xref: /openbmc/linux/drivers/mtd/nand/raw/mxc_nand.c (revision f5fb5ac7cee29cea9156e734fd652a66417d32fc)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
4  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/mtd/mtd.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/completion.h>
22 #include <linux/of.h>
23 
24 #define DRIVER_NAME "mxc_nand"
25 
26 /* Addresses for NFC registers */
27 #define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
28 #define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
29 #define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
30 #define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
31 #define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
32 #define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
33 #define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
34 #define NFC_V21_RSLTSPARE_AREA		(host->regs + 0x10)
35 #define NFC_V1_V2_WRPROT		(host->regs + 0x12)
36 #define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
37 #define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
38 #define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
39 #define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
40 #define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
41 #define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
42 #define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
43 #define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
44 #define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
45 #define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
46 #define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
47 #define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
48 #define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
49 
50 #define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
51 #define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
52 #define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
53 #define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
54 #define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
55 #define NFC_V1_V2_CONFIG1_RST		(1 << 6)
56 #define NFC_V1_V2_CONFIG1_CE		(1 << 7)
57 #define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
58 #define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
59 #define NFC_V2_CONFIG1_FP_INT		(1 << 11)
60 
61 #define NFC_V1_V2_CONFIG2_INT		(1 << 15)
62 
63 /*
64  * Operation modes for the NFC. Valid for v1, v2 and v3
65  * type controllers.
66  */
67 #define NFC_CMD				(1 << 0)
68 #define NFC_ADDR			(1 << 1)
69 #define NFC_INPUT			(1 << 2)
70 #define NFC_OUTPUT			(1 << 3)
71 #define NFC_ID				(1 << 4)
72 #define NFC_STATUS			(1 << 5)
73 
74 #define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
75 #define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
76 
77 #define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
78 #define NFC_V3_CONFIG1_SP_EN		(1 << 0)
79 #define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
80 
81 #define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
82 
83 #define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
84 
85 #define NFC_V3_WRPROT			(host->regs_ip + 0x0)
86 #define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
87 #define NFC_V3_WRPROT_LOCK		(1 << 1)
88 #define NFC_V3_WRPROT_UNLOCK		(1 << 2)
89 #define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
90 
91 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
92 
93 #define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
94 #define NFC_V3_CONFIG2_PS_512			(0 << 0)
95 #define NFC_V3_CONFIG2_PS_2048			(1 << 0)
96 #define NFC_V3_CONFIG2_PS_4096			(2 << 0)
97 #define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
98 #define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
99 #define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
100 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
101 #define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
102 #define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
103 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
104 #define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
105 #define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
106 #define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
107 
108 #define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
109 #define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
110 #define NFC_V3_CONFIG3_FW8			(1 << 3)
111 #define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
112 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
113 #define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
114 #define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
115 
116 #define NFC_V3_IPC			(host->regs_ip + 0x2C)
117 #define NFC_V3_IPC_CREQ			(1 << 0)
118 #define NFC_V3_IPC_INT			(1 << 31)
119 
120 #define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
121 
122 struct mxc_nand_host;
123 
124 struct mxc_nand_devtype_data {
125 	void (*preset)(struct mtd_info *);
126 	int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
127 			 int page);
128 	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
129 	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
130 	void (*send_page)(struct mtd_info *, unsigned int);
131 	void (*send_read_id)(struct mxc_nand_host *);
132 	uint16_t (*get_dev_status)(struct mxc_nand_host *);
133 	int (*check_int)(struct mxc_nand_host *);
134 	void (*irq_control)(struct mxc_nand_host *, int);
135 	u32 (*get_ecc_status)(struct mxc_nand_host *);
136 	const struct mtd_ooblayout_ops *ooblayout;
137 	void (*select_chip)(struct nand_chip *chip, int cs);
138 	int (*setup_interface)(struct nand_chip *chip, int csline,
139 			       const struct nand_interface_config *conf);
140 	void (*enable_hwecc)(struct nand_chip *chip, bool enable);
141 
142 	/*
143 	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
144 	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
145 	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
146 	 */
147 	int irqpending_quirk;
148 	int needs_ip;
149 
150 	size_t regs_offset;
151 	size_t spare0_offset;
152 	size_t axi_offset;
153 
154 	int spare_len;
155 	int eccbytes;
156 	int eccsize;
157 	int ppb_shift;
158 };
159 
160 struct mxc_nand_host {
161 	struct nand_chip	nand;
162 	struct device		*dev;
163 
164 	void __iomem		*spare0;
165 	void __iomem		*main_area0;
166 
167 	void __iomem		*base;
168 	void __iomem		*regs;
169 	void __iomem		*regs_axi;
170 	void __iomem		*regs_ip;
171 	int			status_request;
172 	struct clk		*clk;
173 	int			clk_act;
174 	int			irq;
175 	int			eccsize;
176 	int			used_oobsize;
177 	int			active_cs;
178 
179 	struct completion	op_completion;
180 
181 	uint8_t			*data_buf;
182 	unsigned int		buf_start;
183 
184 	const struct mxc_nand_devtype_data *devtype_data;
185 };
186 
187 static const char * const part_probes[] = {
188 	"cmdlinepart", "RedBoot", "ofpart", NULL };
189 
190 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
191 {
192 	int i;
193 	u32 *t = trg;
194 	const __iomem u32 *s = src;
195 
196 	for (i = 0; i < (size >> 2); i++)
197 		*t++ = __raw_readl(s++);
198 }
199 
200 static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
201 {
202 	int i;
203 	u16 *t = trg;
204 	const __iomem u16 *s = src;
205 
206 	/* We assume that src (IO) is always 32bit aligned */
207 	if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
208 		memcpy32_fromio(trg, src, size);
209 		return;
210 	}
211 
212 	for (i = 0; i < (size >> 1); i++)
213 		*t++ = __raw_readw(s++);
214 }
215 
216 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
217 {
218 	/* __iowrite32_copy use 32bit size values so divide by 4 */
219 	__iowrite32_copy(trg, src, size / 4);
220 }
221 
222 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
223 {
224 	int i;
225 	__iomem u16 *t = trg;
226 	const u16 *s = src;
227 
228 	/* We assume that trg (IO) is always 32bit aligned */
229 	if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
230 		memcpy32_toio(trg, src, size);
231 		return;
232 	}
233 
234 	for (i = 0; i < (size >> 1); i++)
235 		__raw_writew(*s++, t++);
236 }
237 
238 /*
239  * The controller splits a page into data chunks of 512 bytes + partial oob.
240  * There are writesize / 512 such chunks, the size of the partial oob parts is
241  * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
242  * contains additionally the byte lost by rounding (if any).
243  * This function handles the needed shuffling between host->data_buf (which
244  * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
245  * spare) and the NFC buffer.
