xref: /openbmc/linux/drivers/mtd/nand/raw/mxc_nand.c (revision ba61bb17)
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/rawnand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 
38 #include <asm/mach/flash.h>
39 #include <linux/platform_data/mtd-mxc_nand.h>
40 
41 #define DRIVER_NAME "mxc_nand"
42 
43 /* Addresses for NFC registers */
44 #define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
45 #define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
46 #define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
47 #define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
48 #define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
49 #define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
50 #define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
51 #define NFC_V21_RSLTSPARE_AREA		(host->regs + 0x10)
52 #define NFC_V1_V2_WRPROT		(host->regs + 0x12)
53 #define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
54 #define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
55 #define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
56 #define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
57 #define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
58 #define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
59 #define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
60 #define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
61 #define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
62 #define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
63 #define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
64 #define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
65 #define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
66 
67 #define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
68 #define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
69 #define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
70 #define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
71 #define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
72 #define NFC_V1_V2_CONFIG1_RST		(1 << 6)
73 #define NFC_V1_V2_CONFIG1_CE		(1 << 7)
74 #define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
75 #define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
76 #define NFC_V2_CONFIG1_FP_INT		(1 << 11)
77 
78 #define NFC_V1_V2_CONFIG2_INT		(1 << 15)
79 
80 /*
81  * Operation modes for the NFC. Valid for v1, v2 and v3
82  * type controllers.
83  */
84 #define NFC_CMD				(1 << 0)
85 #define NFC_ADDR			(1 << 1)
86 #define NFC_INPUT			(1 << 2)
87 #define NFC_OUTPUT			(1 << 3)
88 #define NFC_ID				(1 << 4)
89 #define NFC_STATUS			(1 << 5)
90 
91 #define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
92 #define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
93 
94 #define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
95 #define NFC_V3_CONFIG1_SP_EN		(1 << 0)
96 #define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
97 
98 #define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
99 
100 #define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
101 
102 #define NFC_V3_WRPROT			(host->regs_ip + 0x0)
103 #define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
104 #define NFC_V3_WRPROT_LOCK		(1 << 1)
105 #define NFC_V3_WRPROT_UNLOCK		(1 << 2)
106 #define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
107 
108 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
109 
110 #define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
111 #define NFC_V3_CONFIG2_PS_512			(0 << 0)
112 #define NFC_V3_CONFIG2_PS_2048			(1 << 0)
113 #define NFC_V3_CONFIG2_PS_4096			(2 << 0)
114 #define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
115 #define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
116 #define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
117 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
118 #define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
119 #define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
120 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
121 #define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
122 #define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
123 #define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
124 
125 #define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
126 #define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
127 #define NFC_V3_CONFIG3_FW8			(1 << 3)
128 #define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
129 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
130 #define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
131 #define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
132 
133 #define NFC_V3_IPC			(host->regs_ip + 0x2C)
134 #define NFC_V3_IPC_CREQ			(1 << 0)
135 #define NFC_V3_IPC_INT			(1 << 31)
136 
137 #define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
138 
139 struct mxc_nand_host;
140 
141 struct mxc_nand_devtype_data {
142 	void (*preset)(struct mtd_info *);
143 	int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
144 			 int page);
145 	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
146 	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
147 	void (*send_page)(struct mtd_info *, unsigned int);
148 	void (*send_read_id)(struct mxc_nand_host *);
149 	uint16_t (*get_dev_status)(struct mxc_nand_host *);
150 	int (*check_int)(struct mxc_nand_host *);
151 	void (*irq_control)(struct mxc_nand_host *, int);
152 	u32 (*get_ecc_status)(struct mxc_nand_host *);
153 	const struct mtd_ooblayout_ops *ooblayout;
154 	void (*select_chip)(struct mtd_info *mtd, int chip);
155 	int (*setup_data_interface)(struct mtd_info *mtd, int csline,
156 				    const struct nand_data_interface *conf);
157 	void (*enable_hwecc)(struct nand_chip *chip, bool enable);
158 
159 	/*
160 	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
161 	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
162 	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
163 	 */
164 	int irqpending_quirk;
165 	int needs_ip;
166 
167 	size_t regs_offset;
168 	size_t spare0_offset;
169 	size_t axi_offset;
170 
171 	int spare_len;
172 	int eccbytes;
173 	int eccsize;
174 	int ppb_shift;
175 };
176 
177 struct mxc_nand_host {
178 	struct nand_chip	nand;
179 	struct device		*dev;
180 
181 	void __iomem		*spare0;
182 	void __iomem		*main_area0;
183 
184 	void __iomem		*base;
185 	void __iomem		*regs;
186 	void __iomem		*regs_axi;
187 	void __iomem		*regs_ip;
188 	int			status_request;
189 	struct clk		*clk;
190 	int			clk_act;
191 	int			irq;
192 	int			eccsize;
193 	int			used_oobsize;
194 	int			active_cs;
195 
196 	struct completion	op_completion;
197 
198 	uint8_t			*data_buf;
199 	unsigned int		buf_start;
200 
201 	const struct mxc_nand_devtype_data *devtype_data;
202 	struct mxc_nand_platform_data pdata;
203 };
204 
205 static const char * const part_probes[] = {
206 	"cmdlinepart", "RedBoot", "ofpart", NULL };
207 
208 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
209 {
210 	int i;
211 	u32 *t = trg;
212 	const __iomem u32 *s = src;
213 
214 	for (i = 0; i < (size >> 2); i++)
215 		*t++ = __raw_readl(s++);
216 }
217 
218 static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
219 {
220 	int i;
221 	u16 *t = trg;
222 	const __iomem u16 *s = src;
223 
224 	/* We assume that src (IO) is always 32bit aligned */
225 	if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
226 		memcpy32_fromio(trg, src, size);
227 		return;
228 	}
229 
230 	for (i = 0; i < (size >> 1); i++)
231 		*t++ = __raw_readw(s++);
232 }
233 
234 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
235 {
236 	/* __iowrite32_copy use 32bit size values so divide by 4 */
237 	__iowrite32_copy(trg, src, size / 4);
238 }
239 
240 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
241 {
242 	int i;
243 	__iomem u16 *t = trg;
244 	const u16 *s = src;
245 
246 	/* We assume that trg (IO) is always 32bit aligned */
247 	if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
248 		memcpy32_toio(trg, src, size);
249 		return;
250 	}
251 
252 	for (i = 0; i < (size >> 1); i++)
253 		__raw_writew(*s++, t++);
254 }
255 
256 /*
257  * The controller splits a page into data chunks of 512 bytes + partial oob.
258  * There are writesize / 512 such chunks, the size of the partial oob parts is
259  * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
260  * contains additionally the byte lost by rounding (if any).
261  * This function handles the needed shuffling between host->data_buf (which
262  * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
263  * spare) and the NFC buffer.
