xref: /openbmc/linux/drivers/mtd/nand/raw/nand_base.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand_ecc.h>
38 #include <linux/mtd/nand_bch.h>
39 #include <linux/interrupt.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/of.h>
44 #include <linux/gpio/consumer.h>
45 
46 #include "internals.h"
47 
48 /* Define default oob placement schemes for large and small page devices */
49 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
50 				 struct mtd_oob_region *oobregion)
51 {
52 	struct nand_chip *chip = mtd_to_nand(mtd);
53 	struct nand_ecc_ctrl *ecc = &chip->ecc;
54 
55 	if (section > 1)
56 		return -ERANGE;
57 
58 	if (!section) {
59 		oobregion->offset = 0;
60 		if (mtd->oobsize == 16)
61 			oobregion->length = 4;
62 		else
63 			oobregion->length = 3;
64 	} else {
65 		if (mtd->oobsize == 8)
66 			return -ERANGE;
67 
68 		oobregion->offset = 6;
69 		oobregion->length = ecc->total - 4;
70 	}
71 
72 	return 0;
73 }
74 
75 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
76 				  struct mtd_oob_region *oobregion)
77 {
78 	if (section > 1)
79 		return -ERANGE;
80 
81 	if (mtd->oobsize == 16) {
82 		if (section)
83 			return -ERANGE;
84 
85 		oobregion->length = 8;
86 		oobregion->offset = 8;
87 	} else {
88 		oobregion->length = 2;
89 		if (!section)
90 			oobregion->offset = 3;
91 		else
92 			oobregion->offset = 6;
93 	}
94 
95 	return 0;
96 }
97 
98 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
99 	.ecc = nand_ooblayout_ecc_sp,
100 	.free = nand_ooblayout_free_sp,
101 };
102 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
103 
104 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
105 				 struct mtd_oob_region *oobregion)
106 {
107 	struct nand_chip *chip = mtd_to_nand(mtd);
108 	struct nand_ecc_ctrl *ecc = &chip->ecc;
109 
110 	if (section || !ecc->total)
111 		return -ERANGE;
112 
113 	oobregion->length = ecc->total;
114 	oobregion->offset = mtd->oobsize - oobregion->length;
115 
116 	return 0;
117 }
118 
119 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
120 				  struct mtd_oob_region *oobregion)
121 {
122 	struct nand_chip *chip = mtd_to_nand(mtd);
123 	struct nand_ecc_ctrl *ecc = &chip->ecc;
124 
125 	if (section)
126 		return -ERANGE;
127 
128 	oobregion->length = mtd->oobsize - ecc->total - 2;
129 	oobregion->offset = 2;
130 
131 	return 0;
132 }
133 
134 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
135 	.ecc = nand_ooblayout_ecc_lp,
136 	.free = nand_ooblayout_free_lp,
137 };
138 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
139 
140 /*
141  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
142  * are placed at a fixed offset.
143  */
144 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
145 					 struct mtd_oob_region *oobregion)
146 {
147 	struct nand_chip *chip = mtd_to_nand(mtd);
148 	struct nand_ecc_ctrl *ecc = &chip->ecc;
149 
150 	if (section)
151 		return -ERANGE;
152 
153 	switch (mtd->oobsize) {
154 	case 64:
155 		oobregion->offset = 40;
156 		break;
157 	case 128:
158 		oobregion->offset = 80;
159 		break;
160 	default:
161 		return -EINVAL;
162 	}
163 
164 	oobregion->length = ecc->total;
165 	if (oobregion->offset + oobregion->length > mtd->oobsize)
166 		return -ERANGE;
167 
168 	return 0;
169 }
170 
171 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
172 					  struct mtd_oob_region *oobregion)
173 {
174 	struct nand_chip *chip = mtd_to_nand(mtd);
175 	struct nand_ecc_ctrl *ecc = &chip->ecc;
176 	int ecc_offset = 0;
177 
178 	if (section < 0 || section > 1)
179 		return -ERANGE;
180 
181 	switch (mtd->oobsize) {
182 	case 64:
183 		ecc_offset = 40;
184 		break;
185 	case 128:
186 		ecc_offset = 80;
187 		break;
188 	default:
189 		return -EINVAL;
190 	}
191 
192 	if (section == 0) {
193 		oobregion->offset = 2;
194 		oobregion->length = ecc_offset - 2;
195 	} else {
196 		oobregion->offset = ecc_offset + ecc->total;
197 		oobregion->length = mtd->oobsize - oobregion->offset;
198 	}
199 
200 	return 0;
201 }
202 
203 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
204 	.ecc = nand_ooblayout_ecc_lp_hamming,
205 	.free = nand_ooblayout_free_lp_hamming,
206 };
207 
208 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
209 				       struct mtd_pairing_info *info)
210 {
211 	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
212 	int dist = 3;
213 
214 	if (page == lastpage)
215 		dist = 2;
216 
217 	if (!page || (page & 1)) {
218 		info->group = 0;
219 		info->pair = (page + 1) / 2;
220 	} else {
221 		info->group = 1;
222 		info->pair = (page + 1 - dist) / 2;
223 	}
224 
225 	return 0;
226 }
227 
228 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
229 					const struct mtd_pairing_info *info)
230 {
231 	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
232 	int page = info->pair * 2;
233 	int dist = 3;
234 
235 	if (!info->group && !info->pair)
236 		return 0;
237 
238 	if (info->pair == lastpair && info->group)
239 		dist = 2;
240 
241 	if (!info->group)
242 		page--;
243 	else if (info->pair)
244 		page += dist - 1;
245 
246 	if (page >= mtd->erasesize / mtd->writesize)
247 		return -EINVAL;
248 
249 	return page;
250 }
251 
252 const struct mtd_pairing_scheme dist3_pairing_scheme = {
253 	.ngroups = 2,
254 	.get_info = nand_pairing_dist3_get_info,
255 	.get_wunit = nand_pairing_dist3_get_wunit,
256 };
257 
258 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
259 {
260 	int ret = 0;
261 
262 	/* Start address must align on block boundary */
263 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
264 		pr_debug("%s: unaligned address\n", __func__);
265 		ret = -EINVAL;
266 	}
267 
268 	/* Length must align on block boundary */
269 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
270 		pr_debug("%s: length not block aligned\n", __func__);
271 		ret = -EINVAL;
272 	}
273 
274 	return ret;
275 }
276 
277 /**
278  * nand_extract_bits - Copy unaligned bits from one buffer to another one
279  * @dst: destination buffer
280  * @dst_off: bit offset at which the writing starts
281  * @src: source buffer
282  * @src_off: bit offset at which the reading starts
283  * @nbits: number of bits to copy from @src to @dst
284  *
285  * Copy bits from one memory region to another (overlap authorized).
286  */
287 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
288 		       unsigned int src_off, unsigned int nbits)
289 {
290 	unsigned int tmp, n;
291 
292 	dst += dst_off / 8;
293 	dst_off %= 8;
294 	src += src_off / 8;
295 	src_off %= 8;
296 
297 	while (nbits) {
298 		n = min3(8 - dst_off, 8 - src_off, nbits);
299 
300 		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
301 		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
302 		*dst |= tmp << dst_off;
303 
304 		dst_off += n;
305 		if (dst_off >= 8) {
306 			dst++;
307 			dst_off -= 8;
308 		}
309 
310 		src_off += n;
311 		if (src_off >= 8) {
312 			src++;
313 			src_off -= 8;
314 		}
315 
316 		nbits -= n;
317 	}
318 }
319 EXPORT_SYMBOL_GPL(nand_extract_bits);
320 
321 /**
322  * nand_select_target() - Select a NAND target (A.K.A. die)
323  * @chip: NAND chip object
324  * @cs: the CS line to select. Note that this CS id is always from the chip
325  *	PoV, not the controller one
326  *
327  * Select a NAND target so that further operations executed on @chip go to the
328  * selected NAND target.
329  */
330 void nand_select_target(struct nand_chip *chip, unsigned int cs)
331 {
332 	/*
333 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
334 	 * not the case it's a bug and the caller should be fixed.
335 	 */
336 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
337 		return;
338 
339 	chip->cur_cs = cs;
340 
341 	if (chip->legacy.select_chip)
342 		chip->legacy.select_chip(chip, cs);
343 }
344 EXPORT_SYMBOL_GPL(nand_select_target);
345 
346 /**
347  * nand_deselect_target() - Deselect the currently selected target
348  * @chip: NAND chip object
349  *
350  * Deselect the currently selected NAND target. The result of operations
351  * executed on @chip after the target has been deselected is undefined.
352  */
353 void nand_deselect_target(struct nand_chip *chip)
354 {
355 	if (chip->legacy.select_chip)
356 		chip->legacy.select_chip(chip, -1);
357 
358 	chip->cur_cs = -1;
359 }
360 EXPORT_SYMBOL_GPL(nand_deselect_target);
361 
362 /**
363  * nand_release_device - [GENERIC] release chip
364  * @chip: NAND chip object
365  *
366  * Release chip lock and wake up anyone waiting on the device.
367  */
368 static void nand_release_device(struct nand_chip *chip)
369 {
370 	/* Release the controller and the chip */
371 	mutex_unlock(&chip->controller->lock);
372 	mutex_unlock(&chip->lock);
373 }
374 
375 /**
376  * nand_bbm_get_next_page - Get the next page for bad block markers
377  * @chip: NAND chip object
378  * @page: First page to start checking for bad block marker usage
379  *
380  * Returns an integer that corresponds to the page offset within a block, for
381  * a page that is used to store bad block markers. If no more pages are
382  * available, -EINVAL is returned.
383  */
384 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
385 {
386 	struct mtd_info *mtd = nand_to_mtd(chip);
387 	int last_page = ((mtd->erasesize - mtd->writesize) >>
388 			 chip->page_shift) & chip->pagemask;
389 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
390 		| NAND_BBM_LASTPAGE;
391 
392 	if (page == 0 && !(chip->options & bbm_flags))
393 		return 0;
394 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
395 		return 0;
396 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
397 		return 1;
398 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
399 		return last_page;
400 
401 	return -EINVAL;
402 }
403 
404 /**
405  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
406  * @chip: NAND chip object
407  * @ofs: offset from device start
408  *
409  * Check, if the block is bad.
410  */
411 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
412 {
413 	int first_page, page_offset;
414 	int res;
415 	u8 bad;
416 
417 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
418 	page_offset = nand_bbm_get_next_page(chip, 0);
419 
420 	while (page_offset >= 0) {
421 		res = chip->ecc.read_oob(chip, first_page + page_offset);
422 		if (res < 0)
423 			return res;
424 
425 		bad = chip->oob_poi[chip->badblockpos];
426 
427 		if (likely(chip->badblockbits == 8))
428 			res = bad != 0xFF;
429 		else
430 			res = hweight8(bad) < chip->badblockbits;
431 		if (res)
432 			return res;
433 
434 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
435 	}
436 
437 	return 0;
438 }
439 
440 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
441 {
442 	if (chip->options & NAND_NO_BBM_QUIRK)
443 		return 0;
444 
445 	if (chip->legacy.block_bad)
446 		return chip->legacy.block_bad(chip, ofs);
447 
448 	return nand_block_bad(chip, ofs);
449 }
450 
451 /**
452  * nand_get_device - [GENERIC] Get chip for selected access
453  * @chip: NAND chip structure
454  *
455  * Lock the device and its controller for exclusive access
456  *
457  * Return: -EBUSY if the chip has been suspended, 0 otherwise
458  */
459 static int nand_get_device(struct nand_chip *chip)
460 {
461 	mutex_lock(&chip->lock);
462 	if (chip->suspended) {
463 		mutex_unlock(&chip->lock);
464 		return -EBUSY;
465 	}
466 	mutex_lock(&chip->controller->lock);
467 
468 	return 0;
469 }
470 
471 /**
472  * nand_check_wp - [GENERIC] check if the chip is write protected
473  * @chip: NAND chip object
474  *
475  * Check, if the device is write protected. The function expects, that the
476  * device is already selected.
477  */
478 static int nand_check_wp(struct nand_chip *chip)
479 {
480 	u8 status;
481 	int ret;
482 
483 	/* Broken xD cards report WP despite being writable */
484 	if (chip->options & NAND_BROKEN_XD)
485 		return 0;
486 
487 	/* Check the WP bit */
488 	ret = nand_status_op(chip, &status);
489 	if (ret)
490 		return ret;
491 
492 	return status & NAND_STATUS_WP ? 0 : 1;
493 }
494 
495 /**
496  * nand_fill_oob - [INTERN] Transfer client buffer to oob
497  * @chip: NAND chip object
498  * @oob: oob data buffer
499  * @len: oob data write length
500  * @ops: oob ops structure
501  */
502 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
503 			      struct mtd_oob_ops *ops)
504 {
505 	struct mtd_info *mtd = nand_to_mtd(chip);
506 	int ret;
507 
508 	/*
509 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
510 	 * data from a previous OOB read.
511 	 */
512 	memset(chip->oob_poi, 0xff, mtd->oobsize);
513 
514 	switch (ops->mode) {
515 
516 	case MTD_OPS_PLACE_OOB:
517 	case MTD_OPS_RAW:
518 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
519 		return oob + len;
520 
521 	case MTD_OPS_AUTO_OOB:
522 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
523 						  ops->ooboffs, len);
524 		BUG_ON(ret);
525 		return oob + len;
526 
527 	default:
528 		BUG();
529 	}
530 	return NULL;
531 }
532 
533 /**
534  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
535  * @chip: NAND chip object
536  * @to: offset to write to
537  * @ops: oob operation description structure
538  *
539  * NAND write out-of-band.
540  */
541 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
542 			     struct mtd_oob_ops *ops)
543 {
544 	struct mtd_info *mtd = nand_to_mtd(chip);
545 	int chipnr, page, status, len, ret;
546 
547 	pr_debug("%s: to = 0x%08x, len = %i\n",
548 			 __func__, (unsigned int)to, (int)ops->ooblen);
549 
550 	len = mtd_oobavail(mtd, ops);
551 
552 	/* Do not allow write past end of page */
553 	if ((ops->ooboffs + ops->ooblen) > len) {
554 		pr_debug("%s: attempt to write past end of page\n",
555 				__func__);
556 		return -EINVAL;
557 	}
558 
559 	chipnr = (int)(to >> chip->chip_shift);
560 
561 	/*
562 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
563 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
564 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
565 	 * it in the doc2000 driver in August 1999.  dwmw2.
566 	 */
567 	ret = nand_reset(chip, chipnr);
568 	if (ret)
569 		return ret;
570 
571 	nand_select_target(chip, chipnr);
572 
573 	/* Shift to get page */
574 	page = (int)(to >> chip->page_shift);
575 
576 	/* Check, if it is write protected */
577 	if (nand_check_wp(chip)) {
578 		nand_deselect_target(chip);
579 		return -EROFS;
580 	}
581 
582 	/* Invalidate the page cache, if we write to the cached page */
583 	if (page == chip->pagecache.page)
584 		chip->pagecache.page = -1;
585 
586 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
587 
588 	if (ops->mode == MTD_OPS_RAW)
589 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
590 	else
591 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
592 
593 	nand_deselect_target(chip);
594 
595 	if (status)
596 		return status;
597 
598 	ops->oobretlen = ops->ooblen;
599 
600 	return 0;
601 }
602 
603 /**
604  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
605  * @chip: NAND chip object
606  * @ofs: offset from device start
607  *
608  * This is the default implementation, which can be overridden by a hardware
609  * specific driver. It provides the details for writing a bad block marker to a
610  * block.
611  */
612 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
613 {
614 	struct mtd_info *mtd = nand_to_mtd(chip);
615 	struct mtd_oob_ops ops;
616 	uint8_t buf[2] = { 0, 0 };
617 	int ret = 0, res, page_offset;
618 
619 	memset(&ops, 0, sizeof(ops));
620 	ops.oobbuf = buf;
621 	ops.ooboffs = chip->badblockpos;
622 	if (chip->options & NAND_BUSWIDTH_16) {
623 		ops.ooboffs &= ~0x01;
624 		ops.len = ops.ooblen = 2;
625 	} else {
626 		ops.len = ops.ooblen = 1;
627 	}
628 	ops.mode = MTD_OPS_PLACE_OOB;
629 
630 	page_offset = nand_bbm_get_next_page(chip, 0);
631 
632 	while (page_offset >= 0) {
633 		res = nand_do_write_oob(chip,
634 					ofs + (page_offset * mtd->writesize),
635 					&ops);
636 
637 		if (!ret)
638 			ret = res;
639 
640 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
641 	}
642 
643 	return ret;
644 }
645 
646 /**
647  * nand_markbad_bbm - mark a block by updating the BBM
648  * @chip: NAND chip object
649  * @ofs: offset of the block to mark bad
650  */
651 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
652 {
653 	if (chip->legacy.block_markbad)
654 		return chip->legacy.block_markbad(chip, ofs);
655 
656 	return nand_default_block_markbad(chip, ofs);
657 }
658 
659 /**
660  * nand_block_markbad_lowlevel - mark a block bad
661  * @chip: NAND chip object
662  * @ofs: offset from device start
663  *
664  * This function performs the generic NAND bad block marking steps (i.e., bad
665  * block table(s) and/or marker(s)). We only allow the hardware driver to
666  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
667  *
668  * We try operations in the following order:
669  *
670  *  (1) erase the affected block, to allow OOB marker to be written cleanly
671  *  (2) write bad block marker to OOB area of affected block (unless flag
672  *      NAND_BBT_NO_OOB_BBM is present)
673  *  (3) update the BBT
674  *
675  * Note that we retain the first error encountered in (2) or (3), finish the
676  * procedures, and dump the error in the end.
677 */
678 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
679 {
680 	struct mtd_info *mtd = nand_to_mtd(chip);
681 	int res, ret = 0;
682 
683 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
684 		struct erase_info einfo;
685 
686 		/* Attempt erase before marking OOB */
687 		memset(&einfo, 0, sizeof(einfo));
688 		einfo.addr = ofs;
689 		einfo.len = 1ULL << chip->phys_erase_shift;
690 		nand_erase_nand(chip, &einfo, 0);
691 
692 		/* Write bad block marker to OOB */
693 		ret = nand_get_device(chip);
694 		if (ret)
695 			return ret;
696 
697 		ret = nand_markbad_bbm(chip, ofs);
698 		nand_release_device(chip);
699 	}
700 
701 	/* Mark block bad in BBT */
702 	if (chip->bbt) {
703 		res = nand_markbad_bbt(chip, ofs);
704 		if (!ret)
705 			ret = res;
706 	}
707 
708 	if (!ret)
709 		mtd->ecc_stats.badblocks++;
710 
711 	return ret;
712 }
713 
714 /**
715  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
716  * @mtd: MTD device structure
717  * @ofs: offset from device start
718  *
719  * Check if the block is marked as reserved.
720  */
721 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
722 {
723 	struct nand_chip *chip = mtd_to_nand(mtd);
724 
725 	if (!chip->bbt)
726 		return 0;
727 	/* Return info from the table */
728 	return nand_isreserved_bbt(chip, ofs);
729 }
730 
731 /**
732  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
733  * @chip: NAND chip object
734  * @ofs: offset from device start
735  * @allowbbt: 1, if its allowed to access the bbt area
736  *
737  * Check, if the block is bad. Either by reading the bad block table or
738  * calling of the scan function.
739  */
740 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
741 {
742 	/* Return info from the table */
743 	if (chip->bbt)
744 		return nand_isbad_bbt(chip, ofs, allowbbt);
745 
746 	return nand_isbad_bbm(chip, ofs);
747 }
748 
749 /**
750  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
751  * @chip: NAND chip structure
752  * @timeout_ms: Timeout in ms
753  *
754  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
755  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
756  * returned.
757  *
758  * This helper is intended to be used when the controller does not have access
759  * to the NAND R/B pin.
760  *
761  * Be aware that calling this helper from an ->exec_op() implementation means
762  * ->exec_op() must be re-entrant.
763  *
764  * Return 0 if the NAND chip is ready, a negative error otherwise.
765  */
766 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
767 {
768 	const struct nand_sdr_timings *timings;
769 	u8 status = 0;
770 	int ret;
771 
772 	if (!nand_has_exec_op(chip))
773 		return -ENOTSUPP;
774 
775 	/* Wait tWB before polling the STATUS reg. */
776 	timings = nand_get_sdr_timings(nand_get_interface_config(chip));
777 	ndelay(PSEC_TO_NSEC(timings->tWB_max));
778 
779 	ret = nand_status_op(chip, NULL);
780 	if (ret)
781 		return ret;
782 
783 	/*
784 	 * +1 below is necessary because if we are now in the last fraction
785 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
786 	 * small jiffy fraction - possibly leading to false timeout
787 	 */
788 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
789 	do {
790 		ret = nand_read_data_op(chip, &status, sizeof(status), true,
791 					false);
792 		if (ret)
793 			break;
794 
795 		if (status & NAND_STATUS_READY)
796 			break;
797 
798 		/*
799 		 * Typical lowest execution time for a tR on most NANDs is 10us,
800 		 * use this as polling delay before doing something smarter (ie.
801 		 * deriving a delay from the timeout value, timeout_ms/ratio).
802 		 */
803 		udelay(10);
804 	} while	(time_before(jiffies, timeout_ms));
805 
806 	/*
807 	 * We have to exit READ_STATUS mode in order to read real data on the
808 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
809 	 * instruction.
810 	 */
811 	nand_exit_status_op(chip);
812 
813 	if (ret)
814 		return ret;
815 
816 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
817 };
818 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
819 
820 /**
821  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
822  * @chip: NAND chip structure
823  * @gpiod: GPIO descriptor of R/B pin
824  * @timeout_ms: Timeout in ms
825  *
826  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
827  * whitin the specified timeout, -ETIMEDOUT is returned.
828  *
829  * This helper is intended to be used when the controller has access to the
830  * NAND R/B pin over GPIO.
831  *
832  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
833  */
834 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
835 		      unsigned long timeout_ms)
836 {
837 
838 	/*
839 	 * Wait until R/B pin indicates chip is ready or timeout occurs.
840 	 * +1 below is necessary because if we are now in the last fraction
841 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
842 	 * small jiffy fraction - possibly leading to false timeout.
843 	 */
844 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
845 	do {
846 		if (gpiod_get_value_cansleep(gpiod))
847 			return 0;
848 
849 		cond_resched();
850 	} while	(time_before(jiffies, timeout_ms));
851 
852 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
853 };
854 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
855 
856 /**
857  * panic_nand_wait - [GENERIC] wait until the command is done
858  * @chip: NAND chip structure
859  * @timeo: timeout
860  *
861  * Wait for command done. This is a helper function for nand_wait used when
862  * we are in interrupt context. May happen when in panic and trying to write
863  * an oops through mtdoops.
864  */
865 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
866 {
867 	int i;
868 	for (i = 0; i < timeo; i++) {
869 		if (chip->legacy.dev_ready) {
870 			if (chip->legacy.dev_ready(chip))
871 				break;
872 		} else {
873 			int ret;
874 			u8 status;
875 
876 			ret = nand_read_data_op(chip, &status, sizeof(status),
877 						true, false);
878 			if (ret)
879 				return;
880 
881 			if (status & NAND_STATUS_READY)
882 				break;
883 		}
884 		mdelay(1);
885 	}
886 }
887 
888 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
889 {
890 	return (chip->parameters.supports_set_get_features &&
891 		test_bit(addr, chip->parameters.get_feature_list));
892 }
893 
894 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
895 {
896 	return (chip->parameters.supports_set_get_features &&
897 		test_bit(addr, chip->parameters.set_feature_list));
898 }
899 
900 /**
901  * nand_reset_interface - Reset data interface and timings
902  * @chip: The NAND chip
903  * @chipnr: Internal die id
904  *
905  * Reset the Data interface and timings to ONFI mode 0.
