1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Overview: 4 * This is the generic MTD driver for NAND flash devices. It should be 5 * capable of working with almost all NAND chips currently available. 6 * 7 * Additional technical information is available on 8 * http://www.linux-mtd.infradead.org/doc/nand.html 9 * 10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 12 * 13 * Credits: 14 * David Woodhouse for adding multichip support 15 * 16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 17 * rework for 2K page size chips 18 * 19 * TODO: 20 * Enable cached programming for 2k page size chips 21 * Check, if mtd->ecctype should be set to MTD_ECC_HW 22 * if we have HW ECC support. 23 * BBT table is not serialized, has to be fixed 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/module.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/sched.h> 33 #include <linux/slab.h> 34 #include <linux/mm.h> 35 #include <linux/types.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/nand_ecc.h> 38 #include <linux/mtd/nand_bch.h> 39 #include <linux/interrupt.h> 40 #include <linux/bitops.h> 41 #include <linux/io.h> 42 #include <linux/mtd/partitions.h> 43 #include <linux/of.h> 44 #include <linux/gpio/consumer.h> 45 46 #include "internals.h" 47 48 /* Define default oob placement schemes for large and small page devices */ 49 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, 50 struct mtd_oob_region *oobregion) 51 { 52 struct nand_chip *chip = mtd_to_nand(mtd); 53 struct nand_ecc_ctrl *ecc = &chip->ecc; 54 55 if (section > 1) 56 return -ERANGE; 57 58 if (!section) { 59 oobregion->offset = 0; 60 if (mtd->oobsize == 16) 61 oobregion->length = 4; 62 else 63 oobregion->length = 3; 64 } else { 65 if (mtd->oobsize == 8) 66 return -ERANGE; 67 68 oobregion->offset = 6; 69 oobregion->length = ecc->total - 4; 70 } 71 72 return 0; 73 } 74 75 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, 76 struct mtd_oob_region *oobregion) 77 { 78 if (section > 1) 79 return -ERANGE; 80 81 if (mtd->oobsize == 16) { 82 if (section) 83 return -ERANGE; 84 85 oobregion->length = 8; 86 oobregion->offset = 8; 87 } else { 88 oobregion->length = 2; 89 if (!section) 90 oobregion->offset = 3; 91 else 92 oobregion->offset = 6; 93 } 94 95 return 0; 96 } 97 98 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { 99 .ecc = nand_ooblayout_ecc_sp, 100 .free = nand_ooblayout_free_sp, 101 }; 102 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); 103 104 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, 105 struct mtd_oob_region *oobregion) 106 { 107 struct nand_chip *chip = mtd_to_nand(mtd); 108 struct nand_ecc_ctrl *ecc = &chip->ecc; 109 110 if (section || !ecc->total) 111 return -ERANGE; 112 113 oobregion->length = ecc->total; 114 oobregion->offset = mtd->oobsize - oobregion->length; 115 116 return 0; 117 } 118 119 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, 120 struct mtd_oob_region *oobregion) 121 { 122 struct nand_chip *chip = mtd_to_nand(mtd); 123 struct nand_ecc_ctrl *ecc = &chip->ecc; 124 125 if (section) 126 return -ERANGE; 127 128 oobregion->length = mtd->oobsize - ecc->total - 2; 129 oobregion->offset = 2; 130 131 return 0; 132 } 133 134 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { 135 .ecc = nand_ooblayout_ecc_lp, 136 .free = nand_ooblayout_free_lp, 137 }; 138 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); 139 140 /* 141 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC 142 * are placed at a fixed offset. 143 */ 144 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, 145 struct mtd_oob_region *oobregion) 146 { 147 struct nand_chip *chip = mtd_to_nand(mtd); 148 struct nand_ecc_ctrl *ecc = &chip->ecc; 149 150 if (section) 151 return -ERANGE; 152 153 switch (mtd->oobsize) { 154 case 64: 155 oobregion->offset = 40; 156 break; 157 case 128: 158 oobregion->offset = 80; 159 break; 160 default: 161 return -EINVAL; 162 } 163 164 oobregion->length = ecc->total; 165 if (oobregion->offset + oobregion->length > mtd->oobsize) 166 return -ERANGE; 167 168 return 0; 169 } 170 171 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, 172 struct mtd_oob_region *oobregion) 173 { 174 struct nand_chip *chip = mtd_to_nand(mtd); 175 struct nand_ecc_ctrl *ecc = &chip->ecc; 176 int ecc_offset = 0; 177 178 if (section < 0 || section > 1) 179 return -ERANGE; 180 181 switch (mtd->oobsize) { 182 case 64: 183 ecc_offset = 40; 184 break; 185 case 128: 186 ecc_offset = 80; 187 break; 188 default: 189 return -EINVAL; 190 } 191 192 if (section == 0) { 193 oobregion->offset = 2; 194 oobregion->length = ecc_offset - 2; 195 } else { 196 oobregion->offset = ecc_offset + ecc->total; 197 oobregion->length = mtd->oobsize - oobregion->offset; 198 } 199 200 return 0; 201 } 202 203 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { 204 .ecc = nand_ooblayout_ecc_lp_hamming, 205 .free = nand_ooblayout_free_lp_hamming, 206 }; 207 208 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page, 209 struct mtd_pairing_info *info) 210 { 211 int lastpage = (mtd->erasesize / mtd->writesize) - 1; 212 int dist = 3; 213 214 if (page == lastpage) 215 dist = 2; 216 217 if (!page || (page & 1)) { 218 info->group = 0; 219 info->pair = (page + 1) / 2; 220 } else { 221 info->group = 1; 222 info->pair = (page + 1 - dist) / 2; 223 } 224 225 return 0; 226 } 227 228 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd, 229 const struct mtd_pairing_info *info) 230 { 231 int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2; 232 int page = info->pair * 2; 233 int dist = 3; 234 235 if (!info->group && !info->pair) 236 return 0; 237 238 if (info->pair == lastpair && info->group) 239 dist = 2; 240 241 if (!info->group) 242 page--; 243 else if (info->pair) 244 page += dist - 1; 245 246 if (page >= mtd->erasesize / mtd->writesize) 247 return -EINVAL; 248 249 return page; 250 } 251 252 const struct mtd_pairing_scheme dist3_pairing_scheme = { 253 .ngroups = 2, 254 .get_info = nand_pairing_dist3_get_info, 255 .get_wunit = nand_pairing_dist3_get_wunit, 256 }; 257 258 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) 259 { 260 int ret = 0; 261 262 /* Start address must align on block boundary */ 263 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 264 pr_debug("%s: unaligned address\n", __func__); 265 ret = -EINVAL; 266 } 267 268 /* Length must align on block boundary */ 269 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 270 pr_debug("%s: length not block aligned\n", __func__); 271 ret = -EINVAL; 272 } 273 274 return ret; 275 } 276 277 /** 278 * nand_extract_bits - Copy unaligned bits from one buffer to another one 279 * @dst: destination buffer 280 * @dst_off: bit offset at which the writing starts 281 * @src: source buffer 282 * @src_off: bit offset at which the reading starts 283 * @nbits: number of bits to copy from @src to @dst 284 * 285 * Copy bits from one memory region to another (overlap authorized). 286 */ 287 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, 288 unsigned int src_off, unsigned int nbits) 289 { 290 unsigned int tmp, n; 291 292 dst += dst_off / 8; 293 dst_off %= 8; 294 src += src_off / 8; 295 src_off %= 8; 296 297 while (nbits) { 298 n = min3(8 - dst_off, 8 - src_off, nbits); 299 300 tmp = (*src >> src_off) & GENMASK(n - 1, 0); 301 *dst &= ~GENMASK(n - 1 + dst_off, dst_off); 302 *dst |= tmp << dst_off; 303 304 dst_off += n; 305 if (dst_off >= 8) { 306 dst++; 307 dst_off -= 8; 308 } 309 310 src_off += n; 311 if (src_off >= 8) { 312 src++; 313 src_off -= 8; 314 } 315 316 nbits -= n; 317 } 318 } 319 EXPORT_SYMBOL_GPL(nand_extract_bits); 320 321 /** 322 * nand_select_target() - Select a NAND target (A.K.A. die) 323 * @chip: NAND chip object 324 * @cs: the CS line to select. Note that this CS id is always from the chip 325 * PoV, not the controller one 326 * 327 * Select a NAND target so that further operations executed on @chip go to the 328 * selected NAND target. 329 */ 330 void nand_select_target(struct nand_chip *chip, unsigned int cs) 331 { 332 /* 333 * cs should always lie between 0 and nanddev_ntargets(), when that's 334 * not the case it's a bug and the caller should be fixed. 335 */ 336 if (WARN_ON(cs > nanddev_ntargets(&chip->base))) 337 return; 338 339 chip->cur_cs = cs; 340 341 if (chip->legacy.select_chip) 342 chip->legacy.select_chip(chip, cs); 343 } 344 EXPORT_SYMBOL_GPL(nand_select_target); 345 346 /** 347 * nand_deselect_target() - Deselect the currently selected target 348 * @chip: NAND chip object 349 * 350 * Deselect the currently selected NAND target. The result of operations 351 * executed on @chip after the target has been deselected is undefined. 352 */ 353 void nand_deselect_target(struct nand_chip *chip) 354 { 355 if (chip->legacy.select_chip) 356 chip->legacy.select_chip(chip, -1); 357 358 chip->cur_cs = -1; 359 } 360 EXPORT_SYMBOL_GPL(nand_deselect_target); 361 362 /** 363 * nand_release_device - [GENERIC] release chip 364 * @chip: NAND chip object 365 * 366 * Release chip lock and wake up anyone waiting on the device. 367 */ 368 static void nand_release_device(struct nand_chip *chip) 369 { 370 /* Release the controller and the chip */ 371 mutex_unlock(&chip->controller->lock); 372 mutex_unlock(&chip->lock); 373 } 374 375 /** 376 * nand_bbm_get_next_page - Get the next page for bad block markers 377 * @chip: NAND chip object 378 * @page: First page to start checking for bad block marker usage 379 * 380 * Returns an integer that corresponds to the page offset within a block, for 381 * a page that is used to store bad block markers. If no more pages are 382 * available, -EINVAL is returned. 383 */ 384 int nand_bbm_get_next_page(struct nand_chip *chip, int page) 385 { 386 struct mtd_info *mtd = nand_to_mtd(chip); 387 int last_page = ((mtd->erasesize - mtd->writesize) >> 388 chip->page_shift) & chip->pagemask; 389 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE 390 | NAND_BBM_LASTPAGE; 391 392 if (page == 0 && !(chip->options & bbm_flags)) 393 return 0; 394 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) 395 return 0; 396 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) 397 return 1; 398 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) 399 return last_page; 400 401 return -EINVAL; 402 } 403 404 /** 405 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 406 * @chip: NAND chip object 407 * @ofs: offset from device start 408 * 409 * Check, if the block is bad. 410 */ 411 static int nand_block_bad(struct nand_chip *chip, loff_t ofs) 412 { 413 int first_page, page_offset; 414 int res; 415 u8 bad; 416 417 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; 418 page_offset = nand_bbm_get_next_page(chip, 0); 419 420 while (page_offset >= 0) { 421 res = chip->ecc.read_oob(chip, first_page + page_offset); 422 if (res < 0) 423 return res; 424 425 bad = chip->oob_poi[chip->badblockpos]; 426 427 if (likely(chip->badblockbits == 8)) 428 res = bad != 0xFF; 429 else 430 res = hweight8(bad) < chip->badblockbits; 431 if (res) 432 return res; 433 434 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 435 } 436 437 return 0; 438 } 439 440 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) 441 { 442 if (chip->options & NAND_NO_BBM_QUIRK) 443 return 0; 444 445 if (chip->legacy.block_bad) 446 return chip->legacy.block_bad(chip, ofs); 447 448 return nand_block_bad(chip, ofs); 449 } 450 451 /** 452 * nand_get_device - [GENERIC] Get chip for selected access 453 * @chip: NAND chip structure 454 * 455 * Lock the device and its controller for exclusive access 456 * 457 * Return: -EBUSY if the chip has been suspended, 0 otherwise 458 */ 459 static int nand_get_device(struct nand_chip *chip) 460 { 461 mutex_lock(&chip->lock); 462 if (chip->suspended) { 463 mutex_unlock(&chip->lock); 464 return -EBUSY; 465 } 466 mutex_lock(&chip->controller->lock); 467 468 return 0; 469 } 470 471 /** 472 * nand_check_wp - [GENERIC] check if the chip is write protected 473 * @chip: NAND chip object 474 * 475 * Check, if the device is write protected. The function expects, that the 476 * device is already selected. 477 */ 478 static int nand_check_wp(struct nand_chip *chip) 479 { 480 u8 status; 481 int ret; 482 483 /* Broken xD cards report WP despite being writable */ 484 if (chip->options & NAND_BROKEN_XD) 485 return 0; 486 487 /* Check the WP bit */ 488 ret = nand_status_op(chip, &status); 489 if (ret) 490 return ret; 491 492 return status & NAND_STATUS_WP ? 0 : 1; 493 } 494 495 /** 496 * nand_fill_oob - [INTERN] Transfer client buffer to oob 497 * @chip: NAND chip object 498 * @oob: oob data buffer 499 * @len: oob data write length 500 * @ops: oob ops structure 501 */ 502 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, 503 struct mtd_oob_ops *ops) 504 { 505 struct mtd_info *mtd = nand_to_mtd(chip); 506 int ret; 507 508 /* 509 * Initialise to all 0xFF, to avoid the possibility of left over OOB 510 * data from a previous OOB read. 511 */ 512 memset(chip->oob_poi, 0xff, mtd->oobsize); 513 514 switch (ops->mode) { 515 516 case MTD_OPS_PLACE_OOB: 517 case MTD_OPS_RAW: 518 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 519 return oob + len; 520 521 case MTD_OPS_AUTO_OOB: 522 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 523 ops->ooboffs, len); 524 BUG_ON(ret); 525 return oob + len; 526 527 default: 528 BUG(); 529 } 530 return NULL; 531 } 532 533 /** 534 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 535 * @chip: NAND chip object 536 * @to: offset to write to 537 * @ops: oob operation description structure 538 * 539 * NAND write out-of-band. 540 */ 541 static int nand_do_write_oob(struct nand_chip *chip, loff_t to, 542 struct mtd_oob_ops *ops) 543 { 544 struct mtd_info *mtd = nand_to_mtd(chip); 545 int chipnr, page, status, len, ret; 546 547 pr_debug("%s: to = 0x%08x, len = %i\n", 548 __func__, (unsigned int)to, (int)ops->ooblen); 549 550 len = mtd_oobavail(mtd, ops); 551 552 /* Do not allow write past end of page */ 553 if ((ops->ooboffs + ops->ooblen) > len) { 554 pr_debug("%s: attempt to write past end of page\n", 555 __func__); 556 return -EINVAL; 557 } 558 559 chipnr = (int)(to >> chip->chip_shift); 560 561 /* 562 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 563 * of my DiskOnChip 2000 test units) will clear the whole data page too 564 * if we don't do this. I have no clue why, but I seem to have 'fixed' 565 * it in the doc2000 driver in August 1999. dwmw2. 566 */ 567 ret = nand_reset(chip, chipnr); 568 if (ret) 569 return ret; 570 571 nand_select_target(chip, chipnr); 572 573 /* Shift to get page */ 574 page = (int)(to >> chip->page_shift); 575 576 /* Check, if it is write protected */ 577 if (nand_check_wp(chip)) { 578 nand_deselect_target(chip); 579 return -EROFS; 580 } 581 582 /* Invalidate the page cache, if we write to the cached page */ 583 if (page == chip->pagecache.page) 584 chip->pagecache.page = -1; 585 586 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); 587 588 if (ops->mode == MTD_OPS_RAW) 589 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); 590 else 591 status = chip->ecc.write_oob(chip, page & chip->pagemask); 592 593 nand_deselect_target(chip); 594 595 if (status) 596 return status; 597 598 ops->oobretlen = ops->ooblen; 599 600 return 0; 601 } 602 603 /** 604 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 605 * @chip: NAND chip object 606 * @ofs: offset from device start 607 * 608 * This is the default implementation, which can be overridden by a hardware 609 * specific driver. It provides the details for writing a bad block marker to a 610 * block. 611 */ 612 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) 613 { 614 struct mtd_info *mtd = nand_to_mtd(chip); 615 struct mtd_oob_ops ops; 616 uint8_t buf[2] = { 0, 0 }; 617 int ret = 0, res, page_offset; 618 619 memset(&ops, 0, sizeof(ops)); 620 ops.oobbuf = buf; 621 ops.ooboffs = chip->badblockpos; 622 if (chip->options & NAND_BUSWIDTH_16) { 623 ops.ooboffs &= ~0x01; 624 ops.len = ops.ooblen = 2; 625 } else { 626 ops.len = ops.ooblen = 1; 627 } 628 ops.mode = MTD_OPS_PLACE_OOB; 629 630 page_offset = nand_bbm_get_next_page(chip, 0); 631 632 while (page_offset >= 0) { 633 res = nand_do_write_oob(chip, 634 ofs + (page_offset * mtd->writesize), 635 &ops); 636 637 if (!ret) 638 ret = res; 639 640 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 641 } 642 643 return ret; 644 } 645 646 /** 647 * nand_markbad_bbm - mark a block by updating the BBM 648 * @chip: NAND chip object 649 * @ofs: offset of the block to mark bad 650 */ 651 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) 652 { 653 if (chip->legacy.block_markbad) 654 return chip->legacy.block_markbad(chip, ofs); 655 656 return nand_default_block_markbad(chip, ofs); 657 } 658 659 /** 660 * nand_block_markbad_lowlevel - mark a block bad 661 * @chip: NAND chip object 662 * @ofs: offset from device start 663 * 664 * This function performs the generic NAND bad block marking steps (i.e., bad 665 * block table(s) and/or marker(s)). We only allow the hardware driver to 666 * specify how to write bad block markers to OOB (chip->legacy.block_markbad). 667 * 668 * We try operations in the following order: 669 * 670 * (1) erase the affected block, to allow OOB marker to be written cleanly 671 * (2) write bad block marker to OOB area of affected block (unless flag 672 * NAND_BBT_NO_OOB_BBM is present) 673 * (3) update the BBT 674 * 675 * Note that we retain the first error encountered in (2) or (3), finish the 676 * procedures, and dump the error in the end. 677 */ 678 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) 679 { 680 struct mtd_info *mtd = nand_to_mtd(chip); 681 int res, ret = 0; 682 683 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 684 struct erase_info einfo; 685 686 /* Attempt erase before marking OOB */ 687 memset(&einfo, 0, sizeof(einfo)); 688 einfo.addr = ofs; 689 einfo.len = 1ULL << chip->phys_erase_shift; 690 nand_erase_nand(chip, &einfo, 0); 691 692 /* Write bad block marker to OOB */ 693 ret = nand_get_device(chip); 694 if (ret) 695 return ret; 696 697 ret = nand_markbad_bbm(chip, ofs); 698 nand_release_device(chip); 699 } 700 701 /* Mark block bad in BBT */ 702 if (chip->bbt) { 703 res = nand_markbad_bbt(chip, ofs); 704 if (!ret) 705 ret = res; 706 } 707 708 if (!ret) 709 mtd->ecc_stats.badblocks++; 710 711 return ret; 712 } 713 714 /** 715 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 716 * @mtd: MTD device structure 717 * @ofs: offset from device start 718 * 719 * Check if the block is marked as reserved. 720 */ 721 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 722 { 723 struct nand_chip *chip = mtd_to_nand(mtd); 724 725 if (!chip->bbt) 726 return 0; 727 /* Return info from the table */ 728 return nand_isreserved_bbt(chip, ofs); 729 } 730 731 /** 732 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 733 * @chip: NAND chip object 734 * @ofs: offset from device start 735 * @allowbbt: 1, if its allowed to access the bbt area 736 * 737 * Check, if the block is bad. Either by reading the bad block table or 738 * calling of the scan function. 739 */ 740 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) 741 { 742 /* Return info from the table */ 743 if (chip->bbt) 744 return nand_isbad_bbt(chip, ofs, allowbbt); 745 746 return nand_isbad_bbm(chip, ofs); 747 } 748 749 /** 750 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 751 * @chip: NAND chip structure 752 * @timeout_ms: Timeout in ms 753 * 754 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 755 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 756 * returned. 757 * 758 * This helper is intended to be used when the controller does not have access 759 * to the NAND R/B pin. 760 * 761 * Be aware that calling this helper from an ->exec_op() implementation means 762 * ->exec_op() must be re-entrant. 763 * 764 * Return 0 if the NAND chip is ready, a negative error otherwise. 765 */ 766 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 767 { 768 const struct nand_sdr_timings *timings; 769 u8 status = 0; 770 int ret; 771 772 if (!nand_has_exec_op(chip)) 773 return -ENOTSUPP; 774 775 /* Wait tWB before polling the STATUS reg. */ 776 timings = nand_get_sdr_timings(nand_get_interface_config(chip)); 777 ndelay(PSEC_TO_NSEC(timings->tWB_max)); 778 779 ret = nand_status_op(chip, NULL); 780 if (ret) 781 return ret; 782 783 /* 784 * +1 below is necessary because if we are now in the last fraction 785 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 786 * small jiffy fraction - possibly leading to false timeout 787 */ 788 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 789 do { 790 ret = nand_read_data_op(chip, &status, sizeof(status), true, 791 false); 792 if (ret) 793 break; 794 795 if (status & NAND_STATUS_READY) 796 break; 797 798 /* 799 * Typical lowest execution time for a tR on most NANDs is 10us, 800 * use this as polling delay before doing something smarter (ie. 801 * deriving a delay from the timeout value, timeout_ms/ratio). 802 */ 803 udelay(10); 804 } while (time_before(jiffies, timeout_ms)); 805 806 /* 807 * We have to exit READ_STATUS mode in order to read real data on the 808 * bus in case the WAITRDY instruction is preceding a DATA_IN 809 * instruction. 810 */ 811 nand_exit_status_op(chip); 812 813 if (ret) 814 return ret; 815 816 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 817 }; 818 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 819 820 /** 821 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready 822 * @chip: NAND chip structure 823 * @gpiod: GPIO descriptor of R/B pin 824 * @timeout_ms: Timeout in ms 825 * 826 * Poll the R/B GPIO pin until it becomes ready. If that does not happen 827 * whitin the specified timeout, -ETIMEDOUT is returned. 828 * 829 * This helper is intended to be used when the controller has access to the 830 * NAND R/B pin over GPIO. 831 * 832 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. 833 */ 834 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 835 unsigned long timeout_ms) 836 { 837 838 /* 839 * Wait until R/B pin indicates chip is ready or timeout occurs. 840 * +1 below is necessary because if we are now in the last fraction 841 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 842 * small jiffy fraction - possibly leading to false timeout. 