1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Overview: 4 * This is the generic MTD driver for NAND flash devices. It should be 5 * capable of working with almost all NAND chips currently available. 6 * 7 * Additional technical information is available on 8 * http://www.linux-mtd.infradead.org/doc/nand.html 9 * 10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) 11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de) 12 * 13 * Credits: 14 * David Woodhouse for adding multichip support 15 * 16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the 17 * rework for 2K page size chips 18 * 19 * TODO: 20 * Enable cached programming for 2k page size chips 21 * Check, if mtd->ecctype should be set to MTD_ECC_HW 22 * if we have HW ECC support. 23 * BBT table is not serialized, has to be fixed 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/module.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/sched.h> 33 #include <linux/slab.h> 34 #include <linux/mm.h> 35 #include <linux/types.h> 36 #include <linux/mtd/mtd.h> 37 #include <linux/mtd/nand.h> 38 #include <linux/mtd/nand-ecc-sw-hamming.h> 39 #include <linux/mtd/nand-ecc-sw-bch.h> 40 #include <linux/interrupt.h> 41 #include <linux/bitops.h> 42 #include <linux/io.h> 43 #include <linux/mtd/partitions.h> 44 #include <linux/of.h> 45 #include <linux/of_gpio.h> 46 #include <linux/gpio/consumer.h> 47 48 #include "internals.h" 49 50 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page, 51 struct mtd_pairing_info *info) 52 { 53 int lastpage = (mtd->erasesize / mtd->writesize) - 1; 54 int dist = 3; 55 56 if (page == lastpage) 57 dist = 2; 58 59 if (!page || (page & 1)) { 60 info->group = 0; 61 info->pair = (page + 1) / 2; 62 } else { 63 info->group = 1; 64 info->pair = (page + 1 - dist) / 2; 65 } 66 67 return 0; 68 } 69 70 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd, 71 const struct mtd_pairing_info *info) 72 { 73 int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2; 74 int page = info->pair * 2; 75 int dist = 3; 76 77 if (!info->group && !info->pair) 78 return 0; 79 80 if (info->pair == lastpair && info->group) 81 dist = 2; 82 83 if (!info->group) 84 page--; 85 else if (info->pair) 86 page += dist - 1; 87 88 if (page >= mtd->erasesize / mtd->writesize) 89 return -EINVAL; 90 91 return page; 92 } 93 94 const struct mtd_pairing_scheme dist3_pairing_scheme = { 95 .ngroups = 2, 96 .get_info = nand_pairing_dist3_get_info, 97 .get_wunit = nand_pairing_dist3_get_wunit, 98 }; 99 100 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) 101 { 102 int ret = 0; 103 104 /* Start address must align on block boundary */ 105 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { 106 pr_debug("%s: unaligned address\n", __func__); 107 ret = -EINVAL; 108 } 109 110 /* Length must align on block boundary */ 111 if (len & ((1ULL << chip->phys_erase_shift) - 1)) { 112 pr_debug("%s: length not block aligned\n", __func__); 113 ret = -EINVAL; 114 } 115 116 return ret; 117 } 118 119 /** 120 * nand_extract_bits - Copy unaligned bits from one buffer to another one 121 * @dst: destination buffer 122 * @dst_off: bit offset at which the writing starts 123 * @src: source buffer 124 * @src_off: bit offset at which the reading starts 125 * @nbits: number of bits to copy from @src to @dst 126 * 127 * Copy bits from one memory region to another (overlap authorized). 128 */ 129 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, 130 unsigned int src_off, unsigned int nbits) 131 { 132 unsigned int tmp, n; 133 134 dst += dst_off / 8; 135 dst_off %= 8; 136 src += src_off / 8; 137 src_off %= 8; 138 139 while (nbits) { 140 n = min3(8 - dst_off, 8 - src_off, nbits); 141 142 tmp = (*src >> src_off) & GENMASK(n - 1, 0); 143 *dst &= ~GENMASK(n - 1 + dst_off, dst_off); 144 *dst |= tmp << dst_off; 145 146 dst_off += n; 147 if (dst_off >= 8) { 148 dst++; 149 dst_off -= 8; 150 } 151 152 src_off += n; 153 if (src_off >= 8) { 154 src++; 155 src_off -= 8; 156 } 157 158 nbits -= n; 159 } 160 } 161 EXPORT_SYMBOL_GPL(nand_extract_bits); 162 163 /** 164 * nand_select_target() - Select a NAND target (A.K.A. die) 165 * @chip: NAND chip object 166 * @cs: the CS line to select. Note that this CS id is always from the chip 167 * PoV, not the controller one 168 * 169 * Select a NAND target so that further operations executed on @chip go to the 170 * selected NAND target. 171 */ 172 void nand_select_target(struct nand_chip *chip, unsigned int cs) 173 { 174 /* 175 * cs should always lie between 0 and nanddev_ntargets(), when that's 176 * not the case it's a bug and the caller should be fixed. 177 */ 178 if (WARN_ON(cs > nanddev_ntargets(&chip->base))) 179 return; 180 181 chip->cur_cs = cs; 182 183 if (chip->legacy.select_chip) 184 chip->legacy.select_chip(chip, cs); 185 } 186 EXPORT_SYMBOL_GPL(nand_select_target); 187 188 /** 189 * nand_deselect_target() - Deselect the currently selected target 190 * @chip: NAND chip object 191 * 192 * Deselect the currently selected NAND target. The result of operations 193 * executed on @chip after the target has been deselected is undefined. 194 */ 195 void nand_deselect_target(struct nand_chip *chip) 196 { 197 if (chip->legacy.select_chip) 198 chip->legacy.select_chip(chip, -1); 199 200 chip->cur_cs = -1; 201 } 202 EXPORT_SYMBOL_GPL(nand_deselect_target); 203 204 /** 205 * nand_release_device - [GENERIC] release chip 206 * @chip: NAND chip object 207 * 208 * Release chip lock and wake up anyone waiting on the device. 209 */ 210 static void nand_release_device(struct nand_chip *chip) 211 { 212 /* Release the controller and the chip */ 213 mutex_unlock(&chip->controller->lock); 214 mutex_unlock(&chip->lock); 215 } 216 217 /** 218 * nand_bbm_get_next_page - Get the next page for bad block markers 219 * @chip: NAND chip object 220 * @page: First page to start checking for bad block marker usage 221 * 222 * Returns an integer that corresponds to the page offset within a block, for 223 * a page that is used to store bad block markers. If no more pages are 224 * available, -EINVAL is returned. 225 */ 226 int nand_bbm_get_next_page(struct nand_chip *chip, int page) 227 { 228 struct mtd_info *mtd = nand_to_mtd(chip); 229 int last_page = ((mtd->erasesize - mtd->writesize) >> 230 chip->page_shift) & chip->pagemask; 231 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE 232 | NAND_BBM_LASTPAGE; 233 234 if (page == 0 && !(chip->options & bbm_flags)) 235 return 0; 236 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) 237 return 0; 238 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) 239 return 1; 240 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) 241 return last_page; 242 243 return -EINVAL; 244 } 245 246 /** 247 * nand_block_bad - [DEFAULT] Read bad block marker from the chip 248 * @chip: NAND chip object 249 * @ofs: offset from device start 250 * 251 * Check, if the block is bad. 252 */ 253 static int nand_block_bad(struct nand_chip *chip, loff_t ofs) 254 { 255 int first_page, page_offset; 256 int res; 257 u8 bad; 258 259 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; 260 page_offset = nand_bbm_get_next_page(chip, 0); 261 262 while (page_offset >= 0) { 263 res = chip->ecc.read_oob(chip, first_page + page_offset); 264 if (res < 0) 265 return res; 266 267 bad = chip->oob_poi[chip->badblockpos]; 268 269 if (likely(chip->badblockbits == 8)) 270 res = bad != 0xFF; 271 else 272 res = hweight8(bad) < chip->badblockbits; 273 if (res) 274 return res; 275 276 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 277 } 278 279 return 0; 280 } 281 282 /** 283 * nand_region_is_secured() - Check if the region is secured 284 * @chip: NAND chip object 285 * @offset: Offset of the region to check 286 * @size: Size of the region to check 287 * 288 * Checks if the region is secured by comparing the offset and size with the 289 * list of secure regions obtained from DT. Returns true if the region is 290 * secured else false. 291 */ 292 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size) 293 { 294 int i; 295 296 /* Skip touching the secure regions if present */ 297 for (i = 0; i < chip->nr_secure_regions; i++) { 298 const struct nand_secure_region *region = &chip->secure_regions[i]; 299 300 if (offset + size <= region->offset || 301 offset >= region->offset + region->size) 302 continue; 303 304 pr_debug("%s: Region 0x%llx - 0x%llx is secured!", 305 __func__, offset, offset + size); 306 307 return true; 308 } 309 310 return false; 311 } 312 313 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) 314 { 315 struct mtd_info *mtd = nand_to_mtd(chip); 316 317 if (chip->options & NAND_NO_BBM_QUIRK) 318 return 0; 319 320 /* Check if the region is secured */ 321 if (nand_region_is_secured(chip, ofs, mtd->erasesize)) 322 return -EIO; 323 324 if (mtd_check_expert_analysis_mode()) 325 return 0; 326 327 if (chip->legacy.block_bad) 328 return chip->legacy.block_bad(chip, ofs); 329 330 return nand_block_bad(chip, ofs); 331 } 332 333 /** 334 * nand_get_device - [GENERIC] Get chip for selected access 335 * @chip: NAND chip structure 336 * 337 * Lock the device and its controller for exclusive access 338 */ 339 static void nand_get_device(struct nand_chip *chip) 340 { 341 /* Wait until the device is resumed. */ 342 while (1) { 343 mutex_lock(&chip->lock); 344 if (!chip->suspended) { 345 mutex_lock(&chip->controller->lock); 346 return; 347 } 348 mutex_unlock(&chip->lock); 349 350 wait_event(chip->resume_wq, !chip->suspended); 351 } 352 } 353 354 /** 355 * nand_check_wp - [GENERIC] check if the chip is write protected 356 * @chip: NAND chip object 357 * 358 * Check, if the device is write protected. The function expects, that the 359 * device is already selected. 360 */ 361 static int nand_check_wp(struct nand_chip *chip) 362 { 363 u8 status; 364 int ret; 365 366 /* Broken xD cards report WP despite being writable */ 367 if (chip->options & NAND_BROKEN_XD) 368 return 0; 369 370 /* Check the WP bit */ 371 ret = nand_status_op(chip, &status); 372 if (ret) 373 return ret; 374 375 return status & NAND_STATUS_WP ? 0 : 1; 376 } 377 378 /** 379 * nand_fill_oob - [INTERN] Transfer client buffer to oob 380 * @chip: NAND chip object 381 * @oob: oob data buffer 382 * @len: oob data write length 383 * @ops: oob ops structure 384 */ 385 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, 386 struct mtd_oob_ops *ops) 387 { 388 struct mtd_info *mtd = nand_to_mtd(chip); 389 int ret; 390 391 /* 392 * Initialise to all 0xFF, to avoid the possibility of left over OOB 393 * data from a previous OOB read. 394 */ 395 memset(chip->oob_poi, 0xff, mtd->oobsize); 396 397 switch (ops->mode) { 398 399 case MTD_OPS_PLACE_OOB: 400 case MTD_OPS_RAW: 401 memcpy(chip->oob_poi + ops->ooboffs, oob, len); 402 return oob + len; 403 404 case MTD_OPS_AUTO_OOB: 405 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, 406 ops->ooboffs, len); 407 BUG_ON(ret); 408 return oob + len; 409 410 default: 411 BUG(); 412 } 413 return NULL; 414 } 415 416 /** 417 * nand_do_write_oob - [MTD Interface] NAND write out-of-band 418 * @chip: NAND chip object 419 * @to: offset to write to 420 * @ops: oob operation description structure 421 * 422 * NAND write out-of-band. 423 */ 424 static int nand_do_write_oob(struct nand_chip *chip, loff_t to, 425 struct mtd_oob_ops *ops) 426 { 427 struct mtd_info *mtd = nand_to_mtd(chip); 428 int chipnr, page, status, len, ret; 429 430 pr_debug("%s: to = 0x%08x, len = %i\n", 431 __func__, (unsigned int)to, (int)ops->ooblen); 432 433 len = mtd_oobavail(mtd, ops); 434 435 /* Do not allow write past end of page */ 436 if ((ops->ooboffs + ops->ooblen) > len) { 437 pr_debug("%s: attempt to write past end of page\n", 438 __func__); 439 return -EINVAL; 440 } 441 442 /* Check if the region is secured */ 443 if (nand_region_is_secured(chip, to, ops->ooblen)) 444 return -EIO; 445 446 chipnr = (int)(to >> chip->chip_shift); 447 448 /* 449 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one 450 * of my DiskOnChip 2000 test units) will clear the whole data page too 451 * if we don't do this. I have no clue why, but I seem to have 'fixed' 452 * it in the doc2000 driver in August 1999. dwmw2. 453 */ 454 ret = nand_reset(chip, chipnr); 455 if (ret) 456 return ret; 457 458 nand_select_target(chip, chipnr); 459 460 /* Shift to get page */ 461 page = (int)(to >> chip->page_shift); 462 463 /* Check, if it is write protected */ 464 if (nand_check_wp(chip)) { 465 nand_deselect_target(chip); 466 return -EROFS; 467 } 468 469 /* Invalidate the page cache, if we write to the cached page */ 470 if (page == chip->pagecache.page) 471 chip->pagecache.page = -1; 472 473 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); 474 475 if (ops->mode == MTD_OPS_RAW) 476 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); 477 else 478 status = chip->ecc.write_oob(chip, page & chip->pagemask); 479 480 nand_deselect_target(chip); 481 482 if (status) 483 return status; 484 485 ops->oobretlen = ops->ooblen; 486 487 return 0; 488 } 489 490 /** 491 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker 492 * @chip: NAND chip object 493 * @ofs: offset from device start 494 * 495 * This is the default implementation, which can be overridden by a hardware 496 * specific driver. It provides the details for writing a bad block marker to a 497 * block. 498 */ 499 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) 500 { 501 struct mtd_info *mtd = nand_to_mtd(chip); 502 struct mtd_oob_ops ops; 503 uint8_t buf[2] = { 0, 0 }; 504 int ret = 0, res, page_offset; 505 506 memset(&ops, 0, sizeof(ops)); 507 ops.oobbuf = buf; 508 ops.ooboffs = chip->badblockpos; 509 if (chip->options & NAND_BUSWIDTH_16) { 510 ops.ooboffs &= ~0x01; 511 ops.len = ops.ooblen = 2; 512 } else { 513 ops.len = ops.ooblen = 1; 514 } 515 ops.mode = MTD_OPS_PLACE_OOB; 516 517 page_offset = nand_bbm_get_next_page(chip, 0); 518 519 while (page_offset >= 0) { 520 res = nand_do_write_oob(chip, 521 ofs + (page_offset * mtd->writesize), 522 &ops); 523 524 if (!ret) 525 ret = res; 526 527 page_offset = nand_bbm_get_next_page(chip, page_offset + 1); 528 } 529 530 return ret; 531 } 532 533 /** 534 * nand_markbad_bbm - mark a block by updating the BBM 535 * @chip: NAND chip object 536 * @ofs: offset of the block to mark bad 537 */ 538 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) 539 { 540 if (chip->legacy.block_markbad) 541 return chip->legacy.block_markbad(chip, ofs); 542 543 return nand_default_block_markbad(chip, ofs); 544 } 545 546 /** 547 * nand_block_markbad_lowlevel - mark a block bad 548 * @chip: NAND chip object 549 * @ofs: offset from device start 550 * 551 * This function performs the generic NAND bad block marking steps (i.e., bad 552 * block table(s) and/or marker(s)). We only allow the hardware driver to 553 * specify how to write bad block markers to OOB (chip->legacy.block_markbad). 554 * 555 * We try operations in the following order: 556 * 557 * (1) erase the affected block, to allow OOB marker to be written cleanly 558 * (2) write bad block marker to OOB area of affected block (unless flag 559 * NAND_BBT_NO_OOB_BBM is present) 560 * (3) update the BBT 561 * 562 * Note that we retain the first error encountered in (2) or (3), finish the 563 * procedures, and dump the error in the end. 564 */ 565 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) 566 { 567 struct mtd_info *mtd = nand_to_mtd(chip); 568 int res, ret = 0; 569 570 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { 571 struct erase_info einfo; 572 573 /* Attempt erase before marking OOB */ 574 memset(&einfo, 0, sizeof(einfo)); 575 einfo.addr = ofs; 576 einfo.len = 1ULL << chip->phys_erase_shift; 577 nand_erase_nand(chip, &einfo, 0); 578 579 /* Write bad block marker to OOB */ 580 nand_get_device(chip); 581 582 ret = nand_markbad_bbm(chip, ofs); 583 nand_release_device(chip); 584 } 585 586 /* Mark block bad in BBT */ 587 if (chip->bbt) { 588 res = nand_markbad_bbt(chip, ofs); 589 if (!ret) 590 ret = res; 591 } 592 593 if (!ret) 594 mtd->ecc_stats.badblocks++; 595 596 return ret; 597 } 598 599 /** 600 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. 601 * @mtd: MTD device structure 602 * @ofs: offset from device start 603 * 604 * Check if the block is marked as reserved. 605 */ 606 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) 607 { 608 struct nand_chip *chip = mtd_to_nand(mtd); 609 610 if (!chip->bbt) 611 return 0; 612 /* Return info from the table */ 613 return nand_isreserved_bbt(chip, ofs); 614 } 615 616 /** 617 * nand_block_checkbad - [GENERIC] Check if a block is marked bad 618 * @chip: NAND chip object 619 * @ofs: offset from device start 620 * @allowbbt: 1, if its allowed to access the bbt area 621 * 622 * Check, if the block is bad. Either by reading the bad block table or 623 * calling of the scan function. 624 */ 625 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) 626 { 627 /* Return info from the table */ 628 if (chip->bbt) 629 return nand_isbad_bbt(chip, ofs, allowbbt); 630 631 return nand_isbad_bbm(chip, ofs); 632 } 633 634 /** 635 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 636 * @chip: NAND chip structure 637 * @timeout_ms: Timeout in ms 638 * 639 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. 640 * If that does not happen whitin the specified timeout, -ETIMEDOUT is 641 * returned. 642 * 643 * This helper is intended to be used when the controller does not have access 644 * to the NAND R/B pin. 645 * 646 * Be aware that calling this helper from an ->exec_op() implementation means 647 * ->exec_op() must be re-entrant. 648 * 649 * Return 0 if the NAND chip is ready, a negative error otherwise. 650 */ 651 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) 652 { 653 const struct nand_interface_config *conf; 654 u8 status = 0; 655 int ret; 656 657 if (!nand_has_exec_op(chip)) 658 return -ENOTSUPP; 659 660 /* Wait tWB before polling the STATUS reg. */ 661 conf = nand_get_interface_config(chip); 662 ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max)); 663 664 ret = nand_status_op(chip, NULL); 665 if (ret) 666 return ret; 667 668 /* 669 * +1 below is necessary because if we are now in the last fraction 670 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 671 * small jiffy fraction - possibly leading to false timeout 672 */ 673 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 674 do { 675 ret = nand_read_data_op(chip, &status, sizeof(status), true, 676 false); 677 if (ret) 678 break; 679 680 if (status & NAND_STATUS_READY) 681 break; 682 683 /* 684 * Typical lowest execution time for a tR on most NANDs is 10us, 685 * use this as polling delay before doing something smarter (ie. 686 * deriving a delay from the timeout value, timeout_ms/ratio). 687 */ 688 udelay(10); 689 } while (time_before(jiffies, timeout_ms)); 690 691 /* 692 * We have to exit READ_STATUS mode in order to read real data on the 693 * bus in case the WAITRDY instruction is preceding a DATA_IN 694 * instruction. 695 */ 696 nand_exit_status_op(chip); 697 698 if (ret) 699 return ret; 700 701 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; 702 }; 703 EXPORT_SYMBOL_GPL(nand_soft_waitrdy); 704 705 /** 706 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready 707 * @chip: NAND chip structure 708 * @gpiod: GPIO descriptor of R/B pin 709 * @timeout_ms: Timeout in ms 710 * 711 * Poll the R/B GPIO pin until it becomes ready. If that does not happen 712 * whitin the specified timeout, -ETIMEDOUT is returned. 713 * 714 * This helper is intended to be used when the controller has access to the 715 * NAND R/B pin over GPIO. 716 * 717 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. 718 */ 719 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 720 unsigned long timeout_ms) 721 { 722 723 /* 724 * Wait until R/B pin indicates chip is ready or timeout occurs. 725 * +1 below is necessary because if we are now in the last fraction 726 * of jiffy and msecs_to_jiffies is 1 then we will wait only that 727 * small jiffy fraction - possibly leading to false timeout. 728 */ 729 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; 730 do { 731 if (gpiod_get_value_cansleep(gpiod)) 732 return 0; 733 734 cond_resched(); 735 } while (time_before(jiffies, timeout_ms)); 736 737 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; 738 }; 739 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); 740 741 /** 742 * panic_nand_wait - [GENERIC] wait until the command is done 743 * @chip: NAND chip structure 744 * @timeo: timeout 745 * 746 * Wait for command done. This is a helper function for nand_wait used when 747 * we are in interrupt context. May happen when in panic and trying to write 748 * an oops through mtdoops. 749 */ 750 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) 751 { 752 int i; 753 for (i = 0; i < timeo; i++) { 754 if (chip->legacy.dev_ready) { 755 if (chip->legacy.dev_ready(chip)) 756 break; 757 } else { 758 int ret; 759 u8 status; 760 761 ret = nand_read_data_op(chip, &status, sizeof(status), 762 true, false); 763 if (ret) 764 return; 765 766 if (status & NAND_STATUS_READY) 767 break; 768 } 769 mdelay(1); 770 } 771 } 772 773 static bool nand_supports_get_features(struct nand_chip *chip, int addr) 774 { 775 return (chip->parameters.supports_set_get_features && 776 test_bit(addr, chip->parameters.get_feature_list)); 777 } 778 779 static bool nand_supports_set_features(struct nand_chip *chip, int addr) 780 { 781 return (chip->parameters.supports_set_get_features && 782 test_bit(addr, chip->parameters.set_feature_list)); 783 } 784 785 /** 786 * nand_reset_interface - Reset data interface and timings 787 * @chip: The NAND chip 788 * @chipnr: Internal die id 789 * 790 * Reset the Data interface and timings to ONFI mode 0. 791 * 792 * Returns 0 for success or negative error code otherwise. 793 */ 794 static int nand_reset_interface(struct nand_chip *chip, int chipnr) 795 { 796 const struct nand_controller_ops *ops = chip->controller->ops; 797 int ret; 798 799 if (!nand_controller_can_setup_interface(chip)) 800 return 0; 801 802 /* 803 * The ONFI specification says: 804 * " 805 * To transition from NV-DDR or NV-DDR2 to the SDR data 806 * interface, the host shall use the Reset (FFh) command 807 * using SDR timing mode 0. A device in any timing mode is 808 * required to recognize Reset (FFh) command issued in SDR 809 * timing mode 0. 810 * " 811 * 812 * Configure the data interface in SDR mode and set the 813 * timings to timing mode 0. 814 */ 815 816 chip->current_interface_config = nand_get_reset_interface_config(); 817 ret = ops->setup_interface(chip, chipnr, 818 chip->current_interface_config); 819 if (ret) 820 pr_err("Failed to configure data interface to SDR timing mode 0\n"); 821 822 return ret; 823 } 824 825 /** 826 * nand_setup_interface - Setup the best data interface and timings 827 * @chip: The NAND chip 828 * @chipnr: Internal die id 829 * 830 * Configure what has been reported to be the best data interface and NAND 831 * timings supported by the chip and the driver. 832 * 833 * Returns 0 for success or negative error code otherwise. 