xref: /openbmc/linux/drivers/mtd/nand/raw/mtk_nand.c (revision f79e4d5f)
1 /*
2  * MTK NAND Flash controller driver.
3  * Copyright (C) 2016 MediaTek Inc.
4  * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
5  *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/platform_device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/clk.h>
22 #include <linux/mtd/rawnand.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/module.h>
25 #include <linux/iopoll.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include "mtk_ecc.h"
29 
30 /* NAND controller register definition */
31 #define NFI_CNFG		(0x00)
32 #define		CNFG_AHB		BIT(0)
33 #define		CNFG_READ_EN		BIT(1)
34 #define		CNFG_DMA_BURST_EN	BIT(2)
35 #define		CNFG_BYTE_RW		BIT(6)
36 #define		CNFG_HW_ECC_EN		BIT(8)
37 #define		CNFG_AUTO_FMT_EN	BIT(9)
38 #define		CNFG_OP_CUST		(6 << 12)
39 #define NFI_PAGEFMT		(0x04)
40 #define		PAGEFMT_FDM_ECC_SHIFT	(12)
41 #define		PAGEFMT_FDM_SHIFT	(8)
42 #define		PAGEFMT_SEC_SEL_512	BIT(2)
43 #define		PAGEFMT_512_2K		(0)
44 #define		PAGEFMT_2K_4K		(1)
45 #define		PAGEFMT_4K_8K		(2)
46 #define		PAGEFMT_8K_16K		(3)
47 /* NFI control */
48 #define NFI_CON			(0x08)
49 #define		CON_FIFO_FLUSH		BIT(0)
50 #define		CON_NFI_RST		BIT(1)
51 #define		CON_BRD			BIT(8)  /* burst  read */
52 #define		CON_BWR			BIT(9)	/* burst  write */
53 #define		CON_SEC_SHIFT		(12)
54 /* Timming control register */
55 #define NFI_ACCCON		(0x0C)
56 #define NFI_INTR_EN		(0x10)
57 #define		INTR_AHB_DONE_EN	BIT(6)
58 #define NFI_INTR_STA		(0x14)
59 #define NFI_CMD			(0x20)
60 #define NFI_ADDRNOB		(0x30)
61 #define NFI_COLADDR		(0x34)
62 #define NFI_ROWADDR		(0x38)
63 #define NFI_STRDATA		(0x40)
64 #define		STAR_EN			(1)
65 #define		STAR_DE			(0)
66 #define NFI_CNRNB		(0x44)
67 #define NFI_DATAW		(0x50)
68 #define NFI_DATAR		(0x54)
69 #define NFI_PIO_DIRDY		(0x58)
70 #define		PIO_DI_RDY		(0x01)
71 #define NFI_STA			(0x60)
72 #define		STA_CMD			BIT(0)
73 #define		STA_ADDR		BIT(1)
74 #define		STA_BUSY		BIT(8)
75 #define		STA_EMP_PAGE		BIT(12)
76 #define		NFI_FSM_CUSTDATA	(0xe << 16)
77 #define		NFI_FSM_MASK		(0xf << 16)
78 #define NFI_ADDRCNTR		(0x70)
79 #define		CNTR_MASK		GENMASK(16, 12)
80 #define		ADDRCNTR_SEC_SHIFT	(12)
81 #define		ADDRCNTR_SEC(val) \
82 		(((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
83 #define NFI_STRADDR		(0x80)
84 #define NFI_BYTELEN		(0x84)
85 #define NFI_CSEL		(0x90)
86 #define NFI_FDML(x)		(0xA0 + (x) * sizeof(u32) * 2)
87 #define NFI_FDMM(x)		(0xA4 + (x) * sizeof(u32) * 2)
88 #define NFI_FDM_MAX_SIZE	(8)
89 #define NFI_FDM_MIN_SIZE	(1)
90 #define NFI_MASTER_STA		(0x224)
91 #define		MASTER_STA_MASK		(0x0FFF)
92 #define NFI_EMPTY_THRESH	(0x23C)
93 
94 #define MTK_NAME		"mtk-nand"
95 #define KB(x)			((x) * 1024UL)
96 #define MB(x)			(KB(x) * 1024UL)
97 
98 #define MTK_TIMEOUT		(500000)
99 #define MTK_RESET_TIMEOUT	(1000000)
100 #define MTK_NAND_MAX_NSELS	(2)
101 #define MTK_NFC_MIN_SPARE	(16)
102 #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
103 	((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
104 	(tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
105 
106 struct mtk_nfc_caps {
107 	const u8 *spare_size;
108 	u8 num_spare_size;
109 	u8 pageformat_spare_shift;
110 	u8 nfi_clk_div;
111 	u8 max_sector;
112 	u32 max_sector_size;
113 };
114 
115 struct mtk_nfc_bad_mark_ctl {
116 	void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
117 	u32 sec;
118 	u32 pos;
119 };
120 
121 /*
122  * FDM: region used to store free OOB data
123  */
124 struct mtk_nfc_fdm {
125 	u32 reg_size;
126 	u32 ecc_size;
127 };
128 
129 struct mtk_nfc_nand_chip {
130 	struct list_head node;
131 	struct nand_chip nand;
132 
133 	struct mtk_nfc_bad_mark_ctl bad_mark;
134 	struct mtk_nfc_fdm fdm;
135 	u32 spare_per_sector;
136 
137 	int nsels;
138 	u8 sels[0];
139 	/* nothing after this field */
140 };
141 
142 struct mtk_nfc_clk {
143 	struct clk *nfi_clk;
144 	struct clk *pad_clk;
145 };
146 
147 struct mtk_nfc {
148 	struct nand_hw_control controller;
149 	struct mtk_ecc_config ecc_cfg;
150 	struct mtk_nfc_clk clk;
151 	struct mtk_ecc *ecc;
152 
153 	struct device *dev;
154 	const struct mtk_nfc_caps *caps;
155 	void __iomem *regs;
156 
157 	struct completion done;
158 	struct list_head chips;
159 
160 	u8 *buffer;
161 };
162 
163 /*
164  * supported spare size of each IP.
165  * order should be the same with the spare size bitfiled defination of
166  * register NFI_PAGEFMT.
167  */
168 static const u8 spare_size_mt2701[] = {
169 	16, 26, 27, 28, 32, 36, 40, 44,	48, 49, 50, 51, 52, 62, 63, 64
170 };
171 
172 static const u8 spare_size_mt2712[] = {
173 	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
174 	74
175 };
176 
177 static const u8 spare_size_mt7622[] = {
178 	16, 26, 27, 28
179 };
180 
181 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
182 {
183 	return container_of(nand, struct mtk_nfc_nand_chip, nand);
184 }
185 
186 static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
187 {
