xref: /openbmc/linux/drivers/mtd/nand/raw/mxc_nand.c (revision 384e338a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
4  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/mtd/mtd.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/completion.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 
25 #define DRIVER_NAME "mxc_nand"
26 
27 /* Addresses for NFC registers */
28 #define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
29 #define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
30 #define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
31 #define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
32 #define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
33 #define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
34 #define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
35 #define NFC_V21_RSLTSPARE_AREA		(host->regs + 0x10)
36 #define NFC_V1_V2_WRPROT		(host->regs + 0x12)
37 #define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
38 #define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
39 #define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
40 #define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
41 #define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
42 #define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
43 #define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
44 #define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
45 #define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
46 #define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
47 #define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
48 #define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
49 #define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
50 
51 #define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
52 #define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
53 #define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
54 #define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
55 #define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
56 #define NFC_V1_V2_CONFIG1_RST		(1 << 6)
57 #define NFC_V1_V2_CONFIG1_CE		(1 << 7)
58 #define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
59 #define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
60 #define NFC_V2_CONFIG1_FP_INT		(1 << 11)
61 
62 #define NFC_V1_V2_CONFIG2_INT		(1 << 15)
63 
64 /*
65  * Operation modes for the NFC. Valid for v1, v2 and v3
66  * type controllers.
67  */
68 #define NFC_CMD				(1 << 0)
69 #define NFC_ADDR			(1 << 1)
70 #define NFC_INPUT			(1 << 2)
71 #define NFC_OUTPUT			(1 << 3)
72 #define NFC_ID				(1 << 4)
73 #define NFC_STATUS			(1 << 5)
74 
75 #define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
76 #define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
77 
78 #define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
79 #define NFC_V3_CONFIG1_SP_EN		(1 << 0)
80 #define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
81 
82 #define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
83 
84 #define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
85 
86 #define NFC_V3_WRPROT			(host->regs_ip + 0x0)
87 #define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
88 #define NFC_V3_WRPROT_LOCK		(1 << 1)
89 #define NFC_V3_WRPROT_UNLOCK		(1 << 2)
90 #define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
91 
92 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
93 
94 #define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
95 #define NFC_V3_CONFIG2_PS_512			(0 << 0)
96 #define NFC_V3_CONFIG2_PS_2048			(1 << 0)
97 #define NFC_V3_CONFIG2_PS_4096			(2 << 0)
98 #define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
99 #define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
100 #define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
101 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
102 #define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
103 #define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
104 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
105 #define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
106 #define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
107 #define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
108 
109 #define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
110 #define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
111 #define NFC_V3_CONFIG3_FW8			(1 << 3)
112 #define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
113 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
114 #define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
115 #define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
116 
117 #define NFC_V3_IPC			(host->regs_ip + 0x2C)
118 #define NFC_V3_IPC_CREQ			(1 << 0)
119 #define NFC_V3_IPC_INT			(1 << 31)
120 
121 #define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
122 
123 struct mxc_nand_host;
124 
125 struct mxc_nand_devtype_data {
126 	void (*preset)(struct mtd_info *);
127 	int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
128 			 int page);
129 	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
130 	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
131 	void (*send_page)(struct mtd_info *, unsigned int);
132 	void (*send_read_id)(struct mxc_nand_host *);
133 	uint16_t (*get_dev_status)(struct mxc_nand_host *);
134 	int (*check_int)(struct mxc_nand_host *);
135 	void (*irq_control)(struct mxc_nand_host *, int);
136 	u32 (*get_ecc_status)(struct mxc_nand_host *);
137 	const struct mtd_ooblayout_ops *ooblayout;
138 	void (*select_chip)(struct nand_chip *chip, int cs);
139 	int (*setup_interface)(struct nand_chip *chip, int csline,
140 			       const struct nand_interface_config *conf);
141 	void (*enable_hwecc)(struct nand_chip *chip, bool enable);
142 
143 	/*
144 	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
145 	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
146 	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
147 	 */
148 	int irqpending_quirk;
149 	int needs_ip;
150 
151 	size_t regs_offset;
152 	size_t spare0_offset;
153 	size_t axi_offset;
154 
155 	int spare_len;
156 	int eccbytes;
157 	int eccsize;
158 	int ppb_shift;
159 };
160 
161 struct mxc_nand_host {
162 	struct nand_chip	nand;
163 	struct device		*dev;
164 
165 	void __iomem		*spare0;
166 	void __iomem		*main_area0;
167 
168 	void __iomem		*base;
169 	void __iomem		*regs;
170 	void __iomem		*regs_axi;
171 	void __iomem		*regs_ip;
172 	int			status_request;
173 	struct clk		*clk;
174 	int			clk_act;
175 	int			irq;
176 	int			eccsize;
177 	int			used_oobsize;
178 	int			active_cs;
179 
180 	struct completion	op_completion;
181 
182 	uint8_t			*data_buf;
183 	unsigned int		buf_start;
184 
185 	const struct mxc_nand_devtype_data *devtype_data;
186 };
187 
188 static const char * const part_probes[] = {
189 	"cmdlinepart", "RedBoot", "ofpart", NULL };
190 
191 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
192 {
193 	int i;
194 	u32 *t = trg;
195 	const __iomem u32 *s = src;
196 
197 	for (i = 0; i < (size >> 2); i++)
198 		*t++ = __raw_readl(s++);
199 }
200 
201 static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
202 {
203 	int i;
204 	u16 *t = trg;
205 	const __iomem u16 *s = src;
206 
207 	/* We assume that src (IO) is always 32bit aligned */
208 	if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
209 		memcpy32_fromio(trg, src, size);
210 		return;
211 	}
212 
213 	for (i = 0; i < (size >> 1); i++)
214 		*t++ = __raw_readw(s++);
215 }
216 
217 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
218 {
219 	/* __iowrite32_copy use 32bit size values so divide by 4 */
220 	__iowrite32_copy(trg, src, size / 4);
221 }
222 
223 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
224 {
225 	int i;
226 	__iomem u16 *t = trg;
227 	const u16 *s = src;
228 
229 	/* We assume that trg (IO) is always 32bit aligned */
230 	if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
231 		memcpy32_toio(trg, src, size);
232 		return;
233 	}
234 
235 	for (i = 0; i < (size >> 1); i++)
236 		__raw_writew(*s++, t++);
237 }
238 
239 /*
240  * The controller splits a page into data chunks of 512 bytes + partial oob.
241  * There are writesize / 512 such chunks, the size of the partial oob parts is
242  * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
243  * contains additionally the byte lost by rounding (if any).
244  * This function handles the needed shuffling between host->data_buf (which
245  * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
246  * spare) and the NFC buffer.