843 */ 844 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 845 do { 846 if (gpiod_get_value_cansleep(gpiod)) 847 return 0; 848 849 cond_resched(); 850 } while (time_before(jiffies, timeout_ms)); 851 852 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; 853 }; 854 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); 855 856 /** 857 * panic_nand_wait - [GENERIC] wait until the command is done 858 * @chip: NAND chip structure 859 * @timeo: timeout 860 * 861 * Wait for command done. This is a helper function for nand_wait used when 862 * we are in interrupt context. May happen when in panic and trying to write 863 * an oops through mtdoops. 864 */ 865 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) 866 { 867 int i; 868 for (i = 0; i < timeo; i++) { 869 if (chip->legacy.dev_ready) { 870 if (chip->legacy.dev_ready(chip)) 871 break; 872 } else { 873 int ret; 874 u8 status; 875 876 ret = nand_read_data_op(chip, &status, sizeof(status), 877 true, false); 878 if (ret) 879 return; 880 881 if (status & NAND_STATUS_READY) 882 break; 883 } 884 mdelay(1); 885 } 886 } 887 888 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 889 { 890 return (chip->parameters.supports_set_get_features && 891 test_bit(addr, chip->parameters.get_feature_list)); 892 } 893 894 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 895 { 896 return (chip->parameters.supports_set_get_features && 897 test_bit(addr, chip->parameters.set_feature_list)); 898 } 899 900 /** 901 * nand_reset_interface - Reset data interface and timings 902 * @chip: The NAND chip 903 * @chipnr: Internal die id 904 * 905 * Reset the Data interface and timings to ONFI mode 0. 906 * 907 * Returns 0 for success or negative error code otherwise. 908 */ 909 static int nand_reset_interface(struct nand_chip *chip, int chipnr) 910 { 911 const struct nand_controller_ops *ops = chip->controller->ops; 912 int ret; 913 914 if (!nand_controller_can_setup_interface(chip)) 915 return 0; 916 917 /* 918 * The ONFI specification says: 919 * " 920 * To transition from NV-DDR or NV-DDR2 to the SDR data 921 * interface, the host shall use the Reset (FFh) command 922 * using SDR timing mode 0. A device in any timing mode is 923 * required to recognize Reset (FFh) command issued in SDR 924 * timing mode 0. 925 * " 926 * 927 * Configure the data interface in SDR mode and set the 928 * timings to timing mode 0. 929 */ 930 931 chip->current_interface_config = nand_get_reset_interface_config(); 932 ret = ops->setup_interface(chip, chipnr, 933 chip->current_interface_config); 934 if (ret) 935 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 936 937 return ret; 938 } 939 940 /** 941 * nand_setup_interface - Setup the best data interface and timings 942 * @chip: The NAND chip 943 * @chipnr: Internal die id 944 * 945 * Configure what has been reported to be the best data interface and NAND 946 * timings supported by the chip and the driver. 947 * 948 * Returns 0 for success or negative error code otherwise. 949 */ 950 static int nand_setup_interface(struct nand_chip *chip, int chipnr) 951 { 952 const struct nand_controller_ops *ops = chip->controller->ops; 953 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }; 954 int ret; 955 956 if (!nand_controller_can_setup_interface(chip)) 957 return 0; 958 959 /* 960 * A nand_reset_interface() put both the NAND chip and the NAND 961 * controller in timings mode 0. If the default mode for this chip is 962 * also 0, no need to proceed to the change again. Plus, at probe time, 963 * nand_setup_interface() uses ->set/get_features() which would 964 * fail anyway as the parameter page is not available yet. 965 */ 966 if (!chip->best_interface_config) 967 return 0; 968 969 tmode_param[0] = chip->best_interface_config->timings.mode; 970 971 /* Change the mode on the chip side (if supported by the NAND chip) */ 972 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 973 nand_select_target(chip, chipnr); 974 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 975 tmode_param); 976 nand_deselect_target(chip); 977 if (ret) 978 return ret; 979 } 980 981 /* Change the mode on the controller side */ 982 ret = ops->setup_interface(chip, chipnr, chip->best_interface_config); 983 if (ret) 984 return ret; 985 986 /* Check the mode has been accepted by the chip, if supported */ 987 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 988 goto update_interface_config; 989 990 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 991 nand_select_target(chip, chipnr); 992 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 993 tmode_param); 994 nand_deselect_target(chip); 995 if (ret) 996 goto err_reset_chip; 997 998 if (tmode_param[0] != chip->best_interface_config->timings.mode) { 999 pr_warn("timing mode %d not acknowledged by the NAND chip\n", 1000 chip->best_interface_config->timings.mode); 1001 goto err_reset_chip; 1002 } 1003 1004 update_interface_config: 1005 chip->current_interface_config = chip->best_interface_config; 1006 1007 return 0; 1008 1009 err_reset_chip: 1010 /* 1011 * Fallback to mode 0 if the chip explicitly did not ack the chosen 1012 * timing mode. 1013 */ 1014 nand_reset_interface(chip, chipnr); 1015 nand_select_target(chip, chipnr); 1016 nand_reset_op(chip); 1017 nand_deselect_target(chip); 1018 1019 return ret; 1020 } 1021 1022 /** 1023 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the 1024 * NAND controller and the NAND chip support 1025 * @chip: the NAND chip 1026 * @iface: the interface configuration (can eventually be updated) 1027 * @spec_timings: specific timings, when not fitting the ONFI specification 1028 * 1029 * If specific timings are provided, use them. Otherwise, retrieve supported 1030 * timing modes from ONFI information. 1031 */ 1032 int nand_choose_best_sdr_timings(struct nand_chip *chip, 1033 struct nand_interface_config *iface, 1034 struct nand_sdr_timings *spec_timings) 1035 { 1036 const struct nand_controller_ops *ops = chip->controller->ops; 1037 int best_mode = 0, mode, ret; 1038 1039 iface->type = NAND_SDR_IFACE; 1040 1041 if (spec_timings) { 1042 iface->timings.sdr = *spec_timings; 1043 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings); 1044 1045 /* Verify the controller supports the requested interface */ 1046 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 1047 iface); 1048 if (!ret) { 1049 chip->best_interface_config = iface; 1050 return ret; 1051 } 1052 1053 /* Fallback to slower modes */ 1054 best_mode = iface->timings.mode; 1055 } else if (chip->parameters.onfi) { 1056 best_mode = fls(chip->parameters.onfi->async_timing_mode) - 1; 1057 } 1058 1059 for (mode = best_mode; mode >= 0; mode--) { 1060 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode); 1061 1062 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 1063 iface); 1064 if (!ret) 1065 break; 1066 } 1067 1068 chip->best_interface_config = iface; 1069 1070 return 0; 1071 } 1072 1073 /** 1074 * nand_choose_interface_config - find the best data interface and timings 1075 * @chip: The NAND chip 1076 * 1077 * Find the best data interface and NAND timings supported by the chip 1078 * and the driver. Eventually let the NAND manufacturer driver propose his own 1079 * set of timings. 1080 * 1081 * After this function nand_chip->interface_config is initialized with the best 1082 * timing mode available. 1083 * 1084 * Returns 0 for success or negative error code otherwise. 1085 */ 1086 static int nand_choose_interface_config(struct nand_chip *chip) 1087 { 1088 struct nand_interface_config *iface; 1089 int ret; 1090 1091 if (!nand_controller_can_setup_interface(chip)) 1092 return 0; 1093 1094 iface = kzalloc(sizeof(*iface), GFP_KERNEL); 1095 if (!iface) 1096 return -ENOMEM; 1097 1098 if (chip->ops.choose_interface_config) 1099 ret = chip->ops.choose_interface_config(chip, iface); 1100 else 1101 ret = nand_choose_best_sdr_timings(chip, iface, NULL); 1102 1103 if (ret) 1104 kfree(iface); 1105 1106 return ret; 1107 } 1108 1109 /** 1110 * nand_fill_column_cycles - fill the column cycles of an address 1111 * @chip: The NAND chip 1112 * @addrs: Array of address cycles to fill 1113 * @offset_in_page: The offset in the page 1114 * 1115 * Fills the first or the first two bytes of the @addrs field depending 1116 * on the NAND bus width and the page size. 1117 * 1118 * Returns the number of cycles needed to encode the column, or a negative 1119 * error code in case one of the arguments is invalid. 1120 */ 1121 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 1122 unsigned int offset_in_page) 1123 { 1124 struct mtd_info *mtd = nand_to_mtd(chip); 1125 1126 /* Make sure the offset is less than the actual page size. */ 1127 if (offset_in_page > mtd->writesize + mtd->oobsize) 1128 return -EINVAL; 1129 1130 /* 1131 * On small page NANDs, there's a dedicated command to access the OOB 1132 * area, and the column address is relative to the start of the OOB 1133 * area, not the start of the page. Asjust the address accordingly. 1134 */ 1135 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 1136 offset_in_page -= mtd->writesize; 1137 1138 /* 1139 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 1140 * wide, then it must be divided by 2. 1141 */ 1142 if (chip->options & NAND_BUSWIDTH_16) { 1143 if (WARN_ON(offset_in_page % 2)) 1144 return -EINVAL; 1145 1146 offset_in_page /= 2; 1147 } 1148 1149 addrs[0] = offset_in_page; 1150 1151 /* 1152 * Small page NANDs use 1 cycle for the columns, while large page NANDs 1153 * need 2 1154 */ 1155 if (mtd->writesize <= 512) 1156 return 1; 1157 1158 addrs[1] = offset_in_page >> 8; 1159 1160 return 2; 1161 } 1162 1163 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1164 unsigned int offset_in_page, void *buf, 1165 unsigned int len) 1166 { 1167 const struct nand_sdr_timings *sdr = 1168 nand_get_sdr_timings(nand_get_interface_config(chip)); 1169 struct mtd_info *mtd = nand_to_mtd(chip); 1170 u8 addrs[4]; 1171 struct nand_op_instr instrs[] = { 1172 NAND_OP_CMD(NAND_CMD_READ0, 0), 1173 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), 1174 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1175 PSEC_TO_NSEC(sdr->tRR_min)), 1176 NAND_OP_DATA_IN(len, buf, 0), 1177 }; 1178 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1179 int ret; 1180 1181 /* Drop the DATA_IN instruction if len is set to 0. */ 1182 if (!len) 1183 op.ninstrs--; 1184 1185 if (offset_in_page >= mtd->writesize) 1186 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1187 else if (offset_in_page >= 256 && 1188 !(chip->options & NAND_BUSWIDTH_16)) 1189 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1190 1191 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1192 if (ret < 0) 1193 return ret; 1194 1195 addrs[1] = page; 1196 addrs[2] = page >> 8; 1197 1198 if (chip->options & NAND_ROW_ADDR_3) { 1199 addrs[3] = page >> 16; 1200 instrs[1].ctx.addr.naddrs++; 1201 } 1202 1203 return nand_exec_op(chip, &op); 1204 } 1205 1206 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1207 unsigned int offset_in_page, void *buf, 1208 unsigned int len) 1209 { 1210 const struct nand_sdr_timings *sdr = 1211 nand_get_sdr_timings(nand_get_interface_config(chip)); 1212 u8 addrs[5]; 1213 struct nand_op_instr instrs[] = { 1214 NAND_OP_CMD(NAND_CMD_READ0, 0), 1215 NAND_OP_ADDR(4, addrs, 0), 1216 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), 1217 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1218 PSEC_TO_NSEC(sdr->tRR_min)), 1219 NAND_OP_DATA_IN(len, buf, 0), 1220 }; 1221 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1222 int ret; 1223 1224 /* Drop the DATA_IN instruction if len is set to 0. */ 1225 if (!len) 1226 op.ninstrs--; 1227 1228 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1229 if (ret < 0) 1230 return ret; 1231 1232 addrs[2] = page; 1233 addrs[3] = page >> 8; 1234 1235 if (chip->options & NAND_ROW_ADDR_3) { 1236 addrs[4] = page >> 16; 1237 instrs[1].ctx.addr.naddrs++; 1238 } 1239 1240 return nand_exec_op(chip, &op); 1241 } 1242 1243 /** 1244 * nand_read_page_op - Do a READ PAGE operation 1245 * @chip: The NAND chip 1246 * @page: page to read 1247 * @offset_in_page: offset within the page 1248 * @buf: buffer used to store the data 1249 * @len: length of the buffer 1250 * 1251 * This function issues a READ PAGE operation. 1252 * This function does not select/unselect the CS line. 1253 * 1254 * Returns 0 on success, a negative error code otherwise. 1255 */ 1256 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1257 unsigned int offset_in_page, void *buf, unsigned int len) 1258 { 1259 struct mtd_info *mtd = nand_to_mtd(chip); 1260 1261 if (len && !buf) 1262 return -EINVAL; 1263 1264 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1265 return -EINVAL; 1266 1267 if (nand_has_exec_op(chip)) { 1268 if (mtd->writesize > 512) 1269 return nand_lp_exec_read_page_op(chip, page, 1270 offset_in_page, buf, 1271 len); 1272 1273 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1274 buf, len); 1275 } 1276 1277 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); 1278 if (len) 1279 chip->legacy.read_buf(chip, buf, len); 1280 1281 return 0; 1282 } 1283 EXPORT_SYMBOL_GPL(nand_read_page_op); 1284 1285 /** 1286 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1287 * @chip: The NAND chip 1288 * @page: parameter page to read 1289 * @buf: buffer used to store the data 1290 * @len: length of the buffer 1291 * 1292 * This function issues a READ PARAMETER PAGE operation. 1293 * This function does not select/unselect the CS line. 1294 * 1295 * Returns 0 on success, a negative error code otherwise. 1296 */ 1297 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1298 unsigned int len) 1299 { 1300 unsigned int i; 1301 u8 *p = buf; 1302 1303 if (len && !buf) 1304 return -EINVAL; 1305 1306 if (nand_has_exec_op(chip)) { 1307 const struct nand_sdr_timings *sdr = 1308 nand_get_sdr_timings(nand_get_interface_config(chip)); 1309 struct nand_op_instr instrs[] = { 1310 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1311 NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), 1312 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), 1313 PSEC_TO_NSEC(sdr->tRR_min)), 1314 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1315 }; 1316 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1317 1318 /* Drop the DATA_IN instruction if len is set to 0. */ 1319 if (!len) 1320 op.ninstrs--; 1321 1322 return nand_exec_op(chip, &op); 1323 } 1324 1325 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); 1326 for (i = 0; i < len; i++) 1327 p[i] = chip->legacy.read_byte(chip); 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1334 * @chip: The NAND chip 1335 * @offset_in_page: offset within the page 1336 * @buf: buffer used to store the data 1337 * @len: length of the buffer 1338 * @force_8bit: force 8-bit bus access 1339 * 1340 * This function issues a CHANGE READ COLUMN operation. 1341 * This function does not select/unselect the CS line. 1342 * 1343 * Returns 0 on success, a negative error code otherwise. 1344 */ 1345 int nand_change_read_column_op(struct nand_chip *chip, 1346 unsigned int offset_in_page, void *buf, 1347 unsigned int len, bool force_8bit) 1348 { 1349 struct mtd_info *mtd = nand_to_mtd(chip); 1350 1351 if (len && !buf) 1352 return -EINVAL; 1353 1354 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1355 return -EINVAL; 1356 1357 /* Small page NANDs do not support column change. */ 1358 if (mtd->writesize <= 512) 1359 return -ENOTSUPP; 1360 1361 if (nand_has_exec_op(chip)) { 1362 const struct nand_sdr_timings *sdr = 1363 nand_get_sdr_timings(nand_get_interface_config(chip)); 1364 u8 addrs[2] = {}; 1365 struct nand_op_instr instrs[] = { 1366 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1367 NAND_OP_ADDR(2, addrs, 0), 1368 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1369 PSEC_TO_NSEC(sdr->tCCS_min)), 1370 NAND_OP_DATA_IN(len, buf, 0), 1371 }; 1372 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1373 int ret; 1374 1375 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1376 if (ret < 0) 1377 return ret; 1378 1379 /* Drop the DATA_IN instruction if len is set to 0. */ 1380 if (!len) 1381 op.ninstrs--; 1382 1383 instrs[3].ctx.data.force_8bit = force_8bit; 1384 1385 return nand_exec_op(chip, &op); 1386 } 1387 1388 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); 1389 if (len) 1390 chip->legacy.read_buf(chip, buf, len); 1391 1392 return 0; 1393 } 1394 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1395 1396 /** 1397 * nand_read_oob_op - Do a READ OOB operation 1398 * @chip: The NAND chip 1399 * @page: page to read 1400 * @offset_in_oob: offset within the OOB area 1401 * @buf: buffer used to store the data 1402 * @len: length of the buffer 1403 * 1404 * This function issues a READ OOB operation. 1405 * This function does not select/unselect the CS line. 1406 * 1407 * Returns 0 on success, a negative error code otherwise. 1408 */ 1409 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1410 unsigned int offset_in_oob, void *buf, unsigned int len) 1411 { 1412 struct mtd_info *mtd = nand_to_mtd(chip); 1413 1414 if (len && !buf) 1415 return -EINVAL; 1416 1417 if (offset_in_oob + len > mtd->oobsize) 1418 return -EINVAL; 1419 1420 if (nand_has_exec_op(chip)) 1421 return nand_read_page_op(chip, page, 1422 mtd->writesize + offset_in_oob, 1423 buf, len); 1424 1425 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); 1426 if (len) 1427 chip->legacy.read_buf(chip, buf, len); 1428 1429 return 0; 1430 } 1431 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1432 1433 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1434 unsigned int offset_in_page, const void *buf, 1435 unsigned int len, bool prog) 1436 { 1437 const struct nand_sdr_timings *sdr = 1438 nand_get_sdr_timings(nand_get_interface_config(chip)); 1439 struct mtd_info *mtd = nand_to_mtd(chip); 1440 u8 addrs[5] = {}; 1441 struct nand_op_instr instrs[] = { 1442 /* 1443 * The first instruction will be dropped if we're dealing 1444 * with a large page NAND and adjusted if we're dealing 1445 * with a small page NAND and the page offset is > 255. 1446 */ 1447 NAND_OP_CMD(NAND_CMD_READ0, 0), 1448 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1449 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), 1450 NAND_OP_DATA_OUT(len, buf, 0), 1451 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), 1452 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1453 }; 1454 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1455 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1456 int ret; 1457 u8 status; 1458 1459 if (naddrs < 0) 1460 return naddrs; 1461 1462 addrs[naddrs++] = page; 1463 addrs[naddrs++] = page >> 8; 1464 if (chip->options & NAND_ROW_ADDR_3) 1465 addrs[naddrs++] = page >> 16; 1466 1467 instrs[2].ctx.addr.naddrs = naddrs; 1468 1469 /* Drop the last two instructions if we're not programming the page. */ 1470 if (!prog) { 1471 op.ninstrs -= 2; 1472 /* Also drop the DATA_OUT instruction if empty. */ 1473 if (!len) 1474 op.ninstrs--; 1475 } 1476 1477 if (mtd->writesize <= 512) { 1478 /* 1479 * Small pages need some more tweaking: we have to adjust the 1480 * first instruction depending on the page offset we're trying 1481 * to access. 1482 */ 1483 if (offset_in_page >= mtd->writesize) 1484 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1485 else if (offset_in_page >= 256 && 1486 !(chip->options & NAND_BUSWIDTH_16)) 1487 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1488 } else { 1489 /* 1490 * Drop the first command if we're dealing with a large page 1491 * NAND. 1492 */ 1493 op.instrs++; 1494 op.ninstrs--; 1495 } 1496 1497 ret = nand_exec_op(chip, &op); 1498 if (!prog || ret) 1499 return ret; 1500 1501 ret = nand_status_op(chip, &status); 1502 if (ret) 1503 return ret; 1504 1505 return status; 1506 } 1507 1508 /** 1509 * nand_prog_page_begin_op - starts a PROG PAGE operation 1510 * @chip: The NAND chip 1511 * @page: page to write 1512 * @offset_in_page: offset within the page 1513 * @buf: buffer containing the data to write to the page 1514 * @len: length of the buffer 1515 * 1516 * This function issues the first half of a PROG PAGE operation. 1517 * This function does not select/unselect the CS line. 1518 * 1519 * Returns 0 on success, a negative error code otherwise. 1520 */ 1521 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1522 unsigned int offset_in_page, const void *buf, 1523 unsigned int len) 1524 { 1525 struct mtd_info *mtd = nand_to_mtd(chip); 1526 1527 if (len && !buf) 1528 return -EINVAL; 1529 1530 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1531 return -EINVAL; 1532 1533 if (nand_has_exec_op(chip)) 1534 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1535 len, false); 1536 1537 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); 1538 1539 if (buf) 1540 chip->legacy.write_buf(chip, buf, len); 1541 1542 return 0; 1543 } 1544 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1545 1546 /** 1547 * nand_prog_page_end_op - ends a PROG PAGE operation 1548 * @chip: The NAND chip 1549 * 1550 * This function issues the second half of a PROG PAGE operation. 1551 * This function does not select/unselect the CS line. 1552 * 1553 * Returns 0 on success, a negative error code otherwise. 1554 */ 1555 int nand_prog_page_end_op(struct nand_chip *chip) 1556 { 1557 int ret; 1558 u8 status; 1559 1560 if (nand_has_exec_op(chip)) { 1561 const struct nand_sdr_timings *sdr = 1562 nand_get_sdr_timings(nand_get_interface_config(chip)); 1563 struct nand_op_instr instrs[] = { 1564 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1565 PSEC_TO_NSEC(sdr->tWB_max)), 1566 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), 1567 }; 1568 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1569 1570 ret = nand_exec_op(chip, &op); 1571 if (ret) 1572 return ret; 1573 1574 ret = nand_status_op(chip, &status); 1575 if (ret) 1576 return ret; 1577 } else { 1578 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1579 ret = chip->legacy.waitfunc(chip); 1580 if (ret < 0) 1581 return ret; 1582 1583 status = ret; 1584 } 1585 1586 if (status & NAND_STATUS_FAIL) 1587 return -EIO; 1588 1589 return 0; 1590 } 1591 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1592 1593 /** 1594 * nand_prog_page_op - Do a full PROG PAGE operation 1595 * @chip: The NAND chip 1596 * @page: page to write 1597 * @offset_in_page: offset within the page 1598 * @buf: buffer containing the data to write to the page 1599 * @len: length of the buffer 1600 * 1601 * This function issues a full PROG PAGE operation. 