834 */ 835 static int nand_setup_interface(struct nand_chip *chip, int chipnr) 836 { 837 const struct nand_controller_ops *ops = chip->controller->ops; 838 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request; 839 int ret; 840 841 if (!nand_controller_can_setup_interface(chip)) 842 return 0; 843 844 /* 845 * A nand_reset_interface() put both the NAND chip and the NAND 846 * controller in timings mode 0. If the default mode for this chip is 847 * also 0, no need to proceed to the change again. Plus, at probe time, 848 * nand_setup_interface() uses ->set/get_features() which would 849 * fail anyway as the parameter page is not available yet. 850 */ 851 if (!chip->best_interface_config) 852 return 0; 853 854 request = chip->best_interface_config->timings.mode; 855 if (nand_interface_is_sdr(chip->best_interface_config)) 856 request |= ONFI_DATA_INTERFACE_SDR; 857 else 858 request |= ONFI_DATA_INTERFACE_NVDDR; 859 tmode_param[0] = request; 860 861 /* Change the mode on the chip side (if supported by the NAND chip) */ 862 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { 863 nand_select_target(chip, chipnr); 864 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 865 tmode_param); 866 nand_deselect_target(chip); 867 if (ret) 868 return ret; 869 } 870 871 /* Change the mode on the controller side */ 872 ret = ops->setup_interface(chip, chipnr, chip->best_interface_config); 873 if (ret) 874 return ret; 875 876 /* Check the mode has been accepted by the chip, if supported */ 877 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) 878 goto update_interface_config; 879 880 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); 881 nand_select_target(chip, chipnr); 882 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, 883 tmode_param); 884 nand_deselect_target(chip); 885 if (ret) 886 goto err_reset_chip; 887 888 if (request != tmode_param[0]) { 889 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n", 890 nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR", 891 chip->best_interface_config->timings.mode); 892 pr_debug("NAND chip would work in %s timing mode %d\n", 893 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR", 894 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0])); 895 goto err_reset_chip; 896 } 897 898 update_interface_config: 899 chip->current_interface_config = chip->best_interface_config; 900 901 return 0; 902 903 err_reset_chip: 904 /* 905 * Fallback to mode 0 if the chip explicitly did not ack the chosen 906 * timing mode. 907 */ 908 nand_reset_interface(chip, chipnr); 909 nand_select_target(chip, chipnr); 910 nand_reset_op(chip); 911 nand_deselect_target(chip); 912 913 return ret; 914 } 915 916 /** 917 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the 918 * NAND controller and the NAND chip support 919 * @chip: the NAND chip 920 * @iface: the interface configuration (can eventually be updated) 921 * @spec_timings: specific timings, when not fitting the ONFI specification 922 * 923 * If specific timings are provided, use them. Otherwise, retrieve supported 924 * timing modes from ONFI information. 925 */ 926 int nand_choose_best_sdr_timings(struct nand_chip *chip, 927 struct nand_interface_config *iface, 928 struct nand_sdr_timings *spec_timings) 929 { 930 const struct nand_controller_ops *ops = chip->controller->ops; 931 int best_mode = 0, mode, ret = -EOPNOTSUPP; 932 933 iface->type = NAND_SDR_IFACE; 934 935 if (spec_timings) { 936 iface->timings.sdr = *spec_timings; 937 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings); 938 939 /* Verify the controller supports the requested interface */ 940 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 941 iface); 942 if (!ret) { 943 chip->best_interface_config = iface; 944 return ret; 945 } 946 947 /* Fallback to slower modes */ 948 best_mode = iface->timings.mode; 949 } else if (chip->parameters.onfi) { 950 best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1; 951 } 952 953 for (mode = best_mode; mode >= 0; mode--) { 954 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode); 955 956 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 957 iface); 958 if (!ret) { 959 chip->best_interface_config = iface; 960 break; 961 } 962 } 963 964 return ret; 965 } 966 967 /** 968 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the 969 * NAND controller and the NAND chip support 970 * @chip: the NAND chip 971 * @iface: the interface configuration (can eventually be updated) 972 * @spec_timings: specific timings, when not fitting the ONFI specification 973 * 974 * If specific timings are provided, use them. Otherwise, retrieve supported 975 * timing modes from ONFI information. 976 */ 977 int nand_choose_best_nvddr_timings(struct nand_chip *chip, 978 struct nand_interface_config *iface, 979 struct nand_nvddr_timings *spec_timings) 980 { 981 const struct nand_controller_ops *ops = chip->controller->ops; 982 int best_mode = 0, mode, ret = -EOPNOTSUPP; 983 984 iface->type = NAND_NVDDR_IFACE; 985 986 if (spec_timings) { 987 iface->timings.nvddr = *spec_timings; 988 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings); 989 990 /* Verify the controller supports the requested interface */ 991 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 992 iface); 993 if (!ret) { 994 chip->best_interface_config = iface; 995 return ret; 996 } 997 998 /* Fallback to slower modes */ 999 best_mode = iface->timings.mode; 1000 } else if (chip->parameters.onfi) { 1001 best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1; 1002 } 1003 1004 for (mode = best_mode; mode >= 0; mode--) { 1005 onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode); 1006 1007 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, 1008 iface); 1009 if (!ret) { 1010 chip->best_interface_config = iface; 1011 break; 1012 } 1013 } 1014 1015 return ret; 1016 } 1017 1018 /** 1019 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both 1020 * NAND controller and the NAND chip support 1021 * @chip: the NAND chip 1022 * @iface: the interface configuration (can eventually be updated) 1023 * 1024 * If specific timings are provided, use them. Otherwise, retrieve supported 1025 * timing modes from ONFI information. 1026 */ 1027 static int nand_choose_best_timings(struct nand_chip *chip, 1028 struct nand_interface_config *iface) 1029 { 1030 int ret; 1031 1032 /* Try the fastest timings: NV-DDR */ 1033 ret = nand_choose_best_nvddr_timings(chip, iface, NULL); 1034 if (!ret) 1035 return 0; 1036 1037 /* Fallback to SDR timings otherwise */ 1038 return nand_choose_best_sdr_timings(chip, iface, NULL); 1039 } 1040 1041 /** 1042 * nand_choose_interface_config - find the best data interface and timings 1043 * @chip: The NAND chip 1044 * 1045 * Find the best data interface and NAND timings supported by the chip 1046 * and the driver. Eventually let the NAND manufacturer driver propose his own 1047 * set of timings. 1048 * 1049 * After this function nand_chip->interface_config is initialized with the best 1050 * timing mode available. 1051 * 1052 * Returns 0 for success or negative error code otherwise. 1053 */ 1054 static int nand_choose_interface_config(struct nand_chip *chip) 1055 { 1056 struct nand_interface_config *iface; 1057 int ret; 1058 1059 if (!nand_controller_can_setup_interface(chip)) 1060 return 0; 1061 1062 iface = kzalloc(sizeof(*iface), GFP_KERNEL); 1063 if (!iface) 1064 return -ENOMEM; 1065 1066 if (chip->ops.choose_interface_config) 1067 ret = chip->ops.choose_interface_config(chip, iface); 1068 else 1069 ret = nand_choose_best_timings(chip, iface); 1070 1071 if (ret) 1072 kfree(iface); 1073 1074 return ret; 1075 } 1076 1077 /** 1078 * nand_fill_column_cycles - fill the column cycles of an address 1079 * @chip: The NAND chip 1080 * @addrs: Array of address cycles to fill 1081 * @offset_in_page: The offset in the page 1082 * 1083 * Fills the first or the first two bytes of the @addrs field depending 1084 * on the NAND bus width and the page size. 1085 * 1086 * Returns the number of cycles needed to encode the column, or a negative 1087 * error code in case one of the arguments is invalid. 1088 */ 1089 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, 1090 unsigned int offset_in_page) 1091 { 1092 struct mtd_info *mtd = nand_to_mtd(chip); 1093 1094 /* Make sure the offset is less than the actual page size. */ 1095 if (offset_in_page > mtd->writesize + mtd->oobsize) 1096 return -EINVAL; 1097 1098 /* 1099 * On small page NANDs, there's a dedicated command to access the OOB 1100 * area, and the column address is relative to the start of the OOB 1101 * area, not the start of the page. Asjust the address accordingly. 1102 */ 1103 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) 1104 offset_in_page -= mtd->writesize; 1105 1106 /* 1107 * The offset in page is expressed in bytes, if the NAND bus is 16-bit 1108 * wide, then it must be divided by 2. 1109 */ 1110 if (chip->options & NAND_BUSWIDTH_16) { 1111 if (WARN_ON(offset_in_page % 2)) 1112 return -EINVAL; 1113 1114 offset_in_page /= 2; 1115 } 1116 1117 addrs[0] = offset_in_page; 1118 1119 /* 1120 * Small page NANDs use 1 cycle for the columns, while large page NANDs 1121 * need 2 1122 */ 1123 if (mtd->writesize <= 512) 1124 return 1; 1125 1126 addrs[1] = offset_in_page >> 8; 1127 1128 return 2; 1129 } 1130 1131 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1132 unsigned int offset_in_page, void *buf, 1133 unsigned int len) 1134 { 1135 const struct nand_interface_config *conf = 1136 nand_get_interface_config(chip); 1137 struct mtd_info *mtd = nand_to_mtd(chip); 1138 u8 addrs[4]; 1139 struct nand_op_instr instrs[] = { 1140 NAND_OP_CMD(NAND_CMD_READ0, 0), 1141 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1142 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1143 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1144 NAND_OP_DATA_IN(len, buf, 0), 1145 }; 1146 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1147 int ret; 1148 1149 /* Drop the DATA_IN instruction if len is set to 0. */ 1150 if (!len) 1151 op.ninstrs--; 1152 1153 if (offset_in_page >= mtd->writesize) 1154 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1155 else if (offset_in_page >= 256 && 1156 !(chip->options & NAND_BUSWIDTH_16)) 1157 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1158 1159 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1160 if (ret < 0) 1161 return ret; 1162 1163 addrs[1] = page; 1164 addrs[2] = page >> 8; 1165 1166 if (chip->options & NAND_ROW_ADDR_3) { 1167 addrs[3] = page >> 16; 1168 instrs[1].ctx.addr.naddrs++; 1169 } 1170 1171 return nand_exec_op(chip, &op); 1172 } 1173 1174 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, 1175 unsigned int offset_in_page, void *buf, 1176 unsigned int len) 1177 { 1178 const struct nand_interface_config *conf = 1179 nand_get_interface_config(chip); 1180 u8 addrs[5]; 1181 struct nand_op_instr instrs[] = { 1182 NAND_OP_CMD(NAND_CMD_READ0, 0), 1183 NAND_OP_ADDR(4, addrs, 0), 1184 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1185 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1186 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1187 NAND_OP_DATA_IN(len, buf, 0), 1188 }; 1189 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1190 int ret; 1191 1192 /* Drop the DATA_IN instruction if len is set to 0. */ 1193 if (!len) 1194 op.ninstrs--; 1195 1196 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1197 if (ret < 0) 1198 return ret; 1199 1200 addrs[2] = page; 1201 addrs[3] = page >> 8; 1202 1203 if (chip->options & NAND_ROW_ADDR_3) { 1204 addrs[4] = page >> 16; 1205 instrs[1].ctx.addr.naddrs++; 1206 } 1207 1208 return nand_exec_op(chip, &op); 1209 } 1210 1211 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page, 1212 unsigned int offset_in_page, void *buf, 1213 unsigned int len, bool check_only) 1214 { 1215 const struct nand_interface_config *conf = 1216 nand_get_interface_config(chip); 1217 u8 addrs[5]; 1218 struct nand_op_instr start_instrs[] = { 1219 NAND_OP_CMD(NAND_CMD_READ0, 0), 1220 NAND_OP_ADDR(4, addrs, 0), 1221 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1222 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0), 1223 NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)), 1224 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1225 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1226 NAND_OP_DATA_IN(len, buf, 0), 1227 }; 1228 struct nand_op_instr cont_instrs[] = { 1229 NAND_OP_CMD(page == chip->cont_read.last_page ? 1230 NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ, 1231 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1232 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1233 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1234 NAND_OP_DATA_IN(len, buf, 0), 1235 }; 1236 struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs); 1237 struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs); 1238 int ret; 1239 1240 if (!len) { 1241 start_op.ninstrs--; 1242 cont_op.ninstrs--; 1243 } 1244 1245 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1246 if (ret < 0) 1247 return ret; 1248 1249 addrs[2] = page; 1250 addrs[3] = page >> 8; 1251 1252 if (chip->options & NAND_ROW_ADDR_3) { 1253 addrs[4] = page >> 16; 1254 start_instrs[1].ctx.addr.naddrs++; 1255 } 1256 1257 /* Check if cache reads are supported */ 1258 if (check_only) { 1259 if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op)) 1260 return -EOPNOTSUPP; 1261 1262 return 0; 1263 } 1264 1265 if (page == chip->cont_read.first_page) 1266 return nand_exec_op(chip, &start_op); 1267 else 1268 return nand_exec_op(chip, &cont_op); 1269 } 1270 1271 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page) 1272 { 1273 return chip->cont_read.ongoing && 1274 page >= chip->cont_read.first_page && 1275 page <= chip->cont_read.last_page; 1276 } 1277 1278 /** 1279 * nand_read_page_op - Do a READ PAGE operation 1280 * @chip: The NAND chip 1281 * @page: page to read 1282 * @offset_in_page: offset within the page 1283 * @buf: buffer used to store the data 1284 * @len: length of the buffer 1285 * 1286 * This function issues a READ PAGE operation. 1287 * This function does not select/unselect the CS line. 1288 * 1289 * Returns 0 on success, a negative error code otherwise. 1290 */ 1291 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1292 unsigned int offset_in_page, void *buf, unsigned int len) 1293 { 1294 struct mtd_info *mtd = nand_to_mtd(chip); 1295 1296 if (len && !buf) 1297 return -EINVAL; 1298 1299 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1300 return -EINVAL; 1301 1302 if (nand_has_exec_op(chip)) { 1303 if (mtd->writesize > 512) { 1304 if (rawnand_cont_read_ongoing(chip, page)) 1305 return nand_lp_exec_cont_read_page_op(chip, page, 1306 offset_in_page, 1307 buf, len, false); 1308 else 1309 return nand_lp_exec_read_page_op(chip, page, 1310 offset_in_page, buf, 1311 len); 1312 } 1313 1314 return nand_sp_exec_read_page_op(chip, page, offset_in_page, 1315 buf, len); 1316 } 1317 1318 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); 1319 if (len) 1320 chip->legacy.read_buf(chip, buf, len); 1321 1322 return 0; 1323 } 1324 EXPORT_SYMBOL_GPL(nand_read_page_op); 1325 1326 /** 1327 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation 1328 * @chip: The NAND chip 1329 * @page: parameter page to read 1330 * @buf: buffer used to store the data 1331 * @len: length of the buffer 1332 * 1333 * This function issues a READ PARAMETER PAGE operation. 1334 * This function does not select/unselect the CS line. 1335 * 1336 * Returns 0 on success, a negative error code otherwise. 1337 */ 1338 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, 1339 unsigned int len) 1340 { 1341 unsigned int i; 1342 u8 *p = buf; 1343 1344 if (len && !buf) 1345 return -EINVAL; 1346 1347 if (nand_has_exec_op(chip)) { 1348 const struct nand_interface_config *conf = 1349 nand_get_interface_config(chip); 1350 struct nand_op_instr instrs[] = { 1351 NAND_OP_CMD(NAND_CMD_PARAM, 0), 1352 NAND_OP_ADDR(1, &page, 1353 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1354 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 1355 NAND_COMMON_TIMING_NS(conf, tRR_min)), 1356 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1357 }; 1358 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1359 1360 /* Drop the DATA_IN instruction if len is set to 0. */ 1361 if (!len) 1362 op.ninstrs--; 1363 1364 return nand_exec_op(chip, &op); 1365 } 1366 1367 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); 1368 for (i = 0; i < len; i++) 1369 p[i] = chip->legacy.read_byte(chip); 1370 1371 return 0; 1372 } 1373 1374 /** 1375 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation 1376 * @chip: The NAND chip 1377 * @offset_in_page: offset within the page 1378 * @buf: buffer used to store the data 1379 * @len: length of the buffer 1380 * @force_8bit: force 8-bit bus access 1381 * 1382 * This function issues a CHANGE READ COLUMN operation. 1383 * This function does not select/unselect the CS line. 1384 * 1385 * Returns 0 on success, a negative error code otherwise. 1386 */ 1387 int nand_change_read_column_op(struct nand_chip *chip, 1388 unsigned int offset_in_page, void *buf, 1389 unsigned int len, bool force_8bit) 1390 { 1391 struct mtd_info *mtd = nand_to_mtd(chip); 1392 1393 if (len && !buf) 1394 return -EINVAL; 1395 1396 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1397 return -EINVAL; 1398 1399 /* Small page NANDs do not support column change. */ 1400 if (mtd->writesize <= 512) 1401 return -ENOTSUPP; 1402 1403 if (nand_has_exec_op(chip)) { 1404 const struct nand_interface_config *conf = 1405 nand_get_interface_config(chip); 1406 u8 addrs[2] = {}; 1407 struct nand_op_instr instrs[] = { 1408 NAND_OP_CMD(NAND_CMD_RNDOUT, 0), 1409 NAND_OP_ADDR(2, addrs, 0), 1410 NAND_OP_CMD(NAND_CMD_RNDOUTSTART, 1411 NAND_COMMON_TIMING_NS(conf, tCCS_min)), 1412 NAND_OP_DATA_IN(len, buf, 0), 1413 }; 1414 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1415 int ret; 1416 1417 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1418 if (ret < 0) 1419 return ret; 1420 1421 /* Drop the DATA_IN instruction if len is set to 0. */ 1422 if (!len) 1423 op.ninstrs--; 1424 1425 instrs[3].ctx.data.force_8bit = force_8bit; 1426 1427 return nand_exec_op(chip, &op); 1428 } 1429 1430 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); 1431 if (len) 1432 chip->legacy.read_buf(chip, buf, len); 1433 1434 return 0; 1435 } 1436 EXPORT_SYMBOL_GPL(nand_change_read_column_op); 1437 1438 /** 1439 * nand_read_oob_op - Do a READ OOB operation 1440 * @chip: The NAND chip 1441 * @page: page to read 1442 * @offset_in_oob: offset within the OOB area 1443 * @buf: buffer used to store the data 1444 * @len: length of the buffer 1445 * 1446 * This function issues a READ OOB operation. 1447 * This function does not select/unselect the CS line. 1448 * 1449 * Returns 0 on success, a negative error code otherwise. 1450 */ 1451 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1452 unsigned int offset_in_oob, void *buf, unsigned int len) 1453 { 1454 struct mtd_info *mtd = nand_to_mtd(chip); 1455 1456 if (len && !buf) 1457 return -EINVAL; 1458 1459 if (offset_in_oob + len > mtd->oobsize) 1460 return -EINVAL; 1461 1462 if (nand_has_exec_op(chip)) 1463 return nand_read_page_op(chip, page, 1464 mtd->writesize + offset_in_oob, 1465 buf, len); 1466 1467 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); 1468 if (len) 1469 chip->legacy.read_buf(chip, buf, len); 1470 1471 return 0; 1472 } 1473 EXPORT_SYMBOL_GPL(nand_read_oob_op); 1474 1475 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, 1476 unsigned int offset_in_page, const void *buf, 1477 unsigned int len, bool prog) 1478 { 1479 const struct nand_interface_config *conf = 1480 nand_get_interface_config(chip); 1481 struct mtd_info *mtd = nand_to_mtd(chip); 1482 u8 addrs[5] = {}; 1483 struct nand_op_instr instrs[] = { 1484 /* 1485 * The first instruction will be dropped if we're dealing 1486 * with a large page NAND and adjusted if we're dealing 1487 * with a small page NAND and the page offset is > 255. 1488 */ 1489 NAND_OP_CMD(NAND_CMD_READ0, 0), 1490 NAND_OP_CMD(NAND_CMD_SEQIN, 0), 1491 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)), 1492 NAND_OP_DATA_OUT(len, buf, 0), 1493 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1494 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1495 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0), 1496 }; 1497 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1498 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); 1499 1500 if (naddrs < 0) 1501 return naddrs; 1502 1503 addrs[naddrs++] = page; 1504 addrs[naddrs++] = page >> 8; 1505 if (chip->options & NAND_ROW_ADDR_3) 1506 addrs[naddrs++] = page >> 16; 1507 1508 instrs[2].ctx.addr.naddrs = naddrs; 1509 1510 /* Drop the last two instructions if we're not programming the page. */ 1511 if (!prog) { 1512 op.ninstrs -= 2; 1513 /* Also drop the DATA_OUT instruction if empty. */ 1514 if (!len) 1515 op.ninstrs--; 1516 } 1517 1518 if (mtd->writesize <= 512) { 1519 /* 1520 * Small pages need some more tweaking: we have to adjust the 1521 * first instruction depending on the page offset we're trying 1522 * to access. 1523 */ 1524 if (offset_in_page >= mtd->writesize) 1525 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; 1526 else if (offset_in_page >= 256 && 1527 !(chip->options & NAND_BUSWIDTH_16)) 1528 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; 1529 } else { 1530 /* 1531 * Drop the first command if we're dealing with a large page 1532 * NAND. 1533 */ 1534 op.instrs++; 1535 op.ninstrs--; 1536 } 1537 1538 return nand_exec_op(chip, &op); 1539 } 1540 1541 /** 1542 * nand_prog_page_begin_op - starts a PROG PAGE operation 1543 * @chip: The NAND chip 1544 * @page: page to write 1545 * @offset_in_page: offset within the page 1546 * @buf: buffer containing the data to write to the page 1547 * @len: length of the buffer 1548 * 1549 * This function issues the first half of a PROG PAGE operation. 1550 * This function does not select/unselect the CS line. 1551 * 1552 * Returns 0 on success, a negative error code otherwise. 1553 */ 1554 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1555 unsigned int offset_in_page, const void *buf, 1556 unsigned int len) 1557 { 1558 struct mtd_info *mtd = nand_to_mtd(chip); 1559 1560 if (len && !buf) 1561 return -EINVAL; 1562 1563 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1564 return -EINVAL; 1565 1566 if (nand_has_exec_op(chip)) 1567 return nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1568 len, false); 1569 1570 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); 1571 1572 if (buf) 1573 chip->legacy.write_buf(chip, buf, len); 1574 1575 return 0; 1576 } 1577 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); 1578 1579 /** 1580 * nand_prog_page_end_op - ends a PROG PAGE operation 1581 * @chip: The NAND chip 1582 * 1583 * This function issues the second half of a PROG PAGE operation. 1584 * This function does not select/unselect the CS line. 1585 * 1586 * Returns 0 on success, a negative error code otherwise. 1587 */ 1588 int nand_prog_page_end_op(struct nand_chip *chip) 1589 { 1590 int ret; 1591 u8 status; 1592 1593 if (nand_has_exec_op(chip)) { 1594 const struct nand_interface_config *conf = 1595 nand_get_interface_config(chip); 1596 struct nand_op_instr instrs[] = { 1597 NAND_OP_CMD(NAND_CMD_PAGEPROG, 1598 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1599 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 1600 0), 1601 }; 1602 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1603 1604 ret = nand_exec_op(chip, &op); 1605 if (ret) 1606 return ret; 1607 1608 ret = nand_status_op(chip, &status); 1609 if (ret) 1610 return ret; 1611 } else { 1612 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1613 ret = chip->legacy.waitfunc(chip); 1614 if (ret < 0) 1615 return ret; 1616 1617 status = ret; 1618 } 1619 1620 if (status & NAND_STATUS_FAIL) 1621 return -EIO; 1622 1623 return 0; 1624 } 1625 EXPORT_SYMBOL_GPL(nand_prog_page_end_op); 1626 1627 /** 1628 * nand_prog_page_op - Do a full PROG PAGE operation 1629 * @chip: The NAND chip 1630 * @page: page to write 1631 * @offset_in_page: offset within the page 1632 * @buf: buffer containing the data to write to the page 1633 * @len: length of the buffer 1634 * 1635 * This function issues a full PROG PAGE operation. 1636 * This function does not select/unselect the CS line. 1637 * 1638 * Returns 0 on success, a negative error code otherwise. 1639 */ 1640 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1641 unsigned int offset_in_page, const void *buf, 1642 unsigned int len) 1643 { 1644 struct mtd_info *mtd = nand_to_mtd(chip); 1645 u8 status; 1646 int ret; 1647 1648 if (!len || !buf) 1649 return -EINVAL; 1650 1651 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1652 return -EINVAL; 1653 1654 if (nand_has_exec_op(chip)) { 1655 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf, 1656 len, true); 1657 if (ret) 1658 return ret; 1659 1660 ret = nand_status_op(chip, &status); 1661 if (ret) 1662 return ret; 1663 } else { 1664 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, 1665 page); 1666 chip->legacy.write_buf(chip, buf, len); 1667 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); 1668 ret = chip->legacy.waitfunc(chip); 1669 if (ret < 0) 1670 return ret; 1671 1672 status = ret; 1673 } 1674 1675 if (status & NAND_STATUS_FAIL) 1676 return -EIO; 1677 1678 return 0; 1679 } 1680 EXPORT_SYMBOL_GPL(nand_prog_page_op); 1681 1682 /** 1683 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation 1684 * @chip: The NAND chip 1685 * @offset_in_page: offset within the page 1686 * @buf: buffer containing the data to send to the NAND 1687 * @len: length of the buffer 1688 * @force_8bit: force 8-bit bus access 1689 * 1690 * This function issues a CHANGE WRITE COLUMN operation. 