906  *
907  * Returns 0 for success or negative error code otherwise.
908  */
909 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
910 {
911 	const struct nand_controller_ops *ops = chip->controller->ops;
912 	int ret;
913 
914 	if (!nand_controller_can_setup_interface(chip))
915 		return 0;
916 
917 	/*
918 	 * The ONFI specification says:
919 	 * "
920 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
921 	 * interface, the host shall use the Reset (FFh) command
922 	 * using SDR timing mode 0. A device in any timing mode is
923 	 * required to recognize Reset (FFh) command issued in SDR
924 	 * timing mode 0.
925 	 * "
926 	 *
927 	 * Configure the data interface in SDR mode and set the
928 	 * timings to timing mode 0.
929 	 */
930 
931 	chip->current_interface_config = nand_get_reset_interface_config();
932 	ret = ops->setup_interface(chip, chipnr,
933 				   chip->current_interface_config);
934 	if (ret)
935 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
936 
937 	return ret;
938 }
939 
940 /**
941  * nand_setup_interface - Setup the best data interface and timings
942  * @chip: The NAND chip
943  * @chipnr: Internal die id
944  *
945  * Configure what has been reported to be the best data interface and NAND
946  * timings supported by the chip and the driver.
947  *
948  * Returns 0 for success or negative error code otherwise.
949  */
950 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
951 {
952 	const struct nand_controller_ops *ops = chip->controller->ops;
953 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { };
954 	int ret;
955 
956 	if (!nand_controller_can_setup_interface(chip))
957 		return 0;
958 
959 	/*
960 	 * A nand_reset_interface() put both the NAND chip and the NAND
961 	 * controller in timings mode 0. If the default mode for this chip is
962 	 * also 0, no need to proceed to the change again. Plus, at probe time,
963 	 * nand_setup_interface() uses ->set/get_features() which would
964 	 * fail anyway as the parameter page is not available yet.
965 	 */
966 	if (!chip->best_interface_config)
967 		return 0;
968 
969 	tmode_param[0] = chip->best_interface_config->timings.mode;
970 
971 	/* Change the mode on the chip side (if supported by the NAND chip) */
972 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
973 		nand_select_target(chip, chipnr);
974 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
975 					tmode_param);
976 		nand_deselect_target(chip);
977 		if (ret)
978 			return ret;
979 	}
980 
981 	/* Change the mode on the controller side */
982 	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
983 	if (ret)
984 		return ret;
985 
986 	/* Check the mode has been accepted by the chip, if supported */
987 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
988 		goto update_interface_config;
989 
990 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
991 	nand_select_target(chip, chipnr);
992 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
993 				tmode_param);
994 	nand_deselect_target(chip);
995 	if (ret)
996 		goto err_reset_chip;
997 
998 	if (tmode_param[0] != chip->best_interface_config->timings.mode) {
999 		pr_warn("timing mode %d not acknowledged by the NAND chip\n",
1000 			chip->best_interface_config->timings.mode);
1001 		goto err_reset_chip;
1002 	}
1003 
1004 update_interface_config:
1005 	chip->current_interface_config = chip->best_interface_config;
1006 
1007 	return 0;
1008 
1009 err_reset_chip:
1010 	/*
1011 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
1012 	 * timing mode.
1013 	 */
1014 	nand_reset_interface(chip, chipnr);
1015 	nand_select_target(chip, chipnr);
1016 	nand_reset_op(chip);
1017 	nand_deselect_target(chip);
1018 
1019 	return ret;
1020 }
1021 
1022 /**
1023  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
1024  *                                NAND controller and the NAND chip support
1025  * @chip: the NAND chip
1026  * @iface: the interface configuration (can eventually be updated)
1027  * @spec_timings: specific timings, when not fitting the ONFI specification
1028  *
1029  * If specific timings are provided, use them. Otherwise, retrieve supported
1030  * timing modes from ONFI information.
1031  */
1032 int nand_choose_best_sdr_timings(struct nand_chip *chip,
1033 				 struct nand_interface_config *iface,
1034 				 struct nand_sdr_timings *spec_timings)
1035 {
1036 	const struct nand_controller_ops *ops = chip->controller->ops;
1037 	int best_mode = 0, mode, ret;
1038 
1039 	iface->type = NAND_SDR_IFACE;
1040 
1041 	if (spec_timings) {
1042 		iface->timings.sdr = *spec_timings;
1043 		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
1044 
1045 		/* Verify the controller supports the requested interface */
1046 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1047 					   iface);
1048 		if (!ret) {
1049 			chip->best_interface_config = iface;
1050 			return ret;
1051 		}
1052 
1053 		/* Fallback to slower modes */
1054 		best_mode = iface->timings.mode;
1055 	} else if (chip->parameters.onfi) {
1056 		best_mode = fls(chip->parameters.onfi->async_timing_mode) - 1;
1057 	}
1058 
1059 	for (mode = best_mode; mode >= 0; mode--) {
1060 		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
1061 
1062 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1063 					   iface);
1064 		if (!ret)
1065 			break;
1066 	}
1067 
1068 	chip->best_interface_config = iface;
1069 
1070 	return 0;
1071 }
1072 
1073 /**
1074  * nand_choose_interface_config - find the best data interface and timings
1075  * @chip: The NAND chip
1076  *
1077  * Find the best data interface and NAND timings supported by the chip
1078  * and the driver. Eventually let the NAND manufacturer driver propose his own
1079  * set of timings.
1080  *
1081  * After this function nand_chip->interface_config is initialized with the best
1082  * timing mode available.
1083  *
1084  * Returns 0 for success or negative error code otherwise.
1085  */
1086 static int nand_choose_interface_config(struct nand_chip *chip)
1087 {
1088 	struct nand_interface_config *iface;
1089 	int ret;
1090 
1091 	if (!nand_controller_can_setup_interface(chip))
1092 		return 0;
1093 
1094 	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1095 	if (!iface)
1096 		return -ENOMEM;
1097 
1098 	if (chip->ops.choose_interface_config)
1099 		ret = chip->ops.choose_interface_config(chip, iface);
1100 	else
1101 		ret = nand_choose_best_sdr_timings(chip, iface, NULL);
1102 
1103 	if (ret)
1104 		kfree(iface);
1105 
1106 	return ret;
1107 }
1108 
1109 /**
1110  * nand_fill_column_cycles - fill the column cycles of an address
1111  * @chip: The NAND chip
1112  * @addrs: Array of address cycles to fill
1113  * @offset_in_page: The offset in the page
1114  *
1115  * Fills the first or the first two bytes of the @addrs field depending
1116  * on the NAND bus width and the page size.
1117  *
1118  * Returns the number of cycles needed to encode the column, or a negative
1119  * error code in case one of the arguments is invalid.
1120  */
1121 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1122 				   unsigned int offset_in_page)
1123 {
1124 	struct mtd_info *mtd = nand_to_mtd(chip);
1125 
1126 	/* Make sure the offset is less than the actual page size. */
1127 	if (offset_in_page > mtd->writesize + mtd->oobsize)
1128 		return -EINVAL;
1129 
1130 	/*
1131 	 * On small page NANDs, there's a dedicated command to access the OOB
1132 	 * area, and the column address is relative to the start of the OOB
1133 	 * area, not the start of the page. Asjust the address accordingly.
1134 	 */
1135 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1136 		offset_in_page -= mtd->writesize;
1137 
1138 	/*
1139 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1140 	 * wide, then it must be divided by 2.
1141 	 */
1142 	if (chip->options & NAND_BUSWIDTH_16) {
1143 		if (WARN_ON(offset_in_page % 2))
1144 			return -EINVAL;
1145 
1146 		offset_in_page /= 2;
1147 	}
1148 
1149 	addrs[0] = offset_in_page;
1150 
1151 	/*
1152 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1153 	 * need 2
1154 	 */
1155 	if (mtd->writesize <= 512)
1156 		return 1;
1157 
1158 	addrs[1] = offset_in_page >> 8;
1159 
1160 	return 2;
1161 }
1162 
1163 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1164 				     unsigned int offset_in_page, void *buf,
1165 				     unsigned int len)
1166 {
1167 	const struct nand_sdr_timings *sdr =
1168 		nand_get_sdr_timings(nand_get_interface_config(chip));
1169 	struct mtd_info *mtd = nand_to_mtd(chip);
1170 	u8 addrs[4];
1171 	struct nand_op_instr instrs[] = {
1172 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1173 		NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1174 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1175 				 PSEC_TO_NSEC(sdr->tRR_min)),
1176 		NAND_OP_DATA_IN(len, buf, 0),
1177 	};
1178 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1179 	int ret;
1180 
1181 	/* Drop the DATA_IN instruction if len is set to 0. */
1182 	if (!len)
1183 		op.ninstrs--;
1184 
1185 	if (offset_in_page >= mtd->writesize)
1186 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1187 	else if (offset_in_page >= 256 &&
1188 		 !(chip->options & NAND_BUSWIDTH_16))
1189 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1190 
1191 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1192 	if (ret < 0)
1193 		return ret;
1194 
1195 	addrs[1] = page;
1196 	addrs[2] = page >> 8;
1197 
1198 	if (chip->options & NAND_ROW_ADDR_3) {
1199 		addrs[3] = page >> 16;
1200 		instrs[1].ctx.addr.naddrs++;
1201 	}
1202 
1203 	return nand_exec_op(chip, &op);
1204 }
1205 
1206 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1207 				     unsigned int offset_in_page, void *buf,
1208 				     unsigned int len)
1209 {
1210 	const struct nand_sdr_timings *sdr =
1211 		nand_get_sdr_timings(nand_get_interface_config(chip));
1212 	u8 addrs[5];
1213 	struct nand_op_instr instrs[] = {
1214 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1215 		NAND_OP_ADDR(4, addrs, 0),
1216 		NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1217 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1218 				 PSEC_TO_NSEC(sdr->tRR_min)),
1219 		NAND_OP_DATA_IN(len, buf, 0),
1220 	};
1221 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1222 	int ret;
1223 
1224 	/* Drop the DATA_IN instruction if len is set to 0. */
1225 	if (!len)
1226 		op.ninstrs--;
1227 
1228 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1229 	if (ret < 0)
1230 		return ret;
1231 
1232 	addrs[2] = page;
1233 	addrs[3] = page >> 8;
1234 
1235 	if (chip->options & NAND_ROW_ADDR_3) {
1236 		addrs[4] = page >> 16;
1237 		instrs[1].ctx.addr.naddrs++;
1238 	}
1239 
1240 	return nand_exec_op(chip, &op);
1241 }
1242 
1243 /**
1244  * nand_read_page_op - Do a READ PAGE operation
1245  * @chip: The NAND chip
1246  * @page: page to read
1247  * @offset_in_page: offset within the page
1248  * @buf: buffer used to store the data
1249  * @len: length of the buffer
1250  *
1251  * This function issues a READ PAGE operation.
1252  * This function does not select/unselect the CS line.
1253  *
1254  * Returns 0 on success, a negative error code otherwise.
1255  */
1256 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1257 		      unsigned int offset_in_page, void *buf, unsigned int len)
1258 {
1259 	struct mtd_info *mtd = nand_to_mtd(chip);
1260 
1261 	if (len && !buf)
1262 		return -EINVAL;
1263 
1264 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1265 		return -EINVAL;
1266 
1267 	if (nand_has_exec_op(chip)) {
1268 		if (mtd->writesize > 512)
1269 			return nand_lp_exec_read_page_op(chip, page,
1270 							 offset_in_page, buf,
1271 							 len);
1272 
1273 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1274 						 buf, len);
1275 	}
1276 
1277 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1278 	if (len)
1279 		chip->legacy.read_buf(chip, buf, len);
1280 
1281 	return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(nand_read_page_op);
1284 
1285 /**
1286  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1287  * @chip: The NAND chip
1288  * @page: parameter page to read
1289  * @buf: buffer used to store the data
1290  * @len: length of the buffer
1291  *
1292  * This function issues a READ PARAMETER PAGE operation.
1293  * This function does not select/unselect the CS line.
1294  *
1295  * Returns 0 on success, a negative error code otherwise.
1296  */
1297 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1298 			    unsigned int len)
1299 {
1300 	unsigned int i;
1301 	u8 *p = buf;
1302 
1303 	if (len && !buf)
1304 		return -EINVAL;
1305 
1306 	if (nand_has_exec_op(chip)) {
1307 		const struct nand_sdr_timings *sdr =
1308 			nand_get_sdr_timings(nand_get_interface_config(chip));
1309 		struct nand_op_instr instrs[] = {
1310 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1311 			NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1312 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1313 					 PSEC_TO_NSEC(sdr->tRR_min)),
1314 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1315 		};
1316 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1317 
1318 		/* Drop the DATA_IN instruction if len is set to 0. */
1319 		if (!len)
1320 			op.ninstrs--;
1321 
1322 		return nand_exec_op(chip, &op);
1323 	}
1324 
1325 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1326 	for (i = 0; i < len; i++)
1327 		p[i] = chip->legacy.read_byte(chip);
1328 
1329 	return 0;
1330 }
1331 
1332 /**
1333  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1334  * @chip: The NAND chip
1335  * @offset_in_page: offset within the page
1336  * @buf: buffer used to store the data
1337  * @len: length of the buffer
1338  * @force_8bit: force 8-bit bus access
1339  *
1340  * This function issues a CHANGE READ COLUMN operation.
1341  * This function does not select/unselect the CS line.
1342  *
1343  * Returns 0 on success, a negative error code otherwise.
1344  */
1345 int nand_change_read_column_op(struct nand_chip *chip,
1346 			       unsigned int offset_in_page, void *buf,
1347 			       unsigned int len, bool force_8bit)
1348 {
1349 	struct mtd_info *mtd = nand_to_mtd(chip);
1350 
1351 	if (len && !buf)
1352 		return -EINVAL;
1353 
1354 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1355 		return -EINVAL;
1356 
1357 	/* Small page NANDs do not support column change. */
1358 	if (mtd->writesize <= 512)
1359 		return -ENOTSUPP;
1360 
1361 	if (nand_has_exec_op(chip)) {
1362 		const struct nand_sdr_timings *sdr =
1363 			nand_get_sdr_timings(nand_get_interface_config(chip));
1364 		u8 addrs[2] = {};
1365 		struct nand_op_instr instrs[] = {
1366 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1367 			NAND_OP_ADDR(2, addrs, 0),
1368 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1369 				    PSEC_TO_NSEC(sdr->tCCS_min)),
1370 			NAND_OP_DATA_IN(len, buf, 0),
1371 		};
1372 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1373 		int ret;
1374 
1375 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1376 		if (ret < 0)
1377 			return ret;
1378 
1379 		/* Drop the DATA_IN instruction if len is set to 0. */
1380 		if (!len)
1381 			op.ninstrs--;
1382 
1383 		instrs[3].ctx.data.force_8bit = force_8bit;
1384 
1385 		return nand_exec_op(chip, &op);
1386 	}
1387 
1388 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1389 	if (len)
1390 		chip->legacy.read_buf(chip, buf, len);
1391 
1392 	return 0;
1393 }
1394 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1395 
1396 /**
1397  * nand_read_oob_op - Do a READ OOB operation
1398  * @chip: The NAND chip
1399  * @page: page to read
1400  * @offset_in_oob: offset within the OOB area
1401  * @buf: buffer used to store the data
1402  * @len: length of the buffer
1403  *
1404  * This function issues a READ OOB operation.
1405  * This function does not select/unselect the CS line.
1406  *
1407  * Returns 0 on success, a negative error code otherwise.
1408  */
1409 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1410 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1411 {
1412 	struct mtd_info *mtd = nand_to_mtd(chip);
1413 
1414 	if (len && !buf)
1415 		return -EINVAL;
1416 
1417 	if (offset_in_oob + len > mtd->oobsize)
1418 		return -EINVAL;
1419 
1420 	if (nand_has_exec_op(chip))
1421 		return nand_read_page_op(chip, page,
1422 					 mtd->writesize + offset_in_oob,
1423 					 buf, len);
1424 
1425 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1426 	if (len)
1427 		chip->legacy.read_buf(chip, buf, len);
1428 
1429 	return 0;
1430 }
1431 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1432 
1433 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1434 				  unsigned int offset_in_page, const void *buf,
1435 				  unsigned int len, bool prog)
1436 {
1437 	const struct nand_sdr_timings *sdr =
1438 		nand_get_sdr_timings(nand_get_interface_config(chip));
1439 	struct mtd_info *mtd = nand_to_mtd(chip);
1440 	u8 addrs[5] = {};
1441 	struct nand_op_instr instrs[] = {
1442 		/*
1443 		 * The first instruction will be dropped if we're dealing
1444 		 * with a large page NAND and adjusted if we're dealing
1445 		 * with a small page NAND and the page offset is > 255.
1446 		 */
1447 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1448 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1449 		NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1450 		NAND_OP_DATA_OUT(len, buf, 0),
1451 		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1452 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1453 	};
1454 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1455 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1456 	int ret;
1457 	u8 status;
1458 
1459 	if (naddrs < 0)
1460 		return naddrs;
1461 
1462 	addrs[naddrs++] = page;
1463 	addrs[naddrs++] = page >> 8;
1464 	if (chip->options & NAND_ROW_ADDR_3)
1465 		addrs[naddrs++] = page >> 16;
1466 
1467 	instrs[2].ctx.addr.naddrs = naddrs;
1468 
1469 	/* Drop the last two instructions if we're not programming the page. */
1470 	if (!prog) {
1471 		op.ninstrs -= 2;
1472 		/* Also drop the DATA_OUT instruction if empty. */
1473 		if (!len)
1474 			op.ninstrs--;
1475 	}
1476 
1477 	if (mtd->writesize <= 512) {
1478 		/*
1479 		 * Small pages need some more tweaking: we have to adjust the
1480 		 * first instruction depending on the page offset we're trying
1481 		 * to access.
1482 		 */
1483 		if (offset_in_page >= mtd->writesize)
1484 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1485 		else if (offset_in_page >= 256 &&
1486 			 !(chip->options & NAND_BUSWIDTH_16))
1487 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1488 	} else {
1489 		/*
1490 		 * Drop the first command if we're dealing with a large page
1491 		 * NAND.
1492 		 */
1493 		op.instrs++;
1494 		op.ninstrs--;
1495 	}
1496 
1497 	ret = nand_exec_op(chip, &op);
1498 	if (!prog || ret)
1499 		return ret;
1500 
1501 	ret = nand_status_op(chip, &status);
1502 	if (ret)
1503 		return ret;
1504 
1505 	return status;
1506 }
1507 
1508 /**
1509  * nand_prog_page_begin_op - starts a PROG PAGE operation
1510  * @chip: The NAND chip
1511  * @page: page to write
1512  * @offset_in_page: offset within the page
1513  * @buf: buffer containing the data to write to the page
1514  * @len: length of the buffer
1515  *
1516  * This function issues the first half of a PROG PAGE operation.
1517  * This function does not select/unselect the CS line.
1518  *
1519  * Returns 0 on success, a negative error code otherwise.
1520  */
1521 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1522 			    unsigned int offset_in_page, const void *buf,
1523 			    unsigned int len)
1524 {
1525 	struct mtd_info *mtd = nand_to_mtd(chip);
1526 
1527 	if (len && !buf)
1528 		return -EINVAL;
1529 
1530 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1531 		return -EINVAL;
1532 
1533 	if (nand_has_exec_op(chip))
1534 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1535 					      len, false);
1536 
1537 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1538 
1539 	if (buf)
1540 		chip->legacy.write_buf(chip, buf, len);
1541 
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1545 
1546 /**
1547  * nand_prog_page_end_op - ends a PROG PAGE operation
1548  * @chip: The NAND chip
1549  *
1550  * This function issues the second half of a PROG PAGE operation.
1551  * This function does not select/unselect the CS line.
1552  *
1553  * Returns 0 on success, a negative error code otherwise.
1554  */
1555 int nand_prog_page_end_op(struct nand_chip *chip)
1556 {
1557 	int ret;
1558 	u8 status;
1559 
1560 	if (nand_has_exec_op(chip)) {
1561 		const struct nand_sdr_timings *sdr =
1562 			nand_get_sdr_timings(nand_get_interface_config(chip));
1563 		struct nand_op_instr instrs[] = {
1564 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1565 				    PSEC_TO_NSEC(sdr->tWB_max)),
1566 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1567 		};
1568 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1569 
1570 		ret = nand_exec_op(chip, &op);
1571 		if (ret)
1572 			return ret;
1573 
1574 		ret = nand_status_op(chip, &status);
1575 		if (ret)
1576 			return ret;
1577 	} else {
1578 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1579 		ret = chip->legacy.waitfunc(chip);
1580 		if (ret < 0)
1581 			return ret;
1582 
1583 		status = ret;
1584 	}
1585 
1586 	if (status & NAND_STATUS_FAIL)
1587 		return -EIO;
1588 
1589 	return 0;
1590 }
1591 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1592 
1593 /**
1594  * nand_prog_page_op - Do a full PROG PAGE operation
1595  * @chip: The NAND chip
1596  * @page: page to write
1597  * @offset_in_page: offset within the page
1598  * @buf: buffer containing the data to write to the page
1599  * @len: length of the buffer
1600  *
1601  * This function issues a full PROG PAGE operation.
1602  * This function does not select/unselect the CS line.
1603  *
1604  * Returns 0 on success, a negative error code otherwise.
1605  */
1606 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1607 		      unsigned int offset_in_page, const void *buf,
1608 		      unsigned int len)
1609 {
1610 	struct mtd_info *mtd = nand_to_mtd(chip);
1611 	int status;
1612 
1613 	if (!len || !buf)
1614 		return -EINVAL;
1615 
1616 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1617 		return -EINVAL;
1618 
1619 	if (nand_has_exec_op(chip)) {
1620 		status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1621 						len, true);
1622 	} else {
1623 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1624 				     page);
1625 		chip->legacy.write_buf(chip, buf, len);
1626 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1627 		status = chip->legacy.waitfunc(chip);
1628 	}
1629 
1630 	if (status & NAND_STATUS_FAIL)
1631 		return -EIO;
1632 
1633 	return 0;
1634 }
1635 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1636 
1637 /**
1638  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1639  * @chip: The NAND chip
1640  * @offset_in_page: offset within the page
1641  * @buf: buffer containing the data to send to the NAND
1642  * @len: length of the buffer
1643  * @force_8bit: force 8-bit bus access
1644  *
1645  * This function issues a CHANGE WRITE COLUMN operation.
1646  * This function does not select/unselect the CS line.
1647  *
1648  * Returns 0 on success, a negative error code otherwise.