247  */
248 static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
249 {
250 	struct nand_chip *this = mtd_to_nand(mtd);
251 	struct mxc_nand_host *host = nand_get_controller_data(this);
252 	u16 i, oob_chunk_size;
253 	u16 num_chunks = mtd->writesize / 512;
254 
255 	u8 *d = buf;
256 	u8 __iomem *s = host->spare0;
257 	u16 sparebuf_size = host->devtype_data->spare_len;
258 
259 	/* size of oob chunk for all but possibly the last one */
260 	oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
261 
262 	if (bfrom) {
263 		for (i = 0; i < num_chunks - 1; i++)
264 			memcpy16_fromio(d + i * oob_chunk_size,
265 					s + i * sparebuf_size,
266 					oob_chunk_size);
267 
268 		/* the last chunk */
269 		memcpy16_fromio(d + i * oob_chunk_size,
270 				s + i * sparebuf_size,
271 				host->used_oobsize - i * oob_chunk_size);
272 	} else {
273 		for (i = 0; i < num_chunks - 1; i++)
274 			memcpy16_toio(&s[i * sparebuf_size],
275 				      &d[i * oob_chunk_size],
276 				      oob_chunk_size);
277 
278 		/* the last chunk */
279 		memcpy16_toio(&s[i * sparebuf_size],
280 			      &d[i * oob_chunk_size],
281 			      host->used_oobsize - i * oob_chunk_size);
282 	}
283 }
284 
285 /*
286  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
287  * the upper layers perform a read/write buf operation, the saved column address
288  * is used to index into the full page. So usually this function is called with
289  * column == 0 (unless no column cycle is needed indicated by column == -1)
290  */
291 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
292 {
293 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
294 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
295 
296 	/* Write out column address, if necessary */
297 	if (column != -1) {
298 		host->devtype_data->send_addr(host, column & 0xff,
299 					      page_addr == -1);
300 		if (mtd->writesize > 512)
301 			/* another col addr cycle for 2k page */
302 			host->devtype_data->send_addr(host,
303 						      (column >> 8) & 0xff,
304 						      false);
305 	}
306 
307 	/* Write out page address, if necessary */
308 	if (page_addr != -1) {
309 		/* paddr_0 - p_addr_7 */
310 		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
311 
312 		if (mtd->writesize > 512) {
313 			if (mtd->size >= 0x10000000) {
314 				/* paddr_8 - paddr_15 */
315 				host->devtype_data->send_addr(host,
316 						(page_addr >> 8) & 0xff,
317 						false);
318 				host->devtype_data->send_addr(host,
319 						(page_addr >> 16) & 0xff,
320 						true);
321 			} else
322 				/* paddr_8 - paddr_15 */
323 				host->devtype_data->send_addr(host,
324 						(page_addr >> 8) & 0xff, true);
325 		} else {
326 			if (nand_chip->options & NAND_ROW_ADDR_3) {
327 				/* paddr_8 - paddr_15 */
328 				host->devtype_data->send_addr(host,
329 						(page_addr >> 8) & 0xff,
330 						false);
331 				host->devtype_data->send_addr(host,
332 						(page_addr >> 16) & 0xff,
333 						true);
334 			} else
335 				/* paddr_8 - paddr_15 */
336 				host->devtype_data->send_addr(host,
337 						(page_addr >> 8) & 0xff, true);
338 		}
339 	}
340 }
341 
342 static int check_int_v3(struct mxc_nand_host *host)
343 {
344 	uint32_t tmp;
345 
346 	tmp = readl(NFC_V3_IPC);
347 	if (!(tmp & NFC_V3_IPC_INT))
348 		return 0;
349 
350 	tmp &= ~NFC_V3_IPC_INT;
351 	writel(tmp, NFC_V3_IPC);
352 
353 	return 1;
354 }
355 
356 static int check_int_v1_v2(struct mxc_nand_host *host)
357 {
358 	uint32_t tmp;
359 
360 	tmp = readw(NFC_V1_V2_CONFIG2);
361 	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
362 		return 0;
363 
364 	if (!host->devtype_data->irqpending_quirk)
365 		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
366 
367 	return 1;
368 }
369 
370 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
371 {
372 	uint16_t tmp;
373 
374 	tmp = readw(NFC_V1_V2_CONFIG1);
375 
376 	if (activate)
377 		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
378 	else
379 		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
380 
381 	writew(tmp, NFC_V1_V2_CONFIG1);
382 }
383 
384 static void irq_control_v3(struct mxc_nand_host *host, int activate)
385 {
386 	uint32_t tmp;
387 
388 	tmp = readl(NFC_V3_CONFIG2);
389 
390 	if (activate)
391 		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
392 	else
393 		tmp |= NFC_V3_CONFIG2_INT_MSK;
394 
395 	writel(tmp, NFC_V3_CONFIG2);
396 }
397 
398 static void irq_control(struct mxc_nand_host *host, int activate)
399 {
400 	if (host->devtype_data->irqpending_quirk) {
401 		if (activate)
402 			enable_irq(host->irq);
403 		else
404 			disable_irq_nosync(host->irq);
405 	} else {
406 		host->devtype_data->irq_control(host, activate);
407 	}
408 }
409 
410 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
411 {
412 	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
413 }
414 
415 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
416 {
417 	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
418 }
419 
420 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
421 {
422 	return readl(NFC_V3_ECC_STATUS_RESULT);
423 }
424 
425 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
426 {
427 	struct mxc_nand_host *host = dev_id;
428 
429 	if (!host->devtype_data->check_int(host))
430 		return IRQ_NONE;
431 
432 	irq_control(host, 0);
433 
434 	complete(&host->op_completion);
435 
436 	return IRQ_HANDLED;
437 }
438 
439 /* This function polls the NANDFC to wait for the basic operation to
440  * complete by checking the INT bit of config2 register.
441  */
442 static int wait_op_done(struct mxc_nand_host *host, int useirq)
443 {
444 	int ret = 0;
445 
446 	/*
447 	 * If operation is already complete, don't bother to setup an irq or a
448 	 * loop.