1691 * This function does not select/unselect the CS line. 1692 * 1693 * Returns 0 on success, a negative error code otherwise. 1694 */ 1695 int nand_change_write_column_op(struct nand_chip *chip, 1696 unsigned int offset_in_page, 1697 const void *buf, unsigned int len, 1698 bool force_8bit) 1699 { 1700 struct mtd_info *mtd = nand_to_mtd(chip); 1701 1702 if (len && !buf) 1703 return -EINVAL; 1704 1705 if (offset_in_page + len > mtd->writesize + mtd->oobsize) 1706 return -EINVAL; 1707 1708 /* Small page NANDs do not support column change. */ 1709 if (mtd->writesize <= 512) 1710 return -ENOTSUPP; 1711 1712 if (nand_has_exec_op(chip)) { 1713 const struct nand_interface_config *conf = 1714 nand_get_interface_config(chip); 1715 u8 addrs[2]; 1716 struct nand_op_instr instrs[] = { 1717 NAND_OP_CMD(NAND_CMD_RNDIN, 0), 1718 NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)), 1719 NAND_OP_DATA_OUT(len, buf, 0), 1720 }; 1721 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1722 int ret; 1723 1724 ret = nand_fill_column_cycles(chip, addrs, offset_in_page); 1725 if (ret < 0) 1726 return ret; 1727 1728 instrs[2].ctx.data.force_8bit = force_8bit; 1729 1730 /* Drop the DATA_OUT instruction if len is set to 0. */ 1731 if (!len) 1732 op.ninstrs--; 1733 1734 return nand_exec_op(chip, &op); 1735 } 1736 1737 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); 1738 if (len) 1739 chip->legacy.write_buf(chip, buf, len); 1740 1741 return 0; 1742 } 1743 EXPORT_SYMBOL_GPL(nand_change_write_column_op); 1744 1745 /** 1746 * nand_readid_op - Do a READID operation 1747 * @chip: The NAND chip 1748 * @addr: address cycle to pass after the READID command 1749 * @buf: buffer used to store the ID 1750 * @len: length of the buffer 1751 * 1752 * This function sends a READID command and reads back the ID returned by the 1753 * NAND. 1754 * This function does not select/unselect the CS line. 1755 * 1756 * Returns 0 on success, a negative error code otherwise. 1757 */ 1758 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1759 unsigned int len) 1760 { 1761 unsigned int i; 1762 u8 *id = buf, *ddrbuf = NULL; 1763 1764 if (len && !buf) 1765 return -EINVAL; 1766 1767 if (nand_has_exec_op(chip)) { 1768 const struct nand_interface_config *conf = 1769 nand_get_interface_config(chip); 1770 struct nand_op_instr instrs[] = { 1771 NAND_OP_CMD(NAND_CMD_READID, 0), 1772 NAND_OP_ADDR(1, &addr, 1773 NAND_COMMON_TIMING_NS(conf, tADL_min)), 1774 NAND_OP_8BIT_DATA_IN(len, buf, 0), 1775 }; 1776 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1777 int ret; 1778 1779 /* READ_ID data bytes are received twice in NV-DDR mode */ 1780 if (len && nand_interface_is_nvddr(conf)) { 1781 ddrbuf = kzalloc(len * 2, GFP_KERNEL); 1782 if (!ddrbuf) 1783 return -ENOMEM; 1784 1785 instrs[2].ctx.data.len *= 2; 1786 instrs[2].ctx.data.buf.in = ddrbuf; 1787 } 1788 1789 /* Drop the DATA_IN instruction if len is set to 0. */ 1790 if (!len) 1791 op.ninstrs--; 1792 1793 ret = nand_exec_op(chip, &op); 1794 if (!ret && len && nand_interface_is_nvddr(conf)) { 1795 for (i = 0; i < len; i++) 1796 id[i] = ddrbuf[i * 2]; 1797 } 1798 1799 kfree(ddrbuf); 1800 1801 return ret; 1802 } 1803 1804 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); 1805 1806 for (i = 0; i < len; i++) 1807 id[i] = chip->legacy.read_byte(chip); 1808 1809 return 0; 1810 } 1811 EXPORT_SYMBOL_GPL(nand_readid_op); 1812 1813 /** 1814 * nand_status_op - Do a STATUS operation 1815 * @chip: The NAND chip 1816 * @status: out variable to store the NAND status 1817 * 1818 * This function sends a STATUS command and reads back the status returned by 1819 * the NAND. 1820 * This function does not select/unselect the CS line. 1821 * 1822 * Returns 0 on success, a negative error code otherwise. 1823 */ 1824 int nand_status_op(struct nand_chip *chip, u8 *status) 1825 { 1826 if (nand_has_exec_op(chip)) { 1827 const struct nand_interface_config *conf = 1828 nand_get_interface_config(chip); 1829 u8 ddrstatus[2]; 1830 struct nand_op_instr instrs[] = { 1831 NAND_OP_CMD(NAND_CMD_STATUS, 1832 NAND_COMMON_TIMING_NS(conf, tADL_min)), 1833 NAND_OP_8BIT_DATA_IN(1, status, 0), 1834 }; 1835 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1836 int ret; 1837 1838 /* The status data byte will be received twice in NV-DDR mode */ 1839 if (status && nand_interface_is_nvddr(conf)) { 1840 instrs[1].ctx.data.len *= 2; 1841 instrs[1].ctx.data.buf.in = ddrstatus; 1842 } 1843 1844 if (!status) 1845 op.ninstrs--; 1846 1847 ret = nand_exec_op(chip, &op); 1848 if (!ret && status && nand_interface_is_nvddr(conf)) 1849 *status = ddrstatus[0]; 1850 1851 return ret; 1852 } 1853 1854 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); 1855 if (status) 1856 *status = chip->legacy.read_byte(chip); 1857 1858 return 0; 1859 } 1860 EXPORT_SYMBOL_GPL(nand_status_op); 1861 1862 /** 1863 * nand_exit_status_op - Exit a STATUS operation 1864 * @chip: The NAND chip 1865 * 1866 * This function sends a READ0 command to cancel the effect of the STATUS 1867 * command to avoid reading only the status until a new read command is sent. 1868 * 1869 * This function does not select/unselect the CS line. 1870 * 1871 * Returns 0 on success, a negative error code otherwise. 1872 */ 1873 int nand_exit_status_op(struct nand_chip *chip) 1874 { 1875 if (nand_has_exec_op(chip)) { 1876 struct nand_op_instr instrs[] = { 1877 NAND_OP_CMD(NAND_CMD_READ0, 0), 1878 }; 1879 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1880 1881 return nand_exec_op(chip, &op); 1882 } 1883 1884 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); 1885 1886 return 0; 1887 } 1888 EXPORT_SYMBOL_GPL(nand_exit_status_op); 1889 1890 /** 1891 * nand_erase_op - Do an erase operation 1892 * @chip: The NAND chip 1893 * @eraseblock: block to erase 1894 * 1895 * This function sends an ERASE command and waits for the NAND to be ready 1896 * before returning. 1897 * This function does not select/unselect the CS line. 1898 * 1899 * Returns 0 on success, a negative error code otherwise. 1900 */ 1901 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) 1902 { 1903 unsigned int page = eraseblock << 1904 (chip->phys_erase_shift - chip->page_shift); 1905 int ret; 1906 u8 status; 1907 1908 if (nand_has_exec_op(chip)) { 1909 const struct nand_interface_config *conf = 1910 nand_get_interface_config(chip); 1911 u8 addrs[3] = { page, page >> 8, page >> 16 }; 1912 struct nand_op_instr instrs[] = { 1913 NAND_OP_CMD(NAND_CMD_ERASE1, 0), 1914 NAND_OP_ADDR(2, addrs, 0), 1915 NAND_OP_CMD(NAND_CMD_ERASE2, 1916 NAND_COMMON_TIMING_NS(conf, tWB_max)), 1917 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max), 1918 0), 1919 }; 1920 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1921 1922 if (chip->options & NAND_ROW_ADDR_3) 1923 instrs[1].ctx.addr.naddrs++; 1924 1925 ret = nand_exec_op(chip, &op); 1926 if (ret) 1927 return ret; 1928 1929 ret = nand_status_op(chip, &status); 1930 if (ret) 1931 return ret; 1932 } else { 1933 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); 1934 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); 1935 1936 ret = chip->legacy.waitfunc(chip); 1937 if (ret < 0) 1938 return ret; 1939 1940 status = ret; 1941 } 1942 1943 if (status & NAND_STATUS_FAIL) 1944 return -EIO; 1945 1946 return 0; 1947 } 1948 EXPORT_SYMBOL_GPL(nand_erase_op); 1949 1950 /** 1951 * nand_set_features_op - Do a SET FEATURES operation 1952 * @chip: The NAND chip 1953 * @feature: feature id 1954 * @data: 4 bytes of data 1955 * 1956 * This function sends a SET FEATURES command and waits for the NAND to be 1957 * ready before returning. 1958 * This function does not select/unselect the CS line. 1959 * 1960 * Returns 0 on success, a negative error code otherwise. 1961 */ 1962 static int nand_set_features_op(struct nand_chip *chip, u8 feature, 1963 const void *data) 1964 { 1965 const u8 *params = data; 1966 int i, ret; 1967 1968 if (nand_has_exec_op(chip)) { 1969 const struct nand_interface_config *conf = 1970 nand_get_interface_config(chip); 1971 struct nand_op_instr instrs[] = { 1972 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), 1973 NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf, 1974 tADL_min)), 1975 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, 1976 NAND_COMMON_TIMING_NS(conf, 1977 tWB_max)), 1978 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), 1979 0), 1980 }; 1981 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 1982 1983 return nand_exec_op(chip, &op); 1984 } 1985 1986 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); 1987 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1988 chip->legacy.write_byte(chip, params[i]); 1989 1990 ret = chip->legacy.waitfunc(chip); 1991 if (ret < 0) 1992 return ret; 1993 1994 if (ret & NAND_STATUS_FAIL) 1995 return -EIO; 1996 1997 return 0; 1998 } 1999 2000 /** 2001 * nand_get_features_op - Do a GET FEATURES operation 2002 * @chip: The NAND chip 2003 * @feature: feature id 2004 * @data: 4 bytes of data 2005 * 2006 * This function sends a GET FEATURES command and waits for the NAND to be 2007 * ready before returning. 2008 * This function does not select/unselect the CS line. 2009 * 2010 * Returns 0 on success, a negative error code otherwise. 2011 */ 2012 static int nand_get_features_op(struct nand_chip *chip, u8 feature, 2013 void *data) 2014 { 2015 u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2]; 2016 int i; 2017 2018 if (nand_has_exec_op(chip)) { 2019 const struct nand_interface_config *conf = 2020 nand_get_interface_config(chip); 2021 struct nand_op_instr instrs[] = { 2022 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), 2023 NAND_OP_ADDR(1, &feature, 2024 NAND_COMMON_TIMING_NS(conf, tWB_max)), 2025 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), 2026 NAND_COMMON_TIMING_NS(conf, tRR_min)), 2027 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, 2028 data, 0), 2029 }; 2030 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2031 int ret; 2032 2033 /* GET_FEATURE data bytes are received twice in NV-DDR mode */ 2034 if (nand_interface_is_nvddr(conf)) { 2035 instrs[3].ctx.data.len *= 2; 2036 instrs[3].ctx.data.buf.in = ddrbuf; 2037 } 2038 2039 ret = nand_exec_op(chip, &op); 2040 if (nand_interface_is_nvddr(conf)) { 2041 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++) 2042 params[i] = ddrbuf[i * 2]; 2043 } 2044 2045 return ret; 2046 } 2047 2048 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); 2049 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 2050 params[i] = chip->legacy.read_byte(chip); 2051 2052 return 0; 2053 } 2054 2055 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, 2056 unsigned int delay_ns) 2057 { 2058 if (nand_has_exec_op(chip)) { 2059 struct nand_op_instr instrs[] = { 2060 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), 2061 PSEC_TO_NSEC(delay_ns)), 2062 }; 2063 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2064 2065 return nand_exec_op(chip, &op); 2066 } 2067 2068 /* Apply delay or wait for ready/busy pin */ 2069 if (!chip->legacy.dev_ready) 2070 udelay(chip->legacy.chip_delay); 2071 else 2072 nand_wait_ready(chip); 2073 2074 return 0; 2075 } 2076 2077 /** 2078 * nand_reset_op - Do a reset operation 2079 * @chip: The NAND chip 2080 * 2081 * This function sends a RESET command and waits for the NAND to be ready 2082 * before returning. 2083 * This function does not select/unselect the CS line. 2084 * 2085 * Returns 0 on success, a negative error code otherwise. 2086 */ 2087 int nand_reset_op(struct nand_chip *chip) 2088 { 2089 if (nand_has_exec_op(chip)) { 2090 const struct nand_interface_config *conf = 2091 nand_get_interface_config(chip); 2092 struct nand_op_instr instrs[] = { 2093 NAND_OP_CMD(NAND_CMD_RESET, 2094 NAND_COMMON_TIMING_NS(conf, tWB_max)), 2095 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max), 2096 0), 2097 }; 2098 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2099 2100 return nand_exec_op(chip, &op); 2101 } 2102 2103 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); 2104 2105 return 0; 2106 } 2107 EXPORT_SYMBOL_GPL(nand_reset_op); 2108 2109 /** 2110 * nand_read_data_op - Read data from the NAND 2111 * @chip: The NAND chip 2112 * @buf: buffer used to store the data 2113 * @len: length of the buffer 2114 * @force_8bit: force 8-bit bus access 2115 * @check_only: do not actually run the command, only checks if the 2116 * controller driver supports it 2117 * 2118 * This function does a raw data read on the bus. Usually used after launching 2119 * another NAND operation like nand_read_page_op(). 2120 * This function does not select/unselect the CS line. 2121 * 2122 * Returns 0 on success, a negative error code otherwise. 2123 */ 2124 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 2125 bool force_8bit, bool check_only) 2126 { 2127 if (!len || !buf) 2128 return -EINVAL; 2129 2130 if (nand_has_exec_op(chip)) { 2131 const struct nand_interface_config *conf = 2132 nand_get_interface_config(chip); 2133 struct nand_op_instr instrs[] = { 2134 NAND_OP_DATA_IN(len, buf, 0), 2135 }; 2136 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2137 u8 *ddrbuf = NULL; 2138 int ret, i; 2139 2140 instrs[0].ctx.data.force_8bit = force_8bit; 2141 2142 /* 2143 * Parameter payloads (ID, status, features, etc) do not go 2144 * through the same pipeline as regular data, hence the 2145 * force_8bit flag must be set and this also indicates that in 2146 * case NV-DDR timings are being used the data will be received 2147 * twice. 2148 */ 2149 if (force_8bit && nand_interface_is_nvddr(conf)) { 2150 ddrbuf = kzalloc(len * 2, GFP_KERNEL); 2151 if (!ddrbuf) 2152 return -ENOMEM; 2153 2154 instrs[0].ctx.data.len *= 2; 2155 instrs[0].ctx.data.buf.in = ddrbuf; 2156 } 2157 2158 if (check_only) { 2159 ret = nand_check_op(chip, &op); 2160 kfree(ddrbuf); 2161 return ret; 2162 } 2163 2164 ret = nand_exec_op(chip, &op); 2165 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) { 2166 u8 *dst = buf; 2167 2168 for (i = 0; i < len; i++) 2169 dst[i] = ddrbuf[i * 2]; 2170 } 2171 2172 kfree(ddrbuf); 2173 2174 return ret; 2175 } 2176 2177 if (check_only) 2178 return 0; 2179 2180 if (force_8bit) { 2181 u8 *p = buf; 2182 unsigned int i; 2183 2184 for (i = 0; i < len; i++) 2185 p[i] = chip->legacy.read_byte(chip); 2186 } else { 2187 chip->legacy.read_buf(chip, buf, len); 2188 } 2189 2190 return 0; 2191 } 2192 EXPORT_SYMBOL_GPL(nand_read_data_op); 2193 2194 /** 2195 * nand_write_data_op - Write data from the NAND 2196 * @chip: The NAND chip 2197 * @buf: buffer containing the data to send on the bus 2198 * @len: length of the buffer 2199 * @force_8bit: force 8-bit bus access 2200 * 2201 * This function does a raw data write on the bus. Usually used after launching 2202 * another NAND operation like nand_write_page_begin_op(). 2203 * This function does not select/unselect the CS line. 2204 * 2205 * Returns 0 on success, a negative error code otherwise. 2206 */ 2207 int nand_write_data_op(struct nand_chip *chip, const void *buf, 2208 unsigned int len, bool force_8bit) 2209 { 2210 if (!len || !buf) 2211 return -EINVAL; 2212 2213 if (nand_has_exec_op(chip)) { 2214 struct nand_op_instr instrs[] = { 2215 NAND_OP_DATA_OUT(len, buf, 0), 2216 }; 2217 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); 2218 2219 instrs[0].ctx.data.force_8bit = force_8bit; 2220 2221 return nand_exec_op(chip, &op); 2222 } 2223 2224 if (force_8bit) { 2225 const u8 *p = buf; 2226 unsigned int i; 2227 2228 for (i = 0; i < len; i++) 2229 chip->legacy.write_byte(chip, p[i]); 2230 } else { 2231 chip->legacy.write_buf(chip, buf, len); 2232 } 2233 2234 return 0; 2235 } 2236 EXPORT_SYMBOL_GPL(nand_write_data_op); 2237 2238 /** 2239 * struct nand_op_parser_ctx - Context used by the parser 2240 * @instrs: array of all the instructions that must be addressed 2241 * @ninstrs: length of the @instrs array 2242 * @subop: Sub-operation to be passed to the NAND controller 2243 * 2244 * This structure is used by the core to split NAND operations into 2245 * sub-operations that can be handled by the NAND controller. 2246 */ 2247 struct nand_op_parser_ctx { 2248 const struct nand_op_instr *instrs; 2249 unsigned int ninstrs; 2250 struct nand_subop subop; 2251 }; 2252 2253 /** 2254 * nand_op_parser_must_split_instr - Checks if an instruction must be split 2255 * @pat: the parser pattern element that matches @instr 2256 * @instr: pointer to the instruction to check 2257 * @start_offset: this is an in/out parameter. If @instr has already been 2258 * split, then @start_offset is the offset from which to start 2259 * (either an address cycle or an offset in the data buffer). 2260 * Conversely, if the function returns true (ie. instr must be 2261 * split), this parameter is updated to point to the first 2262 * data/address cycle that has not been taken care of. 2263 * 2264 * Some NAND controllers are limited and cannot send X address cycles with a 2265 * unique operation, or cannot read/write more than Y bytes at the same time. 2266 * In this case, split the instruction that does not fit in a single 2267 * controller-operation into two or more chunks. 2268 * 2269 * Returns true if the instruction must be split, false otherwise. 2270 * The @start_offset parameter is also updated to the offset at which the next 2271 * bundle of instruction must start (if an address or a data instruction). 2272 */ 2273 static bool 2274 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, 2275 const struct nand_op_instr *instr, 2276 unsigned int *start_offset) 2277 { 2278 switch (pat->type) { 2279 case NAND_OP_ADDR_INSTR: 2280 if (!pat->ctx.addr.maxcycles) 2281 break; 2282 2283 if (instr->ctx.addr.naddrs - *start_offset > 2284 pat->ctx.addr.maxcycles) { 2285 *start_offset += pat->ctx.addr.maxcycles; 2286 return true; 2287 } 2288 break; 2289 2290 case NAND_OP_DATA_IN_INSTR: 2291 case NAND_OP_DATA_OUT_INSTR: 2292 if (!pat->ctx.data.maxlen) 2293 break; 2294 2295 if (instr->ctx.data.len - *start_offset > 2296 pat->ctx.data.maxlen) { 2297 *start_offset += pat->ctx.data.maxlen; 2298 return true; 2299 } 2300 break; 2301 2302 default: 2303 break; 2304 } 2305 2306 return false; 2307 } 2308 2309 /** 2310 * nand_op_parser_match_pat - Checks if a pattern matches the instructions 2311 * remaining in the parser context 2312 * @pat: the pattern to test 2313 * @ctx: the parser context structure to match with the pattern @pat 2314 * 2315 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. 2316 * Returns true if this is the case, false ortherwise. When true is returned, 2317 * @ctx->subop is updated with the set of instructions to be passed to the 2318 * controller driver. 2319 */ 2320 static bool 2321 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, 2322 struct nand_op_parser_ctx *ctx) 2323 { 2324 unsigned int instr_offset = ctx->subop.first_instr_start_off; 2325 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; 2326 const struct nand_op_instr *instr = ctx->subop.instrs; 2327 unsigned int i, ninstrs; 2328 2329 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { 2330 /* 2331 * The pattern instruction does not match the operation 2332 * instruction. If the instruction is marked optional in the 2333 * pattern definition, we skip the pattern element and continue 2334 * to the next one. If the element is mandatory, there's no 2335 * match and we can return false directly. 2336 */ 2337 if (instr->type != pat->elems[i].type) { 2338 if (!pat->elems[i].optional) 2339 return false; 2340 2341 continue; 2342 } 2343 2344 /* 2345 * Now check the pattern element constraints. If the pattern is 2346 * not able to handle the whole instruction in a single step, 2347 * we have to split it. 2348 * The last_instr_end_off value comes back updated to point to 2349 * the position where we have to split the instruction (the 2350 * start of the next subop chunk). 2351 */ 2352 if (nand_op_parser_must_split_instr(&pat->elems[i], instr, 2353 &instr_offset)) { 2354 ninstrs++; 2355 i++; 2356 break; 2357 } 2358 2359 instr++; 2360 ninstrs++; 2361 instr_offset = 0; 2362 } 2363 2364 /* 2365 * This can happen if all instructions of a pattern are optional. 2366 * Still, if there's not at least one instruction handled by this 2367 * pattern, this is not a match, and we should try the next one (if 2368 * any). 2369 */ 2370 if (!ninstrs) 2371 return false; 2372 2373 /* 2374 * We had a match on the pattern head, but the pattern may be longer 2375 * than the instructions we're asked to execute. We need to make sure 2376 * there's no mandatory elements in the pattern tail. 2377 */ 2378 for (; i < pat->nelems; i++) { 2379 if (!pat->elems[i].optional) 2380 return false; 2381 } 2382 2383 /* 2384 * We have a match: update the subop structure accordingly and return 2385 * true. 2386 */ 2387 ctx->subop.ninstrs = ninstrs; 2388 ctx->subop.last_instr_end_off = instr_offset; 2389 2390 return true; 2391 } 2392 2393 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 2394 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2395 { 2396 const struct nand_op_instr *instr; 2397 char *prefix = " "; 2398 unsigned int i; 2399 2400 pr_debug("executing subop (CS%d):\n", ctx->subop.cs); 2401 2402 for (i = 0; i < ctx->ninstrs; i++) { 2403 instr = &ctx->instrs[i]; 2404 2405 if (instr == &ctx->subop.instrs[0]) 2406 prefix = " ->"; 2407 2408 nand_op_trace(prefix, instr); 2409 2410 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) 2411 prefix = " "; 2412 } 2413 } 2414 #else 2415 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) 2416 { 2417 /* NOP */ 2418 } 2419 #endif 2420 2421 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, 2422 const struct nand_op_parser_ctx *b) 2423 { 2424 if (a->subop.ninstrs < b->subop.ninstrs) 2425 return -1; 2426 else if (a->subop.ninstrs > b->subop.ninstrs) 2427 return 1; 2428 2429 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) 2430 return -1; 2431 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) 2432 return 1; 2433 2434 return 0; 2435 } 2436 2437 /** 2438 * nand_op_parser_exec_op - exec_op parser 2439 * @chip: the NAND chip 2440 * @parser: patterns description provided by the controller driver 2441 * @op: the NAND operation to address 2442 * @check_only: when true, the function only checks if @op can be handled but 2443 * does not execute the operation 2444 * 2445 * Helper function designed to ease integration of NAND controller drivers that 2446 * only support a limited set of instruction sequences. The supported sequences 2447 * are described in @parser, and the framework takes care of splitting @op into 2448 * multiple sub-operations (if required) and pass them back to the ->exec() 2449 * callback of the matching pattern if @check_only is set to false. 2450 * 2451 * NAND controller drivers should call this function from their own ->exec_op() 2452 * implementation. 2453 * 2454 * Returns 0 on success, a negative error code otherwise. A failure can be 2455 * caused by an unsupported operation (none of the supported patterns is able 2456 * to handle the requested operation), or an error returned by one of the 2457 * matching pattern->exec() hook. 2458 */ 2459 int nand_op_parser_exec_op(struct nand_chip *chip, 2460 const struct nand_op_parser *parser, 2461 const struct nand_operation *op, bool check_only) 2462 { 2463 struct nand_op_parser_ctx ctx = { 2464 .subop.cs = op->cs, 2465 .subop.instrs = op->instrs, 2466 .instrs = op->instrs, 2467 .ninstrs = op->ninstrs, 2468 }; 2469 unsigned int i; 2470 2471 while (ctx.subop.instrs < op->instrs + op->ninstrs) { 2472 const struct nand_op_parser_pattern *pattern; 2473 struct nand_op_parser_ctx best_ctx; 2474 int ret, best_pattern = -1; 2475 2476 for (i = 0; i < parser->npatterns; i++) { 2477 struct nand_op_parser_ctx test_ctx = ctx; 2478 2479 pattern = &parser->patterns[i]; 2480 if (!nand_op_parser_match_pat(pattern, &test_ctx)) 2481 continue; 2482 2483 if (best_pattern >= 0 && 2484 nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) 2485 continue; 2486 2487 best_pattern = i; 2488 best_ctx = test_ctx; 2489 } 2490 2491 if (best_pattern < 0) { 2492 pr_debug("->exec_op() parser: pattern not found!