188 	return (u8 *)p + i * chip->ecc.size;
189 }
190 
191 static inline u8 *oob_ptr(struct nand_chip *chip, int i)
192 {
193 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
194 	u8 *poi;
195 
196 	/* map the sector's FDM data to free oob:
197 	 * the beginning of the oob area stores the FDM data of bad mark sectors
198 	 */
199 
200 	if (i < mtk_nand->bad_mark.sec)
201 		poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
202 	else if (i == mtk_nand->bad_mark.sec)
203 		poi = chip->oob_poi;
204 	else
205 		poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
206 
207 	return poi;
208 }
209 
210 static inline int mtk_data_len(struct nand_chip *chip)
211 {
212 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
213 
214 	return chip->ecc.size + mtk_nand->spare_per_sector;
215 }
216 
217 static inline u8 *mtk_data_ptr(struct nand_chip *chip,  int i)
218 {
219 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
220 
221 	return nfc->buffer + i * mtk_data_len(chip);
222 }
223 
224 static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
225 {
226 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
227 
228 	return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
229 }
230 
231 static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
232 {
233 	writel(val, nfc->regs + reg);
234 }
235 
236 static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
237 {
238 	writew(val, nfc->regs + reg);
239 }
240 
241 static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
242 {
243 	writeb(val, nfc->regs + reg);
244 }
245 
246 static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
247 {
248 	return readl_relaxed(nfc->regs + reg);
249 }
250 
251 static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
252 {
253 	return readw_relaxed(nfc->regs + reg);
254 }
255 
256 static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
257 {
258 	return readb_relaxed(nfc->regs + reg);
259 }
260 
261 static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
262 {
263 	struct device *dev = nfc->dev;
264 	u32 val;
265 	int ret;
266 
267 	/* reset all registers and force the NFI master to terminate */
268 	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
269 
270 	/* wait for the master to finish the last transaction */
271 	ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
272 				 !(val & MASTER_STA_MASK), 50,
273 				 MTK_RESET_TIMEOUT);
274 	if (ret)
275 		dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
276 			 NFI_MASTER_STA, val);
277 
278 	/* ensure any status register affected by the NFI master is reset */
279 	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
280 	nfi_writew(nfc, STAR_DE, NFI_STRDATA);
281 }
282 
283 static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
284 {
285 	struct device *dev = nfc->dev;
286 	u32 val;
287 	int ret;
288 
289 	nfi_writel(nfc, command, NFI_CMD);
290 
291 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
292 					!(val & STA_CMD), 10,  MTK_TIMEOUT);
293 	if (ret) {
294 		dev_warn(dev, "nfi core timed out entering command mode\n");
295 		return -EIO;
296 	}
297 
298 	return 0;
299 }
300 
301 static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
302 {
303 	struct device *dev = nfc->dev;
304 	u32 val;
305 	int ret;
306 
307 	nfi_writel(nfc, addr, NFI_COLADDR);
308 	nfi_writel(nfc, 0, NFI_ROWADDR);
309 	nfi_writew(nfc, 1, NFI_ADDRNOB);
310 
311 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
312 					!(val & STA_ADDR), 10, MTK_TIMEOUT);
313 	if (ret) {
314 		dev_warn(dev, "nfi core timed out entering address mode\n");
315 		return -EIO;
316 	}
317 
318 	return 0;
319 }
320 
321 static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
322 {
323 	struct nand_chip *chip = mtd_to_nand(mtd);
324 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
325 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
326 	u32 fmt, spare, i;
327 
328 	if (!mtd->writesize)
329 		return 0;
330 
331 	spare = mtk_nand->spare_per_sector;
332 
333 	switch (mtd->writesize) {
334 	case 512:
335 		fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
336 		break;
337 	case KB(2):
338 		if (chip->ecc.size == 512)
339 			fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
340 		else
341 			fmt = PAGEFMT_512_2K;
342 		break;
343 	case KB(4):
344 		if (chip->ecc.size == 512)
345 			fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
346 		else
347 			fmt = PAGEFMT_2K_4K;
348 		break;
349 	case KB(8):
350 		if (chip->ecc.size == 512)
351 			fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
352 		else
353 			fmt = PAGEFMT_4K_8K;
354 		break;
355 	case KB(16):
356 		fmt = PAGEFMT_8K_16K;
357 		break;
358 	default:
359 		dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
360 		return -EINVAL;
361 	}
362 
363 	/*
364 	 * the hardware will double the value for this eccsize, so we need to
365 	 * halve it
366 	 */
367 	if (chip->ecc.size == 1024)
368 		spare >>= 1;
369 
370 	for (i = 0; i < nfc->caps->num_spare_size; i++) {