1602 * This function does not select/unselect the CS line. 1603 * 1604 * Returns 0 on success, a negative error code otherwise. 1605 */ 1606 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1607 unsigned int offset_in_page, const void *buf, 1608 unsigned int len) 1609 { 1610 struct mtd_info *mtd = nand_to_mtd(chip); 1611 int status; 1612 1613 if (!len || !buf) 1614 return -EINVAL; 1615 1616 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1617 return -EINVAL; 1618 1619 if (nand_has_exec_op(chip)) { 1620 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1621 len, true); 1622 } else { 1623 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, 1624 page); 1625 chip->legacy.write_buf(chip, buf, len); 1626 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1627 status = chip->legacy.waitfunc(chip); 1628 } 1629 1630 if (status & NAND_STATUS_FAIL) 1631 return -EIO; 1632 1633 return 0; 1634 } 1635 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1636 1637 /** 1638 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1639 * @chip: The NAND chip 1640 * @offset_in_page: offset within the page 1641 * @buf: buffer containing the data to send to the NAND 1642 * @len: length of the buffer 1643 * @force_8bit: force 8-bit bus access 1644 * 1645 * This function issues a CHANGE WRITE COLUMN operation. 1646 * This function does not select/unselect the CS line. 1647 * 1648 * Returns 0 on success, a negative error code otherwise. 1649 */ 1650 int nand_change_write_column_op(struct nand_chip *chip, 1651 unsigned int offset_in_page, 1652 const void *buf, unsigned int len, 1653 bool force_8bit) 1654 { 1655 struct mtd_info *mtd = nand_to_mtd(chip); 1656 1657 if (len && !buf) 1658 return -EINVAL; 1659 1660 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1661 return -EINVAL; 1662 1663 /* Small page NANDs do not support column change. */ 1664 if (mtd->writesize <= 512) 1665 return -ENOTSUPP; 1666 1667 if (nand_has_exec_op(chip)) { 1668 const struct nand_sdr_timings *sdr = 1669 nand_get_sdr_timings(nand_get_interface_config(chip)); 1670 u8 addrs[2]; 1671 struct nand_op_instr instrs[] = { 1672 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1673 NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), 1674 NAND_OP_DATA_OUT(len, buf, 0), 1675 }; 1676 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1677 int ret; 1678 1679 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1680 if (ret < 0) 1681 return ret; 1682 1683 instrs[2].ctx.data.force_8bit = force_8bit; 1684 1685 /* Drop the DATA_OUT instruction if len is set to 0. */ 1686 if (!len) 1687 op.ninstrs--; 1688 1689 return nand_exec_op(chip, &op); 1690 } 1691 1692 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); 1693 if (len) 1694 chip->legacy.write_buf(chip, buf, len); 1695 1696 return 0; 1697 } 1698 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1699 1700 /** 1701 * nand_readid_op - Do a READID operation 1702 * @chip: The NAND chip 1703 * @addr: address cycle to pass after the READID command 1704 * @buf: buffer used to store the ID 1705 * @len: length of the buffer 1706 * 1707 * This function sends a READID command and reads back the ID returned by the 1708 * NAND. 1709 * This function does not select/unselect the CS line. 1710 * 1711 * Returns 0 on success, a negative error code otherwise. 1712 */ 1713 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1714 unsigned int len) 1715 { 1716 unsigned int i; 1717 u8 *id = buf; 1718 1719 if (len && !buf) 1720 return -EINVAL; 1721 1722 if (nand_has_exec_op(chip)) { 1723 const struct nand_sdr_timings *sdr = 1724 nand_get_sdr_timings(nand_get_interface_config(chip)); 1725 struct nand_op_instr instrs[] = { 1726 NAND_OP_CMD(NAND_CMD_READID, 0), 1727 NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), 1728 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1729 }; 1730 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1731 1732 /* Drop the DATA_IN instruction if len is set to 0. */ 1733 if (!len) 1734 op.ninstrs--; 1735 1736 return nand_exec_op(chip, &op); 1737 } 1738 1739 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); 1740 1741 for (i = 0; i < len; i++) 1742 id[i] = chip->legacy.read_byte(chip); 1743 1744 return 0; 1745 } 1746 EXPORT_SYMBOL_GPL(nand_readid_op); 1747 1748 /** 1749 * nand_status_op - Do a STATUS operation 1750 * @chip: The NAND chip 1751 * @status: out variable to store the NAND status 1752 * 1753 * This function sends a STATUS command and reads back the status returned by 1754 * the NAND. 1755 * This function does not select/unselect the CS line. 1756 * 1757 * Returns 0 on success, a negative error code otherwise. 1758 */ 1759 int nand_status_op(struct nand_chip *chip, u8 *status) 1760 { 1761 if (nand_has_exec_op(chip)) { 1762 const struct nand_sdr_timings *sdr = 1763 nand_get_sdr_timings(nand_get_interface_config(chip)); 1764 struct nand_op_instr instrs[] = { 1765 NAND_OP_CMD(NAND_CMD_STATUS, 1766 PSEC_TO_NSEC(sdr->tADL_min)), 1767 NAND_OP_8BIT_DATA_IN(1, status, 0), 1768 }; 1769 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1770 1771 if (!status) 1772 op.ninstrs--; 1773 1774 return nand_exec_op(chip, &op); 1775 } 1776 1777 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); 1778 if (status) 1779 *status = chip->legacy.read_byte(chip); 1780 1781 return 0; 1782 } 1783 EXPORT_SYMBOL_GPL(nand_status_op); 1784 1785 /** 1786 * nand_exit_status_op - Exit a STATUS operation 1787 * @chip: The NAND chip 1788 * 1789 * This function sends a READ0 command to cancel the effect of the STATUS 1790 * command to avoid reading only the status until a new read command is sent. 1791 * 1792 * This function does not select/unselect the CS line. 1793 * 1794 * Returns 0 on success, a negative error code otherwise. 1795 */ 1796 int nand_exit_status_op(struct nand_chip *chip) 1797 { 1798 if (nand_has_exec_op(chip)) { 1799 struct nand_op_instr instrs[] = { 1800 NAND_OP_CMD(NAND_CMD_READ0, 0), 1801 }; 1802 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1803 1804 return nand_exec_op(chip, &op); 1805 } 1806 1807 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); 1808 1809 return 0; 1810 } 1811 1812 /** 1813 * nand_erase_op - Do an erase operation 1814 * @chip: The NAND chip 1815 * @eraseblock: block to erase 1816 * 1817 * This function sends an ERASE command and waits for the NAND to be ready 1818 * before returning. 1819 * This function does not select/unselect the CS line. 1820 * 1821 * Returns 0 on success, a negative error code otherwise. 1822 */ 1823 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 1824 { 1825 unsigned int page = eraseblock << 1826 (chip->phys_erase_shift - chip->page_shift); 1827 int ret; 1828 u8 status; 1829 1830 if (nand_has_exec_op(chip)) { 1831 const struct nand_sdr_timings *sdr = 1832 nand_get_sdr_timings(nand_get_interface_config(chip)); 1833 u8 addrs[3] = { page, page >> 8, page >> 16 }; 1834 struct nand_op_instr instrs[] = { 1835 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 1836 NAND_OP_ADDR(2, addrs, 0), 1837 NAND_OP_CMD(NAND_CMD_ERASE2, 1838 PSEC_TO_MSEC(sdr->tWB_max)), 1839 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), 1840 }; 1841 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1842 1843 if (chip->options & NAND_ROW_ADDR_3) 1844 instrs[1].ctx.addr.naddrs++; 1845 1846 ret = nand_exec_op(chip, &op); 1847 if (ret) 1848 return ret; 1849 1850 ret = nand_status_op(chip, &status); 1851 if (ret) 1852 return ret; 1853 } else { 1854 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); 1855 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); 1856 1857 ret = chip->legacy.waitfunc(chip); 1858 if (ret < 0) 1859 return ret; 1860 1861 status = ret; 1862 } 1863 1864 if (status & NAND_STATUS_FAIL) 1865 return -EIO; 1866 1867 return 0; 1868 } 1869 EXPORT_SYMBOL_GPL(nand_erase_op); 1870 1871 /** 1872 * nand_set_features_op - Do a SET FEATURES operation 1873 * @chip: The NAND chip 1874 * @feature: feature id 1875 * @data: 4 bytes of data 1876 * 1877 * This function sends a SET FEATURES command and waits for the NAND to be 1878 * ready before returning. 1879 * This function does not select/unselect the CS line. 1880 * 1881 * Returns 0 on success, a negative error code otherwise. 1882 */ 1883 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 1884 const void *data) 1885 { 1886 const u8 *params = data; 1887 int i, ret; 1888 1889 if (nand_has_exec_op(chip)) { 1890 const struct nand_sdr_timings *sdr = 1891 nand_get_sdr_timings(nand_get_interface_config(chip)); 1892 struct nand_op_instr instrs[] = { 1893 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 1894 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), 1895 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 1896 PSEC_TO_NSEC(sdr->tWB_max)), 1897 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), 1898 }; 1899 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1900 1901 return nand_exec_op(chip, &op); 1902 } 1903 1904 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); 1905 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1906 chip->legacy.write_byte(chip, params[i]); 1907 1908 ret = chip->legacy.waitfunc(chip); 1909 if (ret < 0) 1910 return ret; 1911 1912 if (ret & NAND_STATUS_FAIL) 1913 return -EIO; 1914 1915 return 0; 1916 } 1917 1918 /** 1919 * nand_get_features_op - Do a GET FEATURES operation 1920 * @chip: The NAND chip 1921 * @feature: feature id 1922 * @data: 4 bytes of data 1923 * 1924 * This function sends a GET FEATURES command and waits for the NAND to be 1925 * ready before returning. 1926 * This function does not select/unselect the CS line. 1927 * 1928 * Returns 0 on success, a negative error code otherwise. 1929 */ 1930 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 1931 void *data) 1932 { 1933 u8 *params = data; 1934 int i; 1935 1936 if (nand_has_exec_op(chip)) { 1937 const struct nand_sdr_timings *sdr = 1938 nand_get_sdr_timings(nand_get_interface_config(chip)); 1939 struct nand_op_instr instrs[] = { 1940 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 1941 NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), 1942 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 1943 PSEC_TO_NSEC(sdr->tRR_min)), 1944 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 1945 data, 0), 1946 }; 1947 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1948 1949 return nand_exec_op(chip, &op); 1950 } 1951 1952 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); 1953 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1954 params[i] = chip->legacy.read_byte(chip); 1955 1956 return 0; 1957 } 1958 1959 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, 1960 unsigned int delay_ns) 1961 { 1962 if (nand_has_exec_op(chip)) { 1963 struct nand_op_instr instrs[] = { 1964 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), 1965 PSEC_TO_NSEC(delay_ns)), 1966 }; 1967 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1968 1969 return nand_exec_op(chip, &op); 1970 } 1971 1972 /* Apply delay or wait for ready/busy pin */ 1973 if (!chip->legacy.dev_ready) 1974 udelay(chip->legacy.chip_delay); 1975 else 1976 nand_wait_ready(chip); 1977 1978 return 0; 1979 } 1980 1981 /** 1982 * nand_reset_op - Do a reset operation 1983 * @chip: The NAND chip 1984 * 1985 * This function sends a RESET command and waits for the NAND to be ready 1986 * before returning. 1987 * This function does not select/unselect the CS line. 1988 * 1989 * Returns 0 on success, a negative error code otherwise. 1990 */ 1991 int nand_reset_op(struct nand_chip *chip) 1992 { 1993 if (nand_has_exec_op(chip)) { 1994 const struct nand_sdr_timings *sdr = 1995 nand_get_sdr_timings(nand_get_interface_config(chip)); 1996 struct nand_op_instr instrs[] = { 1997 NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), 1998 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), 1999 }; 2000 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2001 2002 return nand_exec_op(chip, &op); 2003 } 2004 2005 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); 2006 2007 return 0; 2008 } 2009 EXPORT_SYMBOL_GPL(nand_reset_op); 2010 2011 /** 2012 * nand_read_data_op - Read data from the NAND 2013 * @chip: The NAND chip 2014 * @buf: buffer used to store the data 2015 * @len: length of the buffer 2016 * @force_8bit: force 8-bit bus access 2017 * @check_only: do not actually run the command, only checks if the 2018 * controller driver supports it 2019 * 2020 * This function does a raw data read on the bus. Usually used after launching 2021 * another NAND operation like nand_read_page_op(). 2022 * This function does not select/unselect the CS line. 2023 * 2024 * Returns 0 on success, a negative error code otherwise. 2025 */ 2026 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 2027 bool force_8bit, bool check_only) 2028 { 2029 if (!len || !buf) 2030 return -EINVAL; 2031 2032 if (nand_has_exec_op(chip)) { 2033 struct nand_op_instr instrs[] = { 2034 NAND_OP_DATA_IN(len, buf, 0), 2035 }; 2036 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2037 2038 instrs[0].ctx.data.force_8bit = force_8bit; 2039 2040 if (check_only) 2041 return nand_check_op(chip, &op); 2042 2043 return nand_exec_op(chip, &op); 2044 } 2045 2046 if (check_only) 2047 return 0; 2048 2049 if (force_8bit) { 2050 u8 *p = buf; 2051 unsigned int i; 2052 2053 for (i = 0; i < len; i++) 2054 p[i] = chip->legacy.read_byte(chip); 2055 } else { 2056 chip->legacy.read_buf(chip, buf, len); 2057 } 2058 2059 return 0; 2060 } 2061 EXPORT_SYMBOL_GPL(nand_read_data_op); 2062 2063 /** 2064 * nand_write_data_op - Write data from the NAND 2065 * @chip: The NAND chip 2066 * @buf: buffer containing the data to send on the bus 2067 * @len: length of the buffer 2068 * @force_8bit: force 8-bit bus access 2069 * 2070 * This function does a raw data write on the bus. Usually used after launching 2071 * another NAND operation like nand_write_page_begin_op(). 2072 * This function does not select/unselect the CS line. 2073 * 2074 * Returns 0 on success, a negative error code otherwise. 2075 */ 2076 int nand_write_data_op(struct nand_chip *chip, const void *buf, 2077 unsigned int len, bool force_8bit) 2078 { 2079 if (!len || !buf) 2080 return -EINVAL; 2081 2082 if (nand_has_exec_op(chip)) { 2083 struct nand_op_instr instrs[] = { 2084 NAND_OP_DATA_OUT(len, buf, 0), 2085 }; 2086 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2087 2088 instrs[0].ctx.data.force_8bit = force_8bit; 2089 2090 return nand_exec_op(chip, &op); 2091 } 2092 2093 if (force_8bit) { 2094 const u8 *p = buf; 2095 unsigned int i; 2096 2097 for (i = 0; i < len; i++) 2098 chip->legacy.write_byte(chip, p[i]); 2099 } else { 2100 chip->legacy.write_buf(chip, buf, len); 2101 } 2102 2103 return 0; 2104 } 2105 EXPORT_SYMBOL_GPL(nand_write_data_op); 2106 2107 /** 2108 * struct nand_op_parser_ctx - Context used by the parser 2109 * @instrs: array of all the instructions that must be addressed 2110 * @ninstrs: length of the @instrs array 2111 * @subop: Sub-operation to be passed to the NAND controller 2112 * 2113 * This structure is used by the core to split NAND operations into 2114 * sub-operations that can be handled by the NAND controller. 2115 */ 2116 struct nand_op_parser_ctx { 2117 const struct nand_op_instr *instrs; 2118 unsigned int ninstrs; 2119 struct nand_subop subop; 2120 }; 2121 2122 /** 2123 * nand_op_parser_must_split_instr - Checks if an instruction must be split 2124 * @pat: the parser pattern element that matches @instr 2125 * @instr: pointer to the instruction to check 2126 * @start_offset: this is an in/out parameter. If @instr has already been 2127 * split, then @start_offset is the offset from which to start 2128 * (either an address cycle or an offset in the data buffer). 2129 * Conversely, if the function returns true (ie. instr must be 2130 * split), this parameter is updated to point to the first 2131 * data/address cycle that has not been taken care of. 2132 * 2133 * Some NAND controllers are limited and cannot send X address cycles with a 2134 * unique operation, or cannot read/write more than Y bytes at the same time. 2135 * In this case, split the instruction that does not fit in a single 2136 * controller-operation into two or more chunks. 2137 * 2138 * Returns true if the instruction must be split, false otherwise. 2139 * The @start_offset parameter is also updated to the offset at which the next 2140 * bundle of instruction must start (if an address or a data instruction). 2141 */ 2142 static bool 2143 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 2144 const struct nand_op_instr *instr, 2145 unsigned int *start_offset) 2146 { 2147 switch (pat->type) { 2148 case NAND_OP_ADDR_INSTR: 2149 if (!pat->ctx.addr.maxcycles) 2150 break; 2151 2152 if (instr->ctx.addr.naddrs - *start_offset > 2153 pat->ctx.addr.maxcycles) { 2154 *start_offset += pat->ctx.addr.maxcycles; 2155 return true; 2156 } 2157 break; 2158 2159 case NAND_OP_DATA_IN_INSTR: 2160 case NAND_OP_DATA_OUT_INSTR: 2161 if (!pat->ctx.data.maxlen) 2162 break; 2163 2164 if (instr->ctx.data.len - *start_offset > 2165 pat->ctx.data.maxlen) { 2166 *start_offset += pat->ctx.data.maxlen; 2167 return true; 2168 } 2169 break; 2170 2171 default: 2172 break; 2173 } 2174 2175 return false; 2176 } 2177 2178 /** 2179 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2180 * remaining in the parser context 2181 * @pat: the pattern to test 2182 * @ctx: the parser context structure to match with the pattern @pat 2183 * 2184 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2185 * Returns true if this is the case, false ortherwise. When true is returned, 2186 * @ctx->subop is updated with the set of instructions to be passed to the 2187 * controller driver. 2188 */ 2189 static bool 2190 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2191 struct nand_op_parser_ctx *ctx) 2192 { 2193 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2194 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2195 const struct nand_op_instr *instr = ctx->subop.instrs; 2196 unsigned int i, ninstrs; 2197 2198 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2199 /* 2200 * The pattern instruction does not match the operation 2201 * instruction. If the instruction is marked optional in the 2202 * pattern definition, we skip the pattern element and continue 2203 * to the next one. If the element is mandatory, there's no 2204 * match and we can return false directly. 2205 */ 2206 if (instr->type != pat->elems[i].type) { 2207 if (!pat->elems[i].optional) 2208 return false; 2209 2210 continue; 2211 } 2212 2213 /* 2214 * Now check the pattern element constraints. If the pattern is 2215 * not able to handle the whole instruction in a single step, 2216 * we have to split it. 2217 * The last_instr_end_off value comes back updated to point to 2218 * the position where we have to split the instruction (the 2219 * start of the next subop chunk). 2220 */ 2221 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2222 &instr_offset)) { 2223 ninstrs++; 2224 i++; 2225 break; 2226 } 2227 2228 instr++; 2229 ninstrs++; 2230 instr_offset = 0; 2231 } 2232 2233 /* 2234 * This can happen if all instructions of a pattern are optional. 2235 * Still, if there's not at least one instruction handled by this 2236 * pattern, this is not a match, and we should try the next one (if 2237 * any). 2238 */ 2239 if (!ninstrs) 2240 return false; 2241 2242 /* 2243 * We had a match on the pattern head, but the pattern may be longer 2244 * than the instructions we're asked to execute. We need to make sure 2245 * there's no mandatory elements in the pattern tail. 2246 */ 2247 for (; i < pat->nelems; i++) { 2248 if (!pat->elems[i].optional) 2249 return false; 2250 } 2251 2252 /* 2253 * We have a match: update the subop structure accordingly and return 2254 * true. 2255 */ 2256 ctx->subop.ninstrs = ninstrs; 2257 ctx->subop.last_instr_end_off = instr_offset; 2258 2259 return true; 2260 } 2261 2262 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2263 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2264 { 2265 const struct nand_op_instr *instr; 2266 char *prefix = " "; 2267 unsigned int i; 2268 2269 pr_debug("executing subop (CS%d):\n", ctx->subop.cs); 2270 2271 for (i = 0; i < ctx->ninstrs; i++) { 2272 instr = &ctx->instrs[i]; 2273 2274 if (instr == &ctx->subop.instrs[0]) 2275 prefix = " ->"; 2276 2277 nand_op_trace(prefix, instr); 2278 2279 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2280 prefix = " "; 2281 } 2282 } 2283 #else 2284 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2285 { 2286 /* NOP */ 2287 } 2288 #endif 2289 2290 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, 2291 const struct nand_op_parser_ctx *b) 2292 { 2293 if (a->subop.ninstrs < b->subop.ninstrs) 2294 return -1; 2295 else if (a->subop.ninstrs > b->subop.ninstrs) 2296 return 1; 2297 2298 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) 2299 return -1; 2300 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) 2301 return 1; 2302 2303 return 0; 2304 } 2305 2306 /** 2307 * nand_op_parser_exec_op - exec_op parser 2308 * @chip: the NAND chip 2309 * @parser: patterns description provided by the controller driver 2310 * @op: the NAND operation to address 2311 * @check_only: when true, the function only checks if @op can be handled but 2312 * does not execute the operation 2313 * 2314 * Helper function designed to ease integration of NAND controller drivers that 2315 * only support a limited set of instruction sequences. The supported sequences 2316 * are described in @parser, and the framework takes care of splitting @op into 2317 * multiple sub-operations (if required) and pass them back to the ->exec() 2318 * callback of the matching pattern if @check_only is set to false. 