1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. 4 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/mtd/mtd.h> 12 #include <linux/mtd/rawnand.h> 13 #include <linux/mtd/partitions.h> 14 #include <linux/interrupt.h> 15 #include <linux/device.h> 16 #include <linux/platform_device.h> 17 #include <linux/clk.h> 18 #include <linux/err.h> 19 #include <linux/io.h> 20 #include <linux/irq.h> 21 #include <linux/completion.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 25 #define DRIVER_NAME "mxc_nand" 26 27 /* Addresses for NFC registers */ 28 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) 29 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04) 30 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06) 31 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08) 32 #define NFC_V1_V2_CONFIG (host->regs + 0x0a) 33 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c) 34 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e) 35 #define NFC_V21_RSLTSPARE_AREA (host->regs + 0x10) 36 #define NFC_V1_V2_WRPROT (host->regs + 0x12) 37 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14) 38 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16) 39 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20) 40 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24) 41 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28) 42 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c) 43 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22) 44 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26) 45 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a) 46 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e) 47 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18) 48 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a) 49 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c) 50 51 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0) 52 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2) 53 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3) 54 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4) 55 #define NFC_V1_V2_CONFIG1_BIG (1 << 5) 56 #define NFC_V1_V2_CONFIG1_RST (1 << 6) 57 #define NFC_V1_V2_CONFIG1_CE (1 << 7) 58 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8) 59 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9) 60 #define NFC_V2_CONFIG1_FP_INT (1 << 11) 61 62 #define NFC_V1_V2_CONFIG2_INT (1 << 15) 63 64 /* 65 * Operation modes for the NFC. Valid for v1, v2 and v3 66 * type controllers. 67 */ 68 #define NFC_CMD (1 << 0) 69 #define NFC_ADDR (1 << 1) 70 #define NFC_INPUT (1 << 2) 71 #define NFC_OUTPUT (1 << 3) 72 #define NFC_ID (1 << 4) 73 #define NFC_STATUS (1 << 5) 74 75 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00) 76 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04) 77 78 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34) 79 #define NFC_V3_CONFIG1_SP_EN (1 << 0) 80 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4) 81 82 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38) 83 84 #define NFC_V3_LAUNCH (host->regs_axi + 0x40) 85 86 #define NFC_V3_WRPROT (host->regs_ip + 0x0) 87 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0) 88 #define NFC_V3_WRPROT_LOCK (1 << 1) 89 #define NFC_V3_WRPROT_UNLOCK (1 << 2) 90 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6) 91 92 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04) 93 94 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24) 95 #define NFC_V3_CONFIG2_PS_512 (0 << 0) 96 #define NFC_V3_CONFIG2_PS_2048 (1 << 0) 97 #define NFC_V3_CONFIG2_PS_4096 (2 << 0) 98 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2) 99 #define NFC_V3_CONFIG2_ECC_EN (1 << 3) 100 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) 101 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) 102 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) 103 #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift) 104 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) 105 #define NFC_V3_CONFIG2_INT_MSK (1 << 15) 106 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) 107 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16) 108 109 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28) 110 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0) 111 #define NFC_V3_CONFIG3_FW8 (1 << 3) 112 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8) 113 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12) 114 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15) 115 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20) 116 117 #define NFC_V3_IPC (host->regs_ip + 0x2C) 118 #define NFC_V3_IPC_CREQ (1 << 0) 119 #define NFC_V3_IPC_INT (1 << 31) 120 121 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34) 122 123 struct mxc_nand_host; 124 125 struct mxc_nand_devtype_data { 126 void (*preset)(struct mtd_info *); 127 int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc, 128 int page); 129 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int); 130 void (*send_addr)(struct mxc_nand_host *, uint16_t, int); 131 void (*send_page)(struct mtd_info *, unsigned int); 132 void (*send_read_id)(struct mxc_nand_host *); 133 uint16_t (*get_dev_status)(struct mxc_nand_host *); 134 int (*check_int)(struct mxc_nand_host *); 135 void (*irq_control)(struct mxc_nand_host *, int); 136 u32 (*get_ecc_status)(struct mxc_nand_host *); 137 const struct mtd_ooblayout_ops *ooblayout; 138 void (*select_chip)(struct nand_chip *chip, int cs); 139 int (*setup_interface)(struct nand_chip *chip, int csline, 140 const struct nand_interface_config *conf); 141 void (*enable_hwecc)(struct nand_chip *chip, bool enable); 142 143 /* 144 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked 145 * (CONFIG1:INT_MSK is set). To handle this the driver uses 146 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK 147 */ 148 int irqpending_quirk; 149 int needs_ip; 150 151 size_t regs_offset; 152 size_t spare0_offset; 153 size_t axi_offset; 154 155 int spare_len; 156 int eccbytes; 157 int eccsize; 158 int ppb_shift; 159 }; 160 161 struct mxc_nand_host { 162 struct nand_chip nand; 163 struct device *dev; 164 165 void __iomem *spare0; 166 void __iomem *main_area0; 167 168 void __iomem *base; 169 void __iomem *regs; 170 void __iomem *regs_axi; 171 void __iomem *regs_ip; 172 int status_request; 173 struct clk *clk; 174 int clk_act; 175 int irq; 176 int eccsize; 177 int used_oobsize; 178 int active_cs; 179 180 struct completion op_completion; 181 182 uint8_t *data_buf; 183 unsigned int buf_start; 184 185 const struct mxc_nand_devtype_data *devtype_data; 186 }; 187 188 static const char * const part_probes[] = { 189 "cmdlinepart", "RedBoot", "ofpart", NULL }; 190 191 static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) 192 { 193 int i; 194 u32 *t = trg; 195 const __iomem u32 *s = src; 196 197 for (i = 0; i < (size >> 2); i++) 198 *t++ = __raw_readl(s++); 