246  */
247 static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
248 {
249 	struct nand_chip *this = mtd_to_nand(mtd);
250 	struct mxc_nand_host *host = nand_get_controller_data(this);
251 	u16 i, oob_chunk_size;
252 	u16 num_chunks = mtd->writesize / 512;
253 
254 	u8 *d = buf;
255 	u8 __iomem *s = host->spare0;
256 	u16 sparebuf_size = host->devtype_data->spare_len;
257 
258 	/* size of oob chunk for all but possibly the last one */
259 	oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
260 
261 	if (bfrom) {
262 		for (i = 0; i < num_chunks - 1; i++)
263 			memcpy16_fromio(d + i * oob_chunk_size,
264 					s + i * sparebuf_size,
265 					oob_chunk_size);
266 
267 		/* the last chunk */
268 		memcpy16_fromio(d + i * oob_chunk_size,
269 				s + i * sparebuf_size,
270 				host->used_oobsize - i * oob_chunk_size);
271 	} else {
272 		for (i = 0; i < num_chunks - 1; i++)
273 			memcpy16_toio(&s[i * sparebuf_size],
274 				      &d[i * oob_chunk_size],
275 				      oob_chunk_size);
276 
277 		/* the last chunk */
278 		memcpy16_toio(&s[i * sparebuf_size],
279 			      &d[i * oob_chunk_size],
280 			      host->used_oobsize - i * oob_chunk_size);
281 	}
282 }
283 
284 /*
285  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
286  * the upper layers perform a read/write buf operation, the saved column address
287  * is used to index into the full page. So usually this function is called with
288  * column == 0 (unless no column cycle is needed indicated by column == -1)
289  */
290 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
291 {
292 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
293 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
294 
295 	/* Write out column address, if necessary */
296 	if (column != -1) {
297 		host->devtype_data->send_addr(host, column & 0xff,
298 					      page_addr == -1);
299 		if (mtd->writesize > 512)
300 			/* another col addr cycle for 2k page */
301 			host->devtype_data->send_addr(host,
302 						      (column >> 8) & 0xff,
303 						      false);
304 	}
305 
306 	/* Write out page address, if necessary */
307 	if (page_addr != -1) {
308 		/* paddr_0 - p_addr_7 */
309 		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
310 
311 		if (mtd->writesize > 512) {
312 			if (mtd->size >= 0x10000000) {
313 				/* paddr_8 - paddr_15 */
314 				host->devtype_data->send_addr(host,
315 						(page_addr >> 8) & 0xff,
316 						false);
317 				host->devtype_data->send_addr(host,
318 						(page_addr >> 16) & 0xff,
319 						true);
320 			} else
321 				/* paddr_8 - paddr_15 */
322 				host->devtype_data->send_addr(host,
323 						(page_addr >> 8) & 0xff, true);
324 		} else {
325 			if (nand_chip->options & NAND_ROW_ADDR_3) {
326 				/* paddr_8 - paddr_15 */
327 				host->devtype_data->send_addr(host,
328 						(page_addr >> 8) & 0xff,
329 						false);
330 				host->devtype_data->send_addr(host,
331 						(page_addr >> 16) & 0xff,
332 						true);
333 			} else
334 				/* paddr_8 - paddr_15 */
335 				host->devtype_data->send_addr(host,
336 						(page_addr >> 8) & 0xff, true);
337 		}
338 	}
339 }
340 
341 static int check_int_v3(struct mxc_nand_host *host)
342 {
343 	uint32_t tmp;
344 
345 	tmp = readl(NFC_V3_IPC);
346 	if (!(tmp & NFC_V3_IPC_INT))
347 		return 0;
348 
349 	tmp &= ~NFC_V3_IPC_INT;
350 	writel(tmp, NFC_V3_IPC);
351 
352 	return 1;
353 }
354 
355 static int check_int_v1_v2(struct mxc_nand_host *host)
356 {
357 	uint32_t tmp;
358 
359 	tmp = readw(NFC_V1_V2_CONFIG2);
360 	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
361 		return 0;
362 
363 	if (!host->devtype_data->irqpending_quirk)
364 		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
365 
366 	return 1;
367 }
368 
369 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
370 {
371 	uint16_t tmp;
372 
373 	tmp = readw(NFC_V1_V2_CONFIG1);
374 
375 	if (activate)
376 		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
377 	else
378 		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
379 
380 	writew(tmp, NFC_V1_V2_CONFIG1);
381 }
382 
383 static void irq_control_v3(struct mxc_nand_host *host, int activate)
384 {
385 	uint32_t tmp;
386 
387 	tmp = readl(NFC_V3_CONFIG2);
388 
389 	if (activate)
390 		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
391 	else
392 		tmp |= NFC_V3_CONFIG2_INT_MSK;
393 
394 	writel(tmp, NFC_V3_CONFIG2);
395 }
396 
397 static void irq_control(struct mxc_nand_host *host, int activate)
398 {
399 	if (host->devtype_data->irqpending_quirk) {
400 		if (activate)
401 			enable_irq(host->irq);
402 		else
403 			disable_irq_nosync(host->irq);
404 	} else {
405 		host->devtype_data->irq_control(host, activate);
406 	}
407 }
408 
409 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
410 {
411 	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
412 }
413 
414 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
415 {
416 	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
417 }
418 
419 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
420 {
421 	return readl(NFC_V3_ECC_STATUS_RESULT);
422 }
423 
424 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
425 {
426 	struct mxc_nand_host *host = dev_id;
427 
428 	if (!host->devtype_data->check_int(host))
429 		return IRQ_NONE;
430 
431 	irq_control(host, 0);
432 
433 	complete(&host->op_completion);
434 
435 	return IRQ_HANDLED;
436 }
437 
438 /* This function polls the NANDFC to wait for the basic operation to
439  * complete by checking the INT bit of config2 register.
440  */
441 static int wait_op_done(struct mxc_nand_host *host, int useirq)
442 {
443 	int ret = 0;
444 
445 	/*
446 	 * If operation is already complete, don't bother to setup an irq or a
447 	 * loop.