\n"); 2493 return -ENOTSUPP; 2494 } 2495 2496 ctx = best_ctx; 2497 nand_op_parser_trace(&ctx); 2498 2499 if (!check_only) { 2500 pattern = &parser->patterns[best_pattern]; 2501 ret = pattern->exec(chip, &ctx.subop); 2502 if (ret) 2503 return ret; 2504 } 2505 2506 /* 2507 * Update the context structure by pointing to the start of the 2508 * next subop. 2509 */ 2510 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; 2511 if (ctx.subop.last_instr_end_off) 2512 ctx.subop.instrs -= 1; 2513 2514 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; 2515 } 2516 2517 return 0; 2518 } 2519 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); 2520 2521 static bool nand_instr_is_data(const struct nand_op_instr *instr) 2522 { 2523 return instr && (instr->type == NAND_OP_DATA_IN_INSTR || 2524 instr->type == NAND_OP_DATA_OUT_INSTR); 2525 } 2526 2527 static bool nand_subop_instr_is_valid(const struct nand_subop *subop, 2528 unsigned int instr_idx) 2529 { 2530 return subop && instr_idx < subop->ninstrs; 2531 } 2532 2533 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, 2534 unsigned int instr_idx) 2535 { 2536 if (instr_idx) 2537 return 0; 2538 2539 return subop->first_instr_start_off; 2540 } 2541 2542 /** 2543 * nand_subop_get_addr_start_off - Get the start offset in an address array 2544 * @subop: The entire sub-operation 2545 * @instr_idx: Index of the instruction inside the sub-operation 2546 * 2547 * During driver development, one could be tempted to directly use the 2548 * ->addr.addrs field of address instructions. This is wrong as address 2549 * instructions might be split. 2550 * 2551 * Given an address instruction, returns the offset of the first cycle to issue. 2552 */ 2553 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 2554 unsigned int instr_idx) 2555 { 2556 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2557 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2558 return 0; 2559 2560 return nand_subop_get_start_off(subop, instr_idx); 2561 } 2562 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); 2563 2564 /** 2565 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert 2566 * @subop: The entire sub-operation 2567 * @instr_idx: Index of the instruction inside the sub-operation 2568 * 2569 * During driver development, one could be tempted to directly use the 2570 * ->addr->naddrs field of a data instruction. This is wrong as instructions 2571 * might be split. 2572 * 2573 * Given an address instruction, returns the number of address cycle to issue. 2574 */ 2575 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 2576 unsigned int instr_idx) 2577 { 2578 int start_off, end_off; 2579 2580 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2581 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) 2582 return 0; 2583 2584 start_off = nand_subop_get_addr_start_off(subop, instr_idx); 2585 2586 if (instr_idx == subop->ninstrs - 1 && 2587 subop->last_instr_end_off) 2588 end_off = subop->last_instr_end_off; 2589 else 2590 end_off = subop->instrs[instr_idx].ctx.addr.naddrs; 2591 2592 return end_off - start_off; 2593 } 2594 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); 2595 2596 /** 2597 * nand_subop_get_data_start_off - Get the start offset in a data array 2598 * @subop: The entire sub-operation 2599 * @instr_idx: Index of the instruction inside the sub-operation 2600 * 2601 * During driver development, one could be tempted to directly use the 2602 * ->data->buf.{in,out} field of data instructions. This is wrong as data 2603 * instructions might be split. 2604 * 2605 * Given a data instruction, returns the offset to start from. 2606 */ 2607 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 2608 unsigned int instr_idx) 2609 { 2610 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2611 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2612 return 0; 2613 2614 return nand_subop_get_start_off(subop, instr_idx); 2615 } 2616 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); 2617 2618 /** 2619 * nand_subop_get_data_len - Get the number of bytes to retrieve 2620 * @subop: The entire sub-operation 2621 * @instr_idx: Index of the instruction inside the sub-operation 2622 * 2623 * During driver development, one could be tempted to directly use the 2624 * ->data->len field of a data instruction. This is wrong as data instructions 2625 * might be split. 2626 * 2627 * Returns the length of the chunk of data to send/receive. 2628 */ 2629 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 2630 unsigned int instr_idx) 2631 { 2632 int start_off = 0, end_off; 2633 2634 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || 2635 !nand_instr_is_data(&subop->instrs[instr_idx]))) 2636 return 0; 2637 2638 start_off = nand_subop_get_data_start_off(subop, instr_idx); 2639 2640 if (instr_idx == subop->ninstrs - 1 && 2641 subop->last_instr_end_off) 2642 end_off = subop->last_instr_end_off; 2643 else 2644 end_off = subop->instrs[instr_idx].ctx.data.len; 2645 2646 return end_off - start_off; 2647 } 2648 EXPORT_SYMBOL_GPL(nand_subop_get_data_len); 2649 2650 /** 2651 * nand_reset - Reset and initialize a NAND device 2652 * @chip: The NAND chip 2653 * @chipnr: Internal die id 2654 * 2655 * Save the timings data structure, then apply SDR timings mode 0 (see 2656 * nand_reset_interface for details), do the reset operation, and apply 2657 * back the previous timings. 2658 * 2659 * Returns 0 on success, a negative error code otherwise. 2660 */ 2661 int nand_reset(struct nand_chip *chip, int chipnr) 2662 { 2663 int ret; 2664 2665 ret = nand_reset_interface(chip, chipnr); 2666 if (ret) 2667 return ret; 2668 2669 /* 2670 * The CS line has to be released before we can apply the new NAND 2671 * interface settings, hence this weird nand_select_target() 2672 * nand_deselect_target() dance. 2673 */ 2674 nand_select_target(chip, chipnr); 2675 ret = nand_reset_op(chip); 2676 nand_deselect_target(chip); 2677 if (ret) 2678 return ret; 2679 2680 ret = nand_setup_interface(chip, chipnr); 2681 if (ret) 2682 return ret; 2683 2684 return 0; 2685 } 2686 EXPORT_SYMBOL_GPL(nand_reset); 2687 2688 /** 2689 * nand_get_features - wrapper to perform a GET_FEATURE 2690 * @chip: NAND chip info structure 2691 * @addr: feature address 2692 * @subfeature_param: the subfeature parameters, a four bytes array 2693 * 2694 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2695 * operation cannot be handled. 2696 */ 2697 int nand_get_features(struct nand_chip *chip, int addr, 2698 u8 *subfeature_param) 2699 { 2700 if (!nand_supports_get_features(chip, addr)) 2701 return -ENOTSUPP; 2702 2703 if (chip->legacy.get_features) 2704 return chip->legacy.get_features(chip, addr, subfeature_param); 2705 2706 return nand_get_features_op(chip, addr, subfeature_param); 2707 } 2708 2709 /** 2710 * nand_set_features - wrapper to perform a SET_FEATURE 2711 * @chip: NAND chip info structure 2712 * @addr: feature address 2713 * @subfeature_param: the subfeature parameters, a four bytes array 2714 * 2715 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the 2716 * operation cannot be handled. 2717 */ 2718 int nand_set_features(struct nand_chip *chip, int addr, 2719 u8 *subfeature_param) 2720 { 2721 if (!nand_supports_set_features(chip, addr)) 2722 return -ENOTSUPP; 2723 2724 if (chip->legacy.set_features) 2725 return chip->legacy.set_features(chip, addr, subfeature_param); 2726 2727 return nand_set_features_op(chip, addr, subfeature_param); 2728 } 2729 2730 /** 2731 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data 2732 * @buf: buffer to test 2733 * @len: buffer length 2734 * @bitflips_threshold: maximum number of bitflips 2735 * 2736 * Check if a buffer contains only 0xff, which means the underlying region 2737 * has been erased and is ready to be programmed. 2738 * The bitflips_threshold specify the maximum number of bitflips before 2739 * considering the region is not erased. 2740 * Note: The logic of this function has been extracted from the memweight 2741 * implementation, except that nand_check_erased_buf function exit before 2742 * testing the whole buffer if the number of bitflips exceed the 2743 * bitflips_threshold value. 2744 * 2745 * Returns a positive number of bitflips less than or equal to 2746 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2747 * threshold. 2748 */ 2749 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) 2750 { 2751 const unsigned char *bitmap = buf; 2752 int bitflips = 0; 2753 int weight; 2754 2755 for (; len && ((uintptr_t)bitmap) % sizeof(long); 2756 len--, bitmap++) { 2757 weight = hweight8(*bitmap); 2758 bitflips += BITS_PER_BYTE - weight; 2759 if (unlikely(bitflips > bitflips_threshold)) 2760 return -EBADMSG; 2761 } 2762 2763 for (; len >= sizeof(long); 2764 len -= sizeof(long), bitmap += sizeof(long)) { 2765 unsigned long d = *((unsigned long *)bitmap); 2766 if (d == ~0UL) 2767 continue; 2768 weight = hweight_long(d); 2769 bitflips += BITS_PER_LONG - weight; 2770 if (unlikely(bitflips > bitflips_threshold)) 2771 return -EBADMSG; 2772 } 2773 2774 for (; len > 0; len--, bitmap++) { 2775 weight = hweight8(*bitmap); 2776 bitflips += BITS_PER_BYTE - weight; 2777 if (unlikely(bitflips > bitflips_threshold)) 2778 return -EBADMSG; 2779 } 2780 2781 return bitflips; 2782 } 2783 2784 /** 2785 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only 2786 * 0xff data 2787 * @data: data buffer to test 2788 * @datalen: data length 2789 * @ecc: ECC buffer 2790 * @ecclen: ECC length 2791 * @extraoob: extra OOB buffer 2792 * @extraooblen: extra OOB length 2793 * @bitflips_threshold: maximum number of bitflips 2794 * 2795 * Check if a data buffer and its associated ECC and OOB data contains only 2796 * 0xff pattern, which means the underlying region has been erased and is 2797 * ready to be programmed. 2798 * The bitflips_threshold specify the maximum number of bitflips before 2799 * considering the region as not erased. 2800 * 2801 * Note: 2802 * 1/ ECC algorithms are working on pre-defined block sizes which are usually 2803 * different from the NAND page size. When fixing bitflips, ECC engines will 2804 * report the number of errors per chunk, and the NAND core infrastructure 2805 * expect you to return the maximum number of bitflips for the whole page. 2806 * This is why you should always use this function on a single chunk and 2807 * not on the whole page. After checking each chunk you should update your 2808 * max_bitflips value accordingly. 2809 * 2/ When checking for bitflips in erased pages you should not only check 2810 * the payload data but also their associated ECC data, because a user might 2811 * have programmed almost all bits to 1 but a few. In this case, we 2812 * shouldn't consider the chunk as erased, and checking ECC bytes prevent 2813 * this case. 2814 * 3/ The extraoob argument is optional, and should be used if some of your OOB 2815 * data are protected by the ECC engine. 2816 * It could also be used if you support subpages and want to attach some 2817 * extra OOB data to an ECC chunk. 2818 * 2819 * Returns a positive number of bitflips less than or equal to 2820 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the 2821 * threshold. In case of success, the passed buffers are filled with 0xff. 2822 */ 2823 int nand_check_erased_ecc_chunk(void *data, int datalen, 2824 void *ecc, int ecclen, 2825 void *extraoob, int extraooblen, 2826 int bitflips_threshold) 2827 { 2828 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; 2829 2830 data_bitflips = nand_check_erased_buf(data, datalen, 2831 bitflips_threshold); 2832 if (data_bitflips < 0) 2833 return data_bitflips; 2834 2835 bitflips_threshold -= data_bitflips; 2836 2837 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); 2838 if (ecc_bitflips < 0) 2839 return ecc_bitflips; 2840 2841 bitflips_threshold -= ecc_bitflips; 2842 2843 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, 2844 bitflips_threshold); 2845 if (extraoob_bitflips < 0) 2846 return extraoob_bitflips; 2847 2848 if (data_bitflips) 2849 memset(data, 0xff, datalen); 2850 2851 if (ecc_bitflips) 2852 memset(ecc, 0xff, ecclen); 2853 2854 if (extraoob_bitflips) 2855 memset(extraoob, 0xff, extraooblen); 2856 2857 return data_bitflips + ecc_bitflips + extraoob_bitflips; 2858 } 2859 EXPORT_SYMBOL(nand_check_erased_ecc_chunk); 2860 2861 /** 2862 * nand_read_page_raw_notsupp - dummy read raw page function 2863 * @chip: nand chip info structure 2864 * @buf: buffer to store read data 2865 * @oob_required: caller requires OOB data read to chip->oob_poi 2866 * @page: page number to read 2867 * 2868 * Returns -ENOTSUPP unconditionally. 2869 */ 2870 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, 2871 int oob_required, int page) 2872 { 2873 return -ENOTSUPP; 2874 } 2875 2876 /** 2877 * nand_read_page_raw - [INTERN] read raw page data without ecc 2878 * @chip: nand chip info structure 2879 * @buf: buffer to store read data 2880 * @oob_required: caller requires OOB data read to chip->oob_poi 2881 * @page: page number to read 2882 * 2883 * Not for syndrome calculating ECC controllers, which use a special oob layout. 2884 */ 2885 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 2886 int page) 2887 { 2888 struct mtd_info *mtd = nand_to_mtd(chip); 2889 int ret; 2890 2891 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); 2892 if (ret) 2893 return ret; 2894 2895 if (oob_required) { 2896 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, 2897 false, false); 2898 if (ret) 2899 return ret; 2900 } 2901 2902 return 0; 2903 } 2904 EXPORT_SYMBOL(nand_read_page_raw); 2905 2906 /** 2907 * nand_monolithic_read_page_raw - Monolithic page read in raw mode 2908 * @chip: NAND chip info structure 2909 * @buf: buffer to store read data 2910 * @oob_required: caller requires OOB data read to chip->oob_poi 2911 * @page: page number to read 2912 * 2913 * This is a raw page read, ie. without any error detection/correction. 2914 * Monolithic means we are requesting all the relevant data (main plus 2915 * eventually OOB) to be loaded in the NAND cache and sent over the 2916 * bus (from the NAND chip to the NAND controller) in a single 2917 * operation. This is an alternative to nand_read_page_raw(), which 2918 * first reads the main data, and if the OOB data is requested too, 2919 * then reads more data on the bus. 2920 */ 2921 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf, 2922 int oob_required, int page) 2923 { 2924 struct mtd_info *mtd = nand_to_mtd(chip); 2925 unsigned int size = mtd->writesize; 2926 u8 *read_buf = buf; 2927 int ret; 2928 2929 if (oob_required) { 2930 size += mtd->oobsize; 2931 2932 if (buf != chip->data_buf) 2933 read_buf = nand_get_data_buf(chip); 2934 } 2935 2936 ret = nand_read_page_op(chip, page, 0, read_buf, size); 2937 if (ret) 2938 return ret; 2939 2940 if (buf != chip->data_buf) 2941 memcpy(buf, read_buf, mtd->writesize); 2942 2943 return 0; 2944 } 2945 EXPORT_SYMBOL(nand_monolithic_read_page_raw); 2946 2947 /** 2948 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc 2949 * @chip: nand chip info structure 2950 * @buf: buffer to store read data 2951 * @oob_required: caller requires OOB data read to chip->oob_poi 2952 * @page: page number to read 2953 * 2954 * We need a special oob layout and handling even when OOB isn't used. 2955 */ 2956 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, 2957 int oob_required, int page) 2958 { 2959 struct mtd_info *mtd = nand_to_mtd(chip); 2960 int eccsize = chip->ecc.size; 2961 int eccbytes = chip->ecc.bytes; 2962 uint8_t *oob = chip->oob_poi; 2963 int steps, size, ret; 2964 2965 ret = nand_read_page_op(chip, page, 0, NULL, 0); 2966 if (ret) 2967 return ret; 2968 2969 for (steps = chip->ecc.steps; steps > 0; steps--) { 2970 ret = nand_read_data_op(chip, buf, eccsize, false, false); 2971 if (ret) 2972 return ret; 2973 2974 buf += eccsize; 2975 2976 if (chip->ecc.prepad) { 2977 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 2978 false, false); 2979 if (ret) 2980 return ret; 2981 2982 oob += chip->ecc.prepad; 2983 } 2984 2985 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 2986 if (ret) 2987 return ret; 2988 2989 oob += eccbytes; 2990 2991 if (chip->ecc.postpad) { 2992 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 2993 false, false); 2994 if (ret) 2995 return ret; 2996 2997 oob += chip->ecc.postpad; 2998 } 2999 } 3000 3001 size = mtd->oobsize - (oob - chip->oob_poi); 3002 if (size) { 3003 ret = nand_read_data_op(chip, oob, size, false, false); 3004 if (ret) 3005 return ret; 3006 } 3007 3008 return 0; 3009 } 3010 3011 /** 3012 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function 3013 * @chip: nand chip info structure 3014 * @buf: buffer to store read data 3015 * @oob_required: caller requires OOB data read to chip->oob_poi 3016 * @page: page number to read 3017 */ 3018 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, 3019 int oob_required, int page) 3020 { 3021 struct mtd_info *mtd = nand_to_mtd(chip); 3022 int i, eccsize = chip->ecc.size, ret; 3023 int eccbytes = chip->ecc.bytes; 3024 int eccsteps = chip->ecc.steps; 3025 uint8_t *p = buf; 3026 uint8_t *ecc_calc = chip->ecc.calc_buf; 3027 uint8_t *ecc_code = chip->ecc.code_buf; 3028 unsigned int max_bitflips = 0; 3029 3030 chip->ecc.read_page_raw(chip, buf, 1, page); 3031 3032 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 3033 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3034 3035 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3036 chip->ecc.total); 3037 if (ret) 3038 return ret; 3039 3040 eccsteps = chip->ecc.steps; 3041 p = buf; 3042 3043 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3044 int stat; 3045 3046 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 3047 if (stat < 0) { 3048 mtd->ecc_stats.failed++; 3049 } else { 3050 mtd->ecc_stats.corrected += stat; 3051 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3052 } 3053 } 3054 return max_bitflips; 3055 } 3056 3057 /** 3058 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function 3059 * @chip: nand chip info structure 3060 * @data_offs: offset of requested data within the page 3061 * @readlen: data length 3062 * @bufpoi: buffer to store read data 3063 * @page: page number to read 3064 */ 3065 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, 3066 uint32_t readlen, uint8_t *bufpoi, int page) 3067 { 3068 struct mtd_info *mtd = nand_to_mtd(chip); 3069 int start_step, end_step, num_steps, ret; 3070 uint8_t *p; 3071 int data_col_addr, i, gaps = 0; 3072 int datafrag_len, eccfrag_len, aligned_len, aligned_pos; 3073 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; 3074 int index, section = 0; 3075 unsigned int max_bitflips = 0; 3076 struct mtd_oob_region oobregion = { }; 3077 3078 /* Column address within the page aligned to ECC size (256bytes) */ 3079 start_step = data_offs / chip->ecc.size; 3080 end_step = (data_offs + readlen - 1) / chip->ecc.size; 3081 num_steps = end_step - start_step + 1; 3082 index = start_step * chip->ecc.bytes; 3083 3084 /* Data size aligned to ECC ecc.size */ 3085 datafrag_len = num_steps * chip->ecc.size; 3086 eccfrag_len = num_steps * chip->ecc.bytes; 3087 3088 data_col_addr = start_step * chip->ecc.size; 3089 /* If we read not a page aligned data */ 3090 p = bufpoi + data_col_addr; 3091 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); 3092 if (ret) 3093 return ret; 3094 3095 /* Calculate ECC */ 3096 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) 3097 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); 3098 3099 /* 3100 * The performance is faster if we position offsets according to 3101 * ecc.pos. Let's make sure that there are no gaps in ECC positions. 3102 */ 3103 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); 3104 if (ret) 3105 return ret; 3106 3107 if (oobregion.length < eccfrag_len) 3108 gaps = 1; 3109 3110 if (gaps) { 3111 ret = nand_change_read_column_op(chip, mtd->writesize, 3112 chip->oob_poi, mtd->oobsize, 3113 false); 3114 if (ret) 3115 return ret; 3116 } else { 3117 /* 3118 * Send the command to read the particular ECC bytes take care 3119 * about buswidth alignment in read_buf. 3120 */ 3121 aligned_pos = oobregion.offset & ~(busw - 1); 3122 aligned_len = eccfrag_len; 3123 if (oobregion.offset & (busw - 1)) 3124 aligned_len++; 3125 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & 3126 (busw - 1)) 3127 aligned_len++; 3128 3129 ret = nand_change_read_column_op(chip, 3130 mtd->writesize + aligned_pos, 3131 &chip->oob_poi[aligned_pos], 3132 aligned_len, false); 3133 if (ret) 3134 return ret; 3135 } 3136 3137 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, 3138 chip->oob_poi, index, eccfrag_len); 3139 if (ret) 3140 return ret; 3141 3142 p = bufpoi + data_col_addr; 3143 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { 3144 int stat; 3145 3146 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], 3147 &chip->ecc.calc_buf[i]); 3148 if (stat == -EBADMSG && 3149 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3150 /* check for empty pages with bitflips */ 3151 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3152 &chip->ecc.code_buf[i], 3153 chip->ecc.bytes, 3154 NULL, 0, 3155 chip->ecc.strength); 3156 } 3157 3158 if (stat < 0) { 3159 mtd->ecc_stats.failed++; 3160 } else { 3161 mtd->ecc_stats.corrected += stat; 3162 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3163 } 3164 } 3165 return max_bitflips; 3166 } 3167 3168 /** 3169 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function 3170 * @chip: nand chip info structure 3171 * @buf: buffer to store read data 3172 * @oob_required: caller requires OOB data read to chip->oob_poi 3173 * @page: page number to read 3174 * 3175 * Not for syndrome calculating ECC controllers which need a special oob layout. 3176 */ 3177 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, 3178 int oob_required, int page) 3179 { 3180 struct mtd_info *mtd = nand_to_mtd(chip); 3181 int i, eccsize = chip->ecc.size, ret; 3182 int eccbytes = chip->ecc.bytes; 3183 int eccsteps = chip->ecc.steps; 3184 uint8_t *p = buf; 3185 uint8_t *ecc_calc = chip->ecc.calc_buf; 3186 uint8_t *ecc_code = chip->ecc.code_buf; 3187 unsigned int max_bitflips = 0; 3188 3189 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3190 if (ret) 3191 return ret; 3192 3193 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3194 chip->ecc.hwctl(chip, NAND_ECC_READ); 3195 3196 ret = nand_read_data_op(chip, p, eccsize, false, false); 3197 if (ret) 3198 return ret; 3199 3200 chip->ecc.calculate(chip, p, &ecc_calc[i]); 3201 } 3202 3203 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, 3204 false); 3205 if (ret) 3206 return ret; 3207 3208 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3209 chip->ecc.total); 3210 if (ret) 3211 return ret; 3212 3213 eccsteps = chip->ecc.steps; 3214 p = buf; 3215 3216 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3217 int stat; 3218 3219 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 3220 if (stat == -EBADMSG && 3221 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3222 /* check for empty pages with bitflips */ 3223 stat = nand_check_erased_ecc_chunk(p, eccsize, 3224 &ecc_code[i], eccbytes, 3225 NULL, 0, 3226 chip->ecc.strength); 3227 } 3228 3229 if (stat < 0) { 3230 mtd->ecc_stats.failed++; 3231 } else { 3232 mtd->ecc_stats.corrected += stat; 3233 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3234 } 3235 } 3236 return max_bitflips; 3237 } 3238 3239 /** 3240 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC 3241 * data read from OOB area 3242 * @chip: nand chip info structure 3243 * @buf: buffer to store read data 3244 * @oob_required: caller requires OOB data read to chip->oob_poi 3245 * @page: page number to read 3246 * 3247 * Hardware ECC for large page chips, which requires the ECC data to be 3248 * extracted from the OOB before the actual data is read. 3249 */ 3250 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, 3251 int oob_required, int page) 3252 { 3253 struct mtd_info *mtd = nand_to_mtd(chip); 3254 int i, eccsize = chip->ecc.size, ret; 3255 int eccbytes = chip->ecc.bytes; 3256 int eccsteps = chip->ecc.steps; 3257 uint8_t *p = buf; 3258 uint8_t *ecc_code = chip->ecc.code_buf; 3259 unsigned int max_bitflips = 0; 3260 3261 /* Read the OOB area first */ 3262 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3263 if (ret) 3264 return ret; 3265 3266 /* Move read cursor to start of page */ 3267 ret = nand_change_read_column_op(chip, 0, NULL, 0, false); 3268 if (ret) 3269 return ret; 3270 3271 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, 3272 chip->ecc.total); 3273 if (ret) 3274 return ret; 3275 3276 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3277 int stat; 3278 3279 chip->ecc.hwctl(chip, NAND_ECC_READ); 3280 3281 ret = nand_read_data_op(chip, p, eccsize, false, false); 3282 if (ret) 3283 return ret; 3284 3285 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); 3286 if (stat == -EBADMSG && 3287 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3288 /* check for empty pages with bitflips */ 3289 stat = nand_check_erased_ecc_chunk(p, eccsize, 3290 &ecc_code[i], 3291 eccbytes, NULL, 0, 3292 chip->ecc.strength); 3293 } 3294 3295 if (stat < 0) { 3296 mtd->ecc_stats.failed++; 3297 } else { 3298 mtd->ecc_stats.corrected += stat; 3299 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3300 } 3301 } 3302 return max_bitflips; 3303 } 3304 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first); 3305 3306 /** 3307 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read 3308 * @chip: nand chip info structure 3309 * @buf: buffer to store read data 3310 * @oob_required: caller requires OOB data read to chip->oob_poi 3311 * @page: page number to read 3312 * 3313 * The hw generator calculates the error syndrome automatically. Therefore we 3314 * need a special oob layout and handling. 