449 	 */
450 	if (host->devtype_data->check_int(host))
451 		return 0;
452 
453 	if (useirq) {
454 		unsigned long timeout;
455 
456 		reinit_completion(&host->op_completion);
457 
458 		irq_control(host, 1);
459 
460 		timeout = wait_for_completion_timeout(&host->op_completion, HZ);
461 		if (!timeout && !host->devtype_data->check_int(host)) {
462 			dev_dbg(host->dev, "timeout waiting for irq\n");
463 			ret = -ETIMEDOUT;
464 		}
465 	} else {
466 		int max_retries = 8000;
467 		int done;
468 
469 		do {
470 			udelay(1);
471 
472 			done = host->devtype_data->check_int(host);
473 			if (done)
474 				break;
475 
476 		} while (--max_retries);
477 
478 		if (!done) {
479 			dev_dbg(host->dev, "timeout polling for completion\n");
480 			ret = -ETIMEDOUT;
481 		}
482 	}
483 
484 	WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
485 
486 	return ret;
487 }
488 
489 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
490 {
491 	/* fill command */
492 	writel(cmd, NFC_V3_FLASH_CMD);
493 
494 	/* send out command */
495 	writel(NFC_CMD, NFC_V3_LAUNCH);
496 
497 	/* Wait for operation to complete */
498 	wait_op_done(host, useirq);
499 }
500 
501 /* This function issues the specified command to the NAND device and
502  * waits for completion. */
503 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
504 {
505 	dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
506 
507 	writew(cmd, NFC_V1_V2_FLASH_CMD);
508 	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
509 
510 	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
511 		int max_retries = 100;
512 		/* Reset completion is indicated by NFC_CONFIG2 */
513 		/* being set to 0 */
514 		while (max_retries-- > 0) {
515 			if (readw(NFC_V1_V2_CONFIG2) == 0) {
516 				break;
517 			}
518 			udelay(1);
519 		}
520 		if (max_retries < 0)
521 			dev_dbg(host->dev, "%s: RESET failed\n", __func__);
522 	} else {
523 		/* Wait for operation to complete */
524 		wait_op_done(host, useirq);
525 	}
526 }
527 
528 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
529 {
530 	/* fill address */
531 	writel(addr, NFC_V3_FLASH_ADDR0);
532 
533 	/* send out address */
534 	writel(NFC_ADDR, NFC_V3_LAUNCH);
535 
536 	wait_op_done(host, 0);
537 }
538 
539 /* This function sends an address (or partial address) to the
540  * NAND device. The address is used to select the source/destination for
541  * a NAND command. */
542 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
543 {
544 	dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
545 
546 	writew(addr, NFC_V1_V2_FLASH_ADDR);
547 	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
548 
549 	/* Wait for operation to complete */
550 	wait_op_done(host, islast);
551 }
552 
553 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
554 {
555 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
556 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
557 	uint32_t tmp;
558 
559 	tmp = readl(NFC_V3_CONFIG1);
560 	tmp &= ~(7 << 4);
561 	writel(tmp, NFC_V3_CONFIG1);
562 
563 	/* transfer data from NFC ram to nand */
564 	writel(ops, NFC_V3_LAUNCH);
565 
566 	wait_op_done(host, false);
567 }
568 
569 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
570 {
571 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
572 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
573 
574 	/* NANDFC buffer 0 is used for page read/write */
575 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
576 
577 	writew(ops, NFC_V1_V2_CONFIG2);
578 
579 	/* Wait for operation to complete */
580 	wait_op_done(host, true);
581 }
582 
583 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
584 {
585 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
586 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
587 	int bufs, i;
588 
589 	if (mtd->writesize > 512)
590 		bufs = 4;
591 	else
592 		bufs = 1;
593 
594 	for (i = 0; i < bufs; i++) {
595 
596 		/* NANDFC buffer 0 is used for page read/write */
597 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
598 
599 		writew(ops, NFC_V1_V2_CONFIG2);
600 
601 		/* Wait for operation to complete */
602 		wait_op_done(host, true);
603 	}
604 }
605 
606 static void send_read_id_v3(struct mxc_nand_host *host)
607 {
608 	/* Read ID into main buffer */
609 	writel(NFC_ID, NFC_V3_LAUNCH);
610 
611 	wait_op_done(host, true);
612 
613 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
614 }
615 
616 /* Request the NANDFC to perform a read of the NAND device ID. */
617 static void send_read_id_v1_v2(struct mxc_nand_host *host)
618 {
619 	/* NANDFC buffer 0 is used for device ID output */
620 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
621 
622 	writew(NFC_ID, NFC_V1_V2_CONFIG2);
623 
624 	/* Wait for operation to complete */
625 	wait_op_done(host, true);
626 
627 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
628 }
629 
630 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
631 {
632 	writew(NFC_STATUS, NFC_V3_LAUNCH);
633 	wait_op_done(host, true);
634 
635 	return readl(NFC_V3_CONFIG1) >> 16;
636 }
637 
638 /* This function requests the NANDFC to perform a read of the
639  * NAND device status and returns the current status. */
640 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
641 {
642 	void __iomem *main_buf = host->main_area0;
643 	uint32_t store;
644 	uint16_t ret;
645 
646 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
647 
648 	/*
649 	 * The device status is stored in main_area0. To
650 	 * prevent corruption of the buffer save the value
651 	 * and restore it afterwards.
652 	 */
653 	store = readl(main_buf);
654 
655 	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
656 	wait_op_done(host, true);
657 
658 	ret = readw(main_buf);
659 
660 	writel(store, main_buf);
661 
662 	return ret;
663 }
664 
665 static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
666 {
667 	struct mxc_nand_host *host = nand_get_controller_data(chip);
668 	uint16_t config1;
669 
670 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
671 		return;
672 
673 	config1 = readw(NFC_V1_V2_CONFIG1);
674 
675 	if (enable)
676 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
677 	else
678 		config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
679 
680 	writew(config1, NFC_V1_V2_CONFIG1);
681 }
682 
683 static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
684 {
685 	struct mxc_nand_host *host = nand_get_controller_data(chip);
686 	uint32_t config2;
687 
688 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
689 		return;
690 
691 	config2 = readl(NFC_V3_CONFIG2);
692 
693 	if (enable)
694 		config2 |= NFC_V3_CONFIG2_ECC_EN;
695 	else
696 		config2 &= ~NFC_V3_CONFIG2_ECC_EN;
697 
698 	writel(config2, NFC_V3_CONFIG2);
699 }
700 
701 /* This functions is used by upper layer to checks if device is ready */
702 static int mxc_nand_dev_ready(struct nand_chip *chip)
703 {
704 	/*
705 	 * NFC handles R/B internally. Therefore, this function
706 	 * always returns status as ready.