1649  */
1650 int nand_change_write_column_op(struct nand_chip *chip,
1651 				unsigned int offset_in_page,
1652 				const void *buf, unsigned int len,
1653 				bool force_8bit)
1654 {
1655 	struct mtd_info *mtd = nand_to_mtd(chip);
1656 
1657 	if (len && !buf)
1658 		return -EINVAL;
1659 
1660 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1661 		return -EINVAL;
1662 
1663 	/* Small page NANDs do not support column change. */
1664 	if (mtd->writesize <= 512)
1665 		return -ENOTSUPP;
1666 
1667 	if (nand_has_exec_op(chip)) {
1668 		const struct nand_sdr_timings *sdr =
1669 			nand_get_sdr_timings(nand_get_interface_config(chip));
1670 		u8 addrs[2];
1671 		struct nand_op_instr instrs[] = {
1672 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1673 			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1674 			NAND_OP_DATA_OUT(len, buf, 0),
1675 		};
1676 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1677 		int ret;
1678 
1679 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1680 		if (ret < 0)
1681 			return ret;
1682 
1683 		instrs[2].ctx.data.force_8bit = force_8bit;
1684 
1685 		/* Drop the DATA_OUT instruction if len is set to 0. */
1686 		if (!len)
1687 			op.ninstrs--;
1688 
1689 		return nand_exec_op(chip, &op);
1690 	}
1691 
1692 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1693 	if (len)
1694 		chip->legacy.write_buf(chip, buf, len);
1695 
1696 	return 0;
1697 }
1698 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1699 
1700 /**
1701  * nand_readid_op - Do a READID operation
1702  * @chip: The NAND chip
1703  * @addr: address cycle to pass after the READID command
1704  * @buf: buffer used to store the ID
1705  * @len: length of the buffer
1706  *
1707  * This function sends a READID command and reads back the ID returned by the
1708  * NAND.
1709  * This function does not select/unselect the CS line.
1710  *
1711  * Returns 0 on success, a negative error code otherwise.
1712  */
1713 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1714 		   unsigned int len)
1715 {
1716 	unsigned int i;
1717 	u8 *id = buf;
1718 
1719 	if (len && !buf)
1720 		return -EINVAL;
1721 
1722 	if (nand_has_exec_op(chip)) {
1723 		const struct nand_sdr_timings *sdr =
1724 			nand_get_sdr_timings(nand_get_interface_config(chip));
1725 		struct nand_op_instr instrs[] = {
1726 			NAND_OP_CMD(NAND_CMD_READID, 0),
1727 			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1728 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1729 		};
1730 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1731 
1732 		/* Drop the DATA_IN instruction if len is set to 0. */
1733 		if (!len)
1734 			op.ninstrs--;
1735 
1736 		return nand_exec_op(chip, &op);
1737 	}
1738 
1739 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1740 
1741 	for (i = 0; i < len; i++)
1742 		id[i] = chip->legacy.read_byte(chip);
1743 
1744 	return 0;
1745 }
1746 EXPORT_SYMBOL_GPL(nand_readid_op);
1747 
1748 /**
1749  * nand_status_op - Do a STATUS operation
1750  * @chip: The NAND chip
1751  * @status: out variable to store the NAND status
1752  *
1753  * This function sends a STATUS command and reads back the status returned by
1754  * the NAND.
1755  * This function does not select/unselect the CS line.
1756  *
1757  * Returns 0 on success, a negative error code otherwise.
1758  */
1759 int nand_status_op(struct nand_chip *chip, u8 *status)
1760 {
1761 	if (nand_has_exec_op(chip)) {
1762 		const struct nand_sdr_timings *sdr =
1763 			nand_get_sdr_timings(nand_get_interface_config(chip));
1764 		struct nand_op_instr instrs[] = {
1765 			NAND_OP_CMD(NAND_CMD_STATUS,
1766 				    PSEC_TO_NSEC(sdr->tADL_min)),
1767 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1768 		};
1769 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1770 
1771 		if (!status)
1772 			op.ninstrs--;
1773 
1774 		return nand_exec_op(chip, &op);
1775 	}
1776 
1777 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1778 	if (status)
1779 		*status = chip->legacy.read_byte(chip);
1780 
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(nand_status_op);
1784 
1785 /**
1786  * nand_exit_status_op - Exit a STATUS operation
1787  * @chip: The NAND chip
1788  *
1789  * This function sends a READ0 command to cancel the effect of the STATUS
1790  * command to avoid reading only the status until a new read command is sent.
1791  *
1792  * This function does not select/unselect the CS line.
1793  *
1794  * Returns 0 on success, a negative error code otherwise.
1795  */
1796 int nand_exit_status_op(struct nand_chip *chip)
1797 {
1798 	if (nand_has_exec_op(chip)) {
1799 		struct nand_op_instr instrs[] = {
1800 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1801 		};
1802 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1803 
1804 		return nand_exec_op(chip, &op);
1805 	}
1806 
1807 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1808 
1809 	return 0;
1810 }
1811 
1812 /**
1813  * nand_erase_op - Do an erase operation
1814  * @chip: The NAND chip
1815  * @eraseblock: block to erase
1816  *
1817  * This function sends an ERASE command and waits for the NAND to be ready
1818  * before returning.
1819  * This function does not select/unselect the CS line.
1820  *
1821  * Returns 0 on success, a negative error code otherwise.
1822  */
1823 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1824 {
1825 	unsigned int page = eraseblock <<
1826 			    (chip->phys_erase_shift - chip->page_shift);
1827 	int ret;
1828 	u8 status;
1829 
1830 	if (nand_has_exec_op(chip)) {
1831 		const struct nand_sdr_timings *sdr =
1832 			nand_get_sdr_timings(nand_get_interface_config(chip));
1833 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1834 		struct nand_op_instr instrs[] = {
1835 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1836 			NAND_OP_ADDR(2, addrs, 0),
1837 			NAND_OP_CMD(NAND_CMD_ERASE2,
1838 				    PSEC_TO_MSEC(sdr->tWB_max)),
1839 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1840 		};
1841 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1842 
1843 		if (chip->options & NAND_ROW_ADDR_3)
1844 			instrs[1].ctx.addr.naddrs++;
1845 
1846 		ret = nand_exec_op(chip, &op);
1847 		if (ret)
1848 			return ret;
1849 
1850 		ret = nand_status_op(chip, &status);
1851 		if (ret)
1852 			return ret;
1853 	} else {
1854 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1855 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1856 
1857 		ret = chip->legacy.waitfunc(chip);
1858 		if (ret < 0)
1859 			return ret;
1860 
1861 		status = ret;
1862 	}
1863 
1864 	if (status & NAND_STATUS_FAIL)
1865 		return -EIO;
1866 
1867 	return 0;
1868 }
1869 EXPORT_SYMBOL_GPL(nand_erase_op);
1870 
1871 /**
1872  * nand_set_features_op - Do a SET FEATURES operation
1873  * @chip: The NAND chip
1874  * @feature: feature id
1875  * @data: 4 bytes of data
1876  *
1877  * This function sends a SET FEATURES command and waits for the NAND to be
1878  * ready before returning.
1879  * This function does not select/unselect the CS line.
1880  *
1881  * Returns 0 on success, a negative error code otherwise.
1882  */
1883 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1884 				const void *data)
1885 {
1886 	const u8 *params = data;
1887 	int i, ret;
1888 
1889 	if (nand_has_exec_op(chip)) {
1890 		const struct nand_sdr_timings *sdr =
1891 			nand_get_sdr_timings(nand_get_interface_config(chip));
1892 		struct nand_op_instr instrs[] = {
1893 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1894 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1895 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1896 					      PSEC_TO_NSEC(sdr->tWB_max)),
1897 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1898 		};
1899 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1900 
1901 		return nand_exec_op(chip, &op);
1902 	}
1903 
1904 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1905 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1906 		chip->legacy.write_byte(chip, params[i]);
1907 
1908 	ret = chip->legacy.waitfunc(chip);
1909 	if (ret < 0)
1910 		return ret;
1911 
1912 	if (ret & NAND_STATUS_FAIL)
1913 		return -EIO;
1914 
1915 	return 0;
1916 }
1917 
1918 /**
1919  * nand_get_features_op - Do a GET FEATURES operation
1920  * @chip: The NAND chip
1921  * @feature: feature id
1922  * @data: 4 bytes of data
1923  *
1924  * This function sends a GET FEATURES command and waits for the NAND to be
1925  * ready before returning.
1926  * This function does not select/unselect the CS line.
1927  *
1928  * Returns 0 on success, a negative error code otherwise.
1929  */
1930 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1931 				void *data)
1932 {
1933 	u8 *params = data;
1934 	int i;
1935 
1936 	if (nand_has_exec_op(chip)) {
1937 		const struct nand_sdr_timings *sdr =
1938 			nand_get_sdr_timings(nand_get_interface_config(chip));
1939 		struct nand_op_instr instrs[] = {
1940 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1941 			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1942 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1943 					 PSEC_TO_NSEC(sdr->tRR_min)),
1944 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1945 					     data, 0),
1946 		};
1947 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1948 
1949 		return nand_exec_op(chip, &op);
1950 	}
1951 
1952 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1953 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1954 		params[i] = chip->legacy.read_byte(chip);
1955 
1956 	return 0;
1957 }
1958 
1959 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1960 			    unsigned int delay_ns)
1961 {
1962 	if (nand_has_exec_op(chip)) {
1963 		struct nand_op_instr instrs[] = {
1964 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1965 					 PSEC_TO_NSEC(delay_ns)),
1966 		};
1967 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1968 
1969 		return nand_exec_op(chip, &op);
1970 	}
1971 
1972 	/* Apply delay or wait for ready/busy pin */
1973 	if (!chip->legacy.dev_ready)
1974 		udelay(chip->legacy.chip_delay);
1975 	else
1976 		nand_wait_ready(chip);
1977 
1978 	return 0;
1979 }
1980 
1981 /**
1982  * nand_reset_op - Do a reset operation
1983  * @chip: The NAND chip
1984  *
1985  * This function sends a RESET command and waits for the NAND to be ready
1986  * before returning.
1987  * This function does not select/unselect the CS line.
1988  *
1989  * Returns 0 on success, a negative error code otherwise.
1990  */
1991 int nand_reset_op(struct nand_chip *chip)
1992 {
1993 	if (nand_has_exec_op(chip)) {
1994 		const struct nand_sdr_timings *sdr =
1995 			nand_get_sdr_timings(nand_get_interface_config(chip));
1996 		struct nand_op_instr instrs[] = {
1997 			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1998 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1999 		};
2000 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2001 
2002 		return nand_exec_op(chip, &op);
2003 	}
2004 
2005 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2006 
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(nand_reset_op);
2010 
2011 /**
2012  * nand_read_data_op - Read data from the NAND
2013  * @chip: The NAND chip
2014  * @buf: buffer used to store the data
2015  * @len: length of the buffer
2016  * @force_8bit: force 8-bit bus access
2017  * @check_only: do not actually run the command, only checks if the
2018  *              controller driver supports it
2019  *
2020  * This function does a raw data read on the bus. Usually used after launching
2021  * another NAND operation like nand_read_page_op().
2022  * This function does not select/unselect the CS line.
2023  *
2024  * Returns 0 on success, a negative error code otherwise.
2025  */
2026 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2027 		      bool force_8bit, bool check_only)
2028 {
2029 	if (!len || !buf)
2030 		return -EINVAL;
2031 
2032 	if (nand_has_exec_op(chip)) {
2033 		struct nand_op_instr instrs[] = {
2034 			NAND_OP_DATA_IN(len, buf, 0),
2035 		};
2036 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2037 
2038 		instrs[0].ctx.data.force_8bit = force_8bit;
2039 
2040 		if (check_only)
2041 			return nand_check_op(chip, &op);
2042 
2043 		return nand_exec_op(chip, &op);
2044 	}
2045 
2046 	if (check_only)
2047 		return 0;
2048 
2049 	if (force_8bit) {
2050 		u8 *p = buf;
2051 		unsigned int i;
2052 
2053 		for (i = 0; i < len; i++)
2054 			p[i] = chip->legacy.read_byte(chip);
2055 	} else {
2056 		chip->legacy.read_buf(chip, buf, len);
2057 	}
2058 
2059 	return 0;
2060 }
2061 EXPORT_SYMBOL_GPL(nand_read_data_op);
2062 
2063 /**
2064  * nand_write_data_op - Write data from the NAND
2065  * @chip: The NAND chip
2066  * @buf: buffer containing the data to send on the bus
2067  * @len: length of the buffer
2068  * @force_8bit: force 8-bit bus access
2069  *
2070  * This function does a raw data write on the bus. Usually used after launching
2071  * another NAND operation like nand_write_page_begin_op().
2072  * This function does not select/unselect the CS line.
2073  *
2074  * Returns 0 on success, a negative error code otherwise.
2075  */
2076 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2077 		       unsigned int len, bool force_8bit)
2078 {
2079 	if (!len || !buf)
2080 		return -EINVAL;
2081 
2082 	if (nand_has_exec_op(chip)) {
2083 		struct nand_op_instr instrs[] = {
2084 			NAND_OP_DATA_OUT(len, buf, 0),
2085 		};
2086 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2087 
2088 		instrs[0].ctx.data.force_8bit = force_8bit;
2089 
2090 		return nand_exec_op(chip, &op);
2091 	}
2092 
2093 	if (force_8bit) {
2094 		const u8 *p = buf;
2095 		unsigned int i;
2096 
2097 		for (i = 0; i < len; i++)
2098 			chip->legacy.write_byte(chip, p[i]);
2099 	} else {
2100 		chip->legacy.write_buf(chip, buf, len);
2101 	}
2102 
2103 	return 0;
2104 }
2105 EXPORT_SYMBOL_GPL(nand_write_data_op);
2106 
2107 /**
2108  * struct nand_op_parser_ctx - Context used by the parser
2109  * @instrs: array of all the instructions that must be addressed
2110  * @ninstrs: length of the @instrs array
2111  * @subop: Sub-operation to be passed to the NAND controller
2112  *
2113  * This structure is used by the core to split NAND operations into
2114  * sub-operations that can be handled by the NAND controller.
2115  */
2116 struct nand_op_parser_ctx {
2117 	const struct nand_op_instr *instrs;
2118 	unsigned int ninstrs;
2119 	struct nand_subop subop;
2120 };
2121 
2122 /**
2123  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2124  * @pat: the parser pattern element that matches @instr
2125  * @instr: pointer to the instruction to check
2126  * @start_offset: this is an in/out parameter. If @instr has already been
2127  *		  split, then @start_offset is the offset from which to start
2128  *		  (either an address cycle or an offset in the data buffer).
2129  *		  Conversely, if the function returns true (ie. instr must be
2130  *		  split), this parameter is updated to point to the first
2131  *		  data/address cycle that has not been taken care of.
2132  *
2133  * Some NAND controllers are limited and cannot send X address cycles with a
2134  * unique operation, or cannot read/write more than Y bytes at the same time.
2135  * In this case, split the instruction that does not fit in a single
2136  * controller-operation into two or more chunks.
2137  *
2138  * Returns true if the instruction must be split, false otherwise.
2139  * The @start_offset parameter is also updated to the offset at which the next
2140  * bundle of instruction must start (if an address or a data instruction).
2141  */
2142 static bool
2143 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2144 				const struct nand_op_instr *instr,
2145 				unsigned int *start_offset)
2146 {
2147 	switch (pat->type) {
2148 	case NAND_OP_ADDR_INSTR:
2149 		if (!pat->ctx.addr.maxcycles)
2150 			break;
2151 
2152 		if (instr->ctx.addr.naddrs - *start_offset >
2153 		    pat->ctx.addr.maxcycles) {
2154 			*start_offset += pat->ctx.addr.maxcycles;
2155 			return true;
2156 		}
2157 		break;
2158 
2159 	case NAND_OP_DATA_IN_INSTR:
2160 	case NAND_OP_DATA_OUT_INSTR:
2161 		if (!pat->ctx.data.maxlen)
2162 			break;
2163 
2164 		if (instr->ctx.data.len - *start_offset >
2165 		    pat->ctx.data.maxlen) {
2166 			*start_offset += pat->ctx.data.maxlen;
2167 			return true;
2168 		}
2169 		break;
2170 
2171 	default:
2172 		break;
2173 	}
2174 
2175 	return false;
2176 }
2177 
2178 /**
2179  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2180  *			      remaining in the parser context
2181  * @pat: the pattern to test
2182  * @ctx: the parser context structure to match with the pattern @pat
2183  *
2184  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2185  * Returns true if this is the case, false ortherwise. When true is returned,
2186  * @ctx->subop is updated with the set of instructions to be passed to the
2187  * controller driver.
2188  */
2189 static bool
2190 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2191 			 struct nand_op_parser_ctx *ctx)
2192 {
2193 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2194 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2195 	const struct nand_op_instr *instr = ctx->subop.instrs;
2196 	unsigned int i, ninstrs;
2197 
2198 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2199 		/*
2200 		 * The pattern instruction does not match the operation
2201 		 * instruction. If the instruction is marked optional in the
2202 		 * pattern definition, we skip the pattern element and continue
2203 		 * to the next one. If the element is mandatory, there's no
2204 		 * match and we can return false directly.
2205 		 */
2206 		if (instr->type != pat->elems[i].type) {
2207 			if (!pat->elems[i].optional)
2208 				return false;
2209 
2210 			continue;
2211 		}
2212 
2213 		/*
2214 		 * Now check the pattern element constraints. If the pattern is
2215 		 * not able to handle the whole instruction in a single step,
2216 		 * we have to split it.
2217 		 * The last_instr_end_off value comes back updated to point to
2218 		 * the position where we have to split the instruction (the
2219 		 * start of the next subop chunk).
2220 		 */
2221 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2222 						    &instr_offset)) {
2223 			ninstrs++;
2224 			i++;
2225 			break;
2226 		}
2227 
2228 		instr++;
2229 		ninstrs++;
2230 		instr_offset = 0;
2231 	}
2232 
2233 	/*
2234 	 * This can happen if all instructions of a pattern are optional.
2235 	 * Still, if there's not at least one instruction handled by this
2236 	 * pattern, this is not a match, and we should try the next one (if
2237 	 * any).
2238 	 */
2239 	if (!ninstrs)
2240 		return false;
2241 
2242 	/*
2243 	 * We had a match on the pattern head, but the pattern may be longer
2244 	 * than the instructions we're asked to execute. We need to make sure
2245 	 * there's no mandatory elements in the pattern tail.
2246 	 */
2247 	for (; i < pat->nelems; i++) {
2248 		if (!pat->elems[i].optional)
2249 			return false;
2250 	}
2251 
2252 	/*
2253 	 * We have a match: update the subop structure accordingly and return
2254 	 * true.
2255 	 */
2256 	ctx->subop.ninstrs = ninstrs;
2257 	ctx->subop.last_instr_end_off = instr_offset;
2258 
2259 	return true;
2260 }
2261 
2262 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2263 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2264 {
2265 	const struct nand_op_instr *instr;
2266 	char *prefix = "      ";
2267 	unsigned int i;
2268 
2269 	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2270 
2271 	for (i = 0; i < ctx->ninstrs; i++) {
2272 		instr = &ctx->instrs[i];
2273 
2274 		if (instr == &ctx->subop.instrs[0])
2275 			prefix = "    ->";
2276 
2277 		nand_op_trace(prefix, instr);
2278 
2279 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2280 			prefix = "      ";
2281 	}
2282 }
2283 #else
2284 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2285 {
2286 	/* NOP */
2287 }
2288 #endif
2289 
2290 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2291 				  const struct nand_op_parser_ctx *b)
2292 {
2293 	if (a->subop.ninstrs < b->subop.ninstrs)
2294 		return -1;
2295 	else if (a->subop.ninstrs > b->subop.ninstrs)
2296 		return 1;
2297 
2298 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2299 		return -1;
2300 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2301 		return 1;
2302 
2303 	return 0;
2304 }
2305 
2306 /**
2307  * nand_op_parser_exec_op - exec_op parser
2308  * @chip: the NAND chip
2309  * @parser: patterns description provided by the controller driver
2310  * @op: the NAND operation to address
2311  * @check_only: when true, the function only checks if @op can be handled but
2312  *		does not execute the operation
2313  *
2314  * Helper function designed to ease integration of NAND controller drivers that
2315  * only support a limited set of instruction sequences. The supported sequences
2316  * are described in @parser, and the framework takes care of splitting @op into
2317  * multiple sub-operations (if required) and pass them back to the ->exec()
2318  * callback of the matching pattern if @check_only is set to false.
2319  *
2320  * NAND controller drivers should call this function from their own ->exec_op()
2321  * implementation.
2322  *
2323  * Returns 0 on success, a negative error code otherwise. A failure can be
2324  * caused by an unsupported operation (none of the supported patterns is able
2325  * to handle the requested operation), or an error returned by one of the
2326  * matching pattern->exec() hook.
2327  */
2328 int nand_op_parser_exec_op(struct nand_chip *chip,
2329 			   const struct nand_op_parser *parser,
2330 			   const struct nand_operation *op, bool check_only)
2331 {
2332 	struct nand_op_parser_ctx ctx = {
2333 		.subop.cs = op->cs,
2334 		.subop.instrs = op->instrs,
2335 		.instrs = op->instrs,
2336 		.ninstrs = op->ninstrs,
2337 	};
2338 	unsigned int i;
2339 
2340 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2341 		const struct nand_op_parser_pattern *pattern;
2342 		struct nand_op_parser_ctx best_ctx;
2343 		int ret, best_pattern = -1;
2344 
2345 		for (i = 0; i < parser->npatterns; i++) {
2346 			struct nand_op_parser_ctx test_ctx = ctx;
2347 
2348 			pattern = &parser->patterns[i];
2349 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2350 				continue;
2351 
2352 			if (best_pattern >= 0 &&
2353 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2354 				continue;
2355 
2356 			best_pattern = i;
2357 			best_ctx = test_ctx;
2358 		}
2359 
2360 		if (best_pattern < 0) {
2361 			pr_debug("->exec_op() parser: pattern not found!\n");
2362 			return -ENOTSUPP;
2363 		}
2364 
2365 		ctx = best_ctx;
2366 		nand_op_parser_trace(&ctx);
2367 
2368 		if (!check_only) {
2369 			pattern = &parser->patterns[best_pattern];
2370 			ret = pattern->exec(chip, &ctx.subop);
2371 			if (ret)
2372 				return ret;
2373 		}
2374 
2375 		/*
2376 		 * Update the context structure by pointing to the start of the
2377 		 * next subop.
2378 		 */
2379 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2380 		if (ctx.subop.last_instr_end_off)
2381 			ctx.subop.instrs -= 1;
2382 
2383 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2384 	}
2385 
2386 	return 0;
2387 }
2388 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2389 
2390 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2391 {
2392 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2393 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2394 }
2395 
2396 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2397 				      unsigned int instr_idx)
2398 {
2399 	return subop && instr_idx < subop->ninstrs;
2400 }
2401 
2402 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2403 					     unsigned int instr_idx)
2404 {
2405 	if (instr_idx)
2406 		return 0;
2407 
2408 	return subop->first_instr_start_off;
2409 }
2410 
2411 /**
2412  * nand_subop_get_addr_start_off - Get the start offset in an address array
2413  * @subop: The entire sub-operation
2414  * @instr_idx: Index of the instruction inside the sub-operation
2415  *
2416  * During driver development, one could be tempted to directly use the
2417  * ->addr.addrs field of address instructions. This is wrong as address
2418  * instructions might be split.