264  */
265 static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
266 {
267 	struct nand_chip *this = mtd_to_nand(mtd);
268 	struct mxc_nand_host *host = nand_get_controller_data(this);
269 	u16 i, oob_chunk_size;
270 	u16 num_chunks = mtd->writesize / 512;
271 
272 	u8 *d = buf;
273 	u8 __iomem *s = host->spare0;
274 	u16 sparebuf_size = host->devtype_data->spare_len;
275 
276 	/* size of oob chunk for all but possibly the last one */
277 	oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
278 
279 	if (bfrom) {
280 		for (i = 0; i < num_chunks - 1; i++)
281 			memcpy16_fromio(d + i * oob_chunk_size,
282 					s + i * sparebuf_size,
283 					oob_chunk_size);
284 
285 		/* the last chunk */
286 		memcpy16_fromio(d + i * oob_chunk_size,
287 				s + i * sparebuf_size,
288 				host->used_oobsize - i * oob_chunk_size);
289 	} else {
290 		for (i = 0; i < num_chunks - 1; i++)
291 			memcpy16_toio(&s[i * sparebuf_size],
292 				      &d[i * oob_chunk_size],
293 				      oob_chunk_size);
294 
295 		/* the last chunk */
296 		memcpy16_toio(&s[i * sparebuf_size],
297 			      &d[i * oob_chunk_size],
298 			      host->used_oobsize - i * oob_chunk_size);
299 	}
300 }
301 
302 /*
303  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
304  * the upper layers perform a read/write buf operation, the saved column address
305  * is used to index into the full page. So usually this function is called with
306  * column == 0 (unless no column cycle is needed indicated by column == -1)
307  */
308 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
309 {
310 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
311 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
312 
313 	/* Write out column address, if necessary */
314 	if (column != -1) {
315 		host->devtype_data->send_addr(host, column & 0xff,
316 					      page_addr == -1);
317 		if (mtd->writesize > 512)
318 			/* another col addr cycle for 2k page */
319 			host->devtype_data->send_addr(host,
320 						      (column >> 8) & 0xff,
321 						      false);
322 	}
323 
324 	/* Write out page address, if necessary */
325 	if (page_addr != -1) {
326 		/* paddr_0 - p_addr_7 */
327 		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
328 
329 		if (mtd->writesize > 512) {
330 			if (mtd->size >= 0x10000000) {
331 				/* paddr_8 - paddr_15 */
332 				host->devtype_data->send_addr(host,
333 						(page_addr >> 8) & 0xff,
334 						false);
335 				host->devtype_data->send_addr(host,
336 						(page_addr >> 16) & 0xff,
337 						true);
338 			} else
339 				/* paddr_8 - paddr_15 */
340 				host->devtype_data->send_addr(host,
341 						(page_addr >> 8) & 0xff, true);
342 		} else {
343 			if (nand_chip->options & NAND_ROW_ADDR_3) {
344 				/* paddr_8 - paddr_15 */
345 				host->devtype_data->send_addr(host,
346 						(page_addr >> 8) & 0xff,
347 						false);
348 				host->devtype_data->send_addr(host,
349 						(page_addr >> 16) & 0xff,
350 						true);
351 			} else
352 				/* paddr_8 - paddr_15 */
353 				host->devtype_data->send_addr(host,
354 						(page_addr >> 8) & 0xff, true);
355 		}
356 	}
357 }
358 
359 static int check_int_v3(struct mxc_nand_host *host)
360 {
361 	uint32_t tmp;
362 
363 	tmp = readl(NFC_V3_IPC);
364 	if (!(tmp & NFC_V3_IPC_INT))
365 		return 0;
366 
367 	tmp &= ~NFC_V3_IPC_INT;
368 	writel(tmp, NFC_V3_IPC);
369 
370 	return 1;
371 }
372 
373 static int check_int_v1_v2(struct mxc_nand_host *host)
374 {
375 	uint32_t tmp;
376 
377 	tmp = readw(NFC_V1_V2_CONFIG2);
378 	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
379 		return 0;
380 
381 	if (!host->devtype_data->irqpending_quirk)
382 		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
383 
384 	return 1;
385 }
386 
387 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
388 {
389 	uint16_t tmp;
390 
391 	tmp = readw(NFC_V1_V2_CONFIG1);
392 
393 	if (activate)
394 		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
395 	else
396 		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
397 
398 	writew(tmp, NFC_V1_V2_CONFIG1);
399 }
400 
401 static void irq_control_v3(struct mxc_nand_host *host, int activate)
402 {
403 	uint32_t tmp;
404 
405 	tmp = readl(NFC_V3_CONFIG2);
406 
407 	if (activate)
408 		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
409 	else
410 		tmp |= NFC_V3_CONFIG2_INT_MSK;
411 
412 	writel(tmp, NFC_V3_CONFIG2);
413 }
414 
415 static void irq_control(struct mxc_nand_host *host, int activate)
416 {
417 	if (host->devtype_data->irqpending_quirk) {
418 		if (activate)
419 			enable_irq(host->irq);
420 		else
421 			disable_irq_nosync(host->irq);
422 	} else {
423 		host->devtype_data->irq_control(host, activate);
424 	}
425 }
426 
427 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
428 {
429 	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
430 }
431 
432 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
433 {
434 	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
435 }
436 
437 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
438 {
439 	return readl(NFC_V3_ECC_STATUS_RESULT);
440 }
441 
442 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
443 {
444 	struct mxc_nand_host *host = dev_id;
445 
446 	if (!host->devtype_data->check_int(host))
447 		return IRQ_NONE;
448 
449 	irq_control(host, 0);
450 
451 	complete(&host->op_completion);
452 
453 	return IRQ_HANDLED;
454 }
455 
456 /* This function polls the NANDFC to wait for the basic operation to
457  * complete by checking the INT bit of config2 register.
458  */
459 static int wait_op_done(struct mxc_nand_host *host, int useirq)
460 {
461 	int ret = 0;
462 
463 	/*
464 	 * If operation is already complete, don't bother to setup an irq or a
465 	 * loop.