707 	 */
708 	return 1;
709 }
710 
711 static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
712 				 bool ecc, int page)
713 {
714 	struct mtd_info *mtd = nand_to_mtd(chip);
715 	struct mxc_nand_host *host = nand_get_controller_data(chip);
716 	unsigned int bitflips_corrected = 0;
717 	int no_subpages;
718 	int i;
719 
720 	host->devtype_data->enable_hwecc(chip, ecc);
721 
722 	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
723 	mxc_do_addr_cycle(mtd, 0, page);
724 
725 	if (mtd->writesize > 512)
726 		host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
727 
728 	no_subpages = mtd->writesize >> 9;
729 
730 	for (i = 0; i < no_subpages; i++) {
731 		uint16_t ecc_stats;
732 
733 		/* NANDFC buffer 0 is used for page read/write */
734 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
735 
736 		writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
737 
738 		/* Wait for operation to complete */
739 		wait_op_done(host, true);
740 
741 		ecc_stats = get_ecc_status_v1(host);
742 
743 		ecc_stats >>= 2;
744 
745 		if (buf && ecc) {
746 			switch (ecc_stats & 0x3) {
747 			case 0:
748 			default:
749 				break;
750 			case 1:
751 				mtd->ecc_stats.corrected++;
752 				bitflips_corrected = 1;
753 				break;
754 			case 2:
755 				mtd->ecc_stats.failed++;
756 				break;
757 			}
758 		}
759 	}
760 
761 	if (buf)
762 		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
763 	if (oob)
764 		copy_spare(mtd, true, oob);
765 
766 	return bitflips_corrected;
767 }
768 
769 static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
770 				    void *oob, bool ecc, int page)
771 {
772 	struct mtd_info *mtd = nand_to_mtd(chip);
773 	struct mxc_nand_host *host = nand_get_controller_data(chip);
774 	unsigned int max_bitflips = 0;
775 	u32 ecc_stat, err;
776 	int no_subpages;
777 	u8 ecc_bit_mask, err_limit;
778 
779 	host->devtype_data->enable_hwecc(chip, ecc);
780 
781 	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
782 	mxc_do_addr_cycle(mtd, 0, page);
783 
784 	if (mtd->writesize > 512)
785 		host->devtype_data->send_cmd(host,
786 				NAND_CMD_READSTART, true);
787 
788 	host->devtype_data->send_page(mtd, NFC_OUTPUT);
789 
790 	if (buf)
791 		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
792 	if (oob)
793 		copy_spare(mtd, true, oob);
794 
795 	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
796 	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
797 
798 	no_subpages = mtd->writesize >> 9;
799 
800 	ecc_stat = host->devtype_data->get_ecc_status(host);
801 
802 	do {
803 		err = ecc_stat & ecc_bit_mask;
804 		if (err > err_limit) {
805 			mtd->ecc_stats.failed++;
806 		} else {
807 			mtd->ecc_stats.corrected += err;
808 			max_bitflips = max_t(unsigned int, max_bitflips, err);
809 		}
810 
811 		ecc_stat >>= 4;
812 	} while (--no_subpages);
813 
814 	return max_bitflips;
815 }
816 
817 static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
818 			      int oob_required, int page)
819 {
820 	struct mxc_nand_host *host = nand_get_controller_data(chip);
821 	void *oob_buf;
822 
823 	if (oob_required)
824 		oob_buf = chip->oob_poi;
825 	else
826 		oob_buf = NULL;
827 
828 	return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
829 }
830 
831 static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
832 				  int oob_required, int page)
833 {
834 	struct mxc_nand_host *host = nand_get_controller_data(chip);
835 	void *oob_buf;
836 
837 	if (oob_required)
838 		oob_buf = chip->oob_poi;
839 	else
840 		oob_buf = NULL;
841 
842 	return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
843 }
844 
845 static int mxc_nand_read_oob(struct nand_chip *chip, int page)
846 {
847 	struct mxc_nand_host *host = nand_get_controller_data(chip);
848 
849 	return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
850 					     page);
851 }
852 
853 static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
854 			       bool ecc, int page)
855 {
856 	struct mtd_info *mtd = nand_to_mtd(chip);
857 	struct mxc_nand_host *host = nand_get_controller_data(chip);
858 
859 	host->devtype_data->enable_hwecc(chip, ecc);
860 
861 	host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
862 	mxc_do_addr_cycle(mtd, 0, page);
863 
864 	memcpy32_toio(host->main_area0, buf, mtd->writesize);
865 	copy_spare(mtd, false, chip->oob_poi);
866 
867 	host->devtype_data->send_page(mtd, NFC_INPUT);
868 	host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
869 	mxc_do_addr_cycle(mtd, 0, page);
870 
871 	return 0;
872 }
873 
874 static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
875 				   int oob_required, int page)
876 {
877 	return mxc_nand_write_page(chip, buf, true, page);
878 }
879 
880 static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
881 				   int oob_required, int page)
882 {
883 	return mxc_nand_write_page(chip, buf, false, page);
884 }
885 
886 static int mxc_nand_write_oob(struct nand_chip *chip, int page)
887 {
888 	struct mtd_info *mtd = nand_to_mtd(chip);
889 	struct mxc_nand_host *host = nand_get_controller_data(chip);
890 
891 	memset(host->data_buf, 0xff, mtd->writesize);
892 
893 	return mxc_nand_write_page(chip, host->data_buf, false, page);
894 }
895 
896 static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
897 {
898 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
899 	uint8_t ret;
900 
901 	/* Check for status request */
902 	if (host->status_request)
903 		return host->devtype_data->get_dev_status(host) & 0xFF;
904 
905 	if (nand_chip->options & NAND_BUSWIDTH_16) {
906 		/* only take the lower byte of each word */
907 		ret = *(uint16_t *)(host->data_buf + host->buf_start);
908 
909 		host->buf_start += 2;
910 	} else {
911 		ret = *(uint8_t *)(host->data_buf + host->buf_start);
912 		host->buf_start++;
913 	}
914 
915 	dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
916 	return ret;
917 }
918 
919 /* Write data of length len to buffer buf. The data to be
920  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
921  * Operation by the NFC, the data is written to NAND Flash */
922 static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
923 			       int len)
924 {
925 	struct mtd_info *mtd = nand_to_mtd(nand_chip);
926 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
927 	u16 col = host->buf_start;
928 	int n = mtd->oobsize + mtd->writesize - col;
929 
930 	n = min(n, len);
931 
932 	memcpy(host->data_buf + col, buf, n);
933 
934 	host->buf_start += n;
935 }
936 
937 /* Read the data buffer from the NAND Flash. To read the data from NAND
938  * Flash first the data output cycle is initiated by the NFC, which copies
939  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
940  */
941 static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
942 			      int len)
943 {
944 	struct mtd_info *mtd = nand_to_mtd(nand_chip);
945 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
946 	u16 col = host->buf_start;
947 	int n = mtd->oobsize + mtd->writesize - col;
948 
949 	n = min(n, len);
950 
951 	memcpy(buf, host->data_buf + col, n);
952 
953 	host->buf_start += n;
954 }
955 
956 /* This function is used by upper layer for select and
957  * deselect of the NAND chip */
958 static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
959 {
960 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
961 
962 	if (chip == -1) {
963 		/* Disable the NFC clock */
964 		if (host->clk_act) {
965 			clk_disable_unprepare(host->clk);
966 			host->clk_act = 0;
967 		}
968 		return;
969 	}
970 
971 	if (!host->clk_act) {
972 		/* Enable the NFC clock */
973 		clk_prepare_enable(host->clk);
974 		host->clk_act = 1;
975 	}
976 }
977 
978 static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
979 {
980 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
981 
982 	if (chip == -1) {
983 		/* Disable the NFC clock */
984 		if (host->clk_act) {
985 			clk_disable_unprepare(host->clk);
986 			host->clk_act = 0;
987 		}
988 		return;
989 	}
990 
991 	if (!host->clk_act) {
992 		/* Enable the NFC clock */
993 		clk_prepare_enable(host->clk);
994 		host->clk_act = 1;
995 	}
996 
997 	host->active_cs = chip;
998 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
999 }
1000 
1001 #define MXC_V1_ECCBYTES		5
1002 
1003 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1004 				struct mtd_oob_region *oobregion)
1005 {
1006 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1007 
1008 	if (section >= nand_chip->ecc.steps)
1009 		return -ERANGE;
1010 
1011 	oobregion->offset = (section * 16) + 6;
1012 	oobregion->length = MXC_V1_ECCBYTES;
1013 
1014 	return 0;
1015 }
1016 
1017 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1018 				 struct mtd_oob_region *oobregion)
1019 {
1020 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1021 
1022 	if (section > nand_chip->ecc.steps)
1023 		return -ERANGE;
1024 
1025 	if (!section) {
1026 		if (mtd->writesize <= 512) {
1027 			oobregion->offset = 0;
1028 			oobregion->length = 5;
1029 		} else {
1030 			oobregion->offset = 2;
1031 			oobregion->length = 4;
1032 		}
1033 	} else {
1034 		oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1035 		if (section < nand_chip->ecc.steps)
1036 			oobregion->length = (section * 16) + 6 -
1037 					    oobregion->offset;
1038 		else
1039 			oobregion->length = mtd->oobsize - oobregion->offset;
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1046 	.ecc = mxc_v1_ooblayout_ecc,
1047 	.free = mxc_v1_ooblayout_free,
1048 };
1049 
1050 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1051 				struct mtd_oob_region *oobregion)
1052 {
1053 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1054 	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1055 
1056 	if (section >= nand_chip->ecc.steps)
1057 		return -ERANGE;
1058 
1059 	oobregion->offset = (section * stepsize) + 7;
1060 	oobregion->length = nand_chip->ecc.bytes;
1061 
1062 	return 0;
1063 }
1064 
1065 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1066 				 struct mtd_oob_region *oobregion)
1067 {
1068 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1069 	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1070 
1071 	if (section >= nand_chip->ecc.steps)
1072 		return -ERANGE;
1073 
1074 	if (!section) {
1075 		if (mtd->writesize <= 512) {
1076 			oobregion->offset = 0;
1077 			oobregion->length = 5;
1078 		} else {
1079 			oobregion->offset = 2;
1080 			oobregion->length = 4;
1081 		}
1082 	} else {
1083 		oobregion->offset = section * stepsize;
1084 		oobregion->length = 7;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1091 	.ecc = mxc_v2_ooblayout_ecc,
1092 	.free = mxc_v2_ooblayout_free,
1093 };
1094 
1095 /*
1096  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1097  * on how much oob the nand chip has. For 8bit ecc we need at least
1098  * 26 bytes of oob data per 512 byte block.