448 	 */
449 	if (host->devtype_data->check_int(host))
450 		return 0;
451 
452 	if (useirq) {
453 		unsigned long timeout;
454 
455 		reinit_completion(&host->op_completion);
456 
457 		irq_control(host, 1);
458 
459 		timeout = wait_for_completion_timeout(&host->op_completion, HZ);
460 		if (!timeout && !host->devtype_data->check_int(host)) {
461 			dev_dbg(host->dev, "timeout waiting for irq\n");
462 			ret = -ETIMEDOUT;
463 		}
464 	} else {
465 		int max_retries = 8000;
466 		int done;
467 
468 		do {
469 			udelay(1);
470 
471 			done = host->devtype_data->check_int(host);
472 			if (done)
473 				break;
474 
475 		} while (--max_retries);
476 
477 		if (!done) {
478 			dev_dbg(host->dev, "timeout polling for completion\n");
479 			ret = -ETIMEDOUT;
480 		}
481 	}
482 
483 	WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
484 
485 	return ret;
486 }
487 
488 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
489 {
490 	/* fill command */
491 	writel(cmd, NFC_V3_FLASH_CMD);
492 
493 	/* send out command */
494 	writel(NFC_CMD, NFC_V3_LAUNCH);
495 
496 	/* Wait for operation to complete */
497 	wait_op_done(host, useirq);
498 }
499 
500 /* This function issues the specified command to the NAND device and
501  * waits for completion. */
502 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
503 {
504 	dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
505 
506 	writew(cmd, NFC_V1_V2_FLASH_CMD);
507 	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
508 
509 	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
510 		int max_retries = 100;
511 		/* Reset completion is indicated by NFC_CONFIG2 */
512 		/* being set to 0 */
513 		while (max_retries-- > 0) {
514 			if (readw(NFC_V1_V2_CONFIG2) == 0) {
515 				break;
516 			}
517 			udelay(1);
518 		}
519 		if (max_retries < 0)
520 			dev_dbg(host->dev, "%s: RESET failed\n", __func__);
521 	} else {
522 		/* Wait for operation to complete */
523 		wait_op_done(host, useirq);
524 	}
525 }
526 
527 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
528 {
529 	/* fill address */
530 	writel(addr, NFC_V3_FLASH_ADDR0);
531 
532 	/* send out address */
533 	writel(NFC_ADDR, NFC_V3_LAUNCH);
534 
535 	wait_op_done(host, 0);
536 }
537 
538 /* This function sends an address (or partial address) to the
539  * NAND device. The address is used to select the source/destination for
540  * a NAND command. */
541 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
542 {
543 	dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
544 
545 	writew(addr, NFC_V1_V2_FLASH_ADDR);
546 	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
547 
548 	/* Wait for operation to complete */
549 	wait_op_done(host, islast);
550 }
551 
552 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
553 {
554 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
555 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
556 	uint32_t tmp;
557 
558 	tmp = readl(NFC_V3_CONFIG1);
559 	tmp &= ~(7 << 4);
560 	writel(tmp, NFC_V3_CONFIG1);
561 
562 	/* transfer data from NFC ram to nand */
563 	writel(ops, NFC_V3_LAUNCH);
564 
565 	wait_op_done(host, false);
566 }
567 
568 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
569 {
570 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
571 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
572 
573 	/* NANDFC buffer 0 is used for page read/write */
574 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
575 
576 	writew(ops, NFC_V1_V2_CONFIG2);
577 
578 	/* Wait for operation to complete */
579 	wait_op_done(host, true);
580 }
581 
582 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
583 {
584 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
585 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
586 	int bufs, i;
587 
588 	if (mtd->writesize > 512)
589 		bufs = 4;
590 	else
591 		bufs = 1;
592 
593 	for (i = 0; i < bufs; i++) {
594 
595 		/* NANDFC buffer 0 is used for page read/write */
596 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
597 
598 		writew(ops, NFC_V1_V2_CONFIG2);
599 
600 		/* Wait for operation to complete */
601 		wait_op_done(host, true);
602 	}
603 }
604 
605 static void send_read_id_v3(struct mxc_nand_host *host)
606 {
607 	/* Read ID into main buffer */
608 	writel(NFC_ID, NFC_V3_LAUNCH);
609 
610 	wait_op_done(host, true);
611 
612 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
613 }
614 
615 /* Request the NANDFC to perform a read of the NAND device ID. */
616 static void send_read_id_v1_v2(struct mxc_nand_host *host)
617 {
618 	/* NANDFC buffer 0 is used for device ID output */
619 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
620 
621 	writew(NFC_ID, NFC_V1_V2_CONFIG2);
622 
623 	/* Wait for operation to complete */
624 	wait_op_done(host, true);
625 
626 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
627 }
628 
629 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
630 {
631 	writew(NFC_STATUS, NFC_V3_LAUNCH);
632 	wait_op_done(host, true);
633 
634 	return readl(NFC_V3_CONFIG1) >> 16;
635 }
636 
637 /* This function requests the NANDFC to perform a read of the
638  * NAND device status and returns the current status. */
639 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
640 {
641 	void __iomem *main_buf = host->main_area0;
642 	uint32_t store;
643 	uint16_t ret;
644 
645 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
646 
647 	/*
648 	 * The device status is stored in main_area0. To
649 	 * prevent corruption of the buffer save the value
650 	 * and restore it afterwards.
651 	 */
652 	store = readl(main_buf);
653 
654 	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
655 	wait_op_done(host, true);
656 
657 	ret = readw(main_buf);
658 
659 	writel(store, main_buf);
660 
661 	return ret;
662 }
663 
664 static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
665 {
666 	struct mxc_nand_host *host = nand_get_controller_data(chip);
667 	uint16_t config1;
668 
669 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
670 		return;
671 
672 	config1 = readw(NFC_V1_V2_CONFIG1);
673 
674 	if (enable)
675 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
676 	else
677 		config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
678 
679 	writew(config1, NFC_V1_V2_CONFIG1);
680 }
681 
682 static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
683 {
684 	struct mxc_nand_host *host = nand_get_controller_data(chip);
685 	uint32_t config2;
686 
687 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
688 		return;
689 
690 	config2 = readl(NFC_V3_CONFIG2);
691 
692 	if (enable)
693 		config2 |= NFC_V3_CONFIG2_ECC_EN;
694 	else
695 		config2 &= ~NFC_V3_CONFIG2_ECC_EN;
696 
697 	writel(config2, NFC_V3_CONFIG2);
698 }
699 
700 /* This functions is used by upper layer to checks if device is ready */
701 static int mxc_nand_dev_ready(struct nand_chip *chip)
702 {
703 	/*
704 	 * NFC handles R/B internally. Therefore, this function
705 	 * always returns status as ready.