466 	 */
467 	if (host->devtype_data->check_int(host))
468 		return 0;
469 
470 	if (useirq) {
471 		unsigned long timeout;
472 
473 		reinit_completion(&host->op_completion);
474 
475 		irq_control(host, 1);
476 
477 		timeout = wait_for_completion_timeout(&host->op_completion, HZ);
478 		if (!timeout && !host->devtype_data->check_int(host)) {
479 			dev_dbg(host->dev, "timeout waiting for irq\n");
480 			ret = -ETIMEDOUT;
481 		}
482 	} else {
483 		int max_retries = 8000;
484 		int done;
485 
486 		do {
487 			udelay(1);
488 
489 			done = host->devtype_data->check_int(host);
490 			if (done)
491 				break;
492 
493 		} while (--max_retries);
494 
495 		if (!done) {
496 			dev_dbg(host->dev, "timeout polling for completion\n");
497 			ret = -ETIMEDOUT;
498 		}
499 	}
500 
501 	WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
502 
503 	return ret;
504 }
505 
506 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
507 {
508 	/* fill command */
509 	writel(cmd, NFC_V3_FLASH_CMD);
510 
511 	/* send out command */
512 	writel(NFC_CMD, NFC_V3_LAUNCH);
513 
514 	/* Wait for operation to complete */
515 	wait_op_done(host, useirq);
516 }
517 
518 /* This function issues the specified command to the NAND device and
519  * waits for completion. */
520 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
521 {
522 	dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
523 
524 	writew(cmd, NFC_V1_V2_FLASH_CMD);
525 	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
526 
527 	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
528 		int max_retries = 100;
529 		/* Reset completion is indicated by NFC_CONFIG2 */
530 		/* being set to 0 */
531 		while (max_retries-- > 0) {
532 			if (readw(NFC_V1_V2_CONFIG2) == 0) {
533 				break;
534 			}
535 			udelay(1);
536 		}
537 		if (max_retries < 0)
538 			dev_dbg(host->dev, "%s: RESET failed\n", __func__);
539 	} else {
540 		/* Wait for operation to complete */
541 		wait_op_done(host, useirq);
542 	}
543 }
544 
545 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
546 {
547 	/* fill address */
548 	writel(addr, NFC_V3_FLASH_ADDR0);
549 
550 	/* send out address */
551 	writel(NFC_ADDR, NFC_V3_LAUNCH);
552 
553 	wait_op_done(host, 0);
554 }
555 
556 /* This function sends an address (or partial address) to the
557  * NAND device. The address is used to select the source/destination for
558  * a NAND command. */
559 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
560 {
561 	dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
562 
563 	writew(addr, NFC_V1_V2_FLASH_ADDR);
564 	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
565 
566 	/* Wait for operation to complete */
567 	wait_op_done(host, islast);
568 }
569 
570 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
571 {
572 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
573 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
574 	uint32_t tmp;
575 
576 	tmp = readl(NFC_V3_CONFIG1);
577 	tmp &= ~(7 << 4);
578 	writel(tmp, NFC_V3_CONFIG1);
579 
580 	/* transfer data from NFC ram to nand */
581 	writel(ops, NFC_V3_LAUNCH);
582 
583 	wait_op_done(host, false);
584 }
585 
586 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
587 {
588 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
589 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
590 
591 	/* NANDFC buffer 0 is used for page read/write */
592 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
593 
594 	writew(ops, NFC_V1_V2_CONFIG2);
595 
596 	/* Wait for operation to complete */
597 	wait_op_done(host, true);
598 }
599 
600 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
601 {
602 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
603 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
604 	int bufs, i;
605 
606 	if (mtd->writesize > 512)
607 		bufs = 4;
608 	else
609 		bufs = 1;
610 
611 	for (i = 0; i < bufs; i++) {
612 
613 		/* NANDFC buffer 0 is used for page read/write */
614 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
615 
616 		writew(ops, NFC_V1_V2_CONFIG2);
617 
618 		/* Wait for operation to complete */
619 		wait_op_done(host, true);
620 	}
621 }
622 
623 static void send_read_id_v3(struct mxc_nand_host *host)
624 {
625 	/* Read ID into main buffer */
626 	writel(NFC_ID, NFC_V3_LAUNCH);
627 
628 	wait_op_done(host, true);
629 
630 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
631 }
632 
633 /* Request the NANDFC to perform a read of the NAND device ID. */
634 static void send_read_id_v1_v2(struct mxc_nand_host *host)
635 {
636 	/* NANDFC buffer 0 is used for device ID output */
637 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
638 
639 	writew(NFC_ID, NFC_V1_V2_CONFIG2);
640 
641 	/* Wait for operation to complete */
642 	wait_op_done(host, true);
643 
644 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
645 }
646 
647 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
648 {
649 	writew(NFC_STATUS, NFC_V3_LAUNCH);
650 	wait_op_done(host, true);
651 
652 	return readl(NFC_V3_CONFIG1) >> 16;
653 }
654 
655 /* This function requests the NANDFC to perform a read of the
656  * NAND device status and returns the current status. */
657 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
658 {
659 	void __iomem *main_buf = host->main_area0;
660 	uint32_t store;
661 	uint16_t ret;
662 
663 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
664 
665 	/*
666 	 * The device status is stored in main_area0. To
667 	 * prevent corruption of the buffer save the value
668 	 * and restore it afterwards.
669 	 */
670 	store = readl(main_buf);
671 
672 	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
673 	wait_op_done(host, true);
674 
675 	ret = readw(main_buf);
676 
677 	writel(store, main_buf);
678 
679 	return ret;
680 }
681 
682 static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
683 {
684 	struct mxc_nand_host *host = nand_get_controller_data(chip);
685 	uint16_t config1;
686 
687 	if (chip->ecc.mode != NAND_ECC_HW)
688 		return;
689 
690 	config1 = readw(NFC_V1_V2_CONFIG1);
691 
692 	if (enable)
693 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
694 	else
695 		config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
696 
697 	writew(config1, NFC_V1_V2_CONFIG1);
698 }
699 
700 static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
701 {
702 	struct mxc_nand_host *host = nand_get_controller_data(chip);
703 	uint32_t config2;
704 
705 	if (chip->ecc.mode != NAND_ECC_HW)
706 		return;
707 
708 	config2 = readl(NFC_V3_CONFIG2);
709 
710 	if (enable)
711 		config2 |= NFC_V3_CONFIG2_ECC_EN;
712 	else
713 		config2 &= ~NFC_V3_CONFIG2_ECC_EN;
714 
715 	writel(config2, NFC_V3_CONFIG2);
716 }
717 
718 /* This functions is used by upper layer to checks if device is ready */
719 static int mxc_nand_dev_ready(struct mtd_info *mtd)
720 {
721 	/*
722 	 * NFC handles R/B internally. Therefore, this function
723 	 * always returns status as ready.
724 	 */
725 	return 1;
726 }
727 
728 static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
729 				 bool ecc, int page)
730 {
731 	struct mtd_info *mtd = nand_to_mtd(chip);
732 	struct mxc_nand_host *host = nand_get_controller_data(chip);
733 	unsigned int bitflips_corrected = 0;
734 	int no_subpages;
735 	int i;
736 
737 	host->devtype_data->enable_hwecc(chip, ecc);
738 
739 	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
740 	mxc_do_addr_cycle(mtd, 0, page);
741 
742 	if (mtd->writesize > 512)
743 		host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
744 
745 	no_subpages = mtd->writesize >> 9;
746 
747 	for (i = 0; i < no_subpages; i++) {
748 		uint16_t ecc_stats;
749 
750 		/* NANDFC buffer 0 is used for page read/write */
751 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
752 
753 		writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
754 
755 		/* Wait for operation to complete */
756 		wait_op_done(host, true);
757 
758 		ecc_stats = get_ecc_status_v1(host);
759 
760 		ecc_stats >>= 2;
761 
762 		if (buf && ecc) {
763 			switch (ecc_stats & 0x3) {
764 			case 0:
765 			default:
766 				break;
767 			case 1:
768 				mtd->ecc_stats.corrected++;
769 				bitflips_corrected = 1;
770 				break;
771 			case 2:
772 				mtd->ecc_stats.failed++;
773 				break;
774 			}
775 		}
776 	}
777 
778 	if (buf)
779 		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
780 	if (oob)
781 		copy_spare(mtd, true, oob);
782 
783 	return bitflips_corrected;
784 }
785 
786 static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
787 				    void *oob, bool ecc, int page)
788 {
789 	struct mtd_info *mtd = nand_to_mtd(chip);
790 	struct mxc_nand_host *host = nand_get_controller_data(chip);
791 	unsigned int max_bitflips = 0;
792 	u32 ecc_stat, err;
793 	int no_subpages;
794 	u8 ecc_bit_mask, err_limit;
795 
796 	host->devtype_data->enable_hwecc(chip, ecc);
797 
798 	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
799 	mxc_do_addr_cycle(mtd, 0, page);
800 
801 	if (mtd->writesize > 512)
802 		host->devtype_data->send_cmd(host,
803 				NAND_CMD_READSTART, true);
804 
805 	host->devtype_data->send_page(mtd, NFC_OUTPUT);
806 
807 	if (buf)
808 		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
809 	if (oob)
