip, page); 3904 3905 if (ret < 0) 3906 break; 3907 3908 len = min(len, readlen); 3909 buf = nand_transfer_oob(mtd, buf, ops, len); 3910 3911 if (chip->options & NAND_NEED_READRDY) { 3912 /* Apply delay or wait for ready/busy pin */ 3913 if (!chip->dev_ready) 3914 udelay(chip->chip_delay); 3915 else 3916 nand_wait_ready(mtd); 3917 } 3918 3919 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3920 3921 readlen -= len; 3922 if (!readlen) 3923 break; 3924 3925 /* Increment page address */ 3926 realpage++; 3927 3928 page = realpage & chip->pagemask; 3929 /* Check, if we cross a chip boundary */ 3930 if (!page) { 3931 chipnr++; 3932 chip->select_chip(mtd, -1); 3933 chip->select_chip(mtd, chipnr); 3934 } 3935 } 3936 chip->select_chip(mtd, -1); 3937 3938 ops->oobretlen = ops->ooblen - readlen; 3939 3940 if (ret < 0) 3941 return ret; 3942 3943 if (mtd->ecc_stats.failed - stats.failed) 3944 return -EBADMSG; 3945 3946 return max_bitflips; 3947 } 3948 3949 /** 3950 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3951 * @mtd: MTD device structure 3952 * @from: offset to read from 3953 * @ops: oob operation description structure 3954 * 3955 * NAND read data and/or out-of-band data. 3956 */ 3957 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3958 struct mtd_oob_ops *ops) 3959 { 3960 int ret; 3961 3962 ops->retlen = 0; 3963 3964 if (ops->mode != MTD_OPS_PLACE_OOB && 3965 ops->mode != MTD_OPS_AUTO_OOB && 3966 ops->mode != MTD_OPS_RAW) 3967 return -ENOTSUPP; 3968 3969 nand_get_device(mtd, FL_READING); 3970 3971 if (!ops->datbuf) 3972 ret = nand_do_read_oob(mtd, from, ops); 3973 else 3974 ret = nand_do_read_ops(mtd, from, ops); 3975 3976 nand_release_device(mtd); 3977 return ret; 3978 } 3979 3980 /** 3981 * nand_write_page_raw_notsupp - dummy raw page write function 3982 * @mtd: mtd info structure 3983 * @chip: nand chip info structure 3984 * @buf: data buffer 3985 * @oob_required: must write chip->oob_poi to OOB 3986 * @page: page number to write 3987 * 3988 * Returns -ENOTSUPP unconditionally. 3989 */ 3990 int nand_write_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip, 3991 const u8 *buf, int oob_required, int page) 3992 { 3993 return -ENOTSUPP; 3994 } 3995 EXPORT_SYMBOL(nand_write_page_raw_notsupp); 3996 3997 /** 3998 * nand_write_page_raw - [INTERN] raw page write function 3999 * @mtd: mtd info structure 4000 * @chip: nand chip info structure 4001 * @buf: data buffer 4002 * @oob_required: must write chip->oob_poi to OOB 4003 * @page: page number to write 4004 * 4005 * Not for syndrome calculating ECC controllers, which use a special oob layout. 4006 */ 4007 int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, 4008 const uint8_t *buf, int oob_required, int page) 4009 { 4010 int ret; 4011 4012 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 4013 if (ret) 4014 return ret; 4015 4016 if (oob_required) { 4017 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 4018 false); 4019 if (ret) 4020 return ret; 4021 } 4022 4023 return nand_prog_page_end_op(chip); 4024 } 4025 EXPORT_SYMBOL(nand_write_page_raw); 4026 4027 /** 4028 * nand_write_page_raw_syndrome - [INTERN] raw page write function 4029 * @mtd: mtd info structure 4030 * @chip: nand chip info structure 4031 * @buf: data buffer 4032 * @oob_required: must write chip->oob_poi to OOB 4033 * @page: page number to write 4034 * 4035 * We need a special oob layout and handling even when ECC isn't checked. 4036 */ 4037 static int nand_write_page_raw_syndrome(struct mtd_info *mtd, 4038 struct nand_chip *chip, 4039 const uint8_t *buf, int oob_required, 4040 int page) 4041 { 4042 int eccsize = chip->ecc.size; 4043 int eccbytes = chip->ecc.bytes; 4044 uint8_t *oob = chip->oob_poi; 4045 int steps, size, ret; 4046 4047 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4048 if (ret) 4049 return ret; 4050 4051 for (steps = chip->ecc.steps; steps > 0; steps--) { 4052 ret = nand_write_data_op(chip, buf, eccsize, false); 4053 if (ret) 4054 return ret; 4055 4056 buf += eccsize; 4057 4058 if (chip->ecc.prepad) { 4059 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4060 false); 4061 if (ret) 4062 return ret; 4063 4064 oob += chip->ecc.prepad; 4065 } 4066 4067 ret = nand_write_data_op(chip, oob, eccbytes, false); 4068 if (ret) 4069 return ret; 4070 4071 oob += eccbytes; 4072 4073 if (chip->ecc.postpad) { 4074 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4075 false); 4076 if (ret) 4077 return ret; 4078 4079 oob += chip->ecc.postpad; 4080 } 4081 } 4082 4083 size = mtd->oobsize - (oob - chip->oob_poi); 4084 if (size) { 4085 ret = nand_write_data_op(chip, oob, size, false); 4086 if (ret) 4087 return ret; 4088 } 4089 4090 return nand_prog_page_end_op(chip); 4091 } 4092 /** 4093 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 4094 * @mtd: mtd info structure 4095 * @chip: nand chip info structure 4096 * @buf: data buffer 4097 * @oob_required: must write chip->oob_poi to OOB 4098 * @page: page number to write 4099 */ 4100 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, 4101 const uint8_t *buf, int oob_required, 4102 int page) 4103 { 4104 int i, eccsize = chip->ecc.size, ret; 4105 int eccbytes = chip->ecc.bytes; 4106 int eccsteps = chip->ecc.steps; 4107 uint8_t *ecc_calc = chip->ecc.calc_buf; 4108 const uint8_t *p = buf; 4109 4110 /* Software ECC calculation */ 4111 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 4112 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 4113 4114 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4115 chip->ecc.total); 4116 if (ret) 4117 return ret; 4118 4119 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page); 4120 } 4121 4122 /** 4123 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 4124 * @mtd: mtd info structure 4125 * @chip: nand chip info structure 4126 * @buf: data buffer 4127 * @oob_required: must write chip->oob_poi to OOB 4128 * @page: page number to write 4129 */ 4130 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, 4131 const uint8_t *buf, int oob_required, 4132 int page) 4133 { 4134 int i, eccsize = chip->ecc.size, ret; 4135 int eccbytes = chip->ecc.bytes; 4136 int eccsteps = chip->ecc.steps; 4137 uint8_t *ecc_calc = chip->ecc.calc_buf; 4138 const uint8_t *p = buf; 4139 4140 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4141 if (ret) 4142 return ret; 4143 4144 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4145 chip->ecc.hwctl(mtd, NAND_ECC_WRITE); 4146 4147 ret = nand_write_data_op(chip, p, eccsize, false); 4148 if (ret) 4149 return ret; 4150 4151 chip->ecc.calculate(mtd, p, &ecc_calc[i]); 4152 } 4153 4154 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4155 chip->ecc.total); 4156 if (ret) 4157 return ret; 4158 4159 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4160 if (ret) 4161 return ret; 4162 4163 return nand_prog_page_end_op(chip); 4164 } 4165 4166 4167 /** 4168 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 4169 * @mtd: mtd info structure 4170 * @chip: nand chip info structure 4171 * @offset: column address of subpage within the page 4172 * @data_len: data length 4173 * @buf: data buffer 4174 * @oob_required: must write chip->oob_poi to OOB 4175 * @page: page number to write 4176 */ 4177 static int nand_write_subpage_hwecc(struct mtd_info *mtd, 4178 struct nand_chip *chip, uint32_t offset, 4179 uint32_t data_len, const uint8_t *buf, 4180 int oob_required, int page) 4181 { 4182 uint8_t *oob_buf = chip->oob_poi; 4183 uint8_t *ecc_calc = chip->ecc.calc_buf; 4184 int ecc_size = chip->ecc.size; 4185 int ecc_bytes = chip->ecc.bytes; 4186 int ecc_steps = chip->ecc.steps; 4187 uint32_t start_step = offset / ecc_size; 4188 uint32_t end_step = (offset + data_len - 1) / ecc_size; 4189 int oob_bytes = mtd->oobsize / ecc_steps; 4190 int step, ret; 4191 4192 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4193 if (ret) 4194 return ret; 4195 4196 for (step = 0; step < ecc_steps; step++) { 4197 /* configure controller for WRITE access */ 4198 chip->ecc.hwctl(mtd, NAND_ECC_WRITE); 4199 4200 /* write data (untouched subpages already masked by 0xFF) */ 4201 ret = nand_write_data_op(chip, buf, ecc_size, false); 4202 if (ret) 4203 return ret; 4204 4205 /* mask ECC of un-touched subpages by padding 0xFF */ 4206 if ((step < start_step) || (step > end_step)) 4207 memset(ecc_calc, 0xff, ecc_bytes); 4208 else 4209 chip->ecc.calculate(mtd, buf, ecc_calc); 4210 4211 /* mask OOB of un-touched subpages by padding 0xFF */ 4212 /* if oob_required, preserve OOB metadata of written subpage */ 4213 if (!oob_required || (step < start_step) || (step > end_step)) 4214 memset(oob_buf, 0xff, oob_bytes); 4215 4216 buf += ecc_size; 4217 ecc_calc += ecc_bytes; 4218 oob_buf += oob_bytes; 4219 } 4220 4221 /* copy calculated ECC for whole page to chip->buffer->oob */ 4222 /* this include masked-value(0xFF) for unwritten subpages */ 4223 ecc_calc = chip->ecc.calc_buf; 4224 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4225 chip->ecc.total); 4226 if (ret) 4227 return ret; 4228 4229 /* write OOB buffer to NAND device */ 4230 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4231 if (ret) 4232 return ret; 4233 4234 return nand_prog_page_end_op(chip); 4235 } 4236 4237 4238 /** 4239 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 4240 * @mtd: mtd info structure 4241 * @chip: nand chip info structure 4242 * @buf: data buffer 4243 * @oob_required: must write chip->oob_poi to OOB 4244 * @page: page number to write 4245 * 4246 * The hw generator calculates the error syndrome automatically. Therefore we 4247 * need a special oob layout and handling. 