371 		if (nfc->caps->spare_size[i] == spare)
372 			break;
373 	}
374 
375 	if (i == nfc->caps->num_spare_size) {
376 		dev_err(nfc->dev, "invalid spare size %d\n", spare);
377 		return -EINVAL;
378 	}
379 
380 	fmt |= i << nfc->caps->pageformat_spare_shift;
381 
382 	fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
383 	fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
384 	nfi_writel(nfc, fmt, NFI_PAGEFMT);
385 
386 	nfc->ecc_cfg.strength = chip->ecc.strength;
387 	nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
388 
389 	return 0;
390 }
391 
392 static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
393 {
394 	struct nand_chip *nand = mtd_to_nand(mtd);
395 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
396 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
397 
398 	if (chip < 0)
399 		return;
400 
401 	mtk_nfc_hw_runtime_config(mtd);
402 
403 	nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
404 }
405 
406 static int mtk_nfc_dev_ready(struct mtd_info *mtd)
407 {
408 	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
409 
410 	if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
411 		return 0;
412 
413 	return 1;
414 }
415 
416 static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
417 {
418 	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
419 
420 	if (ctrl & NAND_ALE) {
421 		mtk_nfc_send_address(nfc, dat);
422 	} else if (ctrl & NAND_CLE) {
423 		mtk_nfc_hw_reset(nfc);
424 
425 		nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
426 		mtk_nfc_send_command(nfc, dat);
427 	}
428 }
429 
430 static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
431 {
432 	int rc;
433 	u8 val;
434 
435 	rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
436 				       val & PIO_DI_RDY, 10, MTK_TIMEOUT);
437 	if (rc < 0)
438 		dev_err(nfc->dev, "data not ready\n");
439 }
440 
441 static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
442 {
443 	struct nand_chip *chip = mtd_to_nand(mtd);
444 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
445 	u32 reg;
446 
447 	/* after each byte read, the NFI_STA reg is reset by the hardware */
448 	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
449 	if (reg != NFI_FSM_CUSTDATA) {
450 		reg = nfi_readw(nfc, NFI_CNFG);
451 		reg |= CNFG_BYTE_RW | CNFG_READ_EN;
452 		nfi_writew(nfc, reg, NFI_CNFG);
453 
454 		/*
455 		 * set to max sector to allow the HW to continue reading over
456 		 * unaligned accesses
457 		 */
458 		reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
459 		nfi_writel(nfc, reg, NFI_CON);
460 
461 		/* trigger to fetch data */
462 		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
463 	}
464 
465 	mtk_nfc_wait_ioready(nfc);
466 
467 	return nfi_readb(nfc, NFI_DATAR);
468 }
469 
470 static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
471 {
472 	int i;
473 
474 	for (i = 0; i < len; i++)
475 		buf[i] = mtk_nfc_read_byte(mtd);
476 }
477 
478 static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
479 {
480 	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
481 	u32 reg;
482 
483 	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
484 
485 	if (reg != NFI_FSM_CUSTDATA) {
486 		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
487 		nfi_writew(nfc, reg, NFI_CNFG);
488 
489 		reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
490 		nfi_writel(nfc, reg, NFI_CON);
491 
492 		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
493 	}
494 
495 	mtk_nfc_wait_ioready(nfc);
496 	nfi_writeb(nfc, byte, NFI_DATAW);
497 }
498 
499 static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
500 {
501 	int i;
502 
503 	for (i = 0; i < len; i++)
504 		mtk_nfc_write_byte(mtd, buf[i]);
505 }
506 
507 static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
508 					const struct nand_data_interface *conf)
509 {
510 	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
511 	const struct nand_sdr_timings *timings;
512 	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
513 
514 	timings = nand_get_sdr_timings(conf);
515 	if (IS_ERR(timings))
516 		return -ENOTSUPP;
517 
518 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
519 		return 0;
520 
521 	rate = clk_get_rate(nfc->clk.nfi_clk);
522 	/* There is a frequency divider in some IPs */
523 	rate /= nfc->caps->nfi_clk_div;
524 
525 	/* turn clock rate into KHZ */
526 	rate /= 1000;
527 
528 	tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
529 	tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
530 	tpoecs &= 0xf;
531 
532 	tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
533 	tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
534 	tprecs &= 0x3f;
535 
536 	/* sdr interface has no tCR which means CE# low to RE# low */
537 	tc2r = 0;
538 
539 	tw2r = timings->tWHR_min / 1000;
540 	tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
541 	tw2r = DIV_ROUND_UP(tw2r - 1, 2);
542 	tw2r &= 0xf;
543 
544 	twh = max(timings->tREH_min, timings->tWH_min) / 1000;
545 	twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