810 		copy_spare(mtd, true, oob);
811 
812 	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
813 	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
814 
815 	no_subpages = mtd->writesize >> 9;
816 
817 	ecc_stat = host->devtype_data->get_ecc_status(host);
818 
819 	do {
820 		err = ecc_stat & ecc_bit_mask;
821 		if (err > err_limit) {
822 			mtd->ecc_stats.failed++;
823 		} else {
824 			mtd->ecc_stats.corrected += err;
825 			max_bitflips = max_t(unsigned int, max_bitflips, err);
826 		}
827 
828 		ecc_stat >>= 4;
829 	} while (--no_subpages);
830 
831 	return max_bitflips;
832 }
833 
834 static int mxc_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
835 			      uint8_t *buf, int oob_required, int page)
836 {
837 	struct mxc_nand_host *host = nand_get_controller_data(chip);
838 	void *oob_buf;
839 
840 	if (oob_required)
841 		oob_buf = chip->oob_poi;
842 	else
843 		oob_buf = NULL;
844 
845 	return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
846 }
847 
848 static int mxc_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
849 				  uint8_t *buf, int oob_required, int page)
850 {
851 	struct mxc_nand_host *host = nand_get_controller_data(chip);
852 	void *oob_buf;
853 
854 	if (oob_required)
855 		oob_buf = chip->oob_poi;
856 	else
857 		oob_buf = NULL;
858 
859 	return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
860 }
861 
862 static int mxc_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
863 			     int page)
864 {
865 	struct mxc_nand_host *host = nand_get_controller_data(chip);
866 
867 	return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
868 					     page);
869 }
870 
871 static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
872 			       bool ecc, int page)
873 {
874 	struct mtd_info *mtd = nand_to_mtd(chip);
875 	struct mxc_nand_host *host = nand_get_controller_data(chip);
876 
877 	host->devtype_data->enable_hwecc(chip, ecc);
878 
879 	host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
880 	mxc_do_addr_cycle(mtd, 0, page);
881 
882 	memcpy32_toio(host->main_area0, buf, mtd->writesize);
883 	copy_spare(mtd, false, chip->oob_poi);
884 
885 	host->devtype_data->send_page(mtd, NFC_INPUT);
886 	host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
887 	mxc_do_addr_cycle(mtd, 0, page);
888 
889 	return 0;
890 }
891 
892 static int mxc_nand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
893 				   const uint8_t *buf, int oob_required,
894 				   int page)
895 {
896 	return mxc_nand_write_page(chip, buf, true, page);
897 }
898 
899 static int mxc_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
900 				   const uint8_t *buf, int oob_required, int page)
901 {
902 	return mxc_nand_write_page(chip, buf, false, page);
903 }
904 
905 static int mxc_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
906 			      int page)
907 {
908 	struct mxc_nand_host *host = nand_get_controller_data(chip);
909 
910 	memset(host->data_buf, 0xff, mtd->writesize);
911 
912 	return mxc_nand_write_page(chip, host->data_buf, false, page);
913 }
914 
915 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
916 {
917 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
918 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
919 	uint8_t ret;
920 
921 	/* Check for status request */
922 	if (host->status_request)
923 		return host->devtype_data->get_dev_status(host) & 0xFF;
924 
925 	if (nand_chip->options & NAND_BUSWIDTH_16) {
926 		/* only take the lower byte of each word */
927 		ret = *(uint16_t *)(host->data_buf + host->buf_start);
928 
929 		host->buf_start += 2;
930 	} else {
931 		ret = *(uint8_t *)(host->data_buf + host->buf_start);
932 		host->buf_start++;
933 	}
934 
935 	dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
936 	return ret;
937 }
938 
939 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
940 {
941 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
942 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
943 	uint16_t ret;
944 
945 	ret = *(uint16_t *)(host->data_buf + host->buf_start);
946 	host->buf_start += 2;
947 
948 	return ret;
949 }
950 
951 /* Write data of length len to buffer buf. The data to be
952  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
953  * Operation by the NFC, the data is written to NAND Flash */
954 static void mxc_nand_write_buf(struct mtd_info *mtd,
955 				const u_char *buf, int len)
956 {
957 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
958 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
959 	u16 col = host->buf_start;
960 	int n = mtd->oobsize + mtd->writesize - col;
961 
962 	n = min(n, len);
963 
964 	memcpy(host->data_buf + col, buf, n);
965 
966 	host->buf_start += n;
967 }
968 
969 /* Read the data buffer from the NAND Flash. To read the data from NAND
970  * Flash first the data output cycle is initiated by the NFC, which copies
971  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
972  */
973 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
974 {
975 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
976 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
977 	u16 col = host->buf_start;
978 	int n = mtd->oobsize + mtd->writesize - col;
979 
980 	n = min(n, len);
981 
982 	memcpy(buf, host->data_buf + col, n);
983 
984 	host->buf_start += n;
985 }
986 
987 /* This function is used by upper layer for select and
988  * deselect of the NAND chip */
989 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
990 {
991 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
992 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
993 
994 	if (chip == -1) {
995 		/* Disable the NFC clock */
996 		if (host->clk_act) {
997 			clk_disable_unprepare(host->clk);
998 			host->clk_act = 0;
999 		}
1000 		return;
1001 	}
1002 
1003 	if (!host->clk_act) {
1004 		/* Enable the NFC clock */
1005 		clk_prepare_enable(host->clk);
1006 		host->clk_act = 1;
1007 	}
1008 }
1009 
1010 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
1011 {
1012 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1013 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1014 
1015 	if (chip == -1) {
1016 		/* Disable the NFC clock */
1017 		if (host->clk_act) {
1018 			clk_disable_unprepare(host->clk);
1019 			host->clk_act = 0;
1020 		}
1021 		return;
1022 	}
1023 
1024 	if (!host->clk_act) {
1025 		/* Enable the NFC clock */
1026 		clk_prepare_enable(host->clk);
1027 		host->clk_act = 1;
1028 	}
1029 
1030 	host->active_cs = chip;
1031 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
1032 }
1033 
1034 #define MXC_V1_ECCBYTES		5
1035 
1036 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1037 				struct mtd_oob_region *oobregion)
1038 {
1039 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1040 
1041 	if (section >= nand_chip->ecc.steps)
1042 		return -ERANGE;
1043 
1044 	oobregion->offset = (section * 16) + 6;
1045 	oobregion->length = MXC_V1_ECCBYTES;
1046 
1047 	return 0;
1048 }
1049 
1050 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1051 				 struct mtd_oob_region *oobregion)
1052 {
1053 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1054 
1055 	if (section > nand_chip->ecc.steps)
1056 		return -ERANGE;
1057 
1058 	if (!section) {
1059 		if (mtd->writesize <= 512) {
1060 			oobregion->offset = 0;
1061 			oobregion->length = 5;
1062 		} else {
1063 			oobregion->offset = 2;
1064 			oobregion->length = 4;
1065 		}
1066 	} else {
1067 		oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1068 		if (section < nand_chip->ecc.steps)
1069 			oobregion->length = (section * 16) + 6 -
1070 					    oobregion->offset;
1071 		else
1072 			oobregion->length = mtd->oobsize - oobregion->offset;
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1079 	.ecc = mxc_v1_ooblayout_ecc,
1080 	.free = mxc_v1_ooblayout_free,
1081 };
1082 
1083 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1084 				struct mtd_oob_region *oobregion)
1085 {
1086 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1087 	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1088 
1089 	if (section >= nand_chip->ecc.steps)
1090 		return -ERANGE;
1091 
1092 	oobregion->offset = (section * stepsize) + 7;
1093 	oobregion->length = nand_chip->ecc.bytes;
1094 
1095 	return 0;
1096 }
1097 
1098 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1099 				 struct mtd_oob_region *oobregion)
1100 {
1101 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1102 	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1103 
1104 	if (section >= nand_chip->ecc.steps)
1105 		return -ERANGE;
1106 
1107 	if (!section) {
1108 		if (mtd->writesize <= 512) {
1109 			oobregion->offset = 0;
1110 			oobregion->length = 5;
1111 		} else {
1112 			oobregion->offset = 2;
1113 			oobregion->length = 4;
1114 		}
1115 	} else {
1116 		oobregion->offset = section * stepsize;
1117 		oobregion->length = 7;
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1124 	.ecc = mxc_v2_ooblayout_ecc,
1125 	.free = mxc_v2_ooblayout_free,
1126 };
1127 
1128 /*
1129  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1130  * on how much oob the nand chip has. For 8bit ecc we need at least
1131  * 26 bytes of oob data per 512 byte block.