2419  *
2420  * Given an address instruction, returns the offset of the first cycle to issue.
2421  */
2422 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2423 					   unsigned int instr_idx)
2424 {
2425 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2426 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2427 		return 0;
2428 
2429 	return nand_subop_get_start_off(subop, instr_idx);
2430 }
2431 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2432 
2433 /**
2434  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2435  * @subop: The entire sub-operation
2436  * @instr_idx: Index of the instruction inside the sub-operation
2437  *
2438  * During driver development, one could be tempted to directly use the
2439  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2440  * might be split.
2441  *
2442  * Given an address instruction, returns the number of address cycle to issue.
2443  */
2444 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2445 					 unsigned int instr_idx)
2446 {
2447 	int start_off, end_off;
2448 
2449 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2450 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2451 		return 0;
2452 
2453 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2454 
2455 	if (instr_idx == subop->ninstrs - 1 &&
2456 	    subop->last_instr_end_off)
2457 		end_off = subop->last_instr_end_off;
2458 	else
2459 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2460 
2461 	return end_off - start_off;
2462 }
2463 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2464 
2465 /**
2466  * nand_subop_get_data_start_off - Get the start offset in a data array
2467  * @subop: The entire sub-operation
2468  * @instr_idx: Index of the instruction inside the sub-operation
2469  *
2470  * During driver development, one could be tempted to directly use the
2471  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2472  * instructions might be split.
2473  *
2474  * Given a data instruction, returns the offset to start from.
2475  */
2476 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2477 					   unsigned int instr_idx)
2478 {
2479 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2480 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2481 		return 0;
2482 
2483 	return nand_subop_get_start_off(subop, instr_idx);
2484 }
2485 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2486 
2487 /**
2488  * nand_subop_get_data_len - Get the number of bytes to retrieve
2489  * @subop: The entire sub-operation
2490  * @instr_idx: Index of the instruction inside the sub-operation
2491  *
2492  * During driver development, one could be tempted to directly use the
2493  * ->data->len field of a data instruction. This is wrong as data instructions
2494  * might be split.
2495  *
2496  * Returns the length of the chunk of data to send/receive.
2497  */
2498 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2499 				     unsigned int instr_idx)
2500 {
2501 	int start_off = 0, end_off;
2502 
2503 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2504 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2505 		return 0;
2506 
2507 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2508 
2509 	if (instr_idx == subop->ninstrs - 1 &&
2510 	    subop->last_instr_end_off)
2511 		end_off = subop->last_instr_end_off;
2512 	else
2513 		end_off = subop->instrs[instr_idx].ctx.data.len;
2514 
2515 	return end_off - start_off;
2516 }
2517 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2518 
2519 /**
2520  * nand_reset - Reset and initialize a NAND device
2521  * @chip: The NAND chip
2522  * @chipnr: Internal die id
2523  *
2524  * Save the timings data structure, then apply SDR timings mode 0 (see
2525  * nand_reset_interface for details), do the reset operation, and apply
2526  * back the previous timings.
2527  *
2528  * Returns 0 on success, a negative error code otherwise.
2529  */
2530 int nand_reset(struct nand_chip *chip, int chipnr)
2531 {
2532 	int ret;
2533 
2534 	ret = nand_reset_interface(chip, chipnr);
2535 	if (ret)
2536 		return ret;
2537 
2538 	/*
2539 	 * The CS line has to be released before we can apply the new NAND
2540 	 * interface settings, hence this weird nand_select_target()
2541 	 * nand_deselect_target() dance.
2542 	 */
2543 	nand_select_target(chip, chipnr);
2544 	ret = nand_reset_op(chip);
2545 	nand_deselect_target(chip);
2546 	if (ret)
2547 		return ret;
2548 
2549 	ret = nand_setup_interface(chip, chipnr);
2550 	if (ret)
2551 		return ret;
2552 
2553 	return 0;
2554 }
2555 EXPORT_SYMBOL_GPL(nand_reset);
2556 
2557 /**
2558  * nand_get_features - wrapper to perform a GET_FEATURE
2559  * @chip: NAND chip info structure
2560  * @addr: feature address
2561  * @subfeature_param: the subfeature parameters, a four bytes array
2562  *
2563  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2564  * operation cannot be handled.
2565  */
2566 int nand_get_features(struct nand_chip *chip, int addr,
2567 		      u8 *subfeature_param)
2568 {
2569 	if (!nand_supports_get_features(chip, addr))
2570 		return -ENOTSUPP;
2571 
2572 	if (chip->legacy.get_features)
2573 		return chip->legacy.get_features(chip, addr, subfeature_param);
2574 
2575 	return nand_get_features_op(chip, addr, subfeature_param);
2576 }
2577 
2578 /**
2579  * nand_set_features - wrapper to perform a SET_FEATURE
2580  * @chip: NAND chip info structure
2581  * @addr: feature address
2582  * @subfeature_param: the subfeature parameters, a four bytes array
2583  *
2584  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2585  * operation cannot be handled.
2586  */
2587 int nand_set_features(struct nand_chip *chip, int addr,
2588 		      u8 *subfeature_param)
2589 {
2590 	if (!nand_supports_set_features(chip, addr))
2591 		return -ENOTSUPP;
2592 
2593 	if (chip->legacy.set_features)
2594 		return chip->legacy.set_features(chip, addr, subfeature_param);
2595 
2596 	return nand_set_features_op(chip, addr, subfeature_param);
2597 }
2598 
2599 /**
2600  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2601  * @buf: buffer to test
2602  * @len: buffer length
2603  * @bitflips_threshold: maximum number of bitflips
2604  *
2605  * Check if a buffer contains only 0xff, which means the underlying region
2606  * has been erased and is ready to be programmed.
2607  * The bitflips_threshold specify the maximum number of bitflips before
2608  * considering the region is not erased.
2609  * Note: The logic of this function has been extracted from the memweight
2610  * implementation, except that nand_check_erased_buf function exit before
2611  * testing the whole buffer if the number of bitflips exceed the
2612  * bitflips_threshold value.
2613  *
2614  * Returns a positive number of bitflips less than or equal to
2615  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2616  * threshold.
2617  */
2618 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2619 {
2620 	const unsigned char *bitmap = buf;
2621 	int bitflips = 0;
2622 	int weight;
2623 
2624 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2625 	     len--, bitmap++) {
2626 		weight = hweight8(*bitmap);
2627 		bitflips += BITS_PER_BYTE - weight;
2628 		if (unlikely(bitflips > bitflips_threshold))
2629 			return -EBADMSG;
2630 	}
2631 
2632 	for (; len >= sizeof(long);
2633 	     len -= sizeof(long), bitmap += sizeof(long)) {
2634 		unsigned long d = *((unsigned long *)bitmap);
2635 		if (d == ~0UL)
2636 			continue;
2637 		weight = hweight_long(d);
2638 		bitflips += BITS_PER_LONG - weight;
2639 		if (unlikely(bitflips > bitflips_threshold))
2640 			return -EBADMSG;
2641 	}
2642 
2643 	for (; len > 0; len--, bitmap++) {
2644 		weight = hweight8(*bitmap);
2645 		bitflips += BITS_PER_BYTE - weight;
2646 		if (unlikely(bitflips > bitflips_threshold))
2647 			return -EBADMSG;
2648 	}
2649 
2650 	return bitflips;
2651 }
2652 
2653 /**
2654  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2655  *				 0xff data
2656  * @data: data buffer to test
2657  * @datalen: data length
2658  * @ecc: ECC buffer
2659  * @ecclen: ECC length
2660  * @extraoob: extra OOB buffer
2661  * @extraooblen: extra OOB length
2662  * @bitflips_threshold: maximum number of bitflips
2663  *
2664  * Check if a data buffer and its associated ECC and OOB data contains only
2665  * 0xff pattern, which means the underlying region has been erased and is
2666  * ready to be programmed.
2667  * The bitflips_threshold specify the maximum number of bitflips before
2668  * considering the region as not erased.
2669  *
2670  * Note:
2671  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2672  *    different from the NAND page size. When fixing bitflips, ECC engines will
2673  *    report the number of errors per chunk, and the NAND core infrastructure
2674  *    expect you to return the maximum number of bitflips for the whole page.
2675  *    This is why you should always use this function on a single chunk and
2676  *    not on the whole page. After checking each chunk you should update your
2677  *    max_bitflips value accordingly.
2678  * 2/ When checking for bitflips in erased pages you should not only check
2679  *    the payload data but also their associated ECC data, because a user might
2680  *    have programmed almost all bits to 1 but a few. In this case, we
2681  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2682  *    this case.
2683  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2684  *    data are protected by the ECC engine.
2685  *    It could also be used if you support subpages and want to attach some
2686  *    extra OOB data to an ECC chunk.
2687  *
2688  * Returns a positive number of bitflips less than or equal to
2689  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2690  * threshold. In case of success, the passed buffers are filled with 0xff.
2691  */
2692 int nand_check_erased_ecc_chunk(void *data, int datalen,
2693 				void *ecc, int ecclen,
2694 				void *extraoob, int extraooblen,
2695 				int bitflips_threshold)
2696 {
2697 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2698 
2699 	data_bitflips = nand_check_erased_buf(data, datalen,
2700 					      bitflips_threshold);
2701 	if (data_bitflips < 0)
2702 		return data_bitflips;
2703 
2704 	bitflips_threshold -= data_bitflips;
2705 
2706 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2707 	if (ecc_bitflips < 0)
2708 		return ecc_bitflips;
2709 
2710 	bitflips_threshold -= ecc_bitflips;
2711 
2712 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2713 						  bitflips_threshold);
2714 	if (extraoob_bitflips < 0)
2715 		return extraoob_bitflips;
2716 
2717 	if (data_bitflips)
2718 		memset(data, 0xff, datalen);
2719 
2720 	if (ecc_bitflips)
2721 		memset(ecc, 0xff, ecclen);
2722 
2723 	if (extraoob_bitflips)
2724 		memset(extraoob, 0xff, extraooblen);
2725 
2726 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2727 }
2728 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2729 
2730 /**
2731  * nand_read_page_raw_notsupp - dummy read raw page function
2732  * @chip: nand chip info structure
2733  * @buf: buffer to store read data
2734  * @oob_required: caller requires OOB data read to chip->oob_poi
2735  * @page: page number to read
2736  *
2737  * Returns -ENOTSUPP unconditionally.
2738  */
2739 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2740 			       int oob_required, int page)
2741 {
2742 	return -ENOTSUPP;
2743 }
2744 
2745 /**
2746  * nand_read_page_raw - [INTERN] read raw page data without ecc
2747  * @chip: nand chip info structure
2748  * @buf: buffer to store read data
2749  * @oob_required: caller requires OOB data read to chip->oob_poi
2750  * @page: page number to read
2751  *
2752  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2753  */
2754 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2755 		       int page)
2756 {
2757 	struct mtd_info *mtd = nand_to_mtd(chip);
2758 	int ret;
2759 
2760 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2761 	if (ret)
2762 		return ret;
2763 
2764 	if (oob_required) {
2765 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2766 					false, false);
2767 		if (ret)
2768 			return ret;
2769 	}
2770 
2771 	return 0;
2772 }
2773 EXPORT_SYMBOL(nand_read_page_raw);
2774 
2775 /**
2776  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2777  * @chip: NAND chip info structure
2778  * @buf: buffer to store read data
2779  * @oob_required: caller requires OOB data read to chip->oob_poi
2780  * @page: page number to read
2781  *
2782  * This is a raw page read, ie. without any error detection/correction.
2783  * Monolithic means we are requesting all the relevant data (main plus
2784  * eventually OOB) to be loaded in the NAND cache and sent over the
2785  * bus (from the NAND chip to the NAND controller) in a single
2786  * operation. This is an alternative to nand_read_page_raw(), which
2787  * first reads the main data, and if the OOB data is requested too,
2788  * then reads more data on the bus.
2789  */
2790 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2791 				  int oob_required, int page)
2792 {
2793 	struct mtd_info *mtd = nand_to_mtd(chip);
2794 	unsigned int size = mtd->writesize;
2795 	u8 *read_buf = buf;
2796 	int ret;
2797 
2798 	if (oob_required) {
2799 		size += mtd->oobsize;
2800 
2801 		if (buf != chip->data_buf)
2802 			read_buf = nand_get_data_buf(chip);
2803 	}
2804 
2805 	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2806 	if (ret)
2807 		return ret;
2808 
2809 	if (buf != chip->data_buf)
2810 		memcpy(buf, read_buf, mtd->writesize);
2811 
2812 	return 0;
2813 }
2814 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2815 
2816 /**
2817  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2818  * @chip: nand chip info structure
2819  * @buf: buffer to store read data
2820  * @oob_required: caller requires OOB data read to chip->oob_poi
2821  * @page: page number to read
2822  *
2823  * We need a special oob layout and handling even when OOB isn't used.
2824  */
2825 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2826 				       int oob_required, int page)
2827 {
2828 	struct mtd_info *mtd = nand_to_mtd(chip);
2829 	int eccsize = chip->ecc.size;
2830 	int eccbytes = chip->ecc.bytes;
2831 	uint8_t *oob = chip->oob_poi;
2832 	int steps, size, ret;
2833 
2834 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2835 	if (ret)
2836 		return ret;
2837 
2838 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2839 		ret = nand_read_data_op(chip, buf, eccsize, false, false);
2840 		if (ret)
2841 			return ret;
2842 
2843 		buf += eccsize;
2844 
2845 		if (chip->ecc.prepad) {
2846 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2847 						false, false);
2848 			if (ret)
2849 				return ret;
2850 
2851 			oob += chip->ecc.prepad;
2852 		}
2853 
2854 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2855 		if (ret)
2856 			return ret;
2857 
2858 		oob += eccbytes;
2859 
2860 		if (chip->ecc.postpad) {
2861 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2862 						false, false);
2863 			if (ret)
2864 				return ret;
2865 
2866 			oob += chip->ecc.postpad;
2867 		}
2868 	}
2869 
2870 	size = mtd->oobsize - (oob - chip->oob_poi);
2871 	if (size) {
2872 		ret = nand_read_data_op(chip, oob, size, false, false);
2873 		if (ret)
2874 			return ret;
2875 	}
2876 
2877 	return 0;
2878 }
2879 
2880 /**
2881  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2882  * @chip: nand chip info structure
2883  * @buf: buffer to store read data
2884  * @oob_required: caller requires OOB data read to chip->oob_poi
2885  * @page: page number to read
2886  */
2887 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2888 				int oob_required, int page)
2889 {
2890 	struct mtd_info *mtd = nand_to_mtd(chip);
2891 	int i, eccsize = chip->ecc.size, ret;
2892 	int eccbytes = chip->ecc.bytes;
2893 	int eccsteps = chip->ecc.steps;
2894 	uint8_t *p = buf;
2895 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2896 	uint8_t *ecc_code = chip->ecc.code_buf;
2897 	unsigned int max_bitflips = 0;
2898 
2899 	chip->ecc.read_page_raw(chip, buf, 1, page);
2900 
2901 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2902 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2903 
2904 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2905 					 chip->ecc.total);
2906 	if (ret)
2907 		return ret;
2908 
2909 	eccsteps = chip->ecc.steps;
2910 	p = buf;
2911 
2912 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2913 		int stat;
2914 
2915 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2916 		if (stat < 0) {
2917 			mtd->ecc_stats.failed++;
2918 		} else {
2919 			mtd->ecc_stats.corrected += stat;
2920 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2921 		}
2922 	}
2923 	return max_bitflips;
2924 }
2925 
2926 /**
2927  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2928  * @chip: nand chip info structure
2929  * @data_offs: offset of requested data within the page
2930  * @readlen: data length
2931  * @bufpoi: buffer to store read data
2932  * @page: page number to read
2933  */
2934 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2935 			     uint32_t readlen, uint8_t *bufpoi, int page)
2936 {
2937 	struct mtd_info *mtd = nand_to_mtd(chip);
2938 	int start_step, end_step, num_steps, ret;
2939 	uint8_t *p;
2940 	int data_col_addr, i, gaps = 0;
2941 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2942 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2943 	int index, section = 0;
2944 	unsigned int max_bitflips = 0;
2945 	struct mtd_oob_region oobregion = { };
2946 
2947 	/* Column address within the page aligned to ECC size (256bytes) */
2948 	start_step = data_offs / chip->ecc.size;
2949 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
2950 	num_steps = end_step - start_step + 1;
2951 	index = start_step * chip->ecc.bytes;
2952 
2953 	/* Data size aligned to ECC ecc.size */
2954 	datafrag_len = num_steps * chip->ecc.size;
2955 	eccfrag_len = num_steps * chip->ecc.bytes;
2956 
2957 	data_col_addr = start_step * chip->ecc.size;
2958 	/* If we read not a page aligned data */
2959 	p = bufpoi + data_col_addr;
2960 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2961 	if (ret)
2962 		return ret;
2963 
2964 	/* Calculate ECC */
2965 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2966 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2967 
2968 	/*
2969 	 * The performance is faster if we position offsets according to
2970 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2971 	 */
2972 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2973 	if (ret)
2974 		return ret;
2975 
2976 	if (oobregion.length < eccfrag_len)
2977 		gaps = 1;
2978 
2979 	if (gaps) {
2980 		ret = nand_change_read_column_op(chip, mtd->writesize,
2981 						 chip->oob_poi, mtd->oobsize,
2982 						 false);
2983 		if (ret)
2984 			return ret;
2985 	} else {
2986 		/*
2987 		 * Send the command to read the particular ECC bytes take care
2988 		 * about buswidth alignment in read_buf.
2989 		 */
2990 		aligned_pos = oobregion.offset & ~(busw - 1);
2991 		aligned_len = eccfrag_len;
2992 		if (oobregion.offset & (busw - 1))
2993 			aligned_len++;
2994 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2995 		    (busw - 1))
2996 			aligned_len++;
2997 
2998 		ret = nand_change_read_column_op(chip,
2999 						 mtd->writesize + aligned_pos,
3000 						 &chip->oob_poi[aligned_pos],
3001 						 aligned_len, false);
3002 		if (ret)
3003 			return ret;
3004 	}
3005 
3006 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3007 					 chip->oob_poi, index, eccfrag_len);
3008 	if (ret)
3009 		return ret;
3010 
3011 	p = bufpoi + data_col_addr;
3012 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3013 		int stat;
3014 
3015 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3016 					 &chip->ecc.calc_buf[i]);
3017 		if (stat == -EBADMSG &&
3018 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3019 			/* check for empty pages with bitflips */
3020 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3021 						&chip->ecc.code_buf[i],
3022 						chip->ecc.bytes,
3023 						NULL, 0,
3024 						chip->ecc.strength);
3025 		}
3026 
3027 		if (stat < 0) {
3028 			mtd->ecc_stats.failed++;
3029 		} else {
3030 			mtd->ecc_stats.corrected += stat;
3031 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3032 		}
3033 	}
3034 	return max_bitflips;
3035 }
3036 
3037 /**
3038  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3039  * @chip: nand chip info structure
3040  * @buf: buffer to store read data
3041  * @oob_required: caller requires OOB data read to chip->oob_poi
3042  * @page: page number to read
3043  *
3044  * Not for syndrome calculating ECC controllers which need a special oob layout.
3045  */
3046 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3047 				int oob_required, int page)
3048 {
3049 	struct mtd_info *mtd = nand_to_mtd(chip);
3050 	int i, eccsize = chip->ecc.size, ret;
3051 	int eccbytes = chip->ecc.bytes;
3052 	int eccsteps = chip->ecc.steps;
3053 	uint8_t *p = buf;
3054 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3055 	uint8_t *ecc_code = chip->ecc.code_buf;
3056 	unsigned int max_bitflips = 0;
3057 
3058 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3059 	if (ret)
3060 		return ret;
3061 
3062 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3063 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3064 
3065 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3066 		if (ret)
3067 			return ret;
3068 
3069 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3070 	}
3071 
3072 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3073 				false);
3074 	if (ret)
3075 		return ret;
3076 
3077 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3078 					 chip->ecc.total);
3079 	if (ret)
3080 		return ret;
3081 
3082 	eccsteps = chip->ecc.steps;
3083 	p = buf;
3084 
3085 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3086 		int stat;
3087 
3088 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3089 		if (stat == -EBADMSG &&
3090 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3091 			/* check for empty pages with bitflips */
3092 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3093 						&ecc_code[i], eccbytes,
3094 						NULL, 0,
3095 						chip->ecc.strength);
3096 		}
3097 
3098 		if (stat < 0) {
3099 			mtd->ecc_stats.failed++;
3100 		} else {
3101 			mtd->ecc_stats.corrected += stat;
3102 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3103 		}
3104 	}
3105 	return max_bitflips;
3106 }
3107 
3108 /**
3109  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3110  * @chip: nand chip info structure
3111  * @buf: buffer to store read data
3112  * @oob_required: caller requires OOB data read to chip->oob_poi
3113  * @page: page number to read
3114  *
3115  * The hw generator calculates the error syndrome automatically. Therefore we
3116  * need a special oob layout and handling.
3117  */
3118 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3119 				   int oob_required, int page)
3120 {
3121 	struct mtd_info *mtd = nand_to_mtd(chip);
3122 	int ret, i, eccsize = chip->ecc.size;
3123 	int eccbytes = chip->ecc.bytes;
3124 	int eccsteps = chip->ecc.steps;
3125 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3126 	uint8_t *p = buf;
3127 	uint8_t *oob = chip->oob_poi;
3128 	unsigned int max_bitflips = 0;
3129 
3130 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3131 	if (ret)
3132 		return ret;
3133 
3134 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3135 		int stat;
3136 
3137 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3138 
3139 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3140 		if (ret)
3141 			return ret;
3142 
3143 		if (chip->ecc.prepad) {
3144 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3145 						false, false);
3146 			if (ret)
3147 				return ret;
3148 
3149 			oob += chip->ecc.prepad;
3150 		}
3151 
3152 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3153 
3154 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3155 		if (ret)
3156 			return ret;
3157 
3158 		stat = chip->ecc.correct(chip, p, oob, NULL);
3159 
3160 		oob += eccbytes;
3161 
3162 		if (chip->ecc.postpad) {
3163 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3164 						false, false);
3165 			if (ret)
3166 				return ret;
3167 
3168 			oob += chip->ecc.postpad;
3169 		}
3170 
3171 		if (stat == -EBADMSG &&
3172 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3173 			/* check for empty pages with bitflips */
3174 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3175 							   oob - eccpadbytes,
3176 							   eccpadbytes,
3177 							   NULL, 0,
3178 							   chip->ecc.strength);
3179 		}
3180 
3181 		if (stat < 0) {
3182 			mtd->ecc_stats.failed++;
3183 		} else {
3184 			mtd->ecc_stats.corrected += stat;
3185 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3186 		}
3187 	}
3188 
3189 	/* Calculate remaining oob bytes */
3190 	i = mtd->oobsize - (oob - chip->oob_poi);
3191 	if (i) {
3192 		ret = nand_read_data_op(chip, oob, i, false, false);
3193 		if (ret)
3194 			return ret;
3195 	}
3196 
3197 	return max_bitflips;
3198 }
3199 
3200 /**
3201  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3202  * @chip: NAND chip object
3203  * @oob: oob destination address
3204  * @ops: oob ops structure
3205  * @len: size of oob to transfer
3206  */
3207 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3208 				  struct mtd_oob_ops *ops, size_t len)
3209 {
3210 	struct mtd_info *mtd = nand_to_mtd(chip);
3211 	int ret;
3212 
3213 	switch (ops->mode) {
3214 
3215 	case MTD_OPS_PLACE_OOB:
3216 	case MTD_OPS_RAW:
3217 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3218 		return oob + len;
3219 
3220 	case MTD_OPS_AUTO_OOB:
3221 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3222 						  ops->ooboffs, len);
3223 		BUG_ON(ret);
3224 		return oob + len;
3225 
3226 	default:
3227 		BUG();
3228 	}
3229 	return NULL;
3230 }
3231 
3232 /**
3233  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3234  * @chip: NAND chip object
3235  * @retry_mode: the retry mode to use
3236  *
3237  * Some vendors supply a special command to shift the Vt threshold, to be used
3238  * when there are too many bitflips in a page (i.e., ECC error). After setting
3239  * a new threshold, the host should retry reading the page.