199 } 200 201 static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size) 202 { 203 int i; 204 u16 *t = trg; 205 const __iomem u16 *s = src; 206 207 /* We assume that src (IO) is always 32bit aligned */ 208 if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) { 209 memcpy32_fromio(trg, src, size); 210 return; 211 } 212 213 for (i = 0; i < (size >> 1); i++) 214 *t++ = __raw_readw(s++); 215 } 216 217 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size) 218 { 219 /* __iowrite32_copy use 32bit size values so divide by 4 */ 220 __iowrite32_copy(trg, src, size / 4); 221 } 222 223 static void memcpy16_toio(void __iomem *trg, const void *src, int size) 224 { 225 int i; 226 __iomem u16 *t = trg; 227 const u16 *s = src; 228 229 /* We assume that trg (IO) is always 32bit aligned */ 230 if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) { 231 memcpy32_toio(trg, src, size); 232 return; 233 } 234 235 for (i = 0; i < (size >> 1); i++) 236 __raw_writew(*s++, t++); 237 } 238 239 /* 240 * The controller splits a page into data chunks of 512 bytes + partial oob. 241 * There are writesize / 512 such chunks, the size of the partial oob parts is 242 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then 243 * contains additionally the byte lost by rounding (if any). 244 * This function handles the needed shuffling between host->data_buf (which 245 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes 246 * spare) and the NFC buffer. 247 */ 248 static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf) 249 { 250 struct nand_chip *this = mtd_to_nand(mtd); 251 struct mxc_nand_host *host = nand_get_controller_data(this); 252 u16 i, oob_chunk_size; 253 u16 num_chunks = mtd->writesize / 512; 254 255 u8 *d = buf; 256 u8 __iomem *s = host->spare0; 257 u16 sparebuf_size = host->devtype_data->spare_len; 258 259 /* size of oob chunk for all but possibly the last one */ 260 oob_chunk_size = (host->used_oobsize / num_chunks) & ~1; 261 262 if (bfrom) { 263 for (i = 0; i < num_chunks - 1; i++) 264 memcpy16_fromio(d + i * oob_chunk_size, 265 s + i * sparebuf_size, 266 oob_chunk_size); 267 268 /* the last chunk */ 269 memcpy16_fromio(d + i * oob_chunk_size, 270 s + i * sparebuf_size, 271 host->used_oobsize - i * oob_chunk_size); 272 } else { 273 for (i = 0; i < num_chunks - 1; i++) 274 memcpy16_toio(&s[i * sparebuf_size], 275 &d[i * oob_chunk_size], 276 oob_chunk_size); 277 278 /* the last chunk */ 279 memcpy16_toio(&s[i * sparebuf_size], 280 &d[i * oob_chunk_size], 281 host->used_oobsize - i * oob_chunk_size); 282 } 283 } 284 285 /* 286 * MXC NANDFC can only perform full page+spare or spare-only read/write. When 287 * the upper layers perform a read/write buf operation, the saved column address 288 * is used to index into the full page. So usually this function is called with 289 * column == 0 (unless no column cycle is needed indicated by column == -1) 290 */ 291 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) 292 { 293 struct nand_chip *nand_chip = mtd_to_nand(mtd); 294 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 295 296 /* Write out column address, if necessary */ 297 if (column != -1) { 298 host->devtype_data->send_addr(host, column & 0xff, 299 page_addr == -1); 300 if (mtd->writesize > 512) 301 /* another col addr cycle for 2k page */ 302 host->devtype_data->send_addr(host, 303 (column >> 8) & 0xff, 304 false); 305 } 306 307 /* Write out page address, if necessary */ 308 if (page_addr != -1) { 309 /* paddr_0 - p_addr_7 */ 310 host->devtype_data->send_addr(host, (page_addr & 0xff), false); 311 312 if (mtd->writesize > 512) { 313 if (mtd->size >= 0x10000000) { 314 /* paddr_8 - paddr_15 */ 315 host->devtype_data->send_addr(host, 316 (page_addr >> 8) & 0xff, 317 false); 318 host->devtype_data->send_addr(host, 319 (page_addr >> 16) & 0xff, 320 true); 321 } else 322 /* paddr_8 - paddr_15 */ 323 host->devtype_data->send_addr(host, 324 (page_addr >> 8) & 0xff, true); 325 } else { 326 if (nand_chip->options & NAND_ROW_ADDR_3) { 327 /* paddr_8 - paddr_15 */ 328 host->devtype_data->send_addr(host, 329 (page_addr >> 8) & 0xff, 330 false); 331 host->devtype_data->send_addr(host, 332 (page_addr >> 16) & 0xff, 333 true); 334 } else 335 /* paddr_8 - paddr_15 */ 336 host->devtype_data->send_addr(host, 337 (page_addr >> 8) & 0xff, true); 338 } 339 } 340 } 341 342 static int check_int_v3(struct mxc_nand_host *host) 343 { 344 uint32_t tmp; 345 346 tmp = readl(NFC_V3_IPC); 347 if (!(tmp & NFC_V3_IPC_INT)) 348 return 0; 349 350 tmp &= ~NFC_V3_IPC_INT; 351 writel(tmp, NFC_V3_IPC); 352 353 return 1; 354 } 355 356 static int check_int_v1_v2(struct mxc_nand_host *host) 357 { 358 uint32_t tmp; 359 360 tmp = readw(NFC_V1_V2_CONFIG2); 361 if (!(tmp & NFC_V1_V2_CONFIG2_INT)) 362 return 0; 363 364 if (!host->devtype_data->irqpending_quirk) 365 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2); 366 367 return 1; 368 } 369 370 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate) 371 { 372 uint16_t tmp; 373 374 tmp = readw(NFC_V1_V2_CONFIG1); 375 376 if (activate) 377 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK; 378 else 379 tmp |= NFC_V1_V2_CONFIG1_INT_MSK; 380 381 writew(tmp, NFC_V1_V2_CONFIG1); 382 } 383 384 static void irq_control_v3(struct mxc_nand_host *host, int activate) 385 { 386 uint32_t tmp; 387 388 tmp = readl(NFC_V3_CONFIG2); 389 390 if (activate) 391 tmp &= ~NFC_V3_CONFIG2_INT_MSK; 392 else 393 tmp |= NFC_V3_CONFIG2_INT_MSK; 394 395 writel(tmp, NFC_V3_CONFIG2); 396 } 397 398 static void irq_control(struct mxc_nand_host *host, int activate) 399 { 400 if (host->devtype_data->irqpending_quirk) { 401 if (activate) 402 enable_irq(host->irq); 403 else 404 disable_irq_nosync(host->irq); 405 } else { 406 host->devtype_data->irq_control(host, activate); 407 } 408 } 409 410 static u32 get_ecc_status_v1(struct mxc_nand_host *host) 411 { 412 return readw(NFC_V1_V2_ECC_STATUS_RESULT); 413 } 414 415 static u32 get_ecc_status_v2(struct mxc_nand_host *host) 416 { 417 return readl(NFC_V1_V2_ECC_STATUS_RESULT); 418 } 419 420 static u32 get_ecc_status_v3(struct mxc_nand_host *host) 421 { 422 return readl(NFC_V3_ECC_STATUS_RESULT); 423 } 424 425 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) 426 { 427 struct mxc_nand_host *host = dev_id; 428 429 if (!host->devtype_data->check_int(host)) 430 return IRQ_NONE; 431 432 irq_control(host, 0); 433 434 complete(&host->op_completion); 435 436 return IRQ_HANDLED; 437 } 438 439 /* This function polls the NANDFC to wait for the basic operation to 440 * complete by checking the INT bit of config2 register. 