546 	twh &= 0xf;
547 
548 	twst = timings->tWP_min / 1000;
549 	twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
550 	twst &= 0xf;
551 
552 	trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
553 	trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
554 	trlt &= 0xf;
555 
556 	/*
557 	 * ACCON: access timing control register
558 	 * -------------------------------------
559 	 * 31:28: tpoecs, minimum required time for CS post pulling down after
560 	 *        accessing the device
561 	 * 27:22: tprecs, minimum required time for CS pre pulling down before
562 	 *        accessing the device
563 	 * 21:16: tc2r, minimum required time from NCEB low to NREB low
564 	 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
565 	 * 11:08: twh, write enable hold time
566 	 * 07:04: twst, write wait states
567 	 * 03:00: trlt, read wait states
568 	 */
569 	trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
570 	nfi_writel(nfc, trlt, NFI_ACCCON);
571 
572 	return 0;
573 }
574 
575 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
576 {
577 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
578 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
579 	int size = chip->ecc.size + mtk_nand->fdm.reg_size;
580 
581 	nfc->ecc_cfg.mode = ECC_DMA_MODE;
582 	nfc->ecc_cfg.op = ECC_ENCODE;
583 
584 	return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
585 }
586 
587 static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
588 {
589 	/* nop */
590 }
591 
592 static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
593 {
594 	struct nand_chip *chip = mtd_to_nand(mtd);
595 	struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
596 	u32 bad_pos = nand->bad_mark.pos;
597 
598 	if (raw)
599 		bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
600 	else
601 		bad_pos += nand->bad_mark.sec * chip->ecc.size;
602 
603 	swap(chip->oob_poi[0], buf[bad_pos]);
604 }
605 
606 static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
607 				  u32 len, const u8 *buf)
608 {
609 	struct nand_chip *chip = mtd_to_nand(mtd);
610 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
611 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
612 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
613 	u32 start, end;
614 	int i, ret;
615 
616 	start = offset / chip->ecc.size;
617 	end = DIV_ROUND_UP(offset + len, chip->ecc.size);
618 
619 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
620 	for (i = 0; i < chip->ecc.steps; i++) {
621 		memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
622 		       chip->ecc.size);
623 
624 		if (start > i || i >= end)
625 			continue;
626 
627 		if (i == mtk_nand->bad_mark.sec)
628 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
629 
630 		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
631 
632 		/* program the CRC back to the OOB */
633 		ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
634 		if (ret < 0)
635 			return ret;
636 	}
637 
638 	return 0;
639 }
640 
641 static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
642 {
643 	struct nand_chip *chip = mtd_to_nand(mtd);
644 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
645 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
646 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
647 	u32 i;
648 
649 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
650 	for (i = 0; i < chip->ecc.steps; i++) {
651 		if (buf)
652 			memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
653 			       chip->ecc.size);
654 
655 		if (i == mtk_nand->bad_mark.sec)
656 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
657 
658 		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
659 	}
660 }
661 
662 static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
663 				    u32 sectors)
664 {
665 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
666 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
667 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
668 	u32 vall, valm;
669 	u8 *oobptr;
670 	int i, j;
671 
672 	for (i = 0; i < sectors; i++) {
673 		oobptr = oob_ptr(chip, start + i);
674 		vall = nfi_readl(nfc, NFI_FDML(i));
675 		valm = nfi_readl(nfc, NFI_FDMM(i));
676 
677 		for (j = 0; j < fdm->reg_size; j++)
678 			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
679 	}
680 }
681 
682 static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
683 {
684 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
685 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
686 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
687 	u32 vall, valm;
688 	u8 *oobptr;
689 	int i, j;
690 
691 	for (i = 0; i < chip->ecc.steps; i++) {
692 		oobptr = oob_ptr(chip, i);
693 		vall = 0;
694 		valm = 0;
695 		for (j = 0; j < 8; j++) {
696 			if (j < 4)
697 				vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
698 						<< (j * 8);
699 			else
700 				valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
701 						<< ((j - 4) * 8);