3240  */
3241 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3242 {
3243 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3244 
3245 	if (retry_mode >= chip->read_retries)
3246 		return -EINVAL;
3247 
3248 	if (!chip->ops.setup_read_retry)
3249 		return -EOPNOTSUPP;
3250 
3251 	return chip->ops.setup_read_retry(chip, retry_mode);
3252 }
3253 
3254 static void nand_wait_readrdy(struct nand_chip *chip)
3255 {
3256 	const struct nand_sdr_timings *sdr;
3257 
3258 	if (!(chip->options & NAND_NEED_READRDY))
3259 		return;
3260 
3261 	sdr = nand_get_sdr_timings(nand_get_interface_config(chip));
3262 	WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
3263 }
3264 
3265 /**
3266  * nand_do_read_ops - [INTERN] Read data with ECC
3267  * @chip: NAND chip object
3268  * @from: offset to read from
3269  * @ops: oob ops structure
3270  *
3271  * Internal function. Called with chip held.
3272  */
3273 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3274 			    struct mtd_oob_ops *ops)
3275 {
3276 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3277 	struct mtd_info *mtd = nand_to_mtd(chip);
3278 	int ret = 0;
3279 	uint32_t readlen = ops->len;
3280 	uint32_t oobreadlen = ops->ooblen;
3281 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3282 
3283 	uint8_t *bufpoi, *oob, *buf;
3284 	int use_bounce_buf;
3285 	unsigned int max_bitflips = 0;
3286 	int retry_mode = 0;
3287 	bool ecc_fail = false;
3288 
3289 	chipnr = (int)(from >> chip->chip_shift);
3290 	nand_select_target(chip, chipnr);
3291 
3292 	realpage = (int)(from >> chip->page_shift);
3293 	page = realpage & chip->pagemask;
3294 
3295 	col = (int)(from & (mtd->writesize - 1));
3296 
3297 	buf = ops->datbuf;
3298 	oob = ops->oobbuf;
3299 	oob_required = oob ? 1 : 0;
3300 
3301 	while (1) {
3302 		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3303 
3304 		bytes = min(mtd->writesize - col, readlen);
3305 		aligned = (bytes == mtd->writesize);
3306 
3307 		if (!aligned)
3308 			use_bounce_buf = 1;
3309 		else if (chip->options & NAND_USES_DMA)
3310 			use_bounce_buf = !virt_addr_valid(buf) ||
3311 					 !IS_ALIGNED((unsigned long)buf,
3312 						     chip->buf_align);
3313 		else
3314 			use_bounce_buf = 0;
3315 
3316 		/* Is the current page in the buffer? */
3317 		if (realpage != chip->pagecache.page || oob) {
3318 			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3319 
3320 			if (use_bounce_buf && aligned)
3321 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3322 						 __func__, buf);
3323 
3324 read_retry:
3325 			/*
3326 			 * Now read the page into the buffer.  Absent an error,
3327 			 * the read methods return max bitflips per ecc step.
3328 			 */
3329 			if (unlikely(ops->mode == MTD_OPS_RAW))
3330 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3331 							      oob_required,
3332 							      page);
3333 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3334 				 !oob)
3335 				ret = chip->ecc.read_subpage(chip, col, bytes,
3336 							     bufpoi, page);
3337 			else
3338 				ret = chip->ecc.read_page(chip, bufpoi,
3339 							  oob_required, page);
3340 			if (ret < 0) {
3341 				if (use_bounce_buf)
3342 					/* Invalidate page cache */
3343 					chip->pagecache.page = -1;
3344 				break;
3345 			}
3346 
3347 			/*
3348 			 * Copy back the data in the initial buffer when reading
3349 			 * partial pages or when a bounce buffer is required.
3350 			 */
3351 			if (use_bounce_buf) {
3352 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3353 				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3354 				    (ops->mode != MTD_OPS_RAW)) {
3355 					chip->pagecache.page = realpage;
3356 					chip->pagecache.bitflips = ret;
3357 				} else {
3358 					/* Invalidate page cache */
3359 					chip->pagecache.page = -1;
3360 				}
3361 				memcpy(buf, bufpoi + col, bytes);
3362 			}
3363 
3364 			if (unlikely(oob)) {
3365 				int toread = min(oobreadlen, max_oobsize);
3366 
3367 				if (toread) {
3368 					oob = nand_transfer_oob(chip, oob, ops,
3369 								toread);
3370 					oobreadlen -= toread;
3371 				}
3372 			}
3373 
3374 			nand_wait_readrdy(chip);
3375 
3376 			if (mtd->ecc_stats.failed - ecc_stats.failed) {
3377 				if (retry_mode + 1 < chip->read_retries) {
3378 					retry_mode++;
3379 					ret = nand_setup_read_retry(chip,
3380 							retry_mode);
3381 					if (ret < 0)
3382 						break;
3383 
3384 					/* Reset ecc_stats; retry */
3385 					mtd->ecc_stats = ecc_stats;
3386 					goto read_retry;
3387 				} else {
3388 					/* No more retry modes; real failure */
3389 					ecc_fail = true;
3390 				}
3391 			}
3392 
3393 			buf += bytes;
3394 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3395 		} else {
3396 			memcpy(buf, chip->data_buf + col, bytes);
3397 			buf += bytes;
3398 			max_bitflips = max_t(unsigned int, max_bitflips,
3399 					     chip->pagecache.bitflips);
3400 		}
3401 
3402 		readlen -= bytes;
3403 
3404 		/* Reset to retry mode 0 */
3405 		if (retry_mode) {
3406 			ret = nand_setup_read_retry(chip, 0);
3407 			if (ret < 0)
3408 				break;
3409 			retry_mode = 0;
3410 		}
3411 
3412 		if (!readlen)
3413 			break;
3414 
3415 		/* For subsequent reads align to page boundary */
3416 		col = 0;
3417 		/* Increment page address */
3418 		realpage++;
3419 
3420 		page = realpage & chip->pagemask;
3421 		/* Check, if we cross a chip boundary */
3422 		if (!page) {
3423 			chipnr++;
3424 			nand_deselect_target(chip);
3425 			nand_select_target(chip, chipnr);
3426 		}
3427 	}
3428 	nand_deselect_target(chip);
3429 
3430 	ops->retlen = ops->len - (size_t) readlen;
3431 	if (oob)
3432 		ops->oobretlen = ops->ooblen - oobreadlen;
3433 
3434 	if (ret < 0)
3435 		return ret;
3436 
3437 	if (ecc_fail)
3438 		return -EBADMSG;
3439 
3440 	return max_bitflips;
3441 }
3442 
3443 /**
3444  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3445  * @chip: nand chip info structure
3446  * @page: page number to read
3447  */
3448 int nand_read_oob_std(struct nand_chip *chip, int page)
3449 {
3450 	struct mtd_info *mtd = nand_to_mtd(chip);
3451 
3452 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3453 }
3454 EXPORT_SYMBOL(nand_read_oob_std);
3455 
3456 /**
3457  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3458  *			    with syndromes
3459  * @chip: nand chip info structure
3460  * @page: page number to read
3461  */
3462 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3463 {
3464 	struct mtd_info *mtd = nand_to_mtd(chip);
3465 	int length = mtd->oobsize;
3466 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3467 	int eccsize = chip->ecc.size;
3468 	uint8_t *bufpoi = chip->oob_poi;
3469 	int i, toread, sndrnd = 0, pos, ret;
3470 
3471 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3472 	if (ret)
3473 		return ret;
3474 
3475 	for (i = 0; i < chip->ecc.steps; i++) {
3476 		if (sndrnd) {
3477 			int ret;
3478 
3479 			pos = eccsize + i * (eccsize + chunk);
3480 			if (mtd->writesize > 512)
3481 				ret = nand_change_read_column_op(chip, pos,
3482 								 NULL, 0,
3483 								 false);
3484 			else
3485 				ret = nand_read_page_op(chip, page, pos, NULL,
3486 							0);
3487 
3488 			if (ret)
3489 				return ret;
3490 		} else
3491 			sndrnd = 1;
3492 		toread = min_t(int, length, chunk);
3493 
3494 		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3495 		if (ret)
3496 			return ret;
3497 
3498 		bufpoi += toread;
3499 		length -= toread;
3500 	}
3501 	if (length > 0) {
3502 		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3503 		if (ret)
3504 			return ret;
3505 	}
3506 
3507 	return 0;
3508 }
3509 
3510 /**
3511  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3512  * @chip: nand chip info structure
3513  * @page: page number to write
3514  */
3515 int nand_write_oob_std(struct nand_chip *chip, int page)
3516 {
3517 	struct mtd_info *mtd = nand_to_mtd(chip);
3518 
3519 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3520 				 mtd->oobsize);
3521 }
3522 EXPORT_SYMBOL(nand_write_oob_std);
3523 
3524 /**
3525  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3526  *			     with syndrome - only for large page flash
3527  * @chip: nand chip info structure
3528  * @page: page number to write
3529  */
3530 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3531 {
3532 	struct mtd_info *mtd = nand_to_mtd(chip);
3533 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3534 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3535 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3536 	const uint8_t *bufpoi = chip->oob_poi;
3537 
3538 	/*
3539 	 * data-ecc-data-ecc ... ecc-oob
3540 	 * or
3541 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3542 	 */
3543 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3544 		pos = steps * (eccsize + chunk);
3545 		steps = 0;
3546 	} else
3547 		pos = eccsize;
3548 
3549 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3550 	if (ret)
3551 		return ret;
3552 
3553 	for (i = 0; i < steps; i++) {
3554 		if (sndcmd) {
3555 			if (mtd->writesize <= 512) {
3556 				uint32_t fill = 0xFFFFFFFF;
3557 
3558 				len = eccsize;
3559 				while (len > 0) {
3560 					int num = min_t(int, len, 4);
3561 
3562 					ret = nand_write_data_op(chip, &fill,
3563 								 num, false);
3564 					if (ret)
3565 						return ret;
3566 
3567 					len -= num;
3568 				}
3569 			} else {
3570 				pos = eccsize + i * (eccsize + chunk);
3571 				ret = nand_change_write_column_op(chip, pos,
3572 								  NULL, 0,
3573 								  false);
3574 				if (ret)
3575 					return ret;
3576 			}
3577 		} else
3578 			sndcmd = 1;
3579 		len = min_t(int, length, chunk);
3580 
3581 		ret = nand_write_data_op(chip, bufpoi, len, false);
3582 		if (ret)
3583 			return ret;
3584 
3585 		bufpoi += len;
3586 		length -= len;
3587 	}
3588 	if (length > 0) {
3589 		ret = nand_write_data_op(chip, bufpoi, length, false);
3590 		if (ret)
3591 			return ret;
3592 	}
3593 
3594 	return nand_prog_page_end_op(chip);
3595 }
3596 
3597 /**
3598  * nand_do_read_oob - [INTERN] NAND read out-of-band
3599  * @chip: NAND chip object
3600  * @from: offset to read from
3601  * @ops: oob operations description structure
3602  *
3603  * NAND read out-of-band data from the spare area.
3604  */
3605 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3606 			    struct mtd_oob_ops *ops)
3607 {
3608 	struct mtd_info *mtd = nand_to_mtd(chip);
3609 	unsigned int max_bitflips = 0;
3610 	int page, realpage, chipnr;
3611 	struct mtd_ecc_stats stats;
3612 	int readlen = ops->ooblen;
3613 	int len;
3614 	uint8_t *buf = ops->oobbuf;
3615 	int ret = 0;
3616 
3617 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3618 			__func__, (unsigned long long)from, readlen);
3619 
3620 	stats = mtd->ecc_stats;
3621 
3622 	len = mtd_oobavail(mtd, ops);
3623 
3624 	chipnr = (int)(from >> chip->chip_shift);
3625 	nand_select_target(chip, chipnr);
3626 
3627 	/* Shift to get page */
3628 	realpage = (int)(from >> chip->page_shift);
3629 	page = realpage & chip->pagemask;
3630 
3631 	while (1) {
3632 		if (ops->mode == MTD_OPS_RAW)
3633 			ret = chip->ecc.read_oob_raw(chip, page);
3634 		else
3635 			ret = chip->ecc.read_oob(chip, page);
3636 
3637 		if (ret < 0)
3638 			break;
3639 
3640 		len = min(len, readlen);
3641 		buf = nand_transfer_oob(chip, buf, ops, len);
3642 
3643 		nand_wait_readrdy(chip);
3644 
3645 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3646 
3647 		readlen -= len;
3648 		if (!readlen)
3649 			break;
3650 
3651 		/* Increment page address */
3652 		realpage++;
3653 
3654 		page = realpage & chip->pagemask;
3655 		/* Check, if we cross a chip boundary */
3656 		if (!page) {
3657 			chipnr++;
3658 			nand_deselect_target(chip);
3659 			nand_select_target(chip, chipnr);
3660 		}
3661 	}
3662 	nand_deselect_target(chip);
3663 
3664 	ops->oobretlen = ops->ooblen - readlen;
3665 
3666 	if (ret < 0)
3667 		return ret;
3668 
3669 	if (mtd->ecc_stats.failed - stats.failed)
3670 		return -EBADMSG;
3671 
3672 	return max_bitflips;
3673 }
3674 
3675 /**
3676  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3677  * @mtd: MTD device structure
3678  * @from: offset to read from
3679  * @ops: oob operation description structure
3680  *
3681  * NAND read data and/or out-of-band data.
3682  */
3683 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3684 			 struct mtd_oob_ops *ops)
3685 {
3686 	struct nand_chip *chip = mtd_to_nand(mtd);
3687 	int ret;
3688 
3689 	ops->retlen = 0;
3690 
3691 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3692 	    ops->mode != MTD_OPS_AUTO_OOB &&
3693 	    ops->mode != MTD_OPS_RAW)
3694 		return -ENOTSUPP;
3695 
3696 	ret = nand_get_device(chip);
3697 	if (ret)
3698 		return ret;
3699 
3700 	if (!ops->datbuf)
3701 		ret = nand_do_read_oob(chip, from, ops);
3702 	else
3703 		ret = nand_do_read_ops(chip, from, ops);
3704 
3705 	nand_release_device(chip);
3706 	return ret;
3707 }
3708 
3709 /**
3710  * nand_write_page_raw_notsupp - dummy raw page write function
3711  * @chip: nand chip info structure
3712  * @buf: data buffer
3713  * @oob_required: must write chip->oob_poi to OOB
3714  * @page: page number to write
3715  *
3716  * Returns -ENOTSUPP unconditionally.
3717  */
3718 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3719 				int oob_required, int page)
3720 {
3721 	return -ENOTSUPP;
3722 }
3723 
3724 /**
3725  * nand_write_page_raw - [INTERN] raw page write function
3726  * @chip: nand chip info structure
3727  * @buf: data buffer
3728  * @oob_required: must write chip->oob_poi to OOB
3729  * @page: page number to write
3730  *
3731  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3732  */
3733 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3734 			int oob_required, int page)
3735 {
3736 	struct mtd_info *mtd = nand_to_mtd(chip);
3737 	int ret;
3738 
3739 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3740 	if (ret)
3741 		return ret;
3742 
3743 	if (oob_required) {
3744 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3745 					 false);
3746 		if (ret)
3747 			return ret;
3748 	}
3749 
3750 	return nand_prog_page_end_op(chip);
3751 }
3752 EXPORT_SYMBOL(nand_write_page_raw);
3753 
3754 /**
3755  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3756  * @chip: NAND chip info structure
3757  * @buf: data buffer to write
3758  * @oob_required: must write chip->oob_poi to OOB
3759  * @page: page number to write
3760  *
3761  * This is a raw page write, ie. without any error detection/correction.
3762  * Monolithic means we are requesting all the relevant data (main plus
3763  * eventually OOB) to be sent over the bus and effectively programmed
3764  * into the NAND chip arrays in a single operation. This is an
3765  * alternative to nand_write_page_raw(), which first sends the main
3766  * data, then eventually send the OOB data by latching more data
3767  * cycles on the NAND bus, and finally sends the program command to
3768  * synchronyze the NAND chip cache.
3769  */
3770 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
3771 				   int oob_required, int page)
3772 {
3773 	struct mtd_info *mtd = nand_to_mtd(chip);
3774 	unsigned int size = mtd->writesize;
3775 	u8 *write_buf = (u8 *)buf;
3776 
3777 	if (oob_required) {
3778 		size += mtd->oobsize;
3779 
3780 		if (buf != chip->data_buf) {
3781 			write_buf = nand_get_data_buf(chip);
3782 			memcpy(write_buf, buf, mtd->writesize);
3783 		}
3784 	}
3785 
3786 	return nand_prog_page_op(chip, page, 0, write_buf, size);
3787 }
3788 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
3789 
3790 /**
3791  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3792  * @chip: nand chip info structure
3793  * @buf: data buffer
3794  * @oob_required: must write chip->oob_poi to OOB
3795  * @page: page number to write
3796  *
3797  * We need a special oob layout and handling even when ECC isn't checked.
3798  */
3799 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3800 					const uint8_t *buf, int oob_required,
3801 					int page)
3802 {
3803 	struct mtd_info *mtd = nand_to_mtd(chip);
3804 	int eccsize = chip->ecc.size;
3805 	int eccbytes = chip->ecc.bytes;
3806 	uint8_t *oob = chip->oob_poi;
3807 	int steps, size, ret;
3808 
3809 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3810 	if (ret)
3811 		return ret;
3812 
3813 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3814 		ret = nand_write_data_op(chip, buf, eccsize, false);
3815 		if (ret)
3816 			return ret;
3817 
3818 		buf += eccsize;
3819 
3820 		if (chip->ecc.prepad) {
3821 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3822 						 false);
3823 			if (ret)
3824 				return ret;
3825 
3826 			oob += chip->ecc.prepad;
3827 		}
3828 
3829 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3830 		if (ret)
3831 			return ret;
3832 
3833 		oob += eccbytes;
3834 
3835 		if (chip->ecc.postpad) {
3836 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3837 						 false);
3838 			if (ret)
3839 				return ret;
3840 
3841 			oob += chip->ecc.postpad;
3842 		}
3843 	}
3844 
3845 	size = mtd->oobsize - (oob - chip->oob_poi);
3846 	if (size) {
3847 		ret = nand_write_data_op(chip, oob, size, false);
3848 		if (ret)
3849 			return ret;
3850 	}
3851 
3852 	return nand_prog_page_end_op(chip);
3853 }
3854 /**
3855  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3856  * @chip: nand chip info structure
3857  * @buf: data buffer
3858  * @oob_required: must write chip->oob_poi to OOB
3859  * @page: page number to write
3860  */
3861 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3862 				 int oob_required, int page)
3863 {
3864 	struct mtd_info *mtd = nand_to_mtd(chip);
3865 	int i, eccsize = chip->ecc.size, ret;
3866 	int eccbytes = chip->ecc.bytes;
3867 	int eccsteps = chip->ecc.steps;
3868 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3869 	const uint8_t *p = buf;
3870 
3871 	/* Software ECC calculation */
3872 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3873 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3874 
3875 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3876 					 chip->ecc.total);
3877 	if (ret)
3878 		return ret;
3879 
3880 	return chip->ecc.write_page_raw(chip, buf, 1, page);
3881 }
3882 
3883 /**
3884  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3885  * @chip: nand chip info structure
3886  * @buf: data buffer
3887  * @oob_required: must write chip->oob_poi to OOB
3888  * @page: page number to write
3889  */
3890 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3891 				 int oob_required, int page)
3892 {
3893 	struct mtd_info *mtd = nand_to_mtd(chip);
3894 	int i, eccsize = chip->ecc.size, ret;
3895 	int eccbytes = chip->ecc.bytes;
3896 	int eccsteps = chip->ecc.steps;
3897 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3898 	const uint8_t *p = buf;
3899 
3900 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3901 	if (ret)
3902 		return ret;
3903 
3904 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3905 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3906 
3907 		ret = nand_write_data_op(chip, p, eccsize, false);
3908 		if (ret)
3909 			return ret;
3910 
3911 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3912 	}
3913 
3914 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3915 					 chip->ecc.total);
3916 	if (ret)
3917 		return ret;
3918 
3919 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3920 	if (ret)
3921 		return ret;
3922 
3923 	return nand_prog_page_end_op(chip);
3924 }
3925 
3926 
3927 /**
3928  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3929  * @chip:	nand chip info structure
3930  * @offset:	column address of subpage within the page
3931  * @data_len:	data length
3932  * @buf:	data buffer
3933  * @oob_required: must write chip->oob_poi to OOB
3934  * @page: page number to write
3935  */
3936 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3937 				    uint32_t data_len, const uint8_t *buf,
3938 				    int oob_required, int page)
3939 {
3940 	struct mtd_info *mtd = nand_to_mtd(chip);
3941 	uint8_t *oob_buf  = chip->oob_poi;
3942 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3943 	int ecc_size      = chip->ecc.size;
3944 	int ecc_bytes     = chip->ecc.bytes;
3945 	int ecc_steps     = chip->ecc.steps;
3946 	uint32_t start_step = offset / ecc_size;
3947 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
3948 	int oob_bytes       = mtd->oobsize / ecc_steps;
3949 	int step, ret;
3950 
3951 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3952 	if (ret)
3953 		return ret;
3954 
3955 	for (step = 0; step < ecc_steps; step++) {
3956 		/* configure controller for WRITE access */
3957 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3958 
3959 		/* write data (untouched subpages already masked by 0xFF) */
3960 		ret = nand_write_data_op(chip, buf, ecc_size, false);
3961 		if (ret)
3962 			return ret;
3963 
3964 		/* mask ECC of un-touched subpages by padding 0xFF */
3965 		if ((step < start_step) || (step > end_step))
3966 			memset(ecc_calc, 0xff, ecc_bytes);
3967 		else
3968 			chip->ecc.calculate(chip, buf, ecc_calc);
3969 
3970 		/* mask OOB of un-touched subpages by padding 0xFF */
3971 		/* if oob_required, preserve OOB metadata of written subpage */
3972 		if (!oob_required || (step < start_step) || (step > end_step))
3973 			memset(oob_buf, 0xff, oob_bytes);
3974 
3975 		buf += ecc_size;
3976 		ecc_calc += ecc_bytes;
3977 		oob_buf  += oob_bytes;
3978 	}
3979 
3980 	/* copy calculated ECC for whole page to chip->buffer->oob */
3981 	/* this include masked-value(0xFF) for unwritten subpages */
3982 	ecc_calc = chip->ecc.calc_buf;
3983 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3984 					 chip->ecc.total);
3985 	if (ret)
3986 		return ret;
3987 
3988 	/* write OOB buffer to NAND device */
3989 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3990 	if (ret)
3991 		return ret;
3992 
3993 	return nand_prog_page_end_op(chip);
3994 }
3995 
3996 
3997 /**
3998  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3999  * @chip: nand chip info structure
4000  * @buf: data buffer
4001  * @oob_required: must write chip->oob_poi to OOB
4002  * @page: page number to write
4003  *
4004  * The hw generator calculates the error syndrome automatically. Therefore we
4005  * need a special oob layout and handling.