2319 * 2320 * NAND controller drivers should call this function from their own ->exec_op() 2321 * implementation. 2322 * 2323 * Returns 0 on success, a negative error code otherwise. A failure can be 2324 * caused by an unsupported operation (none of the supported patterns is able 2325 * to handle the requested operation), or an error returned by one of the 2326 * matching pattern->exec() hook. 2327 */ 2328 int nand_op_parser_exec_op(struct nand_chip *chip, 2329 const struct nand_op_parser *parser, 2330 const struct nand_operation *op, bool check_only) 2331 { 2332 struct nand_op_parser_ctx ctx = { 2333 .subop.cs = op->cs, 2334 .subop.instrs = op->instrs, 2335 .instrs = op->instrs, 2336 .ninstrs = op->ninstrs, 2337 }; 2338 unsigned int i; 2339 2340 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2341 const struct nand_op_parser_pattern *pattern; 2342 struct nand_op_parser_ctx best_ctx; 2343 int ret, best_pattern = -1; 2344 2345 for (i = 0; i < parser->npatterns; i++) { 2346 struct nand_op_parser_ctx test_ctx = ctx; 2347 2348 pattern = &parser->patterns[i]; 2349 if (!nand_op_parser_match_pat(pattern, &test_ctx)) 2350 continue; 2351 2352 if (best_pattern >= 0 && 2353 nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) 2354 continue; 2355 2356 best_pattern = i; 2357 best_ctx = test_ctx; 2358 } 2359 2360 if (best_pattern < 0) { 2361 pr_debug("->exec_op() parser: pattern not found!\n"); 2362 return -ENOTSUPP; 2363 } 2364 2365 ctx = best_ctx; 2366 nand_op_parser_trace(&ctx); 2367 2368 if (!check_only) { 2369 pattern = &parser->patterns[best_pattern]; 2370 ret = pattern->exec(chip, &ctx.subop); 2371 if (ret) 2372 return ret; 2373 } 2374 2375 /* 2376 * Update the context structure by pointing to the start of the 2377 * next subop. 2378 */ 2379 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2380 if (ctx.subop.last_instr_end_off) 2381 ctx.subop.instrs -= 1; 2382 2383 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2384 } 2385 2386 return 0; 2387 } 2388 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2389 2390 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2391 { 2392 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2393 instr->type == NAND_OP_DATA_OUT_INSTR); 2394 } 2395 2396 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2397 unsigned int instr_idx) 2398 { 2399 return subop && instr_idx < subop->ninstrs; 2400 } 2401 2402 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2403 unsigned int instr_idx) 2404 { 2405 if (instr_idx) 2406 return 0; 2407 2408 return subop->first_instr_start_off; 2409 } 2410 2411 /** 2412 * nand_subop_get_addr_start_off - Get the start offset in an address array 2413 * @subop: The entire sub-operation 2414 * @instr_idx: Index of the instruction inside the sub-operation 2415 * 2416 * During driver development, one could be tempted to directly use the 2417 * ->addr.addrs field of address instructions. This is wrong as address 2418 * instructions might be split. 2419 * 2420 * Given an address instruction, returns the offset of the first cycle to issue. 2421 */ 2422 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2423 unsigned int instr_idx) 2424 { 2425 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2426 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2427 return 0; 2428 2429 return nand_subop_get_start_off(subop, instr_idx); 2430 } 2431 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2432 2433 /** 2434 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2435 * @subop: The entire sub-operation 2436 * @instr_idx: Index of the instruction inside the sub-operation 2437 * 2438 * During driver development, one could be tempted to directly use the 2439 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2440 * might be split. 2441 * 2442 * Given an address instruction, returns the number of address cycle to issue. 2443 */ 2444 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2445 unsigned int instr_idx) 2446 { 2447 int start_off, end_off; 2448 2449 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2450 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2451 return 0; 2452 2453 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2454 2455 if (instr_idx == subop->ninstrs - 1 && 2456 subop->last_instr_end_off) 2457 end_off = subop->last_instr_end_off; 2458 else 2459 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2460 2461 return end_off - start_off; 2462 } 2463 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2464 2465 /** 2466 * nand_subop_get_data_start_off - Get the start offset in a data array 2467 * @subop: The entire sub-operation 2468 * @instr_idx: Index of the instruction inside the sub-operation 2469 * 2470 * During driver development, one could be tempted to directly use the 2471 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2472 * instructions might be split. 2473 * 2474 * Given a data instruction, returns the offset to start from. 2475 */ 2476 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2477 unsigned int instr_idx) 2478 { 2479 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2480 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2481 return 0; 2482 2483 return nand_subop_get_start_off(subop, instr_idx); 2484 } 2485 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2486 2487 /** 2488 * nand_subop_get_data_len - Get the number of bytes to retrieve 2489 * @subop: The entire sub-operation 2490 * @instr_idx: Index of the instruction inside the sub-operation 2491 * 2492 * During driver development, one could be tempted to directly use the 2493 * ->data->len field of a data instruction. This is wrong as data instructions 2494 * might be split. 2495 * 2496 * Returns the length of the chunk of data to send/receive. 2497 */ 2498 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2499 unsigned int instr_idx) 2500 { 2501 int start_off = 0, end_off; 2502 2503 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2504 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2505 return 0; 2506 2507 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2508 2509 if (instr_idx == subop->ninstrs - 1 && 2510 subop->last_instr_end_off) 2511 end_off = subop->last_instr_end_off; 2512 else 2513 end_off = subop->instrs[instr_idx].ctx.data.len; 2514 2515 return end_off - start_off; 2516 } 2517 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2518 2519 /** 2520 * nand_reset - Reset and initialize a NAND device 2521 * @chip: The NAND chip 2522 * @chipnr: Internal die id 2523 * 2524 * Save the timings data structure, then apply SDR timings mode 0 (see 2525 * nand_reset_interface for details), do the reset operation, and apply 2526 * back the previous timings. 2527 * 2528 * Returns 0 on success, a negative error code otherwise. 2529 */ 2530 int nand_reset(struct nand_chip *chip, int chipnr) 2531 { 2532 int ret; 2533 2534 ret = nand_reset_interface(chip, chipnr); 2535 if (ret) 2536 return ret; 2537 2538 /* 2539 * The CS line has to be released before we can apply the new NAND 2540 * interface settings, hence this weird nand_select_target() 2541 * nand_deselect_target() dance. 2542 */ 2543 nand_select_target(chip, chipnr); 2544 ret = nand_reset_op(chip); 2545 nand_deselect_target(chip); 2546 if (ret) 2547 return ret; 2548 2549 ret = nand_setup_interface(chip, chipnr); 2550 if (ret) 2551 return ret; 2552 2553 return 0; 2554 } 2555 EXPORT_SYMBOL_GPL(nand_reset); 2556 2557 /** 2558 * nand_get_features - wrapper to perform a GET_FEATURE 2559 * @chip: NAND chip info structure 2560 * @addr: feature address 2561 * @subfeature_param: the subfeature parameters, a four bytes array 2562 * 2563 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2564 * operation cannot be handled. 2565 */ 2566 int nand_get_features(struct nand_chip *chip, int addr, 2567 u8 *subfeature_param) 2568 { 2569 if (!nand_supports_get_features(chip, addr)) 2570 return -ENOTSUPP; 2571 2572 if (chip->legacy.get_features) 2573 return chip->legacy.get_features(chip, addr, subfeature_param); 2574 2575 return nand_get_features_op(chip, addr, subfeature_param); 2576 } 2577 2578 /** 2579 * nand_set_features - wrapper to perform a SET_FEATURE 2580 * @chip: NAND chip info structure 2581 * @addr: feature address 2582 * @subfeature_param: the subfeature parameters, a four bytes array 2583 * 2584 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2585 * operation cannot be handled. 2586 */ 2587 int nand_set_features(struct nand_chip *chip, int addr, 2588 u8 *subfeature_param) 2589 { 2590 if (!nand_supports_set_features(chip, addr)) 2591 return -ENOTSUPP; 2592 2593 if (chip->legacy.set_features) 2594 return chip->legacy.set_features(chip, addr, subfeature_param); 2595 2596 return nand_set_features_op(chip, addr, subfeature_param); 2597 } 2598 2599 /** 2600 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2601 * @buf: buffer to test 2602 * @len: buffer length 2603 * @bitflips_threshold: maximum number of bitflips 2604 * 2605 * Check if a buffer contains only 0xff, which means the underlying region 2606 * has been erased and is ready to be programmed. 2607 * The bitflips_threshold specify the maximum number of bitflips before 2608 * considering the region is not erased. 2609 * Note: The logic of this function has been extracted from the memweight 2610 * implementation, except that nand_check_erased_buf function exit before 2611 * testing the whole buffer if the number of bitflips exceed the 2612 * bitflips_threshold value. 2613 * 2614 * Returns a positive number of bitflips less than or equal to 2615 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2616 * threshold. 2617 */ 2618 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2619 { 2620 const unsigned char *bitmap = buf; 2621 int bitflips = 0; 2622 int weight; 2623 2624 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2625 len--, bitmap++) { 2626 weight = hweight8(*bitmap); 2627 bitflips += BITS_PER_BYTE - weight; 2628 if (unlikely(bitflips > bitflips_threshold)) 2629 return -EBADMSG; 2630 } 2631 2632 for (; len >= sizeof(long); 2633 len -= sizeof(long), bitmap += sizeof(long)) { 2634 unsigned long d = *((unsigned long *)bitmap); 2635 if (d == ~0UL) 2636 continue; 2637 weight = hweight_long(d); 2638 bitflips += BITS_PER_LONG - weight; 2639 if (unlikely(bitflips > bitflips_threshold)) 2640 return -EBADMSG; 2641 } 2642 2643 for (; len > 0; len--, bitmap++) { 2644 weight = hweight8(*bitmap); 2645 bitflips += BITS_PER_BYTE - weight; 2646 if (unlikely(bitflips > bitflips_threshold)) 2647 return -EBADMSG; 2648 } 2649 2650 return bitflips; 2651 } 2652 2653 /** 2654 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2655 * 0xff data 2656 * @data: data buffer to test 2657 * @datalen: data length 2658 * @ecc: ECC buffer 2659 * @ecclen: ECC length 2660 * @extraoob: extra OOB buffer 2661 * @extraooblen: extra OOB length 2662 * @bitflips_threshold: maximum number of bitflips 2663 * 2664 * Check if a data buffer and its associated ECC and OOB data contains only 2665 * 0xff pattern, which means the underlying region has been erased and is 2666 * ready to be programmed. 2667 * The bitflips_threshold specify the maximum number of bitflips before 2668 * considering the region as not erased. 2669 * 2670 * Note: 2671 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2672 * different from the NAND page size. When fixing bitflips, ECC engines will 2673 * report the number of errors per chunk, and the NAND core infrastructure 2674 * expect you to return the maximum number of bitflips for the whole page. 2675 * This is why you should always use this function on a single chunk and 2676 * not on the whole page. After checking each chunk you should update your 2677 * max_bitflips value accordingly. 2678 * 2/ When checking for bitflips in erased pages you should not only check 2679 * the payload data but also their associated ECC data, because a user might 2680 * have programmed almost all bits to 1 but a few. In this case, we 2681 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2682 * this case. 2683 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2684 * data are protected by the ECC engine. 2685 * It could also be used if you support subpages and want to attach some 2686 * extra OOB data to an ECC chunk. 2687 * 2688 * Returns a positive number of bitflips less than or equal to 2689 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2690 * threshold. In case of success, the passed buffers are filled with 0xff. 2691 */ 2692 int nand_check_erased_ecc_chunk(void *data, int datalen, 2693 void *ecc, int ecclen, 2694 void *extraoob, int extraooblen, 2695 int bitflips_threshold) 2696 { 2697 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2698 2699 data_bitflips = nand_check_erased_buf(data, datalen, 2700 bitflips_threshold); 2701 if (data_bitflips < 0) 2702 return data_bitflips; 2703 2704 bitflips_threshold -= data_bitflips; 2705 2706 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2707 if (ecc_bitflips < 0) 2708 return ecc_bitflips; 2709 2710 bitflips_threshold -= ecc_bitflips; 2711 2712 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2713 bitflips_threshold); 2714 if (extraoob_bitflips < 0) 2715 return extraoob_bitflips; 2716 2717 if (data_bitflips) 2718 memset(data, 0xff, datalen); 2719 2720 if (ecc_bitflips) 2721 memset(ecc, 0xff, ecclen); 2722 2723 if (extraoob_bitflips) 2724 memset(extraoob, 0xff, extraooblen); 2725 2726 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2727 } 2728 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2729 2730 /** 2731 * nand_read_page_raw_notsupp - dummy read raw page function 2732 * @chip: nand chip info structure 2733 * @buf: buffer to store read data 2734 * @oob_required: caller requires OOB data read to chip->oob_poi 2735 * @page: page number to read 2736 * 2737 * Returns -ENOTSUPP unconditionally. 2738 */ 2739 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, 2740 int oob_required, int page) 2741 { 2742 return -ENOTSUPP; 2743 } 2744 2745 /** 2746 * nand_read_page_raw - [INTERN] read raw page data without ecc 2747 * @chip: nand chip info structure 2748 * @buf: buffer to store read data 2749 * @oob_required: caller requires OOB data read to chip->oob_poi 2750 * @page: page number to read 2751 * 2752 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2753 */ 2754 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 2755 int page) 2756 { 2757 struct mtd_info *mtd = nand_to_mtd(chip); 2758 int ret; 2759 2760 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2761 if (ret) 2762 return ret; 2763 2764 if (oob_required) { 2765 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2766 false, false); 2767 if (ret) 2768 return ret; 2769 } 2770 2771 return 0; 2772 } 2773 EXPORT_SYMBOL(nand_read_page_raw); 2774 2775 /** 2776 * nand_monolithic_read_page_raw - Monolithic page read in raw mode 2777 * @chip: NAND chip info structure 2778 * @buf: buffer to store read data 2779 * @oob_required: caller requires OOB data read to chip->oob_poi 2780 * @page: page number to read 2781 * 2782 * This is a raw page read, ie. without any error detection/correction. 2783 * Monolithic means we are requesting all the relevant data (main plus 2784 * eventually OOB) to be loaded in the NAND cache and sent over the 2785 * bus (from the NAND chip to the NAND controller) in a single 2786 * operation. This is an alternative to nand_read_page_raw(), which 2787 * first reads the main data, and if the OOB data is requested too, 2788 * then reads more data on the bus. 2789 */ 2790 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf, 2791 int oob_required, int page) 2792 { 2793 struct mtd_info *mtd = nand_to_mtd(chip); 2794 unsigned int size = mtd->writesize; 2795 u8 *read_buf = buf; 2796 int ret; 2797 2798 if (oob_required) { 2799 size += mtd->oobsize; 2800 2801 if (buf != chip->data_buf) 2802 read_buf = nand_get_data_buf(chip); 2803 } 2804 2805 ret = nand_read_page_op(chip, page, 0, read_buf, size); 2806 if (ret) 2807 return ret; 2808 2809 if (buf != chip->data_buf) 2810 memcpy(buf, read_buf, mtd->writesize); 2811 2812 return 0; 2813 } 2814 EXPORT_SYMBOL(nand_monolithic_read_page_raw); 2815 2816 /** 2817 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 2818 * @chip: nand chip info structure 2819 * @buf: buffer to store read data 2820 * @oob_required: caller requires OOB data read to chip->oob_poi 2821 * @page: page number to read 2822 * 2823 * We need a special oob layout and handling even when OOB isn't used. 2824 */ 2825 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, 2826 int oob_required, int page) 2827 { 2828 struct mtd_info *mtd = nand_to_mtd(chip); 2829 int eccsize = chip->ecc.size; 2830 int eccbytes = chip->ecc.bytes; 2831 uint8_t *oob = chip->oob_poi; 2832 int steps, size, ret; 2833 2834 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2835 if (ret) 2836 return ret; 2837 2838 for (steps = chip->ecc.steps; steps > 0; steps--) { 2839 ret = nand_read_data_op(chip, buf, eccsize, false, false); 2840 if (ret) 2841 return ret; 2842 2843 buf += eccsize; 2844 2845 if (chip->ecc.prepad) { 2846 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 2847 false, false); 2848 if (ret) 2849 return ret; 2850 2851 oob += chip->ecc.prepad; 2852 } 2853 2854 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 2855 if (ret) 2856 return ret; 2857 2858 oob += eccbytes; 2859 2860 if (chip->ecc.postpad) { 2861 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 2862 false, false); 2863 if (ret) 2864 return ret; 2865 2866 oob += chip->ecc.postpad; 2867 } 2868 } 2869 2870 size = mtd->oobsize - (oob - chip->oob_poi); 2871 if (size) { 2872 ret = nand_read_data_op(chip, oob, size, false, false); 2873 if (ret) 2874 return ret; 2875 } 2876 2877 return 0; 2878 } 2879 2880 /** 2881 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 2882 * @chip: nand chip info structure 2883 * @buf: buffer to store read data 2884 * @oob_required: caller requires OOB data read to chip->oob_poi 2885 * @page: page number to read 2886 */ 2887 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, 2888 int oob_required, int page) 2889 { 2890 struct mtd_info *mtd = nand_to_mtd(chip); 2891 int i, eccsize = chip->ecc.size, ret; 2892 int eccbytes = chip->ecc.bytes; 2893 int eccsteps = chip->ecc.steps; 2894 uint8_t *p = buf; 2895 uint8_t *ecc_calc = chip->ecc.calc_buf; 2896 uint8_t *ecc_code = chip->ecc.code_buf; 2897 unsigned int max_bitflips = 0; 2898 2899 chip->ecc.read_page_raw(chip, buf, 1, page); 2900 2901 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 2902 chip->ecc.calculate(chip, p, &ecc_calc[i]); 2903 2904 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 2905 chip->ecc.total); 2906 if (ret) 2907 return ret; 2908 2909 eccsteps = chip->ecc.steps; 2910 p = buf; 2911 2912 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 2913 int stat; 2914 2915 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 2916 if (stat < 0) { 2917 mtd->ecc_stats.failed++; 2918 } else { 2919 mtd->ecc_stats.corrected += stat; 2920 max_bitflips = max_t(unsigned int, max_bitflips, stat); 2921 } 2922 } 2923 return max_bitflips; 2924 } 2925 2926 /** 2927 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 2928 * @chip: nand chip info structure 2929 * @data_offs: offset of requested data within the page 2930 * @readlen: data length 2931 * @bufpoi: buffer to store read data 2932 * @page: page number to read 2933 */ 2934 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, 2935 uint32_t readlen, uint8_t *bufpoi, int page) 2936 { 2937 struct mtd_info *mtd = nand_to_mtd(chip); 2938 int start_step, end_step, num_steps, ret; 2939 uint8_t *p; 2940 int data_col_addr, i, gaps = 0; 2941 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 2942 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 2943 int index, section = 0; 2944 unsigned int max_bitflips = 0; 2945 struct mtd_oob_region oobregion = { }; 2946 2947 /* Column address within the page aligned to ECC size (256bytes) */ 2948 start_step = data_offs / chip->ecc.size; 2949 end_step = (data_offs + readlen - 1) / chip->ecc.size; 2950 num_steps = end_step - start_step + 1; 2951 index = start_step * chip->ecc.bytes; 2952 2953 /* Data size aligned to ECC ecc.size */ 2954 datafrag_len = num_steps * chip->ecc.size; 2955 eccfrag_len = num_steps * chip->ecc.bytes; 2956 2957 data_col_addr = start_step * chip->ecc.size; 2958 /* If we read not a page aligned data */ 2959 p = bufpoi + data_col_addr; 2960 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 2961 if (ret) 2962 return ret; 2963 2964 /* Calculate ECC */ 2965 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 2966 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); 2967 2968 /* 2969 * The performance is faster if we position offsets according to 2970 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 2971 */ 2972 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 2973 if (ret) 2974 return ret; 2975 2976 if (oobregion.length < eccfrag_len) 2977 gaps = 1; 2978 2979 if (gaps) { 2980 ret = nand_change_read_column_op(chip, mtd->writesize, 2981 chip->oob_poi, mtd->oobsize, 2982 false); 2983 if (ret) 2984 return ret; 2985 } else { 2986 /* 2987 * Send the command to read the particular ECC bytes take care 2988 * about buswidth alignment in read_buf. 2989 */ 2990 aligned_pos = oobregion.offset & ~(busw - 1); 2991 aligned_len = eccfrag_len; 2992 if (oobregion.offset & (busw - 1)) 2993 aligned_len++; 2994 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 2995 (busw - 1)) 2996 aligned_len++; 2997 2998 ret = nand_change_read_column_op(chip, 2999 mtd->writesize + aligned_pos, 3000 &chip->oob_poi[aligned_pos], 3001 aligned_len, false); 3002 if (ret) 3003 return ret; 3004 } 3005 3006 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 3007 chip->oob_poi, index, eccfrag_len); 3008 if (ret) 3009 return ret; 3010 3011 p = bufpoi + data_col_addr; 3012 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 3013 int stat; 3014 3015 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], 3016 &chip->ecc.calc_buf[i]); 3017 if (stat == -EBADMSG && 3018 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3019 /* check for empty pages with bitflips */ 3020 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3021 &chip->ecc.code_buf[i], 3022 chip->ecc.bytes, 3023 NULL, 0, 3024 chip->ecc.strength); 3025 } 3026 3027 if (stat < 0) { 3028 mtd->ecc_stats.failed++; 3029 } else { 3030 mtd->ecc_stats.corrected += stat; 3031 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3032 } 3033 } 3034 return max_bitflips; 3035 } 3036 3037 /** 3038 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 3039 * @chip: nand chip info structure 3040 * @buf: buffer to store read data 3041 * @oob_required: caller requires OOB data read to chip->oob_poi 3042 * @page: page number to read 3043 * 3044 * Not for syndrome calculating ECC controllers which need a special oob layout. 