1099  */
1100 static int get_eccsize(struct mtd_info *mtd)
1101 {
1102 	int oobbytes_per_512 = 0;
1103 
1104 	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1105 
1106 	if (oobbytes_per_512 < 26)
1107 		return 4;
1108 	else
1109 		return 8;
1110 }
1111 
1112 static void preset_v1(struct mtd_info *mtd)
1113 {
1114 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1115 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1116 	uint16_t config1 = 0;
1117 
1118 	if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
1119 	    mtd->writesize)
1120 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1121 
1122 	if (!host->devtype_data->irqpending_quirk)
1123 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1124 
1125 	host->eccsize = 1;
1126 
1127 	writew(config1, NFC_V1_V2_CONFIG1);
1128 	/* preset operation */
1129 
1130 	/* Unlock the internal RAM Buffer */
1131 	writew(0x2, NFC_V1_V2_CONFIG);
1132 
1133 	/* Blocks to be unlocked */
1134 	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1135 	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1136 
1137 	/* Unlock Block Command for given address range */
1138 	writew(0x4, NFC_V1_V2_WRPROT);
1139 }
1140 
1141 static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline,
1142 				       const struct nand_interface_config *conf)
1143 {
1144 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1145 	int tRC_min_ns, tRC_ps, ret;
1146 	unsigned long rate, rate_round;
1147 	const struct nand_sdr_timings *timings;
1148 	u16 config1;
1149 
1150 	timings = nand_get_sdr_timings(conf);
1151 	if (IS_ERR(timings))
1152 		return -ENOTSUPP;
1153 
1154 	config1 = readw(NFC_V1_V2_CONFIG1);
1155 
1156 	tRC_min_ns = timings->tRC_min / 1000;
1157 	rate = 1000000000 / tRC_min_ns;
1158 
1159 	/*
1160 	 * For tRC < 30ns we have to use EDO mode. In this case the controller
1161 	 * does one access per clock cycle. Otherwise the controller does one
1162 	 * access in two clock cycles, thus we have to double the rate to the
1163 	 * controller.
1164 	 */
1165 	if (tRC_min_ns < 30) {
1166 		rate_round = clk_round_rate(host->clk, rate);
1167 		config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1168 		tRC_ps = 1000000000 / (rate_round / 1000);
1169 	} else {
1170 		rate *= 2;
1171 		rate_round = clk_round_rate(host->clk, rate);
1172 		config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1173 		tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1174 	}
1175 
1176 	/*
1177 	 * The timing values compared against are from the i.MX25 Automotive
1178 	 * datasheet, Table 50. NFC Timing Parameters
1179 	 */
1180 	if (timings->tCLS_min > tRC_ps - 1000 ||
1181 	    timings->tCLH_min > tRC_ps - 2000 ||
1182 	    timings->tCS_min > tRC_ps - 1000 ||
1183 	    timings->tCH_min > tRC_ps - 2000 ||
1184 	    timings->tWP_min > tRC_ps - 1500 ||
1185 	    timings->tALS_min > tRC_ps ||
1186 	    timings->tALH_min > tRC_ps - 3000 ||
1187 	    timings->tDS_min > tRC_ps ||
1188 	    timings->tDH_min > tRC_ps - 5000 ||
1189 	    timings->tWC_min > 2 * tRC_ps ||
1190 	    timings->tWH_min > tRC_ps - 2500 ||
1191 	    timings->tRR_min > 6 * tRC_ps ||
1192 	    timings->tRP_min > 3 * tRC_ps / 2 ||
1193 	    timings->tRC_min > 2 * tRC_ps ||
1194 	    timings->tREH_min > (tRC_ps / 2) - 2500) {
1195 		dev_dbg(host->dev, "Timing out of bounds\n");
1196 		return -EINVAL;
1197 	}
1198 
1199 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1200 		return 0;
1201 
1202 	ret = clk_set_rate(host->clk, rate);
1203 	if (ret)
1204 		return ret;
1205 
1206 	writew(config1, NFC_V1_V2_CONFIG1);
1207 
1208 	dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1209 		config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1210 		"normal");
1211 
1212 	return 0;
1213 }
1214 
1215 static void preset_v2(struct mtd_info *mtd)
1216 {
1217 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1218 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1219 	uint16_t config1 = 0;
1220 
1221 	config1 |= NFC_V2_CONFIG1_FP_INT;
1222 
1223 	if (!host->devtype_data->irqpending_quirk)
1224 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1225 
1226 	if (mtd->writesize) {
1227 		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1228 
1229 		if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1230 			config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1231 
1232 		host->eccsize = get_eccsize(mtd);
1233 		if (host->eccsize == 4)
1234 			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1235 
1236 		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1237 	} else {
1238 		host->eccsize = 1;
1239 	}
1240 
1241 	writew(config1, NFC_V1_V2_CONFIG1);
1242 	/* preset operation */
1243 
1244 	/* spare area size in 16-bit half-words */
1245 	writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1246 
1247 	/* Unlock the internal RAM Buffer */
1248 	writew(0x2, NFC_V1_V2_CONFIG);
1249 
1250 	/* Blocks to be unlocked */
1251 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1252 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1253 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1254 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1255 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1256 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1257 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1258 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1259 
1260 	/* Unlock Block Command for given address range */
1261 	writew(0x4, NFC_V1_V2_WRPROT);
1262 }
1263 
1264 static void preset_v3(struct mtd_info *mtd)
1265 {
1266 	struct nand_chip *chip = mtd_to_nand(mtd);