702 		}
703 		nfi_writel(nfc, vall, NFI_FDML(i));
704 		nfi_writel(nfc, valm, NFI_FDMM(i));
705 	}
706 }
707 
708 static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
709 				 const u8 *buf, int page, int len)
710 {
711 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
712 	struct device *dev = nfc->dev;
713 	dma_addr_t addr;
714 	u32 reg;
715 	int ret;
716 
717 	addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
718 	ret = dma_mapping_error(nfc->dev, addr);
719 	if (ret) {
720 		dev_err(nfc->dev, "dma mapping error\n");
721 		return -EINVAL;
722 	}
723 
724 	reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
725 	nfi_writew(nfc, reg, NFI_CNFG);
726 
727 	nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
728 	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
729 	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
730 
731 	init_completion(&nfc->done);
732 
733 	reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
734 	nfi_writel(nfc, reg, NFI_CON);
735 	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
736 
737 	ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
738 	if (!ret) {
739 		dev_err(dev, "program ahb done timeout\n");
740 		nfi_writew(nfc, 0, NFI_INTR_EN);
741 		ret = -ETIMEDOUT;
742 		goto timeout;
743 	}
744 
745 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
746 					ADDRCNTR_SEC(reg) >= chip->ecc.steps,
747 					10, MTK_TIMEOUT);
748 	if (ret)
749 		dev_err(dev, "hwecc write timeout\n");
750 
751 timeout:
752 
753 	dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
754 	nfi_writel(nfc, 0, NFI_CON);
755 
756 	return ret;
757 }
758 
759 static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
760 			      const u8 *buf, int page, int raw)
761 {
762 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
763 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
764 	size_t len;
765 	const u8 *bufpoi;
766 	u32 reg;
767 	int ret;
768 
769 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
770 
771 	if (!raw) {
772 		/* OOB => FDM: from register,  ECC: from HW */
773 		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
774 		nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
775 
776 		nfc->ecc_cfg.op = ECC_ENCODE;
777 		nfc->ecc_cfg.mode = ECC_NFI_MODE;
778 		ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
779 		if (ret) {
780 			/* clear NFI config */
781 			reg = nfi_readw(nfc, NFI_CNFG);
782 			reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
783 			nfi_writew(nfc, reg, NFI_CNFG);
784 
785 			return ret;
786 		}
787 
788 		memcpy(nfc->buffer, buf, mtd->writesize);
789 		mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
790 		bufpoi = nfc->buffer;
791 
792 		/* write OOB into the FDM registers (OOB area in MTK NAND) */
793 		mtk_nfc_write_fdm(chip);
794 	} else {
795 		bufpoi = buf;
796 	}
797 
798 	len = mtd->writesize + (raw ? mtd->oobsize : 0);
799 	ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
800 
801 	if (!raw)
802 		mtk_ecc_disable(nfc->ecc);
803 
804 	if (ret)
805 		return ret;
806 
807 	return nand_prog_page_end_op(chip);
808 }
809 
810 static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
811 				    struct nand_chip *chip, const u8 *buf,
812 				    int oob_on, int page)
813 {
814 	return mtk_nfc_write_page(mtd, chip, buf, page, 0);
815 }
816 
817 static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
818 				  const u8 *buf, int oob_on, int pg)
819 {
820 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
821 
822 	mtk_nfc_format_page(mtd, buf);
823 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
824 }
825 
826 static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
827 				       struct nand_chip *chip, u32 offset,
828 				       u32 data_len, const u8 *buf,
829 				       int oob_on, int page)
830 {
831 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
832 	int ret;
833 
834 	ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
835 	if (ret < 0)
836 		return ret;
837 
838 	/* use the data in the private buffer (now with FDM and CRC) */
839 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
840 }
841 
842 static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
843 				 int page)
844 {
845 	return mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
846 }
847 
848 static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
849 {
850 	struct nand_chip *chip = mtd_to_nand(mtd);
851 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
852 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
853 	struct mtk_ecc_stats stats;
854 	int rc, i;
855 
856 	rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
857 	if (rc) {
858 		memset(buf, 0xff, sectors * chip->ecc.size);
859 		for (i = 0; i < sectors; i++)
860 			memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
861 		return 0;
862 	}
863 
864 	mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
865 	mtd->ecc_stats.corrected += stats.corrected;
866 	mtd->ecc_stats.failed += stats.failed;
867 