706 	 */
707 	return 1;
708 }
709 
710 static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
711 				 bool ecc, int page)
712 {
713 	struct mtd_info *mtd = nand_to_mtd(chip);
714 	struct mxc_nand_host *host = nand_get_controller_data(chip);
715 	unsigned int bitflips_corrected = 0;
716 	int no_subpages;
717 	int i;
718 
719 	host->devtype_data->enable_hwecc(chip, ecc);
720 
721 	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
722 	mxc_do_addr_cycle(mtd, 0, page);
723 
724 	if (mtd->writesize > 512)
725 		host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
726 
727 	no_subpages = mtd->writesize >> 9;
728 
729 	for (i = 0; i < no_subpages; i++) {
730 		uint16_t ecc_stats;
731 
732 		/* NANDFC buffer 0 is used for page read/write */
733 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
734 
735 		writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
736 
737 		/* Wait for operation to complete */
738 		wait_op_done(host, true);
739 
740 		ecc_stats = get_ecc_status_v1(host);
741 
742 		ecc_stats >>= 2;
743 
744 		if (buf && ecc) {
745 			switch (ecc_stats & 0x3) {
746 			case 0:
747 			default:
748 				break;
749 			case 1:
750 				mtd->ecc_stats.corrected++;
751 				bitflips_corrected = 1;
752 				break;
753 			case 2:
754 				mtd->ecc_stats.failed++;
755 				break;
756 			}
757 		}
758 	}
759 
760 	if (buf)
761 		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
762 	if (oob)
763 		copy_spare(mtd, true, oob);
764 
765 	return bitflips_corrected;
766 }
767 
768 static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
769 				    void *oob, bool ecc, int page)
770 {
771 	struct mtd_info *mtd = nand_to_mtd(chip);
772 	struct mxc_nand_host *host = nand_get_controller_data(chip);
773 	unsigned int max_bitflips = 0;
774 	u32 ecc_stat, err;
775 	int no_subpages;
776 	u8 ecc_bit_mask, err_limit;
777 
778 	host->devtype_data->enable_hwecc(chip, ecc);
779 
780 	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
781 	mxc_do_addr_cycle(mtd, 0, page);
782 
783 	if (mtd->writesize > 512)
784 		host->devtype_data->send_cmd(host,
785 				NAND_CMD_READSTART, true);
786 
787 	host->devtype_data->send_page(mtd, NFC_OUTPUT);
788 
789 	if (buf)
790 		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
791 	if (oob)
792 		copy_spare(mtd, true, oob);
793 
794 	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
795 	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
796 
797 	no_subpages = mtd->writesize >> 9;
798 
799 	ecc_stat = host->devtype_data->get_ecc_status(host);
800 
801 	do {
802 		err = ecc_stat & ecc_bit_mask;
803 		if (err > err_limit) {
804 			mtd->ecc_stats.failed++;
805 		} else {
806 			mtd->ecc_stats.corrected += err;
807 			max_bitflips = max_t(unsigned int, max_bitflips, err);
808 		}
809 
810 		ecc_stat >>= 4;
811 	} while (--no_subpages);
812 
813 	return max_bitflips;
814 }
815 
816 static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
817 			      int oob_required, int page)
818 {
819 	struct mxc_nand_host *host = nand_get_controller_data(chip);
820 	void *oob_buf;
821 
822 	if (oob_required)
823 		oob_buf = chip->oob_poi;
824 	else
825 		oob_buf = NULL;
826 
827 	return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
828 }
829 
830 static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
831 				  int oob_required, int page)
832 {
833 	struct mxc_nand_host *host = nand_get_controller_data(chip);
834 	void *oob_buf;
835 
836 	if (oob_required)
837 		oob_buf = chip->oob_poi;
838 	else
839 		oob_buf = NULL;
840 
841 	return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
842 }
843 
844 static int mxc_nand_read_oob(struct nand_chip *chip, int page)
845 {
846 	struct mxc_nand_host *host = nand_get_controller_data(chip);
847 
848 	return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
849 					     page);
850 }
851 
852 static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
853 			       bool ecc, int page)
854 {
855 	struct mtd_info *mtd = nand_to_mtd(chip);
856 	struct mxc_nand_host *host = nand_get_controller_data(chip);
857 
858 	host->devtype_data->enable_hwecc(chip, ecc);
859 
860 	host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
861 	mxc_do_addr_cycle(mtd, 0, page);
862 
863 	memcpy32_toio(host->main_area0, buf, mtd->writesize);
864 	copy_spare(mtd, false, chip->oob_poi);
865 
866 	host->devtype_data->send_page(mtd, NFC_INPUT);
867 	host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
868 	mxc_do_addr_cycle(mtd, 0, page);
869 
870 	return 0;
871 }
872 
873 static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
874 				   int oob_required, int page)
875 {
876 	return mxc_nand_write_page(chip, buf, true, page);
877 }
878 
879 static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
880 				   int oob_required, int page)
881 {
882 	return mxc_nand_write_page(chip, buf, false, page);
883 }
884 
885 static int mxc_nand_write_oob(struct nand_chip *chip, int page)
886 {
887 	struct mtd_info *mtd = nand_to_mtd(chip);
888 	struct mxc_nand_host *host = nand_get_controller_data(chip);
889 
890 	memset(host->data_buf, 0xff, mtd->writesize);
891 
892 	return mxc_nand_write_page(chip, host->data_buf, false, page);
893 }
894 
895 static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
896 {
897 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
898 	uint8_t ret;
899 
900 	/* Check for status request */
901 	if (host->status_request)
902 		return host->devtype_data->get_dev_status(host) & 0xFF;
903 
904 	if (nand_chip->options & NAND_BUSWIDTH_16) {
905 		/* only take the lower byte of each word */
906 		ret = *(uint16_t *)(host->data_buf + host->buf_start);
907 
908 		host->buf_start += 2;
909 	} else {
910 		ret = *(uint8_t *)(host->data_buf + host->buf_start);
911 		host->buf_start++;
912 	}
913 
914 	dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
915 	return ret;
916 }
917 
918 /* Write data of length len to buffer buf. The data to be
919  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
920  * Operation by the NFC, the data is written to NAND Flash */
921 static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
922 			       int len)
923 {
924 	struct mtd_info *mtd = nand_to_mtd(nand_chip);
925 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
926 	u16 col = host->buf_start;
927 	int n = mtd->oobsize + mtd->writesize - col;
928 
929 	n = min(n, len);
930 
931 	memcpy(host->data_buf + col, buf, n);
932 
933 	host->buf_start += n;
934 }
935 
936 /* Read the data buffer from the NAND Flash. To read the data from NAND
937  * Flash first the data output cycle is initiated by the NFC, which copies
938  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
939  */
940 static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
941 			      int len)
942 {
943 	struct mtd_info *mtd = nand_to_mtd(nand_chip);
944 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
945 	u16 col = host->buf_start;
946 	int n = mtd->oobsize + mtd->writesize - col;
947 
948 	n = min(n, len);
949 
950 	memcpy(buf, host->data_buf + col, n);
951 
952 	host->buf_start += n;
953 }
954 
955 /* This function is used by upper layer for select and
956  * deselect of the NAND chip */
957 static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
958 {
959 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
960 
961 	if (chip == -1) {
962 		/* Disable the NFC clock */
963 		if (host->clk_act) {
964 			clk_disable_unprepare(host->clk);
965 			host->clk_act = 0;
966 		}
967 		return;
968 	}
969 
970 	if (!host->clk_act) {
971 		/* Enable the NFC clock */
972 		clk_prepare_enable(host->clk);
973 		host->clk_act = 1;
974 	}
975 }
976 
977 static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
978 {
979 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
980 
981 	if (chip == -1) {
982 		/* Disable the NFC clock */
983 		if (host->clk_act) {
984 			clk_disable_unprepare(host->clk);
985 			host->clk_act = 0;
986 		}
987 		return;
988 	}
989 
990 	if (!host->clk_act) {
991 		/* Enable the NFC clock */
992 		clk_prepare_enable(host->clk);
993 		host->clk_act = 1;
994 	}
995 
996 	host->active_cs = chip;
997 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
998 }
999 
1000 #define MXC_V1_ECCBYTES		5
1001 
1002 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1003 				struct mtd_oob_region *oobregion)
1004 {
1005 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1006 
1007 	if (section >= nand_chip->ecc.steps)
1008 		return -ERANGE;
1009 
1010 	oobregion->offset = (section * 16) + 6;
1011 	oobregion->length = MXC_V1_ECCBYTES;
1012 
1013 	return 0;
1014 }
1015 
1016 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1017 				 struct mtd_oob_region *oobregion)
1018 {
1019 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1020 
1021 	if (section > nand_chip->ecc.steps)
1022 		return -ERANGE;
1023 
1024 	if (!section) {
1025 		if (mtd->writesize <= 512) {
1026 			oobregion->offset = 0;
1027 			oobregion->length = 5;
1028 		} else {
1029 			oobregion->offset = 2;
1030 			oobregion->length = 4;
1031 		}
1032 	} else {
1033 		oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1034 		if (section < nand_chip->ecc.steps)
1035 			oobregion->length = (section * 16) + 6 -
1036 					    oobregion->offset;
1037 		else
1038 			oobregion->length = mtd->oobsize - oobregion->offset;
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1045 	.ecc = mxc_v1_ooblayout_ecc,
1046 	.free = mxc_v1_ooblayout_free,
1047 };
1048 
1049 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1050 				struct mtd_oob_region *oobregion)
1051 {
1052 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1053 	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1054 
1055 	if (section >= nand_chip->ecc.steps)
1056 		return -ERANGE;
1057 
1058 	oobregion->offset = (section * stepsize) + 7;
1059 	oobregion->length = nand_chip->ecc.bytes;
1060 
1061 	return 0;
1062 }
1063 
1064 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1065 				 struct mtd_oob_region *oobregion)
1066 {
1067 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1068 	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1069 
1070 	if (section >= nand_chip->ecc.steps)
1071 		return -ERANGE;
1072 
1073 	if (!section) {
1074 		if (mtd->writesize <= 512) {
1075 			oobregion->offset = 0;
1076 			oobregion->length = 5;
1077 		} else {
1078 			oobregion->offset = 2;
1079 			oobregion->length = 4;
1080 		}
1081 	} else {
1082 		oobregion->offset = section * stepsize;
1083 		oobregion->length = 7;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1090 	.ecc = mxc_v2_ooblayout_ecc,
1091 	.free = mxc_v2_ooblayout_free,
1092 };
1093 
1094 /*
1095  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1096  * on how much oob the nand chip has. For 8bit ecc we need at least
1097  * 26 bytes of oob data per 512 byte block.