4006  */
4007 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4008 				    int oob_required, int page)
4009 {
4010 	struct mtd_info *mtd = nand_to_mtd(chip);
4011 	int i, eccsize = chip->ecc.size;
4012 	int eccbytes = chip->ecc.bytes;
4013 	int eccsteps = chip->ecc.steps;
4014 	const uint8_t *p = buf;
4015 	uint8_t *oob = chip->oob_poi;
4016 	int ret;
4017 
4018 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4019 	if (ret)
4020 		return ret;
4021 
4022 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4023 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4024 
4025 		ret = nand_write_data_op(chip, p, eccsize, false);
4026 		if (ret)
4027 			return ret;
4028 
4029 		if (chip->ecc.prepad) {
4030 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4031 						 false);
4032 			if (ret)
4033 				return ret;
4034 
4035 			oob += chip->ecc.prepad;
4036 		}
4037 
4038 		chip->ecc.calculate(chip, p, oob);
4039 
4040 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4041 		if (ret)
4042 			return ret;
4043 
4044 		oob += eccbytes;
4045 
4046 		if (chip->ecc.postpad) {
4047 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4048 						 false);
4049 			if (ret)
4050 				return ret;
4051 
4052 			oob += chip->ecc.postpad;
4053 		}
4054 	}
4055 
4056 	/* Calculate remaining oob bytes */
4057 	i = mtd->oobsize - (oob - chip->oob_poi);
4058 	if (i) {
4059 		ret = nand_write_data_op(chip, oob, i, false);
4060 		if (ret)
4061 			return ret;
4062 	}
4063 
4064 	return nand_prog_page_end_op(chip);
4065 }
4066 
4067 /**
4068  * nand_write_page - write one page
4069  * @chip: NAND chip descriptor
4070  * @offset: address offset within the page
4071  * @data_len: length of actual data to be written
4072  * @buf: the data to write
4073  * @oob_required: must write chip->oob_poi to OOB
4074  * @page: page number to write
4075  * @raw: use _raw version of write_page
4076  */
4077 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4078 			   int data_len, const uint8_t *buf, int oob_required,
4079 			   int page, int raw)
4080 {
4081 	struct mtd_info *mtd = nand_to_mtd(chip);
4082 	int status, subpage;
4083 
4084 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4085 		chip->ecc.write_subpage)
4086 		subpage = offset || (data_len < mtd->writesize);
4087 	else
4088 		subpage = 0;
4089 
4090 	if (unlikely(raw))
4091 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
4092 						  page);
4093 	else if (subpage)
4094 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4095 						 oob_required, page);
4096 	else
4097 		status = chip->ecc.write_page(chip, buf, oob_required, page);
4098 
4099 	if (status < 0)
4100 		return status;
4101 
4102 	return 0;
4103 }
4104 
4105 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4106 
4107 /**
4108  * nand_do_write_ops - [INTERN] NAND write with ECC
4109  * @chip: NAND chip object
4110  * @to: offset to write to
4111  * @ops: oob operations description structure
4112  *
4113  * NAND write with ECC.
4114  */
4115 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4116 			     struct mtd_oob_ops *ops)
4117 {
4118 	struct mtd_info *mtd = nand_to_mtd(chip);
4119 	int chipnr, realpage, page, column;
4120 	uint32_t writelen = ops->len;
4121 
4122 	uint32_t oobwritelen = ops->ooblen;
4123 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4124 
4125 	uint8_t *oob = ops->oobbuf;
4126 	uint8_t *buf = ops->datbuf;
4127 	int ret;
4128 	int oob_required = oob ? 1 : 0;
4129 
4130 	ops->retlen = 0;
4131 	if (!writelen)
4132 		return 0;
4133 
4134 	/* Reject writes, which are not page aligned */
4135 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4136 		pr_notice("%s: attempt to write non page aligned data\n",
4137 			   __func__);
4138 		return -EINVAL;
4139 	}
4140 
4141 	column = to & (mtd->writesize - 1);
4142 
4143 	chipnr = (int)(to >> chip->chip_shift);
4144 	nand_select_target(chip, chipnr);
4145 
4146 	/* Check, if it is write protected */
4147 	if (nand_check_wp(chip)) {
4148 		ret = -EIO;
4149 		goto err_out;
4150 	}
4151 
4152 	realpage = (int)(to >> chip->page_shift);
4153 	page = realpage & chip->pagemask;
4154 
4155 	/* Invalidate the page cache, when we write to the cached page */
4156 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4157 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4158 		chip->pagecache.page = -1;
4159 
4160 	/* Don't allow multipage oob writes with offset */
4161 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4162 		ret = -EINVAL;
4163 		goto err_out;
4164 	}
4165 
4166 	while (1) {
4167 		int bytes = mtd->writesize;
4168 		uint8_t *wbuf = buf;
4169 		int use_bounce_buf;
4170 		int part_pagewr = (column || writelen < mtd->writesize);
4171 
4172 		if (part_pagewr)
4173 			use_bounce_buf = 1;
4174 		else if (chip->options & NAND_USES_DMA)
4175 			use_bounce_buf = !virt_addr_valid(buf) ||
4176 					 !IS_ALIGNED((unsigned long)buf,
4177 						     chip->buf_align);
4178 		else
4179 			use_bounce_buf = 0;
4180 
4181 		/*
4182 		 * Copy the data from the initial buffer when doing partial page
4183 		 * writes or when a bounce buffer is required.
4184 		 */
4185 		if (use_bounce_buf) {
4186 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4187 					 __func__, buf);
4188 			if (part_pagewr)
4189 				bytes = min_t(int, bytes - column, writelen);
4190 			wbuf = nand_get_data_buf(chip);
4191 			memset(wbuf, 0xff, mtd->writesize);
4192 			memcpy(&wbuf[column], buf, bytes);
4193 		}
4194 
4195 		if (unlikely(oob)) {
4196 			size_t len = min(oobwritelen, oobmaxlen);
4197 			oob = nand_fill_oob(chip, oob, len, ops);
4198 			oobwritelen -= len;
4199 		} else {
4200 			/* We still need to erase leftover OOB data */
4201 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4202 		}
4203 
4204 		ret = nand_write_page(chip, column, bytes, wbuf,
4205 				      oob_required, page,
4206 				      (ops->mode == MTD_OPS_RAW));
4207 		if (ret)
4208 			break;
4209 
4210 		writelen -= bytes;
4211 		if (!writelen)
4212 			break;
4213 
4214 		column = 0;
4215 		buf += bytes;
4216 		realpage++;
4217 
4218 		page = realpage & chip->pagemask;
4219 		/* Check, if we cross a chip boundary */
4220 		if (!page) {
4221 			chipnr++;
4222 			nand_deselect_target(chip);
4223 			nand_select_target(chip, chipnr);
4224 		}
4225 	}
4226 
4227 	ops->retlen = ops->len - writelen;
4228 	if (unlikely(oob))
4229 		ops->oobretlen = ops->ooblen;
4230 
4231 err_out:
4232 	nand_deselect_target(chip);
4233 	return ret;
4234 }
4235 
4236 /**
4237  * panic_nand_write - [MTD Interface] NAND write with ECC
4238  * @mtd: MTD device structure
4239  * @to: offset to write to
4240  * @len: number of bytes to write
4241  * @retlen: pointer to variable to store the number of written bytes
4242  * @buf: the data to write
4243  *
4244  * NAND write with ECC. Used when performing writes in interrupt context, this
4245  * may for example be called by mtdoops when writing an oops while in panic.
4246  */
4247 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4248 			    size_t *retlen, const uint8_t *buf)
4249 {
4250 	struct nand_chip *chip = mtd_to_nand(mtd);
4251 	int chipnr = (int)(to >> chip->chip_shift);
4252 	struct mtd_oob_ops ops;
4253 	int ret;
4254 
4255 	nand_select_target(chip, chipnr);
4256 
4257 	/* Wait for the device to get ready */
4258 	panic_nand_wait(chip, 400);
4259 
4260 	memset(&ops, 0, sizeof(ops));
4261 	ops.len = len;
4262 	ops.datbuf = (uint8_t *)buf;
4263 	ops.mode = MTD_OPS_PLACE_OOB;
4264 
4265 	ret = nand_do_write_ops(chip, to, &ops);
4266 
4267 	*retlen = ops.retlen;
4268 	return ret;
4269 }
4270 
4271 /**
4272  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4273  * @mtd: MTD device structure
4274  * @to: offset to write to
4275  * @ops: oob operation description structure
4276  */
4277 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4278 			  struct mtd_oob_ops *ops)
4279 {
4280 	struct nand_chip *chip = mtd_to_nand(mtd);
4281 	int ret;
4282 
4283 	ops->retlen = 0;
4284 
4285 	ret = nand_get_device(chip);
4286 	if (ret)
4287 		return ret;
4288 
4289 	switch (ops->mode) {
4290 	case MTD_OPS_PLACE_OOB:
4291 	case MTD_OPS_AUTO_OOB:
4292 	case MTD_OPS_RAW:
4293 		break;
4294 
4295 	default:
4296 		goto out;
4297 	}
4298 
4299 	if (!ops->datbuf)
4300 		ret = nand_do_write_oob(chip, to, ops);
4301 	else
4302 		ret = nand_do_write_ops(chip, to, ops);
4303 
4304 out:
4305 	nand_release_device(chip);
4306 	return ret;
4307 }
4308 
4309 /**
4310  * nand_erase - [MTD Interface] erase block(s)
4311  * @mtd: MTD device structure
4312  * @instr: erase instruction
4313  *
4314  * Erase one ore more blocks.
4315  */
4316 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4317 {
4318 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4319 }
4320 
4321 /**
4322  * nand_erase_nand - [INTERN] erase block(s)
4323  * @chip: NAND chip object
4324  * @instr: erase instruction
4325  * @allowbbt: allow erasing the bbt area
4326  *
4327  * Erase one ore more blocks.
4328  */
4329 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4330 		    int allowbbt)
4331 {
4332 	int page, pages_per_block, ret, chipnr;
4333 	loff_t len;
4334 
4335 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4336 			__func__, (unsigned long long)instr->addr,
4337 			(unsigned long long)instr->len);
4338 
4339 	if (check_offs_len(chip, instr->addr, instr->len))
4340 		return -EINVAL;
4341 
4342 	/* Grab the lock and see if the device is available */
4343 	ret = nand_get_device(chip);
4344 	if (ret)
4345 		return ret;
4346 
4347 	/* Shift to get first page */
4348 	page = (int)(instr->addr >> chip->page_shift);
4349 	chipnr = (int)(instr->addr >> chip->chip_shift);
4350 
4351 	/* Calculate pages in each block */
4352 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4353 
4354 	/* Select the NAND device */
4355 	nand_select_target(chip, chipnr);
4356 
4357 	/* Check, if it is write protected */
4358 	if (nand_check_wp(chip)) {
4359 		pr_debug("%s: device is write protected!\n",
4360 				__func__);
4361 		ret = -EIO;
4362 		goto erase_exit;
4363 	}
4364 
4365 	/* Loop through the pages */
4366 	len = instr->len;
4367 
4368 	while (len) {
4369 		/* Check if we have a bad block, we do not erase bad blocks! */
4370 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4371 					chip->page_shift, allowbbt)) {
4372 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4373 				    __func__, page);
4374 			ret = -EIO;
4375 			goto erase_exit;
4376 		}
4377 
4378 		/*
4379 		 * Invalidate the page cache, if we erase the block which
4380 		 * contains the current cached page.
4381 		 */
4382 		if (page <= chip->pagecache.page && chip->pagecache.page <
4383 		    (page + pages_per_block))
4384 			chip->pagecache.page = -1;
4385 
4386 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4387 				    (chip->phys_erase_shift - chip->page_shift));
4388 		if (ret) {
4389 			pr_debug("%s: failed erase, page 0x%08x\n",
4390 					__func__, page);
4391 			instr->fail_addr =
4392 				((loff_t)page << chip->page_shift);
4393 			goto erase_exit;
4394 		}
4395 
4396 		/* Increment page address and decrement length */
4397 		len -= (1ULL << chip->phys_erase_shift);
4398 		page += pages_per_block;
4399 
4400 		/* Check, if we cross a chip boundary */
4401 		if (len && !(page & chip->pagemask)) {
4402 			chipnr++;
4403 			nand_deselect_target(chip);
4404 			nand_select_target(chip, chipnr);
4405 		}
4406 	}
4407 
4408 	ret = 0;
4409 erase_exit:
4410 
4411 	/* Deselect and wake up anyone waiting on the device */
4412 	nand_deselect_target(chip);
4413 	nand_release_device(chip);
4414 
4415 	/* Return more or less happy */
4416 	return ret;
4417 }
4418 
4419 /**
4420  * nand_sync - [MTD Interface] sync
4421  * @mtd: MTD device structure
4422  *
4423  * Sync is actually a wait for chip ready function.
4424  */
4425 static void nand_sync(struct mtd_info *mtd)
4426 {
4427 	struct nand_chip *chip = mtd_to_nand(mtd);
4428 
4429 	pr_debug("%s: called\n", __func__);
4430 
4431 	/* Grab the lock and see if the device is available */
4432 	WARN_ON(nand_get_device(chip));
4433 	/* Release it and go back */
4434 	nand_release_device(chip);
4435 }
4436 
4437 /**
4438  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4439  * @mtd: MTD device structure
4440  * @offs: offset relative to mtd start
4441  */
4442 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4443 {
4444 	struct nand_chip *chip = mtd_to_nand(mtd);
4445 	int chipnr = (int)(offs >> chip->chip_shift);
4446 	int ret;
4447 
4448 	/* Select the NAND device */
4449 	ret = nand_get_device(chip);
4450 	if (ret)
4451 		return ret;
4452 
4453 	nand_select_target(chip, chipnr);
4454 
4455 	ret = nand_block_checkbad(chip, offs, 0);
4456 
4457 	nand_deselect_target(chip);
4458 	nand_release_device(chip);
4459 
4460 	return ret;
4461 }
4462 
4463 /**
4464  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4465  * @mtd: MTD device structure
4466  * @ofs: offset relative to mtd start
4467  */
4468 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4469 {
4470 	int ret;
4471 
4472 	ret = nand_block_isbad(mtd, ofs);
4473 	if (ret) {
4474 		/* If it was bad already, return success and do nothing */
4475 		if (ret > 0)
4476 			return 0;
4477 		return ret;
4478 	}
4479 
4480 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4481 }
4482 
4483 /**
4484  * nand_suspend - [MTD Interface] Suspend the NAND flash
4485  * @mtd: MTD device structure
4486  *
4487  * Returns 0 for success or negative error code otherwise.
4488  */
4489 static int nand_suspend(struct mtd_info *mtd)
4490 {
4491 	struct nand_chip *chip = mtd_to_nand(mtd);
4492 	int ret = 0;
4493 
4494 	mutex_lock(&chip->lock);
4495 	if (chip->ops.suspend)
4496 		ret = chip->ops.suspend(chip);
4497 	if (!ret)
4498 		chip->suspended = 1;
4499 	mutex_unlock(&chip->lock);
4500 
4501 	return ret;
4502 }
4503 
4504 /**
4505  * nand_resume - [MTD Interface] Resume the NAND flash
4506  * @mtd: MTD device structure
4507  */
4508 static void nand_resume(struct mtd_info *mtd)
4509 {
4510 	struct nand_chip *chip = mtd_to_nand(mtd);
4511 
4512 	mutex_lock(&chip->lock);
4513 	if (chip->suspended) {
4514 		if (chip->ops.resume)
4515 			chip->ops.resume(chip);
4516 		chip->suspended = 0;
4517 	} else {
4518 		pr_err("%s called for a chip which is not in suspended state\n",
4519 			__func__);
4520 	}
4521 	mutex_unlock(&chip->lock);
4522 }
4523 
4524 /**
4525  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4526  *                 prevent further operations
4527  * @mtd: MTD device structure
4528  */
4529 static void nand_shutdown(struct mtd_info *mtd)
4530 {
4531 	nand_suspend(mtd);
4532 }
4533 
4534 /**
4535  * nand_lock - [MTD Interface] Lock the NAND flash
4536  * @mtd: MTD device structure
4537  * @ofs: offset byte address
4538  * @len: number of bytes to lock (must be a multiple of block/page size)
4539  */
4540 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4541 {
4542 	struct nand_chip *chip = mtd_to_nand(mtd);
4543 
4544 	if (!chip->ops.lock_area)
4545 		return -ENOTSUPP;
4546 
4547 	return chip->ops.lock_area(chip, ofs, len);
4548 }
4549 
4550 /**
4551  * nand_unlock - [MTD Interface] Unlock the NAND flash
4552  * @mtd: MTD device structure
4553  * @ofs: offset byte address
4554  * @len: number of bytes to unlock (must be a multiple of block/page size)
4555  */
4556 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4557 {
4558 	struct nand_chip *chip = mtd_to_nand(mtd);
4559 
4560 	if (!chip->ops.unlock_area)
4561 		return -ENOTSUPP;
4562 
4563 	return chip->ops.unlock_area(chip, ofs, len);
4564 }
4565 
4566 /* Set default functions */
4567 static void nand_set_defaults(struct nand_chip *chip)
4568 {
4569 	/* If no controller is provided, use the dummy, legacy one. */
4570 	if (!chip->controller) {
4571 		chip->controller = &chip->legacy.dummy_controller;
4572 		nand_controller_init(chip->controller);
4573 	}
4574 
4575 	nand_legacy_set_defaults(chip);
4576 
4577 	if (!chip->buf_align)
4578 		chip->buf_align = 1;
4579 }
4580 
4581 /* Sanitize ONFI strings so we can safely print them */
4582 void sanitize_string(uint8_t *s, size_t len)
4583 {
4584 	ssize_t i;
4585 
4586 	/* Null terminate */
4587 	s[len - 1] = 0;
4588 
4589 	/* Remove non printable chars */
4590 	for (i = 0; i < len - 1; i++) {
4591 		if (s[i] < ' ' || s[i] > 127)
4592 			s[i] = '?';
4593 	}
4594 
4595 	/* Remove trailing spaces */
4596 	strim(s);
4597 }
4598 
4599 /*
4600  * nand_id_has_period - Check if an ID string has a given wraparound period
4601  * @id_data: the ID string
4602  * @arrlen: the length of the @id_data array
4603  * @period: the period of repitition
4604  *
4605  * Check if an ID string is repeated within a given sequence of bytes at
4606  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4607  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4608  * if the repetition has a period of @period; otherwise, returns zero.
4609  */
4610 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4611 {
4612 	int i, j;
4613 	for (i = 0; i < period; i++)
4614 		for (j = i + period; j < arrlen; j += period)
4615 			if (id_data[i] != id_data[j])
4616 				return 0;
4617 	return 1;
4618 }
4619 
4620 /*
4621  * nand_id_len - Get the length of an ID string returned by CMD_READID
4622  * @id_data: the ID string
4623  * @arrlen: the length of the @id_data array
4624 
4625  * Returns the length of the ID string, according to known wraparound/trailing
4626  * zero patterns. If no pattern exists, returns the length of the array.
4627  */
4628 static int nand_id_len(u8 *id_data, int arrlen)
4629 {
4630 	int last_nonzero, period;
4631 
4632 	/* Find last non-zero byte */
4633 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4634 		if (id_data[last_nonzero])
4635 			break;
4636 
4637 	/* All zeros */
4638 	if (last_nonzero < 0)
4639 		return 0;
4640 
4641 	/* Calculate wraparound period */
4642 	for (period = 1; period < arrlen; period++)
4643 		if (nand_id_has_period(id_data, arrlen, period))
4644 			break;
4645 
4646 	/* There's a repeated pattern */
4647 	if (period < arrlen)
4648 		return period;
4649 
4650 	/* There are trailing zeros */
4651 	if (last_nonzero < arrlen - 1)
4652 		return last_nonzero + 1;
4653 
4654 	/* No pattern detected */
4655 	return arrlen;
4656 }
4657 
4658 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4659 static int nand_get_bits_per_cell(u8 cellinfo)
4660 {
4661 	int bits;
4662 
4663 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4664 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4665 	return bits + 1;
4666 }
4667 
4668 /*
4669  * Many new NAND share similar device ID codes, which represent the size of the
4670  * chip. The rest of the parameters must be decoded according to generic or
4671  * manufacturer-specific "extended ID" decoding patterns.
4672  */
4673 void nand_decode_ext_id(struct nand_chip *chip)
4674 {
4675 	struct nand_memory_organization *memorg;
4676 	struct mtd_info *mtd = nand_to_mtd(chip);
4677 	int extid;
4678 	u8 *id_data = chip->id.data;
4679 
4680 	memorg = nanddev_get_memorg(&chip->base);
4681 
4682 	/* The 3rd id byte holds MLC / multichip data */
4683 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4684 	/* The 4th id byte is the important one */
4685 	extid = id_data[3];
4686 
4687 	/* Calc pagesize */
4688 	memorg->pagesize = 1024 << (extid & 0x03);
4689 	mtd->writesize = memorg->pagesize;
4690 	extid >>= 2;
4691 	/* Calc oobsize */
4692 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4693 	mtd->oobsize = memorg->oobsize;
4694 	extid >>= 2;
4695 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4696 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4697 				       memorg->pagesize;
4698 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4699 	extid >>= 2;
4700 	/* Get buswidth information */
4701 	if (extid & 0x1)
4702 		chip->options |= NAND_BUSWIDTH_16;
4703 }
4704 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4705 
4706 /*
4707  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4708  * decodes a matching ID table entry and assigns the MTD size parameters for
4709  * the chip.
4710  */
4711 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4712 {
4713 	struct mtd_info *mtd = nand_to_mtd(chip);
4714 	struct nand_memory_organization *memorg;
4715 
4716 	memorg = nanddev_get_memorg(&chip->base);
4717 
4718 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4719 	mtd->erasesize = type->erasesize;
4720 	memorg->pagesize = type->pagesize;
4721 	mtd->writesize = memorg->pagesize;
4722 	memorg->oobsize = memorg->pagesize / 32;
4723 	mtd->oobsize = memorg->oobsize;
4724 
4725 	/* All legacy ID NAND are small-page, SLC */
4726 	memorg->bits_per_cell = 1;
4727 }
4728 
4729 /*
4730  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4731  * heuristic patterns using various detected parameters (e.g., manufacturer,
4732  * page size, cell-type information).