441 */ 442 static int wait_op_done(struct mxc_nand_host *host, int useirq) 443 { 444 int ret = 0; 445 446 /* 447 * If operation is already complete, don't bother to setup an irq or a 448 * loop. 449 */ 450 if (host->devtype_data->check_int(host)) 451 return 0; 452 453 if (useirq) { 454 unsigned long timeout; 455 456 reinit_completion(&host->op_completion); 457 458 irq_control(host, 1); 459 460 timeout = wait_for_completion_timeout(&host->op_completion, HZ); 461 if (!timeout && !host->devtype_data->check_int(host)) { 462 dev_dbg(host->dev, "timeout waiting for irq\n"); 463 ret = -ETIMEDOUT; 464 } 465 } else { 466 int max_retries = 8000; 467 int done; 468 469 do { 470 udelay(1); 471 472 done = host->devtype_data->check_int(host); 473 if (done) 474 break; 475 476 } while (--max_retries); 477 478 if (!done) { 479 dev_dbg(host->dev, "timeout polling for completion\n"); 480 ret = -ETIMEDOUT; 481 } 482 } 483 484 WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq); 485 486 return ret; 487 } 488 489 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq) 490 { 491 /* fill command */ 492 writel(cmd, NFC_V3_FLASH_CMD); 493 494 /* send out command */ 495 writel(NFC_CMD, NFC_V3_LAUNCH); 496 497 /* Wait for operation to complete */ 498 wait_op_done(host, useirq); 499 } 500 501 /* This function issues the specified command to the NAND device and 502 * waits for completion. */ 503 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) 504 { 505 dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); 506 507 writew(cmd, NFC_V1_V2_FLASH_CMD); 508 writew(NFC_CMD, NFC_V1_V2_CONFIG2); 509 510 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) { 511 int max_retries = 100; 512 /* Reset completion is indicated by NFC_CONFIG2 */ 513 /* being set to 0 */ 514 while (max_retries-- > 0) { 515 if (readw(NFC_V1_V2_CONFIG2) == 0) { 516 break; 517 } 518 udelay(1); 519 } 520 if (max_retries < 0) 521 dev_dbg(host->dev, "%s: RESET failed\n", __func__); 522 } else { 523 /* Wait for operation to complete */ 524 wait_op_done(host, useirq); 525 } 526 } 527 528 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast) 529 { 530 /* fill address */ 531 writel(addr, NFC_V3_FLASH_ADDR0); 532 533 /* send out address */ 534 writel(NFC_ADDR, NFC_V3_LAUNCH); 535 536 wait_op_done(host, 0); 537 } 538 539 /* This function sends an address (or partial address) to the 540 * NAND device. The address is used to select the source/destination for 541 * a NAND command. */ 542 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast) 543 { 544 dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast); 545 546 writew(addr, NFC_V1_V2_FLASH_ADDR); 547 writew(NFC_ADDR, NFC_V1_V2_CONFIG2); 548 549 /* Wait for operation to complete */ 550 wait_op_done(host, islast); 551 } 552 553 static void send_page_v3(struct mtd_info *mtd, unsigned int ops) 554 { 555 struct nand_chip *nand_chip = mtd_to_nand(mtd); 556 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 557 uint32_t tmp; 558 559 tmp = readl(NFC_V3_CONFIG1); 560 tmp &= ~(7 << 4); 561 writel(tmp, NFC_V3_CONFIG1); 562 563 /* transfer data from NFC ram to nand */ 564 writel(ops, NFC_V3_LAUNCH); 565 566 wait_op_done(host, false); 567 } 568 569 static void send_page_v2(struct mtd_info *mtd, unsigned int ops) 570 { 571 struct nand_chip *nand_chip = mtd_to_nand(mtd); 572 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 573 574 /* NANDFC buffer 0 is used for page read/write */ 575 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); 576 577 writew(ops, NFC_V1_V2_CONFIG2); 578 579 /* Wait for operation to complete */ 580 wait_op_done(host, true); 581 } 582 583 static void send_page_v1(struct mtd_info *mtd, unsigned int ops) 584 { 585 struct nand_chip *nand_chip = mtd_to_nand(mtd); 586 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 587 int bufs, i; 588 589 if (mtd->writesize > 512) 590 bufs = 4; 591 else 592 bufs = 1; 593 594 for (i = 0; i < bufs; i++) { 595 596 /* NANDFC buffer 0 is used for page read/write */ 597 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); 598 599 writew(ops, NFC_V1_V2_CONFIG2); 600 601 /* Wait for operation to complete */ 602 wait_op_done(host, true); 603 } 604 } 605 606 static void send_read_id_v3(struct mxc_nand_host *host) 607 { 608 /* Read ID into main buffer */ 609 writel(NFC_ID, NFC_V3_LAUNCH); 610 611 wait_op_done(host, true); 612 613 memcpy32_fromio(host->data_buf, host->main_area0, 16); 614 } 615 616 /* Request the NANDFC to perform a read of the NAND device ID. */ 617 static void send_read_id_v1_v2(struct mxc_nand_host *host) 618 { 619 /* NANDFC buffer 0 is used for device ID output */ 620 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); 621 622 writew(NFC_ID, NFC_V1_V2_CONFIG2); 623 624 /* Wait for operation to complete */ 625 wait_op_done(host, true); 626 627 memcpy32_fromio(host->data_buf, host->main_area0, 16); 628 } 629 630 static uint16_t get_dev_status_v3(struct mxc_nand_host *host) 631 { 632 writew(NFC_STATUS, NFC_V3_LAUNCH); 633 wait_op_done(host, true); 634 635 return readl(NFC_V3_CONFIG1) >> 16; 636 } 637 638 /* This function requests the NANDFC to perform a read of the 639 * NAND device status and returns the current status. */ 640 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host) 641 { 642 void __iomem *main_buf = host->main_area0; 643 uint32_t store; 644 uint16_t ret; 645 646 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); 647 648 /* 649 * The device status is stored in main_area0. To 650 * prevent corruption of the buffer save the value 651 * and restore it afterwards. 652 */ 653 store = readl(main_buf); 654 655 writew(NFC_STATUS, NFC_V1_V2_CONFIG2); 656 wait_op_done(host, true); 657 658 ret = readw(main_buf); 659 660 writel(store, main_buf); 661 662 return ret; 663 } 664 665 static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable) 666 { 667 struct mxc_nand_host *host = nand_get_controller_data(chip); 668 uint16_t config1; 669 670 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) 671 return; 672 673 config1 = readw(NFC_V1_V2_CONFIG1); 674 675 if (enable) 676 config1 |= NFC_V1_V2_CONFIG1_ECC_EN; 677 else 678 config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN; 679 680 writew(config1, NFC_V1_V2_CONFIG1); 681 } 682 683 static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable) 684 { 685 struct mxc_nand_host *host = nand_get_controller_data(chip); 686 uint32_t config2; 687 688 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) 689 return; 690 691 config2 = readl(NFC_V3_CONFIG2); 692 693 if (enable) 694 config2 |= NFC_V3_CONFIG2_ECC_EN; 695 else 696 config2 &= ~NFC_V3_CONFIG2_ECC_EN; 697 698 writel(config2, NFC_V3_CONFIG2); 699 } 700 701 /* This functions is used by upper layer to checks if device is ready */ 702 static int mxc_nand_dev_ready(struct nand_chip *chip) 703 { 704 /* 705 * NFC handles R/B internally. Therefore, this function 706 * always returns status as ready. 