4248 */ 4249 static int nand_write_page_syndrome(struct mtd_info *mtd, 4250 struct nand_chip *chip, 4251 const uint8_t *buf, int oob_required, 4252 int page) 4253 { 4254 int i, eccsize = chip->ecc.size; 4255 int eccbytes = chip->ecc.bytes; 4256 int eccsteps = chip->ecc.steps; 4257 const uint8_t *p = buf; 4258 uint8_t *oob = chip->oob_poi; 4259 int ret; 4260 4261 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4262 if (ret) 4263 return ret; 4264 4265 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4266 chip->ecc.hwctl(mtd, NAND_ECC_WRITE); 4267 4268 ret = nand_write_data_op(chip, p, eccsize, false); 4269 if (ret) 4270 return ret; 4271 4272 if (chip->ecc.prepad) { 4273 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4274 false); 4275 if (ret) 4276 return ret; 4277 4278 oob += chip->ecc.prepad; 4279 } 4280 4281 chip->ecc.calculate(mtd, p, oob); 4282 4283 ret = nand_write_data_op(chip, oob, eccbytes, false); 4284 if (ret) 4285 return ret; 4286 4287 oob += eccbytes; 4288 4289 if (chip->ecc.postpad) { 4290 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4291 false); 4292 if (ret) 4293 return ret; 4294 4295 oob += chip->ecc.postpad; 4296 } 4297 } 4298 4299 /* Calculate remaining oob bytes */ 4300 i = mtd->oobsize - (oob - chip->oob_poi); 4301 if (i) { 4302 ret = nand_write_data_op(chip, oob, i, false); 4303 if (ret) 4304 return ret; 4305 } 4306 4307 return nand_prog_page_end_op(chip); 4308 } 4309 4310 /** 4311 * nand_write_page - write one page 4312 * @mtd: MTD device structure 4313 * @chip: NAND chip descriptor 4314 * @offset: address offset within the page 4315 * @data_len: length of actual data to be written 4316 * @buf: the data to write 4317 * @oob_required: must write chip->oob_poi to OOB 4318 * @page: page number to write 4319 * @raw: use _raw version of write_page 4320 */ 4321 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, 4322 uint32_t offset, int data_len, const uint8_t *buf, 4323 int oob_required, int page, int raw) 4324 { 4325 int status, subpage; 4326 4327 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 4328 chip->ecc.write_subpage) 4329 subpage = offset || (data_len < mtd->writesize); 4330 else 4331 subpage = 0; 4332 4333 if (unlikely(raw)) 4334 status = chip->ecc.write_page_raw(mtd, chip, buf, 4335 oob_required, page); 4336 else if (subpage) 4337 status = chip->ecc.write_subpage(mtd, chip, offset, data_len, 4338 buf, oob_required, page); 4339 else 4340 status = chip->ecc.write_page(mtd, chip, buf, oob_required, 4341 page); 4342 4343 if (status < 0) 4344 return status; 4345 4346 return 0; 4347 } 4348 4349 /** 4350 * nand_fill_oob - [INTERN] Transfer client buffer to oob 4351 * @mtd: MTD device structure 4352 * @oob: oob data buffer 4353 * @len: oob data write length 4354 * @ops: oob ops structure 4355 */ 4356 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, 4357 struct mtd_oob_ops *ops) 4358 { 4359 struct nand_chip *chip = mtd_to_nand(mtd); 4360 int ret; 4361 4362 /* 4363 * Initialise to all 0xFF, to avoid the possibility of left over OOB 4364 * data from a previous OOB read. 4365 */ 4366 memset(chip->oob_poi, 0xff, mtd->oobsize); 4367 4368 switch (ops->mode) { 4369 4370 case MTD_OPS_PLACE_OOB: 4371 case MTD_OPS_RAW: 4372 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 4373 return oob + len; 4374 4375 case MTD_OPS_AUTO_OOB: 4376 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 4377 ops->ooboffs, len); 4378 BUG_ON(ret); 4379 return oob + len; 4380 4381 default: 4382 BUG(); 4383 } 4384 return NULL; 4385 } 4386 4387 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 4388 4389 /** 4390 * nand_do_write_ops - [INTERN] NAND write with ECC 4391 * @mtd: MTD device structure 4392 * @to: offset to write to 4393 * @ops: oob operations description structure 4394 * 4395 * NAND write with ECC. 4396 */ 4397 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, 4398 struct mtd_oob_ops *ops) 4399 { 4400 int chipnr, realpage, page, column; 4401 struct nand_chip *chip = mtd_to_nand(mtd); 4402 uint32_t writelen = ops->len; 4403 4404 uint32_t oobwritelen = ops->ooblen; 4405 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 4406 4407 uint8_t *oob = ops->oobbuf; 4408 uint8_t *buf = ops->datbuf; 4409 int ret; 4410 int oob_required = oob ? 1 : 0; 4411 4412 ops->retlen = 0; 4413 if (!writelen) 4414 return 0; 4415 4416 /* Reject writes, which are not page aligned */ 4417 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 4418 pr_notice("%s: attempt to write non page aligned data\n", 4419 __func__); 4420 return -EINVAL; 4421 } 4422 4423 column = to & (mtd->writesize - 1); 4424 4425 chipnr = (int)(to >> chip->chip_shift); 4426 chip->select_chip(mtd, chipnr); 4427 4428 /* Check, if it is write protected */ 4429 if (nand_check_wp(mtd)) { 4430 ret = -EIO; 4431 goto err_out; 4432 } 4433 4434 realpage = (int)(to >> chip->page_shift); 4435 page = realpage & chip->pagemask; 4436 4437 /* Invalidate the page cache, when we write to the cached page */ 4438 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) && 4439 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len)) 4440 chip->pagebuf = -1; 4441 4442 /* Don't allow multipage oob writes with offset */ 4443 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4444 ret = -EINVAL; 4445 goto err_out; 4446 } 4447 4448 while (1) { 4449 int bytes = mtd->writesize; 4450 uint8_t *wbuf = buf; 4451 int use_bufpoi; 4452 int part_pagewr = (column || writelen < mtd->writesize); 4453 4454 if (part_pagewr) 4455 use_bufpoi = 1; 4456 else if (chip->options & NAND_USE_BOUNCE_BUFFER) 4457 use_bufpoi = !virt_addr_valid(buf) || 4458 !IS_ALIGNED((unsigned long)buf, 4459 chip->buf_align); 4460 else 4461 use_bufpoi = 0; 4462 4463 /* Partial page write?, or need to use bounce buffer */ 4464 if (use_bufpoi) { 4465 pr_debug("%s: using write bounce buffer for buf@%p\n", 4466 __func__, buf); 4467 if (part_pagewr) 4468 bytes = min_t(int, bytes - column, writelen); 4469 chip->pagebuf = -1; 4470 memset(chip->data_buf, 0xff, mtd->writesize); 4471 memcpy(&chip->data_buf[column], buf, bytes); 4472 wbuf = chip->data_buf; 4473 } 4474 4475 if (unlikely(oob)) { 4476 size_t len = min(oobwritelen, oobmaxlen); 4477 oob = nand_fill_oob(mtd, oob, len, ops); 4478 oobwritelen -= len; 4479 } else { 4480 /* We still need to erase leftover OOB data */ 4481 memset(chip->oob_poi, 0xff, mtd->oobsize); 4482 } 4483 4484 ret = nand_write_page(mtd, chip, column, bytes, wbuf, 4485 oob_required, page, 4486 (ops->mode == MTD_OPS_RAW)); 4487 if (ret) 4488 break; 4489 4490 writelen -= bytes; 4491 if (!writelen) 4492 break; 4493 4494 column = 0; 4495 buf += bytes; 4496 realpage++; 4497 4498 page = realpage & chip->pagemask; 4499 /* Check, if we cross a chip boundary */ 4500 if (!page) { 4501 chipnr++; 4502 chip->select_chip(mtd, -1); 4503 chip->select_chip(mtd, chipnr); 4504 } 4505 } 4506 4507 ops->retlen = ops->len - writelen; 4508 if (unlikely(oob)) 4509 ops->oobretlen = ops->ooblen; 4510 4511 err_out: 4512 chip->select_chip(mtd, -1); 4513 return ret; 4514 } 4515 4516 /** 4517 * panic_nand_write - [MTD Interface] NAND write with ECC 4518 * @mtd: MTD device structure 4519 * @to: offset to write to 4520 * @len: number of bytes to write 4521 * @retlen: pointer to variable to store the number of written bytes 4522 * @buf: the data to write 4523 * 4524 * NAND write with ECC. Used when performing writes in interrupt context, this 4525 * may for example be called by mtdoops when writing an oops while in panic. 4526 */ 4527 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4528 size_t *retlen, const uint8_t *buf) 4529 { 4530 struct nand_chip *chip = mtd_to_nand(mtd); 4531 int chipnr = (int)(to >> chip->chip_shift); 4532 struct mtd_oob_ops ops; 4533 int ret; 4534 4535 /* Grab the device */ 4536 panic_nand_get_device(chip, mtd, FL_WRITING); 4537 4538 chip->select_chip(mtd, chipnr); 4539 4540 /* Wait for the device to get ready */ 4541 panic_nand_wait(mtd, chip, 400); 4542 4543 memset(&ops, 0, sizeof(ops)); 4544 ops.len = len; 4545 ops.datbuf = (uint8_t *)buf; 4546 ops.mode = MTD_OPS_PLACE_OOB; 4547 4548 ret = nand_do_write_ops(mtd, to, &ops); 4549 4550 *retlen = ops.retlen; 4551 return ret; 4552 } 4553 4554 /** 4555 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 4556 * @mtd: MTD device structure 4557 * @to: offset to write to 4558 * @ops: oob operation description structure 4559 * 4560 * NAND write out-of-band. 4561 */ 4562 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, 4563 struct mtd_oob_ops *ops) 4564 { 4565 int chipnr, page, status, len; 4566 struct nand_chip *chip = mtd_to_nand(mtd); 4567 4568 pr_debug("%s: to = 0x%08x, len = %i\n", 4569 __func__, (unsigned int)to, (int)ops->ooblen); 4570 4571 len = mtd_oobavail(mtd, ops); 4572 4573 /* Do not allow write past end of page */ 4574 if ((ops->ooboffs + ops->ooblen) > len) { 4575 pr_debug("%s: attempt to write past end of page\n", 4576 __func__); 4577 return -EINVAL; 4578 } 4579 4580 chipnr = (int)(to >> chip->chip_shift); 4581 4582 /* 4583 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 4584 * of my DiskOnChip 2000 test units) will clear the whole data page too 4585 * if we don't do this. I have no clue why, but I seem to have 'fixed' 4586 * it in the doc2000 driver in August 1999. dwmw2. 4587 */ 4588 nand_reset(chip, chipnr); 4589 4590 chip->select_chip(mtd, chipnr); 4591 4592 /* Shift to get page */ 4593 page = (int)(to >> chip->page_shift); 4594 4595 /* Check, if it is write protected */ 4596 if (nand_check_wp(mtd)) { 4597 chip->select_chip(mtd, -1); 4598 return -EROFS; 4599 } 4600 4601 /* Invalidate the page cache, if we write to the cached page */ 4602 if (page == chip->pagebuf) 4603 chip->pagebuf = -1; 4604 4605 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); 4606 4607 if (ops->mode == MTD_OPS_RAW) 4608 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); 4609 else 4610 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); 4611 4612 chip->select_chip(mtd, -1); 4613 4614 if (status) 4615 return status; 4616 4617 ops->oobretlen = ops->ooblen; 4618 4619 return 0; 4620 } 4621 4622 /** 4623 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4624 * @mtd: MTD device structure 4625 * @to: offset to write to 4626 * @ops: oob operation description structure 4627 */ 4628 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4629 struct mtd_oob_ops *ops) 4630 { 4631 int ret = -ENOTSUPP; 4632 4633 ops->retlen = 0; 4634 4635 nand_get_device(mtd, FL_WRITING); 4636 4637 switch (ops->mode) { 4638 case MTD_OPS_PLACE_OOB: 4639 case MTD_OPS_AUTO_OOB: 4640 case MTD_OPS_RAW: 4641 break; 4642 4643 default: 4644 goto out; 4645 } 4646 4647 if (!ops->datbuf) 4648 ret = nand_do_write_oob(mtd, to, ops); 4649 else 4650 ret = nand_do_write_ops(mtd, to, ops); 4651 4652 out: 4653 nand_release_device(mtd); 4654 return ret; 4655 } 4656 4657 /** 4658 * single_erase - [GENERIC] NAND standard block erase command function 4659 * @mtd: MTD device structure 4660 * @page: the page address of the block which will be erased 4661 * 4662 * Standard erase command for NAND chips. Returns NAND status. 4663 */ 4664 static int single_erase(struct mtd_info *mtd, int page) 4665 { 4666 struct nand_chip *chip = mtd_to_nand(mtd); 4667 unsigned int eraseblock; 4668 4669 /* Send commands to erase a block */ 4670 eraseblock = page >> (chip->phys_erase_shift - chip->page_shift); 4671 4672 return nand_erase_op(chip, eraseblock); 4673 } 4674 4675 /** 4676 * nand_erase - [MTD Interface] erase block(s) 4677 * @mtd: MTD device structure 4678 * @instr: erase instruction 4679 * 4680 * Erase one ore more blocks. 4681 */ 4682 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4683 { 4684 return nand_erase_nand(mtd, instr, 0); 4685 } 4686 4687 /** 4688 * nand_erase_nand - [INTERN] erase block(s) 4689 * @mtd: MTD device structure 4690 * @instr: erase instruction 4691 * @allowbbt: allow erasing the bbt area 4692 * 4693 * Erase one ore more blocks. 