4733  */
4734 static void nand_decode_bbm_options(struct nand_chip *chip)
4735 {
4736 	struct mtd_info *mtd = nand_to_mtd(chip);
4737 
4738 	/* Set the bad block position */
4739 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4740 		chip->badblockpos = NAND_BBM_POS_LARGE;
4741 	else
4742 		chip->badblockpos = NAND_BBM_POS_SMALL;
4743 }
4744 
4745 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4746 {
4747 	return type->id_len;
4748 }
4749 
4750 static bool find_full_id_nand(struct nand_chip *chip,
4751 			      struct nand_flash_dev *type)
4752 {
4753 	struct mtd_info *mtd = nand_to_mtd(chip);
4754 	struct nand_memory_organization *memorg;
4755 	u8 *id_data = chip->id.data;
4756 
4757 	memorg = nanddev_get_memorg(&chip->base);
4758 
4759 	if (!strncmp(type->id, id_data, type->id_len)) {
4760 		memorg->pagesize = type->pagesize;
4761 		mtd->writesize = memorg->pagesize;
4762 		memorg->pages_per_eraseblock = type->erasesize /
4763 					       type->pagesize;
4764 		mtd->erasesize = type->erasesize;
4765 		memorg->oobsize = type->oobsize;
4766 		mtd->oobsize = memorg->oobsize;
4767 
4768 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4769 		memorg->eraseblocks_per_lun =
4770 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4771 					   memorg->pagesize *
4772 					   memorg->pages_per_eraseblock);
4773 		chip->options |= type->options;
4774 		chip->base.eccreq.strength = NAND_ECC_STRENGTH(type);
4775 		chip->base.eccreq.step_size = NAND_ECC_STEP(type);
4776 
4777 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4778 		if (!chip->parameters.model)
4779 			return false;
4780 
4781 		return true;
4782 	}
4783 	return false;
4784 }
4785 
4786 /*
4787  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4788  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4789  * table.
4790  */
4791 static void nand_manufacturer_detect(struct nand_chip *chip)
4792 {
4793 	/*
4794 	 * Try manufacturer detection if available and use
4795 	 * nand_decode_ext_id() otherwise.
4796 	 */
4797 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4798 	    chip->manufacturer.desc->ops->detect) {
4799 		struct nand_memory_organization *memorg;
4800 
4801 		memorg = nanddev_get_memorg(&chip->base);
4802 
4803 		/* The 3rd id byte holds MLC / multichip data */
4804 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4805 		chip->manufacturer.desc->ops->detect(chip);
4806 	} else {
4807 		nand_decode_ext_id(chip);
4808 	}
4809 }
4810 
4811 /*
4812  * Manufacturer initialization. This function is called for all NANDs including
4813  * ONFI and JEDEC compliant ones.
4814  * Manufacturer drivers should put all their specific initialization code in
4815  * their ->init() hook.
4816  */
4817 static int nand_manufacturer_init(struct nand_chip *chip)
4818 {
4819 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4820 	    !chip->manufacturer.desc->ops->init)
4821 		return 0;
4822 
4823 	return chip->manufacturer.desc->ops->init(chip);
4824 }
4825 
4826 /*
4827  * Manufacturer cleanup. This function is called for all NANDs including
4828  * ONFI and JEDEC compliant ones.
4829  * Manufacturer drivers should put all their specific cleanup code in their
4830  * ->cleanup() hook.
4831  */
4832 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4833 {
4834 	/* Release manufacturer private data */
4835 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4836 	    chip->manufacturer.desc->ops->cleanup)
4837 		chip->manufacturer.desc->ops->cleanup(chip);
4838 }
4839 
4840 static const char *
4841 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
4842 {
4843 	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
4844 }
4845 
4846 /*
4847  * Get the flash and manufacturer id and lookup if the type is supported.
4848  */
4849 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4850 {
4851 	const struct nand_manufacturer_desc *manufacturer_desc;
4852 	struct mtd_info *mtd = nand_to_mtd(chip);
4853 	struct nand_memory_organization *memorg;
4854 	int busw, ret;
4855 	u8 *id_data = chip->id.data;
4856 	u8 maf_id, dev_id;
4857 	u64 targetsize;
4858 
4859 	/*
4860 	 * Let's start by initializing memorg fields that might be left
4861 	 * unassigned by the ID-based detection logic.
4862 	 */
4863 	memorg = nanddev_get_memorg(&chip->base);
4864 	memorg->planes_per_lun = 1;
4865 	memorg->luns_per_target = 1;
4866 
4867 	/*
4868 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4869 	 * after power-up.
4870 	 */
4871 	ret = nand_reset(chip, 0);
4872 	if (ret)
4873 		return ret;
4874 
4875 	/* Select the device */
4876 	nand_select_target(chip, 0);
4877 
4878 	/* Send the command for reading device ID */
4879 	ret = nand_readid_op(chip, 0, id_data, 2);
4880 	if (ret)
4881 		return ret;
4882 
4883 	/* Read manufacturer and device IDs */
4884 	maf_id = id_data[0];
4885 	dev_id = id_data[1];
4886 
4887 	/*
4888 	 * Try again to make sure, as some systems the bus-hold or other
4889 	 * interface concerns can cause random data which looks like a
4890 	 * possibly credible NAND flash to appear. If the two results do
4891 	 * not match, ignore the device completely.
4892 	 */
4893 
4894 	/* Read entire ID string */
4895 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4896 	if (ret)
4897 		return ret;
4898 
4899 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
4900 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4901 			maf_id, dev_id, id_data[0], id_data[1]);
4902 		return -ENODEV;
4903 	}
4904 
4905 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4906 
4907 	/* Try to identify manufacturer */
4908 	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
4909 	chip->manufacturer.desc = manufacturer_desc;
4910 
4911 	if (!type)
4912 		type = nand_flash_ids;
4913 
4914 	/*
4915 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4916 	 * override it.
4917 	 * This is required to make sure initial NAND bus width set by the
4918 	 * NAND controller driver is coherent with the real NAND bus width
4919 	 * (extracted by auto-detection code).
4920 	 */
4921 	busw = chip->options & NAND_BUSWIDTH_16;
4922 
4923 	/*
4924 	 * The flag is only set (never cleared), reset it to its default value
4925 	 * before starting auto-detection.
4926 	 */
4927 	chip->options &= ~NAND_BUSWIDTH_16;
4928 
4929 	for (; type->name != NULL; type++) {
4930 		if (is_full_id_nand(type)) {
4931 			if (find_full_id_nand(chip, type))
4932 				goto ident_done;
4933 		} else if (dev_id == type->dev_id) {
4934 			break;
4935 		}
4936 	}
4937 
4938 	if (!type->name || !type->pagesize) {
4939 		/* Check if the chip is ONFI compliant */
4940 		ret = nand_onfi_detect(chip);
4941 		if (ret < 0)
4942 			return ret;
4943 		else if (ret)
4944 			goto ident_done;
4945 
4946 		/* Check if the chip is JEDEC compliant */
4947 		ret = nand_jedec_detect(chip);
4948 		if (ret < 0)
4949 			return ret;
4950 		else if (ret)
4951 			goto ident_done;
4952 	}
4953 
4954 	if (!type->name)
4955 		return -ENODEV;
4956 
4957 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4958 	if (!chip->parameters.model)
4959 		return -ENOMEM;
4960 
4961 	if (!type->pagesize)
4962 		nand_manufacturer_detect(chip);
4963 	else
4964 		nand_decode_id(chip, type);
4965 
4966 	/* Get chip options */
4967 	chip->options |= type->options;
4968 
4969 	memorg->eraseblocks_per_lun =
4970 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4971 					   memorg->pagesize *
4972 					   memorg->pages_per_eraseblock);
4973 
4974 ident_done:
4975 	if (!mtd->name)
4976 		mtd->name = chip->parameters.model;
4977 
4978 	if (chip->options & NAND_BUSWIDTH_AUTO) {
4979 		WARN_ON(busw & NAND_BUSWIDTH_16);
4980 		nand_set_defaults(chip);
4981 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4982 		/*
4983 		 * Check, if buswidth is correct. Hardware drivers should set
4984 		 * chip correct!
4985 		 */
4986 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4987 			maf_id, dev_id);
4988 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
4989 			mtd->name);
4990 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4991 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4992 		ret = -EINVAL;
4993 
4994 		goto free_detect_allocation;
4995 	}
4996 
4997 	nand_decode_bbm_options(chip);
4998 
4999 	/* Calculate the address shift from the page size */
5000 	chip->page_shift = ffs(mtd->writesize) - 1;
5001 	/* Convert chipsize to number of pages per chip -1 */
5002 	targetsize = nanddev_target_size(&chip->base);
5003 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
5004 
5005 	chip->bbt_erase_shift = chip->phys_erase_shift =
5006 		ffs(mtd->erasesize) - 1;
5007 	if (targetsize & 0xffffffff)
5008 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
5009 	else {
5010 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5011 		chip->chip_shift += 32 - 1;
5012 	}
5013 
5014 	if (chip->chip_shift - chip->page_shift > 16)
5015 		chip->options |= NAND_ROW_ADDR_3;
5016 
5017 	chip->badblockbits = 8;
5018 
5019 	nand_legacy_adjust_cmdfunc(chip);
5020 
5021 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5022 		maf_id, dev_id);
5023 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5024 		chip->parameters.model);
5025 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5026 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5027 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5028 	return 0;
5029 
5030 free_detect_allocation:
5031 	kfree(chip->parameters.model);
5032 
5033 	return ret;
5034 }
5035 
5036 static const char * const nand_ecc_modes[] = {
5037 	[NAND_ECC_NONE]		= "none",
5038 	[NAND_ECC_SOFT]		= "soft",
5039 	[NAND_ECC_HW]		= "hw",
5040 	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5041 	[NAND_ECC_ON_DIE]	= "on-die",
5042 };
5043 
5044 static int of_get_nand_ecc_mode(struct device_node *np)
5045 {
5046 	const char *pm;
5047 	int err, i;
5048 
5049 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5050 	if (err < 0)
5051 		return err;
5052 
5053 	for (i = NAND_ECC_NONE; i < ARRAY_SIZE(nand_ecc_modes); i++)
5054 		if (!strcasecmp(pm, nand_ecc_modes[i]))
5055 			return i;
5056 
5057 	/*
5058 	 * For backward compatibility we support few obsoleted values that don't
5059 	 * have their mappings into the nand_ecc_mode enum anymore (they were
5060 	 * merged with other enums).
5061 	 */
5062 	if (!strcasecmp(pm, "soft_bch"))
5063 		return NAND_ECC_SOFT;
5064 
5065 	return -ENODEV;
5066 }
5067 
5068 static const char * const nand_ecc_algos[] = {
5069 	[NAND_ECC_HAMMING]	= "hamming",
5070 	[NAND_ECC_BCH]		= "bch",
5071 	[NAND_ECC_RS]		= "rs",
5072 };
5073 
5074 static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
5075 {
5076 	enum nand_ecc_algo ecc_algo;
5077 	const char *pm;
5078 	int err;
5079 
5080 	err = of_property_read_string(np, "nand-ecc-algo", &pm);
5081 	if (!err) {
5082 		for (ecc_algo = NAND_ECC_HAMMING;
5083 		     ecc_algo < ARRAY_SIZE(nand_ecc_algos);
5084 		     ecc_algo++) {
5085 			if (!strcasecmp(pm, nand_ecc_algos[ecc_algo]))
5086 				return ecc_algo;
5087 		}
5088 	}
5089 
5090 	/*
5091 	 * For backward compatibility we also read "nand-ecc-mode" checking
5092 	 * for some obsoleted values that were specifying ECC algorithm.
5093 	 */
5094 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5095 	if (!err) {
5096 		if (!strcasecmp(pm, "soft"))
5097 			return NAND_ECC_HAMMING;
5098 		else if (!strcasecmp(pm, "soft_bch"))
5099 			return NAND_ECC_BCH;
5100 	}
5101 
5102 	return NAND_ECC_UNKNOWN;
5103 }
5104 
5105 static int of_get_nand_ecc_step_size(struct device_node *np)
5106 {
5107 	int ret;
5108 	u32 val;
5109 
5110 	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
5111 	return ret ? ret : val;
5112 }
5113 
5114 static int of_get_nand_ecc_strength(struct device_node *np)
5115 {
5116 	int ret;
5117 	u32 val;
5118 
5119 	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
5120 	return ret ? ret : val;
5121 }
5122 
5123 static int of_get_nand_bus_width(struct device_node *np)
5124 {
5125 	u32 val;
5126 
5127 	if (of_property_read_u32(np, "nand-bus-width", &val))
5128 		return 8;
5129 
5130 	switch (val) {
5131 	case 8:
5132 	case 16:
5133 		return val;
5134 	default:
5135 		return -EIO;
5136 	}
5137 }
5138 
5139 static bool of_get_nand_on_flash_bbt(struct device_node *np)
5140 {
5141 	return of_property_read_bool(np, "nand-on-flash-bbt");
5142 }
5143 
5144 static int nand_dt_init(struct nand_chip *chip)
5145 {
5146 	struct device_node *dn = nand_get_flash_node(chip);
5147 	enum nand_ecc_algo ecc_algo;
5148 	int ecc_mode, ecc_strength, ecc_step;
5149 
5150 	if (!dn)
5151 		return 0;
5152 
5153 	if (of_get_nand_bus_width(dn) == 16)
5154 		chip->options |= NAND_BUSWIDTH_16;
5155 
5156 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5157 		chip->options |= NAND_IS_BOOT_MEDIUM;
5158 
5159 	if (of_get_nand_on_flash_bbt(dn))
5160 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5161 
5162 	ecc_mode = of_get_nand_ecc_mode(dn);
5163 	ecc_algo = of_get_nand_ecc_algo(dn);
5164 	ecc_strength = of_get_nand_ecc_strength(dn);
5165 	ecc_step = of_get_nand_ecc_step_size(dn);
5166 
5167 	if (ecc_mode >= 0)
5168 		chip->ecc.mode = ecc_mode;
5169 
5170 	if (ecc_algo != NAND_ECC_UNKNOWN)
5171 		chip->ecc.algo = ecc_algo;
5172 
5173 	if (ecc_strength >= 0)
5174 		chip->ecc.strength = ecc_strength;
5175 
5176 	if (ecc_step > 0)
5177 		chip->ecc.size = ecc_step;
5178 
5179 	if (of_property_read_bool(dn, "nand-ecc-maximize"))
5180 		chip->ecc.options |= NAND_ECC_MAXIMIZE;
5181 
5182 	return 0;
5183 }
5184 
5185 /**
5186  * nand_scan_ident - Scan for the NAND device
5187  * @chip: NAND chip object
5188  * @maxchips: number of chips to scan for
5189  * @table: alternative NAND ID table
5190  *
5191  * This is the first phase of the normal nand_scan() function. It reads the
5192  * flash ID and sets up MTD fields accordingly.
5193  *
5194  * This helper used to be called directly from controller drivers that needed
5195  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5196  * prevented dynamic allocations during this phase which was unconvenient and
5197  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5198  */
5199 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5200 			   struct nand_flash_dev *table)
5201 {
5202 	struct mtd_info *mtd = nand_to_mtd(chip);
5203 	struct nand_memory_organization *memorg;
5204 	int nand_maf_id, nand_dev_id;
5205 	unsigned int i;
5206 	int ret;
5207 
5208 	memorg = nanddev_get_memorg(&chip->base);
5209 
5210 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5211 	chip->cur_cs = -1;
5212 
5213 	mutex_init(&chip->lock);
5214 
5215 	/* Enforce the right timings for reset/detection */
5216 	chip->current_interface_config = nand_get_reset_interface_config();
5217 
5218 	ret = nand_dt_init(chip);
5219 	if (ret)
5220 		return ret;
5221 
5222 	if (!mtd->name && mtd->dev.parent)
5223 		mtd->name = dev_name(mtd->dev.parent);
5224 
5225 	/* Set the default functions */
5226 	nand_set_defaults(chip);
5227 
5228 	ret = nand_legacy_check_hooks(chip);
5229 	if (ret)
5230 		return ret;
5231 
5232 	memorg->ntargets = maxchips;
5233 
5234 	/* Read the flash type */
5235 	ret = nand_detect(chip, table);
5236 	if (ret) {
5237 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5238 			pr_warn("No NAND device found\n");
5239 		nand_deselect_target(chip);
5240 		return ret;
5241 	}
5242 
5243 	nand_maf_id = chip->id.data[0];
5244 	nand_dev_id = chip->id.data[1];
5245 
5246 	nand_deselect_target(chip);
5247 
5248 	/* Check for a chip array */
5249 	for (i = 1; i < maxchips; i++) {
5250 		u8 id[2];
5251 
5252 		/* See comment in nand_get_flash_type for reset */
5253 		ret = nand_reset(chip, i);
5254 		if (ret)
5255 			break;
5256 
5257 		nand_select_target(chip, i);
5258 		/* Send the command for reading device ID */
5259 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5260 		if (ret)
5261 			break;
5262 		/* Read manufacturer and device IDs */
5263 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5264 			nand_deselect_target(chip);
5265 			break;
5266 		}
5267 		nand_deselect_target(chip);
5268 	}
5269 	if (i > 1)
5270 		pr_info("%d chips detected\n", i);
5271 
5272 	/* Store the number of chips and calc total size for mtd */
5273 	memorg->ntargets = i;
5274 	mtd->size = i * nanddev_target_size(&chip->base);
5275 
5276 	return 0;
5277 }
5278 
5279 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5280 {
5281 	kfree(chip->parameters.model);
5282 	kfree(chip->parameters.onfi);
5283 }
5284 
5285 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5286 {
5287 	struct mtd_info *mtd = nand_to_mtd(chip);
5288 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5289 
5290 	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5291 		return -EINVAL;
5292 
5293 	switch (ecc->algo) {
5294 	case NAND_ECC_HAMMING:
5295 		ecc->calculate = nand_calculate_ecc;
5296 		ecc->correct = nand_correct_data;
5297 		ecc->read_page = nand_read_page_swecc;
5298 		ecc->read_subpage = nand_read_subpage;
5299 		ecc->write_page = nand_write_page_swecc;
5300 		if (!ecc->read_page_raw)
5301 			ecc->read_page_raw = nand_read_page_raw;
5302 		if (!ecc->write_page_raw)
5303 			ecc->write_page_raw = nand_write_page_raw;
5304 		ecc->read_oob = nand_read_oob_std;
5305 		ecc->write_oob = nand_write_oob_std;
5306 		if (!ecc->size)
5307 			ecc->size = 256;
5308 		ecc->bytes = 3;
5309 		ecc->strength = 1;
5310 
5311 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5312 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5313 
5314 		return 0;
5315 	case NAND_ECC_BCH:
5316 		if (!mtd_nand_has_bch()) {
5317 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5318 			return -EINVAL;
5319 		}
5320 		ecc->calculate = nand_bch_calculate_ecc;
5321 		ecc->correct = nand_bch_correct_data;
5322 		ecc->read_page = nand_read_page_swecc;
5323 		ecc->read_subpage = nand_read_subpage;
5324 		ecc->write_page = nand_write_page_swecc;
5325 		if (!ecc->read_page_raw)
5326 			ecc->read_page_raw = nand_read_page_raw;
5327 		if (!ecc->write_page_raw)
5328 			ecc->write_page_raw = nand_write_page_raw;
5329 		ecc->read_oob = nand_read_oob_std;
5330 		ecc->write_oob = nand_write_oob_std;
5331 
5332 		/*
5333 		* Board driver should supply ecc.size and ecc.strength
5334 		* values to select how many bits are correctable.
5335 		* Otherwise, default to 4 bits for large page devices.
5336 		*/
5337 		if (!ecc->size && (mtd->oobsize >= 64)) {
5338 			ecc->size = 512;
5339 			ecc->strength = 4;
5340 		}
5341 
5342 		/*
5343 		 * if no ecc placement scheme was provided pickup the default
5344 		 * large page one.
5345 		 */
5346 		if (!mtd->ooblayout) {
5347 			/* handle large page devices only */
5348 			if (mtd->oobsize < 64) {
5349 				WARN(1, "OOB layout is required when using software BCH on small pages\n");
5350 				return -EINVAL;
5351 			}
5352 
5353 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
5354 
5355 		}
5356 
5357 		/*
5358 		 * We can only maximize ECC config when the default layout is
5359 		 * used, otherwise we don't know how many bytes can really be
5360 		 * used.
5361 		 */
5362 		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
5363 		    ecc->options & NAND_ECC_MAXIMIZE) {
5364 			int steps, bytes;
5365 
5366 			/* Always prefer 1k blocks over 512bytes ones */
5367 			ecc->size = 1024;
5368 			steps = mtd->writesize / ecc->size;
5369 
5370 			/* Reserve 2 bytes for the BBM */
5371 			bytes = (mtd->oobsize - 2) / steps;
5372 			ecc->strength = bytes * 8 / fls(8 * ecc->size);
5373 		}
5374 
5375 		/* See nand_bch_init() for details. */
5376 		ecc->bytes = 0;
5377 		ecc->priv = nand_bch_init(mtd);
5378 		if (!ecc->priv) {
5379 			WARN(1, "BCH ECC initialization failed!\n");
5380 			return -EINVAL;
5381 		}
5382 		return 0;
5383 	default:
5384 		WARN(1, "Unsupported ECC algorithm!\n");
5385 		return -EINVAL;
5386 	}
5387 }
5388 
5389 /**
5390  * nand_check_ecc_caps - check the sanity of preset ECC settings
5391  * @chip: nand chip info structure
5392  * @caps: ECC caps info structure
5393  * @oobavail: OOB size that the ECC engine can use
5394  *
5395  * When ECC step size and strength are already set, check if they are supported
5396  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5397  * On success, the calculated ECC bytes is set.
5398  */
5399 static int
5400 nand_check_ecc_caps(struct nand_chip *chip,
5401 		    const struct nand_ecc_caps *caps, int oobavail)
5402 {
5403 	struct mtd_info *mtd = nand_to_mtd(chip);
5404 	const struct nand_ecc_step_info *stepinfo;
5405 	int preset_step = chip->ecc.size;
5406 	int preset_strength = chip->ecc.strength;
5407 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5408 	int i, j;
5409 
5410 	for (i = 0; i < caps->nstepinfos; i++) {
5411 		stepinfo = &caps->stepinfos[i];
5412 
5413 		if (stepinfo->stepsize != preset_step)
5414 			continue;
5415 
5416 		for (j = 0; j < stepinfo->nstrengths; j++) {
5417 			if (stepinfo->strengths[j] != preset_strength)
5418 				continue;
5419 
5420 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
5421 							 preset_strength);
5422 			if (WARN_ON_ONCE(ecc_bytes < 0))
5423 				return ecc_bytes;
5424 
5425 			if (ecc_bytes * nsteps > oobavail) {
5426 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5427 				       preset_step, preset_strength);
5428 				return -ENOSPC;
5429 			}
5430 
5431 			chip->ecc.bytes = ecc_bytes;
5432 
5433 			return 0;
5434 		}
5435 	}
5436 
5437 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5438 	       preset_step, preset_strength);
5439 
5440 	return -ENOTSUPP;
5441 }
5442 
5443 /**
5444  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5445  * @chip: nand chip info structure
5446  * @caps: ECC engine caps info structure
5447  * @oobavail: OOB size that the ECC engine can use
5448  *
5449  * If a chip's ECC requirement is provided, try to meet it with the least
5450  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5451  * On success, the chosen ECC settings are set.