3315 */ 3316 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 3317 int oob_required, int page) 3318 { 3319 struct mtd_info *mtd = nand_to_mtd(chip); 3320 int ret, i, eccsize = chip->ecc.size; 3321 int eccbytes = chip->ecc.bytes; 3322 int eccsteps = chip->ecc.steps; 3323 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; 3324 uint8_t *p = buf; 3325 uint8_t *oob = chip->oob_poi; 3326 unsigned int max_bitflips = 0; 3327 3328 ret = nand_read_page_op(chip, page, 0, NULL, 0); 3329 if (ret) 3330 return ret; 3331 3332 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 3333 int stat; 3334 3335 chip->ecc.hwctl(chip, NAND_ECC_READ); 3336 3337 ret = nand_read_data_op(chip, p, eccsize, false, false); 3338 if (ret) 3339 return ret; 3340 3341 if (chip->ecc.prepad) { 3342 ret = nand_read_data_op(chip, oob, chip->ecc.prepad, 3343 false, false); 3344 if (ret) 3345 return ret; 3346 3347 oob += chip->ecc.prepad; 3348 } 3349 3350 chip->ecc.hwctl(chip, NAND_ECC_READSYN); 3351 3352 ret = nand_read_data_op(chip, oob, eccbytes, false, false); 3353 if (ret) 3354 return ret; 3355 3356 stat = chip->ecc.correct(chip, p, oob, NULL); 3357 3358 oob += eccbytes; 3359 3360 if (chip->ecc.postpad) { 3361 ret = nand_read_data_op(chip, oob, chip->ecc.postpad, 3362 false, false); 3363 if (ret) 3364 return ret; 3365 3366 oob += chip->ecc.postpad; 3367 } 3368 3369 if (stat == -EBADMSG && 3370 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { 3371 /* check for empty pages with bitflips */ 3372 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, 3373 oob - eccpadbytes, 3374 eccpadbytes, 3375 NULL, 0, 3376 chip->ecc.strength); 3377 } 3378 3379 if (stat < 0) { 3380 mtd->ecc_stats.failed++; 3381 } else { 3382 mtd->ecc_stats.corrected += stat; 3383 max_bitflips = max_t(unsigned int, max_bitflips, stat); 3384 } 3385 } 3386 3387 /* Calculate remaining oob bytes */ 3388 i = mtd->oobsize - (oob - chip->oob_poi); 3389 if (i) { 3390 ret = nand_read_data_op(chip, oob, i, false, false); 3391 if (ret) 3392 return ret; 3393 } 3394 3395 return max_bitflips; 3396 } 3397 3398 /** 3399 * nand_transfer_oob - [INTERN] Transfer oob to client buffer 3400 * @chip: NAND chip object 3401 * @oob: oob destination address 3402 * @ops: oob ops structure 3403 * @len: size of oob to transfer 3404 */ 3405 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, 3406 struct mtd_oob_ops *ops, size_t len) 3407 { 3408 struct mtd_info *mtd = nand_to_mtd(chip); 3409 int ret; 3410 3411 switch (ops->mode) { 3412 3413 case MTD_OPS_PLACE_OOB: 3414 case MTD_OPS_RAW: 3415 memcpy(oob, chip->oob_poi + ops->ooboffs, len); 3416 return oob + len; 3417 3418 case MTD_OPS_AUTO_OOB: 3419 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, 3420 ops->ooboffs, len); 3421 BUG_ON(ret); 3422 return oob + len; 3423 3424 default: 3425 BUG(); 3426 } 3427 return NULL; 3428 } 3429 3430 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page, 3431 u32 readlen, int col) 3432 { 3433 struct mtd_info *mtd = nand_to_mtd(chip); 3434 3435 if (!chip->controller->supported_op.cont_read) 3436 return; 3437 3438 if ((col && col + readlen < (3 * mtd->writesize)) || 3439 (!col && readlen < (2 * mtd->writesize))) { 3440 chip->cont_read.ongoing = false; 3441 return; 3442 } 3443 3444 chip->cont_read.ongoing = true; 3445 chip->cont_read.first_page = page; 3446 if (col) 3447 chip->cont_read.first_page++; 3448 chip->cont_read.last_page = page + ((readlen >> chip->page_shift) & chip->pagemask); 3449 } 3450 3451 /** 3452 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode 3453 * @chip: NAND chip object 3454 * @retry_mode: the retry mode to use 3455 * 3456 * Some vendors supply a special command to shift the Vt threshold, to be used 3457 * when there are too many bitflips in a page (i.e., ECC error). After setting 3458 * a new threshold, the host should retry reading the page. 3459 */ 3460 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) 3461 { 3462 pr_debug("setting READ RETRY mode %d\n", retry_mode); 3463 3464 if (retry_mode >= chip->read_retries) 3465 return -EINVAL; 3466 3467 if (!chip->ops.setup_read_retry) 3468 return -EOPNOTSUPP; 3469 3470 return chip->ops.setup_read_retry(chip, retry_mode); 3471 } 3472 3473 static void nand_wait_readrdy(struct nand_chip *chip) 3474 { 3475 const struct nand_interface_config *conf; 3476 3477 if (!(chip->options & NAND_NEED_READRDY)) 3478 return; 3479 3480 conf = nand_get_interface_config(chip); 3481 WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0)); 3482 } 3483 3484 /** 3485 * nand_do_read_ops - [INTERN] Read data with ECC 3486 * @chip: NAND chip object 3487 * @from: offset to read from 3488 * @ops: oob ops structure 3489 * 3490 * Internal function. Called with chip held. 3491 */ 3492 static int nand_do_read_ops(struct nand_chip *chip, loff_t from, 3493 struct mtd_oob_ops *ops) 3494 { 3495 int chipnr, page, realpage, col, bytes, aligned, oob_required; 3496 struct mtd_info *mtd = nand_to_mtd(chip); 3497 int ret = 0; 3498 uint32_t readlen = ops->len; 3499 uint32_t oobreadlen = ops->ooblen; 3500 uint32_t max_oobsize = mtd_oobavail(mtd, ops); 3501 3502 uint8_t *bufpoi, *oob, *buf; 3503 int use_bounce_buf; 3504 unsigned int max_bitflips = 0; 3505 int retry_mode = 0; 3506 bool ecc_fail = false; 3507 3508 /* Check if the region is secured */ 3509 if (nand_region_is_secured(chip, from, readlen)) 3510 return -EIO; 3511 3512 chipnr = (int)(from >> chip->chip_shift); 3513 nand_select_target(chip, chipnr); 3514 3515 realpage = (int)(from >> chip->page_shift); 3516 page = realpage & chip->pagemask; 3517 3518 col = (int)(from & (mtd->writesize - 1)); 3519 3520 buf = ops->datbuf; 3521 oob = ops->oobbuf; 3522 oob_required = oob ? 1 : 0; 3523 3524 rawnand_enable_cont_reads(chip, page, readlen, col); 3525 3526 while (1) { 3527 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats; 3528 3529 bytes = min(mtd->writesize - col, readlen); 3530 aligned = (bytes == mtd->writesize); 3531 3532 if (!aligned) 3533 use_bounce_buf = 1; 3534 else if (chip->options & NAND_USES_DMA) 3535 use_bounce_buf = !virt_addr_valid(buf) || 3536 !IS_ALIGNED((unsigned long)buf, 3537 chip->buf_align); 3538 else 3539 use_bounce_buf = 0; 3540 3541 /* Is the current page in the buffer? */ 3542 if (realpage != chip->pagecache.page || oob) { 3543 bufpoi = use_bounce_buf ? chip->data_buf : buf; 3544 3545 if (use_bounce_buf && aligned) 3546 pr_debug("%s: using read bounce buffer for buf@%p\n", 3547 __func__, buf); 3548 3549 read_retry: 3550 /* 3551 * Now read the page into the buffer. Absent an error, 3552 * the read methods return max bitflips per ecc step. 3553 */ 3554 if (unlikely(ops->mode == MTD_OPS_RAW)) 3555 ret = chip->ecc.read_page_raw(chip, bufpoi, 3556 oob_required, 3557 page); 3558 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && 3559 !oob) 3560 ret = chip->ecc.read_subpage(chip, col, bytes, 3561 bufpoi, page); 3562 else 3563 ret = chip->ecc.read_page(chip, bufpoi, 3564 oob_required, page); 3565 if (ret < 0) { 3566 if (use_bounce_buf) 3567 /* Invalidate page cache */ 3568 chip->pagecache.page = -1; 3569 break; 3570 } 3571 3572 /* 3573 * Copy back the data in the initial buffer when reading 3574 * partial pages or when a bounce buffer is required. 3575 */ 3576 if (use_bounce_buf) { 3577 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && 3578 !(mtd->ecc_stats.failed - ecc_stats.failed) && 3579 (ops->mode != MTD_OPS_RAW)) { 3580 chip->pagecache.page = realpage; 3581 chip->pagecache.bitflips = ret; 3582 } else { 3583 /* Invalidate page cache */ 3584 chip->pagecache.page = -1; 3585 } 3586 memcpy(buf, bufpoi + col, bytes); 3587 } 3588 3589 if (unlikely(oob)) { 3590 int toread = min(oobreadlen, max_oobsize); 3591 3592 if (toread) { 3593 oob = nand_transfer_oob(chip, oob, ops, 3594 toread); 3595 oobreadlen -= toread; 3596 } 3597 } 3598 3599 nand_wait_readrdy(chip); 3600 3601 if (mtd->ecc_stats.failed - ecc_stats.failed) { 3602 if (retry_mode + 1 < chip->read_retries) { 3603 retry_mode++; 3604 ret = nand_setup_read_retry(chip, 3605 retry_mode); 3606 if (ret < 0) 3607 break; 3608 3609 /* Reset ecc_stats; retry */ 3610 mtd->ecc_stats = ecc_stats; 3611 goto read_retry; 3612 } else { 3613 /* No more retry modes; real failure */ 3614 ecc_fail = true; 3615 } 3616 } 3617 3618 buf += bytes; 3619 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3620 } else { 3621 memcpy(buf, chip->data_buf + col, bytes); 3622 buf += bytes; 3623 max_bitflips = max_t(unsigned int, max_bitflips, 3624 chip->pagecache.bitflips); 3625 } 3626 3627 readlen -= bytes; 3628 3629 /* Reset to retry mode 0 */ 3630 if (retry_mode) { 3631 ret = nand_setup_read_retry(chip, 0); 3632 if (ret < 0) 3633 break; 3634 retry_mode = 0; 3635 } 3636 3637 if (!readlen) 3638 break; 3639 3640 /* For subsequent reads align to page boundary */ 3641 col = 0; 3642 /* Increment page address */ 3643 realpage++; 3644 3645 page = realpage & chip->pagemask; 3646 /* Check, if we cross a chip boundary */ 3647 if (!page) { 3648 chipnr++; 3649 nand_deselect_target(chip); 3650 nand_select_target(chip, chipnr); 3651 } 3652 } 3653 nand_deselect_target(chip); 3654 3655 ops->retlen = ops->len - (size_t) readlen; 3656 if (oob) 3657 ops->oobretlen = ops->ooblen - oobreadlen; 3658 3659 if (ret < 0) 3660 return ret; 3661 3662 if (ecc_fail) 3663 return -EBADMSG; 3664 3665 return max_bitflips; 3666 } 3667 3668 /** 3669 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function 3670 * @chip: nand chip info structure 3671 * @page: page number to read 3672 */ 3673 int nand_read_oob_std(struct nand_chip *chip, int page) 3674 { 3675 struct mtd_info *mtd = nand_to_mtd(chip); 3676 3677 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 3678 } 3679 EXPORT_SYMBOL(nand_read_oob_std); 3680 3681 /** 3682 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC 3683 * with syndromes 3684 * @chip: nand chip info structure 3685 * @page: page number to read 3686 */ 3687 static int nand_read_oob_syndrome(struct nand_chip *chip, int page) 3688 { 3689 struct mtd_info *mtd = nand_to_mtd(chip); 3690 int length = mtd->oobsize; 3691 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3692 int eccsize = chip->ecc.size; 3693 uint8_t *bufpoi = chip->oob_poi; 3694 int i, toread, sndrnd = 0, pos, ret; 3695 3696 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); 3697 if (ret) 3698 return ret; 3699 3700 for (i = 0; i < chip->ecc.steps; i++) { 3701 if (sndrnd) { 3702 int ret; 3703 3704 pos = eccsize + i * (eccsize + chunk); 3705 if (mtd->writesize > 512) 3706 ret = nand_change_read_column_op(chip, pos, 3707 NULL, 0, 3708 false); 3709 else 3710 ret = nand_read_page_op(chip, page, pos, NULL, 3711 0); 3712 3713 if (ret) 3714 return ret; 3715 } else 3716 sndrnd = 1; 3717 toread = min_t(int, length, chunk); 3718 3719 ret = nand_read_data_op(chip, bufpoi, toread, false, false); 3720 if (ret) 3721 return ret; 3722 3723 bufpoi += toread; 3724 length -= toread; 3725 } 3726 if (length > 0) { 3727 ret = nand_read_data_op(chip, bufpoi, length, false, false); 3728 if (ret) 3729 return ret; 3730 } 3731 3732 return 0; 3733 } 3734 3735 /** 3736 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function 3737 * @chip: nand chip info structure 3738 * @page: page number to write 3739 */ 3740 int nand_write_oob_std(struct nand_chip *chip, int page) 3741 { 3742 struct mtd_info *mtd = nand_to_mtd(chip); 3743 3744 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 3745 mtd->oobsize); 3746 } 3747 EXPORT_SYMBOL(nand_write_oob_std); 3748 3749 /** 3750 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC 3751 * with syndrome - only for large page flash 3752 * @chip: nand chip info structure 3753 * @page: page number to write 3754 */ 3755 static int nand_write_oob_syndrome(struct nand_chip *chip, int page) 3756 { 3757 struct mtd_info *mtd = nand_to_mtd(chip); 3758 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; 3759 int eccsize = chip->ecc.size, length = mtd->oobsize; 3760 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; 3761 const uint8_t *bufpoi = chip->oob_poi; 3762 3763 /* 3764 * data-ecc-data-ecc ... ecc-oob 3765 * or 3766 * data-pad-ecc-pad-data-pad .... ecc-pad-oob 3767 */ 3768 if (!chip->ecc.prepad && !chip->ecc.postpad) { 3769 pos = steps * (eccsize + chunk); 3770 steps = 0; 3771 } else 3772 pos = eccsize; 3773 3774 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); 3775 if (ret) 3776 return ret; 3777 3778 for (i = 0; i < steps; i++) { 3779 if (sndcmd) { 3780 if (mtd->writesize <= 512) { 3781 uint32_t fill = 0xFFFFFFFF; 3782 3783 len = eccsize; 3784 while (len > 0) { 3785 int num = min_t(int, len, 4); 3786 3787 ret = nand_write_data_op(chip, &fill, 3788 num, false); 3789 if (ret) 3790 return ret; 3791 3792 len -= num; 3793 } 3794 } else { 3795 pos = eccsize + i * (eccsize + chunk); 3796 ret = nand_change_write_column_op(chip, pos, 3797 NULL, 0, 3798 false); 3799 if (ret) 3800 return ret; 3801 } 3802 } else 3803 sndcmd = 1; 3804 len = min_t(int, length, chunk); 3805 3806 ret = nand_write_data_op(chip, bufpoi, len, false); 3807 if (ret) 3808 return ret; 3809 3810 bufpoi += len; 3811 length -= len; 3812 } 3813 if (length > 0) { 3814 ret = nand_write_data_op(chip, bufpoi, length, false); 3815 if (ret) 3816 return ret; 3817 } 3818 3819 return nand_prog_page_end_op(chip); 3820 } 3821 3822 /** 3823 * nand_do_read_oob - [INTERN] NAND read out-of-band 3824 * @chip: NAND chip object 3825 * @from: offset to read from 3826 * @ops: oob operations description structure 3827 * 3828 * NAND read out-of-band data from the spare area. 3829 */ 3830 static int nand_do_read_oob(struct nand_chip *chip, loff_t from, 3831 struct mtd_oob_ops *ops) 3832 { 3833 struct mtd_info *mtd = nand_to_mtd(chip); 3834 unsigned int max_bitflips = 0; 3835 int page, realpage, chipnr; 3836 struct mtd_ecc_stats stats; 3837 int readlen = ops->ooblen; 3838 int len; 3839 uint8_t *buf = ops->oobbuf; 3840 int ret = 0; 3841 3842 pr_debug("%s: from = 0x%08Lx, len = %i\n", 3843 __func__, (unsigned long long)from, readlen); 3844 3845 /* Check if the region is secured */ 3846 if (nand_region_is_secured(chip, from, readlen)) 3847 return -EIO; 3848 3849 stats = mtd->ecc_stats; 3850 3851 len = mtd_oobavail(mtd, ops); 3852 3853 chipnr = (int)(from >> chip->chip_shift); 3854 nand_select_target(chip, chipnr); 3855 3856 /* Shift to get page */ 3857 realpage = (int)(from >> chip->page_shift); 3858 page = realpage & chip->pagemask; 3859 3860 while (1) { 3861 if (ops->mode == MTD_OPS_RAW) 3862 ret = chip->ecc.read_oob_raw(chip, page); 3863 else 3864 ret = chip->ecc.read_oob(chip, page); 3865 3866 if (ret < 0) 3867 break; 3868 3869 len = min(len, readlen); 3870 buf = nand_transfer_oob(chip, buf, ops, len); 3871 3872 nand_wait_readrdy(chip); 3873 3874 max_bitflips = max_t(unsigned int, max_bitflips, ret); 3875 3876 readlen -= len; 3877 if (!readlen) 3878 break; 3879 3880 /* Increment page address */ 3881 realpage++; 3882 3883 page = realpage & chip->pagemask; 3884 /* Check, if we cross a chip boundary */ 3885 if (!page) { 3886 chipnr++; 3887 nand_deselect_target(chip); 3888 nand_select_target(chip, chipnr); 3889 } 3890 } 3891 nand_deselect_target(chip); 3892 3893 ops->oobretlen = ops->ooblen - readlen; 3894 3895 if (ret < 0) 3896 return ret; 3897 3898 if (mtd->ecc_stats.failed - stats.failed) 3899 return -EBADMSG; 3900 3901 return max_bitflips; 3902 } 3903 3904 /** 3905 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band 3906 * @mtd: MTD device structure 3907 * @from: offset to read from 3908 * @ops: oob operation description structure 3909 * 3910 * NAND read data and/or out-of-band data. 3911 */ 3912 static int nand_read_oob(struct mtd_info *mtd, loff_t from, 3913 struct mtd_oob_ops *ops) 3914 { 3915 struct nand_chip *chip = mtd_to_nand(mtd); 3916 struct mtd_ecc_stats old_stats; 3917 int ret; 3918 3919 ops->retlen = 0; 3920 3921 if (ops->mode != MTD_OPS_PLACE_OOB && 3922 ops->mode != MTD_OPS_AUTO_OOB && 3923 ops->mode != MTD_OPS_RAW) 3924 return -ENOTSUPP; 3925 3926 nand_get_device(chip); 3927 3928 old_stats = mtd->ecc_stats; 3929 3930 if (!ops->datbuf) 3931 ret = nand_do_read_oob(chip, from, ops); 3932 else 3933 ret = nand_do_read_ops(chip, from, ops); 3934 3935 if (ops->stats) { 3936 ops->stats->uncorrectable_errors += 3937 mtd->ecc_stats.failed - old_stats.failed; 3938 ops->stats->corrected_bitflips += 3939 mtd->ecc_stats.corrected - old_stats.corrected; 3940 } 3941 3942 nand_release_device(chip); 3943 return ret; 3944 } 3945 3946 /** 3947 * nand_write_page_raw_notsupp - dummy raw page write function 3948 * @chip: nand chip info structure 3949 * @buf: data buffer 3950 * @oob_required: must write chip->oob_poi to OOB 3951 * @page: page number to write 3952 * 3953 * Returns -ENOTSUPP unconditionally. 3954 */ 3955 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, 3956 int oob_required, int page) 3957 { 3958 return -ENOTSUPP; 3959 } 3960 3961 /** 3962 * nand_write_page_raw - [INTERN] raw page write function 3963 * @chip: nand chip info structure 3964 * @buf: data buffer 3965 * @oob_required: must write chip->oob_poi to OOB 3966 * @page: page number to write 3967 * 3968 * Not for syndrome calculating ECC controllers, which use a special oob layout. 3969 */ 3970 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 3971 int oob_required, int page) 3972 { 3973 struct mtd_info *mtd = nand_to_mtd(chip); 3974 int ret; 3975 3976 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); 3977 if (ret) 3978 return ret; 3979 3980 if (oob_required) { 3981 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, 3982 false); 3983 if (ret) 3984 return ret; 3985 } 3986 3987 return nand_prog_page_end_op(chip); 3988 } 3989 EXPORT_SYMBOL(nand_write_page_raw); 3990 3991 /** 3992 * nand_monolithic_write_page_raw - Monolithic page write in raw mode 3993 * @chip: NAND chip info structure 3994 * @buf: data buffer to write 3995 * @oob_required: must write chip->oob_poi to OOB 3996 * @page: page number to write 3997 * 3998 * This is a raw page write, ie. without any error detection/correction. 3999 * Monolithic means we are requesting all the relevant data (main plus 4000 * eventually OOB) to be sent over the bus and effectively programmed 4001 * into the NAND chip arrays in a single operation. This is an 4002 * alternative to nand_write_page_raw(), which first sends the main 4003 * data, then eventually send the OOB data by latching more data 4004 * cycles on the NAND bus, and finally sends the program command to 4005 * synchronyze the NAND chip cache. 4006 */ 4007 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf, 4008 int oob_required, int page) 4009 { 4010 struct mtd_info *mtd = nand_to_mtd(chip); 4011 unsigned int size = mtd->writesize; 4012 u8 *write_buf = (u8 *)buf; 4013 4014 if (oob_required) { 4015 size += mtd->oobsize; 4016 4017 if (buf != chip->data_buf) { 4018 write_buf = nand_get_data_buf(chip); 4019 memcpy(write_buf, buf, mtd->writesize); 4020 } 4021 } 4022 4023 return nand_prog_page_op(chip, page, 0, write_buf, size); 4024 } 4025 EXPORT_SYMBOL(nand_monolithic_write_page_raw); 4026 4027 /** 4028 * nand_write_page_raw_syndrome - [INTERN] raw page write function 4029 * @chip: nand chip info structure 4030 * @buf: data buffer 4031 * @oob_required: must write chip->oob_poi to OOB 4032 * @page: page number to write 4033 * 4034 * We need a special oob layout and handling even when ECC isn't checked. 4035 */ 4036 static int nand_write_page_raw_syndrome(struct nand_chip *chip, 4037 const uint8_t *buf, int oob_required, 4038 int page) 4039 { 4040 struct mtd_info *mtd = nand_to_mtd(chip); 4041 int eccsize = chip->ecc.size; 4042 int eccbytes = chip->ecc.bytes; 4043 uint8_t *oob = chip->oob_poi; 4044 int steps, size, ret; 4045 4046 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4047 if (ret) 4048 return ret; 4049 4050 for (steps = chip->ecc.steps; steps > 0; steps--) { 4051 ret = nand_write_data_op(chip, buf, eccsize, false); 4052 if (ret) 4053 return ret; 4054 4055 buf += eccsize; 4056 4057 if (chip->ecc.prepad) { 4058 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4059 false); 4060 if (ret) 4061 return ret; 4062 4063 oob += chip->ecc.prepad; 4064 } 4065 4066 ret = nand_write_data_op(chip, oob, eccbytes, false); 4067 if (ret) 4068 return ret; 4069 4070 oob += eccbytes; 4071 4072 if (chip->ecc.postpad) { 4073 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4074 false); 4075 if (ret) 4076 return ret; 4077 4078 oob += chip->ecc.postpad; 4079 } 4080 } 4081 4082 size = mtd->oobsize - (oob - chip->oob_poi); 4083 if (size) { 4084 ret = nand_write_data_op(chip, oob, size, false); 4085 if (ret) 4086 return ret; 4087 } 4088 4089 return nand_prog_page_end_op(chip); 4090 } 4091 /** 4092 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function 4093 * @chip: nand chip info structure 4094 * @buf: data buffer 4095 * @oob_required: must write chip->oob_poi to OOB 4096 * @page: page number to write 4097 */ 4098 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, 4099 int oob_required, int page) 4100 { 4101 struct mtd_info *mtd = nand_to_mtd(chip); 4102 int i, eccsize = chip->ecc.size, ret; 4103 int eccbytes = chip->ecc.bytes; 4104 int eccsteps = chip->ecc.steps; 4105 uint8_t *ecc_calc = chip->ecc.calc_buf; 4106 const uint8_t *p = buf; 4107 4108 /* Software ECC calculation */ 4109 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) 4110 chip->ecc.calculate(chip, p, &ecc_calc[i]); 4111 4112 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4113 chip->ecc.total); 4114 if (ret) 4115 return ret; 4116 4117 return chip->ecc.write_page_raw(chip, buf, 1, page); 4118 } 4119 4120 /** 4121 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function 4122 * @chip: nand chip info structure 4123 * @buf: data buffer 4124 * @oob_required: must write chip->oob_poi to OOB 4125 * @page: page number to write 4126 */ 4127 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, 4128 int oob_required, int page) 4129 { 4130 struct mtd_info *mtd = nand_to_mtd(chip); 4131 int i, eccsize = chip->ecc.size, ret; 4132 int eccbytes = chip->ecc.bytes; 4133 int eccsteps = chip->ecc.steps; 4134 uint8_t *ecc_calc = chip->ecc.calc_buf; 4135 const uint8_t *p = buf; 4136 4137 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4138 if (ret) 4139 return ret; 4140 4141 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4142 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4143 4144 ret = nand_write_data_op(chip, p, eccsize, false); 4145 if (ret) 4146 return ret; 4147 4148 chip->ecc.calculate(chip, p, &ecc_calc[i]); 4149 } 4150 4151 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4152 chip->ecc.total); 4153 if (ret) 4154 return ret; 4155 4156 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4157 if (ret) 4158 return ret; 4159 4160 return nand_prog_page_end_op(chip); 4161 } 4162 4163 4164 /** 4165 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write 4166 * @chip: nand chip info structure 4167 * @offset: column address of subpage within the page 4168 * @data_len: data length 4169 * @buf: data buffer 4170 * @oob_required: must write chip->oob_poi to OOB 4171 * @page: page number to write 4172 */ 4173 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, 4174 uint32_t data_len, const uint8_t *buf, 4175 int oob_required, int page) 4176 { 4177 struct mtd_info *mtd = nand_to_mtd(chip); 4178 uint8_t *oob_buf = chip->oob_poi; 4179 uint8_t *ecc_calc = chip->ecc.calc_buf; 4180 int ecc_size = chip->ecc.size; 4181 int ecc_bytes = chip->ecc.bytes; 4182 int ecc_steps = chip->ecc.steps; 4183 uint32_t start_step = offset / ecc_size; 4184 uint32_t end_step = (offset + data_len - 1) / ecc_size; 4185 int oob_bytes = mtd->oobsize / ecc_steps; 4186 int step, ret; 4187 4188 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4189 if (ret) 4190 return ret; 4191 4192 for (step = 0; step < ecc_steps; step++) { 4193 /* configure controller for WRITE access */ 4194 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4195 4196 /* write data (untouched subpages already masked by 0xFF) */ 4197 ret = nand_write_data_op(chip, buf, ecc_size, false); 4198 if (ret) 4199 return ret; 4200 4201 /* mask ECC of un-touched subpages by padding 0xFF */ 4202 if ((step < start_step) || (step > end_step)) 4203 memset(ecc_calc, 0xff, ecc_bytes); 4204 else 4205 chip->ecc.calculate(chip, buf, ecc_calc); 4206 4207 /* mask OOB of un-touched subpages by padding 0xFF */ 4208 /* if oob_required, preserve OOB metadata of written subpage */ 4209 if (!oob_required || (step < start_step) || (step > end_step)) 4210 memset(oob_buf, 0xff, oob_bytes); 4211 4212 buf += ecc_size; 4213 ecc_calc += ecc_bytes; 4214 oob_buf += oob_bytes; 4215 } 4216 4217 /* copy calculated ECC for whole page to chip->buffer->oob */ 4218 /* this include masked-value(0xFF) for unwritten subpages */ 4219 ecc_calc = chip->ecc.calc_buf; 4220 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, 4221 chip->ecc.total); 4222 if (ret) 4223 return ret; 4224 4225 /* write OOB buffer to NAND device */ 4226 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 4227 if (ret) 4228 return ret; 4229 4230 return nand_prog_page_end_op(chip); 4231 } 4232 4233 4234 /** 4235 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write 4236 * @chip: nand chip info structure 4237 * @buf: data buffer 4238 * @oob_required: must write chip->oob_poi to OOB 4239 * @page: page number to write 4240 * 4241 * The hw generator calculates the error syndrome automatically. Therefore we 4242 * need a special oob layout and handling. 