1132  */
1133 static int get_eccsize(struct mtd_info *mtd)
1134 {
1135 	int oobbytes_per_512 = 0;
1136 
1137 	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1138 
1139 	if (oobbytes_per_512 < 26)
1140 		return 4;
1141 	else
1142 		return 8;
1143 }
1144 
1145 static void preset_v1(struct mtd_info *mtd)
1146 {
1147 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1148 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1149 	uint16_t config1 = 0;
1150 
1151 	if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
1152 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1153 
1154 	if (!host->devtype_data->irqpending_quirk)
1155 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1156 
1157 	host->eccsize = 1;
1158 
1159 	writew(config1, NFC_V1_V2_CONFIG1);
1160 	/* preset operation */
1161 
1162 	/* Unlock the internal RAM Buffer */
1163 	writew(0x2, NFC_V1_V2_CONFIG);
1164 
1165 	/* Blocks to be unlocked */
1166 	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1167 	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1168 
1169 	/* Unlock Block Command for given address range */
1170 	writew(0x4, NFC_V1_V2_WRPROT);
1171 }
1172 
1173 static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd, int csline,
1174 					const struct nand_data_interface *conf)
1175 {
1176 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1177 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1178 	int tRC_min_ns, tRC_ps, ret;
1179 	unsigned long rate, rate_round;
1180 	const struct nand_sdr_timings *timings;
1181 	u16 config1;
1182 
1183 	timings = nand_get_sdr_timings(conf);
1184 	if (IS_ERR(timings))
1185 		return -ENOTSUPP;
1186 
1187 	config1 = readw(NFC_V1_V2_CONFIG1);
1188 
1189 	tRC_min_ns = timings->tRC_min / 1000;
1190 	rate = 1000000000 / tRC_min_ns;
1191 
1192 	/*
1193 	 * For tRC < 30ns we have to use EDO mode. In this case the controller
1194 	 * does one access per clock cycle. Otherwise the controller does one
1195 	 * access in two clock cycles, thus we have to double the rate to the
1196 	 * controller.
1197 	 */
1198 	if (tRC_min_ns < 30) {
1199 		rate_round = clk_round_rate(host->clk, rate);
1200 		config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1201 		tRC_ps = 1000000000 / (rate_round / 1000);
1202 	} else {
1203 		rate *= 2;
1204 		rate_round = clk_round_rate(host->clk, rate);
1205 		config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1206 		tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1207 	}
1208 
1209 	/*
1210 	 * The timing values compared against are from the i.MX25 Automotive
1211 	 * datasheet, Table 50. NFC Timing Parameters
1212 	 */
1213 	if (timings->tCLS_min > tRC_ps - 1000 ||
1214 	    timings->tCLH_min > tRC_ps - 2000 ||
1215 	    timings->tCS_min > tRC_ps - 1000 ||
1216 	    timings->tCH_min > tRC_ps - 2000 ||
1217 	    timings->tWP_min > tRC_ps - 1500 ||
1218 	    timings->tALS_min > tRC_ps ||
1219 	    timings->tALH_min > tRC_ps - 3000 ||
1220 	    timings->tDS_min > tRC_ps ||
1221 	    timings->tDH_min > tRC_ps - 5000 ||
1222 	    timings->tWC_min > 2 * tRC_ps ||
1223 	    timings->tWH_min > tRC_ps - 2500 ||
1224 	    timings->tRR_min > 6 * tRC_ps ||
1225 	    timings->tRP_min > 3 * tRC_ps / 2 ||
1226 	    timings->tRC_min > 2 * tRC_ps ||
1227 	    timings->tREH_min > (tRC_ps / 2) - 2500) {
1228 		dev_dbg(host->dev, "Timing out of bounds\n");
1229 		return -EINVAL;
1230 	}
1231 
1232 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1233 		return 0;
1234 
1235 	ret = clk_set_rate(host->clk, rate);
1236 	if (ret)
1237 		return ret;
1238 
1239 	writew(config1, NFC_V1_V2_CONFIG1);
1240 
1241 	dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1242 		config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1243 		"normal");
1244 
1245 	return 0;
1246 }
1247 
1248 static void preset_v2(struct mtd_info *mtd)
1249 {
1250 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1251 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1252 	uint16_t config1 = 0;
1253 
1254 	config1 |= NFC_V2_CONFIG1_FP_INT;
1255 
1256 	if (!host->devtype_data->irqpending_quirk)
1257 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1258 
1259 	if (mtd->writesize) {
1260 		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1261 
1262 		if (nand_chip->ecc.mode == NAND_ECC_HW)
1263 			config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1264 
1265 		host->eccsize = get_eccsize(mtd);
1266 		if (host->eccsize == 4)
1267 			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1268 
1269 		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1270 	} else {
1271 		host->eccsize = 1;
1272 	}
1273 
1274 	writew(config1, NFC_V1_V2_CONFIG1);
1275 	/* preset operation */
1276 
1277 	/* spare area size in 16-bit half-words */
1278 	writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1279 
1280 	/* Unlock the internal RAM Buffer */
1281 	writew(0x2, NFC_V1_V2_CONFIG);
1282 
1283 	/* Blocks to be unlocked */
1284 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1285 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1286 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1287 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1288 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1289 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1290 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1291 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1292 
1293 	/* Unlock Block Command for given address range */
1294 	writew(0x4, NFC_V1_V2_WRPROT);
1295 }
1296 
1297 static void preset_v3(struct mtd_info *mtd)
1298 {
1299 	struct nand_chip *chip = mtd_to_nand(mtd);
1300 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1301 	uint32_t config2, config3;
1302 	int i, addr_phases;
1303 
1304 	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1305 	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1306 
1307 	/* Unlock the internal RAM Buffer */
1308 	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1309 			NFC_V3_WRPROT);
1310 
1311 	/* Blocks to be unlocked */
1312 	for (i = 0; i < NAND_MAX_CHIPS; i++)
1313 		writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1314 
1315 	writel(0, NFC_V3_IPC);
1316 
1317 	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1318 		NFC_V3_CONFIG2_2CMD_PHASES |
1319 		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1320 		NFC_V3_CONFIG2_ST_CMD(0x70) |
1321 		NFC_V3_CONFIG2_INT_MSK |
1322 		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1323 
1324 	addr_phases = fls(chip->pagemask) >> 3;
1325 
1326 	if (mtd->writesize == 2048) {
1327 		config2 |= NFC_V3_CONFIG2_PS_2048;