868 	return stats.bitflips;
869 }
870 
871 static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
872 				u32 data_offs, u32 readlen,
873 				u8 *bufpoi, int page, int raw)
874 {
875 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
876 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
877 	u32 spare = mtk_nand->spare_per_sector;
878 	u32 column, sectors, start, end, reg;
879 	dma_addr_t addr;
880 	int bitflips;
881 	size_t len;
882 	u8 *buf;
883 	int rc;
884 
885 	start = data_offs / chip->ecc.size;
886 	end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
887 
888 	sectors = end - start;
889 	column = start * (chip->ecc.size + spare);
890 
891 	len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
892 	buf = bufpoi + start * chip->ecc.size;
893 
894 	nand_read_page_op(chip, page, column, NULL, 0);
895 
896 	addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
897 	rc = dma_mapping_error(nfc->dev, addr);
898 	if (rc) {
899 		dev_err(nfc->dev, "dma mapping error\n");
900 
901 		return -EINVAL;
902 	}
903 
904 	reg = nfi_readw(nfc, NFI_CNFG);
905 	reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
906 	if (!raw) {
907 		reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
908 		nfi_writew(nfc, reg, NFI_CNFG);
909 
910 		nfc->ecc_cfg.mode = ECC_NFI_MODE;
911 		nfc->ecc_cfg.sectors = sectors;
912 		nfc->ecc_cfg.op = ECC_DECODE;
913 		rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
914 		if (rc) {
915 			dev_err(nfc->dev, "ecc enable\n");
916 			/* clear NFI_CNFG */
917 			reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
918 				CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
919 			nfi_writew(nfc, reg, NFI_CNFG);
920 			dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
921 
922 			return rc;
923 		}
924 	} else {
925 		nfi_writew(nfc, reg, NFI_CNFG);
926 	}
927 
928 	nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
929 	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
930 	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
931 
932 	init_completion(&nfc->done);
933 	reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
934 	nfi_writel(nfc, reg, NFI_CON);
935 	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
936 
937 	rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
938 	if (!rc)
939 		dev_warn(nfc->dev, "read ahb/dma done timeout\n");
940 
941 	rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
942 				       ADDRCNTR_SEC(reg) >= sectors, 10,
943 				       MTK_TIMEOUT);
944 	if (rc < 0) {
945 		dev_err(nfc->dev, "subpage done timeout\n");
946 		bitflips = -EIO;
947 	} else {
948 		bitflips = 0;
949 		if (!raw) {
950 			rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
951 			bitflips = rc < 0 ? -ETIMEDOUT :
952 				mtk_nfc_update_ecc_stats(mtd, buf, sectors);
953 			mtk_nfc_read_fdm(chip, start, sectors);
954 		}
955 	}
956 
957 	dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
958 
959 	if (raw)
960 		goto done;
961 
962 	mtk_ecc_disable(nfc->ecc);
963 
964 	if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
965 		mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
966 done:
967 	nfi_writel(nfc, 0, NFI_CON);
968 
969 	return bitflips;
970 }
971 
972 static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
973 				      struct nand_chip *chip, u32 off,
974 				      u32 len, u8 *p, int pg)
975 {
976 	return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
977 }
978 
979 static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
980 				   struct nand_chip *chip, u8 *p,
981 				   int oob_on, int pg)
982 {
983 	return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
984 }
985 
986 static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
987 				 u8 *buf, int oob_on, int page)
988 {
989 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
990 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
991 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
992 	int i, ret;
993 
994 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
995 	ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
996 				   page, 1);
997 	if (ret < 0)
998 		return ret;
999 
1000 	for (i = 0; i < chip->ecc.steps; i++) {
1001 		memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
1002 
1003 		if (i == mtk_nand->bad_mark.sec)
1004 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
1005 
1006 		if (buf)
1007 			memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
1008 			       chip->ecc.size);
1009 	}
1010 
1011 	return ret;
1012 }
1013 
1014 static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1015 				int page)
1016 {
1017 	return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
1018 }
1019 
1020 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
1021 {
1022 	/*
1023 	 * CNRNB: nand ready/busy register
1024 	 * -------------------------------
1025 	 * 7:4: timeout register for polling the NAND busy/ready signal
1026 	 * 0  : poll the status of the busy/ready signal after [7:4]*16 cycles.