4694 */ 4695 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, 4696 int allowbbt) 4697 { 4698 int page, status, pages_per_block, ret, chipnr; 4699 struct nand_chip *chip = mtd_to_nand(mtd); 4700 loff_t len; 4701 4702 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4703 __func__, (unsigned long long)instr->addr, 4704 (unsigned long long)instr->len); 4705 4706 if (check_offs_len(mtd, instr->addr, instr->len)) 4707 return -EINVAL; 4708 4709 /* Grab the lock and see if the device is available */ 4710 nand_get_device(mtd, FL_ERASING); 4711 4712 /* Shift to get first page */ 4713 page = (int)(instr->addr >> chip->page_shift); 4714 chipnr = (int)(instr->addr >> chip->chip_shift); 4715 4716 /* Calculate pages in each block */ 4717 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4718 4719 /* Select the NAND device */ 4720 chip->select_chip(mtd, chipnr); 4721 4722 /* Check, if it is write protected */ 4723 if (nand_check_wp(mtd)) { 4724 pr_debug("%s: device is write protected!\n", 4725 __func__); 4726 ret = -EIO; 4727 goto erase_exit; 4728 } 4729 4730 /* Loop through the pages */ 4731 len = instr->len; 4732 4733 while (len) { 4734 /* Check if we have a bad block, we do not erase bad blocks! */ 4735 if (nand_block_checkbad(mtd, ((loff_t) page) << 4736 chip->page_shift, allowbbt)) { 4737 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", 4738 __func__, page); 4739 ret = -EIO; 4740 goto erase_exit; 4741 } 4742 4743 /* 4744 * Invalidate the page cache, if we erase the block which 4745 * contains the current cached page. 4746 */ 4747 if (page <= chip->pagebuf && chip->pagebuf < 4748 (page + pages_per_block)) 4749 chip->pagebuf = -1; 4750 4751 status = chip->erase(mtd, page & chip->pagemask); 4752 4753 /* See if block erase succeeded */ 4754 if (status) { 4755 pr_debug("%s: failed erase, page 0x%08x\n", 4756 __func__, page); 4757 ret = -EIO; 4758 instr->fail_addr = 4759 ((loff_t)page << chip->page_shift); 4760 goto erase_exit; 4761 } 4762 4763 /* Increment page address and decrement length */ 4764 len -= (1ULL << chip->phys_erase_shift); 4765 page += pages_per_block; 4766 4767 /* Check, if we cross a chip boundary */ 4768 if (len && !(page & chip->pagemask)) { 4769 chipnr++; 4770 chip->select_chip(mtd, -1); 4771 chip->select_chip(mtd, chipnr); 4772 } 4773 } 4774 4775 ret = 0; 4776 erase_exit: 4777 4778 /* Deselect and wake up anyone waiting on the device */ 4779 chip->select_chip(mtd, -1); 4780 nand_release_device(mtd); 4781 4782 /* Return more or less happy */ 4783 return ret; 4784 } 4785 4786 /** 4787 * nand_sync - [MTD Interface] sync 4788 * @mtd: MTD device structure 4789 * 4790 * Sync is actually a wait for chip ready function. 4791 */ 4792 static void nand_sync(struct mtd_info *mtd) 4793 { 4794 pr_debug("%s: called\n", __func__); 4795 4796 /* Grab the lock and see if the device is available */ 4797 nand_get_device(mtd, FL_SYNCING); 4798 /* Release it and go back */ 4799 nand_release_device(mtd); 4800 } 4801 4802 /** 4803 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4804 * @mtd: MTD device structure 4805 * @offs: offset relative to mtd start 4806 */ 4807 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4808 { 4809 struct nand_chip *chip = mtd_to_nand(mtd); 4810 int chipnr = (int)(offs >> chip->chip_shift); 4811 int ret; 4812 4813 /* Select the NAND device */ 4814 nand_get_device(mtd, FL_READING); 4815 chip->select_chip(mtd, chipnr); 4816 4817 ret = nand_block_checkbad(mtd, offs, 0); 4818 4819 chip->select_chip(mtd, -1); 4820 nand_release_device(mtd); 4821 4822 return ret; 4823 } 4824 4825 /** 4826 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4827 * @mtd: MTD device structure 4828 * @ofs: offset relative to mtd start 4829 */ 4830 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4831 { 4832 int ret; 4833 4834 ret = nand_block_isbad(mtd, ofs); 4835 if (ret) { 4836 /* If it was bad already, return success and do nothing */ 4837 if (ret > 0) 4838 return 0; 4839 return ret; 4840 } 4841 4842 return nand_block_markbad_lowlevel(mtd, ofs); 4843 } 4844 4845 /** 4846 * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd 4847 * @mtd: MTD device structure 4848 * @ofs: offset relative to mtd start 4849 * @len: length of mtd 4850 */ 4851 static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) 4852 { 4853 struct nand_chip *chip = mtd_to_nand(mtd); 4854 u32 part_start_block; 4855 u32 part_end_block; 4856 u32 part_start_die; 4857 u32 part_end_die; 4858 4859 /* 4860 * max_bb_per_die and blocks_per_die used to determine 4861 * the maximum bad block count. 4862 */ 4863 if (!chip->max_bb_per_die || !chip->blocks_per_die) 4864 return -ENOTSUPP; 4865 4866 /* Get the start and end of the partition in erase blocks. */ 4867 part_start_block = mtd_div_by_eb(ofs, mtd); 4868 part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1; 4869 4870 /* Get the start and end LUNs of the partition. */ 4871 part_start_die = part_start_block / chip->blocks_per_die; 4872 part_end_die = part_end_block / chip->blocks_per_die; 4873 4874 /* 4875 * Look up the bad blocks per unit and multiply by the number of units 4876 * that the partition spans. 4877 */ 4878 return chip->max_bb_per_die * (part_end_die - part_start_die + 1); 4879 } 4880 4881 /** 4882 * nand_default_set_features- [REPLACEABLE] set NAND chip features 4883 * @mtd: MTD device structure 4884 * @chip: nand chip info structure 4885 * @addr: feature address. 4886 * @subfeature_param: the subfeature parameters, a four bytes array. 4887 */ 4888 static int nand_default_set_features(struct mtd_info *mtd, 4889 struct nand_chip *chip, int addr, 4890 uint8_t *subfeature_param) 4891 { 4892 return nand_set_features_op(chip, addr, subfeature_param); 4893 } 4894 4895 /** 4896 * nand_default_get_features- [REPLACEABLE] get NAND chip features 4897 * @mtd: MTD device structure 4898 * @chip: nand chip info structure 4899 * @addr: feature address. 4900 * @subfeature_param: the subfeature parameters, a four bytes array. 4901 */ 4902 static int nand_default_get_features(struct mtd_info *mtd, 4903 struct nand_chip *chip, int addr, 4904 uint8_t *subfeature_param) 4905 { 4906 return nand_get_features_op(chip, addr, subfeature_param); 4907 } 4908 4909 /** 4910 * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP 4911 * @mtd: MTD device structure 4912 * @chip: nand chip info structure 4913 * @addr: feature address. 4914 * @subfeature_param: the subfeature parameters, a four bytes array. 4915 * 4916 * Should be used by NAND controller drivers that do not support the SET/GET 4917 * FEATURES operations. 4918 */ 4919 int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip, 4920 int addr, u8 *subfeature_param) 4921 { 4922 return -ENOTSUPP; 4923 } 4924 EXPORT_SYMBOL(nand_get_set_features_notsupp); 4925 4926 /** 4927 * nand_suspend - [MTD Interface] Suspend the NAND flash 4928 * @mtd: MTD device structure 4929 */ 4930 static int nand_suspend(struct mtd_info *mtd) 4931 { 4932 return nand_get_device(mtd, FL_PM_SUSPENDED); 4933 } 4934 4935 /** 4936 * nand_resume - [MTD Interface] Resume the NAND flash 4937 * @mtd: MTD device structure 4938 */ 4939 static void nand_resume(struct mtd_info *mtd) 4940 { 4941 struct nand_chip *chip = mtd_to_nand(mtd); 4942 4943 if (chip->state == FL_PM_SUSPENDED) 4944 nand_release_device(mtd); 4945 else 4946 pr_err("%s called for a chip which is not in suspended state\n", 4947 __func__); 4948 } 4949 4950 /** 4951 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4952 * prevent further operations 4953 * @mtd: MTD device structure 4954 */ 4955 static void nand_shutdown(struct mtd_info *mtd) 4956 { 4957 nand_get_device(mtd, FL_PM_SUSPENDED); 4958 } 4959 4960 /* Set default functions */ 4961 static void nand_set_defaults(struct nand_chip *chip) 4962 { 4963 unsigned int busw = chip->options & NAND_BUSWIDTH_16; 4964 4965 /* check for proper chip_delay setup, set 20us if not */ 4966 if (!chip->chip_delay) 4967 chip->chip_delay = 20; 4968 4969 /* check, if a user supplied command function given */ 4970 if (!chip->cmdfunc && !chip->exec_op) 4971 chip->cmdfunc = nand_command; 4972 4973 /* check, if a user supplied wait function given */ 4974 if (chip->waitfunc == NULL) 4975 chip->waitfunc = nand_wait; 4976 4977 if (!chip->select_chip) 4978 chip->select_chip = nand_select_chip; 4979 4980 /* set for ONFI nand */ 4981 if (!chip->set_features) 4982 chip->set_features = nand_default_set_features; 4983 if (!chip->get_features) 4984 chip->get_features = nand_default_get_features; 4985 4986 /* If called twice, pointers that depend on busw may need to be reset */ 4987 if (!chip->read_byte || chip->read_byte == nand_read_byte) 4988 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; 4989 if (!chip->read_word) 4990 chip->read_word = nand_read_word; 4991 if (!chip->block_bad) 4992 chip->block_bad = nand_block_bad; 4993 if (!chip->block_markbad) 4994 chip->block_markbad = nand_default_block_markbad; 4995 if (!chip->write_buf || chip->write_buf == nand_write_buf) 4996 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; 4997 if (!chip->write_byte || chip->write_byte == nand_write_byte) 4998 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte; 4999 if (!chip->read_buf || chip->read_buf == nand_read_buf) 5000 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; 5001 5002 if (!chip->controller) { 5003 chip->controller = &chip->dummy_controller; 5004 nand_controller_init(chip->controller); 5005 } 5006 5007 if (!chip->buf_align) 5008 chip->buf_align = 1; 5009 } 5010 5011 /* Sanitize ONFI strings so we can safely print them */ 5012 static void sanitize_string(uint8_t *s, size_t len) 5013 { 5014 ssize_t i; 5015 5016 /* Null terminate */ 5017 s[len - 1] = 0; 5018 5019 /* Remove non printable chars */ 5020 for (i = 0; i < len - 1; i++) { 5021 if (s[i] < ' ' || s[i] > 127) 5022 s[i] = '?'; 5023 } 5024 5025 /* Remove trailing spaces */ 5026 strim(s); 5027 } 5028 5029 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) 5030 { 5031 int i; 5032 while (len--) { 5033 crc ^= *p++ << 8; 5034 for (i = 0; i < 8; i++) 5035 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); 5036 } 5037 5038 return crc; 5039 } 5040 5041 /* Parse the Extended Parameter Page. */ 5042 static int nand_flash_detect_ext_param_page(struct nand_chip *chip, 5043 struct nand_onfi_params *p) 5044 { 5045 struct onfi_ext_param_page *ep; 5046 struct onfi_ext_section *s; 5047 struct onfi_ext_ecc_info *ecc; 5048 uint8_t *cursor; 5049 int ret; 5050 int len; 5051 int i; 5052 5053 len = le16_to_cpu(p->ext_param_page_length) * 16; 5054 ep = kmalloc(len, GFP_KERNEL); 5055 if (!ep) 5056 return -ENOMEM; 5057 5058 /* Send our own NAND_CMD_PARAM. */ 5059 ret = nand_read_param_page_op(chip, 0, NULL, 0); 5060 if (ret) 5061 goto ext_out; 5062 5063 /* Use the Change Read Column command to skip the ONFI param pages. */ 5064 ret = nand_change_read_column_op(chip, 5065 sizeof(*p) * p->num_of_param_pages, 5066 ep, len, true); 5067 if (ret) 5068 goto ext_out; 5069 5070 ret = -EINVAL; 5071 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2) 5072 != le16_to_cpu(ep->crc))) { 5073 pr_debug("fail in the CRC.