1098  */
1099 static int get_eccsize(struct mtd_info *mtd)
1100 {
1101 	int oobbytes_per_512 = 0;
1102 
1103 	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1104 
1105 	if (oobbytes_per_512 < 26)
1106 		return 4;
1107 	else
1108 		return 8;
1109 }
1110 
1111 static void preset_v1(struct mtd_info *mtd)
1112 {
1113 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1114 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1115 	uint16_t config1 = 0;
1116 
1117 	if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
1118 	    mtd->writesize)
1119 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1120 
1121 	if (!host->devtype_data->irqpending_quirk)
1122 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1123 
1124 	host->eccsize = 1;
1125 
1126 	writew(config1, NFC_V1_V2_CONFIG1);
1127 	/* preset operation */
1128 
1129 	/* Unlock the internal RAM Buffer */
1130 	writew(0x2, NFC_V1_V2_CONFIG);
1131 
1132 	/* Blocks to be unlocked */
1133 	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1134 	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1135 
1136 	/* Unlock Block Command for given address range */
1137 	writew(0x4, NFC_V1_V2_WRPROT);
1138 }
1139 
1140 static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline,
1141 				       const struct nand_interface_config *conf)
1142 {
1143 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1144 	int tRC_min_ns, tRC_ps, ret;
1145 	unsigned long rate, rate_round;
1146 	const struct nand_sdr_timings *timings;
1147 	u16 config1;
1148 
1149 	timings = nand_get_sdr_timings(conf);
1150 	if (IS_ERR(timings))
1151 		return -ENOTSUPP;
1152 
1153 	config1 = readw(NFC_V1_V2_CONFIG1);
1154 
1155 	tRC_min_ns = timings->tRC_min / 1000;
1156 	rate = 1000000000 / tRC_min_ns;
1157 
1158 	/*
1159 	 * For tRC < 30ns we have to use EDO mode. In this case the controller
1160 	 * does one access per clock cycle. Otherwise the controller does one
1161 	 * access in two clock cycles, thus we have to double the rate to the
1162 	 * controller.
1163 	 */
1164 	if (tRC_min_ns < 30) {
1165 		rate_round = clk_round_rate(host->clk, rate);
1166 		config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1167 		tRC_ps = 1000000000 / (rate_round / 1000);
1168 	} else {
1169 		rate *= 2;
1170 		rate_round = clk_round_rate(host->clk, rate);
1171 		config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1172 		tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1173 	}
1174 
1175 	/*
1176 	 * The timing values compared against are from the i.MX25 Automotive
1177 	 * datasheet, Table 50. NFC Timing Parameters
1178 	 */
1179 	if (timings->tCLS_min > tRC_ps - 1000 ||
1180 	    timings->tCLH_min > tRC_ps - 2000 ||
1181 	    timings->tCS_min > tRC_ps - 1000 ||
1182 	    timings->tCH_min > tRC_ps - 2000 ||
1183 	    timings->tWP_min > tRC_ps - 1500 ||
1184 	    timings->tALS_min > tRC_ps ||
1185 	    timings->tALH_min > tRC_ps - 3000 ||
1186 	    timings->tDS_min > tRC_ps ||
1187 	    timings->tDH_min > tRC_ps - 5000 ||
1188 	    timings->tWC_min > 2 * tRC_ps ||
1189 	    timings->tWH_min > tRC_ps - 2500 ||
1190 	    timings->tRR_min > 6 * tRC_ps ||
1191 	    timings->tRP_min > 3 * tRC_ps / 2 ||
1192 	    timings->tRC_min > 2 * tRC_ps ||
1193 	    timings->tREH_min > (tRC_ps / 2) - 2500) {
1194 		dev_dbg(host->dev, "Timing out of bounds\n");
1195 		return -EINVAL;
1196 	}
1197 
1198 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1199 		return 0;
1200 
1201 	ret = clk_set_rate(host->clk, rate);
1202 	if (ret)
1203 		return ret;
1204 
1205 	writew(config1, NFC_V1_V2_CONFIG1);
1206 
1207 	dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1208 		config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1209 		"normal");
1210 
1211 	return 0;
1212 }
1213 
1214 static void preset_v2(struct mtd_info *mtd)
1215 {
1216 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1217 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1218 	uint16_t config1 = 0;
1219 
1220 	config1 |= NFC_V2_CONFIG1_FP_INT;
1221 
1222 	if (!host->devtype_data->irqpending_quirk)
1223 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1224 
1225 	if (mtd->writesize) {
1226 		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1227 
1228 		if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1229 			config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1230 
1231 		host->eccsize = get_eccsize(mtd);
1232 		if (host->eccsize == 4)
1233 			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1234 
1235 		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1236 	} else {
1237 		host->eccsize = 1;
1238 	}
1239 
1240 	writew(config1, NFC_V1_V2_CONFIG1);
1241 	/* preset operation */
1242 
1243 	/* spare area size in 16-bit half-words */
1244 	writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1245 
1246 	/* Unlock the internal RAM Buffer */
1247 	writew(0x2, NFC_V1_V2_CONFIG);
1248 
1249 	/* Blocks to be unlocked */
1250 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1251 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1252 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1253 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1254 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1255 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1256 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1257 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1258 
1259 	/* Unlock Block Command for given address range */
1260 	writew(0x4, NFC_V1_V2_WRPROT);
1261 }
1262 
1263 static void preset_v3(struct mtd_info *mtd)
1264 {
1265 	struct nand_chip *chip = mtd_to_nand(mtd);