707 */ 708 return 1; 709 } 710 711 static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob, 712 bool ecc, int page) 713 { 714 struct mtd_info *mtd = nand_to_mtd(chip); 715 struct mxc_nand_host *host = nand_get_controller_data(chip); 716 unsigned int bitflips_corrected = 0; 717 int no_subpages; 718 int i; 719 720 host->devtype_data->enable_hwecc(chip, ecc); 721 722 host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); 723 mxc_do_addr_cycle(mtd, 0, page); 724 725 if (mtd->writesize > 512) 726 host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true); 727 728 no_subpages = mtd->writesize >> 9; 729 730 for (i = 0; i < no_subpages; i++) { 731 uint16_t ecc_stats; 732 733 /* NANDFC buffer 0 is used for page read/write */ 734 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); 735 736 writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2); 737 738 /* Wait for operation to complete */ 739 wait_op_done(host, true); 740 741 ecc_stats = get_ecc_status_v1(host); 742 743 ecc_stats >>= 2; 744 745 if (buf && ecc) { 746 switch (ecc_stats & 0x3) { 747 case 0: 748 default: 749 break; 750 case 1: 751 mtd->ecc_stats.corrected++; 752 bitflips_corrected = 1; 753 break; 754 case 2: 755 mtd->ecc_stats.failed++; 756 break; 757 } 758 } 759 } 760 761 if (buf) 762 memcpy32_fromio(buf, host->main_area0, mtd->writesize); 763 if (oob) 764 copy_spare(mtd, true, oob); 765 766 return bitflips_corrected; 767 } 768 769 static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf, 770 void *oob, bool ecc, int page) 771 { 772 struct mtd_info *mtd = nand_to_mtd(chip); 773 struct mxc_nand_host *host = nand_get_controller_data(chip); 774 unsigned int max_bitflips = 0; 775 u32 ecc_stat, err; 776 int no_subpages; 777 u8 ecc_bit_mask, err_limit; 778 779 host->devtype_data->enable_hwecc(chip, ecc); 780 781 host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); 782 mxc_do_addr_cycle(mtd, 0, page); 783 784 if (mtd->writesize > 512) 785 host->devtype_data->send_cmd(host, 786 NAND_CMD_READSTART, true); 787 788 host->devtype_data->send_page(mtd, NFC_OUTPUT); 789 790 if (buf) 791 memcpy32_fromio(buf, host->main_area0, mtd->writesize); 792 if (oob) 793 copy_spare(mtd, true, oob); 794 795 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf; 796 err_limit = (host->eccsize == 4) ? 0x4 : 0x8; 797 798 no_subpages = mtd->writesize >> 9; 799 800 ecc_stat = host->devtype_data->get_ecc_status(host); 801 802 do { 803 err = ecc_stat & ecc_bit_mask; 804 if (err > err_limit) { 805 mtd->ecc_stats.failed++; 806 } else { 807 mtd->ecc_stats.corrected += err; 808 max_bitflips = max_t(unsigned int, max_bitflips, err); 809 } 810 811 ecc_stat >>= 4; 812 } while (--no_subpages); 813 814 return max_bitflips; 815 } 816 817 static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf, 818 int oob_required, int page) 819 { 820 struct mxc_nand_host *host = nand_get_controller_data(chip); 821 void *oob_buf; 822 823 if (oob_required) 824 oob_buf = chip->oob_poi; 825 else 826 oob_buf = NULL; 827 828 return host->devtype_data->read_page(chip, buf, oob_buf, 1, page); 829 } 830 831 static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, 832 int oob_required, int page) 833 { 834 struct mxc_nand_host *host = nand_get_controller_data(chip); 835 void *oob_buf; 836 837 if (oob_required) 838 oob_buf = chip->oob_poi; 839 else 840 oob_buf = NULL; 841 842 return host->devtype_data->read_page(chip, buf, oob_buf, 0, page); 843 } 844 845 static int mxc_nand_read_oob(struct nand_chip *chip, int page) 846 { 847 struct mxc_nand_host *host = nand_get_controller_data(chip); 848 849 return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0, 850 page); 851 } 852 853 static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf, 854 bool ecc, int page) 855 { 856 struct mtd_info *mtd = nand_to_mtd(chip); 857 struct mxc_nand_host *host = nand_get_controller_data(chip); 858 859 host->devtype_data->enable_hwecc(chip, ecc); 860 861 host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false); 862 mxc_do_addr_cycle(mtd, 0, page); 863 864 memcpy32_toio(host->main_area0, buf, mtd->writesize); 865 copy_spare(mtd, false, chip->oob_poi); 866 867 host->devtype_data->send_page(mtd, NFC_INPUT); 868 host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true); 869 mxc_do_addr_cycle(mtd, 0, page); 870 871 return 0; 872 } 873 874 static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf, 875 int oob_required, int page) 876 { 877 return mxc_nand_write_page(chip, buf, true, page); 878 } 879 880 static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 881 int oob_required, int page) 882 { 883 return mxc_nand_write_page(chip, buf, false, page); 884 } 885 886 static int mxc_nand_write_oob(struct nand_chip *chip, int page) 887 { 888 struct mtd_info *mtd = nand_to_mtd(chip); 889 struct mxc_nand_host *host = nand_get_controller_data(chip); 890 891 memset(host->data_buf, 0xff, mtd->writesize); 892 893 return mxc_nand_write_page(chip, host->data_buf, false, page); 894 } 895 896 static u_char mxc_nand_read_byte(struct nand_chip *nand_chip) 897 { 898 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 899 uint8_t ret; 900 901 /* Check for status request */ 902 if (host->status_request) 903 return host->devtype_data->get_dev_status(host) & 0xFF; 904 905 if (nand_chip->options & NAND_BUSWIDTH_16) { 906 /* only take the lower byte of each word */ 907 ret = *(uint16_t *)(host->data_buf + host->buf_start); 908 909 host->buf_start += 2; 910 } else { 911 ret = *(uint8_t *)(host->data_buf + host->buf_start); 912 host->buf_start++; 913 } 914 915 dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start); 916 return ret; 917 } 918 919 /* Write data of length len to buffer buf. The data to be 920 * written on NAND Flash is first copied to RAMbuffer. After the Data Input 921 * Operation by the NFC, the data is written to NAND Flash */ 922 static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf, 923 int len) 924 { 925 struct mtd_info *mtd = nand_to_mtd(nand_chip); 926 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 927 u16 col = host->buf_start; 928 int n = mtd->oobsize + mtd->writesize - col; 929 930 n = min(n, len); 931 932 memcpy(host->data_buf + col, buf, n); 933 934 host->buf_start += n; 935 } 936 937 /* Read the data buffer from the NAND Flash. To read the data from NAND 938 * Flash first the data output cycle is initiated by the NFC, which copies 939 * the data to RAMbuffer. This data of length len is then copied to buffer buf. 940 */ 941 static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf, 942 int len) 943 { 944 struct mtd_info *mtd = nand_to_mtd(nand_chip); 945 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 946 u16 col = host->buf_start; 947 int n = mtd->oobsize + mtd->writesize - col; 948 949 n = min(n, len); 950 951 memcpy(buf, host->data_buf + col, n); 952 953 host->buf_start += n; 954 } 955 956 /* This function is used by upper layer for select and 957 * deselect of the NAND chip */ 958 static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip) 959 { 960 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 961 962 if (chip == -1) { 963 /* Disable the NFC clock */ 964 if (host->clk_act) { 965 