\n"); 5074 goto ext_out; 5075 } 5076 5077 /* 5078 * Check the signature. 5079 * Do not strictly follow the ONFI spec, maybe changed in future. 5080 */ 5081 if (strncmp(ep->sig, "EPPS", 4)) { 5082 pr_debug("The signature is invalid.\n"); 5083 goto ext_out; 5084 } 5085 5086 /* find the ECC section. */ 5087 cursor = (uint8_t *)(ep + 1); 5088 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) { 5089 s = ep->sections + i; 5090 if (s->type == ONFI_SECTION_TYPE_2) 5091 break; 5092 cursor += s->length * 16; 5093 } 5094 if (i == ONFI_EXT_SECTION_MAX) { 5095 pr_debug("We can not find the ECC section.\n"); 5096 goto ext_out; 5097 } 5098 5099 /* get the info we want. */ 5100 ecc = (struct onfi_ext_ecc_info *)cursor; 5101 5102 if (!ecc->codeword_size) { 5103 pr_debug("Invalid codeword size\n"); 5104 goto ext_out; 5105 } 5106 5107 chip->ecc_strength_ds = ecc->ecc_bits; 5108 chip->ecc_step_ds = 1 << ecc->codeword_size; 5109 ret = 0; 5110 5111 ext_out: 5112 kfree(ep); 5113 return ret; 5114 } 5115 5116 /* 5117 * Recover data with bit-wise majority 5118 */ 5119 static void nand_bit_wise_majority(const void **srcbufs, 5120 unsigned int nsrcbufs, 5121 void *dstbuf, 5122 unsigned int bufsize) 5123 { 5124 int i, j, k; 5125 5126 for (i = 0; i < bufsize; i++) { 5127 u8 val = 0; 5128 5129 for (j = 0; j < 8; j++) { 5130 unsigned int cnt = 0; 5131 5132 for (k = 0; k < nsrcbufs; k++) { 5133 const u8 *srcbuf = srcbufs[k]; 5134 5135 if (srcbuf[i] & BIT(j)) 5136 cnt++; 5137 } 5138 5139 if (cnt > nsrcbufs / 2) 5140 val |= BIT(j); 5141 } 5142 5143 ((u8 *)dstbuf)[i] = val; 5144 } 5145 } 5146 5147 /* 5148 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. 5149 */ 5150 static int nand_flash_detect_onfi(struct nand_chip *chip) 5151 { 5152 struct mtd_info *mtd = nand_to_mtd(chip); 5153 struct nand_onfi_params *p; 5154 struct onfi_params *onfi; 5155 int onfi_version = 0; 5156 char id[4]; 5157 int i, ret, val; 5158 5159 /* Try ONFI for unknown chip or LP */ 5160 ret = nand_readid_op(chip, 0x20, id, sizeof(id)); 5161 if (ret || strncmp(id, "ONFI", 4)) 5162 return 0; 5163 5164 /* ONFI chip: allocate a buffer to hold its parameter page */ 5165 p = kzalloc((sizeof(*p) * 3), GFP_KERNEL); 5166 if (!p) 5167 return -ENOMEM; 5168 5169 ret = nand_read_param_page_op(chip, 0, NULL, 0); 5170 if (ret) { 5171 ret = 0; 5172 goto free_onfi_param_page; 5173 } 5174 5175 for (i = 0; i < 3; i++) { 5176 ret = nand_read_data_op(chip, &p[i], sizeof(*p), true); 5177 if (ret) { 5178 ret = 0; 5179 goto free_onfi_param_page; 5180 } 5181 5182 if (onfi_crc16(ONFI_CRC_BASE, (u8 *)&p[i], 254) == 5183 le16_to_cpu(p->crc)) { 5184 if (i) 5185 memcpy(p, &p[i], sizeof(*p)); 5186 break; 5187 } 5188 } 5189 5190 if (i == 3) { 5191 const void *srcbufs[3] = {p, p + 1, p + 2}; 5192 5193 pr_warn("Could not find a valid ONFI parameter page, trying bit-wise majority to recover it\n"); 5194 nand_bit_wise_majority(srcbufs, ARRAY_SIZE(srcbufs), p, 5195 sizeof(*p)); 5196 5197 if (onfi_crc16(ONFI_CRC_BASE, (u8 *)p, 254) != 5198 le16_to_cpu(p->crc)) { 5199 pr_err("ONFI parameter recovery failed, aborting\n"); 5200 goto free_onfi_param_page; 5201 } 5202 } 5203 5204 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 5205 chip->manufacturer.desc->ops->fixup_onfi_param_page) 5206 chip->manufacturer.desc->ops->fixup_onfi_param_page(chip, p); 5207 5208 /* Check version */ 5209 val = le16_to_cpu(p->revision); 5210 if (val & ONFI_VERSION_2_3) 5211 onfi_version = 23; 5212 else if (val & ONFI_VERSION_2_2) 5213 onfi_version = 22; 5214 else if (val & ONFI_VERSION_2_1) 5215 onfi_version = 21; 5216 else if (val & ONFI_VERSION_2_0) 5217 onfi_version = 20; 5218 else if (val & ONFI_VERSION_1_0) 5219 onfi_version = 10; 5220 5221 if (!onfi_version) { 5222 pr_info("unsupported ONFI version: %d\n", val); 5223 goto free_onfi_param_page; 5224 } 5225 5226 sanitize_string(p->manufacturer, sizeof(p->manufacturer)); 5227 sanitize_string(p->model, sizeof(p->model)); 5228 chip->parameters.model = kstrdup(p->model, GFP_KERNEL); 5229 if (!chip->parameters.model) { 5230 ret = -ENOMEM; 5231 goto free_onfi_param_page; 5232 } 5233 5234 mtd->writesize = le32_to_cpu(p->byte_per_page); 5235 5236 /* 5237 * pages_per_block and blocks_per_lun may not be a power-of-2 size 5238 * (don't ask me who thought of this...). MTD assumes that these 5239 * dimensions will be power-of-2, so just truncate the remaining area. 5240 */ 5241 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); 5242 mtd->erasesize *= mtd->writesize; 5243 5244 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); 5245 5246 /* See erasesize comment */ 5247 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); 5248 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; 5249 chip->bits_per_cell = p->bits_per_cell; 5250 5251 chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun); 5252 chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun); 5253 5254 if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS) 5255 chip->options |= NAND_BUSWIDTH_16; 5256 5257 if (p->ecc_bits != 0xff) { 5258 chip->ecc_strength_ds = p->ecc_bits; 5259 chip->ecc_step_ds = 512; 5260 } else if (onfi_version >= 21 && 5261 (le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) { 5262 5263 /* 5264 * The nand_flash_detect_ext_param_page() uses the 5265 * Change Read Column command which maybe not supported 5266 * by the chip->cmdfunc. So try to update the chip->cmdfunc 5267 * now. We do not replace user supplied command function. 5268 */ 5269 if (mtd->writesize > 512 && chip->cmdfunc == nand_command) 5270 chip->cmdfunc = nand_command_lp; 5271 5272 /* The Extended Parameter Page is supported since ONFI 2.1. */ 5273 if (nand_flash_detect_ext_param_page(chip, p)) 5274 pr_warn("Failed to detect ONFI extended param page\n"); 5275 } else { 5276 pr_warn("Could not retrieve ONFI ECC requirements\n"); 5277 } 5278 5279 /* Save some parameters from the parameter page for future use */ 5280 if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) { 5281 chip->parameters.supports_set_get_features = true; 5282 bitmap_set(chip->parameters.get_feature_list, 5283 ONFI_FEATURE_ADDR_TIMING_MODE, 1); 5284 bitmap_set(chip->parameters.set_feature_list, 5285 ONFI_FEATURE_ADDR_TIMING_MODE, 1); 5286 } 5287 5288 onfi = kzalloc(sizeof(*onfi), GFP_KERNEL); 5289 if (!onfi) { 5290 ret = -ENOMEM; 5291 goto free_model; 5292 } 5293 5294 onfi->version = onfi_version; 5295 onfi->tPROG = le16_to_cpu(p->t_prog); 5296 onfi->tBERS = le16_to_cpu(p->t_bers); 5297 onfi->tR = le16_to_cpu(p->t_r); 5298 onfi->tCCS = le16_to_cpu(p->t_ccs); 5299 onfi->async_timing_mode = le16_to_cpu(p->async_timing_mode); 5300 onfi->vendor_revision = le16_to_cpu(p->vendor_revision); 5301 memcpy(onfi->vendor, p->vendor, sizeof(p->vendor)); 5302 chip->parameters.onfi = onfi; 5303 5304 /* Identification done, free the full ONFI parameter page and exit */ 5305 kfree(p); 5306 5307 return 1; 5308 5309 free_model: 5310 kfree(chip->parameters.model); 5311 free_onfi_param_page: 5312 kfree(p); 5313 5314 return ret; 5315 } 5316 5317 /* 5318 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise. 5319 */ 5320 static int nand_flash_detect_jedec(struct nand_chip *chip) 5321 { 5322 struct mtd_info *mtd = nand_to_mtd(chip); 5323 struct nand_jedec_params *p; 5324 struct jedec_ecc_info *ecc; 5325 int jedec_version = 0; 5326 char id[5]; 5327 int i, val, ret; 5328 5329 /* Try JEDEC for unknown chip or LP */ 5330 ret = nand_readid_op(chip, 0x40, id, sizeof(id)); 5331 if (ret || strncmp(id, "JEDEC", sizeof(id))) 5332 return 0; 5333 5334 /* JEDEC chip: allocate a buffer to hold its parameter page */ 5335 p = kzalloc(sizeof(*p), GFP_KERNEL); 5336 if (!p) 5337 return -ENOMEM; 5338 5339 ret = nand_read_param_page_op(chip, 0x40, NULL, 0); 5340 if (ret) { 5341 ret = 0; 5342 goto free_jedec_param_page; 5343 } 5344 5345 for (i = 0; i < 3; i++) { 5346 ret = nand_read_data_op(chip, p, sizeof(*p), true); 5347 if (ret) { 5348 ret = 0; 5349 goto free_jedec_param_page; 5350 } 5351 5352 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) == 5353 le16_to_cpu(p->crc)) 5354 break; 5355 } 5356 5357 if (i == 3) { 5358 pr_err("Could not find valid JEDEC parameter page; aborting\n"); 5359 goto free_jedec_param_page; 5360 } 5361 5362 /* Check version */ 5363 val = le16_to_cpu(p->revision); 5364 if (val & (1 << 2)) 5365 jedec_version = 10; 5366 else if (val & (1 << 1)) 5367 jedec_version = 1; /* vendor specific version */ 5368 5369 if (!jedec_version) { 5370 pr_info("unsupported JEDEC version: %d\n", val); 5371 goto free_jedec_param_page; 5372 } 5373 5374 sanitize_string(p->manufacturer, sizeof(p->manufacturer)); 5375 sanitize_string(p->model, sizeof(p->model)); 5376 chip->parameters.model = kstrdup(p->model, GFP_KERNEL); 5377 if (!chip->parameters.model) { 5378 ret = -ENOMEM; 5379 goto free_jedec_param_page; 5380 } 5381 5382 mtd->writesize = le32_to_cpu(p->byte_per_page); 5383 5384 /* Please reference to the comment for nand_flash_detect_onfi. */ 5385 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); 5386 mtd->erasesize *= mtd->writesize; 5387 5388 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); 5389 5390 /* Please reference to the comment for nand_flash_detect_onfi. */ 5391 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); 5392 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; 5393 chip->bits_per_cell = p->bits_per_cell; 5394 5395 if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS) 5396 chip->options |= NAND_BUSWIDTH_16; 5397 5398 /* ECC info */ 5399 ecc = &p->ecc_info[0]; 5400 5401 if (ecc->codeword_size >= 9) { 5402 chip->ecc_strength_ds = ecc->ecc_bits; 5403 chip->ecc_step_ds = 1 << ecc->codeword_size; 5404 } else { 5405 pr_warn("Invalid codeword size\n"); 5406 } 5407 5408 free_jedec_param_page: 5409 kfree(p); 5410 return ret; 5411 } 5412 5413 /* 5414 * nand_id_has_period - Check if an ID string has a given wraparound period 5415 * @id_data: the ID string 5416 * @arrlen: the length of the @id_data array 5417 * @period: the period of repitition 5418 * 5419 * Check if an ID string is repeated within a given sequence of bytes at 5420 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 5421 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 5422 * if the repetition has a period of @period; otherwise, returns zero. 5423 */ 5424 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 5425 { 5426 int i, j; 5427 for (i = 0; i < period; i++) 5428 for (j = i + period; j < arrlen; j += period) 5429 if (id_data[i] != id_data[j]) 5430 return 0; 5431 return 1; 5432 } 5433 5434 /* 5435 * nand_id_len - Get the length of an ID string returned by CMD_READID 5436 * @id_data: the ID string 5437 * @arrlen: the length of the @id_data array 5438 5439 * Returns the length of the ID string, according to known wraparound/trailing 5440 * zero patterns. If no pattern exists, returns the length of the array. 