3045 */ 3046 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, 3047 int oob_required, int page) 3048 { 3049 struct mtd_info *mtd = nand_to_mtd(chip); 3050 int i, eccsize = chip->ecc.size, ret; 3051 int eccbytes = chip->ecc.bytes; 3052 int eccsteps = chip->ecc.steps; 3053 uint8_t *p = buf; 3054 uint8_t *ecc_calc = chip->ecc.calc_buf; 3055 uint8_t *ecc_code = chip->ecc.code_buf; 3056 unsigned int max_bitflips = 0; 3057 3058 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3059 if (ret) 3060 return ret; 3061 3062 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3063 chip->ecc.hwctl(chip, NAND_ECC_READ); 3064 3065 ret = nand_read_data_op(chip, p, eccsize, false, false); 3066 if (ret) 3067 return ret; 3068 3069 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3070 } 3071 3072 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, 3073 false); 3074 if (ret) 3075 return ret; 3076 3077 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3078 chip->ecc.total); 3079 if (ret) 3080 return ret; 3081 3082 eccsteps = chip->ecc.steps; 3083 p = buf; 3084 3085 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3086 int stat; 3087 3088 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 3089 if (stat == -EBADMSG && 3090 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3091 /* check for empty pages with bitflips */ 3092 stat = nand_check_erased_ecc_chunk(p, eccsize, 3093 &ecc_code[i], eccbytes, 3094 NULL, 0, 3095 chip->ecc.strength); 3096 } 3097 3098 if (stat < 0) { 3099 mtd->ecc_stats.failed++; 3100 } else { 3101 mtd->ecc_stats.corrected += stat; 3102 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3103 } 3104 } 3105 return max_bitflips; 3106 } 3107 3108 /** 3109 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 3110 * @chip: nand chip info structure 3111 * @buf: buffer to store read data 3112 * @oob_required: caller requires OOB data read to chip->oob_poi 3113 * @page: page number to read 3114 * 3115 * The hw generator calculates the error syndrome automatically. Therefore we 3116 * need a special oob layout and handling. 3117 */ 3118 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 3119 int oob_required, int page) 3120 { 3121 struct mtd_info *mtd = nand_to_mtd(chip); 3122 int ret, i, eccsize = chip->ecc.size; 3123 int eccbytes = chip->ecc.bytes; 3124 int eccsteps = chip->ecc.steps; 3125 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 3126 uint8_t *p = buf; 3127 uint8_t *oob = chip->oob_poi; 3128 unsigned int max_bitflips = 0; 3129 3130 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3131 if (ret) 3132 return ret; 3133 3134 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3135 int stat; 3136 3137 chip->ecc.hwctl(chip, NAND_ECC_READ); 3138 3139 ret = nand_read_data_op(chip, p, eccsize, false, false); 3140 if (ret) 3141 return ret; 3142 3143 if (chip->ecc.prepad) { 3144 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3145 false, false); 3146 if (ret) 3147 return ret; 3148 3149 oob += chip->ecc.prepad; 3150 } 3151 3152 chip->ecc.hwctl(chip, NAND_ECC_READSYN); 3153 3154 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 3155 if (ret) 3156 return ret; 3157 3158 stat = chip->ecc.correct(chip, p, oob, NULL); 3159 3160 oob += eccbytes; 3161 3162 if (chip->ecc.postpad) { 3163 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3164 false, false); 3165 if (ret) 3166 return ret; 3167 3168 oob += chip->ecc.postpad; 3169 } 3170 3171 if (stat == -EBADMSG && 3172 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3173 /* check for empty pages with bitflips */ 3174 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3175 oob - eccpadbytes, 3176 eccpadbytes, 3177 NULL, 0, 3178 chip->ecc.strength); 3179 } 3180 3181 if (stat < 0) { 3182 mtd->ecc_stats.failed++; 3183 } else { 3184 mtd->ecc_stats.corrected += stat; 3185 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3186 } 3187 } 3188 3189 /* Calculate remaining oob bytes */ 3190 i = mtd->oobsize - (oob - chip->oob_poi); 3191 if (i) { 3192 ret = nand_read_data_op(chip, oob, i, false, false); 3193 if (ret) 3194 return ret; 3195 } 3196 3197 return max_bitflips; 3198 } 3199 3200 /** 3201 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3202 * @chip: NAND chip object 3203 * @oob: oob destination address 3204 * @ops: oob ops structure 3205 * @len: size of oob to transfer 3206 */ 3207 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, 3208 struct mtd_oob_ops *ops, size_t len) 3209 { 3210 struct mtd_info *mtd = nand_to_mtd(chip); 3211 int ret; 3212 3213 switch (ops->mode) { 3214 3215 case MTD_OPS_PLACE_OOB: 3216 case MTD_OPS_RAW: 3217 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3218 return oob + len; 3219 3220 case MTD_OPS_AUTO_OOB: 3221 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3222 ops->ooboffs, len); 3223 BUG_ON(ret); 3224 return oob + len; 3225 3226 default: 3227 BUG(); 3228 } 3229 return NULL; 3230 } 3231 3232 /** 3233 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3234 * @chip: NAND chip object 3235 * @retry_mode: the retry mode to use 3236 * 3237 * Some vendors supply a special command to shift the Vt threshold, to be used 3238 * when there are too many bitflips in a page (i.e., ECC error). After setting 3239 * a new threshold, the host should retry reading the page. 3240 */ 3241 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) 3242 { 3243 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3244 3245 if (retry_mode >= chip->read_retries) 3246 return -EINVAL; 3247 3248 if (!chip->ops.setup_read_retry) 3249 return -EOPNOTSUPP; 3250 3251 return chip->ops.setup_read_retry(chip, retry_mode); 3252 } 3253 3254 static void nand_wait_readrdy(struct nand_chip *chip) 3255 { 3256 const struct nand_sdr_timings *sdr; 3257 3258 if (!(chip->options & NAND_NEED_READRDY)) 3259 return; 3260 3261 sdr = nand_get_sdr_timings(nand_get_interface_config(chip)); 3262 WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0)); 3263 } 3264 3265 /** 3266 * nand_do_read_ops - [INTERN] Read data with ECC 3267 * @chip: NAND chip object 3268 * @from: offset to read from 3269 * @ops: oob ops structure 3270 * 3271 * Internal function. Called with chip held. 3272 */ 3273 static int nand_do_read_ops(struct nand_chip *chip, loff_t from, 3274 struct mtd_oob_ops *ops) 3275 { 3276 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3277 struct mtd_info *mtd = nand_to_mtd(chip); 3278 int ret = 0; 3279 uint32_t readlen = ops->len; 3280 uint32_t oobreadlen = ops->ooblen; 3281 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3282 3283 uint8_t *bufpoi, *oob, *buf; 3284 int use_bounce_buf; 3285 unsigned int max_bitflips = 0; 3286 int retry_mode = 0; 3287 bool ecc_fail = false; 3288 3289 chipnr = (int)(from >> chip->chip_shift); 3290 nand_select_target(chip, chipnr); 3291 3292 realpage = (int)(from >> chip->page_shift); 3293 page = realpage & chip->pagemask; 3294 3295 col = (int)(from & (mtd->writesize - 1)); 3296 3297 buf = ops->datbuf; 3298 oob = ops->oobbuf; 3299 oob_required = oob ? 1 : 0; 3300 3301 while (1) { 3302 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats; 3303 3304 bytes = min(mtd->writesize - col, readlen); 3305 aligned = (bytes == mtd->writesize); 3306 3307 if (!aligned) 3308 use_bounce_buf = 1; 3309 else if (chip->options & NAND_USES_DMA) 3310 use_bounce_buf = !virt_addr_valid(buf) || 3311 !IS_ALIGNED((unsigned long)buf, 3312 chip->buf_align); 3313 else 3314 use_bounce_buf = 0; 3315 3316 /* Is the current page in the buffer? */ 3317 if (realpage != chip->pagecache.page || oob) { 3318 bufpoi = use_bounce_buf ? chip->data_buf : buf; 3319 3320 if (use_bounce_buf && aligned) 3321 pr_debug("%s: using read bounce buffer for buf@%p\n", 3322 __func__, buf); 3323 3324 read_retry: 3325 /* 3326 * Now read the page into the buffer. Absent an error, 3327 * the read methods return max bitflips per ecc step. 3328 */ 3329 if (unlikely(ops->mode == MTD_OPS_RAW)) 3330 ret = chip->ecc.read_page_raw(chip, bufpoi, 3331 oob_required, 3332 page); 3333 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3334 !oob) 3335 ret = chip->ecc.read_subpage(chip, col, bytes, 3336 bufpoi, page); 3337 else 3338 ret = chip->ecc.read_page(chip, bufpoi, 3339 oob_required, page); 3340 if (ret < 0) { 3341 if (use_bounce_buf) 3342 /* Invalidate page cache */ 3343 chip->pagecache.page = -1; 3344 break; 3345 } 3346 3347 /* 3348 * Copy back the data in the initial buffer when reading 3349 * partial pages or when a bounce buffer is required. 3350 */ 3351 if (use_bounce_buf) { 3352 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3353 !(mtd->ecc_stats.failed - ecc_stats.failed) && 3354 (ops->mode != MTD_OPS_RAW)) { 3355 chip->pagecache.page = realpage; 3356 chip->pagecache.bitflips = ret; 3357 } else { 3358 /* Invalidate page cache */ 3359 chip->pagecache.page = -1; 3360 } 3361 memcpy(buf, bufpoi + col, bytes); 3362 } 3363 3364 if (unlikely(oob)) { 3365 int toread = min(oobreadlen, max_oobsize); 3366 3367 if (toread) { 3368 oob = nand_transfer_oob(chip, oob, ops, 3369 toread); 3370 oobreadlen -= toread; 3371 } 3372 } 3373 3374 nand_wait_readrdy(chip); 3375 3376 if (mtd->ecc_stats.failed - ecc_stats.failed) { 3377 if (retry_mode + 1 < chip->read_retries) { 3378 retry_mode++; 3379 ret = nand_setup_read_retry(chip, 3380 retry_mode); 3381 if (ret < 0) 3382 break; 3383 3384 /* Reset ecc_stats; retry */ 3385 mtd->ecc_stats = ecc_stats; 3386 goto read_retry; 3387 } else { 3388 /* No more retry modes; real failure */ 3389 ecc_fail = true; 3390 } 3391 } 3392 3393 buf += bytes; 3394 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3395 } else { 3396 memcpy(buf, chip->data_buf + col, bytes); 3397 buf += bytes; 3398 max_bitflips = max_t(unsigned int, max_bitflips, 3399 chip->pagecache.bitflips); 3400 } 3401 3402 readlen -= bytes; 3403 3404 /* Reset to retry mode 0 */ 3405 if (retry_mode) { 3406 ret = nand_setup_read_retry(chip, 0); 3407 if (ret < 0) 3408 break; 3409 retry_mode = 0; 3410 } 3411 3412 if (!readlen) 3413 break; 3414 3415 /* For subsequent reads align to page boundary */ 3416 col = 0; 3417 /* Increment page address */ 3418 realpage++; 3419 3420 page = realpage & chip->pagemask; 3421 /* Check, if we cross a chip boundary */ 3422 if (!page) { 3423 chipnr++; 3424 nand_deselect_target(chip); 3425 nand_select_target(chip, chipnr); 3426 } 3427 } 3428 nand_deselect_target(chip); 3429 3430 ops->retlen = ops->len - (size_t) readlen; 3431 if (oob) 3432 ops->oobretlen = ops->ooblen - oobreadlen; 3433 3434 if (ret < 0) 3435 return ret; 3436 3437 if (ecc_fail) 3438 return -EBADMSG; 3439 3440 return max_bitflips; 3441 } 3442 3443 /** 3444 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3445 * @chip: nand chip info structure 3446 * @page: page number to read 3447 */ 3448 int nand_read_oob_std(struct nand_chip *chip, int page) 3449 { 3450 struct mtd_info *mtd = nand_to_mtd(chip); 3451 3452 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3453 } 3454 EXPORT_SYMBOL(nand_read_oob_std); 3455 3456 /** 3457 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3458 * with syndromes 3459 * @chip: nand chip info structure 3460 * @page: page number to read 3461 */ 3462 static int nand_read_oob_syndrome(struct nand_chip *chip, int page) 3463 { 3464 struct mtd_info *mtd = nand_to_mtd(chip); 3465 int length = mtd->oobsize; 3466 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3467 int eccsize = chip->ecc.size; 3468 uint8_t *bufpoi = chip->oob_poi; 3469 int i, toread, sndrnd = 0, pos, ret; 3470 3471 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3472 if (ret) 3473 return ret; 3474 3475 for (i = 0; i < chip->ecc.steps; i++) { 3476 if (sndrnd) { 3477 int ret; 3478 3479 pos = eccsize + i * (eccsize + chunk); 3480 if (mtd->writesize > 512) 3481 ret = nand_change_read_column_op(chip, pos, 3482 NULL, 0, 3483 false); 3484 else 3485 ret = nand_read_page_op(chip, page, pos, NULL, 3486 0); 3487 3488 if (ret) 3489 return ret; 3490 } else 3491 sndrnd = 1; 3492 toread = min_t(int, length, chunk); 3493 3494 ret = nand_read_data_op(chip, bufpoi, toread, false, false); 3495 if (ret) 3496 return ret; 3497 3498 bufpoi += toread; 3499 length -= toread; 3500 } 3501 if (length > 0) { 3502 ret = nand_read_data_op(chip, bufpoi, length, false, false); 3503 if (ret) 3504 return ret; 3505 } 3506 3507 return 0; 3508 } 3509 3510 /** 3511 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3512 * @chip: nand chip info structure 3513 * @page: page number to write 3514 */ 3515 int nand_write_oob_std(struct nand_chip *chip, int page) 3516 { 3517 struct mtd_info *mtd = nand_to_mtd(chip); 3518 3519 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3520 mtd->oobsize); 3521 } 3522 EXPORT_SYMBOL(nand_write_oob_std); 3523 3524 /** 3525 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3526 * with syndrome - only for large page flash 3527 * @chip: nand chip info structure 3528 * @page: page number to write 3529 */ 3530 static int nand_write_oob_syndrome(struct nand_chip *chip, int page) 3531 { 3532 struct mtd_info *mtd = nand_to_mtd(chip); 3533 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3534 int eccsize = chip->ecc.size, length = mtd->oobsize; 3535 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3536 const uint8_t *bufpoi = chip->oob_poi; 3537 3538 /* 3539 * data-ecc-data-ecc ... ecc-oob 3540 * or 3541 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3542 */ 3543 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3544 pos = steps * (eccsize + chunk); 3545 steps = 0; 3546 } else 3547 pos = eccsize; 3548 3549 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3550 if (ret) 3551 return ret; 3552 3553 for (i = 0; i < steps; i++) { 3554 if (sndcmd) { 3555 if (mtd->writesize <= 512) { 3556 uint32_t fill = 0xFFFFFFFF; 3557 3558 len = eccsize; 3559 while (len > 0) { 3560 int num = min_t(int, len, 4); 3561 3562 ret = nand_write_data_op(chip, &fill, 3563 num, false); 3564 if (ret) 3565 return ret; 3566 3567 len -= num; 3568 } 3569 } else { 3570 pos = eccsize + i * (eccsize + chunk); 3571 ret = nand_change_write_column_op(chip, pos, 3572 NULL, 0, 3573 false); 3574 if (ret) 3575 return ret; 3576 } 3577 } else 3578 sndcmd = 1; 3579 len = min_t(int, length, chunk); 3580 3581 ret = nand_write_data_op(chip, bufpoi, len, false); 3582 if (ret) 3583 return ret; 3584 3585 bufpoi += len; 3586 length -= len; 3587 } 3588 if (length > 0) { 3589 ret = nand_write_data_op(chip, bufpoi, length, false); 3590 if (ret) 3591 return ret; 3592 } 3593 3594 return nand_prog_page_end_op(chip); 3595 } 3596 3597 /** 3598 * nand_do_read_oob - [INTERN] NAND read out-of-band 3599 * @chip: NAND chip object 3600 * @from: offset to read from 3601 * @ops: oob operations description structure 3602 * 3603 * NAND read out-of-band data from the spare area. 3604 */ 3605 static int nand_do_read_oob(struct nand_chip *chip, loff_t from, 3606 struct mtd_oob_ops *ops) 3607 { 3608 struct mtd_info *mtd = nand_to_mtd(chip); 3609 unsigned int max_bitflips = 0; 3610 int page, realpage, chipnr; 3611 struct mtd_ecc_stats stats; 3612 int readlen = ops->ooblen; 3613 int len; 3614 uint8_t *buf = ops->oobbuf; 3615 int ret = 0; 3616 3617 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3618 __func__, (unsigned long long)from, readlen); 3619 3620 stats = mtd->ecc_stats; 3621 3622 len = mtd_oobavail(mtd, ops); 3623 3624 chipnr = (int)(from >> chip->chip_shift); 3625 nand_select_target(chip, chipnr); 3626 3627 /* Shift to get page */ 3628 realpage = (int)(from >> chip->page_shift); 3629 page = realpage & chip->pagemask; 3630 3631 while (1) { 3632 if (ops->mode == MTD_OPS_RAW) 3633 ret = chip->ecc.read_oob_raw(chip, page); 3634 else 3635 ret = chip->ecc.read_oob(chip, page); 3636 3637 if (ret < 0) 3638 break; 3639 3640 len = min(len, readlen); 3641 buf = nand_transfer_oob(chip, buf, ops, len); 3642 3643 nand_wait_readrdy(chip); 3644 3645 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3646 3647 readlen -= len; 3648 if (!readlen) 3649 break; 3650 3651 /* Increment page address */ 3652 realpage++; 3653 3654 page = realpage & chip->pagemask; 3655 /* Check, if we cross a chip boundary */ 3656 if (!page) { 3657 chipnr++; 3658 nand_deselect_target(chip); 3659 nand_select_target(chip, chipnr); 3660 } 3661 } 3662 nand_deselect_target(chip); 3663 3664 ops->oobretlen = ops->ooblen - readlen; 3665 3666 if (ret < 0) 3667 return ret; 3668 3669 if (mtd->ecc_stats.failed - stats.failed) 3670 return -EBADMSG; 3671 3672 return max_bitflips; 3673 } 3674 3675 /** 3676 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3677 * @mtd: MTD device structure 3678 * @from: offset to read from 3679 * @ops: oob operation description structure 3680 * 3681 * NAND read data and/or out-of-band data. 3682 */ 3683 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3684 struct mtd_oob_ops *ops) 3685 { 3686 struct nand_chip *chip = mtd_to_nand(mtd); 3687 int ret; 3688 3689 ops->retlen = 0; 3690 3691 if (ops->mode != MTD_OPS_PLACE_OOB && 3692 ops->mode != MTD_OPS_AUTO_OOB && 3693 ops->mode != MTD_OPS_RAW) 3694 return -ENOTSUPP; 3695 3696 ret = nand_get_device(chip); 3697 if (ret) 3698 return ret; 3699 3700 if (!ops->datbuf) 3701 ret = nand_do_read_oob(chip, from, ops); 3702 else 3703 ret = nand_do_read_ops(chip, from, ops); 3704 3705 nand_release_device(chip); 3706 return ret; 3707 } 3708 3709 /** 3710 * nand_write_page_raw_notsupp - dummy raw page write function 3711 * @chip: nand chip info structure 3712 * @buf: data buffer 3713 * @oob_required: must write chip->oob_poi to OOB 3714 * @page: page number to write 3715 * 3716 * Returns -ENOTSUPP unconditionally. 3717 */ 3718 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, 3719 int oob_required, int page) 3720 { 3721 return -ENOTSUPP; 3722 } 3723 3724 /** 3725 * nand_write_page_raw - [INTERN] raw page write function 3726 * @chip: nand chip info structure 3727 * @buf: data buffer 3728 * @oob_required: must write chip->oob_poi to OOB 3729 * @page: page number to write 3730 * 3731 * Not for syndrome calculating ECC controllers, which use a special oob layout. 3732 */ 3733 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 3734 int oob_required, int page) 3735 { 3736 struct mtd_info *mtd = nand_to_mtd(chip); 3737 int ret; 3738 3739 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 3740 if (ret) 3741 return ret; 3742 3743 if (oob_required) { 3744 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 3745 false); 3746 if (ret) 3747 return ret; 3748 } 3749 3750 return nand_prog_page_end_op(chip); 3751 } 3752 EXPORT_SYMBOL(nand_write_page_raw); 3753 3754 /** 3755 * nand_monolithic_write_page_raw - Monolithic page write in raw mode 3756 * @chip: NAND chip info structure 3757 * @buf: data buffer to write 3758 * @oob_required: must write chip->oob_poi to OOB 3759 * @page: page number to write 3760 * 3761 * This is a raw page write, ie. without any error detection/correction. 3762 * Monolithic means we are requesting all the relevant data (main plus 3763 * eventually OOB) to be sent over the bus and effectively programmed 3764 * into the NAND chip arrays in a single operation. This is an 3765 * alternative to nand_write_page_raw(), which first sends the main 3766 * data, then eventually send the OOB data by latching more data 3767 * cycles on the NAND bus, and finally sends the program command to 3768 * synchronyze the NAND chip cache. 3769 */ 3770 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf, 3771 int oob_required, int page) 3772 { 3773 struct mtd_info *mtd = nand_to_mtd(chip); 3774 unsigned int size = mtd->writesize; 3775 u8 *write_buf = (u8 *)buf; 3776 3777 if (oob_required) { 3778 size += mtd->oobsize; 3779 3780 if (buf != chip->data_buf) { 3781 write_buf = nand_get_data_buf(chip); 3782 memcpy(write_buf, buf, mtd->writesize); 3783 } 3784 } 3785 3786 return nand_prog_page_op(chip, page, 0, write_buf, size); 3787 } 3788 EXPORT_SYMBOL(nand_monolithic_write_page_raw); 3789 3790 /** 3791 * nand_write_page_raw_syndrome - [INTERN] raw page write function 3792 * @chip: nand chip info structure 3793 * @buf: data buffer 3794 * @oob_required: must write chip->oob_poi to OOB 3795 * @page: page number to write 3796 * 3797 * We need a special oob layout and handling even when ECC isn't checked. 