clk_disable_unprepare(host->clk); 966 host->clk_act = 0; 967 } 968 return; 969 } 970 971 if (!host->clk_act) { 972 /* Enable the NFC clock */ 973 clk_prepare_enable(host->clk); 974 host->clk_act = 1; 975 } 976 } 977 978 static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip) 979 { 980 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 981 982 if (chip == -1) { 983 /* Disable the NFC clock */ 984 if (host->clk_act) { 985 clk_disable_unprepare(host->clk); 986 host->clk_act = 0; 987 } 988 return; 989 } 990 991 if (!host->clk_act) { 992 /* Enable the NFC clock */ 993 clk_prepare_enable(host->clk); 994 host->clk_act = 1; 995 } 996 997 host->active_cs = chip; 998 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); 999 } 1000 1001 #define MXC_V1_ECCBYTES 5 1002 1003 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section, 1004 struct mtd_oob_region *oobregion) 1005 { 1006 struct nand_chip *nand_chip = mtd_to_nand(mtd); 1007 1008 if (section >= nand_chip->ecc.steps) 1009 return -ERANGE; 1010 1011 oobregion->offset = (section * 16) + 6; 1012 oobregion->length = MXC_V1_ECCBYTES; 1013 1014 return 0; 1015 } 1016 1017 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section, 1018 struct mtd_oob_region *oobregion) 1019 { 1020 struct nand_chip *nand_chip = mtd_to_nand(mtd); 1021 1022 if (section > nand_chip->ecc.steps) 1023 return -ERANGE; 1024 1025 if (!section) { 1026 if (mtd->writesize <= 512) { 1027 oobregion->offset = 0; 1028 oobregion->length = 5; 1029 } else { 1030 oobregion->offset = 2; 1031 oobregion->length = 4; 1032 } 1033 } else { 1034 oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6; 1035 if (section < nand_chip->ecc.steps) 1036 oobregion->length = (section * 16) + 6 - 1037 oobregion->offset; 1038 else 1039 oobregion->length = mtd->oobsize - oobregion->offset; 1040 } 1041 1042 return 0; 1043 } 1044 1045 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = { 1046 .ecc = mxc_v1_ooblayout_ecc, 1047 .free = mxc_v1_ooblayout_free, 1048 }; 1049 1050 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section, 1051 struct mtd_oob_region *oobregion) 1052 { 1053 struct nand_chip *nand_chip = mtd_to_nand(mtd); 1054 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; 1055 1056 if (section >= nand_chip->ecc.steps) 1057 return -ERANGE; 1058 1059 oobregion->offset = (section * stepsize) + 7; 1060 oobregion->length = nand_chip->ecc.bytes; 1061 1062 return 0; 1063 } 1064 1065 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section, 1066 struct mtd_oob_region *oobregion) 1067 { 1068 struct nand_chip *nand_chip = mtd_to_nand(mtd); 1069 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; 1070 1071 if (section >= nand_chip->ecc.steps) 1072 return -ERANGE; 1073 1074 if (!section) { 1075 if (mtd->writesize <= 512) { 1076 oobregion->offset = 0; 1077 oobregion->length = 5; 1078 } else { 1079 oobregion->offset = 2; 1080 oobregion->length = 4; 1081 } 1082 } else { 1083 oobregion->offset = section * stepsize; 1084 oobregion->length = 7; 1085 } 1086 1087 return 0; 1088 } 1089 1090 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = { 1091 .ecc = mxc_v2_ooblayout_ecc, 1092 .free = mxc_v2_ooblayout_free, 1093 }; 1094 1095 /* 1096 * v2 and v3 type controllers can do 4bit or 8bit ecc depending 1097 * on how much oob the nand chip has. For 8bit ecc we need at least 1098 * 26 bytes of oob data per 512 byte block. 1099 */ 1100 static int get_eccsize(struct mtd_info *mtd) 1101 { 1102 int oobbytes_per_512 = 0; 1103 1104 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize; 1105 1106 if (oobbytes_per_512 < 26) 1107 return 4; 1108 else 1109 return 8; 1110 } 1111 1112 static void preset_v1(struct mtd_info *mtd) 1113 { 1114 struct nand_chip *nand_chip = mtd_to_nand(mtd); 1115 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 1116 uint16_t config1 = 0; 1117 1118 if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST && 1119 mtd->writesize) 1120 config1 |= NFC_V1_V2_CONFIG1_ECC_EN; 1121 1122 if (!host->devtype_data->irqpending_quirk) 1123 config1 |= NFC_V1_V2_CONFIG1_INT_MSK; 1124 1125 host->eccsize = 1; 1126 1127 writew(config1, NFC_V1_V2_CONFIG1); 1128 /* preset operation */ 1129 1130 /* Unlock the internal RAM Buffer */ 1131 writew(0x2, NFC_V1_V2_CONFIG); 1132 1133 /* Blocks to be unlocked */ 1134 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR); 1135 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR); 1136 1137 /* Unlock Block Command for given address range */ 1138 writew(0x4, NFC_V1_V2_WRPROT); 1139 } 1140 1141 static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline, 1142 const struct nand_interface_config *conf) 1143 { 1144 struct mxc_nand_host *host = nand_get_controller_data(chip); 1145 int tRC_min_ns, tRC_ps, ret; 1146 unsigned long rate, rate_round; 1147 const struct nand_sdr_timings *timings; 1148 u16 config1; 1149 1150 timings = nand_get_sdr_timings(conf); 1151 if (IS_ERR(timings)) 1152 return -ENOTSUPP; 1153 1154 config1 = readw(NFC_V1_V2_CONFIG1); 1155 1156 tRC_min_ns = timings->tRC_min / 1000; 1157 rate = 1000000000 / tRC_min_ns; 1158 1159 /* 1160 * For tRC < 30ns we have to use EDO mode. In this case the controller 1161 * does one access per clock cycle. Otherwise the controller does one 1162 * access in two clock cycles, thus we have to double the rate to the 1163 * controller. 1164 */ 1165 if (tRC_min_ns < 30) { 1166 rate_round = clk_round_rate(host->clk, rate); 1167 config1 |= NFC_V2_CONFIG1_ONE_CYCLE; 1168 tRC_ps = 1000000000 / (rate_round / 1000); 1169 } else { 1170 rate *= 2; 1171 rate_round = clk_round_rate(host->clk, rate); 1172 config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE; 1173 tRC_ps = 1000000000 / (rate_round / 1000 / 2); 1174 } 1175 1176 /* 1177 * The timing values compared against are from the i.MX25 Automotive 1178 * datasheet, Table 50. NFC Timing Parameters 1179 */ 1180 if (timings->tCLS_min > tRC_ps - 1000 || 1181 timings->tCLH_min > tRC_ps - 2000 || 1182 timings->tCS_min > tRC_ps - 1000 || 1183 timings->tCH_min > tRC_ps - 2000 || 1184 timings->tWP_min > tRC_ps - 1500 || 1185 timings->tALS_min > tRC_ps || 1186 timings->tALH_min > tRC_ps - 3000 || 1187 timings->tDS_min > tRC_ps || 1188 timings->tDH_min > tRC_ps - 5000 || 1189 timings->tWC_min > 2 * tRC_ps || 1190 timings->tWH_min > tRC_ps - 2500 || 1191 timings->tRR_min > 6 * tRC_ps || 1192 timings->tRP_min > 3 * tRC_ps / 2 || 1193 timings->tRC_min > 2 * tRC_ps || 1194 timings->tREH_min > (tRC_ps / 2) - 2500) { 1195 dev_dbg(host->dev, "Timing out of bounds\n"); 1196 return -EINVAL; 1197 } 1198 1199 if (csline == NAND_DATA_IFACE_CHECK_ONLY) 1200 return 0; 1201 1202 ret = clk_set_rate(host->clk, rate); 1203 if (ret) 1204 return ret; 1205 1206 writew(config1, NFC_V1_V2_CONFIG1); 1207 1208 dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round, 1209 config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" : 1210 "normal"); 1211 1212 