5441 */ 5442 static int nand_id_len(u8 *id_data, int arrlen) 5443 { 5444 int last_nonzero, period; 5445 5446 /* Find last non-zero byte */ 5447 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 5448 if (id_data[last_nonzero]) 5449 break; 5450 5451 /* All zeros */ 5452 if (last_nonzero < 0) 5453 return 0; 5454 5455 /* Calculate wraparound period */ 5456 for (period = 1; period < arrlen; period++) 5457 if (nand_id_has_period(id_data, arrlen, period)) 5458 break; 5459 5460 /* There's a repeated pattern */ 5461 if (period < arrlen) 5462 return period; 5463 5464 /* There are trailing zeros */ 5465 if (last_nonzero < arrlen - 1) 5466 return last_nonzero + 1; 5467 5468 /* No pattern detected */ 5469 return arrlen; 5470 } 5471 5472 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 5473 static int nand_get_bits_per_cell(u8 cellinfo) 5474 { 5475 int bits; 5476 5477 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 5478 bits >>= NAND_CI_CELLTYPE_SHIFT; 5479 return bits + 1; 5480 } 5481 5482 /* 5483 * Many new NAND share similar device ID codes, which represent the size of the 5484 * chip. The rest of the parameters must be decoded according to generic or 5485 * manufacturer-specific "extended ID" decoding patterns. 5486 */ 5487 void nand_decode_ext_id(struct nand_chip *chip) 5488 { 5489 struct mtd_info *mtd = nand_to_mtd(chip); 5490 int extid; 5491 u8 *id_data = chip->id.data; 5492 /* The 3rd id byte holds MLC / multichip data */ 5493 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 5494 /* The 4th id byte is the important one */ 5495 extid = id_data[3]; 5496 5497 /* Calc pagesize */ 5498 mtd->writesize = 1024 << (extid & 0x03); 5499 extid >>= 2; 5500 /* Calc oobsize */ 5501 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 5502 extid >>= 2; 5503 /* Calc blocksize. Blocksize is multiples of 64KiB */ 5504 mtd->erasesize = (64 * 1024) << (extid & 0x03); 5505 extid >>= 2; 5506 /* Get buswidth information */ 5507 if (extid & 0x1) 5508 chip->options |= NAND_BUSWIDTH_16; 5509 } 5510 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 5511 5512 /* 5513 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 5514 * decodes a matching ID table entry and assigns the MTD size parameters for 5515 * the chip. 5516 */ 5517 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 5518 { 5519 struct mtd_info *mtd = nand_to_mtd(chip); 5520 5521 mtd->erasesize = type->erasesize; 5522 mtd->writesize = type->pagesize; 5523 mtd->oobsize = mtd->writesize / 32; 5524 5525 /* All legacy ID NAND are small-page, SLC */ 5526 chip->bits_per_cell = 1; 5527 } 5528 5529 /* 5530 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 5531 * heuristic patterns using various detected parameters (e.g., manufacturer, 5532 * page size, cell-type information). 5533 */ 5534 static void nand_decode_bbm_options(struct nand_chip *chip) 5535 { 5536 struct mtd_info *mtd = nand_to_mtd(chip); 5537 5538 /* Set the bad block position */ 5539 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 5540 chip->badblockpos = NAND_LARGE_BADBLOCK_POS; 5541 else 5542 chip->badblockpos = NAND_SMALL_BADBLOCK_POS; 5543 } 5544 5545 static inline bool is_full_id_nand(struct nand_flash_dev *type) 5546 { 5547 return type->id_len; 5548 } 5549 5550 static bool find_full_id_nand(struct nand_chip *chip, 5551 struct nand_flash_dev *type) 5552 { 5553 struct mtd_info *mtd = nand_to_mtd(chip); 5554 u8 *id_data = chip->id.data; 5555 5556 if (!strncmp(type->id, id_data, type->id_len)) { 5557 mtd->writesize = type->pagesize; 5558 mtd->erasesize = type->erasesize; 5559 mtd->oobsize = type->oobsize; 5560 5561 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 5562 chip->chipsize = (uint64_t)type->chipsize << 20; 5563 chip->options |= type->options; 5564 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type); 5565 chip->ecc_step_ds = NAND_ECC_STEP(type); 5566 chip->onfi_timing_mode_default = 5567 type->onfi_timing_mode_default; 5568 5569 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 5570 if (!chip->parameters.model) 5571 return false; 5572 5573 return true; 5574 } 5575 return false; 5576 } 5577 5578 /* 5579 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 5580 * compliant and does not have a full-id or legacy-id entry in the nand_ids 5581 * table. 5582 */ 5583 static void nand_manufacturer_detect(struct nand_chip *chip) 5584 { 5585 /* 5586 * Try manufacturer detection if available and use 5587 * nand_decode_ext_id() otherwise. 5588 */ 5589 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 5590 chip->manufacturer.desc->ops->detect) { 5591 /* The 3rd id byte holds MLC / multichip data */ 5592 chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 5593 chip->manufacturer.desc->ops->detect(chip); 5594 } else { 5595 nand_decode_ext_id(chip); 5596 } 5597 } 5598 5599 /* 5600 * Manufacturer initialization. This function is called for all NANDs including 5601 * ONFI and JEDEC compliant ones. 5602 * Manufacturer drivers should put all their specific initialization code in 5603 * their ->init() hook. 5604 */ 5605 static int nand_manufacturer_init(struct nand_chip *chip) 5606 { 5607 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 5608 !chip->manufacturer.desc->ops->init) 5609 return 0; 5610 5611 return chip->manufacturer.desc->ops->init(chip); 5612 } 5613 5614 /* 5615 * Manufacturer cleanup. This function is called for all NANDs including 5616 * ONFI and JEDEC compliant ones. 5617 * Manufacturer drivers should put all their specific cleanup code in their 5618 * ->cleanup() hook. 5619 */ 5620 static void nand_manufacturer_cleanup(struct nand_chip *chip) 5621 { 5622 /* Release manufacturer private data */ 5623 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 5624 chip->manufacturer.desc->ops->cleanup) 5625 chip->manufacturer.desc->ops->cleanup(chip); 5626 } 5627 5628 /* 5629 * Get the flash and manufacturer id and lookup if the type is supported. 5630 */ 5631 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 5632 { 5633 const struct nand_manufacturer *manufacturer; 5634 struct mtd_info *mtd = nand_to_mtd(chip); 5635 int busw, ret; 5636 u8 *id_data = chip->id.data; 5637 u8 maf_id, dev_id; 5638 5639 /* 5640 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 5641 * after power-up. 5642 */ 5643 ret = nand_reset(chip, 0); 5644 if (ret) 5645 return ret; 5646 5647 /* Select the device */ 5648 chip->select_chip(mtd, 0); 5649 5650 /* Send the command for reading device ID */ 5651 ret = nand_readid_op(chip, 0, id_data, 2); 5652 if (ret) 5653 return ret; 5654 5655 /* Read manufacturer and device IDs */ 5656 maf_id = id_data[0]; 5657 dev_id = id_data[1]; 5658 5659 /* 5660 * Try again to make sure, as some systems the bus-hold or other 5661 * interface concerns can cause random data which looks like a 5662 * possibly credible NAND flash to appear. If the two results do 5663 * not match, ignore the device completely. 5664 */ 5665 5666 /* Read entire ID string */ 5667 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 5668 if (ret) 5669 return ret; 5670 5671 if (id_data[0] != maf_id || id_data[1] != dev_id) { 5672 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 5673 maf_id, dev_id, id_data[0], id_data[1]); 5674 return -ENODEV; 5675 } 5676 5677 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 5678 5679 /* Try to identify manufacturer */ 5680 manufacturer = nand_get_manufacturer(maf_id); 5681 chip->manufacturer.desc = manufacturer; 5682 5683 if (!type) 5684 type = nand_flash_ids; 5685 5686 /* 5687 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 5688 * override it. 5689 * This is required to make sure initial NAND bus width set by the 5690 * NAND controller driver is coherent with the real NAND bus width 5691 * (extracted by auto-detection code). 5692 */ 5693 busw = chip->options & NAND_BUSWIDTH_16; 5694 5695 /* 5696 * The flag is only set (never cleared), reset it to its default value 5697 * before starting auto-detection. 5698 */ 5699 chip->options &= ~NAND_BUSWIDTH_16; 5700 5701 for (; type->name != NULL; type++) { 5702 if (is_full_id_nand(type)) { 5703 if (find_full_id_nand(chip, type)) 5704 goto ident_done; 5705 } else if (dev_id == type->dev_id) { 5706 break; 5707 } 5708 } 5709 5710 if (!type->name || !type->pagesize) { 5711 /* Check if the chip is ONFI compliant */ 5712 ret = nand_flash_detect_onfi(chip); 5713 if (ret < 0) 5714 return ret; 5715 else if (ret) 5716 goto ident_done; 5717 5718 /* Check if the chip is JEDEC compliant */ 5719 ret = nand_flash_detect_jedec(chip); 5720 if (ret < 0) 5721 return ret; 5722 else if (ret) 5723 goto ident_done; 5724 } 5725 5726 if (!type->name) 5727 return -ENODEV; 5728 5729 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 5730 if (!chip->parameters.model) 5731 return -ENOMEM; 5732 5733 chip->chipsize = (uint64_t)type->chipsize << 20; 5734 5735 if (!type->pagesize) 5736 nand_manufacturer_detect(chip); 5737 else 5738 nand_decode_id(chip, type); 5739 5740 /* Get chip options */ 5741 chip->options |= type->options; 5742 5743 ident_done: 5744 if (!mtd->name) 5745 mtd->name = chip->parameters.model; 5746 5747 if (chip->options & NAND_BUSWIDTH_AUTO) { 5748 WARN_ON(busw & NAND_BUSWIDTH_16); 5749 nand_set_defaults(chip); 5750 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 5751 /* 5752 * Check, if buswidth is correct. Hardware drivers should set 5753 * chip correct! 