1328 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1329 	} else if (mtd->writesize == 4096) {
1330 		config2 |= NFC_V3_CONFIG2_PS_4096;
1331 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1332 	} else {
1333 		config2 |= NFC_V3_CONFIG2_PS_512;
1334 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1335 	}
1336 
1337 	if (mtd->writesize) {
1338 		if (chip->ecc.mode == NAND_ECC_HW)
1339 			config2 |= NFC_V3_CONFIG2_ECC_EN;
1340 
1341 		config2 |= NFC_V3_CONFIG2_PPB(
1342 				ffs(mtd->erasesize / mtd->writesize) - 6,
1343 				host->devtype_data->ppb_shift);
1344 		host->eccsize = get_eccsize(mtd);
1345 		if (host->eccsize == 8)
1346 			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1347 	}
1348 
1349 	writel(config2, NFC_V3_CONFIG2);
1350 
1351 	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1352 			NFC_V3_CONFIG3_NO_SDMA |
1353 			NFC_V3_CONFIG3_RBB_MODE |
1354 			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1355 			NFC_V3_CONFIG3_ADD_OP(0);
1356 
1357 	if (!(chip->options & NAND_BUSWIDTH_16))
1358 		config3 |= NFC_V3_CONFIG3_FW8;
1359 
1360 	writel(config3, NFC_V3_CONFIG3);
1361 
1362 	writel(0, NFC_V3_DELAY_LINE);
1363 }
1364 
1365 /* Used by the upper layer to write command to NAND Flash for
1366  * different operations to be carried out on NAND Flash */
1367 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1368 				int column, int page_addr)
1369 {
1370 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1371 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1372 
1373 	dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1374 	      command, column, page_addr);
1375 
1376 	/* Reset command state information */
1377 	host->status_request = false;
1378 
1379 	/* Command pre-processing step */
1380 	switch (command) {
1381 	case NAND_CMD_RESET:
1382 		host->devtype_data->preset(mtd);
1383 		host->devtype_data->send_cmd(host, command, false);
1384 		break;
1385 
1386 	case NAND_CMD_STATUS:
1387 		host->buf_start = 0;
1388 		host->status_request = true;
1389 
1390 		host->devtype_data->send_cmd(host, command, true);
1391 		WARN_ONCE(column != -1 || page_addr != -1,
1392 			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1393 			  command, column, page_addr);
1394 		mxc_do_addr_cycle(mtd, column, page_addr);
1395 		break;
1396 
1397 	case NAND_CMD_READID:
1398 		host->devtype_data->send_cmd(host, command, true);
1399 		mxc_do_addr_cycle(mtd, column, page_addr);
1400 		host->devtype_data->send_read_id(host);
1401 		host->buf_start = 0;
1402 		break;
1403 
1404 	case NAND_CMD_ERASE1:
1405 	case NAND_CMD_ERASE2:
1406 		host->devtype_data->send_cmd(host, command, false);
1407 		WARN_ONCE(column != -1,
1408 			  "Unexpected column value (cmd=%u, col=%d)\n",
1409 			  command, column);
1410 		mxc_do_addr_cycle(mtd, column, page_addr);
1411 
1412 		break;
1413 	case NAND_CMD_PARAM:
1414 		host->devtype_data->send_cmd(host, command, false);
1415 		mxc_do_addr_cycle(mtd, column, page_addr);
1416 		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1417 		memcpy32_fromio(host->data_buf, host->main_area0, 512);
1418 		host->buf_start = 0;
1419 		break;
1420 	default:
1421 		WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1422 			  command);
1423 		break;
1424 	}
1425 }
1426 
1427 static int mxc_nand_set_features(struct mtd_info *mtd, struct nand_chip *chip,
1428 				 int addr, u8 *subfeature_param)
1429 {
1430 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1431 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1432 	int i;
1433 
1434 	host->buf_start = 0;
1435 
1436 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1437 		chip->write_byte(mtd, subfeature_param[i]);
1438 
1439 	memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1440 	host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1441 	mxc_do_addr_cycle(mtd, addr, -1);
1442 	host->devtype_data->send_page(mtd, NFC_INPUT);
1443 
1444 	return 0;
1445 }
1446 
1447 static int mxc_nand_get_features(struct mtd_info *mtd, struct nand_chip *chip,
1448 				 int addr, u8 *subfeature_param)
1449 {
1450 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1451 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1452 	int i;
1453 
1454 	host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1455 	mxc_do_addr_cycle(mtd, addr, -1);
1456 	host->devtype_data->send_page(mtd, NFC_OUTPUT);
1457 	memcpy32_fromio(host->data_buf, host->main_area0, 512);
1458 	host->buf_start = 0;
1459 
1460 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1461 		*subfeature_param++ = chip->read_byte(mtd);
1462 
1463 	return 0;
1464 }
1465 
1466 /*
1467  * The generic flash bbt decriptors overlap with our ecc
1468  * hardware, so define some i.MX specific ones.
1469  */
1470 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1471 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1472 
1473 static struct nand_bbt_descr bbt_main_descr = {
1474 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1475 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1476 	.offs = 0,
1477 	.len = 4,
1478 	.veroffs = 4,
1479 	.maxblocks = 4,
1480 	.pattern = bbt_pattern,
1481 };
1482 
1483 static struct nand_bbt_descr bbt_mirror_descr = {
1484 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1485 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1486 	.offs = 0,
1487 	.len = 4,
1488 	.veroffs = 4,
1489 	.maxblocks = 4,
1490 	.pattern = mirror_pattern,
1491 };
1492 
1493 /* v1 + irqpending_quirk: i.MX21 */
1494 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1495 	.preset = preset_v1,
1496 	.read_page = mxc_nand_read_page_v1,
1497 	.send_cmd = send_cmd_v1_v2,
1498 	.send_addr = send_addr_v1_v2,
1499 	.send_page = send_page_v1,
1500 	.send_read_id = send_read_id_v1_v2,
1501 	.get_dev_status = get_dev_status_v1_v2,
1502 	.check_int = check_int_v1_v2,
1503 	.irq_control = irq_control_v1_v2,
1504 	.get_ecc_status = get_ecc_status_v1,
1505 	.ooblayout = &mxc_v1_ooblayout_ops,
1506 	.select_chip = mxc_nand_select_chip_v1_v3,
1507 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1508 	.irqpending_quirk = 1,
1509 	.needs_ip = 0,
1510 	.regs_offset = 0xe00,
1511 	.spare0_offset = 0x800,
1512 	.spare_len = 16,
1513 	.eccbytes = 3,
1514 	.eccsize = 1,
1515 };
1516 
1517 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1518 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1519 	.preset = preset_v1,
1520 	.read_page = mxc_nand_read_page_v1,
1521 	.send_cmd = send_cmd_v1_v2,
1522 	.send_addr = send_addr_v1_v2,
1523 	.send_page = send_page_v1,
1524 	.send_read_id = send_read_id_v1_v2,