1266 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1267 	uint32_t config2, config3;
1268 	int i, addr_phases;
1269 
1270 	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1271 	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1272 
1273 	/* Unlock the internal RAM Buffer */
1274 	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1275 			NFC_V3_WRPROT);
1276 
1277 	/* Blocks to be unlocked */
1278 	for (i = 0; i < NAND_MAX_CHIPS; i++)
1279 		writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1280 
1281 	writel(0, NFC_V3_IPC);
1282 
1283 	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1284 		NFC_V3_CONFIG2_2CMD_PHASES |
1285 		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1286 		NFC_V3_CONFIG2_ST_CMD(0x70) |
1287 		NFC_V3_CONFIG2_INT_MSK |
1288 		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1289 
1290 	addr_phases = fls(chip->pagemask) >> 3;
1291 
1292 	if (mtd->writesize == 2048) {
1293 		config2 |= NFC_V3_CONFIG2_PS_2048;
1294 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1295 	} else if (mtd->writesize == 4096) {
1296 		config2 |= NFC_V3_CONFIG2_PS_4096;
1297 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1298 	} else {
1299 		config2 |= NFC_V3_CONFIG2_PS_512;
1300 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1301 	}
1302 
1303 	if (mtd->writesize) {
1304 		if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1305 			config2 |= NFC_V3_CONFIG2_ECC_EN;
1306 
1307 		config2 |= NFC_V3_CONFIG2_PPB(
1308 				ffs(mtd->erasesize / mtd->writesize) - 6,
1309 				host->devtype_data->ppb_shift);
1310 		host->eccsize = get_eccsize(mtd);
1311 		if (host->eccsize == 8)
1312 			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1313 	}
1314 
1315 	writel(config2, NFC_V3_CONFIG2);
1316 
1317 	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1318 			NFC_V3_CONFIG3_NO_SDMA |
1319 			NFC_V3_CONFIG3_RBB_MODE |
1320 			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1321 			NFC_V3_CONFIG3_ADD_OP(0);
1322 
1323 	if (!(chip->options & NAND_BUSWIDTH_16))
1324 		config3 |= NFC_V3_CONFIG3_FW8;
1325 
1326 	writel(config3, NFC_V3_CONFIG3);
1327 
1328 	writel(0, NFC_V3_DELAY_LINE);
1329 }
1330 
1331 /* Used by the upper layer to write command to NAND Flash for
1332  * different operations to be carried out on NAND Flash */
1333 static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1334 			     int column, int page_addr)
1335 {
1336 	struct mtd_info *mtd = nand_to_mtd(nand_chip);
1337 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1338 
1339 	dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1340 	      command, column, page_addr);
1341 
1342 	/* Reset command state information */
1343 	host->status_request = false;
1344 
1345 	/* Command pre-processing step */
1346 	switch (command) {
1347 	case NAND_CMD_RESET:
1348 		host->devtype_data->preset(mtd);
1349 		host->devtype_data->send_cmd(host, command, false);
1350 		break;
1351 
1352 	case NAND_CMD_STATUS:
1353 		host->buf_start = 0;
1354 		host->status_request = true;
1355 
1356 		host->devtype_data->send_cmd(host, command, true);
1357 		WARN_ONCE(column != -1 || page_addr != -1,
1358 			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1359 			  command, column, page_addr);
1360 		mxc_do_addr_cycle(mtd, column, page_addr);
1361 		break;
1362 
1363 	case NAND_CMD_READID:
1364 		host->devtype_data->send_cmd(host, command, true);
1365 		mxc_do_addr_cycle(mtd, column, page_addr);
1366 		host->devtype_data->send_read_id(host);
1367 		host->buf_start = 0;
1368 		break;
1369 
1370 	case NAND_CMD_ERASE1:
1371 	case NAND_CMD_ERASE2:
1372 		host->devtype_data->send_cmd(host, command, false);
1373 		WARN_ONCE(column != -1,
1374 			  "Unexpected column value (cmd=%u, col=%d)\n",
1375 			  command, column);
1376 		mxc_do_addr_cycle(mtd, column, page_addr);
1377 
1378 		break;
1379 	case NAND_CMD_PARAM:
1380 		host->devtype_data->send_cmd(host, command, false);
1381 		mxc_do_addr_cycle(mtd, column, page_addr);
1382 		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1383 		memcpy32_fromio(host->data_buf, host->main_area0, 512);
1384 		host->buf_start = 0;
1385 		break;
1386 	default:
1387 		WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1388 			  command);
1389 		break;
1390 	}
1391 }
1392 
1393 static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1394 				 u8 *subfeature_param)
1395 {
1396 	struct mtd_info *mtd = nand_to_mtd(chip);
1397 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1398 	int i;
1399 
1400 	host->buf_start = 0;
1401 
1402 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1403 		chip->legacy.write_byte(chip, subfeature_param[i]);
1404 
1405 	memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1406 	host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1407 	mxc_do_addr_cycle(mtd, addr, -1);
1408 	host->devtype_data->send_page(mtd, NFC_INPUT);
1409 
1410 	return 0;
1411 }
1412 
1413 static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1414 				 u8 *subfeature_param)
1415 {
1416 	struct mtd_info *mtd = nand_to_mtd(chip);
1417 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1418 	int i;
1419 
1420 	host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1421 	mxc_do_addr_cycle(mtd, addr, -1);
1422 	host->devtype_data->send_page(mtd, NFC_OUTPUT);
1423 	memcpy32_fromio(host->data_buf, host->main_area0, 512);
1424 	host->buf_start = 0;
1425 
1426 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1427 		*subfeature_param++ = chip->legacy.read_byte(chip);
1428 
1429 	return 0;
1430 }
1431 
1432 /*
1433  * The generic flash bbt descriptors overlap with our ecc
1434  * hardware, so define some i.MX specific ones.