5754 */ 5755 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5756 maf_id, dev_id); 5757 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 5758 mtd->name); 5759 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 5760 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 5761 ret = -EINVAL; 5762 5763 goto free_detect_allocation; 5764 } 5765 5766 nand_decode_bbm_options(chip); 5767 5768 /* Calculate the address shift from the page size */ 5769 chip->page_shift = ffs(mtd->writesize) - 1; 5770 /* Convert chipsize to number of pages per chip -1 */ 5771 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; 5772 5773 chip->bbt_erase_shift = chip->phys_erase_shift = 5774 ffs(mtd->erasesize) - 1; 5775 if (chip->chipsize & 0xffffffff) 5776 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; 5777 else { 5778 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); 5779 chip->chip_shift += 32 - 1; 5780 } 5781 5782 if (chip->chip_shift - chip->page_shift > 16) 5783 chip->options |= NAND_ROW_ADDR_3; 5784 5785 chip->badblockbits = 8; 5786 chip->erase = single_erase; 5787 5788 /* Do not replace user supplied command function! */ 5789 if (mtd->writesize > 512 && chip->cmdfunc == nand_command) 5790 chip->cmdfunc = nand_command_lp; 5791 5792 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5793 maf_id, dev_id); 5794 pr_info("%s %s\n", nand_manufacturer_name(manufacturer), 5795 chip->parameters.model); 5796 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 5797 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 5798 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 5799 return 0; 5800 5801 free_detect_allocation: 5802 kfree(chip->parameters.model); 5803 5804 return ret; 5805 } 5806 5807 static const char * const nand_ecc_modes[] = { 5808 [NAND_ECC_NONE] = "none", 5809 [NAND_ECC_SOFT] = "soft", 5810 [NAND_ECC_HW] = "hw", 5811 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 5812 [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first", 5813 [NAND_ECC_ON_DIE] = "on-die", 5814 }; 5815 5816 static int of_get_nand_ecc_mode(struct device_node *np) 5817 { 5818 const char *pm; 5819 int err, i; 5820 5821 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5822 if (err < 0) 5823 return err; 5824 5825 for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++) 5826 if (!strcasecmp(pm, nand_ecc_modes[i])) 5827 return i; 5828 5829 /* 5830 * For backward compatibility we support few obsoleted values that don't 5831 * have their mappings into nand_ecc_modes_t anymore (they were merged 5832 * with other enums). 5833 */ 5834 if (!strcasecmp(pm, "soft_bch")) 5835 return NAND_ECC_SOFT; 5836 5837 return -ENODEV; 5838 } 5839 5840 static const char * const nand_ecc_algos[] = { 5841 [NAND_ECC_HAMMING] = "hamming", 5842 [NAND_ECC_BCH] = "bch", 5843 [NAND_ECC_RS] = "rs", 5844 }; 5845 5846 static int of_get_nand_ecc_algo(struct device_node *np) 5847 { 5848 const char *pm; 5849 int err, i; 5850 5851 err = of_property_read_string(np, "nand-ecc-algo", &pm); 5852 if (!err) { 5853 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++) 5854 if (!strcasecmp(pm, nand_ecc_algos[i])) 5855 return i; 5856 return -ENODEV; 5857 } 5858 5859 /* 5860 * For backward compatibility we also read "nand-ecc-mode" checking 5861 * for some obsoleted values that were specifying ECC algorithm. 5862 */ 5863 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5864 if (err < 0) 5865 return err; 5866 5867 if (!strcasecmp(pm, "soft")) 5868 return NAND_ECC_HAMMING; 5869 else if (!strcasecmp(pm, "soft_bch")) 5870 return NAND_ECC_BCH; 5871 5872 return -ENODEV; 5873 } 5874 5875 static int of_get_nand_ecc_step_size(struct device_node *np) 5876 { 5877 int ret; 5878 u32 val; 5879 5880 ret = of_property_read_u32(np, "nand-ecc-step-size", &val); 5881 return ret ? ret : val; 5882 } 5883 5884 static int of_get_nand_ecc_strength(struct device_node *np) 5885 { 5886 int ret; 5887 u32 val; 5888 5889 ret = of_property_read_u32(np, "nand-ecc-strength", &val); 5890 return ret ? ret : val; 5891 } 5892 5893 static int of_get_nand_bus_width(struct device_node *np) 5894 { 5895 u32 val; 5896 5897 if (of_property_read_u32(np, "nand-bus-width", &val)) 5898 return 8; 5899 5900 switch (val) { 5901 case 8: 5902 case 16: 5903 return val; 5904 default: 5905 return -EIO; 5906 } 5907 } 5908 5909 static bool of_get_nand_on_flash_bbt(struct device_node *np) 5910 { 5911 return of_property_read_bool(np, "nand-on-flash-bbt"); 5912 } 5913 5914 static int nand_dt_init(struct nand_chip *chip) 5915 { 5916 struct device_node *dn = nand_get_flash_node(chip); 5917 int ecc_mode, ecc_algo, ecc_strength, ecc_step; 5918 5919 if (!dn) 5920 return 0; 5921 5922 if (of_get_nand_bus_width(dn) == 16) 5923 chip->options |= NAND_BUSWIDTH_16; 5924 5925 if (of_property_read_bool(dn, "nand-is-boot-medium")) 5926 chip->options |= NAND_IS_BOOT_MEDIUM; 5927 5928 if (of_get_nand_on_flash_bbt(dn)) 5929 chip->bbt_options |= NAND_BBT_USE_FLASH; 5930 5931 ecc_mode = of_get_nand_ecc_mode(dn); 5932 ecc_algo = of_get_nand_ecc_algo(dn); 5933 ecc_strength = of_get_nand_ecc_strength(dn); 5934 ecc_step = of_get_nand_ecc_step_size(dn); 5935 5936 if (ecc_mode >= 0) 5937 chip->ecc.mode = ecc_mode; 5938 5939 if (ecc_algo >= 0) 5940 chip->ecc.algo = ecc_algo; 5941 5942 if (ecc_strength >= 0) 5943 chip->ecc.strength = ecc_strength; 5944 5945 if (ecc_step > 0) 5946 chip->ecc.size = ecc_step; 5947 5948 if (of_property_read_bool(dn, "nand-ecc-maximize")) 5949 chip->ecc.options |= NAND_ECC_MAXIMIZE; 5950 5951 return 0; 5952 } 5953 5954 /** 5955 * nand_scan_ident - Scan for the NAND device 5956 * @mtd: MTD device structure 5957 * @maxchips: number of chips to scan for 5958 * @table: alternative NAND ID table 5959 * 5960 * This is the first phase of the normal nand_scan() function. It reads the 5961 * flash ID and sets up MTD fields accordingly. 5962 * 5963 * This helper used to be called directly from controller drivers that needed 5964 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 5965 * prevented dynamic allocations during this phase which was unconvenient and 5966 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 5967 */ 5968 static int nand_scan_ident(struct mtd_info *mtd, int maxchips, 5969 struct nand_flash_dev *table) 5970 { 5971 int i, nand_maf_id, nand_dev_id; 5972 struct nand_chip *chip = mtd_to_nand(mtd); 5973 int ret; 5974 5975 /* Enforce the right timings for reset/detection */ 5976 onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); 5977 5978 ret = nand_dt_init(chip); 5979 if (ret) 5980 return ret; 5981 5982 if (!mtd->name && mtd->dev.parent) 5983 mtd->name = dev_name(mtd->dev.parent); 5984 5985 /* 5986 * ->cmdfunc() is legacy and will only be used if ->exec_op() is not 5987 * populated. 5988 */ 5989 if (!chip->exec_op) { 5990 /* 5991 * Default functions assigned for ->cmdfunc() and 5992 * ->select_chip() both expect ->cmd_ctrl() to be populated. 5993 */ 5994 if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) { 5995 pr_err("->cmd_ctrl() should be provided\n"); 5996 return -EINVAL; 5997 } 5998 } 5999 6000 /* Set the default functions */ 6001 nand_set_defaults(chip); 6002 6003 /* Read the flash type */ 6004 ret = nand_detect(chip, table); 6005 if (ret) { 6006 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 6007 pr_warn("No NAND device found\n"); 6008 chip->select_chip(mtd, -1); 6009 return ret; 6010 } 6011 6012 nand_maf_id = chip->id.data[0]; 6013 nand_dev_id = chip->id.data[1]; 6014 6015 chip->select_chip(mtd, -1); 6016 6017 /* Check for a chip array */ 6018 for (i = 1; i < maxchips; i++) { 6019 u8 id[2]; 6020 6021 /* See comment in nand_get_flash_type for reset */ 6022 nand_reset(chip, i); 6023 6024 chip->select_chip(mtd, i); 6025 /* Send the command for reading device ID */ 6026 nand_readid_op(chip, 0, id, sizeof(id)); 6027 /* Read manufacturer and device IDs */ 6028 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 6029 chip->select_chip(mtd, -1); 6030 break; 6031 } 6032 chip->select_chip(mtd, -1); 6033 } 6034 if (i > 1) 6035 pr_info("%d chips detected\n", i); 6036 6037 /* Store the number of chips and calc total size for mtd */ 6038 chip->numchips = i; 6039 mtd->size = i * chip->chipsize; 6040 6041 return 0; 6042 } 6043 6044 static void nand_scan_ident_cleanup(struct nand_chip *chip) 6045 { 6046 kfree(chip->parameters.model); 6047 kfree(chip->parameters.onfi); 6048 } 6049 6050 static int nand_set_ecc_soft_ops(struct mtd_info *mtd) 6051 { 6052 struct nand_chip *chip = mtd_to_nand(mtd); 6053 struct nand_ecc_ctrl *ecc = &chip->ecc; 6054 6055 if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) 6056 return -EINVAL; 6057 6058 switch (ecc->algo) { 6059 case NAND_ECC_HAMMING: 6060 ecc->calculate = nand_calculate_ecc; 6061 ecc->correct = nand_correct_data; 6062 ecc->read_page = nand_read_page_swecc; 6063 ecc->read_subpage = nand_read_subpage; 6064 ecc->write_page = nand_write_page_swecc; 6065 ecc->read_page_raw = nand_read_page_raw; 6066 ecc->write_page_raw = nand_write_page_raw; 6067 ecc->read_oob = nand_read_oob_std; 6068 ecc->write_oob = nand_write_oob_std; 6069 if (!ecc->size) 6070 ecc->size = 256; 6071 ecc->bytes = 3; 6072 ecc->strength = 1; 6073 return 0; 6074 case NAND_ECC_BCH: 6075 if (!mtd_nand_has_bch()) { 6076 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n"); 6077 return -EINVAL; 6078 } 6079 ecc->calculate = nand_bch_calculate_ecc; 6080 ecc->correct = nand_bch_correct_data; 6081 ecc->read_page = nand_read_page_swecc; 6082 ecc->read_subpage = nand_read_subpage; 6083 ecc->write_page = nand_write_page_swecc; 6084 ecc->read_page_raw = nand_read_page_raw; 6085 ecc->write_page_raw = nand_write_page_raw; 6086 ecc->read_oob = nand_read_oob_std; 6087 ecc->write_oob = nand_write_oob_std; 6088 6089 /* 6090 * Board driver should supply ecc.size and ecc.strength 6091 * values to select how many bits are correctable. 6092 * Otherwise, default to 4 bits for large page devices. 6093 */ 6094 if (!ecc->size && (mtd->oobsize >= 64)) { 6095 ecc->size = 512; 6096 ecc->strength = 4; 6097 } 6098 6099 /* 6100 * if no ecc placement scheme was provided pickup the default 6101 * large page one. 6102 */ 6103 if (!mtd->ooblayout) { 6104 /* handle large page devices only */ 6105 if (mtd->oobsize < 64) { 6106 WARN(1, "OOB layout is required when using software BCH on small pages\n"); 6107 return -EINVAL; 6108 } 6109 6110 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 6111 6112 } 6113 6114 /* 6115 * We can only maximize ECC config when the default layout is 6116 * used, otherwise we don't know how many bytes can really be 6117 * used. 6118 */ 6119 if (mtd->ooblayout == &nand_ooblayout_lp_ops && 6120 ecc->options & NAND_ECC_MAXIMIZE) { 6121 int steps, bytes; 6122 6123 /* Always prefer 1k blocks over 512bytes ones */ 6124 ecc->size = 1024; 6125 steps = mtd->writesize / ecc->size; 6126 6127 /* Reserve 2 bytes for the BBM */ 6128 bytes = (mtd->oobsize - 2) / steps; 6129 ecc->strength = bytes * 8 / fls(8 * ecc->size); 6130 } 6131 6132 /* See nand_bch_init() for details. */ 6133 ecc->bytes = 0; 6134 ecc->priv = nand_bch_init(mtd); 6135 if (!ecc->priv) { 6136 WARN(1, "BCH ECC initialization failed!\n"); 6137 return -EINVAL; 6138 } 6139 return 0; 6140 default: 6141 WARN(1, "Unsupported ECC algorithm!