1027 	 */
1028 	nfi_writew(nfc, 0xf1, NFI_CNRNB);
1029 	nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1030 
1031 	mtk_nfc_hw_reset(nfc);
1032 
1033 	nfi_readl(nfc, NFI_INTR_STA);
1034 	nfi_writel(nfc, 0, NFI_INTR_EN);
1035 }
1036 
1037 static irqreturn_t mtk_nfc_irq(int irq, void *id)
1038 {
1039 	struct mtk_nfc *nfc = id;
1040 	u16 sta, ien;
1041 
1042 	sta = nfi_readw(nfc, NFI_INTR_STA);
1043 	ien = nfi_readw(nfc, NFI_INTR_EN);
1044 
1045 	if (!(sta & ien))
1046 		return IRQ_NONE;
1047 
1048 	nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1049 	complete(&nfc->done);
1050 
1051 	return IRQ_HANDLED;
1052 }
1053 
1054 static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
1055 {
1056 	int ret;
1057 
1058 	ret = clk_prepare_enable(clk->nfi_clk);
1059 	if (ret) {
1060 		dev_err(dev, "failed to enable nfi clk\n");
1061 		return ret;
1062 	}
1063 
1064 	ret = clk_prepare_enable(clk->pad_clk);
1065 	if (ret) {
1066 		dev_err(dev, "failed to enable pad clk\n");
1067 		clk_disable_unprepare(clk->nfi_clk);
1068 		return ret;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
1075 {
1076 	clk_disable_unprepare(clk->nfi_clk);
1077 	clk_disable_unprepare(clk->pad_clk);
1078 }
1079 
1080 static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1081 				  struct mtd_oob_region *oob_region)
1082 {
1083 	struct nand_chip *chip = mtd_to_nand(mtd);
1084 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1085 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1086 	u32 eccsteps;
1087 
1088 	eccsteps = mtd->writesize / chip->ecc.size;
1089 
1090 	if (section >= eccsteps)
1091 		return -ERANGE;
1092 
1093 	oob_region->length = fdm->reg_size - fdm->ecc_size;
1094 	oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1095 
1096 	return 0;
1097 }
1098 
1099 static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1100 				 struct mtd_oob_region *oob_region)
1101 {
1102 	struct nand_chip *chip = mtd_to_nand(mtd);
1103 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1104 	u32 eccsteps;
1105 
1106 	if (section)
1107 		return -ERANGE;
1108 
1109 	eccsteps = mtd->writesize / chip->ecc.size;
1110 	oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1111 	oob_region->length = mtd->oobsize - oob_region->offset;
1112 
1113 	return 0;
1114 }
1115 
1116 static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1117 	.free = mtk_nfc_ooblayout_free,
1118 	.ecc = mtk_nfc_ooblayout_ecc,
1119 };
1120 
1121 static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1122 {
1123 	struct nand_chip *nand = mtd_to_nand(mtd);
1124 	struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1125 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1126 	u32 ecc_bytes;
1127 
1128 	ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
1129 				 mtk_ecc_get_parity_bits(nfc->ecc), 8);
1130 
1131 	fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1132 	if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1133 		fdm->reg_size = NFI_FDM_MAX_SIZE;
1134 
1135 	/* bad block mark storage */
1136 	fdm->ecc_size = 1;
1137 }
1138 
1139 static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1140 				     struct mtd_info *mtd)
1141 {
1142 	struct nand_chip *nand = mtd_to_nand(mtd);
1143 
1144 	if (mtd->writesize == 512) {
1145 		bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1146 	} else {
1147 		bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1148 		bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1149 		bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1150 	}
1151 }
1152 
1153 static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1154 {
1155 	struct nand_chip *nand = mtd_to_nand(mtd);
1156 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1157 	const u8 *spare = nfc->caps->spare_size;
1158 	u32 eccsteps, i, closest_spare = 0;
1159 