1435  */
1436 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1437 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1438 
1439 static struct nand_bbt_descr bbt_main_descr = {
1440 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1441 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1442 	.offs = 0,
1443 	.len = 4,
1444 	.veroffs = 4,
1445 	.maxblocks = 4,
1446 	.pattern = bbt_pattern,
1447 };
1448 
1449 static struct nand_bbt_descr bbt_mirror_descr = {
1450 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1451 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1452 	.offs = 0,
1453 	.len = 4,
1454 	.veroffs = 4,
1455 	.maxblocks = 4,
1456 	.pattern = mirror_pattern,
1457 };
1458 
1459 /* v1 + irqpending_quirk: i.MX21 */
1460 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1461 	.preset = preset_v1,
1462 	.read_page = mxc_nand_read_page_v1,
1463 	.send_cmd = send_cmd_v1_v2,
1464 	.send_addr = send_addr_v1_v2,
1465 	.send_page = send_page_v1,
1466 	.send_read_id = send_read_id_v1_v2,
1467 	.get_dev_status = get_dev_status_v1_v2,
1468 	.check_int = check_int_v1_v2,
1469 	.irq_control = irq_control_v1_v2,
1470 	.get_ecc_status = get_ecc_status_v1,
1471 	.ooblayout = &mxc_v1_ooblayout_ops,
1472 	.select_chip = mxc_nand_select_chip_v1_v3,
1473 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1474 	.irqpending_quirk = 1,
1475 	.needs_ip = 0,
1476 	.regs_offset = 0xe00,
1477 	.spare0_offset = 0x800,
1478 	.spare_len = 16,
1479 	.eccbytes = 3,
1480 	.eccsize = 1,
1481 };
1482 
1483 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1484 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1485 	.preset = preset_v1,
1486 	.read_page = mxc_nand_read_page_v1,
1487 	.send_cmd = send_cmd_v1_v2,
1488 	.send_addr = send_addr_v1_v2,
1489 	.send_page = send_page_v1,
1490 	.send_read_id = send_read_id_v1_v2,
1491 	.get_dev_status = get_dev_status_v1_v2,
1492 	.check_int = check_int_v1_v2,
1493 	.irq_control = irq_control_v1_v2,
1494 	.get_ecc_status = get_ecc_status_v1,
1495 	.ooblayout = &mxc_v1_ooblayout_ops,
1496 	.select_chip = mxc_nand_select_chip_v1_v3,
1497 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1498 	.irqpending_quirk = 0,
1499 	.needs_ip = 0,
1500 	.regs_offset = 0xe00,
1501 	.spare0_offset = 0x800,
1502 	.axi_offset = 0,
1503 	.spare_len = 16,
1504 	.eccbytes = 3,
1505 	.eccsize = 1,
1506 };
1507 
1508 /* v21: i.MX25, i.MX35 */
1509 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1510 	.preset = preset_v2,
1511 	.read_page = mxc_nand_read_page_v2_v3,
1512 	.send_cmd = send_cmd_v1_v2,
1513 	.send_addr = send_addr_v1_v2,
1514 	.send_page = send_page_v2,
1515 	.send_read_id = send_read_id_v1_v2,
1516 	.get_dev_status = get_dev_status_v1_v2,
1517 	.check_int = check_int_v1_v2,
1518 	.irq_control = irq_control_v1_v2,
1519 	.get_ecc_status = get_ecc_status_v2,
1520 	.ooblayout = &mxc_v2_ooblayout_ops,
1521 	.select_chip = mxc_nand_select_chip_v2,
1522 	.setup_interface = mxc_nand_v2_setup_interface,
1523 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1524 	.irqpending_quirk = 0,
1525 	.needs_ip = 0,
1526 	.regs_offset = 0x1e00,
1527 	.spare0_offset = 0x1000,
1528 	.axi_offset = 0,
1529 	.spare_len = 64,
1530 	.eccbytes = 9,
1531 	.eccsize = 0,
1532 };
1533 
1534 /* v3.2a: i.MX51 */
1535 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1536 	.preset = preset_v3,
1537 	.read_page = mxc_nand_read_page_v2_v3,
1538 	.send_cmd = send_cmd_v3,
1539 	.send_addr = send_addr_v3,
1540 	.send_page = send_page_v3,
1541 	.send_read_id = send_read_id_v3,
1542 	.get_dev_status = get_dev_status_v3,
1543 	.check_int = check_int_v3,
1544 	.irq_control = irq_control_v3,
1545 	.get_ecc_status = get_ecc_status_v3,
1546 	.ooblayout = &mxc_v2_ooblayout_ops,
1547 	.select_chip = mxc_nand_select_chip_v1_v3,
1548 	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1549 	.irqpending_quirk = 0,
1550 	.needs_ip = 1,
1551 	.regs_offset = 0,
1552 	.spare0_offset = 0x1000,
1553 	.axi_offset = 0x1e00,
1554 	.spare_len = 64,
1555 	.eccbytes = 0,
1556 	.eccsize = 0,
1557 	.ppb_shift = 7,
1558 };
1559 
1560 /* v3.2b: i.MX53 */
1561 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1562 	.preset = preset_v3,
1563 	.read_page = mxc_nand_read_page_v2_v3,
1564 	.send_cmd = send_cmd_v3,
1565 	.send_addr = send_addr_v3,
1566 	.send_page = send_page_v3,
1567 	.send_read_id = send_read_id_v3,
1568 	.get_dev_status = get_dev_status_v3,
1569 	.check_int = check_int_v3,
1570 	.irq_control = irq_control_v3,
1571 	.get_ecc_status = get_ecc_status_v3,
1572 	.ooblayout = &mxc_v2_ooblayout_ops,
1573 	.select_chip = mxc_nand_select_chip_v1_v3,
1574 	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1575 	.irqpending_quirk = 0,
1576 	.needs_ip = 1,
1577 	.regs_offset = 0,
1578 	.spare0_offset = 0x1000,
1579 	.axi_offset = 0x1e00,
1580 	.spare_len = 64,
1581 	.eccbytes = 0,
1582 	.eccsize = 0,
1583 	.ppb_shift = 8,
1584 };
1585 
1586 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1587 {
1588 	return host->devtype_data == &imx21_nand_devtype_data;
1589 }
1590 
1591 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1592 {
1593 	return host->devtype_data == &imx27_nand_devtype_data;
1594 }
1595 
1596 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1597 {
1598 	return host->devtype_data == &imx25_nand_devtype_data;
1599 }
1600 
1601 static const struct of_device_id mxcnd_dt_ids[] = {
1602 	{ .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, },
1603 	{ .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, },
1604 	{ .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, },
1605 	{ .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, },
1606 	{ .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, },
1607 	{ /* sentinel */ }
1608 };
1609 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1610 
1611 static int mxcnd_attach_chip(struct nand_chip *chip)
1612 {
1613 	struct mtd_info *mtd = nand_to_mtd(chip);
1614 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1615 	struct device *dev = mtd->dev.parent;
1616 
1617 	chip->ecc.bytes = host->devtype_data->eccbytes;
1618 	host->eccsize = host->devtype_data->eccsize;
1619 	chip->ecc.size = 512;
1620 	mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1621 
1622 	switch (chip->ecc.engine_type) {
1623 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1624 		chip->ecc.read_page = mxc_nand_read_page;
1625 		chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1626 		chip->ecc.read_oob = mxc_nand_read_oob;
1627 		chip->ecc.write_page = mxc_nand_write_page_ecc;
1628 		chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1629 		chip->ecc.write_oob = mxc_nand_write_oob;
1630 		break;
1631 
1632 	case NAND_ECC_ENGINE_TYPE_SOFT:
1633 		break;
1634 
1635 	default:
1636 		return -EINVAL;
1637 	}
1638 
1639 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1640 		chip->bbt_td = &bbt_main_descr;
1641 		chip->bbt_md = &bbt_mirror_descr;
1642 	}
1643 
1644 	/* Allocate the right size buffer now */
1645 	devm_kfree(dev, (void *)host->data_buf);
1646 	host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1647 				      GFP_KERNEL);
1648 	if (!host->data_buf)
1649 		return -ENOMEM;
1650 
1651 	/* Call preset again, with correct writesize chip time */
1652 	host->devtype_data->preset(mtd);
1653 
1654 	if (!chip->ecc.bytes) {
1655 		if (host->eccsize == 8)
1656 			chip->ecc.bytes = 18;
1657 		else if (host->eccsize == 4)
1658 			chip->ecc.bytes = 9;
1659 	}
1660 
1661 	/*
1662 	 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1663 	 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1664 	 * into copying invalid data to/from the spare IO buffer, as this
1665 	 * might cause ECC data corruption when doing sub-page write to a
1666 	 * partially written page.