\n"); 6142 return -EINVAL; 6143 } 6144 } 6145 6146 /** 6147 * nand_check_ecc_caps - check the sanity of preset ECC settings 6148 * @chip: nand chip info structure 6149 * @caps: ECC caps info structure 6150 * @oobavail: OOB size that the ECC engine can use 6151 * 6152 * When ECC step size and strength are already set, check if they are supported 6153 * by the controller and the calculated ECC bytes fit within the chip's OOB. 6154 * On success, the calculated ECC bytes is set. 6155 */ 6156 static int 6157 nand_check_ecc_caps(struct nand_chip *chip, 6158 const struct nand_ecc_caps *caps, int oobavail) 6159 { 6160 struct mtd_info *mtd = nand_to_mtd(chip); 6161 const struct nand_ecc_step_info *stepinfo; 6162 int preset_step = chip->ecc.size; 6163 int preset_strength = chip->ecc.strength; 6164 int ecc_bytes, nsteps = mtd->writesize / preset_step; 6165 int i, j; 6166 6167 for (i = 0; i < caps->nstepinfos; i++) { 6168 stepinfo = &caps->stepinfos[i]; 6169 6170 if (stepinfo->stepsize != preset_step) 6171 continue; 6172 6173 for (j = 0; j < stepinfo->nstrengths; j++) { 6174 if (stepinfo->strengths[j] != preset_strength) 6175 continue; 6176 6177 ecc_bytes = caps->calc_ecc_bytes(preset_step, 6178 preset_strength); 6179 if (WARN_ON_ONCE(ecc_bytes < 0)) 6180 return ecc_bytes; 6181 6182 if (ecc_bytes * nsteps > oobavail) { 6183 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 6184 preset_step, preset_strength); 6185 return -ENOSPC; 6186 } 6187 6188 chip->ecc.bytes = ecc_bytes; 6189 6190 return 0; 6191 } 6192 } 6193 6194 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 6195 preset_step, preset_strength); 6196 6197 return -ENOTSUPP; 6198 } 6199 6200 /** 6201 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 6202 * @chip: nand chip info structure 6203 * @caps: ECC engine caps info structure 6204 * @oobavail: OOB size that the ECC engine can use 6205 * 6206 * If a chip's ECC requirement is provided, try to meet it with the least 6207 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 6208 * On success, the chosen ECC settings are set. 6209 */ 6210 static int 6211 nand_match_ecc_req(struct nand_chip *chip, 6212 const struct nand_ecc_caps *caps, int oobavail) 6213 { 6214 struct mtd_info *mtd = nand_to_mtd(chip); 6215 const struct nand_ecc_step_info *stepinfo; 6216 int req_step = chip->ecc_step_ds; 6217 int req_strength = chip->ecc_strength_ds; 6218 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 6219 int best_step, best_strength, best_ecc_bytes; 6220 int best_ecc_bytes_total = INT_MAX; 6221 int i, j; 6222 6223 /* No information provided by the NAND chip */ 6224 if (!req_step || !req_strength) 6225 return -ENOTSUPP; 6226 6227 /* number of correctable bits the chip requires in a page */ 6228 req_corr = mtd->writesize / req_step * req_strength; 6229 6230 for (i = 0; i < caps->nstepinfos; i++) { 6231 stepinfo = &caps->stepinfos[i]; 6232 step_size = stepinfo->stepsize; 6233 6234 for (j = 0; j < stepinfo->nstrengths; j++) { 6235 strength = stepinfo->strengths[j]; 6236 6237 /* 6238 * If both step size and strength are smaller than the 6239 * chip's requirement, it is not easy to compare the 6240 * resulted reliability. 6241 */ 6242 if (step_size < req_step && strength < req_strength) 6243 continue; 6244 6245 if (mtd->writesize % step_size) 6246 continue; 6247 6248 nsteps = mtd->writesize / step_size; 6249 6250 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 6251 if (WARN_ON_ONCE(ecc_bytes < 0)) 6252 continue; 6253 ecc_bytes_total = ecc_bytes * nsteps; 6254 6255 if (ecc_bytes_total > oobavail || 6256 strength * nsteps < req_corr) 6257 continue; 6258 6259 /* 6260 * We assume the best is to meet the chip's requrement 6261 * with the least number of ECC bytes. 6262 */ 6263 if (ecc_bytes_total < best_ecc_bytes_total) { 6264 best_ecc_bytes_total = ecc_bytes_total; 6265 best_step = step_size; 6266 best_strength = strength; 6267 best_ecc_bytes = ecc_bytes; 6268 } 6269 } 6270 } 6271 6272 if (best_ecc_bytes_total == INT_MAX) 6273 return -ENOTSUPP; 6274 6275 chip->ecc.size = best_step; 6276 chip->ecc.strength = best_strength; 6277 chip->ecc.bytes = best_ecc_bytes; 6278 6279 return 0; 6280 } 6281 6282 /** 6283 * nand_maximize_ecc - choose the max ECC strength available 6284 * @chip: nand chip info structure 6285 * @caps: ECC engine caps info structure 6286 * @oobavail: OOB size that the ECC engine can use 6287 * 6288 * Choose the max ECC strength that is supported on the controller, and can fit 6289 * within the chip's OOB. On success, the chosen ECC settings are set. 6290 */ 6291 static int 6292 nand_maximize_ecc(struct nand_chip *chip, 6293 const struct nand_ecc_caps *caps, int oobavail) 6294 { 6295 struct mtd_info *mtd = nand_to_mtd(chip); 6296 const struct nand_ecc_step_info *stepinfo; 6297 int step_size, strength, nsteps, ecc_bytes, corr; 6298 int best_corr = 0; 6299 int best_step = 0; 6300 int best_strength, best_ecc_bytes; 6301 int i, j; 6302 6303 for (i = 0; i < caps->nstepinfos; i++) { 6304 stepinfo = &caps->stepinfos[i]; 6305 step_size = stepinfo->stepsize; 6306 6307 /* If chip->ecc.size is already set, respect it */ 6308 if (chip->ecc.size && step_size != chip->ecc.size) 6309 continue; 6310 6311 for (j = 0; j < stepinfo->nstrengths; j++) { 6312 strength = stepinfo->strengths[j]; 6313 6314 if (mtd->writesize % step_size) 6315 continue; 6316 6317 nsteps = mtd->writesize / step_size; 6318 6319 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 6320 if (WARN_ON_ONCE(ecc_bytes < 0)) 6321 continue; 6322 6323 if (ecc_bytes * nsteps > oobavail) 6324 continue; 6325 6326 corr = strength * nsteps; 6327 6328 /* 6329 * If the number of correctable bits is the same, 6330 * bigger step_size has more reliability. 6331 */ 6332 if (corr > best_corr || 6333 (corr == best_corr && step_size > best_step)) { 6334 best_corr = corr; 6335 best_step = step_size; 6336 best_strength = strength; 6337 best_ecc_bytes = ecc_bytes; 6338 } 6339 } 6340 } 6341 6342 if (!best_corr) 6343 return -ENOTSUPP; 6344 6345 chip->ecc.size = best_step; 6346 chip->ecc.strength = best_strength; 6347 chip->ecc.bytes = best_ecc_bytes; 6348 6349 return 0; 6350 } 6351 6352 /** 6353 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 6354 * @chip: nand chip info structure 6355 * @caps: ECC engine caps info structure 6356 * @oobavail: OOB size that the ECC engine can use 6357 * 6358 * Choose the ECC configuration according to following logic 6359 * 6360 * 1. If both ECC step size and ECC strength are already set (usually by DT) 6361 * then check if it is supported by this controller. 6362 * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength. 6363 * 3. Otherwise, try to match the ECC step size and ECC strength closest 6364 * to the chip's requirement. If available OOB size can't fit the chip 6365 * requirement then fallback to the maximum ECC step size and ECC strength. 6366 * 6367 * On success, the chosen ECC settings are set. 6368 */ 6369 int nand_ecc_choose_conf(struct nand_chip *chip, 6370 const struct nand_ecc_caps *caps, int oobavail) 6371 { 6372 struct mtd_info *mtd = nand_to_mtd(chip); 6373 6374 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 6375 return -EINVAL; 6376 6377 if (chip->ecc.size && chip->ecc.strength) 6378 return nand_check_ecc_caps(chip, caps, oobavail); 6379 6380 if (chip->ecc.options & NAND_ECC_MAXIMIZE) 6381 return nand_maximize_ecc(chip, caps, oobavail); 6382 6383 if (!nand_match_ecc_req(chip, caps, oobavail)) 6384 return 0; 6385 6386 return nand_maximize_ecc(chip, caps, oobavail); 6387 } 6388 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 6389 6390 /* 6391 * Check if the chip configuration meet the datasheet requirements. 6392 6393 * If our configuration corrects A bits per B bytes and the minimum 6394 * required correction level is X bits per Y bytes, then we must ensure 6395 * both of the following are true: 6396 * 6397 * (1) A / B >= X / Y 6398 * (2) A >= X 6399 * 6400 * Requirement (1) ensures we can correct for the required bitflip density. 6401 * Requirement (2) ensures we can correct even when all bitflips are clumped 6402 * in the same sector. 6403 */ 6404 static bool nand_ecc_strength_good(struct mtd_info *mtd) 6405 { 6406 struct nand_chip *chip = mtd_to_nand(mtd); 6407 struct nand_ecc_ctrl *ecc = &chip->ecc; 6408 int corr, ds_corr; 6409 6410 if (ecc->size == 0 || chip->ecc_step_ds == 0) 6411 /* Not enough information */ 6412 return true; 6413 6414 /* 6415 * We get the number of corrected bits per page to compare 6416 * the correction density. 6417 */ 6418 corr = (mtd->writesize * ecc->strength) / ecc->size; 6419 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds; 6420 6421 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds; 6422 } 6423 6424 /** 6425 * nand_scan_tail - Scan for the NAND device 6426 * @mtd: MTD device structure 6427 * 6428 * This is the second phase of the normal nand_scan() function. It fills out 6429 * all the uninitialized function pointers with the defaults and scans for a 6430 * bad block table if appropriate. 6431 */ 6432 static int nand_scan_tail(struct mtd_info *mtd) 6433 { 6434 struct nand_chip *chip = mtd_to_nand(mtd); 6435 struct nand_ecc_ctrl *ecc = &chip->ecc; 6436 int ret, i; 6437 6438 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 6439 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 6440 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 6441 return -EINVAL; 6442 } 6443 6444 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 6445 if (!chip->data_buf) 6446 return -ENOMEM; 6447 6448 /* 6449 * FIXME: some NAND manufacturer drivers expect the first die to be 6450 * selected when manufacturer->init() is called. They should be fixed 6451 * to explictly select the relevant die when interacting with the NAND 6452 * chip. 6453 */ 6454 chip->select_chip(mtd, 0); 6455 ret = nand_manufacturer_init(chip); 6456 chip->select_chip(mtd, -1); 6457 if (ret) 6458 goto err_free_buf; 6459 6460 /* Set the internal oob buffer location, just after the page data */ 6461 chip->oob_poi = chip->data_buf + mtd->writesize; 6462 6463 /* 6464 * If no default placement scheme is given, select an appropriate one. 6465 */ 6466 if (!mtd->ooblayout && 6467 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { 6468 switch (mtd->oobsize) { 6469 case 8: 6470 case 16: 6471 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); 6472 break; 6473 case 64: 6474 case 128: 6475 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); 6476 break; 6477 default: 6478 /* 6479 * Expose the whole OOB area to users if ECC_NONE 6480 * is passed. We could do that for all kind of 6481 * ->oobsize, but we must keep the old large/small 6482 * page with ECC layout when ->oobsize <= 128 for 6483 * compatibility reasons. 