3798 */ 3799 static int nand_write_page_raw_syndrome(struct nand_chip *chip, 3800 const uint8_t *buf, int oob_required, 3801 int page) 3802 { 3803 struct mtd_info *mtd = nand_to_mtd(chip); 3804 int eccsize = chip->ecc.size; 3805 int eccbytes = chip->ecc.bytes; 3806 uint8_t *oob = chip->oob_poi; 3807 int steps, size, ret; 3808 3809 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3810 if (ret) 3811 return ret; 3812 3813 for (steps = chip->ecc.steps; steps > 0; steps--) { 3814 ret = nand_write_data_op(chip, buf, eccsize, false); 3815 if (ret) 3816 return ret; 3817 3818 buf += eccsize; 3819 3820 if (chip->ecc.prepad) { 3821 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 3822 false); 3823 if (ret) 3824 return ret; 3825 3826 oob += chip->ecc.prepad; 3827 } 3828 3829 ret = nand_write_data_op(chip, oob, eccbytes, false); 3830 if (ret) 3831 return ret; 3832 3833 oob += eccbytes; 3834 3835 if (chip->ecc.postpad) { 3836 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 3837 false); 3838 if (ret) 3839 return ret; 3840 3841 oob += chip->ecc.postpad; 3842 } 3843 } 3844 3845 size = mtd->oobsize - (oob - chip->oob_poi); 3846 if (size) { 3847 ret = nand_write_data_op(chip, oob, size, false); 3848 if (ret) 3849 return ret; 3850 } 3851 3852 return nand_prog_page_end_op(chip); 3853 } 3854 /** 3855 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 3856 * @chip: nand chip info structure 3857 * @buf: data buffer 3858 * @oob_required: must write chip->oob_poi to OOB 3859 * @page: page number to write 3860 */ 3861 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, 3862 int oob_required, int page) 3863 { 3864 struct mtd_info *mtd = nand_to_mtd(chip); 3865 int i, eccsize = chip->ecc.size, ret; 3866 int eccbytes = chip->ecc.bytes; 3867 int eccsteps = chip->ecc.steps; 3868 uint8_t *ecc_calc = chip->ecc.calc_buf; 3869 const uint8_t *p = buf; 3870 3871 /* Software ECC calculation */ 3872 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3873 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3874 3875 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3876 chip->ecc.total); 3877 if (ret) 3878 return ret; 3879 3880 return chip->ecc.write_page_raw(chip, buf, 1, page); 3881 } 3882 3883 /** 3884 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 3885 * @chip: nand chip info structure 3886 * @buf: data buffer 3887 * @oob_required: must write chip->oob_poi to OOB 3888 * @page: page number to write 3889 */ 3890 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, 3891 int oob_required, int page) 3892 { 3893 struct mtd_info *mtd = nand_to_mtd(chip); 3894 int i, eccsize = chip->ecc.size, ret; 3895 int eccbytes = chip->ecc.bytes; 3896 int eccsteps = chip->ecc.steps; 3897 uint8_t *ecc_calc = chip->ecc.calc_buf; 3898 const uint8_t *p = buf; 3899 3900 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3901 if (ret) 3902 return ret; 3903 3904 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3905 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3906 3907 ret = nand_write_data_op(chip, p, eccsize, false); 3908 if (ret) 3909 return ret; 3910 3911 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3912 } 3913 3914 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3915 chip->ecc.total); 3916 if (ret) 3917 return ret; 3918 3919 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3920 if (ret) 3921 return ret; 3922 3923 return nand_prog_page_end_op(chip); 3924 } 3925 3926 3927 /** 3928 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 3929 * @chip: nand chip info structure 3930 * @offset: column address of subpage within the page 3931 * @data_len: data length 3932 * @buf: data buffer 3933 * @oob_required: must write chip->oob_poi to OOB 3934 * @page: page number to write 3935 */ 3936 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, 3937 uint32_t data_len, const uint8_t *buf, 3938 int oob_required, int page) 3939 { 3940 struct mtd_info *mtd = nand_to_mtd(chip); 3941 uint8_t *oob_buf = chip->oob_poi; 3942 uint8_t *ecc_calc = chip->ecc.calc_buf; 3943 int ecc_size = chip->ecc.size; 3944 int ecc_bytes = chip->ecc.bytes; 3945 int ecc_steps = chip->ecc.steps; 3946 uint32_t start_step = offset / ecc_size; 3947 uint32_t end_step = (offset + data_len - 1) / ecc_size; 3948 int oob_bytes = mtd->oobsize / ecc_steps; 3949 int step, ret; 3950 3951 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 3952 if (ret) 3953 return ret; 3954 3955 for (step = 0; step < ecc_steps; step++) { 3956 /* configure controller for WRITE access */ 3957 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 3958 3959 /* write data (untouched subpages already masked by 0xFF) */ 3960 ret = nand_write_data_op(chip, buf, ecc_size, false); 3961 if (ret) 3962 return ret; 3963 3964 /* mask ECC of un-touched subpages by padding 0xFF */ 3965 if ((step < start_step) || (step > end_step)) 3966 memset(ecc_calc, 0xff, ecc_bytes); 3967 else 3968 chip->ecc.calculate(chip, buf, ecc_calc); 3969 3970 /* mask OOB of un-touched subpages by padding 0xFF */ 3971 /* if oob_required, preserve OOB metadata of written subpage */ 3972 if (!oob_required || (step < start_step) || (step > end_step)) 3973 memset(oob_buf, 0xff, oob_bytes); 3974 3975 buf += ecc_size; 3976 ecc_calc += ecc_bytes; 3977 oob_buf += oob_bytes; 3978 } 3979 3980 /* copy calculated ECC for whole page to chip->buffer->oob */ 3981 /* this include masked-value(0xFF) for unwritten subpages */ 3982 ecc_calc = chip->ecc.calc_buf; 3983 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 3984 chip->ecc.total); 3985 if (ret) 3986 return ret; 3987 3988 /* write OOB buffer to NAND device */ 3989 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 3990 if (ret) 3991 return ret; 3992 3993 return nand_prog_page_end_op(chip); 3994 } 3995 3996 3997 /** 3998 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 3999 * @chip: nand chip info structure 4000 * @buf: data buffer 4001 * @oob_required: must write chip->oob_poi to OOB 4002 * @page: page number to write 4003 * 4004 * The hw generator calculates the error syndrome automatically. Therefore we 4005 * need a special oob layout and handling. 4006 */ 4007 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, 4008 int oob_required, int page) 4009 { 4010 struct mtd_info *mtd = nand_to_mtd(chip); 4011 int i, eccsize = chip->ecc.size; 4012 int eccbytes = chip->ecc.bytes; 4013 int eccsteps = chip->ecc.steps; 4014 const uint8_t *p = buf; 4015 uint8_t *oob = chip->oob_poi; 4016 int ret; 4017 4018 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4019 if (ret) 4020 return ret; 4021 4022 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4023 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4024 4025 ret = nand_write_data_op(chip, p, eccsize, false); 4026 if (ret) 4027 return ret; 4028 4029 if (chip->ecc.prepad) { 4030 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4031 false); 4032 if (ret) 4033 return ret; 4034 4035 oob += chip->ecc.prepad; 4036 } 4037 4038 chip->ecc.calculate(chip, p, oob); 4039 4040 ret = nand_write_data_op(chip, oob, eccbytes, false); 4041 if (ret) 4042 return ret; 4043 4044 oob += eccbytes; 4045 4046 if (chip->ecc.postpad) { 4047 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4048 false); 4049 if (ret) 4050 return ret; 4051 4052 oob += chip->ecc.postpad; 4053 } 4054 } 4055 4056 /* Calculate remaining oob bytes */ 4057 i = mtd->oobsize - (oob - chip->oob_poi); 4058 if (i) { 4059 ret = nand_write_data_op(chip, oob, i, false); 4060 if (ret) 4061 return ret; 4062 } 4063 4064 return nand_prog_page_end_op(chip); 4065 } 4066 4067 /** 4068 * nand_write_page - write one page 4069 * @chip: NAND chip descriptor 4070 * @offset: address offset within the page 4071 * @data_len: length of actual data to be written 4072 * @buf: the data to write 4073 * @oob_required: must write chip->oob_poi to OOB 4074 * @page: page number to write 4075 * @raw: use _raw version of write_page 4076 */ 4077 static int nand_write_page(struct nand_chip *chip, uint32_t offset, 4078 int data_len, const uint8_t *buf, int oob_required, 4079 int page, int raw) 4080 { 4081 struct mtd_info *mtd = nand_to_mtd(chip); 4082 int status, subpage; 4083 4084 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 4085 chip->ecc.write_subpage) 4086 subpage = offset || (data_len < mtd->writesize); 4087 else 4088 subpage = 0; 4089 4090 if (unlikely(raw)) 4091 status = chip->ecc.write_page_raw(chip, buf, oob_required, 4092 page); 4093 else if (subpage) 4094 status = chip->ecc.write_subpage(chip, offset, data_len, buf, 4095 oob_required, page); 4096 else 4097 status = chip->ecc.write_page(chip, buf, oob_required, page); 4098 4099 if (status < 0) 4100 return status; 4101 4102 return 0; 4103 } 4104 4105 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 4106 4107 /** 4108 * nand_do_write_ops - [INTERN] NAND write with ECC 4109 * @chip: NAND chip object 4110 * @to: offset to write to 4111 * @ops: oob operations description structure 4112 * 4113 * NAND write with ECC. 4114 */ 4115 static int nand_do_write_ops(struct nand_chip *chip, loff_t to, 4116 struct mtd_oob_ops *ops) 4117 { 4118 struct mtd_info *mtd = nand_to_mtd(chip); 4119 int chipnr, realpage, page, column; 4120 uint32_t writelen = ops->len; 4121 4122 uint32_t oobwritelen = ops->ooblen; 4123 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 4124 4125 uint8_t *oob = ops->oobbuf; 4126 uint8_t *buf = ops->datbuf; 4127 int ret; 4128 int oob_required = oob ? 1 : 0; 4129 4130 ops->retlen = 0; 4131 if (!writelen) 4132 return 0; 4133 4134 /* Reject writes, which are not page aligned */ 4135 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 4136 pr_notice("%s: attempt to write non page aligned data\n", 4137 __func__); 4138 return -EINVAL; 4139 } 4140 4141 column = to & (mtd->writesize - 1); 4142 4143 chipnr = (int)(to >> chip->chip_shift); 4144 nand_select_target(chip, chipnr); 4145 4146 /* Check, if it is write protected */ 4147 if (nand_check_wp(chip)) { 4148 ret = -EIO; 4149 goto err_out; 4150 } 4151 4152 realpage = (int)(to >> chip->page_shift); 4153 page = realpage & chip->pagemask; 4154 4155 /* Invalidate the page cache, when we write to the cached page */ 4156 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && 4157 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) 4158 chip->pagecache.page = -1; 4159 4160 /* Don't allow multipage oob writes with offset */ 4161 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4162 ret = -EINVAL; 4163 goto err_out; 4164 } 4165 4166 while (1) { 4167 int bytes = mtd->writesize; 4168 uint8_t *wbuf = buf; 4169 int use_bounce_buf; 4170 int part_pagewr = (column || writelen < mtd->writesize); 4171 4172 if (part_pagewr) 4173 use_bounce_buf = 1; 4174 else if (chip->options & NAND_USES_DMA) 4175 use_bounce_buf = !virt_addr_valid(buf) || 4176 !IS_ALIGNED((unsigned long)buf, 4177 chip->buf_align); 4178 else 4179 use_bounce_buf = 0; 4180 4181 /* 4182 * Copy the data from the initial buffer when doing partial page 4183 * writes or when a bounce buffer is required. 4184 */ 4185 if (use_bounce_buf) { 4186 pr_debug("%s: using write bounce buffer for buf@%p\n", 4187 __func__, buf); 4188 if (part_pagewr) 4189 bytes = min_t(int, bytes - column, writelen); 4190 wbuf = nand_get_data_buf(chip); 4191 memset(wbuf, 0xff, mtd->writesize); 4192 memcpy(&wbuf[column], buf, bytes); 4193 } 4194 4195 if (unlikely(oob)) { 4196 size_t len = min(oobwritelen, oobmaxlen); 4197 oob = nand_fill_oob(chip, oob, len, ops); 4198 oobwritelen -= len; 4199 } else { 4200 /* We still need to erase leftover OOB data */ 4201 memset(chip->oob_poi, 0xff, mtd->oobsize); 4202 } 4203 4204 ret = nand_write_page(chip, column, bytes, wbuf, 4205 oob_required, page, 4206 (ops->mode == MTD_OPS_RAW)); 4207 if (ret) 4208 break; 4209 4210 writelen -= bytes; 4211 if (!writelen) 4212 break; 4213 4214 column = 0; 4215 buf += bytes; 4216 realpage++; 4217 4218 page = realpage & chip->pagemask; 4219 /* Check, if we cross a chip boundary */ 4220 if (!page) { 4221 chipnr++; 4222 nand_deselect_target(chip); 4223 nand_select_target(chip, chipnr); 4224 } 4225 } 4226 4227 ops->retlen = ops->len - writelen; 4228 if (unlikely(oob)) 4229 ops->oobretlen = ops->ooblen; 4230 4231 err_out: 4232 nand_deselect_target(chip); 4233 return ret; 4234 } 4235 4236 /** 4237 * panic_nand_write - [MTD Interface] NAND write with ECC 4238 * @mtd: MTD device structure 4239 * @to: offset to write to 4240 * @len: number of bytes to write 4241 * @retlen: pointer to variable to store the number of written bytes 4242 * @buf: the data to write 4243 * 4244 * NAND write with ECC. Used when performing writes in interrupt context, this 4245 * may for example be called by mtdoops when writing an oops while in panic. 4246 */ 4247 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4248 size_t *retlen, const uint8_t *buf) 4249 { 4250 struct nand_chip *chip = mtd_to_nand(mtd); 4251 int chipnr = (int)(to >> chip->chip_shift); 4252 struct mtd_oob_ops ops; 4253 int ret; 4254 4255 nand_select_target(chip, chipnr); 4256 4257 /* Wait for the device to get ready */ 4258 panic_nand_wait(chip, 400); 4259 4260 memset(&ops, 0, sizeof(ops)); 4261 ops.len = len; 4262 ops.datbuf = (uint8_t *)buf; 4263 ops.mode = MTD_OPS_PLACE_OOB; 4264 4265 ret = nand_do_write_ops(chip, to, &ops); 4266 4267 *retlen = ops.retlen; 4268 return ret; 4269 } 4270 4271 /** 4272 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4273 * @mtd: MTD device structure 4274 * @to: offset to write to 4275 * @ops: oob operation description structure 4276 */ 4277 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4278 struct mtd_oob_ops *ops) 4279 { 4280 struct nand_chip *chip = mtd_to_nand(mtd); 4281 int ret; 4282 4283 ops->retlen = 0; 4284 4285 ret = nand_get_device(chip); 4286 if (ret) 4287 return ret; 4288 4289 switch (ops->mode) { 4290 case MTD_OPS_PLACE_OOB: 4291 case MTD_OPS_AUTO_OOB: 4292 case MTD_OPS_RAW: 4293 break; 4294 4295 default: 4296 goto out; 4297 } 4298 4299 if (!ops->datbuf) 4300 ret = nand_do_write_oob(chip, to, ops); 4301 else 4302 ret = nand_do_write_ops(chip, to, ops); 4303 4304 out: 4305 nand_release_device(chip); 4306 return ret; 4307 } 4308 4309 /** 4310 * nand_erase - [MTD Interface] erase block(s) 4311 * @mtd: MTD device structure 4312 * @instr: erase instruction 4313 * 4314 * Erase one ore more blocks. 4315 */ 4316 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4317 { 4318 return nand_erase_nand(mtd_to_nand(mtd), instr, 0); 4319 } 4320 4321 /** 4322 * nand_erase_nand - [INTERN] erase block(s) 4323 * @chip: NAND chip object 4324 * @instr: erase instruction 4325 * @allowbbt: allow erasing the bbt area 4326 * 4327 * Erase one ore more blocks. 4328 */ 4329 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, 4330 int allowbbt) 4331 { 4332 int page, pages_per_block, ret, chipnr; 4333 loff_t len; 4334 4335 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4336 __func__, (unsigned long long)instr->addr, 4337 (unsigned long long)instr->len); 4338 4339 if (check_offs_len(chip, instr->addr, instr->len)) 4340 return -EINVAL; 4341 4342 /* Grab the lock and see if the device is available */ 4343 ret = nand_get_device(chip); 4344 if (ret) 4345 return ret; 4346 4347 /* Shift to get first page */ 4348 page = (int)(instr->addr >> chip->page_shift); 4349 chipnr = (int)(instr->addr >> chip->chip_shift); 4350 4351 /* Calculate pages in each block */ 4352 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4353 4354 /* Select the NAND device */ 4355 nand_select_target(chip, chipnr); 4356 4357 /* Check, if it is write protected */ 4358 if (nand_check_wp(chip)) { 4359 pr_debug("%s: device is write protected!\n", 4360 __func__); 4361 ret = -EIO; 4362 goto erase_exit; 4363 } 4364 4365 /* Loop through the pages */ 4366 len = instr->len; 4367 4368 while (len) { 4369 /* Check if we have a bad block, we do not erase bad blocks! */ 4370 if (nand_block_checkbad(chip, ((loff_t) page) << 4371 chip->page_shift, allowbbt)) { 4372 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", 4373 __func__, page); 4374 ret = -EIO; 4375 goto erase_exit; 4376 } 4377 4378 /* 4379 * Invalidate the page cache, if we erase the block which 4380 * contains the current cached page. 4381 */ 4382 if (page <= chip->pagecache.page && chip->pagecache.page < 4383 (page + pages_per_block)) 4384 chip->pagecache.page = -1; 4385 4386 ret = nand_erase_op(chip, (page & chip->pagemask) >> 4387 (chip->phys_erase_shift - chip->page_shift)); 4388 if (ret) { 4389 pr_debug("%s: failed erase, page 0x%08x\n", 4390 __func__, page); 4391 instr->fail_addr = 4392 ((loff_t)page << chip->page_shift); 4393 goto erase_exit; 4394 } 4395 4396 /* Increment page address and decrement length */ 4397 len -= (1ULL << chip->phys_erase_shift); 4398 page += pages_per_block; 4399 4400 /* Check, if we cross a chip boundary */ 4401 if (len && !(page & chip->pagemask)) { 4402 chipnr++; 4403 nand_deselect_target(chip); 4404 nand_select_target(chip, chipnr); 4405 } 4406 } 4407 4408 ret = 0; 4409 erase_exit: 4410 4411 /* Deselect and wake up anyone waiting on the device */ 4412 nand_deselect_target(chip); 4413 nand_release_device(chip); 4414 4415 /* Return more or less happy */ 4416 return ret; 4417 } 4418 4419 /** 4420 * nand_sync - [MTD Interface] sync 4421 * @mtd: MTD device structure 4422 * 4423 * Sync is actually a wait for chip ready function. 4424 */ 4425 static void nand_sync(struct mtd_info *mtd) 4426 { 4427 struct nand_chip *chip = mtd_to_nand(mtd); 4428 4429 pr_debug("%s: called\n", __func__); 4430 4431 /* Grab the lock and see if the device is available */ 4432 WARN_ON(nand_get_device(chip)); 4433 /* Release it and go back */ 4434 nand_release_device(chip); 4435 } 4436 4437 /** 4438 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4439 * @mtd: MTD device structure 4440 * @offs: offset relative to mtd start 4441 */ 4442 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4443 { 4444 struct nand_chip *chip = mtd_to_nand(mtd); 4445 int chipnr = (int)(offs >> chip->chip_shift); 4446 int ret; 4447 4448 /* Select the NAND device */ 4449 ret = nand_get_device(chip); 4450 if (ret) 4451 return ret; 4452 4453 nand_select_target(chip, chipnr); 4454 4455 ret = nand_block_checkbad(chip, offs, 0); 4456 4457 nand_deselect_target(chip); 4458 nand_release_device(chip); 4459 4460 return ret; 4461 } 4462 4463 /** 4464 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4465 * @mtd: MTD device structure 4466 * @ofs: offset relative to mtd start 4467 */ 4468 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4469 { 4470 int ret; 4471 4472 ret = nand_block_isbad(mtd, ofs); 4473 if (ret) { 4474 /* If it was bad already, return success and do nothing */ 4475 if (ret > 0) 4476 return 0; 4477 return ret; 4478 } 4479 4480 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); 4481 } 4482 4483 /** 4484 * nand_suspend - [MTD Interface] Suspend the NAND flash 4485 * @mtd: MTD device structure 4486 * 4487 * Returns 0 for success or negative error code otherwise. 4488 */ 4489 static int nand_suspend(struct mtd_info *mtd) 4490 { 4491 struct nand_chip *chip = mtd_to_nand(mtd); 4492 int ret = 0; 4493 4494 mutex_lock(&chip->lock); 4495 if (chip->ops.suspend) 4496 ret = chip->ops.suspend(chip); 4497 if (!ret) 4498 chip->suspended = 1; 4499 mutex_unlock(&chip->lock); 4500 4501 return ret; 4502 } 4503 4504 /** 4505 * nand_resume - [MTD Interface] Resume the NAND flash 4506 * @mtd: MTD device structure 4507 */ 4508 static void nand_resume(struct mtd_info *mtd) 4509 { 4510 struct nand_chip *chip = mtd_to_nand(mtd); 4511 4512 mutex_lock(&chip->lock); 4513 if (chip->suspended) { 4514 if (chip->ops.resume) 4515 chip->ops.resume(chip); 4516 chip->suspended = 0; 4517 } else { 4518 pr_err("%s called for a chip which is not in suspended state\n", 4519 __func__); 4520 } 4521 mutex_unlock(&chip->lock); 4522 } 4523 4524 /** 4525 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4526 * prevent further operations 4527 * @mtd: MTD device structure 4528 */ 4529 static void nand_shutdown(struct mtd_info *mtd) 4530 { 4531 nand_suspend(mtd); 4532 } 4533 4534 /** 4535 * nand_lock - [MTD Interface] Lock the NAND flash 4536 * @mtd: MTD device structure 4537 * @ofs: offset byte address 4538 * @len: number of bytes to lock (must be a multiple of block/page size) 4539 */ 4540 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4541 { 4542 struct nand_chip *chip = mtd_to_nand(mtd); 4543 4544 if (!chip->ops.lock_area) 4545 return -ENOTSUPP; 4546 4547 return chip->ops.lock_area(chip, ofs, len); 4548 } 4549 4550 /** 4551 * nand_unlock - [MTD Interface] Unlock the NAND flash 4552 * @mtd: MTD device structure 4553 * @ofs: offset byte address 4554 * @len: number of bytes to unlock (must be a multiple of block/page size) 4555 */ 4556 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4557 { 4558 struct nand_chip *chip = mtd_to_nand(mtd); 4559 4560 if (!chip->ops.unlock_area) 4561 return -ENOTSUPP; 4562 4563 return chip->ops.unlock_area(chip, ofs, len); 4564 } 4565 4566 /* Set default functions */ 4567 static void nand_set_defaults(struct nand_chip *chip) 4568 { 4569 /* If no controller is provided, use the dummy, legacy one. */ 4570 if (!chip->controller) { 4571 chip->controller = &chip->legacy.dummy_controller; 4572 nand_controller_init(chip->controller); 4573 } 4574 4575 nand_legacy_set_defaults(chip); 4576 4577 if (!chip->buf_align) 4578 chip->buf_align = 1; 4579 } 4580 4581 /* Sanitize ONFI strings so we can safely print them */ 4582 void sanitize_string(uint8_t *s, size_t len) 4583 { 4584 ssize_t i; 4585 4586 /* Null terminate */ 4587 s[len - 1] = 0; 4588 4589 /* Remove non printable chars */ 4590 for (i = 0; i < len - 1; i++) { 4591 if (s[i] < ' ' || s[i] > 127) 4592 s[i] = '?'; 4593 } 4594 4595 /* Remove trailing spaces */ 4596 strim(s); 4597 } 4598 4599 /* 4600 * nand_id_has_period - Check if an ID string has a given wraparound period 4601 * @id_data: the ID string 4602 * @arrlen: the length of the @id_data array 4603 * @period: the period of repitition 4604 * 4605 * Check if an ID string is repeated within a given sequence of bytes at 4606 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 4607 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 4608 * if the repetition has a period of @period; otherwise, returns zero. 4609 */ 4610 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 4611 { 4612 int i, j; 4613 for (i = 0; i < period; i++) 4614 for (j = i + period; j < arrlen; j += period) 4615 if (id_data[i] != id_data[j]) 4616 return 0; 4617 return 1; 4618 } 4619 4620 /* 4621 * nand_id_len - Get the length of an ID string returned by CMD_READID 4622 * @id_data: the ID string 4623 * @arrlen: the length of the @id_data array 4624 4625 * Returns the length of the ID string, according to known wraparound/trailing 4626 * zero patterns. If no pattern exists, returns the length of the array. 