1667 	 */
1668 	host->used_oobsize = min(mtd->oobsize, 218U);
1669 
1670 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
1671 		if (is_imx21_nfc(host) || is_imx27_nfc(host))
1672 			chip->ecc.strength = 1;
1673 		else
1674 			chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr,
1681 				 const struct nand_interface_config *conf)
1682 {
1683 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1684 
1685 	return host->devtype_data->setup_interface(chip, chipnr, conf);
1686 }
1687 
1688 static const struct nand_controller_ops mxcnd_controller_ops = {
1689 	.attach_chip = mxcnd_attach_chip,
1690 	.setup_interface = mxcnd_setup_interface,
1691 };
1692 
1693 static int mxcnd_probe(struct platform_device *pdev)
1694 {
1695 	struct nand_chip *this;
1696 	struct mtd_info *mtd;
1697 	struct mxc_nand_host *host;
1698 	int err = 0;
1699 
1700 	/* Allocate memory for MTD device structure and private data */
1701 	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1702 			GFP_KERNEL);
1703 	if (!host)
1704 		return -ENOMEM;
1705 
1706 	/* allocate a temporary buffer for the nand_scan_ident() */
1707 	host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1708 	if (!host->data_buf)
1709 		return -ENOMEM;
1710 
1711 	host->dev = &pdev->dev;
1712 	/* structures must be linked */
1713 	this = &host->nand;
1714 	mtd = nand_to_mtd(this);
1715 	mtd->dev.parent = &pdev->dev;
1716 	mtd->name = DRIVER_NAME;
1717 
1718 	/* 50 us command delay time */
1719 	this->legacy.chip_delay = 5;
1720 
1721 	nand_set_controller_data(this, host);
1722 	nand_set_flash_node(this, pdev->dev.of_node);
1723 	this->legacy.dev_ready = mxc_nand_dev_ready;
1724 	this->legacy.cmdfunc = mxc_nand_command;
1725 	this->legacy.read_byte = mxc_nand_read_byte;
1726 	this->legacy.write_buf = mxc_nand_write_buf;
1727 	this->legacy.read_buf = mxc_nand_read_buf;
1728 	this->legacy.set_features = mxc_nand_set_features;
1729 	this->legacy.get_features = mxc_nand_get_features;
1730 
1731 	host->clk = devm_clk_get(&pdev->dev, NULL);
1732 	if (IS_ERR(host->clk))
1733 		return PTR_ERR(host->clk);
1734 
1735 	host->devtype_data = device_get_match_data(&pdev->dev);
1736 
1737 	if (!host->devtype_data->setup_interface)
1738 		this->options |= NAND_KEEP_TIMINGS;
1739 
1740 	if (host->devtype_data->needs_ip) {
1741 		host->regs_ip = devm_platform_ioremap_resource(pdev, 0);
1742 		if (IS_ERR(host->regs_ip))
1743 			return PTR_ERR(host->regs_ip);
1744 
1745 		host->base = devm_platform_ioremap_resource(pdev, 1);
1746 	} else {
1747 		host->base = devm_platform_ioremap_resource(pdev, 0);
1748 	}
1749 
1750 	if (IS_ERR(host->base))
1751 		return PTR_ERR(host->base);
1752 
1753 	host->main_area0 = host->base;
1754 
1755 	if (host->devtype_data->regs_offset)
1756 		host->regs = host->base + host->devtype_data->regs_offset;
1757 	host->spare0 = host->base + host->devtype_data->spare0_offset;
1758 	if (host->devtype_data->axi_offset)
1759 		host->regs_axi = host->base + host->devtype_data->axi_offset;
1760 
1761 	this->legacy.select_chip = host->devtype_data->select_chip;
1762 
1763 	init_completion(&host->op_completion);
1764 
1765 	host->irq = platform_get_irq(pdev, 0);
1766 	if (host->irq < 0)
1767 		return host->irq;
1768 
1769 	/*
1770 	 * Use host->devtype_data->irq_control() here instead of irq_control()
1771 	 * because we must not disable_irq_nosync without having requested the
1772 	 * irq.
1773 	 */
1774 	host->devtype_data->irq_control(host, 0);
1775 
1776 	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1777 			0, DRIVER_NAME, host);
1778 	if (err)
1779 		return err;
1780 
1781 	err = clk_prepare_enable(host->clk);
1782 	if (err)
1783 		return err;
1784 	host->clk_act = 1;
1785 
1786 	/*
1787 	 * Now that we "own" the interrupt make sure the interrupt mask bit is
1788 	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1789 	 * on this machine.
1790 	 */
1791 	if (host->devtype_data->irqpending_quirk) {
1792 		disable_irq_nosync(host->irq);
1793 		host->devtype_data->irq_control(host, 1);
1794 	}
1795 
1796 	/* Scan the NAND device */
1797 	this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1798 	err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1799 	if (err)
1800 		goto escan;
1801 
1802 	/* Register the partitions */
1803 	err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1804 	if (err)
1805 		goto cleanup_nand;
1806 
1807 	platform_set_drvdata(pdev, host);
1808 
1809 	return 0;
1810 
1811 cleanup_nand:
1812 	nand_cleanup(this);
1813 escan:
1814 	if (host->clk_act)
1815 		clk_disable_unprepare(host->clk);
1816 
1817 	return err;
1818 }
1819 
1820 static void mxcnd_remove(struct platform_device *pdev)
1821 {
1822 	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1823 	struct nand_chip *chip = &host->nand;
1824 	int ret;
1825 
1826 	ret = mtd_device_unregister(nand_to_mtd(chip));
1827 	WARN_ON(ret);
1828 	nand_cleanup(chip);
1829 	if (host->clk_act)
1830 		clk_disable_unprepare(host->clk);
1831 }
1832 
1833 static struct platform_driver mxcnd_driver = {
1834 	.driver = {
1835 		   .name = DRIVER_NAME,
1836 		   .of_match_table = mxcnd_dt_ids,
1837 	},
1838 	.probe = mxcnd_probe,
1839 	.remove_new = mxcnd_remove,
1840 };
1841 module_platform_driver(mxcnd_driver);
1842 
1843 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1844 MODULE_DESCRIPTION("MXC NAND MTD driver");
1845 MODULE_LICENSE("GPL");
1846