6484 */ 6485 if (ecc->mode == NAND_ECC_NONE) { 6486 mtd_set_ooblayout(mtd, 6487 &nand_ooblayout_lp_ops); 6488 break; 6489 } 6490 6491 WARN(1, "No oob scheme defined for oobsize %d\n", 6492 mtd->oobsize); 6493 ret = -EINVAL; 6494 goto err_nand_manuf_cleanup; 6495 } 6496 } 6497 6498 /* 6499 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 6500 * selected and we have 256 byte pagesize fallback to software ECC 6501 */ 6502 6503 switch (ecc->mode) { 6504 case NAND_ECC_HW_OOB_FIRST: 6505 /* Similar to NAND_ECC_HW, but a separate read_page handle */ 6506 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { 6507 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 6508 ret = -EINVAL; 6509 goto err_nand_manuf_cleanup; 6510 } 6511 if (!ecc->read_page) 6512 ecc->read_page = nand_read_page_hwecc_oob_first; 6513 6514 case NAND_ECC_HW: 6515 /* Use standard hwecc read page function? */ 6516 if (!ecc->read_page) 6517 ecc->read_page = nand_read_page_hwecc; 6518 if (!ecc->write_page) 6519 ecc->write_page = nand_write_page_hwecc; 6520 if (!ecc->read_page_raw) 6521 ecc->read_page_raw = nand_read_page_raw; 6522 if (!ecc->write_page_raw) 6523 ecc->write_page_raw = nand_write_page_raw; 6524 if (!ecc->read_oob) 6525 ecc->read_oob = nand_read_oob_std; 6526 if (!ecc->write_oob) 6527 ecc->write_oob = nand_write_oob_std; 6528 if (!ecc->read_subpage) 6529 ecc->read_subpage = nand_read_subpage; 6530 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 6531 ecc->write_subpage = nand_write_subpage_hwecc; 6532 6533 case NAND_ECC_HW_SYNDROME: 6534 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 6535 (!ecc->read_page || 6536 ecc->read_page == nand_read_page_hwecc || 6537 !ecc->write_page || 6538 ecc->write_page == nand_write_page_hwecc)) { 6539 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 6540 ret = -EINVAL; 6541 goto err_nand_manuf_cleanup; 6542 } 6543 /* Use standard syndrome read/write page function? */ 6544 if (!ecc->read_page) 6545 ecc->read_page = nand_read_page_syndrome; 6546 if (!ecc->write_page) 6547 ecc->write_page = nand_write_page_syndrome; 6548 if (!ecc->read_page_raw) 6549 ecc->read_page_raw = nand_read_page_raw_syndrome; 6550 if (!ecc->write_page_raw) 6551 ecc->write_page_raw = nand_write_page_raw_syndrome; 6552 if (!ecc->read_oob) 6553 ecc->read_oob = nand_read_oob_syndrome; 6554 if (!ecc->write_oob) 6555 ecc->write_oob = nand_write_oob_syndrome; 6556 6557 if (mtd->writesize >= ecc->size) { 6558 if (!ecc->strength) { 6559 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 6560 ret = -EINVAL; 6561 goto err_nand_manuf_cleanup; 6562 } 6563 break; 6564 } 6565 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 6566 ecc->size, mtd->writesize); 6567 ecc->mode = NAND_ECC_SOFT; 6568 ecc->algo = NAND_ECC_HAMMING; 6569 6570 case NAND_ECC_SOFT: 6571 ret = nand_set_ecc_soft_ops(mtd); 6572 if (ret) { 6573 ret = -EINVAL; 6574 goto err_nand_manuf_cleanup; 6575 } 6576 break; 6577 6578 case NAND_ECC_ON_DIE: 6579 if (!ecc->read_page || !ecc->write_page) { 6580 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 6581 ret = -EINVAL; 6582 goto err_nand_manuf_cleanup; 6583 } 6584 if (!ecc->read_oob) 6585 ecc->read_oob = nand_read_oob_std; 6586 if (!ecc->write_oob) 6587 ecc->write_oob = nand_write_oob_std; 6588 break; 6589 6590 case NAND_ECC_NONE: 6591 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); 6592 ecc->read_page = nand_read_page_raw; 6593 ecc->write_page = nand_write_page_raw; 6594 ecc->read_oob = nand_read_oob_std; 6595 ecc->read_page_raw = nand_read_page_raw; 6596 ecc->write_page_raw = nand_write_page_raw; 6597 ecc->write_oob = nand_write_oob_std; 6598 ecc->size = mtd->writesize; 6599 ecc->bytes = 0; 6600 ecc->strength = 0; 6601 break; 6602 6603 default: 6604 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); 6605 ret = -EINVAL; 6606 goto err_nand_manuf_cleanup; 6607 } 6608 6609 if (ecc->correct || ecc->calculate) { 6610 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6611 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6612 if (!ecc->calc_buf || !ecc->code_buf) { 6613 ret = -ENOMEM; 6614 goto err_nand_manuf_cleanup; 6615 } 6616 } 6617 6618 /* For many systems, the standard OOB write also works for raw */ 6619 if (!ecc->read_oob_raw) 6620 ecc->read_oob_raw = ecc->read_oob; 6621 if (!ecc->write_oob_raw) 6622 ecc->write_oob_raw = ecc->write_oob; 6623 6624 /* propagate ecc info to mtd_info */ 6625 mtd->ecc_strength = ecc->strength; 6626 mtd->ecc_step_size = ecc->size; 6627 6628 /* 6629 * Set the number of read / write steps for one page depending on ECC 6630 * mode. 6631 */ 6632 ecc->steps = mtd->writesize / ecc->size; 6633 if (ecc->steps * ecc->size != mtd->writesize) { 6634 WARN(1, "Invalid ECC parameters\n"); 6635 ret = -EINVAL; 6636 goto err_nand_manuf_cleanup; 6637 } 6638 ecc->total = ecc->steps * ecc->bytes; 6639 if (ecc->total > mtd->oobsize) { 6640 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 6641 ret = -EINVAL; 6642 goto err_nand_manuf_cleanup; 6643 } 6644 6645 /* 6646 * The number of bytes available for a client to place data into 6647 * the out of band area. 6648 */ 6649 ret = mtd_ooblayout_count_freebytes(mtd); 6650 if (ret < 0) 6651 ret = 0; 6652 6653 mtd->oobavail = ret; 6654 6655 /* ECC sanity check: warn if it's too weak */ 6656 if (!nand_ecc_strength_good(mtd)) 6657 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", 6658 mtd->name); 6659 6660 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 6661 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 6662 switch (ecc->steps) { 6663 case 2: 6664 mtd->subpage_sft = 1; 6665 break; 6666 case 4: 6667 case 8: 6668 case 16: 6669 mtd->subpage_sft = 2; 6670 break; 6671 } 6672 } 6673 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 6674 6675 /* Initialize state */ 6676 chip->state = FL_READY; 6677 6678 /* Invalidate the pagebuffer reference */ 6679 chip->pagebuf = -1; 6680 6681 /* Large page NAND with SOFT_ECC should support subpage reads */ 6682 switch (ecc->mode) { 6683 case NAND_ECC_SOFT: 6684 if (chip->page_shift > 9) 6685 chip->options |= NAND_SUBPAGE_READ; 6686 break; 6687 6688 default: 6689 break; 6690 } 6691 6692 /* Fill in remaining MTD driver data */ 6693 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH; 6694 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : 6695 MTD_CAP_NANDFLASH; 6696 mtd->_erase = nand_erase; 6697 mtd->_point = NULL; 6698 mtd->_unpoint = NULL; 6699 mtd->_panic_write = panic_nand_write; 6700 mtd->_read_oob = nand_read_oob; 6701 mtd->_write_oob = nand_write_oob; 6702 mtd->_sync = nand_sync; 6703 mtd->_lock = NULL; 6704 mtd->_unlock = NULL; 6705 mtd->_suspend = nand_suspend; 6706 mtd->_resume = nand_resume; 6707 mtd->_reboot = nand_shutdown; 6708 mtd->_block_isreserved = nand_block_isreserved; 6709 mtd->_block_isbad = nand_block_isbad; 6710 mtd->_block_markbad = nand_block_markbad; 6711 mtd->_max_bad_blocks = nand_max_bad_blocks; 6712 mtd->writebufsize = mtd->writesize; 6713 6714 /* 6715 * Initialize bitflip_threshold to its default prior scan_bbt() call. 6716 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 6717 * properly set. 6718 */ 6719 if (!mtd->bitflip_threshold) 6720 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 6721 6722 /* Initialize the ->data_interface field. */ 6723 ret = nand_init_data_interface(chip); 6724 if (ret) 6725 goto err_nand_manuf_cleanup; 6726 6727 /* Enter fastest possible mode on all dies. */ 6728 for (i = 0; i < chip->numchips; i++) { 6729 ret = nand_setup_data_interface(chip, i); 6730 if (ret) 6731 goto err_nand_manuf_cleanup; 6732 } 6733 6734 /* Check, if we should skip the bad block table scan */ 6735 if (chip->options & NAND_SKIP_BBTSCAN) 6736 return 0; 6737 6738 /* Build bad block table */ 6739 ret = nand_create_bbt(chip); 6740 if (ret) 6741 goto err_nand_manuf_cleanup; 6742 6743 return 0; 6744 6745 6746 err_nand_manuf_cleanup: 6747 nand_manufacturer_cleanup(chip); 6748 6749 err_free_buf: 6750 kfree(chip->data_buf); 6751 kfree(ecc->code_buf); 6752 kfree(ecc->calc_buf); 6753 6754 return ret; 6755 } 6756 6757 static int nand_attach(struct nand_chip *chip) 6758 { 6759 if (chip->controller->ops && chip->controller->ops->attach_chip) 6760 return chip->controller->ops->attach_chip(chip); 6761 6762 return 0; 6763 } 6764 6765 static void nand_detach(struct nand_chip *chip) 6766 { 6767 if (chip->controller->ops && chip->controller->ops->detach_chip) 6768 chip->controller->ops->detach_chip(chip); 6769 } 6770 6771 /** 6772 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 6773 * @mtd: MTD device structure 6774 * @maxchips: number of chips to scan for. @nand_scan_ident() will not be run if 6775 * this parameter is zero (useful for specific drivers that must 6776 * handle this part of the process themselves, e.g docg4). 6777 * @ids: optional flash IDs table 6778 * 6779 * This fills out all the uninitialized function pointers with the defaults. 6780 * The flash ID is read and the mtd/chip structures are filled with the 6781 * appropriate values. 6782 */ 6783 int nand_scan_with_ids(struct mtd_info *mtd, int maxchips, 6784 struct nand_flash_dev *ids) 6785 { 6786 struct nand_chip *chip = mtd_to_nand(mtd); 6787 int ret; 6788 6789 if (maxchips) { 6790 ret = nand_scan_ident(mtd, maxchips, ids); 6791 if (ret) 6792 return ret; 6793 } 6794 6795 ret = nand_attach(chip); 6796 if (ret) 6797 goto cleanup_ident; 6798 6799 ret = nand_scan_tail(mtd); 6800 if (ret) 6801 goto detach_chip; 6802 6803 return 0; 6804 6805 detach_chip: 6806 nand_detach(chip); 6807 cleanup_ident: 6808 nand_scan_ident_cleanup(chip); 6809 6810 return ret; 6811 } 6812 EXPORT_SYMBOL(nand_scan_with_ids); 6813 6814 /** 6815 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 6816 * @chip: NAND chip object 6817 */ 6818 void nand_cleanup(struct nand_chip *chip) 6819 { 6820 if (chip->ecc.mode == NAND_ECC_SOFT && 6821 chip->ecc.algo == NAND_ECC_BCH) 6822 nand_bch_free((struct nand_bch_control *)chip->ecc.priv); 6823 6824 /* Free bad block table memory */ 6825 kfree(chip->bbt); 6826 kfree(chip->data_buf); 6827 kfree(chip->ecc.code_buf); 6828 kfree(chip->ecc.calc_buf); 6829 6830 /* Free bad block descriptor memory */ 6831 if (chip->badblock_pattern && chip->badblock_pattern->options 6832 & NAND_BBT_DYNAMICSTRUCT) 6833 kfree(chip->badblock_pattern); 6834 6835 /* Free manufacturer priv data. */ 6836 nand_manufacturer_cleanup(chip); 6837 6838 /* Free controller specific allocations after chip identification */ 6839 nand_detach(chip); 6840 6841 /* Free identification phase allocations */ 6842 nand_scan_ident_cleanup(chip); 6843 } 6844 6845 EXPORT_SYMBOL_GPL(nand_cleanup); 6846 6847 /** 6848 * nand_release - [NAND Interface] Unregister the MTD device and free resources 6849 * held by the NAND device 6850 * @mtd: MTD device structure 6851 */ 6852 void nand_release(struct mtd_info *mtd) 6853 { 6854 mtd_device_unregister(mtd); 6855 nand_cleanup(mtd_to_nand(mtd)); 6856 } 6857 EXPORT_SYMBOL_GPL(nand_release); 6858 6859 MODULE_LICENSE("GPL"); 6860 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 6861 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 6862 MODULE_DESCRIPTION("Generic NAND flash driver code"); 6863