4627 */ 4628 static int nand_id_len(u8 *id_data, int arrlen) 4629 { 4630 int last_nonzero, period; 4631 4632 /* Find last non-zero byte */ 4633 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 4634 if (id_data[last_nonzero]) 4635 break; 4636 4637 /* All zeros */ 4638 if (last_nonzero < 0) 4639 return 0; 4640 4641 /* Calculate wraparound period */ 4642 for (period = 1; period < arrlen; period++) 4643 if (nand_id_has_period(id_data, arrlen, period)) 4644 break; 4645 4646 /* There's a repeated pattern */ 4647 if (period < arrlen) 4648 return period; 4649 4650 /* There are trailing zeros */ 4651 if (last_nonzero < arrlen - 1) 4652 return last_nonzero + 1; 4653 4654 /* No pattern detected */ 4655 return arrlen; 4656 } 4657 4658 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 4659 static int nand_get_bits_per_cell(u8 cellinfo) 4660 { 4661 int bits; 4662 4663 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 4664 bits >>= NAND_CI_CELLTYPE_SHIFT; 4665 return bits + 1; 4666 } 4667 4668 /* 4669 * Many new NAND share similar device ID codes, which represent the size of the 4670 * chip. The rest of the parameters must be decoded according to generic or 4671 * manufacturer-specific "extended ID" decoding patterns. 4672 */ 4673 void nand_decode_ext_id(struct nand_chip *chip) 4674 { 4675 struct nand_memory_organization *memorg; 4676 struct mtd_info *mtd = nand_to_mtd(chip); 4677 int extid; 4678 u8 *id_data = chip->id.data; 4679 4680 memorg = nanddev_get_memorg(&chip->base); 4681 4682 /* The 3rd id byte holds MLC / multichip data */ 4683 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4684 /* The 4th id byte is the important one */ 4685 extid = id_data[3]; 4686 4687 /* Calc pagesize */ 4688 memorg->pagesize = 1024 << (extid & 0x03); 4689 mtd->writesize = memorg->pagesize; 4690 extid >>= 2; 4691 /* Calc oobsize */ 4692 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 4693 mtd->oobsize = memorg->oobsize; 4694 extid >>= 2; 4695 /* Calc blocksize. Blocksize is multiples of 64KiB */ 4696 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / 4697 memorg->pagesize; 4698 mtd->erasesize = (64 * 1024) << (extid & 0x03); 4699 extid >>= 2; 4700 /* Get buswidth information */ 4701 if (extid & 0x1) 4702 chip->options |= NAND_BUSWIDTH_16; 4703 } 4704 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 4705 4706 /* 4707 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 4708 * decodes a matching ID table entry and assigns the MTD size parameters for 4709 * the chip. 4710 */ 4711 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 4712 { 4713 struct mtd_info *mtd = nand_to_mtd(chip); 4714 struct nand_memory_organization *memorg; 4715 4716 memorg = nanddev_get_memorg(&chip->base); 4717 4718 memorg->pages_per_eraseblock = type->erasesize / type->pagesize; 4719 mtd->erasesize = type->erasesize; 4720 memorg->pagesize = type->pagesize; 4721 mtd->writesize = memorg->pagesize; 4722 memorg->oobsize = memorg->pagesize / 32; 4723 mtd->oobsize = memorg->oobsize; 4724 4725 /* All legacy ID NAND are small-page, SLC */ 4726 memorg->bits_per_cell = 1; 4727 } 4728 4729 /* 4730 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 4731 * heuristic patterns using various detected parameters (e.g., manufacturer, 4732 * page size, cell-type information). 4733 */ 4734 static void nand_decode_bbm_options(struct nand_chip *chip) 4735 { 4736 struct mtd_info *mtd = nand_to_mtd(chip); 4737 4738 /* Set the bad block position */ 4739 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 4740 chip->badblockpos = NAND_BBM_POS_LARGE; 4741 else 4742 chip->badblockpos = NAND_BBM_POS_SMALL; 4743 } 4744 4745 static inline bool is_full_id_nand(struct nand_flash_dev *type) 4746 { 4747 return type->id_len; 4748 } 4749 4750 static bool find_full_id_nand(struct nand_chip *chip, 4751 struct nand_flash_dev *type) 4752 { 4753 struct mtd_info *mtd = nand_to_mtd(chip); 4754 struct nand_memory_organization *memorg; 4755 u8 *id_data = chip->id.data; 4756 4757 memorg = nanddev_get_memorg(&chip->base); 4758 4759 if (!strncmp(type->id, id_data, type->id_len)) { 4760 memorg->pagesize = type->pagesize; 4761 mtd->writesize = memorg->pagesize; 4762 memorg->pages_per_eraseblock = type->erasesize / 4763 type->pagesize; 4764 mtd->erasesize = type->erasesize; 4765 memorg->oobsize = type->oobsize; 4766 mtd->oobsize = memorg->oobsize; 4767 4768 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4769 memorg->eraseblocks_per_lun = 4770 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 4771 memorg->pagesize * 4772 memorg->pages_per_eraseblock); 4773 chip->options |= type->options; 4774 chip->base.eccreq.strength = NAND_ECC_STRENGTH(type); 4775 chip->base.eccreq.step_size = NAND_ECC_STEP(type); 4776 4777 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4778 if (!chip->parameters.model) 4779 return false; 4780 4781 return true; 4782 } 4783 return false; 4784 } 4785 4786 /* 4787 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 4788 * compliant and does not have a full-id or legacy-id entry in the nand_ids 4789 * table. 4790 */ 4791 static void nand_manufacturer_detect(struct nand_chip *chip) 4792 { 4793 /* 4794 * Try manufacturer detection if available and use 4795 * nand_decode_ext_id() otherwise. 4796 */ 4797 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4798 chip->manufacturer.desc->ops->detect) { 4799 struct nand_memory_organization *memorg; 4800 4801 memorg = nanddev_get_memorg(&chip->base); 4802 4803 /* The 3rd id byte holds MLC / multichip data */ 4804 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 4805 chip->manufacturer.desc->ops->detect(chip); 4806 } else { 4807 nand_decode_ext_id(chip); 4808 } 4809 } 4810 4811 /* 4812 * Manufacturer initialization. This function is called for all NANDs including 4813 * ONFI and JEDEC compliant ones. 4814 * Manufacturer drivers should put all their specific initialization code in 4815 * their ->init() hook. 4816 */ 4817 static int nand_manufacturer_init(struct nand_chip *chip) 4818 { 4819 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 4820 !chip->manufacturer.desc->ops->init) 4821 return 0; 4822 4823 return chip->manufacturer.desc->ops->init(chip); 4824 } 4825 4826 /* 4827 * Manufacturer cleanup. This function is called for all NANDs including 4828 * ONFI and JEDEC compliant ones. 4829 * Manufacturer drivers should put all their specific cleanup code in their 4830 * ->cleanup() hook. 4831 */ 4832 static void nand_manufacturer_cleanup(struct nand_chip *chip) 4833 { 4834 /* Release manufacturer private data */ 4835 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 4836 chip->manufacturer.desc->ops->cleanup) 4837 chip->manufacturer.desc->ops->cleanup(chip); 4838 } 4839 4840 static const char * 4841 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc) 4842 { 4843 return manufacturer_desc ? manufacturer_desc->name : "Unknown"; 4844 } 4845 4846 /* 4847 * Get the flash and manufacturer id and lookup if the type is supported. 4848 */ 4849 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 4850 { 4851 const struct nand_manufacturer_desc *manufacturer_desc; 4852 struct mtd_info *mtd = nand_to_mtd(chip); 4853 struct nand_memory_organization *memorg; 4854 int busw, ret; 4855 u8 *id_data = chip->id.data; 4856 u8 maf_id, dev_id; 4857 u64 targetsize; 4858 4859 /* 4860 * Let's start by initializing memorg fields that might be left 4861 * unassigned by the ID-based detection logic. 4862 */ 4863 memorg = nanddev_get_memorg(&chip->base); 4864 memorg->planes_per_lun = 1; 4865 memorg->luns_per_target = 1; 4866 4867 /* 4868 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 4869 * after power-up. 4870 */ 4871 ret = nand_reset(chip, 0); 4872 if (ret) 4873 return ret; 4874 4875 /* Select the device */ 4876 nand_select_target(chip, 0); 4877 4878 /* Send the command for reading device ID */ 4879 ret = nand_readid_op(chip, 0, id_data, 2); 4880 if (ret) 4881 return ret; 4882 4883 /* Read manufacturer and device IDs */ 4884 maf_id = id_data[0]; 4885 dev_id = id_data[1]; 4886 4887 /* 4888 * Try again to make sure, as some systems the bus-hold or other 4889 * interface concerns can cause random data which looks like a 4890 * possibly credible NAND flash to appear. If the two results do 4891 * not match, ignore the device completely. 4892 */ 4893 4894 /* Read entire ID string */ 4895 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 4896 if (ret) 4897 return ret; 4898 4899 if (id_data[0] != maf_id || id_data[1] != dev_id) { 4900 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 4901 maf_id, dev_id, id_data[0], id_data[1]); 4902 return -ENODEV; 4903 } 4904 4905 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 4906 4907 /* Try to identify manufacturer */ 4908 manufacturer_desc = nand_get_manufacturer_desc(maf_id); 4909 chip->manufacturer.desc = manufacturer_desc; 4910 4911 if (!type) 4912 type = nand_flash_ids; 4913 4914 /* 4915 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 4916 * override it. 4917 * This is required to make sure initial NAND bus width set by the 4918 * NAND controller driver is coherent with the real NAND bus width 4919 * (extracted by auto-detection code). 4920 */ 4921 busw = chip->options & NAND_BUSWIDTH_16; 4922 4923 /* 4924 * The flag is only set (never cleared), reset it to its default value 4925 * before starting auto-detection. 4926 */ 4927 chip->options &= ~NAND_BUSWIDTH_16; 4928 4929 for (; type->name != NULL; type++) { 4930 if (is_full_id_nand(type)) { 4931 if (find_full_id_nand(chip, type)) 4932 goto ident_done; 4933 } else if (dev_id == type->dev_id) { 4934 break; 4935 } 4936 } 4937 4938 if (!type->name || !type->pagesize) { 4939 /* Check if the chip is ONFI compliant */ 4940 ret = nand_onfi_detect(chip); 4941 if (ret < 0) 4942 return ret; 4943 else if (ret) 4944 goto ident_done; 4945 4946 /* Check if the chip is JEDEC compliant */ 4947 ret = nand_jedec_detect(chip); 4948 if (ret < 0) 4949 return ret; 4950 else if (ret) 4951 goto ident_done; 4952 } 4953 4954 if (!type->name) 4955 return -ENODEV; 4956 4957 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 4958 if (!chip->parameters.model) 4959 return -ENOMEM; 4960 4961 if (!type->pagesize) 4962 nand_manufacturer_detect(chip); 4963 else 4964 nand_decode_id(chip, type); 4965 4966 /* Get chip options */ 4967 chip->options |= type->options; 4968 4969 memorg->eraseblocks_per_lun = 4970 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 4971 memorg->pagesize * 4972 memorg->pages_per_eraseblock); 4973 4974 ident_done: 4975 if (!mtd->name) 4976 mtd->name = chip->parameters.model; 4977 4978 if (chip->options & NAND_BUSWIDTH_AUTO) { 4979 WARN_ON(busw & NAND_BUSWIDTH_16); 4980 nand_set_defaults(chip); 4981 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 4982 /* 4983 * Check, if buswidth is correct. Hardware drivers should set 4984 * chip correct! 4985 */ 4986 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 4987 maf_id, dev_id); 4988 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 4989 mtd->name); 4990 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 4991 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 4992 ret = -EINVAL; 4993 4994 goto free_detect_allocation; 4995 } 4996 4997 nand_decode_bbm_options(chip); 4998 4999 /* Calculate the address shift from the page size */ 5000 chip->page_shift = ffs(mtd->writesize) - 1; 5001 /* Convert chipsize to number of pages per chip -1 */ 5002 targetsize = nanddev_target_size(&chip->base); 5003 chip->pagemask = (targetsize >> chip->page_shift) - 1; 5004 5005 chip->bbt_erase_shift = chip->phys_erase_shift = 5006 ffs(mtd->erasesize) - 1; 5007 if (targetsize & 0xffffffff) 5008 chip->chip_shift = ffs((unsigned)targetsize) - 1; 5009 else { 5010 chip->chip_shift = ffs((unsigned)(targetsize >> 32)); 5011 chip->chip_shift += 32 - 1; 5012 } 5013 5014 if (chip->chip_shift - chip->page_shift > 16) 5015 chip->options |= NAND_ROW_ADDR_3; 5016 5017 chip->badblockbits = 8; 5018 5019 nand_legacy_adjust_cmdfunc(chip); 5020 5021 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5022 maf_id, dev_id); 5023 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 5024 chip->parameters.model); 5025 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 5026 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 5027 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 5028 return 0; 5029 5030 free_detect_allocation: 5031 kfree(chip->parameters.model); 5032 5033 return ret; 5034 } 5035 5036 static const char * const nand_ecc_modes[] = { 5037 [NAND_ECC_NONE] = "none", 5038 [NAND_ECC_SOFT] = "soft", 5039 [NAND_ECC_HW] = "hw", 5040 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 5041 [NAND_ECC_ON_DIE] = "on-die", 5042 }; 5043 5044 static int of_get_nand_ecc_mode(struct device_node *np) 5045 { 5046 const char *pm; 5047 int err, i; 5048 5049 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5050 if (err < 0) 5051 return err; 5052 5053 for (i = NAND_ECC_NONE; i < ARRAY_SIZE(nand_ecc_modes); i++) 5054 if (!strcasecmp(pm, nand_ecc_modes[i])) 5055 return i; 5056 5057 /* 5058 * For backward compatibility we support few obsoleted values that don't 5059 * have their mappings into the nand_ecc_mode enum anymore (they were 5060 * merged with other enums). 5061 */ 5062 if (!strcasecmp(pm, "soft_bch")) 5063 return NAND_ECC_SOFT; 5064 5065 return -ENODEV; 5066 } 5067 5068 static const char * const nand_ecc_algos[] = { 5069 [NAND_ECC_HAMMING] = "hamming", 5070 [NAND_ECC_BCH] = "bch", 5071 [NAND_ECC_RS] = "rs", 5072 }; 5073 5074 static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np) 5075 { 5076 enum nand_ecc_algo ecc_algo; 5077 const char *pm; 5078 int err; 5079 5080 err = of_property_read_string(np, "nand-ecc-algo", &pm); 5081 if (!err) { 5082 for (ecc_algo = NAND_ECC_HAMMING; 5083 ecc_algo < ARRAY_SIZE(nand_ecc_algos); 5084 ecc_algo++) { 5085 if (!strcasecmp(pm, nand_ecc_algos[ecc_algo])) 5086 return ecc_algo; 5087 } 5088 } 5089 5090 /* 5091 * For backward compatibility we also read "nand-ecc-mode" checking 5092 * for some obsoleted values that were specifying ECC algorithm. 5093 */ 5094 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5095 if (!err) { 5096 if (!strcasecmp(pm, "soft")) 5097 return NAND_ECC_HAMMING; 5098 else if (!strcasecmp(pm, "soft_bch")) 5099 return NAND_ECC_BCH; 5100 } 5101 5102 return NAND_ECC_UNKNOWN; 5103 } 5104 5105 static int of_get_nand_ecc_step_size(struct device_node *np) 5106 { 5107 int ret; 5108 u32 val; 5109 5110 ret = of_property_read_u32(np, "nand-ecc-step-size", &val); 5111 return ret ? ret : val; 5112 } 5113 5114 static int of_get_nand_ecc_strength(struct device_node *np) 5115 { 5116 int ret; 5117 u32 val; 5118 5119 ret = of_property_read_u32(np, "nand-ecc-strength", &val); 5120 return ret ? ret : val; 5121 } 5122 5123 static int of_get_nand_bus_width(struct device_node *np) 5124 { 5125 u32 val; 5126 5127 if (of_property_read_u32(np, "nand-bus-width", &val)) 5128 return 8; 5129 5130 switch (val) { 5131 case 8: 5132 case 16: 5133 return val; 5134 default: 5135 return -EIO; 5136 } 5137 } 5138 5139 static bool of_get_nand_on_flash_bbt(struct device_node *np) 5140 { 5141 return of_property_read_bool(np, "nand-on-flash-bbt"); 5142 } 5143 5144 static int nand_dt_init(struct nand_chip *chip) 5145 { 5146 struct device_node *dn = nand_get_flash_node(chip); 5147 enum nand_ecc_algo ecc_algo; 5148 int ecc_mode, ecc_strength, ecc_step; 5149 5150 if (!dn) 5151 return 0; 5152 5153 if (of_get_nand_bus_width(dn) == 16) 5154 chip->options |= NAND_BUSWIDTH_16; 5155 5156 if (of_property_read_bool(dn, "nand-is-boot-medium")) 5157 chip->options |= NAND_IS_BOOT_MEDIUM; 5158 5159 if (of_get_nand_on_flash_bbt(dn)) 5160 chip->bbt_options |= NAND_BBT_USE_FLASH; 5161 5162 ecc_mode = of_get_nand_ecc_mode(dn); 5163 ecc_algo = of_get_nand_ecc_algo(dn); 5164 ecc_strength = of_get_nand_ecc_strength(dn); 5165 ecc_step = of_get_nand_ecc_step_size(dn); 5166 5167 if (ecc_mode >= 0) 5168 chip->ecc.mode = ecc_mode; 5169 5170 if (ecc_algo != NAND_ECC_UNKNOWN) 5171 chip->ecc.algo = ecc_algo; 5172 5173 if (ecc_strength >= 0) 5174 chip->ecc.strength = ecc_strength; 5175 5176 if (ecc_step > 0) 5177 chip->ecc.size = ecc_step; 5178 5179 if (of_property_read_bool(dn, "nand-ecc-maximize")) 5180 chip->ecc.options |= NAND_ECC_MAXIMIZE; 5181 5182 return 0; 5183 } 5184 5185 /** 5186 * nand_scan_ident - Scan for the NAND device 5187 * @chip: NAND chip object 5188 * @maxchips: number of chips to scan for 5189 * @table: alternative NAND ID table 5190 * 5191 * This is the first phase of the normal nand_scan() function. It reads the 5192 * flash ID and sets up MTD fields accordingly. 5193 * 5194 * This helper used to be called directly from controller drivers that needed 5195 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 5196 * prevented dynamic allocations during this phase which was unconvenient and 5197 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 5198 */ 5199 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, 5200 struct nand_flash_dev *table) 5201 { 5202 struct mtd_info *mtd = nand_to_mtd(chip); 5203 struct nand_memory_organization *memorg; 5204 int nand_maf_id, nand_dev_id; 5205 unsigned int i; 5206 int ret; 5207 5208 memorg = nanddev_get_memorg(&chip->base); 5209 5210 /* Assume all dies are deselected when we enter nand_scan_ident(). */ 5211 chip->cur_cs = -1; 5212 5213 mutex_init(&chip->lock); 5214 5215 /* Enforce the right timings for reset/detection */ 5216 chip->current_interface_config = nand_get_reset_interface_config(); 5217 5218 ret = nand_dt_init(chip); 5219 if (ret) 5220 return ret; 5221 5222 if (!mtd->name && mtd->dev.parent) 5223 mtd->name = dev_name(mtd->dev.parent); 5224 5225 /* Set the default functions */ 5226 nand_set_defaults(chip); 5227 5228 ret = nand_legacy_check_hooks(chip); 5229 if (ret) 5230 return ret; 5231 5232 memorg->ntargets = maxchips; 5233 5234 /* Read the flash type */ 5235 ret = nand_detect(chip, table); 5236 if (ret) { 5237 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 5238 pr_warn("No NAND device found\n"); 5239 nand_deselect_target(chip); 5240 return ret; 5241 } 5242 5243 nand_maf_id = chip->id.data[0]; 5244 nand_dev_id = chip->id.data[1]; 5245 5246 nand_deselect_target(chip); 5247 5248 /* Check for a chip array */ 5249 for (i = 1; i < maxchips; i++) { 5250 u8 id[2]; 5251 5252 /* See comment in nand_get_flash_type for reset */ 5253 ret = nand_reset(chip, i); 5254 if (ret) 5255 break; 5256 5257 nand_select_target(chip, i); 5258 /* Send the command for reading device ID */ 5259 ret = nand_readid_op(chip, 0, id, sizeof(id)); 5260 if (ret) 5261 break; 5262 /* Read manufacturer and device IDs */ 5263 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5264 nand_deselect_target(chip); 5265 break; 5266 } 5267 nand_deselect_target(chip); 5268 } 5269 if (i > 1) 5270 pr_info("%d chips detected\n", i); 5271 5272 /* Store the number of chips and calc total size for mtd */ 5273 memorg->ntargets = i; 5274 mtd->size = i * nanddev_target_size(&chip->base); 5275 5276 return 0; 5277 } 5278 5279 static void nand_scan_ident_cleanup(struct nand_chip *chip) 5280 { 5281 kfree(chip->parameters.model); 5282 kfree(chip->parameters.onfi); 5283 } 5284 5285 static int nand_set_ecc_soft_ops(struct nand_chip *chip) 5286 { 5287 struct mtd_info *mtd = nand_to_mtd(chip); 5288 struct nand_ecc_ctrl *ecc = &chip->ecc; 5289 5290 if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) 5291 return -EINVAL; 5292 5293 switch (ecc->algo) { 5294 case NAND_ECC_HAMMING: 5295 ecc->calculate = nand_calculate_ecc; 5296 ecc->correct = nand_correct_data; 5297 ecc->read_page = nand_read_page_swecc; 5298 ecc->read_subpage = nand_read_subpage; 5299 ecc->write_page = nand_write_page_swecc; 5300 if (!ecc->read_page_raw) 5301 ecc->read_page_raw = nand_read_page_raw; 5302 if (!ecc->write_page_raw) 5303 ecc->write_page_raw = nand_write_page_raw; 5304 ecc->read_oob = nand_read_oob_std; 5305 ecc->write_oob = nand_write_oob_std; 5306 if (!ecc->size) 5307 ecc->size = 256; 5308 ecc->bytes = 3; 5309 ecc->strength = 1; 5310 5311 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) 5312 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 5313 5314 return 0; 5315 case NAND_ECC_BCH: 5316 if (!mtd_nand_has_bch()) { 5317 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); 5318 return -EINVAL; 5319 } 5320 ecc->calculate = nand_bch_calculate_ecc; 5321 ecc->correct = nand_bch_correct_data; 5322 ecc->read_page = nand_read_page_swecc; 5323 ecc->read_subpage = nand_read_subpage; 5324 ecc->write_page = nand_write_page_swecc; 5325 if (!ecc->read_page_raw) 5326 ecc->read_page_raw = nand_read_page_raw; 5327 if (!ecc->write_page_raw) 5328 ecc->write_page_raw = nand_write_page_raw; 5329 ecc->read_oob = nand_read_oob_std; 5330 ecc->write_oob = nand_write_oob_std; 5331 5332 /* 5333 * Board driver should supply ecc.size and ecc.strength 5334 * values to select how many bits are correctable. 5335 * Otherwise, default to 4 bits for large page devices. 5336 */ 5337 if (!ecc->size && (mtd->oobsize >= 64)) { 5338 ecc->size = 512; 5339 ecc->strength = 4; 5340 } 5341 5342 /* 5343 * if no ecc placement scheme was provided pickup the default 5344 * large page one. 5345 */ 5346 if (!mtd->ooblayout) { 5347 /* handle large page devices only */ 5348 if (mtd->oobsize < 64) { 5349 WARN(1, "OOB layout is required when using software BCH on small pages\n"); 5350 return -EINVAL; 5351 } 5352 5353 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 5354 5355 } 5356 5357 /* 5358 * We can only maximize ECC config when the default layout is 5359 * used, otherwise we don't know how many bytes can really be 5360 * used. 5361 */ 5362 if (mtd->ooblayout == &nand_ooblayout_lp_ops && 5363 ecc->options & NAND_ECC_MAXIMIZE) { 5364 int steps, bytes; 5365 5366 /* Always prefer 1k blocks over 512bytes ones */ 5367 ecc->size = 1024; 5368 steps = mtd->writesize / ecc->size; 5369 5370 /* Reserve 2 bytes for the BBM */ 5371 bytes = (mtd->oobsize - 2) / steps; 5372 ecc->strength = bytes * 8 / fls(8 * ecc->size); 5373 } 5374 5375 /* See nand_bch_init() for details. */ 5376 ecc->bytes = 0; 5377 ecc->priv = nand_bch_init(mtd); 5378 if (!ecc->priv) { 5379 WARN(1, "BCH ECC initialization failed!\n"); 5380 return -EINVAL; 5381 } 5382 return 0; 5383 default: 5384 WARN(1, "Unsupported ECC algorithm!