1267 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1268 	uint32_t config2, config3;
1269 	int i, addr_phases;
1270 
1271 	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1272 	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1273 
1274 	/* Unlock the internal RAM Buffer */
1275 	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1276 			NFC_V3_WRPROT);
1277 
1278 	/* Blocks to be unlocked */
1279 	for (i = 0; i < NAND_MAX_CHIPS; i++)
1280 		writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1281 
1282 	writel(0, NFC_V3_IPC);
1283 
1284 	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1285 		NFC_V3_CONFIG2_2CMD_PHASES |
1286 		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1287 		NFC_V3_CONFIG2_ST_CMD(0x70) |
1288 		NFC_V3_CONFIG2_INT_MSK |
1289 		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1290 
1291 	addr_phases = fls(chip->pagemask) >> 3;
1292 
1293 	if (mtd->writesize == 2048) {
1294 		config2 |= NFC_V3_CONFIG2_PS_2048;
1295 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1296 	} else if (mtd->writesize == 4096) {
1297 		config2 |= NFC_V3_CONFIG2_PS_4096;
1298 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1299 	} else {
1300 		config2 |= NFC_V3_CONFIG2_PS_512;
1301 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1302 	}
1303 
1304 	if (mtd->writesize) {
1305 		if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1306 			config2 |= NFC_V3_CONFIG2_ECC_EN;
1307 
1308 		config2 |= NFC_V3_CONFIG2_PPB(
1309 				ffs(mtd->erasesize / mtd->writesize) - 6,
1310 				host->devtype_data->ppb_shift);
1311 		host->eccsize = get_eccsize(mtd);
1312 		if (host->eccsize == 8)
1313 			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1314 	}
1315 
1316 	writel(config2, NFC_V3_CONFIG2);
1317 
1318 	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1319 			NFC_V3_CONFIG3_NO_SDMA |
1320 			NFC_V3_CONFIG3_RBB_MODE |
1321 			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1322 			NFC_V3_CONFIG3_ADD_OP(0);
1323 
1324 	if (!(chip->options & NAND_BUSWIDTH_16))
1325 		config3 |= NFC_V3_CONFIG3_FW8;
1326 
1327 	writel(config3, NFC_V3_CONFIG3);
1328 
1329 	writel(0, NFC_V3_DELAY_LINE);
1330 }
1331 
1332 /* Used by the upper layer to write command to NAND Flash for
1333  * different operations to be carried out on NAND Flash */
1334 static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1335 			     int column, int page_addr)
1336 {
1337 	struct mtd_info *mtd = nand_to_mtd(nand_chip);
1338 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1339 
1340 	dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1341 	      command, column, page_addr);
1342 
1343 	/* Reset command state information */
1344 	host->status_request = false;
1345 
1346 	/* Command pre-processing step */
1347 	switch (command) {
1348 	case NAND_CMD_RESET:
1349 		host->devtype_data->preset(mtd);
1350 		host->devtype_data->send_cmd(host, command, false);
1351 		break;
1352 
1353 	case NAND_CMD_STATUS:
1354 		host->buf_start = 0;
1355 		host->status_request = true;
1356 
1357 		host->devtype_data->send_cmd(host, command, true);
1358 		WARN_ONCE(column != -1 || page_addr != -1,
1359 			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1360 			  command, column, page_addr);
1361 		mxc_do_addr_cycle(mtd, column, page_addr);
1362 		break;
1363 
1364 	case NAND_CMD_READID:
1365 		host->devtype_data->send_cmd(host, command, true);
1366 		mxc_do_addr_cycle(mtd, column, page_addr);
1367 		host->devtype_data->send_read_id(host);
1368 		host->buf_start = 0;
1369 		break;
1370 
1371 	case NAND_CMD_ERASE1:
1372 	case NAND_CMD_ERASE2:
1373 		host->devtype_data->send_cmd(host, command, false);
1374 		WARN_ONCE(column != -1,
1375 			  "Unexpected column value (cmd=%u, col=%d)\n",
1376 			  command, column);
1377 		mxc_do_addr_cycle(mtd, column, page_addr);
1378 
1379 		break;
1380 	case NAND_CMD_PARAM:
1381 		host->devtype_data->send_cmd(host, command, false);
1382 		mxc_do_addr_cycle(mtd, column, page_addr);
1383 		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1384 		memcpy32_fromio(host->data_buf, host->main_area0, 512);
1385 		host->buf_start = 0;
1386 		break;
1387 	default:
1388 		WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1389 			  command);
1390 		break;
1391 	}
1392 }
1393 
1394 static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1395 				 u8 *subfeature_param)
1396 {
1397 	struct mtd_info *mtd = nand_to_mtd(chip);
1398 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1399 	int i;
1400 
1401 	host->buf_start = 0;
1402 
1403 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1404 		chip->legacy.write_byte(chip, subfeature_param[i]);
1405 
1406 	memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1407 	host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1408 	mxc_do_addr_cycle(mtd, addr, -1);
1409 	host->devtype_data->send_page(mtd, NFC_INPUT);
1410 
1411 	return 0;
1412 }
1413 
1414 static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1415 				 u8 *subfeature_param)
1416 {
1417 	struct mtd_info *mtd = nand_to_mtd(chip);
1418 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1419 	int i;
1420 
1421 	host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1422 	mxc_do_addr_cycle(mtd, addr, -1);
1423 	host->devtype_data->send_page(mtd, NFC_OUTPUT);
1424 	memcpy32_fromio(host->data_buf, host->main_area0, 512);
1425 	host->buf_start = 0;
1426 
1427 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1428 		*subfeature_param++ = chip->legacy.read_byte(chip);
1429 
1430 	return 0;
1431 }
1432 
1433 /*
1434  * The generic flash bbt descriptors overlap with our ecc
1435  * hardware, so define some i.MX specific ones.