4243 */ 4244 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, 4245 int oob_required, int page) 4246 { 4247 struct mtd_info *mtd = nand_to_mtd(chip); 4248 int i, eccsize = chip->ecc.size; 4249 int eccbytes = chip->ecc.bytes; 4250 int eccsteps = chip->ecc.steps; 4251 const uint8_t *p = buf; 4252 uint8_t *oob = chip->oob_poi; 4253 int ret; 4254 4255 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); 4256 if (ret) 4257 return ret; 4258 4259 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { 4260 chip->ecc.hwctl(chip, NAND_ECC_WRITE); 4261 4262 ret = nand_write_data_op(chip, p, eccsize, false); 4263 if (ret) 4264 return ret; 4265 4266 if (chip->ecc.prepad) { 4267 ret = nand_write_data_op(chip, oob, chip->ecc.prepad, 4268 false); 4269 if (ret) 4270 return ret; 4271 4272 oob += chip->ecc.prepad; 4273 } 4274 4275 chip->ecc.calculate(chip, p, oob); 4276 4277 ret = nand_write_data_op(chip, oob, eccbytes, false); 4278 if (ret) 4279 return ret; 4280 4281 oob += eccbytes; 4282 4283 if (chip->ecc.postpad) { 4284 ret = nand_write_data_op(chip, oob, chip->ecc.postpad, 4285 false); 4286 if (ret) 4287 return ret; 4288 4289 oob += chip->ecc.postpad; 4290 } 4291 } 4292 4293 /* Calculate remaining oob bytes */ 4294 i = mtd->oobsize - (oob - chip->oob_poi); 4295 if (i) { 4296 ret = nand_write_data_op(chip, oob, i, false); 4297 if (ret) 4298 return ret; 4299 } 4300 4301 return nand_prog_page_end_op(chip); 4302 } 4303 4304 /** 4305 * nand_write_page - write one page 4306 * @chip: NAND chip descriptor 4307 * @offset: address offset within the page 4308 * @data_len: length of actual data to be written 4309 * @buf: the data to write 4310 * @oob_required: must write chip->oob_poi to OOB 4311 * @page: page number to write 4312 * @raw: use _raw version of write_page 4313 */ 4314 static int nand_write_page(struct nand_chip *chip, uint32_t offset, 4315 int data_len, const uint8_t *buf, int oob_required, 4316 int page, int raw) 4317 { 4318 struct mtd_info *mtd = nand_to_mtd(chip); 4319 int status, subpage; 4320 4321 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && 4322 chip->ecc.write_subpage) 4323 subpage = offset || (data_len < mtd->writesize); 4324 else 4325 subpage = 0; 4326 4327 if (unlikely(raw)) 4328 status = chip->ecc.write_page_raw(chip, buf, oob_required, 4329 page); 4330 else if (subpage) 4331 status = chip->ecc.write_subpage(chip, offset, data_len, buf, 4332 oob_required, page); 4333 else 4334 status = chip->ecc.write_page(chip, buf, oob_required, page); 4335 4336 if (status < 0) 4337 return status; 4338 4339 return 0; 4340 } 4341 4342 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) 4343 4344 /** 4345 * nand_do_write_ops - [INTERN] NAND write with ECC 4346 * @chip: NAND chip object 4347 * @to: offset to write to 4348 * @ops: oob operations description structure 4349 * 4350 * NAND write with ECC. 4351 */ 4352 static int nand_do_write_ops(struct nand_chip *chip, loff_t to, 4353 struct mtd_oob_ops *ops) 4354 { 4355 struct mtd_info *mtd = nand_to_mtd(chip); 4356 int chipnr, realpage, page, column; 4357 uint32_t writelen = ops->len; 4358 4359 uint32_t oobwritelen = ops->ooblen; 4360 uint32_t oobmaxlen = mtd_oobavail(mtd, ops); 4361 4362 uint8_t *oob = ops->oobbuf; 4363 uint8_t *buf = ops->datbuf; 4364 int ret; 4365 int oob_required = oob ? 1 : 0; 4366 4367 ops->retlen = 0; 4368 if (!writelen) 4369 return 0; 4370 4371 /* Reject writes, which are not page aligned */ 4372 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { 4373 pr_notice("%s: attempt to write non page aligned data\n", 4374 __func__); 4375 return -EINVAL; 4376 } 4377 4378 /* Check if the region is secured */ 4379 if (nand_region_is_secured(chip, to, writelen)) 4380 return -EIO; 4381 4382 column = to & (mtd->writesize - 1); 4383 4384 chipnr = (int)(to >> chip->chip_shift); 4385 nand_select_target(chip, chipnr); 4386 4387 /* Check, if it is write protected */ 4388 if (nand_check_wp(chip)) { 4389 ret = -EIO; 4390 goto err_out; 4391 } 4392 4393 realpage = (int)(to >> chip->page_shift); 4394 page = realpage & chip->pagemask; 4395 4396 /* Invalidate the page cache, when we write to the cached page */ 4397 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && 4398 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) 4399 chip->pagecache.page = -1; 4400 4401 /* Don't allow multipage oob writes with offset */ 4402 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { 4403 ret = -EINVAL; 4404 goto err_out; 4405 } 4406 4407 while (1) { 4408 int bytes = mtd->writesize; 4409 uint8_t *wbuf = buf; 4410 int use_bounce_buf; 4411 int part_pagewr = (column || writelen < mtd->writesize); 4412 4413 if (part_pagewr) 4414 use_bounce_buf = 1; 4415 else if (chip->options & NAND_USES_DMA) 4416 use_bounce_buf = !virt_addr_valid(buf) || 4417 !IS_ALIGNED((unsigned long)buf, 4418 chip->buf_align); 4419 else 4420 use_bounce_buf = 0; 4421 4422 /* 4423 * Copy the data from the initial buffer when doing partial page 4424 * writes or when a bounce buffer is required. 4425 */ 4426 if (use_bounce_buf) { 4427 pr_debug("%s: using write bounce buffer for buf@%p\n", 4428 __func__, buf); 4429 if (part_pagewr) 4430 bytes = min_t(int, bytes - column, writelen); 4431 wbuf = nand_get_data_buf(chip); 4432 memset(wbuf, 0xff, mtd->writesize); 4433 memcpy(&wbuf[column], buf, bytes); 4434 } 4435 4436 if (unlikely(oob)) { 4437 size_t len = min(oobwritelen, oobmaxlen); 4438 oob = nand_fill_oob(chip, oob, len, ops); 4439 oobwritelen -= len; 4440 } else { 4441 /* We still need to erase leftover OOB data */ 4442 memset(chip->oob_poi, 0xff, mtd->oobsize); 4443 } 4444 4445 ret = nand_write_page(chip, column, bytes, wbuf, 4446 oob_required, page, 4447 (ops->mode == MTD_OPS_RAW)); 4448 if (ret) 4449 break; 4450 4451 writelen -= bytes; 4452 if (!writelen) 4453 break; 4454 4455 column = 0; 4456 buf += bytes; 4457 realpage++; 4458 4459 page = realpage & chip->pagemask; 4460 /* Check, if we cross a chip boundary */ 4461 if (!page) { 4462 chipnr++; 4463 nand_deselect_target(chip); 4464 nand_select_target(chip, chipnr); 4465 } 4466 } 4467 4468 ops->retlen = ops->len - writelen; 4469 if (unlikely(oob)) 4470 ops->oobretlen = ops->ooblen; 4471 4472 err_out: 4473 nand_deselect_target(chip); 4474 return ret; 4475 } 4476 4477 /** 4478 * panic_nand_write - [MTD Interface] NAND write with ECC 4479 * @mtd: MTD device structure 4480 * @to: offset to write to 4481 * @len: number of bytes to write 4482 * @retlen: pointer to variable to store the number of written bytes 4483 * @buf: the data to write 4484 * 4485 * NAND write with ECC. Used when performing writes in interrupt context, this 4486 * may for example be called by mtdoops when writing an oops while in panic. 4487 */ 4488 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, 4489 size_t *retlen, const uint8_t *buf) 4490 { 4491 struct nand_chip *chip = mtd_to_nand(mtd); 4492 int chipnr = (int)(to >> chip->chip_shift); 4493 struct mtd_oob_ops ops; 4494 int ret; 4495 4496 nand_select_target(chip, chipnr); 4497 4498 /* Wait for the device to get ready */ 4499 panic_nand_wait(chip, 400); 4500 4501 memset(&ops, 0, sizeof(ops)); 4502 ops.len = len; 4503 ops.datbuf = (uint8_t *)buf; 4504 ops.mode = MTD_OPS_PLACE_OOB; 4505 4506 ret = nand_do_write_ops(chip, to, &ops); 4507 4508 *retlen = ops.retlen; 4509 return ret; 4510 } 4511 4512 /** 4513 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band 4514 * @mtd: MTD device structure 4515 * @to: offset to write to 4516 * @ops: oob operation description structure 4517 */ 4518 static int nand_write_oob(struct mtd_info *mtd, loff_t to, 4519 struct mtd_oob_ops *ops) 4520 { 4521 struct nand_chip *chip = mtd_to_nand(mtd); 4522 int ret = 0; 4523 4524 ops->retlen = 0; 4525 4526 nand_get_device(chip); 4527 4528 switch (ops->mode) { 4529 case MTD_OPS_PLACE_OOB: 4530 case MTD_OPS_AUTO_OOB: 4531 case MTD_OPS_RAW: 4532 break; 4533 4534 default: 4535 goto out; 4536 } 4537 4538 if (!ops->datbuf) 4539 ret = nand_do_write_oob(chip, to, ops); 4540 else 4541 ret = nand_do_write_ops(chip, to, ops); 4542 4543 out: 4544 nand_release_device(chip); 4545 return ret; 4546 } 4547 4548 /** 4549 * nand_erase - [MTD Interface] erase block(s) 4550 * @mtd: MTD device structure 4551 * @instr: erase instruction 4552 * 4553 * Erase one ore more blocks. 4554 */ 4555 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) 4556 { 4557 return nand_erase_nand(mtd_to_nand(mtd), instr, 0); 4558 } 4559 4560 /** 4561 * nand_erase_nand - [INTERN] erase block(s) 4562 * @chip: NAND chip object 4563 * @instr: erase instruction 4564 * @allowbbt: allow erasing the bbt area 4565 * 4566 * Erase one ore more blocks. 4567 */ 4568 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, 4569 int allowbbt) 4570 { 4571 int page, pages_per_block, ret, chipnr; 4572 loff_t len; 4573 4574 pr_debug("%s: start = 0x%012llx, len = %llu\n", 4575 __func__, (unsigned long long)instr->addr, 4576 (unsigned long long)instr->len); 4577 4578 if (check_offs_len(chip, instr->addr, instr->len)) 4579 return -EINVAL; 4580 4581 /* Check if the region is secured */ 4582 if (nand_region_is_secured(chip, instr->addr, instr->len)) 4583 return -EIO; 4584 4585 /* Grab the lock and see if the device is available */ 4586 nand_get_device(chip); 4587 4588 /* Shift to get first page */ 4589 page = (int)(instr->addr >> chip->page_shift); 4590 chipnr = (int)(instr->addr >> chip->chip_shift); 4591 4592 /* Calculate pages in each block */ 4593 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); 4594 4595 /* Select the NAND device */ 4596 nand_select_target(chip, chipnr); 4597 4598 /* Check, if it is write protected */ 4599 if (nand_check_wp(chip)) { 4600 pr_debug("%s: device is write protected!\n", 4601 __func__); 4602 ret = -EIO; 4603 goto erase_exit; 4604 } 4605 4606 /* Loop through the pages */ 4607 len = instr->len; 4608 4609 while (len) { 4610 loff_t ofs = (loff_t)page << chip->page_shift; 4611 4612 /* Check if we have a bad block, we do not erase bad blocks! */ 4613 if (nand_block_checkbad(chip, ((loff_t) page) << 4614 chip->page_shift, allowbbt)) { 4615 pr_warn("%s: attempt to erase a bad block at 0x%08llx\n", 4616 __func__, (unsigned long long)ofs); 4617 ret = -EIO; 4618 goto erase_exit; 4619 } 4620 4621 /* 4622 * Invalidate the page cache, if we erase the block which 4623 * contains the current cached page. 4624 */ 4625 if (page <= chip->pagecache.page && chip->pagecache.page < 4626 (page + pages_per_block)) 4627 chip->pagecache.page = -1; 4628 4629 ret = nand_erase_op(chip, (page & chip->pagemask) >> 4630 (chip->phys_erase_shift - chip->page_shift)); 4631 if (ret) { 4632 pr_debug("%s: failed erase, page 0x%08x\n", 4633 __func__, page); 4634 instr->fail_addr = ofs; 4635 goto erase_exit; 4636 } 4637 4638 /* Increment page address and decrement length */ 4639 len -= (1ULL << chip->phys_erase_shift); 4640 page += pages_per_block; 4641 4642 /* Check, if we cross a chip boundary */ 4643 if (len && !(page & chip->pagemask)) { 4644 chipnr++; 4645 nand_deselect_target(chip); 4646 nand_select_target(chip, chipnr); 4647 } 4648 } 4649 4650 ret = 0; 4651 erase_exit: 4652 4653 /* Deselect and wake up anyone waiting on the device */ 4654 nand_deselect_target(chip); 4655 nand_release_device(chip); 4656 4657 /* Return more or less happy */ 4658 return ret; 4659 } 4660 4661 /** 4662 * nand_sync - [MTD Interface] sync 4663 * @mtd: MTD device structure 4664 * 4665 * Sync is actually a wait for chip ready function. 4666 */ 4667 static void nand_sync(struct mtd_info *mtd) 4668 { 4669 struct nand_chip *chip = mtd_to_nand(mtd); 4670 4671 pr_debug("%s: called\n", __func__); 4672 4673 /* Grab the lock and see if the device is available */ 4674 nand_get_device(chip); 4675 /* Release it and go back */ 4676 nand_release_device(chip); 4677 } 4678 4679 /** 4680 * nand_block_isbad - [MTD Interface] Check if block at offset is bad 4681 * @mtd: MTD device structure 4682 * @offs: offset relative to mtd start 4683 */ 4684 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) 4685 { 4686 struct nand_chip *chip = mtd_to_nand(mtd); 4687 int chipnr = (int)(offs >> chip->chip_shift); 4688 int ret; 4689 4690 /* Select the NAND device */ 4691 nand_get_device(chip); 4692 4693 nand_select_target(chip, chipnr); 4694 4695 ret = nand_block_checkbad(chip, offs, 0); 4696 4697 nand_deselect_target(chip); 4698 nand_release_device(chip); 4699 4700 return ret; 4701 } 4702 4703 /** 4704 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad 4705 * @mtd: MTD device structure 4706 * @ofs: offset relative to mtd start 4707 */ 4708 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) 4709 { 4710 int ret; 4711 4712 ret = nand_block_isbad(mtd, ofs); 4713 if (ret) { 4714 /* If it was bad already, return success and do nothing */ 4715 if (ret > 0) 4716 return 0; 4717 return ret; 4718 } 4719 4720 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); 4721 } 4722 4723 /** 4724 * nand_suspend - [MTD Interface] Suspend the NAND flash 4725 * @mtd: MTD device structure 4726 * 4727 * Returns 0 for success or negative error code otherwise. 4728 */ 4729 static int nand_suspend(struct mtd_info *mtd) 4730 { 4731 struct nand_chip *chip = mtd_to_nand(mtd); 4732 int ret = 0; 4733 4734 mutex_lock(&chip->lock); 4735 if (chip->ops.suspend) 4736 ret = chip->ops.suspend(chip); 4737 if (!ret) 4738 chip->suspended = 1; 4739 mutex_unlock(&chip->lock); 4740 4741 return ret; 4742 } 4743 4744 /** 4745 * nand_resume - [MTD Interface] Resume the NAND flash 4746 * @mtd: MTD device structure 4747 */ 4748 static void nand_resume(struct mtd_info *mtd) 4749 { 4750 struct nand_chip *chip = mtd_to_nand(mtd); 4751 4752 mutex_lock(&chip->lock); 4753 if (chip->suspended) { 4754 if (chip->ops.resume) 4755 chip->ops.resume(chip); 4756 chip->suspended = 0; 4757 } else { 4758 pr_err("%s called for a chip which is not in suspended state\n", 4759 __func__); 4760 } 4761 mutex_unlock(&chip->lock); 4762 4763 wake_up_all(&chip->resume_wq); 4764 } 4765 4766 /** 4767 * nand_shutdown - [MTD Interface] Finish the current NAND operation and 4768 * prevent further operations 4769 * @mtd: MTD device structure 4770 */ 4771 static void nand_shutdown(struct mtd_info *mtd) 4772 { 4773 nand_suspend(mtd); 4774 } 4775 4776 /** 4777 * nand_lock - [MTD Interface] Lock the NAND flash 4778 * @mtd: MTD device structure 4779 * @ofs: offset byte address 4780 * @len: number of bytes to lock (must be a multiple of block/page size) 4781 */ 4782 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4783 { 4784 struct nand_chip *chip = mtd_to_nand(mtd); 4785 4786 if (!chip->ops.lock_area) 4787 return -ENOTSUPP; 4788 4789 return chip->ops.lock_area(chip, ofs, len); 4790 } 4791 4792 /** 4793 * nand_unlock - [MTD Interface] Unlock the NAND flash 4794 * @mtd: MTD device structure 4795 * @ofs: offset byte address 4796 * @len: number of bytes to unlock (must be a multiple of block/page size) 4797 */ 4798 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 4799 { 4800 struct nand_chip *chip = mtd_to_nand(mtd); 4801 4802 if (!chip->ops.unlock_area) 4803 return -ENOTSUPP; 4804 4805 return chip->ops.unlock_area(chip, ofs, len); 4806 } 4807 4808 /* Set default functions */ 4809 static void nand_set_defaults(struct nand_chip *chip) 4810 { 4811 /* If no controller is provided, use the dummy, legacy one. */ 4812 if (!chip->controller) { 4813 chip->controller = &chip->legacy.dummy_controller; 4814 nand_controller_init(chip->controller); 4815 } 4816 4817 nand_legacy_set_defaults(chip); 4818 4819 if (!chip->buf_align) 4820 chip->buf_align = 1; 4821 } 4822 4823 /* Sanitize ONFI strings so we can safely print them */ 4824 void sanitize_string(uint8_t *s, size_t len) 4825 { 4826 ssize_t i; 4827 4828 /* Null terminate */ 4829 s[len - 1] = 0; 4830 4831 /* Remove non printable chars */ 4832 for (i = 0; i < len - 1; i++) { 4833 if (s[i] < ' ' || s[i] > 127) 4834 s[i] = '?'; 4835 } 4836 4837 /* Remove trailing spaces */ 4838 strim(s); 4839 } 4840 4841 /* 4842 * nand_id_has_period - Check if an ID string has a given wraparound period 4843 * @id_data: the ID string 4844 * @arrlen: the length of the @id_data array 4845 * @period: the period of repitition 4846 * 4847 * Check if an ID string is repeated within a given sequence of bytes at 4848 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a 4849 * period of 3). This is a helper function for nand_id_len(). Returns non-zero 4850 * if the repetition has a period of @period; otherwise, returns zero. 4851 */ 4852 static int nand_id_has_period(u8 *id_data, int arrlen, int period) 4853 { 4854 int i, j; 4855 for (i = 0; i < period; i++) 4856 for (j = i + period; j < arrlen; j += period) 4857 if (id_data[i] != id_data[j]) 4858 return 0; 4859 return 1; 4860 } 4861 4862 /* 4863 * nand_id_len - Get the length of an ID string returned by CMD_READID 4864 * @id_data: the ID string 4865 * @arrlen: the length of the @id_data array 4866 4867 * Returns the length of the ID string, according to known wraparound/trailing 4868 * zero patterns. If no pattern exists, returns the length of the array. 4869 */ 4870 static int nand_id_len(u8 *id_data, int arrlen) 4871 { 4872 int last_nonzero, period; 4873 4874 /* Find last non-zero byte */ 4875 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) 4876 if (id_data[last_nonzero]) 4877 break; 4878 4879 /* All zeros */ 4880 if (last_nonzero < 0) 4881 return 0; 4882 4883 /* Calculate wraparound period */ 4884 for (period = 1; period < arrlen; period++) 4885 if (nand_id_has_period(id_data, arrlen, period)) 4886 break; 4887 4888 /* There's a repeated pattern */ 4889 if (period < arrlen) 4890 return period; 4891 4892 /* There are trailing zeros */ 4893 if (last_nonzero < arrlen - 1) 4894 return last_nonzero + 1; 4895 4896 /* No pattern detected */ 4897 return arrlen; 4898 } 4899 4900 /* Extract the bits of per cell from the 3rd byte of the extended ID */ 4901 static int nand_get_bits_per_cell(u8 cellinfo) 4902 { 4903 int bits; 4904 4905 bits = cellinfo & NAND_CI_CELLTYPE_MSK; 4906 bits >>= NAND_CI_CELLTYPE_SHIFT; 4907 return bits + 1; 4908 } 4909 4910 /* 4911 * Many new NAND share similar device ID codes, which represent the size of the 4912 * chip. The rest of the parameters must be decoded according to generic or 4913 * manufacturer-specific "extended ID" decoding patterns. 4914 */ 4915 void nand_decode_ext_id(struct nand_chip *chip) 4916 { 4917 struct nand_memory_organization *memorg; 4918 struct mtd_info *mtd = nand_to_mtd(chip); 4919 int extid; 4920 u8 *id_data = chip->id.data; 4921 4922 memorg = nanddev_get_memorg(&chip->base); 4923 4924 /* The 3rd id byte holds MLC / multichip data */ 4925 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 4926 /* The 4th id byte is the important one */ 4927 extid = id_data[3]; 4928 4929 /* Calc pagesize */ 4930 memorg->pagesize = 1024 << (extid & 0x03); 4931 mtd->writesize = memorg->pagesize; 4932 extid >>= 2; 4933 /* Calc oobsize */ 4934 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); 4935 mtd->oobsize = memorg->oobsize; 4936 extid >>= 2; 4937 /* Calc blocksize. Blocksize is multiples of 64KiB */ 4938 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / 4939 memorg->pagesize; 4940 mtd->erasesize = (64 * 1024) << (extid & 0x03); 4941 extid >>= 2; 4942 /* Get buswidth information */ 4943 if (extid & 0x1) 4944 chip->options |= NAND_BUSWIDTH_16; 4945 } 4946 EXPORT_SYMBOL_GPL(nand_decode_ext_id); 4947 4948 /* 4949 * Old devices have chip data hardcoded in the device ID table. nand_decode_id 4950 * decodes a matching ID table entry and assigns the MTD size parameters for 4951 * the chip. 4952 */ 4953 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) 4954 { 4955 struct mtd_info *mtd = nand_to_mtd(chip); 4956 struct nand_memory_organization *memorg; 4957 4958 memorg = nanddev_get_memorg(&chip->base); 4959 4960 memorg->pages_per_eraseblock = type->erasesize / type->pagesize; 4961 mtd->erasesize = type->erasesize; 4962 memorg->pagesize = type->pagesize; 4963 mtd->writesize = memorg->pagesize; 4964 memorg->oobsize = memorg->pagesize / 32; 4965 mtd->oobsize = memorg->oobsize; 4966 4967 /* All legacy ID NAND are small-page, SLC */ 4968 memorg->bits_per_cell = 1; 4969 } 4970 4971 /* 4972 * Set the bad block marker/indicator (BBM/BBI) patterns according to some 4973 * heuristic patterns using various detected parameters (e.g., manufacturer, 4974 * page size, cell-type information). 4975 */ 4976 static void nand_decode_bbm_options(struct nand_chip *chip) 4977 { 4978 struct mtd_info *mtd = nand_to_mtd(chip); 4979 4980 /* Set the bad block position */ 4981 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) 4982 chip->badblockpos = NAND_BBM_POS_LARGE; 4983 else 4984 chip->badblockpos = NAND_BBM_POS_SMALL; 4985 } 4986 4987 static inline bool is_full_id_nand(struct nand_flash_dev *type) 4988 { 4989 return type->id_len; 4990 } 4991 4992 static bool find_full_id_nand(struct nand_chip *chip, 4993 struct nand_flash_dev *type) 4994 { 4995 struct nand_device *base = &chip->base; 4996 struct nand_ecc_props requirements; 4997 struct mtd_info *mtd = nand_to_mtd(chip); 4998 struct nand_memory_organization *memorg; 4999 u8 *id_data = chip->id.data; 5000 5001 memorg = nanddev_get_memorg(&chip->base); 5002 5003 if (!strncmp(type->id, id_data, type->id_len)) { 5004 memorg->pagesize = type->pagesize; 5005 mtd->writesize = memorg->pagesize; 5006 memorg->pages_per_eraseblock = type->erasesize / 5007 type->pagesize; 5008 mtd->erasesize = type->erasesize; 5009 memorg->oobsize = type->oobsize; 5010 mtd->oobsize = memorg->oobsize; 5011 5012 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); 5013 memorg->eraseblocks_per_lun = 5014 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 5015 memorg->pagesize * 5016 memorg->pages_per_eraseblock); 5017 chip->options |= type->options; 5018 requirements.strength = NAND_ECC_STRENGTH(type); 5019 requirements.step_size = NAND_ECC_STEP(type); 5020 nanddev_set_ecc_requirements(base, &requirements); 5021 5022 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 5023 if (!chip->parameters.model) 5024 return false; 5025 5026 return true; 5027 } 5028 return false; 5029 } 5030 5031 /* 5032 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC 5033 * compliant and does not have a full-id or legacy-id entry in the nand_ids 5034 * table. 