\n"); 5385 return -EINVAL; 5386 } 5387 } 5388 5389 /** 5390 * nand_check_ecc_caps - check the sanity of preset ECC settings 5391 * @chip: nand chip info structure 5392 * @caps: ECC caps info structure 5393 * @oobavail: OOB size that the ECC engine can use 5394 * 5395 * When ECC step size and strength are already set, check if they are supported 5396 * by the controller and the calculated ECC bytes fit within the chip's OOB. 5397 * On success, the calculated ECC bytes is set. 5398 */ 5399 static int 5400 nand_check_ecc_caps(struct nand_chip *chip, 5401 const struct nand_ecc_caps *caps, int oobavail) 5402 { 5403 struct mtd_info *mtd = nand_to_mtd(chip); 5404 const struct nand_ecc_step_info *stepinfo; 5405 int preset_step = chip->ecc.size; 5406 int preset_strength = chip->ecc.strength; 5407 int ecc_bytes, nsteps = mtd->writesize / preset_step; 5408 int i, j; 5409 5410 for (i = 0; i < caps->nstepinfos; i++) { 5411 stepinfo = &caps->stepinfos[i]; 5412 5413 if (stepinfo->stepsize != preset_step) 5414 continue; 5415 5416 for (j = 0; j < stepinfo->nstrengths; j++) { 5417 if (stepinfo->strengths[j] != preset_strength) 5418 continue; 5419 5420 ecc_bytes = caps->calc_ecc_bytes(preset_step, 5421 preset_strength); 5422 if (WARN_ON_ONCE(ecc_bytes < 0)) 5423 return ecc_bytes; 5424 5425 if (ecc_bytes * nsteps > oobavail) { 5426 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 5427 preset_step, preset_strength); 5428 return -ENOSPC; 5429 } 5430 5431 chip->ecc.bytes = ecc_bytes; 5432 5433 return 0; 5434 } 5435 } 5436 5437 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 5438 preset_step, preset_strength); 5439 5440 return -ENOTSUPP; 5441 } 5442 5443 /** 5444 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 5445 * @chip: nand chip info structure 5446 * @caps: ECC engine caps info structure 5447 * @oobavail: OOB size that the ECC engine can use 5448 * 5449 * If a chip's ECC requirement is provided, try to meet it with the least 5450 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 5451 * On success, the chosen ECC settings are set. 5452 */ 5453 static int 5454 nand_match_ecc_req(struct nand_chip *chip, 5455 const struct nand_ecc_caps *caps, int oobavail) 5456 { 5457 struct mtd_info *mtd = nand_to_mtd(chip); 5458 const struct nand_ecc_step_info *stepinfo; 5459 int req_step = chip->base.eccreq.step_size; 5460 int req_strength = chip->base.eccreq.strength; 5461 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 5462 int best_step, best_strength, best_ecc_bytes; 5463 int best_ecc_bytes_total = INT_MAX; 5464 int i, j; 5465 5466 /* No information provided by the NAND chip */ 5467 if (!req_step || !req_strength) 5468 return -ENOTSUPP; 5469 5470 /* number of correctable bits the chip requires in a page */ 5471 req_corr = mtd->writesize / req_step * req_strength; 5472 5473 for (i = 0; i < caps->nstepinfos; i++) { 5474 stepinfo = &caps->stepinfos[i]; 5475 step_size = stepinfo->stepsize; 5476 5477 for (j = 0; j < stepinfo->nstrengths; j++) { 5478 strength = stepinfo->strengths[j]; 5479 5480 /* 5481 * If both step size and strength are smaller than the 5482 * chip's requirement, it is not easy to compare the 5483 * resulted reliability. 5484 */ 5485 if (step_size < req_step && strength < req_strength) 5486 continue; 5487 5488 if (mtd->writesize % step_size) 5489 continue; 5490 5491 nsteps = mtd->writesize / step_size; 5492 5493 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5494 if (WARN_ON_ONCE(ecc_bytes < 0)) 5495 continue; 5496 ecc_bytes_total = ecc_bytes * nsteps; 5497 5498 if (ecc_bytes_total > oobavail || 5499 strength * nsteps < req_corr) 5500 continue; 5501 5502 /* 5503 * We assume the best is to meet the chip's requrement 5504 * with the least number of ECC bytes. 5505 */ 5506 if (ecc_bytes_total < best_ecc_bytes_total) { 5507 best_ecc_bytes_total = ecc_bytes_total; 5508 best_step = step_size; 5509 best_strength = strength; 5510 best_ecc_bytes = ecc_bytes; 5511 } 5512 } 5513 } 5514 5515 if (best_ecc_bytes_total == INT_MAX) 5516 return -ENOTSUPP; 5517 5518 chip->ecc.size = best_step; 5519 chip->ecc.strength = best_strength; 5520 chip->ecc.bytes = best_ecc_bytes; 5521 5522 return 0; 5523 } 5524 5525 /** 5526 * nand_maximize_ecc - choose the max ECC strength available 5527 * @chip: nand chip info structure 5528 * @caps: ECC engine caps info structure 5529 * @oobavail: OOB size that the ECC engine can use 5530 * 5531 * Choose the max ECC strength that is supported on the controller, and can fit 5532 * within the chip's OOB. On success, the chosen ECC settings are set. 5533 */ 5534 static int 5535 nand_maximize_ecc(struct nand_chip *chip, 5536 const struct nand_ecc_caps *caps, int oobavail) 5537 { 5538 struct mtd_info *mtd = nand_to_mtd(chip); 5539 const struct nand_ecc_step_info *stepinfo; 5540 int step_size, strength, nsteps, ecc_bytes, corr; 5541 int best_corr = 0; 5542 int best_step = 0; 5543 int best_strength, best_ecc_bytes; 5544 int i, j; 5545 5546 for (i = 0; i < caps->nstepinfos; i++) { 5547 stepinfo = &caps->stepinfos[i]; 5548 step_size = stepinfo->stepsize; 5549 5550 /* If chip->ecc.size is already set, respect it */ 5551 if (chip->ecc.size && step_size != chip->ecc.size) 5552 continue; 5553 5554 for (j = 0; j < stepinfo->nstrengths; j++) { 5555 strength = stepinfo->strengths[j]; 5556 5557 if (mtd->writesize % step_size) 5558 continue; 5559 5560 nsteps = mtd->writesize / step_size; 5561 5562 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 5563 if (WARN_ON_ONCE(ecc_bytes < 0)) 5564 continue; 5565 5566 if (ecc_bytes * nsteps > oobavail) 5567 continue; 5568 5569 corr = strength * nsteps; 5570 5571 /* 5572 * If the number of correctable bits is the same, 5573 * bigger step_size has more reliability. 5574 */ 5575 if (corr > best_corr || 5576 (corr == best_corr && step_size > best_step)) { 5577 best_corr = corr; 5578 best_step = step_size; 5579 best_strength = strength; 5580 best_ecc_bytes = ecc_bytes; 5581 } 5582 } 5583 } 5584 5585 if (!best_corr) 5586 return -ENOTSUPP; 5587 5588 chip->ecc.size = best_step; 5589 chip->ecc.strength = best_strength; 5590 chip->ecc.bytes = best_ecc_bytes; 5591 5592 return 0; 5593 } 5594 5595 /** 5596 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 5597 * @chip: nand chip info structure 5598 * @caps: ECC engine caps info structure 5599 * @oobavail: OOB size that the ECC engine can use 5600 * 5601 * Choose the ECC configuration according to following logic 5602 * 5603 * 1. If both ECC step size and ECC strength are already set (usually by DT) 5604 * then check if it is supported by this controller. 5605 * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength. 5606 * 3. Otherwise, try to match the ECC step size and ECC strength closest 5607 * to the chip's requirement. If available OOB size can't fit the chip 5608 * requirement then fallback to the maximum ECC step size and ECC strength. 5609 * 5610 * On success, the chosen ECC settings are set. 5611 */ 5612 int nand_ecc_choose_conf(struct nand_chip *chip, 5613 const struct nand_ecc_caps *caps, int oobavail) 5614 { 5615 struct mtd_info *mtd = nand_to_mtd(chip); 5616 5617 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 5618 return -EINVAL; 5619 5620 if (chip->ecc.size && chip->ecc.strength) 5621 return nand_check_ecc_caps(chip, caps, oobavail); 5622 5623 if (chip->ecc.options & NAND_ECC_MAXIMIZE) 5624 return nand_maximize_ecc(chip, caps, oobavail); 5625 5626 if (!nand_match_ecc_req(chip, caps, oobavail)) 5627 return 0; 5628 5629 return nand_maximize_ecc(chip, caps, oobavail); 5630 } 5631 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 5632 5633 /* 5634 * Check if the chip configuration meet the datasheet requirements. 5635 5636 * If our configuration corrects A bits per B bytes and the minimum 5637 * required correction level is X bits per Y bytes, then we must ensure 5638 * both of the following are true: 5639 * 5640 * (1) A / B >= X / Y 5641 * (2) A >= X 5642 * 5643 * Requirement (1) ensures we can correct for the required bitflip density. 5644 * Requirement (2) ensures we can correct even when all bitflips are clumped 5645 * in the same sector. 5646 */ 5647 static bool nand_ecc_strength_good(struct nand_chip *chip) 5648 { 5649 struct mtd_info *mtd = nand_to_mtd(chip); 5650 struct nand_ecc_ctrl *ecc = &chip->ecc; 5651 int corr, ds_corr; 5652 5653 if (ecc->size == 0 || chip->base.eccreq.step_size == 0) 5654 /* Not enough information */ 5655 return true; 5656 5657 /* 5658 * We get the number of corrected bits per page to compare 5659 * the correction density. 5660 */ 5661 corr = (mtd->writesize * ecc->strength) / ecc->size; 5662 ds_corr = (mtd->writesize * chip->base.eccreq.strength) / 5663 chip->base.eccreq.step_size; 5664 5665 return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength; 5666 } 5667 5668 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) 5669 { 5670 struct nand_chip *chip = container_of(nand, struct nand_chip, 5671 base); 5672 unsigned int eb = nanddev_pos_to_row(nand, pos); 5673 int ret; 5674 5675 eb >>= nand->rowconv.eraseblock_addr_shift; 5676 5677 nand_select_target(chip, pos->target); 5678 ret = nand_erase_op(chip, eb); 5679 nand_deselect_target(chip); 5680 5681 return ret; 5682 } 5683 5684 static int rawnand_markbad(struct nand_device *nand, 5685 const struct nand_pos *pos) 5686 { 5687 struct nand_chip *chip = container_of(nand, struct nand_chip, 5688 base); 5689 5690 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 5691 } 5692 5693 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) 5694 { 5695 struct nand_chip *chip = container_of(nand, struct nand_chip, 5696 base); 5697 int ret; 5698 5699 nand_select_target(chip, pos->target); 5700 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 5701 nand_deselect_target(chip); 5702 5703 return ret; 5704 } 5705 5706 static const struct nand_ops rawnand_ops = { 5707 .erase = rawnand_erase, 5708 .markbad = rawnand_markbad, 5709 .isbad = rawnand_isbad, 5710 }; 5711 5712 /** 5713 * nand_scan_tail - Scan for the NAND device 5714 * @chip: NAND chip object 5715 * 5716 * This is the second phase of the normal nand_scan() function. It fills out 5717 * all the uninitialized function pointers with the defaults and scans for a 5718 * bad block table if appropriate. 5719 */ 5720 static int nand_scan_tail(struct nand_chip *chip) 5721 { 5722 struct mtd_info *mtd = nand_to_mtd(chip); 5723 struct nand_ecc_ctrl *ecc = &chip->ecc; 5724 int ret, i; 5725 5726 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 5727 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 5728 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 5729 return -EINVAL; 5730 } 5731 5732 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 5733 if (!chip->data_buf) 5734 return -ENOMEM; 5735 5736 /* 5737 * FIXME: some NAND manufacturer drivers expect the first die to be 5738 * selected when manufacturer->init() is called. They should be fixed 5739 * to explictly select the relevant die when interacting with the NAND 5740 * chip. 5741 */ 5742 nand_select_target(chip, 0); 5743 ret = nand_manufacturer_init(chip); 5744 nand_deselect_target(chip); 5745 if (ret) 5746 goto err_free_buf; 5747 5748 /* Set the internal oob buffer location, just after the page data */ 5749 chip->oob_poi = chip->data_buf + mtd->writesize; 5750 5751 /* 5752 * If no default placement scheme is given, select an appropriate one. 5753 */ 5754 if (!mtd->ooblayout && 5755 !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { 5756 switch (mtd->oobsize) { 5757 case 8: 5758 case 16: 5759 mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); 5760 break; 5761 case 64: 5762 case 128: 5763 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); 5764 break; 5765 default: 5766 /* 5767 * Expose the whole OOB area to users if ECC_NONE 5768 * is passed. We could do that for all kind of 5769 * ->oobsize, but we must keep the old large/small 5770 * page with ECC layout when ->oobsize <= 128 for 5771 * compatibility reasons. 5772 */ 5773 if (ecc->mode == NAND_ECC_NONE) { 5774 mtd_set_ooblayout(mtd, 5775 &nand_ooblayout_lp_ops); 5776 break; 5777 } 5778 5779 WARN(1, "No oob scheme defined for oobsize %d\n", 5780 mtd->oobsize); 5781 ret = -EINVAL; 5782 goto err_nand_manuf_cleanup; 5783 } 5784 } 5785 5786 /* 5787 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 5788 * selected and we have 256 byte pagesize fallback to software ECC 5789 */ 5790 5791 switch (ecc->mode) { 5792 case NAND_ECC_HW: 5793 /* Use standard hwecc read page function? */ 5794 if (!ecc->read_page) 5795 ecc->read_page = nand_read_page_hwecc; 5796 if (!ecc->write_page) 5797 ecc->write_page = nand_write_page_hwecc; 5798 if (!ecc->read_page_raw) 5799 ecc->read_page_raw = nand_read_page_raw; 5800 if (!ecc->write_page_raw) 5801 ecc->write_page_raw = nand_write_page_raw; 5802 if (!ecc->read_oob) 5803 ecc->read_oob = nand_read_oob_std; 5804 if (!ecc->write_oob) 5805 ecc->write_oob = nand_write_oob_std; 5806 if (!ecc->read_subpage) 5807 ecc->read_subpage = nand_read_subpage; 5808 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 5809 ecc->write_subpage = nand_write_subpage_hwecc; 5810 fallthrough; 5811 case NAND_ECC_HW_SYNDROME: 5812 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 5813 (!ecc->read_page || 5814 ecc->read_page == nand_read_page_hwecc || 5815 !ecc->write_page || 5816 ecc->write_page == nand_write_page_hwecc)) { 5817 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5818 ret = -EINVAL; 5819 goto err_nand_manuf_cleanup; 5820 } 5821 /* Use standard syndrome read/write page function? */ 5822 if (!ecc->read_page) 5823 ecc->read_page = nand_read_page_syndrome; 5824 if (!ecc->write_page) 5825 ecc->write_page = nand_write_page_syndrome; 5826 if (!ecc->read_page_raw) 5827 ecc->read_page_raw = nand_read_page_raw_syndrome; 5828 if (!ecc->write_page_raw) 5829 ecc->write_page_raw = nand_write_page_raw_syndrome; 5830 if (!ecc->read_oob) 5831 ecc->read_oob = nand_read_oob_syndrome; 5832 if (!ecc->write_oob) 5833 ecc->write_oob = nand_write_oob_syndrome; 5834 5835 if (mtd->writesize >= ecc->size) { 5836 if (!ecc->strength) { 5837 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 5838 ret = -EINVAL; 5839 goto err_nand_manuf_cleanup; 5840 } 5841 break; 5842 } 5843 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 5844 ecc->size, mtd->writesize); 5845 ecc->mode = NAND_ECC_SOFT; 5846 ecc->algo = NAND_ECC_HAMMING; 5847 fallthrough; 5848 case NAND_ECC_SOFT: 5849 ret = nand_set_ecc_soft_ops(chip); 5850 if (ret) { 5851 ret = -EINVAL; 5852 goto err_nand_manuf_cleanup; 5853 } 5854 break; 5855 5856 case NAND_ECC_ON_DIE: 5857 if (!ecc->read_page || !ecc->write_page) { 5858 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 5859 ret = -EINVAL; 5860 goto err_nand_manuf_cleanup; 5861 } 5862 if (!ecc->read_oob) 5863 ecc->read_oob = nand_read_oob_std; 5864 if (!ecc->write_oob) 5865 ecc->write_oob = nand_write_oob_std; 5866 break; 5867 5868 case NAND_ECC_NONE: 5869 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); 5870 ecc->read_page = nand_read_page_raw; 5871 ecc->write_page = nand_write_page_raw; 5872 ecc->read_oob = nand_read_oob_std; 5873 ecc->read_page_raw = nand_read_page_raw; 5874 ecc->write_page_raw = nand_write_page_raw; 5875 ecc->write_oob = nand_write_oob_std; 5876 ecc->size = mtd->writesize; 5877 ecc->bytes = 0; 5878 ecc->strength = 0; 5879 break; 5880 5881 default: 5882 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); 5883 ret = -EINVAL; 5884 goto err_nand_manuf_cleanup; 5885 } 5886 5887 if (ecc->correct || ecc->calculate) { 5888 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5889 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 5890 if (!ecc->calc_buf || !ecc->code_buf) { 5891 ret = -ENOMEM; 5892 goto err_nand_manuf_cleanup; 5893 } 5894 } 5895 5896 /* For many systems, the standard OOB write also works for raw */ 5897 if (!ecc->read_oob_raw) 5898 ecc->read_oob_raw = ecc->read_oob; 5899 if (!ecc->write_oob_raw) 5900 ecc->write_oob_raw = ecc->write_oob; 5901 5902 /* propagate ecc info to mtd_info */ 5903 mtd->ecc_strength = ecc->strength; 5904 mtd->ecc_step_size = ecc->size; 5905 5906 /* 5907 * Set the number of read / write steps for one page depending on ECC 5908 * mode. 5909 */ 5910 ecc->steps = mtd->writesize / ecc->size; 5911 if (ecc->steps * ecc->size != mtd->writesize) { 5912 WARN(1, "Invalid ECC parameters\n"); 5913 ret = -EINVAL; 5914 goto err_nand_manuf_cleanup; 5915 } 5916 ecc->total = ecc->steps * ecc->bytes; 5917 if (ecc->total > mtd->oobsize) { 5918 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 5919 ret = -EINVAL; 5920 goto err_nand_manuf_cleanup; 5921 } 5922 5923 /* 5924 * The number of bytes available for a client to place data into 5925 * the out of band area. 5926 */ 5927 ret = mtd_ooblayout_count_freebytes(mtd); 5928 if (ret < 0) 5929 ret = 0; 5930 5931 mtd->oobavail = ret; 5932 5933 /* ECC sanity check: warn if it's too weak */ 5934 if (!nand_ecc_strength_good(chip)) 5935 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n", 5936 mtd->name, chip->ecc.strength, chip->ecc.size, 5937 chip->base.eccreq.strength, 5938 chip->base.eccreq.step_size); 5939 5940 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 5941 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 5942 switch (ecc->steps) { 5943 case 2: 5944 mtd->subpage_sft = 1; 5945 break; 5946 case 4: 5947 case 8: 5948 case 16: 5949 mtd->subpage_sft = 2; 5950 break; 5951 } 5952 } 5953 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 5954 5955 /* Invalidate the pagebuffer reference */ 5956 chip->pagecache.page = -1; 5957 5958 /* Large page NAND with SOFT_ECC should support subpage reads */ 5959 switch (ecc->mode) { 5960 case NAND_ECC_SOFT: 5961 if (chip->page_shift > 9) 5962 chip->options |= NAND_SUBPAGE_READ; 5963 break; 5964 5965 default: 5966 break; 5967 } 5968 5969 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); 5970 if (ret) 5971 goto err_nand_manuf_cleanup; 5972 5973 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ 5974 if (chip->options & NAND_ROM) 5975 mtd->flags = MTD_CAP_ROM; 5976 5977 /* Fill in remaining MTD driver data */ 5978 mtd->_erase = nand_erase; 5979 mtd->_point = NULL; 5980 mtd->_unpoint = NULL; 5981 mtd->_panic_write = panic_nand_write; 5982 mtd->_read_oob = nand_read_oob; 5983 mtd->_write_oob = nand_write_oob; 5984 mtd->_sync = nand_sync; 5985 mtd->_lock = nand_lock; 5986 mtd->_unlock = nand_unlock; 5987 mtd->_suspend = nand_suspend; 5988 mtd->_resume = nand_resume; 5989 mtd->_reboot = nand_shutdown; 5990 mtd->_block_isreserved = nand_block_isreserved; 5991 mtd->_block_isbad = nand_block_isbad; 5992 mtd->_block_markbad = nand_block_markbad; 5993 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; 5994 5995 /* 5996 * Initialize bitflip_threshold to its default prior scan_bbt() call. 5997 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 5998 * properly set. 5999 */ 6000 if (!mtd->bitflip_threshold) 6001 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 6002 6003 /* Find the fastest data interface for this chip */ 6004 ret = nand_choose_interface_config(chip); 6005 if (ret) 6006 goto err_nanddev_cleanup; 6007 6008 /* Enter fastest possible mode on all dies. */ 6009 for (i = 0; i < nanddev_ntargets(&chip->base); i++) { 6010 ret = nand_setup_interface(chip, i); 6011 if (ret) 6012 goto err_free_interface_config; 6013 } 6014 6015 /* Check, if we should skip the bad block table scan */ 6016 if (chip->options & NAND_SKIP_BBTSCAN) 6017 return 0; 6018 6019 /* Build bad block table */ 6020 ret = nand_create_bbt(chip); 6021 if (ret) 6022 goto err_free_interface_config; 6023 6024 return 0; 6025 6026 err_free_interface_config: 6027 kfree(chip->best_interface_config); 6028 6029 err_nanddev_cleanup: 6030 nanddev_cleanup(&chip->base); 6031 6032 err_nand_manuf_cleanup: 6033 nand_manufacturer_cleanup(chip); 6034 6035 err_free_buf: 6036 kfree(chip->data_buf); 6037 kfree(ecc->code_buf); 6038 kfree(ecc->calc_buf); 6039 6040 return ret; 6041 } 6042 6043 static int nand_attach(struct nand_chip *chip) 6044 { 6045 if (chip->controller->ops && chip->controller->ops->attach_chip) 6046 return chip->controller->ops->attach_chip(chip); 6047 6048 return 0; 6049 } 6050 6051 static void nand_detach(struct nand_chip *chip) 6052 { 6053 if (chip->controller->ops && chip->controller->ops->detach_chip) 6054 chip->controller->ops->detach_chip(chip); 6055 } 6056 6057 /** 6058 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 6059 * @chip: NAND chip object 6060 * @maxchips: number of chips to scan for. 6061 * @ids: optional flash IDs table 6062 * 6063 * This fills out all the uninitialized function pointers with the defaults. 6064 * The flash ID is read and the mtd/chip structures are filled with the 6065 * appropriate values. 6066 */ 6067 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, 6068 struct nand_flash_dev *ids) 6069 { 6070 int ret; 6071 6072 if (!maxchips) 6073 return -EINVAL; 6074 6075 ret = nand_scan_ident(chip, maxchips, ids); 6076 if (ret) 6077 return ret; 6078 6079 ret = nand_attach(chip); 6080 if (ret) 6081 goto cleanup_ident; 6082 6083 ret = nand_scan_tail(chip); 6084 if (ret) 6085 goto detach_chip; 6086 6087 return 0; 6088 6089 detach_chip: 6090 nand_detach(chip); 6091 cleanup_ident: 6092 nand_scan_ident_cleanup(chip); 6093 6094 return ret; 6095 } 6096 EXPORT_SYMBOL(nand_scan_with_ids); 6097 6098 /** 6099 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 6100 * @chip: NAND chip object 6101 */ 6102 void nand_cleanup(struct nand_chip *chip) 6103 { 6104 if (chip->ecc.mode == NAND_ECC_SOFT && 6105 chip->ecc.algo == NAND_ECC_BCH) 6106 nand_bch_free((struct nand_bch_control *)chip->ecc.priv); 6107 6108 nanddev_cleanup(&chip->base); 6109 6110 /* Free bad block table memory */ 6111 kfree(chip->bbt); 6112 kfree(chip->data_buf); 6113 kfree(chip->ecc.code_buf); 6114 kfree(chip->ecc.calc_buf); 6115 6116 /* Free bad block descriptor memory */ 6117 if (chip->badblock_pattern && chip->badblock_pattern->options 6118 & NAND_BBT_DYNAMICSTRUCT) 6119 kfree(chip->badblock_pattern); 6120 6121 /* Free the data interface */ 6122 kfree(chip->best_interface_config); 6123 6124 /* Free manufacturer priv data. */ 6125 nand_manufacturer_cleanup(chip); 6126 6127 /* Free controller specific allocations after chip identification */ 6128 nand_detach(chip); 6129 6130 /* Free identification phase allocations */ 6131 nand_scan_ident_cleanup(chip); 6132 } 6133 6134 EXPORT_SYMBOL_GPL(nand_cleanup); 6135 6136 MODULE_LICENSE("GPL"); 6137 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 6138 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 6139 MODULE_DESCRIPTION("Generic NAND flash driver code"); 6140