1436  */
1437 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1438 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1439 
1440 static struct nand_bbt_descr bbt_main_descr = {
1441 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1442 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1443 	.offs = 0,
1444 	.len = 4,
1445 	.veroffs = 4,
1446 	.maxblocks = 4,
1447 	.pattern = bbt_pattern,
1448 };
1449 
1450 static struct nand_bbt_descr bbt_mirror_descr = {
1451 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1452 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1453 	.offs = 0,
1454 	.len = 4,
1455 	.veroffs = 4,
1456 	.maxblocks = 4,
1457 	.pattern = mirror_pattern,
1458 };
1459 
1460 /* v1 + irqpending_quirk: i.MX21 */
1461 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1462 	.preset = preset_v1,
1463 	.read_page = mxc_nand_read_page_v1,
1464 	.send_cmd = send_cmd_v1_v2,
1465 	.send_addr = send_addr_v1_v2,
1466 	.send_page = send_page_v1,
1467 	.send_read_id = send_read_id_v1_v2,
1468 	.get_dev_status = get_dev_status_v1_v2,
1469 	.check_int = check_int_v1_v2,
1470 	.irq_control = irq_control_v1_v2,
1471 	.get_ecc_status = get_ecc_status_v1,
1472 	.ooblayout = &mxc_v1_ooblayout_ops,
1473 	.select_chip = mxc_nand_select_chip_v1_v3,
1474 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1475 	.irqpending_quirk = 1,
1476 	.needs_ip = 0,
1477 	.regs_offset = 0xe00,
1478 	.spare0_offset = 0x800,
1479 	.spare_len = 16,
1480 	.eccbytes = 3,
1481 	.eccsize = 1,
1482 };
1483 
1484 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1485 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1486 	.preset = preset_v1,
1487 	.read_page = mxc_nand_read_page_v1,
1488 	.send_cmd = send_cmd_v1_v2,
1489 	.send_addr = send_addr_v1_v2,
1490 	.send_page = send_page_v1,
1491 	.send_read_id = send_read_id_v1_v2,
1492 	.get_dev_status = get_dev_status_v1_v2,
1493 	.check_int = check_int_v1_v2,
1494 	.irq_control = irq_control_v1_v2,
1495 	.get_ecc_status = get_ecc_status_v1,
1496 	.ooblayout = &mxc_v1_ooblayout_ops,
1497 	.select_chip = mxc_nand_select_chip_v1_v3,
1498 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1499 	.irqpending_quirk = 0,
1500 	.needs_ip = 0,
1501 	.regs_offset = 0xe00,
1502 	.spare0_offset = 0x800,
1503 	.axi_offset = 0,
1504 	.spare_len = 16,
1505 	.eccbytes = 3,
1506 	.eccsize = 1,
1507 };
1508 
1509 /* v21: i.MX25, i.MX35 */
1510 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1511 	.preset = preset_v2,
1512 	.read_page = mxc_nand_read_page_v2_v3,
1513 	.send_cmd = send_cmd_v1_v2,
1514 	.send_addr = send_addr_v1_v2,
1515 	.send_page = send_page_v2,
1516 	.send_read_id = send_read_id_v1_v2,
1517 	.get_dev_status = get_dev_status_v1_v2,
1518 	.check_int = check_int_v1_v2,
1519 	.irq_control = irq_control_v1_v2,
1520 	.get_ecc_status = get_ecc_status_v2,
1521 	.ooblayout = &mxc_v2_ooblayout_ops,
1522 	.select_chip = mxc_nand_select_chip_v2,
1523 	.setup_interface = mxc_nand_v2_setup_interface,
1524 	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1525 	.irqpending_quirk = 0,
1526 	.needs_ip = 0,
1527 	.regs_offset = 0x1e00,
1528 	.spare0_offset = 0x1000,
1529 	.axi_offset = 0,
1530 	.spare_len = 64,
1531 	.eccbytes = 9,
1532 	.eccsize = 0,
1533 };
1534 
1535 /* v3.2a: i.MX51 */
1536 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1537 	.preset = preset_v3,
1538 	.read_page = mxc_nand_read_page_v2_v3,
1539 	.send_cmd = send_cmd_v3,
1540 	.send_addr = send_addr_v3,
1541 	.send_page = send_page_v3,
1542 	.send_read_id = send_read_id_v3,
1543 	.get_dev_status = get_dev_status_v3,
1544 	.check_int = check_int_v3,
1545 	.irq_control = irq_control_v3,
1546 	.get_ecc_status = get_ecc_status_v3,
1547 	.ooblayout = &mxc_v2_ooblayout_ops,
1548 	.select_chip = mxc_nand_select_chip_v1_v3,
1549 	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1550 	.irqpending_quirk = 0,
1551 	.needs_ip = 1,
1552 	.regs_offset = 0,
1553 	.spare0_offset = 0x1000,
1554 	.axi_offset = 0x1e00,
1555 	.spare_len = 64,
1556 	.eccbytes = 0,
1557 	.eccsize = 0,
1558 	.ppb_shift = 7,
1559 };
1560 
1561 /* v3.2b: i.MX53 */
1562 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1563 	.preset = preset_v3,
1564 	.read_page = mxc_nand_read_page_v2_v3,
1565 	.send_cmd = send_cmd_v3,
1566 	.send_addr = send_addr_v3,
1567 	.send_page = send_page_v3,
1568 	.send_read_id = send_read_id_v3,
1569 	.get_dev_status = get_dev_status_v3,
1570 	.check_int = check_int_v3,
1571 	.irq_control = irq_control_v3,
1572 	.get_ecc_status = get_ecc_status_v3,
1573 	.ooblayout = &mxc_v2_ooblayout_ops,
1574 	.select_chip = mxc_nand_select_chip_v1_v3,
1575 	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1576 	.irqpending_quirk = 0,
1577 	.needs_ip = 1,
1578 	.regs_offset = 0,
1579 	.spare0_offset = 0x1000,
1580 	.axi_offset = 0x1e00,
1581 	.spare_len = 64,
1582 	.eccbytes = 0,
1583 	.eccsize = 0,
1584 	.ppb_shift = 8,
1585 };
1586 
1587 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1588 {
1589 	return host->devtype_data == &imx21_nand_devtype_data;
1590 }
1591 
1592 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1593 {
1594 	return host->devtype_data == &imx27_nand_devtype_data;
1595 }
1596 
1597 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1598 {
1599 	return host->devtype_data == &imx25_nand_devtype_data;
1600 }
1601 
1602 static const struct of_device_id mxcnd_dt_ids[] = {
1603 	{ .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, },
1604 	{ .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, },
1605 	{ .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, },
1606 	{ .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, },
1607 	{ .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, },
1608 	{ /* sentinel */ }
1609 };
1610 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1611 
1612 static int mxcnd_attach_chip(struct nand_chip *chip)
1613 {
1614 	struct mtd_info *mtd = nand_to_mtd(chip);
1615 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1616 	struct device *dev = mtd->dev.parent;
1617 
1618 	chip->ecc.bytes = host->devtype_data->eccbytes;
1619 	host->eccsize = host->devtype_data->eccsize;
1620 	chip->ecc.size = 512;
1621 	mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1622 
1623 	switch (chip->ecc.engine_type) {
1624 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1625 		chip->ecc.read_page = mxc_nand_read_page;
1626 		chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1627 		chip->ecc.read_oob = mxc_nand_read_oob;
1628 		chip->ecc.write_page = mxc_nand_write_page_ecc;
1629 		chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1630 		chip->ecc.write_oob = mxc_nand_write_oob;
1631 		break;
1632 
1633 	case NAND_ECC_ENGINE_TYPE_SOFT:
1634 		break;
1635 
1636 	default:
1637 		return -EINVAL;
1638 	}
1639 
1640 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1641 		chip->bbt_td = &bbt_main_descr;
1642 		chip->bbt_md = &bbt_mirror_descr;
1643 	}
1644 
1645 	/* Allocate the right size buffer now */
1646 	devm_kfree(dev, (void *)host->data_buf);
1647 	host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1648 				      GFP_KERNEL);
1649 	if (!host->data_buf)
1650 		return -ENOMEM;
1651 
1652 	/* Call preset again, with correct writesize chip time */
1653 	host->devtype_data->preset(mtd);
1654 
1655 	if (!chip->ecc.bytes) {
1656 		if (host->eccsize == 8)
1657 			chip->ecc.bytes = 18;
1658 		else if (host->eccsize == 4)
1659 			chip->ecc.bytes = 9;
1660 	}
1661 
1662 	/*
1663 	 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1664 	 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1665 	 * into copying invalid data to/from the spare IO buffer, as this
1666 	 * might cause ECC data corruption when doing sub-page write to a
1667 	 * partially written page.