5035 */ 5036 static void nand_manufacturer_detect(struct nand_chip *chip) 5037 { 5038 /* 5039 * Try manufacturer detection if available and use 5040 * nand_decode_ext_id() otherwise. 5041 */ 5042 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 5043 chip->manufacturer.desc->ops->detect) { 5044 struct nand_memory_organization *memorg; 5045 5046 memorg = nanddev_get_memorg(&chip->base); 5047 5048 /* The 3rd id byte holds MLC / multichip data */ 5049 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); 5050 chip->manufacturer.desc->ops->detect(chip); 5051 } else { 5052 nand_decode_ext_id(chip); 5053 } 5054 } 5055 5056 /* 5057 * Manufacturer initialization. This function is called for all NANDs including 5058 * ONFI and JEDEC compliant ones. 5059 * Manufacturer drivers should put all their specific initialization code in 5060 * their ->init() hook. 5061 */ 5062 static int nand_manufacturer_init(struct nand_chip *chip) 5063 { 5064 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || 5065 !chip->manufacturer.desc->ops->init) 5066 return 0; 5067 5068 return chip->manufacturer.desc->ops->init(chip); 5069 } 5070 5071 /* 5072 * Manufacturer cleanup. This function is called for all NANDs including 5073 * ONFI and JEDEC compliant ones. 5074 * Manufacturer drivers should put all their specific cleanup code in their 5075 * ->cleanup() hook. 5076 */ 5077 static void nand_manufacturer_cleanup(struct nand_chip *chip) 5078 { 5079 /* Release manufacturer private data */ 5080 if (chip->manufacturer.desc && chip->manufacturer.desc->ops && 5081 chip->manufacturer.desc->ops->cleanup) 5082 chip->manufacturer.desc->ops->cleanup(chip); 5083 } 5084 5085 static const char * 5086 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc) 5087 { 5088 return manufacturer_desc ? manufacturer_desc->name : "Unknown"; 5089 } 5090 5091 static void rawnand_check_data_only_read_support(struct nand_chip *chip) 5092 { 5093 /* Use an arbitrary size for the check */ 5094 if (!nand_read_data_op(chip, NULL, SZ_512, true, true)) 5095 chip->controller->supported_op.data_only_read = 1; 5096 } 5097 5098 static void rawnand_early_check_supported_ops(struct nand_chip *chip) 5099 { 5100 /* The supported_op fields should not be set by individual drivers */ 5101 WARN_ON_ONCE(chip->controller->supported_op.data_only_read); 5102 5103 if (!nand_has_exec_op(chip)) 5104 return; 5105 5106 rawnand_check_data_only_read_support(chip); 5107 } 5108 5109 static void rawnand_check_cont_read_support(struct nand_chip *chip) 5110 { 5111 struct mtd_info *mtd = nand_to_mtd(chip); 5112 5113 if (chip->read_retries) 5114 return; 5115 5116 if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL, 5117 mtd->writesize, true)) 5118 chip->controller->supported_op.cont_read = 1; 5119 } 5120 5121 static void rawnand_late_check_supported_ops(struct nand_chip *chip) 5122 { 5123 /* The supported_op fields should not be set by individual drivers */ 5124 WARN_ON_ONCE(chip->controller->supported_op.cont_read); 5125 5126 if (!nand_has_exec_op(chip)) 5127 return; 5128 5129 rawnand_check_cont_read_support(chip); 5130 } 5131 5132 /* 5133 * Get the flash and manufacturer id and lookup if the type is supported. 5134 */ 5135 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) 5136 { 5137 const struct nand_manufacturer_desc *manufacturer_desc; 5138 struct mtd_info *mtd = nand_to_mtd(chip); 5139 struct nand_memory_organization *memorg; 5140 int busw, ret; 5141 u8 *id_data = chip->id.data; 5142 u8 maf_id, dev_id; 5143 u64 targetsize; 5144 5145 /* 5146 * Let's start by initializing memorg fields that might be left 5147 * unassigned by the ID-based detection logic. 5148 */ 5149 memorg = nanddev_get_memorg(&chip->base); 5150 memorg->planes_per_lun = 1; 5151 memorg->luns_per_target = 1; 5152 5153 /* 5154 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) 5155 * after power-up. 5156 */ 5157 ret = nand_reset(chip, 0); 5158 if (ret) 5159 return ret; 5160 5161 /* Select the device */ 5162 nand_select_target(chip, 0); 5163 5164 rawnand_early_check_supported_ops(chip); 5165 5166 /* Send the command for reading device ID */ 5167 ret = nand_readid_op(chip, 0, id_data, 2); 5168 if (ret) 5169 return ret; 5170 5171 /* Read manufacturer and device IDs */ 5172 maf_id = id_data[0]; 5173 dev_id = id_data[1]; 5174 5175 /* 5176 * Try again to make sure, as some systems the bus-hold or other 5177 * interface concerns can cause random data which looks like a 5178 * possibly credible NAND flash to appear. If the two results do 5179 * not match, ignore the device completely. 5180 */ 5181 5182 /* Read entire ID string */ 5183 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); 5184 if (ret) 5185 return ret; 5186 5187 if (id_data[0] != maf_id || id_data[1] != dev_id) { 5188 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", 5189 maf_id, dev_id, id_data[0], id_data[1]); 5190 return -ENODEV; 5191 } 5192 5193 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); 5194 5195 /* Try to identify manufacturer */ 5196 manufacturer_desc = nand_get_manufacturer_desc(maf_id); 5197 chip->manufacturer.desc = manufacturer_desc; 5198 5199 if (!type) 5200 type = nand_flash_ids; 5201 5202 /* 5203 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic 5204 * override it. 5205 * This is required to make sure initial NAND bus width set by the 5206 * NAND controller driver is coherent with the real NAND bus width 5207 * (extracted by auto-detection code). 5208 */ 5209 busw = chip->options & NAND_BUSWIDTH_16; 5210 5211 /* 5212 * The flag is only set (never cleared), reset it to its default value 5213 * before starting auto-detection. 5214 */ 5215 chip->options &= ~NAND_BUSWIDTH_16; 5216 5217 for (; type->name != NULL; type++) { 5218 if (is_full_id_nand(type)) { 5219 if (find_full_id_nand(chip, type)) 5220 goto ident_done; 5221 } else if (dev_id == type->dev_id) { 5222 break; 5223 } 5224 } 5225 5226 if (!type->name || !type->pagesize) { 5227 /* Check if the chip is ONFI compliant */ 5228 ret = nand_onfi_detect(chip); 5229 if (ret < 0) 5230 return ret; 5231 else if (ret) 5232 goto ident_done; 5233 5234 /* Check if the chip is JEDEC compliant */ 5235 ret = nand_jedec_detect(chip); 5236 if (ret < 0) 5237 return ret; 5238 else if (ret) 5239 goto ident_done; 5240 } 5241 5242 if (!type->name) 5243 return -ENODEV; 5244 5245 chip->parameters.model = kstrdup(type->name, GFP_KERNEL); 5246 if (!chip->parameters.model) 5247 return -ENOMEM; 5248 5249 if (!type->pagesize) 5250 nand_manufacturer_detect(chip); 5251 else 5252 nand_decode_id(chip, type); 5253 5254 /* Get chip options */ 5255 chip->options |= type->options; 5256 5257 memorg->eraseblocks_per_lun = 5258 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, 5259 memorg->pagesize * 5260 memorg->pages_per_eraseblock); 5261 5262 ident_done: 5263 if (!mtd->name) 5264 mtd->name = chip->parameters.model; 5265 5266 if (chip->options & NAND_BUSWIDTH_AUTO) { 5267 WARN_ON(busw & NAND_BUSWIDTH_16); 5268 nand_set_defaults(chip); 5269 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { 5270 /* 5271 * Check, if buswidth is correct. Hardware drivers should set 5272 * chip correct! 5273 */ 5274 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5275 maf_id, dev_id); 5276 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 5277 mtd->name); 5278 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, 5279 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); 5280 ret = -EINVAL; 5281 5282 goto free_detect_allocation; 5283 } 5284 5285 nand_decode_bbm_options(chip); 5286 5287 /* Calculate the address shift from the page size */ 5288 chip->page_shift = ffs(mtd->writesize) - 1; 5289 /* Convert chipsize to number of pages per chip -1 */ 5290 targetsize = nanddev_target_size(&chip->base); 5291 chip->pagemask = (targetsize >> chip->page_shift) - 1; 5292 5293 chip->bbt_erase_shift = chip->phys_erase_shift = 5294 ffs(mtd->erasesize) - 1; 5295 if (targetsize & 0xffffffff) 5296 chip->chip_shift = ffs((unsigned)targetsize) - 1; 5297 else { 5298 chip->chip_shift = ffs((unsigned)(targetsize >> 32)); 5299 chip->chip_shift += 32 - 1; 5300 } 5301 5302 if (chip->chip_shift - chip->page_shift > 16) 5303 chip->options |= NAND_ROW_ADDR_3; 5304 5305 chip->badblockbits = 8; 5306 5307 nand_legacy_adjust_cmdfunc(chip); 5308 5309 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", 5310 maf_id, dev_id); 5311 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), 5312 chip->parameters.model); 5313 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", 5314 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", 5315 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); 5316 return 0; 5317 5318 free_detect_allocation: 5319 kfree(chip->parameters.model); 5320 5321 return ret; 5322 } 5323 5324 static enum nand_ecc_engine_type 5325 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np) 5326 { 5327 enum nand_ecc_legacy_mode { 5328 NAND_ECC_INVALID, 5329 NAND_ECC_NONE, 5330 NAND_ECC_SOFT, 5331 NAND_ECC_SOFT_BCH, 5332 NAND_ECC_HW, 5333 NAND_ECC_HW_SYNDROME, 5334 NAND_ECC_ON_DIE, 5335 }; 5336 const char * const nand_ecc_legacy_modes[] = { 5337 [NAND_ECC_NONE] = "none", 5338 [NAND_ECC_SOFT] = "soft", 5339 [NAND_ECC_SOFT_BCH] = "soft_bch", 5340 [NAND_ECC_HW] = "hw", 5341 [NAND_ECC_HW_SYNDROME] = "hw_syndrome", 5342 [NAND_ECC_ON_DIE] = "on-die", 5343 }; 5344 enum nand_ecc_legacy_mode eng_type; 5345 const char *pm; 5346 int err; 5347 5348 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5349 if (err) 5350 return NAND_ECC_ENGINE_TYPE_INVALID; 5351 5352 for (eng_type = NAND_ECC_NONE; 5353 eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) { 5354 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) { 5355 switch (eng_type) { 5356 case NAND_ECC_NONE: 5357 return NAND_ECC_ENGINE_TYPE_NONE; 5358 case NAND_ECC_SOFT: 5359 case NAND_ECC_SOFT_BCH: 5360 return NAND_ECC_ENGINE_TYPE_SOFT; 5361 case NAND_ECC_HW: 5362 case NAND_ECC_HW_SYNDROME: 5363 return NAND_ECC_ENGINE_TYPE_ON_HOST; 5364 case NAND_ECC_ON_DIE: 5365 return NAND_ECC_ENGINE_TYPE_ON_DIE; 5366 default: 5367 break; 5368 } 5369 } 5370 } 5371 5372 return NAND_ECC_ENGINE_TYPE_INVALID; 5373 } 5374 5375 static enum nand_ecc_placement 5376 of_get_rawnand_ecc_placement_legacy(struct device_node *np) 5377 { 5378 const char *pm; 5379 int err; 5380 5381 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5382 if (!err) { 5383 if (!strcasecmp(pm, "hw_syndrome")) 5384 return NAND_ECC_PLACEMENT_INTERLEAVED; 5385 } 5386 5387 return NAND_ECC_PLACEMENT_UNKNOWN; 5388 } 5389 5390 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np) 5391 { 5392 const char *pm; 5393 int err; 5394 5395 err = of_property_read_string(np, "nand-ecc-mode", &pm); 5396 if (!err) { 5397 if (!strcasecmp(pm, "soft")) 5398 return NAND_ECC_ALGO_HAMMING; 5399 else if (!strcasecmp(pm, "soft_bch")) 5400 return NAND_ECC_ALGO_BCH; 5401 } 5402 5403 return NAND_ECC_ALGO_UNKNOWN; 5404 } 5405 5406 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip) 5407 { 5408 struct device_node *dn = nand_get_flash_node(chip); 5409 struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf; 5410 5411 if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 5412 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn); 5413 5414 if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN) 5415 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn); 5416 5417 if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN) 5418 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn); 5419 } 5420 5421 static int of_get_nand_bus_width(struct nand_chip *chip) 5422 { 5423 struct device_node *dn = nand_get_flash_node(chip); 5424 u32 val; 5425 int ret; 5426 5427 ret = of_property_read_u32(dn, "nand-bus-width", &val); 5428 if (ret == -EINVAL) 5429 /* Buswidth defaults to 8 if the property does not exist .*/ 5430 return 0; 5431 else if (ret) 5432 return ret; 5433 5434 if (val == 16) 5435 chip->options |= NAND_BUSWIDTH_16; 5436 else if (val != 8) 5437 return -EINVAL; 5438 return 0; 5439 } 5440 5441 static int of_get_nand_secure_regions(struct nand_chip *chip) 5442 { 5443 struct device_node *dn = nand_get_flash_node(chip); 5444 struct property *prop; 5445 int nr_elem, i, j; 5446 5447 /* Only proceed if the "secure-regions" property is present in DT */ 5448 prop = of_find_property(dn, "secure-regions", NULL); 5449 if (!prop) 5450 return 0; 5451 5452 nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64)); 5453 if (nr_elem <= 0) 5454 return nr_elem; 5455 5456 chip->nr_secure_regions = nr_elem / 2; 5457 chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions), 5458 GFP_KERNEL); 5459 if (!chip->secure_regions) 5460 return -ENOMEM; 5461 5462 for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) { 5463 of_property_read_u64_index(dn, "secure-regions", j, 5464 &chip->secure_regions[i].offset); 5465 of_property_read_u64_index(dn, "secure-regions", j + 1, 5466 &chip->secure_regions[i].size); 5467 } 5468 5469 return 0; 5470 } 5471 5472 /** 5473 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller 5474 * @dev: Device that will be parsed. Also used for managed allocations. 5475 * @cs_array: Array of GPIO desc pointers allocated on success 5476 * @ncs_array: Number of entries in @cs_array updated on success. 5477 * @return 0 on success, an error otherwise. 5478 */ 5479 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array, 5480 unsigned int *ncs_array) 5481 { 5482 struct gpio_desc **descs; 5483 int ndescs, i; 5484 5485 ndescs = gpiod_count(dev, "cs"); 5486 if (ndescs < 0) { 5487 dev_dbg(dev, "No valid cs-gpios property\n"); 5488 return 0; 5489 } 5490 5491 descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL); 5492 if (!descs) 5493 return -ENOMEM; 5494 5495 for (i = 0; i < ndescs; i++) { 5496 descs[i] = gpiod_get_index_optional(dev, "cs", i, 5497 GPIOD_OUT_HIGH); 5498 if (IS_ERR(descs[i])) 5499 return PTR_ERR(descs[i]); 5500 } 5501 5502 *ncs_array = ndescs; 5503 *cs_array = descs; 5504 5505 return 0; 5506 } 5507 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs); 5508 5509 static int rawnand_dt_init(struct nand_chip *chip) 5510 { 5511 struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip)); 5512 struct device_node *dn = nand_get_flash_node(chip); 5513 int ret; 5514 5515 if (!dn) 5516 return 0; 5517 5518 ret = of_get_nand_bus_width(chip); 5519 if (ret) 5520 return ret; 5521 5522 if (of_property_read_bool(dn, "nand-is-boot-medium")) 5523 chip->options |= NAND_IS_BOOT_MEDIUM; 5524 5525 if (of_property_read_bool(dn, "nand-on-flash-bbt")) 5526 chip->bbt_options |= NAND_BBT_USE_FLASH; 5527 5528 of_get_nand_ecc_user_config(nand); 5529 of_get_nand_ecc_legacy_user_config(chip); 5530 5531 /* 5532 * If neither the user nor the NAND controller have requested a specific 5533 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST. 5534 */ 5535 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 5536 5537 /* 5538 * Use the user requested engine type, unless there is none, in this 5539 * case default to the NAND controller choice, otherwise fallback to 5540 * the raw NAND default one. 5541 */ 5542 if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID) 5543 chip->ecc.engine_type = nand->ecc.user_conf.engine_type; 5544 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 5545 chip->ecc.engine_type = nand->ecc.defaults.engine_type; 5546 5547 chip->ecc.placement = nand->ecc.user_conf.placement; 5548 chip->ecc.algo = nand->ecc.user_conf.algo; 5549 chip->ecc.strength = nand->ecc.user_conf.strength; 5550 chip->ecc.size = nand->ecc.user_conf.step_size; 5551 5552 return 0; 5553 } 5554 5555 /** 5556 * nand_scan_ident - Scan for the NAND device 5557 * @chip: NAND chip object 5558 * @maxchips: number of chips to scan for 5559 * @table: alternative NAND ID table 5560 * 5561 * This is the first phase of the normal nand_scan() function. It reads the 5562 * flash ID and sets up MTD fields accordingly. 5563 * 5564 * This helper used to be called directly from controller drivers that needed 5565 * to tweak some ECC-related parameters before nand_scan_tail(). This separation 5566 * prevented dynamic allocations during this phase which was unconvenient and 5567 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. 5568 */ 5569 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, 5570 struct nand_flash_dev *table) 5571 { 5572 struct mtd_info *mtd = nand_to_mtd(chip); 5573 struct nand_memory_organization *memorg; 5574 int nand_maf_id, nand_dev_id; 5575 unsigned int i; 5576 int ret; 5577 5578 memorg = nanddev_get_memorg(&chip->base); 5579 5580 /* Assume all dies are deselected when we enter nand_scan_ident(). */ 5581 chip->cur_cs = -1; 5582 5583 mutex_init(&chip->lock); 5584 init_waitqueue_head(&chip->resume_wq); 5585 5586 /* Enforce the right timings for reset/detection */ 5587 chip->current_interface_config = nand_get_reset_interface_config(); 5588 5589 ret = rawnand_dt_init(chip); 5590 if (ret) 5591 return ret; 5592 5593 if (!mtd->name && mtd->dev.parent) 5594 mtd->name = dev_name(mtd->dev.parent); 5595 5596 /* Set the default functions */ 5597 nand_set_defaults(chip); 5598 5599 ret = nand_legacy_check_hooks(chip); 5600 if (ret) 5601 return ret; 5602 5603 memorg->ntargets = maxchips; 5604 5605 /* Read the flash type */ 5606 ret = nand_detect(chip, table); 5607 if (ret) { 5608 if (!(chip->options & NAND_SCAN_SILENT_NODEV)) 5609 pr_warn("No NAND device found\n"); 5610 nand_deselect_target(chip); 5611 return ret; 5612 } 5613 5614 nand_maf_id = chip->id.data[0]; 5615 nand_dev_id = chip->id.data[1]; 5616 5617 nand_deselect_target(chip); 5618 5619 /* Check for a chip array */ 5620 for (i = 1; i < maxchips; i++) { 5621 u8 id[2]; 5622 5623 /* See comment in nand_get_flash_type for reset */ 5624 ret = nand_reset(chip, i); 5625 if (ret) 5626 break; 5627 5628 nand_select_target(chip, i); 5629 /* Send the command for reading device ID */ 5630 ret = nand_readid_op(chip, 0, id, sizeof(id)); 5631 if (ret) 5632 break; 5633 /* Read manufacturer and device IDs */ 5634 if (nand_maf_id != id[0] || nand_dev_id != id[1]) { 5635 nand_deselect_target(chip); 5636 break; 5637 } 5638 nand_deselect_target(chip); 5639 } 5640 if (i > 1) 5641 pr_info("%d chips detected\n", i); 5642 5643 /* Store the number of chips and calc total size for mtd */ 5644 memorg->ntargets = i; 5645 mtd->size = i * nanddev_target_size(&chip->base); 5646 5647 return 0; 5648 } 5649 5650 static void nand_scan_ident_cleanup(struct nand_chip *chip) 5651 { 5652 kfree(chip->parameters.model); 5653 kfree(chip->parameters.onfi); 5654 } 5655 5656 int rawnand_sw_hamming_init(struct nand_chip *chip) 5657 { 5658 struct nand_ecc_sw_hamming_conf *engine_conf; 5659 struct nand_device *base = &chip->base; 5660 int ret; 5661 5662 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5663 base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING; 5664 base->ecc.user_conf.strength = chip->ecc.strength; 5665 base->ecc.user_conf.step_size = chip->ecc.size; 5666 5667 ret = nand_ecc_sw_hamming_init_ctx(base); 5668 if (ret) 5669 return ret; 5670 5671 engine_conf = base->ecc.ctx.priv; 5672 5673 if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER) 5674 engine_conf->sm_order = true; 5675 5676 chip->ecc.size = base->ecc.ctx.conf.step_size; 5677 chip->ecc.strength = base->ecc.ctx.conf.strength; 5678 chip->ecc.total = base->ecc.ctx.total; 5679 chip->ecc.steps = nanddev_get_ecc_nsteps(base); 5680 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); 5681 5682 return 0; 5683 } 5684 EXPORT_SYMBOL(rawnand_sw_hamming_init); 5685 5686 int rawnand_sw_hamming_calculate(struct nand_chip *chip, 5687 const unsigned char *buf, 5688 unsigned char *code) 5689 { 5690 struct nand_device *base = &chip->base; 5691 5692 return nand_ecc_sw_hamming_calculate(base, buf, code); 5693 } 5694 EXPORT_SYMBOL(rawnand_sw_hamming_calculate); 5695 5696 int rawnand_sw_hamming_correct(struct nand_chip *chip, 5697 unsigned char *buf, 5698 unsigned char *read_ecc, 5699 unsigned char *calc_ecc) 5700 { 5701 struct nand_device *base = &chip->base; 5702 5703 return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc); 5704 } 5705 EXPORT_SYMBOL(rawnand_sw_hamming_correct); 5706 5707 void rawnand_sw_hamming_cleanup(struct nand_chip *chip) 5708 { 5709 struct nand_device *base = &chip->base; 5710 5711 nand_ecc_sw_hamming_cleanup_ctx(base); 5712 } 5713 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup); 5714 5715 int rawnand_sw_bch_init(struct nand_chip *chip) 5716 { 5717 struct nand_device *base = &chip->base; 5718 const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base); 5719 int ret; 5720 5721 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 5722 base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH; 5723 base->ecc.user_conf.step_size = chip->ecc.size; 5724 base->ecc.user_conf.strength = chip->ecc.strength; 5725 5726 ret = nand_ecc_sw_bch_init_ctx(base); 5727 if (ret) 5728 return ret; 5729 5730 chip->ecc.size = ecc_conf->step_size; 5731 chip->ecc.strength = ecc_conf->strength; 5732 chip->ecc.total = base->ecc.ctx.total; 5733 chip->ecc.steps = nanddev_get_ecc_nsteps(base); 5734 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); 5735 5736 return 0; 5737 } 5738 EXPORT_SYMBOL(rawnand_sw_bch_init); 5739 5740 static int rawnand_sw_bch_calculate(struct nand_chip *chip, 5741 const unsigned char *buf, 5742 unsigned char *code) 5743 { 5744 struct nand_device *base = &chip->base; 5745 5746 return nand_ecc_sw_bch_calculate(base, buf, code); 5747 } 5748 5749 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf, 5750 unsigned char *read_ecc, unsigned char *calc_ecc) 5751 { 5752 struct nand_device *base = &chip->base; 5753 5754 return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc); 5755 } 5756 EXPORT_SYMBOL(rawnand_sw_bch_correct); 5757 5758 void rawnand_sw_bch_cleanup(struct nand_chip *chip) 5759 { 5760 struct nand_device *base = &chip->base; 5761 5762 nand_ecc_sw_bch_cleanup_ctx(base); 5763 } 5764 EXPORT_SYMBOL(rawnand_sw_bch_cleanup); 5765 5766 static int nand_set_ecc_on_host_ops(struct nand_chip *chip) 5767 { 5768 struct nand_ecc_ctrl *ecc = &chip->ecc; 5769 5770 switch (ecc->placement) { 5771 case NAND_ECC_PLACEMENT_UNKNOWN: 5772 case NAND_ECC_PLACEMENT_OOB: 5773 /* Use standard hwecc read page function? */ 5774 if (!ecc->read_page) 5775 ecc->read_page = nand_read_page_hwecc; 5776 if (!ecc->write_page) 5777 ecc->write_page = nand_write_page_hwecc; 5778 if (!ecc->read_page_raw) 5779 ecc->read_page_raw = nand_read_page_raw; 5780 if (!ecc->write_page_raw) 5781 ecc->write_page_raw = nand_write_page_raw; 5782 if (!ecc->read_oob) 5783 ecc->read_oob = nand_read_oob_std; 5784 if (!ecc->write_oob) 5785 ecc->write_oob = nand_write_oob_std; 5786 if (!ecc->read_subpage) 5787 ecc->read_subpage = nand_read_subpage; 5788 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) 5789 ecc->write_subpage = nand_write_subpage_hwecc; 5790 fallthrough; 5791 5792 case NAND_ECC_PLACEMENT_INTERLEAVED: 5793 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && 5794 (!ecc->read_page || 5795 ecc->read_page == nand_read_page_hwecc || 5796 !ecc->write_page || 5797 ecc->write_page == nand_write_page_hwecc)) { 5798 WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); 5799 return -EINVAL; 5800 } 5801 /* Use standard syndrome read/write page function? */ 5802 if (!ecc->read_page) 5803 ecc->read_page = nand_read_page_syndrome; 5804 if (!ecc->write_page) 5805 ecc->write_page = nand_write_page_syndrome; 5806 if (!ecc->read_page_raw) 5807 ecc->read_page_raw = nand_read_page_raw_syndrome; 5808 if (!ecc->write_page_raw) 5809 ecc->write_page_raw = nand_write_page_raw_syndrome; 5810 if (!ecc->read_oob) 5811 ecc->read_oob = nand_read_oob_syndrome; 5812 if (!ecc->write_oob) 5813 ecc->write_oob = nand_write_oob_syndrome; 5814 break; 5815 5816 default: 5817 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n", 5818 ecc->placement); 5819 return -EINVAL; 5820 } 5821 5822 return 0; 5823 } 5824 5825 static int nand_set_ecc_soft_ops(struct nand_chip *chip) 5826 { 5827 struct mtd_info *mtd = nand_to_mtd(chip); 5828 struct nand_device *nanddev = mtd_to_nanddev(mtd); 5829 struct nand_ecc_ctrl *ecc = &chip->ecc; 5830 int ret; 5831 5832 if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT)) 5833 return -EINVAL; 5834 5835 switch (ecc->algo) { 5836 case NAND_ECC_ALGO_HAMMING: 5837 ecc->calculate = rawnand_sw_hamming_calculate; 5838 ecc->correct = rawnand_sw_hamming_correct; 5839 ecc->read_page = nand_read_page_swecc; 5840 ecc->read_subpage = nand_read_subpage; 5841 ecc->write_page = nand_write_page_swecc; 5842 if (!ecc->read_page_raw) 5843 ecc->read_page_raw = nand_read_page_raw; 5844 if (!ecc->write_page_raw) 5845 ecc->write_page_raw = nand_write_page_raw; 5846 ecc->read_oob = nand_read_oob_std; 5847 ecc->write_oob = nand_write_oob_std; 5848 if (!ecc->size) 5849 ecc->size = 256; 5850 ecc->bytes = 3; 5851 ecc->strength = 1; 5852 5853 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) 5854 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 5855 5856 ret = rawnand_sw_hamming_init(chip); 5857 if (ret) { 5858 WARN(1, "Hamming ECC initialization failed!