return 0; 1213 } 1214 1215 static void preset_v2(struct mtd_info *mtd) 1216 { 1217 struct nand_chip *nand_chip = mtd_to_nand(mtd); 1218 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 1219 uint16_t config1 = 0; 1220 1221 config1 |= NFC_V2_CONFIG1_FP_INT; 1222 1223 if (!host->devtype_data->irqpending_quirk) 1224 config1 |= NFC_V1_V2_CONFIG1_INT_MSK; 1225 1226 if (mtd->writesize) { 1227 uint16_t pages_per_block = mtd->erasesize / mtd->writesize; 1228 1229 if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) 1230 config1 |= NFC_V1_V2_CONFIG1_ECC_EN; 1231 1232 host->eccsize = get_eccsize(mtd); 1233 if (host->eccsize == 4) 1234 config1 |= NFC_V2_CONFIG1_ECC_MODE_4; 1235 1236 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6); 1237 } else { 1238 host->eccsize = 1; 1239 } 1240 1241 writew(config1, NFC_V1_V2_CONFIG1); 1242 /* preset operation */ 1243 1244 /* spare area size in 16-bit half-words */ 1245 writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA); 1246 1247 /* Unlock the internal RAM Buffer */ 1248 writew(0x2, NFC_V1_V2_CONFIG); 1249 1250 /* Blocks to be unlocked */ 1251 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0); 1252 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1); 1253 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2); 1254 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3); 1255 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0); 1256 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1); 1257 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2); 1258 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3); 1259 1260 /* Unlock Block Command for given address range */ 1261 writew(0x4, NFC_V1_V2_WRPROT); 1262 } 1263 1264 static void preset_v3(struct mtd_info *mtd) 1265 { 1266 struct nand_chip *chip = mtd_to_nand(mtd); 1267 struct mxc_nand_host *host = nand_get_controller_data(chip); 1268 uint32_t config2, config3; 1269 int i, addr_phases; 1270 1271 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1); 1272 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC); 1273 1274 /* Unlock the internal RAM Buffer */ 1275 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, 1276 NFC_V3_WRPROT); 1277 1278 /* Blocks to be unlocked */ 1279 for (i = 0; i < NAND_MAX_CHIPS; i++) 1280 writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2)); 1281 1282 writel(0, NFC_V3_IPC); 1283 1284 config2 = NFC_V3_CONFIG2_ONE_CYCLE | 1285 NFC_V3_CONFIG2_2CMD_PHASES | 1286 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) | 1287 NFC_V3_CONFIG2_ST_CMD(0x70) | 1288 NFC_V3_CONFIG2_INT_MSK | 1289 NFC_V3_CONFIG2_NUM_ADDR_PHASE0; 1290 1291 addr_phases = fls(chip->pagemask) >> 3; 1292 1293 if (mtd->writesize == 2048) { 1294 config2 |= NFC_V3_CONFIG2_PS_2048; 1295 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); 1296 } else if (mtd->writesize == 4096) { 1297 config2 |= NFC_V3_CONFIG2_PS_4096; 1298 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); 1299 } else { 1300 config2 |= NFC_V3_CONFIG2_PS_512; 1301 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1); 1302 } 1303 1304 if (mtd->writesize) { 1305 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) 1306 config2 |= NFC_V3_CONFIG2_ECC_EN; 1307 1308 config2 |= NFC_V3_CONFIG2_PPB( 1309 ffs(mtd->erasesize / mtd->writesize) - 6, 1310 host->devtype_data->ppb_shift); 1311 host->eccsize = get_eccsize(mtd); 1312 if (host->eccsize == 8) 1313 config2 |= NFC_V3_CONFIG2_ECC_MODE_8; 1314 } 1315 1316 writel(config2, NFC_V3_CONFIG2); 1317 1318 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) | 1319 NFC_V3_CONFIG3_NO_SDMA | 1320 NFC_V3_CONFIG3_RBB_MODE | 1321 NFC_V3_CONFIG3_SBB(6) | /* Reset default */ 1322 NFC_V3_CONFIG3_ADD_OP(0); 1323 1324 if (!(chip->options & NAND_BUSWIDTH_16)) 1325 config3 |= NFC_V3_CONFIG3_FW8; 1326 1327 writel(config3, NFC_V3_CONFIG3); 1328 1329 writel(0, NFC_V3_DELAY_LINE); 1330 } 1331 1332 /* Used by the upper layer to write command to NAND Flash for 1333 * different operations to be carried out on NAND Flash */ 1334 static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command, 1335 int column, int page_addr) 1336 { 1337 struct mtd_info *mtd = nand_to_mtd(nand_chip); 1338 struct mxc_nand_host *host = nand_get_controller_data(nand_chip); 1339 1340 dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", 1341 command, column, page_addr); 1342 1343 /* Reset command state information */ 1344 host->status_request = false; 1345 1346 /* Command pre-processing step */ 1347 switch (command) { 1348 case NAND_CMD_RESET: 1349 host->devtype_data->preset(mtd); 1350 host->devtype_data->send_cmd(host, command, false); 1351 break; 1352 1353 case NAND_CMD_STATUS: 1354 host->buf_start = 0; 1355 host->status_request = true; 1356 1357 host->devtype_data->send_cmd(host, command, true); 1358 WARN_ONCE(column != -1 || page_addr != -1, 1359 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n", 1360 command, column, page_addr); 1361 mxc_do_addr_cycle(mtd, column, page_addr); 1362 break; 1363 1364 case NAND_CMD_READID: 1365 host->devtype_data->send_cmd(host, command, true); 1366 mxc_do_addr_cycle(mtd, column, page_addr); 1367 host->devtype_data->send_read_id(host); 1368 host->buf_start = 0; 1369 break; 1370 1371 case NAND_CMD_ERASE1: 1372 case NAND_CMD_ERASE2: 1373 host->devtype_data->send_cmd(host, command, false); 1374 WARN_ONCE(column != -1, 1375 "Unexpected column value (cmd=%u, col=%d)\n", 1376 command, column); 1377 mxc_do_addr_cycle(mtd, column, page_addr); 1378 1379 break; 1380 case NAND_CMD_PARAM: 1381 host->devtype_data->send_cmd(host, command, false); 1382 mxc_do_addr_cycle(mtd, column, page_addr); 1383 host->devtype_data->send_page(mtd, NFC_OUTPUT); 1384 memcpy32_fromio(host->data_buf, host->main_area0, 512); 1385 host->buf_start = 0; 1386 break; 1387 default: 1388 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n", 1389 command); 1390 break; 1391 } 1392 } 1393 1394 static int mxc_nand_set_features(struct nand_chip *chip, int addr, 1395 u8 *subfeature_param) 1396 { 1397 struct mtd_info *mtd = nand_to_mtd(chip); 1398 struct mxc_nand_host *host = nand_get_controller_data(chip); 1399 int i; 1400 1401 host->buf_start = 0; 1402 1403 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1404 chip->legacy.write_byte(chip, subfeature_param[i]); 1405 1406 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize); 1407 host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false); 1408 mxc_do_addr_cycle(mtd, addr, -1); 1409 host->devtype_data->send_page(mtd, NFC_INPUT); 1410 1411 return 0; 1412 } 1413 1414 static int mxc_nand_get_features(struct nand_chip *chip, int addr, 1415 u8 *subfeature_param) 1416 { 1417 struct mtd_info *mtd = nand_to_mtd(chip); 1418 struct mxc_nand_host *host = nand_get_controller_data(chip); 1419 int i; 1420 1421 host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false); 1422 mxc_do_addr_cycle(mtd, addr, -1); 1423 