1525 	.get_dev_status = get_dev_status_v1_v2,
1526 	.check_int = check_int_v1_v2,
1527 	.irq_control = irq_control_v1_v2,
1528 	.get_ecc_status = get_ecc_status_v1,
1529 	.ooblayout = &mxc_v1_ooblayout_ops,
1530 	.select_chip = mxc_nand_select_chip_v1_v3,
1531 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1532 	.irqpending_quirk = 0,
1533 	.needs_ip = 0,
1534 	.regs_offset = 0xe00,
1535 	.spare0_offset = 0x800,
1536 	.axi_offset = 0,
1537 	.spare_len = 16,
1538 	.eccbytes = 3,
1539 	.eccsize = 1,
1540 };
1541 
1542 /* v21: i.MX25, i.MX35 */
1543 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1544 	.preset = preset_v2,
1545 	.read_page = mxc_nand_read_page_v2_v3,
1546 	.send_cmd = send_cmd_v1_v2,
1547 	.send_addr = send_addr_v1_v2,
1548 	.send_page = send_page_v2,
1549 	.send_read_id = send_read_id_v1_v2,
1550 	.get_dev_status = get_dev_status_v1_v2,
1551 	.check_int = check_int_v1_v2,
1552 	.irq_control = irq_control_v1_v2,
1553 	.get_ecc_status = get_ecc_status_v2,
1554 	.ooblayout = &mxc_v2_ooblayout_ops,
1555 	.select_chip = mxc_nand_select_chip_v2,
1556 	.setup_data_interface = mxc_nand_v2_setup_data_interface,
1557 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1558 	.irqpending_quirk = 0,
1559 	.needs_ip = 0,
1560 	.regs_offset = 0x1e00,
1561 	.spare0_offset = 0x1000,
1562 	.axi_offset = 0,
1563 	.spare_len = 64,
1564 	.eccbytes = 9,
1565 	.eccsize = 0,
1566 };
1567 
1568 /* v3.2a: i.MX51 */
1569 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1570 	.preset = preset_v3,
1571 	.read_page = mxc_nand_read_page_v2_v3,
1572 	.send_cmd = send_cmd_v3,
1573 	.send_addr = send_addr_v3,
1574 	.send_page = send_page_v3,
1575 	.send_read_id = send_read_id_v3,
1576 	.get_dev_status = get_dev_status_v3,
1577 	.check_int = check_int_v3,
1578 	.irq_control = irq_control_v3,
1579 	.get_ecc_status = get_ecc_status_v3,
1580 	.ooblayout = &mxc_v2_ooblayout_ops,
1581 	.select_chip = mxc_nand_select_chip_v1_v3,
1582 	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1583 	.irqpending_quirk = 0,
1584 	.needs_ip = 1,
1585 	.regs_offset = 0,
1586 	.spare0_offset = 0x1000,
1587 	.axi_offset = 0x1e00,
1588 	.spare_len = 64,
1589 	.eccbytes = 0,
1590 	.eccsize = 0,
1591 	.ppb_shift = 7,
1592 };
1593 
1594 /* v3.2b: i.MX53 */
1595 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1596 	.preset = preset_v3,
1597 	.read_page = mxc_nand_read_page_v2_v3,
1598 	.send_cmd = send_cmd_v3,
1599 	.send_addr = send_addr_v3,
1600 	.send_page = send_page_v3,
1601 	.send_read_id = send_read_id_v3,
1602 	.get_dev_status = get_dev_status_v3,
1603 	.check_int = check_int_v3,
1604 	.irq_control = irq_control_v3,
1605 	.get_ecc_status = get_ecc_status_v3,
1606 	.ooblayout = &mxc_v2_ooblayout_ops,
1607 	.select_chip = mxc_nand_select_chip_v1_v3,
1608 	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1609 	.irqpending_quirk = 0,
1610 	.needs_ip = 1,
1611 	.regs_offset = 0,
1612 	.spare0_offset = 0x1000,
1613 	.axi_offset = 0x1e00,
1614 	.spare_len = 64,
1615 	.eccbytes = 0,
1616 	.eccsize = 0,
1617 	.ppb_shift = 8,
1618 };
1619 
1620 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1621 {
1622 	return host->devtype_data == &imx21_nand_devtype_data;
1623 }
1624 
1625 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1626 {
1627 	return host->devtype_data == &imx27_nand_devtype_data;
1628 }
1629 
1630 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1631 {
1632 	return host->devtype_data == &imx25_nand_devtype_data;
1633 }
1634 
1635 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1636 {
1637 	return host->devtype_data == &imx51_nand_devtype_data;
1638 }
1639 
1640 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1641 {
1642 	return host->devtype_data == &imx53_nand_devtype_data;
1643 }
1644 
1645 static const struct platform_device_id mxcnd_devtype[] = {
1646 	{
1647 		.name = "imx21-nand",
1648 		.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1649 	}, {
1650 		.name = "imx27-nand",
1651 		.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1652 	}, {
1653 		.name = "imx25-nand",
1654 		.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1655 	}, {
1656 		.name = "imx51-nand",
1657 		.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1658 	}, {
1659 		.name = "imx53-nand",
1660 		.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1661 	}, {
1662 		/* sentinel */
1663 	}
1664 };
1665 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1666 
1667 #ifdef CONFIG_OF
1668 static const struct of_device_id mxcnd_dt_ids[] = {
1669 	{
1670 		.compatible = "fsl,imx21-nand",
1671 		.data = &imx21_nand_devtype_data,
1672 	}, {
1673 		.compatible = "fsl,imx27-nand",
1674 		.data = &imx27_nand_devtype_data,
1675 	}, {
1676 		.compatible = "fsl,imx25-nand",
1677 		.data = &imx25_nand_devtype_data,
1678 	}, {
1679 		.compatible = "fsl,imx51-nand",
1680 		.data = &imx51_nand_devtype_data,
1681 	}, {
1682 		.compatible = "fsl,imx53-nand",
1683 		.data = &imx53_nand_devtype_data,
1684 	},
1685 	{ /* sentinel */ }
1686 };
1687 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1688 
1689 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1690 {
1691 	struct device_node *np = host->dev->of_node;
1692 	const struct of_device_id *of_id =
1693 		of_match_device(mxcnd_dt_ids, host->dev);
1694 
1695 	if (!np)
1696 		return 1;
1697 
1698 	host->devtype_data = of_id->data;
1699 
1700 	return 0;
1701 }
1702 #else
1703 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1704 {
1705 	return 1;
1706 }
1707 #endif
1708 
1709 static int mxcnd_probe(struct platform_device *pdev)
1710 {
1711 	struct nand_chip *this;
1712 	struct mtd_info *mtd;
1713 	struct mxc_nand_host *host;
1714 	struct resource *res;
1715 	int err = 0;
1716 
1717 	/* Allocate memory for MTD device structure and private data */
1718 	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1719 			GFP_KERNEL);
1720 	if (!host)
1721 		return -ENOMEM;
1722 
1723 	/* allocate a temporary buffer for the nand_scan_ident() */
1724 	host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1725 	if (!host->data_buf)
1726 		return -ENOMEM;
1727 
1728 	host->dev = &pdev->dev;
1729 	/* structures must be linked */
1730 	this = &host->nand;
1731 	mtd = nand_to_mtd(this);
1732 	mtd->dev.parent = &pdev->dev;
1733 	mtd->name = DRIVER_NAME;
1734 
1735 	/* 50 us command delay time */
1736 	this->chip_delay = 5;
1737 
1738 	nand_set_controller_data(this, host);
1739 	nand_set_flash_node(this, pdev->dev.of_node),
1740 	this->dev_ready = mxc_nand_dev_ready;
1741 	this->cmdfunc = mxc_nand_command;
1742 	this->read_byte = mxc_nand_read_byte;