\n"); 5859 return ret; 5860 } 5861 5862 return 0; 5863 case NAND_ECC_ALGO_BCH: 5864 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { 5865 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); 5866 return -EINVAL; 5867 } 5868 ecc->calculate = rawnand_sw_bch_calculate; 5869 ecc->correct = rawnand_sw_bch_correct; 5870 ecc->read_page = nand_read_page_swecc; 5871 ecc->read_subpage = nand_read_subpage; 5872 ecc->write_page = nand_write_page_swecc; 5873 if (!ecc->read_page_raw) 5874 ecc->read_page_raw = nand_read_page_raw; 5875 if (!ecc->write_page_raw) 5876 ecc->write_page_raw = nand_write_page_raw; 5877 ecc->read_oob = nand_read_oob_std; 5878 ecc->write_oob = nand_write_oob_std; 5879 5880 /* 5881 * We can only maximize ECC config when the default layout is 5882 * used, otherwise we don't know how many bytes can really be 5883 * used. 5884 */ 5885 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH && 5886 mtd->ooblayout != nand_get_large_page_ooblayout()) 5887 nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH; 5888 5889 ret = rawnand_sw_bch_init(chip); 5890 if (ret) { 5891 WARN(1, "BCH ECC initialization failed!\n"); 5892 return ret; 5893 } 5894 5895 return 0; 5896 default: 5897 WARN(1, "Unsupported ECC algorithm!\n"); 5898 return -EINVAL; 5899 } 5900 } 5901 5902 /** 5903 * nand_check_ecc_caps - check the sanity of preset ECC settings 5904 * @chip: nand chip info structure 5905 * @caps: ECC caps info structure 5906 * @oobavail: OOB size that the ECC engine can use 5907 * 5908 * When ECC step size and strength are already set, check if they are supported 5909 * by the controller and the calculated ECC bytes fit within the chip's OOB. 5910 * On success, the calculated ECC bytes is set. 5911 */ 5912 static int 5913 nand_check_ecc_caps(struct nand_chip *chip, 5914 const struct nand_ecc_caps *caps, int oobavail) 5915 { 5916 struct mtd_info *mtd = nand_to_mtd(chip); 5917 const struct nand_ecc_step_info *stepinfo; 5918 int preset_step = chip->ecc.size; 5919 int preset_strength = chip->ecc.strength; 5920 int ecc_bytes, nsteps = mtd->writesize / preset_step; 5921 int i, j; 5922 5923 for (i = 0; i < caps->nstepinfos; i++) { 5924 stepinfo = &caps->stepinfos[i]; 5925 5926 if (stepinfo->stepsize != preset_step) 5927 continue; 5928 5929 for (j = 0; j < stepinfo->nstrengths; j++) { 5930 if (stepinfo->strengths[j] != preset_strength) 5931 continue; 5932 5933 ecc_bytes = caps->calc_ecc_bytes(preset_step, 5934 preset_strength); 5935 if (WARN_ON_ONCE(ecc_bytes < 0)) 5936 return ecc_bytes; 5937 5938 if (ecc_bytes * nsteps > oobavail) { 5939 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", 5940 preset_step, preset_strength); 5941 return -ENOSPC; 5942 } 5943 5944 chip->ecc.bytes = ecc_bytes; 5945 5946 return 0; 5947 } 5948 } 5949 5950 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", 5951 preset_step, preset_strength); 5952 5953 return -ENOTSUPP; 5954 } 5955 5956 /** 5957 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes 5958 * @chip: nand chip info structure 5959 * @caps: ECC engine caps info structure 5960 * @oobavail: OOB size that the ECC engine can use 5961 * 5962 * If a chip's ECC requirement is provided, try to meet it with the least 5963 * number of ECC bytes (i.e. with the largest number of OOB-free bytes). 5964 * On success, the chosen ECC settings are set. 5965 */ 5966 static int 5967 nand_match_ecc_req(struct nand_chip *chip, 5968 const struct nand_ecc_caps *caps, int oobavail) 5969 { 5970 const struct nand_ecc_props *requirements = 5971 nanddev_get_ecc_requirements(&chip->base); 5972 struct mtd_info *mtd = nand_to_mtd(chip); 5973 const struct nand_ecc_step_info *stepinfo; 5974 int req_step = requirements->step_size; 5975 int req_strength = requirements->strength; 5976 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; 5977 int best_step = 0, best_strength = 0, best_ecc_bytes = 0; 5978 int best_ecc_bytes_total = INT_MAX; 5979 int i, j; 5980 5981 /* No information provided by the NAND chip */ 5982 if (!req_step || !req_strength) 5983 return -ENOTSUPP; 5984 5985 /* number of correctable bits the chip requires in a page */ 5986 req_corr = mtd->writesize / req_step * req_strength; 5987 5988 for (i = 0; i < caps->nstepinfos; i++) { 5989 stepinfo = &caps->stepinfos[i]; 5990 step_size = stepinfo->stepsize; 5991 5992 for (j = 0; j < stepinfo->nstrengths; j++) { 5993 strength = stepinfo->strengths[j]; 5994 5995 /* 5996 * If both step size and strength are smaller than the 5997 * chip's requirement, it is not easy to compare the 5998 * resulted reliability. 5999 */ 6000 if (step_size < req_step && strength < req_strength) 6001 continue; 6002 6003 if (mtd->writesize % step_size) 6004 continue; 6005 6006 nsteps = mtd->writesize / step_size; 6007 6008 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 6009 if (WARN_ON_ONCE(ecc_bytes < 0)) 6010 continue; 6011 ecc_bytes_total = ecc_bytes * nsteps; 6012 6013 if (ecc_bytes_total > oobavail || 6014 strength * nsteps < req_corr) 6015 continue; 6016 6017 /* 6018 * We assume the best is to meet the chip's requrement 6019 * with the least number of ECC bytes. 6020 */ 6021 if (ecc_bytes_total < best_ecc_bytes_total) { 6022 best_ecc_bytes_total = ecc_bytes_total; 6023 best_step = step_size; 6024 best_strength = strength; 6025 best_ecc_bytes = ecc_bytes; 6026 } 6027 } 6028 } 6029 6030 if (best_ecc_bytes_total == INT_MAX) 6031 return -ENOTSUPP; 6032 6033 chip->ecc.size = best_step; 6034 chip->ecc.strength = best_strength; 6035 chip->ecc.bytes = best_ecc_bytes; 6036 6037 return 0; 6038 } 6039 6040 /** 6041 * nand_maximize_ecc - choose the max ECC strength available 6042 * @chip: nand chip info structure 6043 * @caps: ECC engine caps info structure 6044 * @oobavail: OOB size that the ECC engine can use 6045 * 6046 * Choose the max ECC strength that is supported on the controller, and can fit 6047 * within the chip's OOB. On success, the chosen ECC settings are set. 6048 */ 6049 static int 6050 nand_maximize_ecc(struct nand_chip *chip, 6051 const struct nand_ecc_caps *caps, int oobavail) 6052 { 6053 struct mtd_info *mtd = nand_to_mtd(chip); 6054 const struct nand_ecc_step_info *stepinfo; 6055 int step_size, strength, nsteps, ecc_bytes, corr; 6056 int best_corr = 0; 6057 int best_step = 0; 6058 int best_strength = 0, best_ecc_bytes = 0; 6059 int i, j; 6060 6061 for (i = 0; i < caps->nstepinfos; i++) { 6062 stepinfo = &caps->stepinfos[i]; 6063 step_size = stepinfo->stepsize; 6064 6065 /* If chip->ecc.size is already set, respect it */ 6066 if (chip->ecc.size && step_size != chip->ecc.size) 6067 continue; 6068 6069 for (j = 0; j < stepinfo->nstrengths; j++) { 6070 strength = stepinfo->strengths[j]; 6071 6072 if (mtd->writesize % step_size) 6073 continue; 6074 6075 nsteps = mtd->writesize / step_size; 6076 6077 ecc_bytes = caps->calc_ecc_bytes(step_size, strength); 6078 if (WARN_ON_ONCE(ecc_bytes < 0)) 6079 continue; 6080 6081 if (ecc_bytes * nsteps > oobavail) 6082 continue; 6083 6084 corr = strength * nsteps; 6085 6086 /* 6087 * If the number of correctable bits is the same, 6088 * bigger step_size has more reliability. 6089 */ 6090 if (corr > best_corr || 6091 (corr == best_corr && step_size > best_step)) { 6092 best_corr = corr; 6093 best_step = step_size; 6094 best_strength = strength; 6095 best_ecc_bytes = ecc_bytes; 6096 } 6097 } 6098 } 6099 6100 if (!best_corr) 6101 return -ENOTSUPP; 6102 6103 chip->ecc.size = best_step; 6104 chip->ecc.strength = best_strength; 6105 chip->ecc.bytes = best_ecc_bytes; 6106 6107 return 0; 6108 } 6109 6110 /** 6111 * nand_ecc_choose_conf - Set the ECC strength and ECC step size 6112 * @chip: nand chip info structure 6113 * @caps: ECC engine caps info structure 6114 * @oobavail: OOB size that the ECC engine can use 6115 * 6116 * Choose the ECC configuration according to following logic. 6117 * 6118 * 1. If both ECC step size and ECC strength are already set (usually by DT) 6119 * then check if it is supported by this controller. 6120 * 2. If the user provided the nand-ecc-maximize property, then select maximum 6121 * ECC strength. 6122 * 3. Otherwise, try to match the ECC step size and ECC strength closest 6123 * to the chip's requirement. If available OOB size can't fit the chip 6124 * requirement then fallback to the maximum ECC step size and ECC strength. 6125 * 6126 * On success, the chosen ECC settings are set. 6127 */ 6128 int nand_ecc_choose_conf(struct nand_chip *chip, 6129 const struct nand_ecc_caps *caps, int oobavail) 6130 { 6131 struct mtd_info *mtd = nand_to_mtd(chip); 6132 struct nand_device *nanddev = mtd_to_nanddev(mtd); 6133 6134 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) 6135 return -EINVAL; 6136 6137 if (chip->ecc.size && chip->ecc.strength) 6138 return nand_check_ecc_caps(chip, caps, oobavail); 6139 6140 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) 6141 return nand_maximize_ecc(chip, caps, oobavail); 6142 6143 if (!nand_match_ecc_req(chip, caps, oobavail)) 6144 return 0; 6145 6146 return nand_maximize_ecc(chip, caps, oobavail); 6147 } 6148 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); 6149 6150 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) 6151 { 6152 struct nand_chip *chip = container_of(nand, struct nand_chip, 6153 base); 6154 unsigned int eb = nanddev_pos_to_row(nand, pos); 6155 int ret; 6156 6157 eb >>= nand->rowconv.eraseblock_addr_shift; 6158 6159 nand_select_target(chip, pos->target); 6160 ret = nand_erase_op(chip, eb); 6161 nand_deselect_target(chip); 6162 6163 return ret; 6164 } 6165 6166 static int rawnand_markbad(struct nand_device *nand, 6167 const struct nand_pos *pos) 6168 { 6169 struct nand_chip *chip = container_of(nand, struct nand_chip, 6170 base); 6171 6172 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 6173 } 6174 6175 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) 6176 { 6177 struct nand_chip *chip = container_of(nand, struct nand_chip, 6178 base); 6179 int ret; 6180 6181 nand_select_target(chip, pos->target); 6182 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); 6183 nand_deselect_target(chip); 6184 6185 return ret; 6186 } 6187 6188 static const struct nand_ops rawnand_ops = { 6189 .erase = rawnand_erase, 6190 .markbad = rawnand_markbad, 6191 .isbad = rawnand_isbad, 6192 }; 6193 6194 /** 6195 * nand_scan_tail - Scan for the NAND device 6196 * @chip: NAND chip object 6197 * 6198 * This is the second phase of the normal nand_scan() function. It fills out 6199 * all the uninitialized function pointers with the defaults and scans for a 6200 * bad block table if appropriate. 6201 */ 6202 static int nand_scan_tail(struct nand_chip *chip) 6203 { 6204 struct mtd_info *mtd = nand_to_mtd(chip); 6205 struct nand_ecc_ctrl *ecc = &chip->ecc; 6206 int ret, i; 6207 6208 /* New bad blocks should be marked in OOB, flash-based BBT, or both */ 6209 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && 6210 !(chip->bbt_options & NAND_BBT_USE_FLASH))) { 6211 return -EINVAL; 6212 } 6213 6214 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 6215 if (!chip->data_buf) 6216 return -ENOMEM; 6217 6218 /* 6219 * FIXME: some NAND manufacturer drivers expect the first die to be 6220 * selected when manufacturer->init() is called. They should be fixed 6221 * to explictly select the relevant die when interacting with the NAND 6222 * chip. 6223 */ 6224 nand_select_target(chip, 0); 6225 ret = nand_manufacturer_init(chip); 6226 nand_deselect_target(chip); 6227 if (ret) 6228 goto err_free_buf; 6229 6230 /* Set the internal oob buffer location, just after the page data */ 6231 chip->oob_poi = chip->data_buf + mtd->writesize; 6232 6233 /* 6234 * If no default placement scheme is given, select an appropriate one. 6235 */ 6236 if (!mtd->ooblayout && 6237 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 6238 ecc->algo == NAND_ECC_ALGO_BCH) && 6239 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && 6240 ecc->algo == NAND_ECC_ALGO_HAMMING)) { 6241 switch (mtd->oobsize) { 6242 case 8: 6243 case 16: 6244 mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout()); 6245 break; 6246 case 64: 6247 case 128: 6248 mtd_set_ooblayout(mtd, 6249 nand_get_large_page_hamming_ooblayout()); 6250 break; 6251 default: 6252 /* 6253 * Expose the whole OOB area to users if ECC_NONE 6254 * is passed. We could do that for all kind of 6255 * ->oobsize, but we must keep the old large/small 6256 * page with ECC layout when ->oobsize <= 128 for 6257 * compatibility reasons. 6258 */ 6259 if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) { 6260 mtd_set_ooblayout(mtd, 6261 nand_get_large_page_ooblayout()); 6262 break; 6263 } 6264 6265 WARN(1, "No oob scheme defined for oobsize %d\n", 6266 mtd->oobsize); 6267 ret = -EINVAL; 6268 goto err_nand_manuf_cleanup; 6269 } 6270 } 6271 6272 /* 6273 * Check ECC mode, default to software if 3byte/512byte hardware ECC is 6274 * selected and we have 256 byte pagesize fallback to software ECC 6275 */ 6276 6277 switch (ecc->engine_type) { 6278 case NAND_ECC_ENGINE_TYPE_ON_HOST: 6279 ret = nand_set_ecc_on_host_ops(chip); 6280 if (ret) 6281 goto err_nand_manuf_cleanup; 6282 6283 if (mtd->writesize >= ecc->size) { 6284 if (!ecc->strength) { 6285 WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); 6286 ret = -EINVAL; 6287 goto err_nand_manuf_cleanup; 6288 } 6289 break; 6290 } 6291 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", 6292 ecc->size, mtd->writesize); 6293 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 6294 ecc->algo = NAND_ECC_ALGO_HAMMING; 6295 fallthrough; 6296 6297 case NAND_ECC_ENGINE_TYPE_SOFT: 6298 ret = nand_set_ecc_soft_ops(chip); 6299 if (ret) 6300 goto err_nand_manuf_cleanup; 6301 break; 6302 6303 case NAND_ECC_ENGINE_TYPE_ON_DIE: 6304 if (!ecc->read_page || !ecc->write_page) { 6305 WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); 6306 ret = -EINVAL; 6307 goto err_nand_manuf_cleanup; 6308 } 6309 if (!ecc->read_oob) 6310 ecc->read_oob = nand_read_oob_std; 6311 if (!ecc->write_oob) 6312 ecc->write_oob = nand_write_oob_std; 6313 break; 6314 6315 case NAND_ECC_ENGINE_TYPE_NONE: 6316 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n"); 6317 ecc->read_page = nand_read_page_raw; 6318 ecc->write_page = nand_write_page_raw; 6319 ecc->read_oob = nand_read_oob_std; 6320 ecc->read_page_raw = nand_read_page_raw; 6321 ecc->write_page_raw = nand_write_page_raw; 6322 ecc->write_oob = nand_write_oob_std; 6323 ecc->size = mtd->writesize; 6324 ecc->bytes = 0; 6325 ecc->strength = 0; 6326 break; 6327 6328 default: 6329 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type); 6330 ret = -EINVAL; 6331 goto err_nand_manuf_cleanup; 6332 } 6333 6334 if (ecc->correct || ecc->calculate) { 6335 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6336 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); 6337 if (!ecc->calc_buf || !ecc->code_buf) { 6338 ret = -ENOMEM; 6339 goto err_nand_manuf_cleanup; 6340 } 6341 } 6342 6343 /* For many systems, the standard OOB write also works for raw */ 6344 if (!ecc->read_oob_raw) 6345 ecc->read_oob_raw = ecc->read_oob; 6346 if (!ecc->write_oob_raw) 6347 ecc->write_oob_raw = ecc->write_oob; 6348 6349 /* propagate ecc info to mtd_info */ 6350 mtd->ecc_strength = ecc->strength; 6351 mtd->ecc_step_size = ecc->size; 6352 6353 /* 6354 * Set the number of read / write steps for one page depending on ECC 6355 * mode. 6356 */ 6357 if (!ecc->steps) 6358 ecc->steps = mtd->writesize / ecc->size; 6359 if (ecc->steps * ecc->size != mtd->writesize) { 6360 WARN(1, "Invalid ECC parameters\n"); 6361 ret = -EINVAL; 6362 goto err_nand_manuf_cleanup; 6363 } 6364 6365 if (!ecc->total) { 6366 ecc->total = ecc->steps * ecc->bytes; 6367 chip->base.ecc.ctx.total = ecc->total; 6368 } 6369 6370 if (ecc->total > mtd->oobsize) { 6371 WARN(1, "Total number of ECC bytes exceeded oobsize\n"); 6372 ret = -EINVAL; 6373 goto err_nand_manuf_cleanup; 6374 } 6375 6376 /* 6377 * The number of bytes available for a client to place data into 6378 * the out of band area. 6379 */ 6380 ret = mtd_ooblayout_count_freebytes(mtd); 6381 if (ret < 0) 6382 ret = 0; 6383 6384 mtd->oobavail = ret; 6385 6386 /* ECC sanity check: warn if it's too weak */ 6387 if (!nand_ecc_is_strong_enough(&chip->base)) 6388 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n", 6389 mtd->name, chip->ecc.strength, chip->ecc.size, 6390 nanddev_get_ecc_requirements(&chip->base)->strength, 6391 nanddev_get_ecc_requirements(&chip->base)->step_size); 6392 6393 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ 6394 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { 6395 switch (ecc->steps) { 6396 case 2: 6397 mtd->subpage_sft = 1; 6398 break; 6399 case 4: 6400 case 8: 6401 case 16: 6402 mtd->subpage_sft = 2; 6403 break; 6404 } 6405 } 6406 chip->subpagesize = mtd->writesize >> mtd->subpage_sft; 6407 6408 /* Invalidate the pagebuffer reference */ 6409 chip->pagecache.page = -1; 6410 6411 /* Large page NAND with SOFT_ECC should support subpage reads */ 6412 switch (ecc->engine_type) { 6413 case NAND_ECC_ENGINE_TYPE_SOFT: 6414 if (chip->page_shift > 9) 6415 chip->options |= NAND_SUBPAGE_READ; 6416 break; 6417 6418 default: 6419 break; 6420 } 6421 6422 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); 6423 if (ret) 6424 goto err_nand_manuf_cleanup; 6425 6426 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ 6427 if (chip->options & NAND_ROM) 6428 mtd->flags = MTD_CAP_ROM; 6429 6430 /* Fill in remaining MTD driver data */ 6431 mtd->_erase = nand_erase; 6432 mtd->_point = NULL; 6433 mtd->_unpoint = NULL; 6434 mtd->_panic_write = panic_nand_write; 6435 mtd->_read_oob = nand_read_oob; 6436 mtd->_write_oob = nand_write_oob; 6437 mtd->_sync = nand_sync; 6438 mtd->_lock = nand_lock; 6439 mtd->_unlock = nand_unlock; 6440 mtd->_suspend = nand_suspend; 6441 mtd->_resume = nand_resume; 6442 mtd->_reboot = nand_shutdown; 6443 mtd->_block_isreserved = nand_block_isreserved; 6444 mtd->_block_isbad = nand_block_isbad; 6445 mtd->_block_markbad = nand_block_markbad; 6446 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; 6447 6448 /* 6449 * Initialize bitflip_threshold to its default prior scan_bbt() call. 6450 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be 6451 * properly set. 6452 */ 6453 if (!mtd->bitflip_threshold) 6454 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); 6455 6456 /* Find the fastest data interface for this chip */ 6457 ret = nand_choose_interface_config(chip); 6458 if (ret) 6459 goto err_nanddev_cleanup; 6460 6461 /* Enter fastest possible mode on all dies. */ 6462 for (i = 0; i < nanddev_ntargets(&chip->base); i++) { 6463 ret = nand_setup_interface(chip, i); 6464 if (ret) 6465 goto err_free_interface_config; 6466 } 6467 6468 rawnand_late_check_supported_ops(chip); 6469 6470 /* 6471 * Look for secure regions in the NAND chip. These regions are supposed 6472 * to be protected by a secure element like Trustzone. So the read/write 6473 * accesses to these regions will be blocked in the runtime by this 6474 * driver. 6475 */ 6476 ret = of_get_nand_secure_regions(chip); 6477 if (ret) 6478 goto err_free_interface_config; 6479 6480 /* Check, if we should skip the bad block table scan */ 6481 if (chip->options & NAND_SKIP_BBTSCAN) 6482 return 0; 6483 6484 /* Build bad block table */ 6485 ret = nand_create_bbt(chip); 6486 if (ret) 6487 goto err_free_secure_regions; 6488 6489 return 0; 6490 6491 err_free_secure_regions: 6492 kfree(chip->secure_regions); 6493 6494 err_free_interface_config: 6495 kfree(chip->best_interface_config); 6496 6497 err_nanddev_cleanup: 6498 nanddev_cleanup(&chip->base); 6499 6500 err_nand_manuf_cleanup: 6501 nand_manufacturer_cleanup(chip); 6502 6503 err_free_buf: 6504 kfree(chip->data_buf); 6505 kfree(ecc->code_buf); 6506 kfree(ecc->calc_buf); 6507 6508 return ret; 6509 } 6510 6511 static int nand_attach(struct nand_chip *chip) 6512 { 6513 if (chip->controller->ops && chip->controller->ops->attach_chip) 6514 return chip->controller->ops->attach_chip(chip); 6515 6516 return 0; 6517 } 6518 6519 static void nand_detach(struct nand_chip *chip) 6520 { 6521 if (chip->controller->ops && chip->controller->ops->detach_chip) 6522 chip->controller->ops->detach_chip(chip); 6523 } 6524 6525 /** 6526 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device 6527 * @chip: NAND chip object 6528 * @maxchips: number of chips to scan for. 6529 * @ids: optional flash IDs table 6530 * 6531 * This fills out all the uninitialized function pointers with the defaults. 6532 * The flash ID is read and the mtd/chip structures are filled with the 6533 * appropriate values. 6534 */ 6535 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, 6536 struct nand_flash_dev *ids) 6537 { 6538 int ret; 6539 6540 if (!maxchips) 6541 return -EINVAL; 6542 6543 ret = nand_scan_ident(chip, maxchips, ids); 6544 if (ret) 6545 return ret; 6546 6547 ret = nand_attach(chip); 6548 if (ret) 6549 goto cleanup_ident; 6550 6551 ret = nand_scan_tail(chip); 6552 if (ret) 6553 goto detach_chip; 6554 6555 return 0; 6556 6557 detach_chip: 6558 nand_detach(chip); 6559 cleanup_ident: 6560 nand_scan_ident_cleanup(chip); 6561 6562 return ret; 6563 } 6564 EXPORT_SYMBOL(nand_scan_with_ids); 6565 6566 /** 6567 * nand_cleanup - [NAND Interface] Free resources held by the NAND device 6568 * @chip: NAND chip object 6569 */ 6570 void nand_cleanup(struct nand_chip *chip) 6571 { 6572 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) { 6573 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING) 6574 rawnand_sw_hamming_cleanup(chip); 6575 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 6576 rawnand_sw_bch_cleanup(chip); 6577 } 6578 6579 nanddev_cleanup(&chip->base); 6580 6581 /* Free secure regions data */ 6582 kfree(chip->secure_regions); 6583 6584 /* Free bad block table memory */ 6585 kfree(chip->bbt); 6586 kfree(chip->data_buf); 6587 kfree(chip->ecc.code_buf); 6588 kfree(chip->ecc.calc_buf); 6589 6590 /* Free bad block descriptor memory */ 6591 if (chip->badblock_pattern && chip->badblock_pattern->options 6592 & NAND_BBT_DYNAMICSTRUCT) 6593 kfree(chip->badblock_pattern); 6594 6595 /* Free the data interface */ 6596 kfree(chip->best_interface_config); 6597 6598 /* Free manufacturer priv data. */ 6599 nand_manufacturer_cleanup(chip); 6600 6601 /* Free controller specific allocations after chip identification */ 6602 nand_detach(chip); 6603 6604 /* Free identification phase allocations */ 6605 nand_scan_ident_cleanup(chip); 6606 } 6607 6608 EXPORT_SYMBOL_GPL(nand_cleanup); 6609 6610 MODULE_LICENSE("GPL"); 6611 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 6612 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); 6613 MODULE_DESCRIPTION("Generic NAND flash driver code"); 6614