1668 	 */
1669 	host->used_oobsize = min(mtd->oobsize, 218U);
1670 
1671 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
1672 		if (is_imx21_nfc(host) || is_imx27_nfc(host))
1673 			chip->ecc.strength = 1;
1674 		else
1675 			chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1676 	}
1677 
1678 	return 0;
1679 }
1680 
1681 static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr,
1682 				 const struct nand_interface_config *conf)
1683 {
1684 	struct mxc_nand_host *host = nand_get_controller_data(chip);
1685 
1686 	return host->devtype_data->setup_interface(chip, chipnr, conf);
1687 }
1688 
1689 static const struct nand_controller_ops mxcnd_controller_ops = {
1690 	.attach_chip = mxcnd_attach_chip,
1691 	.setup_interface = mxcnd_setup_interface,
1692 };
1693 
1694 static int mxcnd_probe(struct platform_device *pdev)
1695 {
1696 	struct nand_chip *this;
1697 	struct mtd_info *mtd;
1698 	struct mxc_nand_host *host;
1699 	struct resource *res;
1700 	int err = 0;
1701 
1702 	/* Allocate memory for MTD device structure and private data */
1703 	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1704 			GFP_KERNEL);
1705 	if (!host)
1706 		return -ENOMEM;
1707 
1708 	/* allocate a temporary buffer for the nand_scan_ident() */
1709 	host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1710 	if (!host->data_buf)
1711 		return -ENOMEM;
1712 
1713 	host->dev = &pdev->dev;
1714 	/* structures must be linked */
1715 	this = &host->nand;
1716 	mtd = nand_to_mtd(this);
1717 	mtd->dev.parent = &pdev->dev;
1718 	mtd->name = DRIVER_NAME;
1719 
1720 	/* 50 us command delay time */
1721 	this->legacy.chip_delay = 5;
1722 
1723 	nand_set_controller_data(this, host);
1724 	nand_set_flash_node(this, pdev->dev.of_node);
1725 	this->legacy.dev_ready = mxc_nand_dev_ready;
1726 	this->legacy.cmdfunc = mxc_nand_command;
1727 	this->legacy.read_byte = mxc_nand_read_byte;
1728 	this->legacy.write_buf = mxc_nand_write_buf;
1729 	this->legacy.read_buf = mxc_nand_read_buf;
1730 	this->legacy.set_features = mxc_nand_set_features;
1731 	this->legacy.get_features = mxc_nand_get_features;
1732 
1733 	host->clk = devm_clk_get(&pdev->dev, NULL);
1734 	if (IS_ERR(host->clk))
1735 		return PTR_ERR(host->clk);
1736 
1737 	host->devtype_data = device_get_match_data(&pdev->dev);
1738 
1739 	if (!host->devtype_data->setup_interface)
1740 		this->options |= NAND_KEEP_TIMINGS;
1741 
1742 	if (host->devtype_data->needs_ip) {
1743 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1744 		host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1745 		if (IS_ERR(host->regs_ip))
1746 			return PTR_ERR(host->regs_ip);
1747 
1748 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1749 	} else {
1750 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1751 	}
1752 
1753 	host->base = devm_ioremap_resource(&pdev->dev, res);
1754 	if (IS_ERR(host->base))
1755 		return PTR_ERR(host->base);
1756 
1757 	host->main_area0 = host->base;
1758 
1759 	if (host->devtype_data->regs_offset)
1760 		host->regs = host->base + host->devtype_data->regs_offset;
1761 	host->spare0 = host->base + host->devtype_data->spare0_offset;
1762 	if (host->devtype_data->axi_offset)
1763 		host->regs_axi = host->base + host->devtype_data->axi_offset;
1764 
1765 	this->legacy.select_chip = host->devtype_data->select_chip;
1766 
1767 	init_completion(&host->op_completion);
1768 
1769 	host->irq = platform_get_irq(pdev, 0);
1770 	if (host->irq < 0)
1771 		return host->irq;
1772 
1773 	/*
1774 	 * Use host->devtype_data->irq_control() here instead of irq_control()
1775 	 * because we must not disable_irq_nosync without having requested the
1776 	 * irq.
1777 	 */
1778 	host->devtype_data->irq_control(host, 0);
1779 
1780 	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1781 			0, DRIVER_NAME, host);
1782 	if (err)
1783 		return err;
1784 
1785 	err = clk_prepare_enable(host->clk);
1786 	if (err)
1787 		return err;
1788 	host->clk_act = 1;
1789 
1790 	/*
1791 	 * Now that we "own" the interrupt make sure the interrupt mask bit is
1792 	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1793 	 * on this machine.
1794 	 */
1795 	if (host->devtype_data->irqpending_quirk) {
1796 		disable_irq_nosync(host->irq);
1797 		host->devtype_data->irq_control(host, 1);
1798 	}
1799 
1800 	/* Scan the NAND device */
1801 	this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1802 	err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1803 	if (err)
1804 		goto escan;
1805 
1806 	/* Register the partitions */
1807 	err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1808 	if (err)
1809 		goto cleanup_nand;
1810 
1811 	platform_set_drvdata(pdev, host);
1812 
1813 	return 0;
1814 
1815 cleanup_nand:
1816 	nand_cleanup(this);
1817 escan:
1818 	if (host->clk_act)
1819 		clk_disable_unprepare(host->clk);
1820 
1821 	return err;
1822 }
1823 
1824 static void mxcnd_remove(struct platform_device *pdev)
1825 {
1826 	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1827 	struct nand_chip *chip = &host->nand;
1828 	int ret;
1829 
1830 	ret = mtd_device_unregister(nand_to_mtd(chip));
1831 	WARN_ON(ret);
1832 	nand_cleanup(chip);
1833 	if (host->clk_act)
1834 		clk_disable_unprepare(host->clk);
1835 }
1836 
1837 static struct platform_driver mxcnd_driver = {
1838 	.driver = {
1839 		   .name = DRIVER_NAME,
1840 		   .of_match_table = mxcnd_dt_ids,
1841 	},
1842 	.probe = mxcnd_probe,
1843 	.remove_new = mxcnd_remove,
1844 };
1845 module_platform_driver(mxcnd_driver);
1846 
1847 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1848 MODULE_DESCRIPTION("MXC NAND MTD driver");
1849 MODULE_LICENSE("GPL");
1850