1743 	this->read_word = mxc_nand_read_word;
1744 	this->write_buf = mxc_nand_write_buf;
1745 	this->read_buf = mxc_nand_read_buf;
1746 	this->set_features = mxc_nand_set_features;
1747 	this->get_features = mxc_nand_get_features;
1748 
1749 	host->clk = devm_clk_get(&pdev->dev, NULL);
1750 	if (IS_ERR(host->clk))
1751 		return PTR_ERR(host->clk);
1752 
1753 	err = mxcnd_probe_dt(host);
1754 	if (err > 0) {
1755 		struct mxc_nand_platform_data *pdata =
1756 					dev_get_platdata(&pdev->dev);
1757 		if (pdata) {
1758 			host->pdata = *pdata;
1759 			host->devtype_data = (struct mxc_nand_devtype_data *)
1760 						pdev->id_entry->driver_data;
1761 		} else {
1762 			err = -ENODEV;
1763 		}
1764 	}
1765 	if (err < 0)
1766 		return err;
1767 
1768 	this->setup_data_interface = host->devtype_data->setup_data_interface;
1769 
1770 	if (host->devtype_data->needs_ip) {
1771 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1772 		host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1773 		if (IS_ERR(host->regs_ip))
1774 			return PTR_ERR(host->regs_ip);
1775 
1776 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1777 	} else {
1778 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1779 	}
1780 
1781 	host->base = devm_ioremap_resource(&pdev->dev, res);
1782 	if (IS_ERR(host->base))
1783 		return PTR_ERR(host->base);
1784 
1785 	host->main_area0 = host->base;
1786 
1787 	if (host->devtype_data->regs_offset)
1788 		host->regs = host->base + host->devtype_data->regs_offset;
1789 	host->spare0 = host->base + host->devtype_data->spare0_offset;
1790 	if (host->devtype_data->axi_offset)
1791 		host->regs_axi = host->base + host->devtype_data->axi_offset;
1792 
1793 	this->ecc.bytes = host->devtype_data->eccbytes;
1794 	host->eccsize = host->devtype_data->eccsize;
1795 
1796 	this->select_chip = host->devtype_data->select_chip;
1797 	this->ecc.size = 512;
1798 	mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1799 
1800 	if (host->pdata.hw_ecc) {
1801 		this->ecc.mode = NAND_ECC_HW;
1802 	} else {
1803 		this->ecc.mode = NAND_ECC_SOFT;
1804 		this->ecc.algo = NAND_ECC_HAMMING;
1805 	}
1806 
1807 	/* NAND bus width determines access functions used by upper layer */
1808 	if (host->pdata.width == 2)
1809 		this->options |= NAND_BUSWIDTH_16;
1810 
1811 	/* update flash based bbt */
1812 	if (host->pdata.flash_bbt)
1813 		this->bbt_options |= NAND_BBT_USE_FLASH;
1814 
1815 	init_completion(&host->op_completion);
1816 
1817 	host->irq = platform_get_irq(pdev, 0);
1818 	if (host->irq < 0)
1819 		return host->irq;
1820 
1821 	/*
1822 	 * Use host->devtype_data->irq_control() here instead of irq_control()
1823 	 * because we must not disable_irq_nosync without having requested the
1824 	 * irq.
1825 	 */
1826 	host->devtype_data->irq_control(host, 0);
1827 
1828 	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1829 			0, DRIVER_NAME, host);
1830 	if (err)
1831 		return err;
1832 
1833 	err = clk_prepare_enable(host->clk);
1834 	if (err)
1835 		return err;
1836 	host->clk_act = 1;
1837 
1838 	/*
1839 	 * Now that we "own" the interrupt make sure the interrupt mask bit is
1840 	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1841 	 * on this machine.
1842 	 */
1843 	if (host->devtype_data->irqpending_quirk) {
1844 		disable_irq_nosync(host->irq);
1845 		host->devtype_data->irq_control(host, 1);
1846 	}
1847 
1848 	/* first scan to find the device and get the page size */
1849 	err = nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL);
1850 	if (err)
1851 		goto escan;
1852 
1853 	switch (this->ecc.mode) {
1854 	case NAND_ECC_HW:
1855 		this->ecc.read_page = mxc_nand_read_page;
1856 		this->ecc.read_page_raw = mxc_nand_read_page_raw;
1857 		this->ecc.read_oob = mxc_nand_read_oob;
1858 		this->ecc.write_page = mxc_nand_write_page_ecc;
1859 		this->ecc.write_page_raw = mxc_nand_write_page_raw;
1860 		this->ecc.write_oob = mxc_nand_write_oob;
1861 		break;
1862 
1863 	case NAND_ECC_SOFT:
1864 		break;
1865 
1866 	default:
1867 		err = -EINVAL;
1868 		goto escan;
1869 	}
1870 
1871 	if (this->bbt_options & NAND_BBT_USE_FLASH) {
1872 		this->bbt_td = &bbt_main_descr;
1873 		this->bbt_md = &bbt_mirror_descr;
1874 	}
1875 
1876 	/* allocate the right size buffer now */
1877 	devm_kfree(&pdev->dev, (void *)host->data_buf);
1878 	host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1879 					GFP_KERNEL);
1880 	if (!host->data_buf) {
1881 		err = -ENOMEM;
1882 		goto escan;
1883 	}
1884 
1885 	/* Call preset again, with correct writesize this time */
1886 	host->devtype_data->preset(mtd);
1887 
1888 	if (!this->ecc.bytes) {
1889 		if (host->eccsize == 8)
1890 			this->ecc.bytes = 18;
1891 		else if (host->eccsize == 4)
1892 			this->ecc.bytes = 9;
1893 	}
1894 
1895 	/*
1896 	 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1897 	 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1898 	 * into copying invalid data to/from the spare IO buffer, as this
1899 	 * might cause ECC data corruption when doing sub-page write to a
1900 	 * partially written page.
1901 	 */
1902 	host->used_oobsize = min(mtd->oobsize, 218U);
1903 
1904 	if (this->ecc.mode == NAND_ECC_HW) {
1905 		if (is_imx21_nfc(host) || is_imx27_nfc(host))
1906 			this->ecc.strength = 1;
1907 		else
1908 			this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1909 	}
1910 
1911 	/* second phase scan */
1912 	err = nand_scan_tail(mtd);
1913 	if (err)
1914 		goto escan;
1915 
1916 	/* Register the partitions */
1917 	err = mtd_device_parse_register(mtd, part_probes, NULL,
1918 					host->pdata.parts,
1919 					host->pdata.nr_parts);
1920 	if (err)
1921 		goto cleanup_nand;
1922 
1923 	platform_set_drvdata(pdev, host);
1924 
1925 	return 0;
1926 
1927 cleanup_nand:
1928 	nand_cleanup(this);
1929 escan:
1930 	if (host->clk_act)
1931 		clk_disable_unprepare(host->clk);
1932 
1933 	return err;
1934 }
1935 
1936 static int mxcnd_remove(struct platform_device *pdev)
1937 {
1938 	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1939 
1940 	nand_release(nand_to_mtd(&host->nand));
1941 	if (host->clk_act)
1942 		clk_disable_unprepare(host->clk);
1943 
1944 	return 0;
1945 }
1946 
1947 static struct platform_driver mxcnd_driver = {
1948 	.driver = {
1949 		   .name = DRIVER_NAME,
1950 		   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1951 	},
1952 	.id_table = mxcnd_devtype,
1953 	.probe = mxcnd_probe,
1954 	.remove = mxcnd_remove,
1955 };
1956 module_platform_driver(mxcnd_driver);
1957 
1958 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1959 MODULE_DESCRIPTION("MXC NAND MTD driver");
1960 MODULE_LICENSE("GPL");
1961