5452  */
5453 static int
5454 nand_match_ecc_req(struct nand_chip *chip,
5455 		   const struct nand_ecc_caps *caps, int oobavail)
5456 {
5457 	struct mtd_info *mtd = nand_to_mtd(chip);
5458 	const struct nand_ecc_step_info *stepinfo;
5459 	int req_step = chip->base.eccreq.step_size;
5460 	int req_strength = chip->base.eccreq.strength;
5461 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5462 	int best_step, best_strength, best_ecc_bytes;
5463 	int best_ecc_bytes_total = INT_MAX;
5464 	int i, j;
5465 
5466 	/* No information provided by the NAND chip */
5467 	if (!req_step || !req_strength)
5468 		return -ENOTSUPP;
5469 
5470 	/* number of correctable bits the chip requires in a page */
5471 	req_corr = mtd->writesize / req_step * req_strength;
5472 
5473 	for (i = 0; i < caps->nstepinfos; i++) {
5474 		stepinfo = &caps->stepinfos[i];
5475 		step_size = stepinfo->stepsize;
5476 
5477 		for (j = 0; j < stepinfo->nstrengths; j++) {
5478 			strength = stepinfo->strengths[j];
5479 
5480 			/*
5481 			 * If both step size and strength are smaller than the
5482 			 * chip's requirement, it is not easy to compare the
5483 			 * resulted reliability.
5484 			 */
5485 			if (step_size < req_step && strength < req_strength)
5486 				continue;
5487 
5488 			if (mtd->writesize % step_size)
5489 				continue;
5490 
5491 			nsteps = mtd->writesize / step_size;
5492 
5493 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5494 			if (WARN_ON_ONCE(ecc_bytes < 0))
5495 				continue;
5496 			ecc_bytes_total = ecc_bytes * nsteps;
5497 
5498 			if (ecc_bytes_total > oobavail ||
5499 			    strength * nsteps < req_corr)
5500 				continue;
5501 
5502 			/*
5503 			 * We assume the best is to meet the chip's requrement
5504 			 * with the least number of ECC bytes.
5505 			 */
5506 			if (ecc_bytes_total < best_ecc_bytes_total) {
5507 				best_ecc_bytes_total = ecc_bytes_total;
5508 				best_step = step_size;
5509 				best_strength = strength;
5510 				best_ecc_bytes = ecc_bytes;
5511 			}
5512 		}
5513 	}
5514 
5515 	if (best_ecc_bytes_total == INT_MAX)
5516 		return -ENOTSUPP;
5517 
5518 	chip->ecc.size = best_step;
5519 	chip->ecc.strength = best_strength;
5520 	chip->ecc.bytes = best_ecc_bytes;
5521 
5522 	return 0;
5523 }
5524 
5525 /**
5526  * nand_maximize_ecc - choose the max ECC strength available
5527  * @chip: nand chip info structure
5528  * @caps: ECC engine caps info structure
5529  * @oobavail: OOB size that the ECC engine can use
5530  *
5531  * Choose the max ECC strength that is supported on the controller, and can fit
5532  * within the chip's OOB.  On success, the chosen ECC settings are set.
5533  */
5534 static int
5535 nand_maximize_ecc(struct nand_chip *chip,
5536 		  const struct nand_ecc_caps *caps, int oobavail)
5537 {
5538 	struct mtd_info *mtd = nand_to_mtd(chip);
5539 	const struct nand_ecc_step_info *stepinfo;
5540 	int step_size, strength, nsteps, ecc_bytes, corr;
5541 	int best_corr = 0;
5542 	int best_step = 0;
5543 	int best_strength, best_ecc_bytes;
5544 	int i, j;
5545 
5546 	for (i = 0; i < caps->nstepinfos; i++) {
5547 		stepinfo = &caps->stepinfos[i];
5548 		step_size = stepinfo->stepsize;
5549 
5550 		/* If chip->ecc.size is already set, respect it */
5551 		if (chip->ecc.size && step_size != chip->ecc.size)
5552 			continue;
5553 
5554 		for (j = 0; j < stepinfo->nstrengths; j++) {
5555 			strength = stepinfo->strengths[j];
5556 
5557 			if (mtd->writesize % step_size)
5558 				continue;
5559 
5560 			nsteps = mtd->writesize / step_size;
5561 
5562 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5563 			if (WARN_ON_ONCE(ecc_bytes < 0))
5564 				continue;
5565 
5566 			if (ecc_bytes * nsteps > oobavail)
5567 				continue;
5568 
5569 			corr = strength * nsteps;
5570 
5571 			/*
5572 			 * If the number of correctable bits is the same,
5573 			 * bigger step_size has more reliability.
5574 			 */
5575 			if (corr > best_corr ||
5576 			    (corr == best_corr && step_size > best_step)) {
5577 				best_corr = corr;
5578 				best_step = step_size;
5579 				best_strength = strength;
5580 				best_ecc_bytes = ecc_bytes;
5581 			}
5582 		}
5583 	}
5584 
5585 	if (!best_corr)
5586 		return -ENOTSUPP;
5587 
5588 	chip->ecc.size = best_step;
5589 	chip->ecc.strength = best_strength;
5590 	chip->ecc.bytes = best_ecc_bytes;
5591 
5592 	return 0;
5593 }
5594 
5595 /**
5596  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5597  * @chip: nand chip info structure
5598  * @caps: ECC engine caps info structure
5599  * @oobavail: OOB size that the ECC engine can use
5600  *
5601  * Choose the ECC configuration according to following logic
5602  *
5603  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5604  *    then check if it is supported by this controller.
5605  * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
5606  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5607  *    to the chip's requirement. If available OOB size can't fit the chip
5608  *    requirement then fallback to the maximum ECC step size and ECC strength.
5609  *
5610  * On success, the chosen ECC settings are set.
5611  */
5612 int nand_ecc_choose_conf(struct nand_chip *chip,
5613 			 const struct nand_ecc_caps *caps, int oobavail)
5614 {
5615 	struct mtd_info *mtd = nand_to_mtd(chip);
5616 
5617 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5618 		return -EINVAL;
5619 
5620 	if (chip->ecc.size && chip->ecc.strength)
5621 		return nand_check_ecc_caps(chip, caps, oobavail);
5622 
5623 	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
5624 		return nand_maximize_ecc(chip, caps, oobavail);
5625 
5626 	if (!nand_match_ecc_req(chip, caps, oobavail))
5627 		return 0;
5628 
5629 	return nand_maximize_ecc(chip, caps, oobavail);
5630 }
5631 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5632 
5633 /*
5634  * Check if the chip configuration meet the datasheet requirements.
5635 
5636  * If our configuration corrects A bits per B bytes and the minimum
5637  * required correction level is X bits per Y bytes, then we must ensure
5638  * both of the following are true:
5639  *
5640  * (1) A / B >= X / Y
5641  * (2) A >= X
5642  *
5643  * Requirement (1) ensures we can correct for the required bitflip density.
5644  * Requirement (2) ensures we can correct even when all bitflips are clumped
5645  * in the same sector.
5646  */
5647 static bool nand_ecc_strength_good(struct nand_chip *chip)
5648 {
5649 	struct mtd_info *mtd = nand_to_mtd(chip);
5650 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5651 	int corr, ds_corr;
5652 
5653 	if (ecc->size == 0 || chip->base.eccreq.step_size == 0)
5654 		/* Not enough information */
5655 		return true;
5656 
5657 	/*
5658 	 * We get the number of corrected bits per page to compare
5659 	 * the correction density.
5660 	 */
5661 	corr = (mtd->writesize * ecc->strength) / ecc->size;
5662 	ds_corr = (mtd->writesize * chip->base.eccreq.strength) /
5663 		  chip->base.eccreq.step_size;
5664 
5665 	return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength;
5666 }
5667 
5668 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5669 {
5670 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5671 					      base);
5672 	unsigned int eb = nanddev_pos_to_row(nand, pos);
5673 	int ret;
5674 
5675 	eb >>= nand->rowconv.eraseblock_addr_shift;
5676 
5677 	nand_select_target(chip, pos->target);
5678 	ret = nand_erase_op(chip, eb);
5679 	nand_deselect_target(chip);
5680 
5681 	return ret;
5682 }
5683 
5684 static int rawnand_markbad(struct nand_device *nand,
5685 			   const struct nand_pos *pos)
5686 {
5687 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5688 					      base);
5689 
5690 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5691 }
5692 
5693 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
5694 {
5695 	struct nand_chip *chip = container_of(nand, struct nand_chip,
5696 					      base);
5697 	int ret;
5698 
5699 	nand_select_target(chip, pos->target);
5700 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5701 	nand_deselect_target(chip);
5702 
5703 	return ret;
5704 }
5705 
5706 static const struct nand_ops rawnand_ops = {
5707 	.erase = rawnand_erase,
5708 	.markbad = rawnand_markbad,
5709 	.isbad = rawnand_isbad,
5710 };
5711 
5712 /**
5713  * nand_scan_tail - Scan for the NAND device
5714  * @chip: NAND chip object
5715  *
5716  * This is the second phase of the normal nand_scan() function. It fills out
5717  * all the uninitialized function pointers with the defaults and scans for a
5718  * bad block table if appropriate.
5719  */
5720 static int nand_scan_tail(struct nand_chip *chip)
5721 {
5722 	struct mtd_info *mtd = nand_to_mtd(chip);
5723 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5724 	int ret, i;
5725 
5726 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
5727 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5728 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5729 		return -EINVAL;
5730 	}
5731 
5732 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5733 	if (!chip->data_buf)
5734 		return -ENOMEM;
5735 
5736 	/*
5737 	 * FIXME: some NAND manufacturer drivers expect the first die to be
5738 	 * selected when manufacturer->init() is called. They should be fixed
5739 	 * to explictly select the relevant die when interacting with the NAND
5740 	 * chip.
5741 	 */
5742 	nand_select_target(chip, 0);
5743 	ret = nand_manufacturer_init(chip);
5744 	nand_deselect_target(chip);
5745 	if (ret)
5746 		goto err_free_buf;
5747 
5748 	/* Set the internal oob buffer location, just after the page data */
5749 	chip->oob_poi = chip->data_buf + mtd->writesize;
5750 
5751 	/*
5752 	 * If no default placement scheme is given, select an appropriate one.
5753 	 */
5754 	if (!mtd->ooblayout &&
5755 	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
5756 		switch (mtd->oobsize) {
5757 		case 8:
5758 		case 16:
5759 			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
5760 			break;
5761 		case 64:
5762 		case 128:
5763 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
5764 			break;
5765 		default:
5766 			/*
5767 			 * Expose the whole OOB area to users if ECC_NONE
5768 			 * is passed. We could do that for all kind of
5769 			 * ->oobsize, but we must keep the old large/small
5770 			 * page with ECC layout when ->oobsize <= 128 for
5771 			 * compatibility reasons.
5772 			 */
5773 			if (ecc->mode == NAND_ECC_NONE) {
5774 				mtd_set_ooblayout(mtd,
5775 						&nand_ooblayout_lp_ops);
5776 				break;
5777 			}
5778 
5779 			WARN(1, "No oob scheme defined for oobsize %d\n",
5780 				mtd->oobsize);
5781 			ret = -EINVAL;
5782 			goto err_nand_manuf_cleanup;
5783 		}
5784 	}
5785 
5786 	/*
5787 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5788 	 * selected and we have 256 byte pagesize fallback to software ECC
5789 	 */
5790 
5791 	switch (ecc->mode) {
5792 	case NAND_ECC_HW:
5793 		/* Use standard hwecc read page function? */
5794 		if (!ecc->read_page)
5795 			ecc->read_page = nand_read_page_hwecc;
5796 		if (!ecc->write_page)
5797 			ecc->write_page = nand_write_page_hwecc;
5798 		if (!ecc->read_page_raw)
5799 			ecc->read_page_raw = nand_read_page_raw;
5800 		if (!ecc->write_page_raw)
5801 			ecc->write_page_raw = nand_write_page_raw;
5802 		if (!ecc->read_oob)
5803 			ecc->read_oob = nand_read_oob_std;
5804 		if (!ecc->write_oob)
5805 			ecc->write_oob = nand_write_oob_std;
5806 		if (!ecc->read_subpage)
5807 			ecc->read_subpage = nand_read_subpage;
5808 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5809 			ecc->write_subpage = nand_write_subpage_hwecc;
5810 		fallthrough;
5811 	case NAND_ECC_HW_SYNDROME:
5812 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5813 		    (!ecc->read_page ||
5814 		     ecc->read_page == nand_read_page_hwecc ||
5815 		     !ecc->write_page ||
5816 		     ecc->write_page == nand_write_page_hwecc)) {
5817 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5818 			ret = -EINVAL;
5819 			goto err_nand_manuf_cleanup;
5820 		}
5821 		/* Use standard syndrome read/write page function? */
5822 		if (!ecc->read_page)
5823 			ecc->read_page = nand_read_page_syndrome;
5824 		if (!ecc->write_page)
5825 			ecc->write_page = nand_write_page_syndrome;
5826 		if (!ecc->read_page_raw)
5827 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5828 		if (!ecc->write_page_raw)
5829 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5830 		if (!ecc->read_oob)
5831 			ecc->read_oob = nand_read_oob_syndrome;
5832 		if (!ecc->write_oob)
5833 			ecc->write_oob = nand_write_oob_syndrome;
5834 
5835 		if (mtd->writesize >= ecc->size) {
5836 			if (!ecc->strength) {
5837 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5838 				ret = -EINVAL;
5839 				goto err_nand_manuf_cleanup;
5840 			}
5841 			break;
5842 		}
5843 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5844 			ecc->size, mtd->writesize);
5845 		ecc->mode = NAND_ECC_SOFT;
5846 		ecc->algo = NAND_ECC_HAMMING;
5847 		fallthrough;
5848 	case NAND_ECC_SOFT:
5849 		ret = nand_set_ecc_soft_ops(chip);
5850 		if (ret) {
5851 			ret = -EINVAL;
5852 			goto err_nand_manuf_cleanup;
5853 		}
5854 		break;
5855 
5856 	case NAND_ECC_ON_DIE:
5857 		if (!ecc->read_page || !ecc->write_page) {
5858 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5859 			ret = -EINVAL;
5860 			goto err_nand_manuf_cleanup;
5861 		}
5862 		if (!ecc->read_oob)
5863 			ecc->read_oob = nand_read_oob_std;
5864 		if (!ecc->write_oob)
5865 			ecc->write_oob = nand_write_oob_std;
5866 		break;
5867 
5868 	case NAND_ECC_NONE:
5869 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5870 		ecc->read_page = nand_read_page_raw;
5871 		ecc->write_page = nand_write_page_raw;
5872 		ecc->read_oob = nand_read_oob_std;
5873 		ecc->read_page_raw = nand_read_page_raw;
5874 		ecc->write_page_raw = nand_write_page_raw;
5875 		ecc->write_oob = nand_write_oob_std;
5876 		ecc->size = mtd->writesize;
5877 		ecc->bytes = 0;
5878 		ecc->strength = 0;
5879 		break;
5880 
5881 	default:
5882 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5883 		ret = -EINVAL;
5884 		goto err_nand_manuf_cleanup;
5885 	}
5886 
5887 	if (ecc->correct || ecc->calculate) {
5888 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5889 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5890 		if (!ecc->calc_buf || !ecc->code_buf) {
5891 			ret = -ENOMEM;
5892 			goto err_nand_manuf_cleanup;
5893 		}
5894 	}
5895 
5896 	/* For many systems, the standard OOB write also works for raw */
5897 	if (!ecc->read_oob_raw)
5898 		ecc->read_oob_raw = ecc->read_oob;
5899 	if (!ecc->write_oob_raw)
5900 		ecc->write_oob_raw = ecc->write_oob;
5901 
5902 	/* propagate ecc info to mtd_info */
5903 	mtd->ecc_strength = ecc->strength;
5904 	mtd->ecc_step_size = ecc->size;
5905 
5906 	/*
5907 	 * Set the number of read / write steps for one page depending on ECC
5908 	 * mode.
5909 	 */
5910 	ecc->steps = mtd->writesize / ecc->size;
5911 	if (ecc->steps * ecc->size != mtd->writesize) {
5912 		WARN(1, "Invalid ECC parameters\n");
5913 		ret = -EINVAL;
5914 		goto err_nand_manuf_cleanup;
5915 	}
5916 	ecc->total = ecc->steps * ecc->bytes;
5917 	if (ecc->total > mtd->oobsize) {
5918 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5919 		ret = -EINVAL;
5920 		goto err_nand_manuf_cleanup;
5921 	}
5922 
5923 	/*
5924 	 * The number of bytes available for a client to place data into
5925 	 * the out of band area.
5926 	 */
5927 	ret = mtd_ooblayout_count_freebytes(mtd);
5928 	if (ret < 0)
5929 		ret = 0;
5930 
5931 	mtd->oobavail = ret;
5932 
5933 	/* ECC sanity check: warn if it's too weak */
5934 	if (!nand_ecc_strength_good(chip))
5935 		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
5936 			mtd->name, chip->ecc.strength, chip->ecc.size,
5937 			chip->base.eccreq.strength,
5938 			chip->base.eccreq.step_size);
5939 
5940 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5941 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5942 		switch (ecc->steps) {
5943 		case 2:
5944 			mtd->subpage_sft = 1;
5945 			break;
5946 		case 4:
5947 		case 8:
5948 		case 16:
5949 			mtd->subpage_sft = 2;
5950 			break;
5951 		}
5952 	}
5953 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5954 
5955 	/* Invalidate the pagebuffer reference */
5956 	chip->pagecache.page = -1;
5957 
5958 	/* Large page NAND with SOFT_ECC should support subpage reads */
5959 	switch (ecc->mode) {
5960 	case NAND_ECC_SOFT:
5961 		if (chip->page_shift > 9)
5962 			chip->options |= NAND_SUBPAGE_READ;
5963 		break;
5964 
5965 	default:
5966 		break;
5967 	}
5968 
5969 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
5970 	if (ret)
5971 		goto err_nand_manuf_cleanup;
5972 
5973 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
5974 	if (chip->options & NAND_ROM)
5975 		mtd->flags = MTD_CAP_ROM;
5976 
5977 	/* Fill in remaining MTD driver data */
5978 	mtd->_erase = nand_erase;
5979 	mtd->_point = NULL;
5980 	mtd->_unpoint = NULL;
5981 	mtd->_panic_write = panic_nand_write;
5982 	mtd->_read_oob = nand_read_oob;
5983 	mtd->_write_oob = nand_write_oob;
5984 	mtd->_sync = nand_sync;
5985 	mtd->_lock = nand_lock;
5986 	mtd->_unlock = nand_unlock;
5987 	mtd->_suspend = nand_suspend;
5988 	mtd->_resume = nand_resume;
5989 	mtd->_reboot = nand_shutdown;
5990 	mtd->_block_isreserved = nand_block_isreserved;
5991 	mtd->_block_isbad = nand_block_isbad;
5992 	mtd->_block_markbad = nand_block_markbad;
5993 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
5994 
5995 	/*
5996 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
5997 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5998 	 * properly set.
5999 	 */
6000 	if (!mtd->bitflip_threshold)
6001 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6002 
6003 	/* Find the fastest data interface for this chip */
6004 	ret = nand_choose_interface_config(chip);
6005 	if (ret)
6006 		goto err_nanddev_cleanup;
6007 
6008 	/* Enter fastest possible mode on all dies. */
6009 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6010 		ret = nand_setup_interface(chip, i);
6011 		if (ret)
6012 			goto err_free_interface_config;
6013 	}
6014 
6015 	/* Check, if we should skip the bad block table scan */
6016 	if (chip->options & NAND_SKIP_BBTSCAN)
6017 		return 0;
6018 
6019 	/* Build bad block table */
6020 	ret = nand_create_bbt(chip);
6021 	if (ret)
6022 		goto err_free_interface_config;
6023 
6024 	return 0;
6025 
6026 err_free_interface_config:
6027 	kfree(chip->best_interface_config);
6028 
6029 err_nanddev_cleanup:
6030 	nanddev_cleanup(&chip->base);
6031 
6032 err_nand_manuf_cleanup:
6033 	nand_manufacturer_cleanup(chip);
6034 
6035 err_free_buf:
6036 	kfree(chip->data_buf);
6037 	kfree(ecc->code_buf);
6038 	kfree(ecc->calc_buf);
6039 
6040 	return ret;
6041 }
6042 
6043 static int nand_attach(struct nand_chip *chip)
6044 {
6045 	if (chip->controller->ops && chip->controller->ops->attach_chip)
6046 		return chip->controller->ops->attach_chip(chip);
6047 
6048 	return 0;
6049 }
6050 
6051 static void nand_detach(struct nand_chip *chip)
6052 {
6053 	if (chip->controller->ops && chip->controller->ops->detach_chip)
6054 		chip->controller->ops->detach_chip(chip);
6055 }
6056 
6057 /**
6058  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6059  * @chip: NAND chip object
6060  * @maxchips: number of chips to scan for.
6061  * @ids: optional flash IDs table
6062  *
6063  * This fills out all the uninitialized function pointers with the defaults.
6064  * The flash ID is read and the mtd/chip structures are filled with the
6065  * appropriate values.
6066  */
6067 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6068 		       struct nand_flash_dev *ids)
6069 {
6070 	int ret;
6071 
6072 	if (!maxchips)
6073 		return -EINVAL;
6074 
6075 	ret = nand_scan_ident(chip, maxchips, ids);
6076 	if (ret)
6077 		return ret;
6078 
6079 	ret = nand_attach(chip);
6080 	if (ret)
6081 		goto cleanup_ident;
6082 
6083 	ret = nand_scan_tail(chip);
6084 	if (ret)
6085 		goto detach_chip;
6086 
6087 	return 0;
6088 
6089 detach_chip:
6090 	nand_detach(chip);
6091 cleanup_ident:
6092 	nand_scan_ident_cleanup(chip);
6093 
6094 	return ret;
6095 }
6096 EXPORT_SYMBOL(nand_scan_with_ids);
6097 
6098 /**
6099  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6100  * @chip: NAND chip object
6101  */
6102 void nand_cleanup(struct nand_chip *chip)
6103 {
6104 	if (chip->ecc.mode == NAND_ECC_SOFT &&
6105 	    chip->ecc.algo == NAND_ECC_BCH)
6106 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
6107 
6108 	nanddev_cleanup(&chip->base);
6109 
6110 	/* Free bad block table memory */
6111 	kfree(chip->bbt);
6112 	kfree(chip->data_buf);
6113 	kfree(chip->ecc.code_buf);
6114 	kfree(chip->ecc.calc_buf);
6115 
6116 	/* Free bad block descriptor memory */
6117 	if (chip->badblock_pattern && chip->badblock_pattern->options
6118 			& NAND_BBT_DYNAMICSTRUCT)
6119 		kfree(chip->badblock_pattern);
6120 
6121 	/* Free the data interface */
6122 	kfree(chip->best_interface_config);
6123 
6124 	/* Free manufacturer priv data. */
6125 	nand_manufacturer_cleanup(chip);
6126 
6127 	/* Free controller specific allocations after chip identification */
6128 	nand_detach(chip);
6129 
6130 	/* Free identification phase allocations */
6131 	nand_scan_ident_cleanup(chip);
6132 }
6133 
6134 EXPORT_SYMBOL_GPL(nand_cleanup);
6135 
6136 MODULE_LICENSE("GPL");
6137 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6138 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6139 MODULE_DESCRIPTION("Generic NAND flash driver code");
6140