host->devtype_data->send_page(mtd, NFC_OUTPUT); 1424 memcpy32_fromio(host->data_buf, host->main_area0, 512); 1425 host->buf_start = 0; 1426 1427 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) 1428 *subfeature_param++ = chip->legacy.read_byte(chip); 1429 1430 return 0; 1431 } 1432 1433 /* 1434 * The generic flash bbt descriptors overlap with our ecc 1435 * hardware, so define some i.MX specific ones. 1436 */ 1437 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; 1438 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; 1439 1440 static struct nand_bbt_descr bbt_main_descr = { 1441 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 1442 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, 1443 .offs = 0, 1444 .len = 4, 1445 .veroffs = 4, 1446 .maxblocks = 4, 1447 .pattern = bbt_pattern, 1448 }; 1449 1450 static struct nand_bbt_descr bbt_mirror_descr = { 1451 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 1452 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, 1453 .offs = 0, 1454 .len = 4, 1455 .veroffs = 4, 1456 .maxblocks = 4, 1457 .pattern = mirror_pattern, 1458 }; 1459 1460 /* v1 + irqpending_quirk: i.MX21 */ 1461 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { 1462 .preset = preset_v1, 1463 .read_page = mxc_nand_read_page_v1, 1464 .send_cmd = send_cmd_v1_v2, 1465 .send_addr = send_addr_v1_v2, 1466 .send_page = send_page_v1, 1467 .send_read_id = send_read_id_v1_v2, 1468 .get_dev_status = get_dev_status_v1_v2, 1469 .check_int = check_int_v1_v2, 1470 .irq_control = irq_control_v1_v2, 1471 .get_ecc_status = get_ecc_status_v1, 1472 .ooblayout = &mxc_v1_ooblayout_ops, 1473 .select_chip = mxc_nand_select_chip_v1_v3, 1474 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, 1475 .irqpending_quirk = 1, 1476 .needs_ip = 0, 1477 .regs_offset = 0xe00, 1478 .spare0_offset = 0x800, 1479 .spare_len = 16, 1480 .eccbytes = 3, 1481 .eccsize = 1, 1482 }; 1483 1484 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */ 1485 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { 1486 .preset = preset_v1, 1487 .read_page = mxc_nand_read_page_v1, 1488 .send_cmd = send_cmd_v1_v2, 1489 .send_addr = send_addr_v1_v2, 1490 .send_page = send_page_v1, 1491 .send_read_id = send_read_id_v1_v2, 1492 .get_dev_status = get_dev_status_v1_v2, 1493 .check_int = check_int_v1_v2, 1494 .irq_control = irq_control_v1_v2, 1495 .get_ecc_status = get_ecc_status_v1, 1496 .ooblayout = &mxc_v1_ooblayout_ops, 1497 .select_chip = mxc_nand_select_chip_v1_v3, 1498 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, 1499 .irqpending_quirk = 0, 1500 .needs_ip = 0, 1501 .regs_offset = 0xe00, 1502 .spare0_offset = 0x800, 1503 .axi_offset = 0, 1504 .spare_len = 16, 1505 .eccbytes = 3, 1506 .eccsize = 1, 1507 }; 1508 1509 /* v21: i.MX25, i.MX35 */ 1510 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { 1511 .preset = preset_v2, 1512 .read_page = mxc_nand_read_page_v2_v3, 1513 .send_cmd = send_cmd_v1_v2, 1514 .send_addr = send_addr_v1_v2, 1515 .send_page = send_page_v2, 1516 .send_read_id = send_read_id_v1_v2, 1517 .get_dev_status = get_dev_status_v1_v2, 1518 .check_int = check_int_v1_v2, 1519 .irq_control = irq_control_v1_v2, 1520 .get_ecc_status = get_ecc_status_v2, 1521 .ooblayout = &mxc_v2_ooblayout_ops, 1522 .select_chip = mxc_nand_select_chip_v2, 1523 .setup_interface = mxc_nand_v2_setup_interface, 1524 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, 1525 .irqpending_quirk = 0, 1526 .needs_ip = 0, 1527 .regs_offset = 0x1e00, 1528 .spare0_offset = 0x1000, 1529 .axi_offset = 0, 1530 .spare_len = 64, 1531 .eccbytes = 9, 1532 .eccsize = 0, 1533 }; 1534 1535 /* v3.2a: i.MX51 */ 1536 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { 1537 .preset = preset_v3, 1538 .read_page = mxc_nand_read_page_v2_v3, 1539 .send_cmd = send_cmd_v3, 1540 .send_addr = send_addr_v3, 1541 .send_page = send_page_v3, 1542 .send_read_id = send_read_id_v3, 1543 .get_dev_status = get_dev_status_v3, 1544 .check_int = check_int_v3, 1545 .irq_control = irq_control_v3, 1546 .get_ecc_status = get_ecc_status_v3, 1547 .ooblayout = &mxc_v2_ooblayout_ops, 1548 .select_chip = mxc_nand_select_chip_v1_v3, 1549 .enable_hwecc = mxc_nand_enable_hwecc_v3, 1550 .irqpending_quirk = 0, 1551 .needs_ip = 1, 1552 .regs_offset = 0, 1553 .spare0_offset = 0x1000, 1554 .axi_offset = 0x1e00, 1555 .spare_len = 64, 1556 .eccbytes = 0, 1557 .eccsize = 0, 1558 .ppb_shift = 7, 1559 }; 1560 1561 /* v3.2b: i.MX53 */ 1562 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { 1563 .preset = preset_v3, 1564 .read_page = mxc_nand_read_page_v2_v3, 1565 .send_cmd = send_cmd_v3, 1566 .send_addr = send_addr_v3, 1567 .send_page = send_page_v3, 1568 .send_read_id = send_read_id_v3, 1569 .get_dev_status = get_dev_status_v3, 1570 .check_int = check_int_v3, 1571 .irq_control = irq_control_v3, 1572 .get_ecc_status = get_ecc_status_v3, 1573 .ooblayout = &mxc_v2_ooblayout_ops, 1574 .select_chip = mxc_nand_select_chip_v1_v3, 1575 .enable_hwecc = mxc_nand_enable_hwecc_v3, 1576 .irqpending_quirk = 0, 1577 .needs_ip = 1, 1578 .regs_offset = 0, 1579 .spare0_offset = 0x1000, 1580 .axi_offset = 0x1e00, 1581 .spare_len = 64, 1582 .eccbytes = 0, 1583 .eccsize = 0, 1584 .ppb_shift = 8, 1585 }; 1586 1587 static inline int is_imx21_nfc(struct mxc_nand_host *host) 1588 { 1589 return host->devtype_data == &imx21_nand_devtype_data; 1590 } 1591 1592 static inline int is_imx27_nfc(struct mxc_nand_host *host) 1593 { 1594 return host->devtype_data == &imx27_nand_devtype_data; 1595 } 1596 1597 static inline int is_imx25_nfc(struct mxc_nand_host *host) 1598 { 1599 return host->devtype_data == &imx25_nand_devtype_data; 1600 } 1601 1602 static inline int is_imx51_nfc(struct mxc_nand_host *host) 1603 { 1604 return host->devtype_data == &imx51_nand_devtype_data; 1605 } 1606 1607 static inline int is_imx53_nfc(struct mxc_nand_host *host) 1608 { 1609 return host->devtype_data == &imx53_nand_devtype_data; 1610 } 1611 1612 static const struct of_device_id mxcnd_dt_ids[] = { 1613 { .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, }, 1614 { .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, }, 1615 { .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, }, 1616 { .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, }, 1617 { .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, }, 1618 { /* sentinel */ } 1619 }; 1620 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids); 1621 1622 static int mxcnd_attach_chip(struct nand_chip *chip) 1623 { 1624 struct mtd_info *mtd = nand_to_mtd(chip); 1625 struct mxc_nand_host *host = nand_get_controller_data(chip); 1626 struct device *dev = mtd->dev.parent; 1627 1628 chip->ecc.bytes = host->devtype_data->eccbytes; 1629 host->eccsize = host->devtype_data->eccsize; 1630 chip->ecc.size = 512; 1631 mtd_set_ooblayout(mtd, host->devtype_data->ooblayout); 1632 1633 switch (chip->ecc.engine_type) { 1634 case NAND_ECC_ENGINE_TYPE_ON_HOST: 1635 chip->ecc.read_page = mxc_nand_read_page; 1636 chip->ecc.read_page_raw = mxc_nand_read_page_raw; 1637 chip->ecc.read_oob = mxc_nand_read_oob; 1638 chip->ecc.write_page = mxc_nand_write_page_ecc; 1639 chip->ecc.write_page_raw = mxc_nand_write_page_raw; 1640 chip->ecc.write_oob = mxc_nand_write_oob; 1641 break; 1642 1643 case NAND_ECC_ENGINE_TYPE_SOFT: 1644 break; 1645 1646 default: 1647 return -EINVAL; 1648 } 1649 1650 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 1651 chip->bbt_td = &bbt_main_descr; 1652 chip->bbt_md = &bbt_mirror_descr; 1653 } 1654 1655 /* Allocate the right size buffer now */ 1656 devm_kfree(dev, (void *)host->data_buf); 1657 host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize, 1658 GFP_KERNEL); 1659 if (!host->data_buf) 1660 return -ENOMEM; 1661 1662 /* Call preset again, with correct writesize chip time */ 1663 host->devtype_data->preset(mtd); 1664 1665 if (!chip->ecc.bytes) { 1666 if (host->eccsize == 8) 1667 chip->ecc.bytes = 18; 1668 else if (host->eccsize == 4) 1669 chip->ecc.bytes = 9; 1670 } 1671 1672 /* 1673 * Experimentation shows that i.MX NFC can only handle up to 218 oob 1674 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare() 1675 * into copying invalid data to/from the spare IO buffer, as this 1676 * might cause ECC data corruption when doing sub-page write to a 1677 * partially written page. 1678 */ 1679 host->used_oobsize = min(mtd->oobsize, 218U); 1680 1681 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { 1682 if (is_imx21_nfc(host) || is_imx27_nfc(host)) 1683 chip->ecc.strength = 1; 1684 else 1685 chip->ecc.strength = (host->eccsize == 4) ? 4 : 8; 1686 } 1687 1688 return 0; 1689 } 1690 1691 static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr, 1692 const struct nand_interface_config *conf) 1693 { 1694 struct mxc_nand_host *host = nand_get_controller_data(chip); 1695 1696 return host->devtype_data->setup_interface(chip, chipnr, conf); 1697 } 1698 1699 static const struct nand_controller_ops mxcnd_controller_ops = { 1700 .attach_chip = mxcnd_attach_chip, 1701 .setup_interface = mxcnd_setup_interface, 1702 }; 1703 1704 static int mxcnd_probe(struct platform_device *pdev) 1705 { 1706 struct nand_chip *this; 1707 struct mtd_info *mtd; 1708 struct mxc_nand_host *host; 1709 struct resource *res; 1710 int err = 0; 1711 1712 /* Allocate memory for MTD device structure and private data */ 1713 host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host), 1714 GFP_KERNEL); 1715 if (!host) 1716 return -ENOMEM; 1717 1718 /* allocate a temporary buffer for the nand_scan_ident() */ 1719 host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL); 1720 if (!host->data_buf) 1721 return -ENOMEM; 1722 1723 host->dev = &pdev->dev; 1724 /* structures must be linked */ 1725 this = &host->nand; 1726 mtd = nand_to_mtd(this); 1727 mtd->dev.parent = &pdev->dev; 1728 mtd->name = DRIVER_NAME; 1729 1730 /* 50 us command delay time */ 1731 this->legacy.chip_delay = 5; 1732 1733 nand_set_controller_data(this, host); 1734 nand_set_flash_node(this, pdev->dev.of_node); 1735 this->legacy.dev_ready = mxc_nand_dev_ready; 1736 this->legacy.cmdfunc = mxc_nand_command; 1737 this->legacy.read_byte = mxc_nand_read_byte; 1738 this->legacy.write_buf = mxc_nand_write_buf; 1739 this->legacy.read_buf = mxc_nand_read_buf; 1740 this->legacy.set_features = mxc_nand_set_features; 1741 this->legacy.get_features = mxc_nand_get_features; 1742 1743 host->clk = devm_clk_get(&pdev->dev, NULL); 1744 if (IS_ERR(host->clk)) 1745 return PTR_ERR(host->clk); 1746 1747 host->devtype_data = device_get_match_data(&pdev->dev); 1748 1749 if (!host->devtype_data->setup_interface) 1750 this->options |= NAND_KEEP_TIMINGS; 1751 1752 if (host->devtype_data->needs_ip) { 1753 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1754 host->regs_ip = devm_ioremap_resource(&pdev->dev, res); 1755 if (IS_ERR(host->regs_ip)) 1756 return PTR_ERR(host->regs_ip); 1757 1758 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1759 } else { 1760 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1761 } 1762 1763 host->base = devm_ioremap_resource(&pdev->dev, res); 1764 if (IS_ERR(host->base)) 1765 return PTR_ERR(host->base); 1766 1767 host->main_area0 = host->base; 1768 1769 if (host->devtype_data->regs_offset) 1770 host->regs = host->base + host->devtype_data->regs_offset; 1771 host->spare0 = host->base + host->devtype_data->spare0_offset; 1772 if (host->devtype_data->axi_offset) 1773 host->regs_axi = host->base + host->devtype_data->axi_offset; 1774 1775 this->legacy.select_chip = host->devtype_data->select_chip; 1776 1777 init_completion(&host->op_completion); 1778 1779 host->irq = platform_get_irq(pdev, 0); 1780 if (host->irq < 0) 1781 return host->irq; 1782 1783 /* 1784 * Use host->devtype_data->irq_control() here instead of irq_control() 1785 * because we must not disable_irq_nosync without having requested the 1786 * irq. 1787 */ 1788 host->devtype_data->irq_control(host, 0); 1789 1790 err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq, 1791 0, DRIVER_NAME, host); 1792 if (err) 1793 return err; 1794 1795 err = clk_prepare_enable(host->clk); 1796 if (err) 1797 return err; 1798 host->clk_act = 1; 1799 1800 /* 1801 * Now that we "own" the interrupt make sure the interrupt mask bit is 1802 * cleared on i.MX21. Otherwise we can't read the interrupt status bit 1803 * on this machine. 1804 */ 1805 if (host->devtype_data->irqpending_quirk) { 1806 disable_irq_nosync(host->irq); 1807 host->devtype_data->irq_control(host, 1); 1808 } 1809 1810 /* Scan the NAND device */ 1811 this->legacy.dummy_controller.ops = &mxcnd_controller_ops; 1812 err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1); 1813 if (err) 1814 goto escan; 1815 1816 /* Register the partitions */ 1817 err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); 1818 if (err) 1819 goto cleanup_nand; 1820 1821 platform_set_drvdata(pdev, host); 1822 1823 return 0; 1824 1825 cleanup_nand: 1826 nand_cleanup(this); 1827 escan: 1828 if (host->clk_act) 1829 clk_disable_unprepare(host->clk); 1830 1831 return err; 1832 } 1833 1834 static int mxcnd_remove(struct platform_device *pdev) 1835 { 1836 struct mxc_nand_host *host = platform_get_drvdata(pdev); 1837 struct nand_chip *chip = &host->nand; 1838 int ret; 1839 1840 ret = mtd_device_unregister(nand_to_mtd(chip)); 1841 WARN_ON(ret); 1842 nand_cleanup(chip); 1843 if (host->clk_act) 1844 clk_disable_unprepare(host->clk); 1845 1846 return 0; 1847 } 1848 1849 static struct platform_driver mxcnd_driver = { 1850 .driver = { 1851 .name = DRIVER_NAME, 1852 .of_match_table = mxcnd_dt_ids, 1853 }, 1854 .probe = mxcnd_probe, 1855 .remove = mxcnd_remove, 1856 }; 1857 module_platform_driver(mxcnd_driver); 1858 1859 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 1860 MODULE_DESCRIPTION("MXC NAND MTD driver"); 1861 MODULE_LICENSE("GPL"); 1862