1160 	eccsteps = mtd->writesize / nand->ecc.size;
1161 	*sps = mtd->oobsize / eccsteps;
1162 
1163 	if (nand->ecc.size == 1024)
1164 		*sps >>= 1;
1165 
1166 	if (*sps < MTK_NFC_MIN_SPARE)
1167 		return -EINVAL;
1168 
1169 	for (i = 0; i < nfc->caps->num_spare_size; i++) {
1170 		if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
1171 			closest_spare = i;
1172 			if (*sps == spare[i])
1173 				break;
1174 		}
1175 	}
1176 
1177 	*sps = spare[closest_spare];
1178 
1179 	if (nand->ecc.size == 1024)
1180 		*sps <<= 1;
1181 
1182 	return 0;
1183 }
1184 
1185 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1186 {
1187 	struct nand_chip *nand = mtd_to_nand(mtd);
1188 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1189 	u32 spare;
1190 	int free, ret;
1191 
1192 	/* support only ecc hw mode */
1193 	if (nand->ecc.mode != NAND_ECC_HW) {
1194 		dev_err(dev, "ecc.mode not supported\n");
1195 		return -EINVAL;
1196 	}
1197 
1198 	/* if optional dt settings not present */
1199 	if (!nand->ecc.size || !nand->ecc.strength) {
1200 		/* use datasheet requirements */
1201 		nand->ecc.strength = nand->ecc_strength_ds;
1202 		nand->ecc.size = nand->ecc_step_ds;
1203 
1204 		/*
1205 		 * align eccstrength and eccsize
1206 		 * this controller only supports 512 and 1024 sizes
1207 		 */
1208 		if (nand->ecc.size < 1024) {
1209 			if (mtd->writesize > 512 &&
1210 			    nfc->caps->max_sector_size > 512) {
1211 				nand->ecc.size = 1024;
1212 				nand->ecc.strength <<= 1;
1213 			} else {
1214 				nand->ecc.size = 512;
1215 			}
1216 		} else {
1217 			nand->ecc.size = 1024;
1218 		}
1219 
1220 		ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
1221 		if (ret)
1222 			return ret;
1223 
1224 		/* calculate oob bytes except ecc parity data */
1225 		free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
1226 			+ 7) >> 3;
1227 		free = spare - free;
1228 
1229 		/*
1230 		 * enhance ecc strength if oob left is bigger than max FDM size
1231 		 * or reduce ecc strength if oob size is not enough for ecc
1232 		 * parity data.
1233 		 */
1234 		if (free > NFI_FDM_MAX_SIZE) {
1235 			spare -= NFI_FDM_MAX_SIZE;
1236 			nand->ecc.strength = (spare << 3) /
1237 					     mtk_ecc_get_parity_bits(nfc->ecc);
1238 		} else if (free < 0) {
1239 			spare -= NFI_FDM_MIN_SIZE;
1240 			nand->ecc.strength = (spare << 3) /
1241 					     mtk_ecc_get_parity_bits(nfc->ecc);
1242 		}
1243 	}
1244 
1245 	mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
1246 
1247 	dev_info(dev, "eccsize %d eccstrength %d\n",
1248 		 nand->ecc.size, nand->ecc.strength);
1249 
1250 	return 0;
1251 }
1252 
1253 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1254 				  struct device_node *np)
1255 {
1256 	struct mtk_nfc_nand_chip *chip;
1257 	struct nand_chip *nand;
1258 	struct mtd_info *mtd;
1259 	int nsels, len;
1260 	u32 tmp;
1261 	int ret;
1262 	int i;
1263 
1264 	if (!of_get_property(np, "reg", &nsels))
1265 		return -ENODEV;
1266 
1267 	nsels /= sizeof(u32);
1268 	if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1269 		dev_err(dev, "invalid reg property size %d\n", nsels);
1270 		return -EINVAL;
1271 	}
1272 
1273 	chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
1274 			    GFP_KERNEL);
1275 	if (!chip)
1276 		return -ENOMEM;
1277 
1278 	chip->nsels = nsels;
1279 	for (i = 0; i < nsels; i++) {
1280 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1281 		if (ret) {
1282 			dev_err(dev, "reg property failure : %d\n", ret);
1283 			return ret;
1284 		}
1285 		chip->sels[i] = tmp;
1286 	}
1287 
1288 	nand = &chip->nand;
1289 	nand->controller = &nfc->controller;
1290 
1291 	nand_set_flash_node(nand, np);
1292 	nand_set_controller_data(nand, nfc);
1293 
1294 	nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
1295 	nand->dev_ready = mtk_nfc_dev_ready;
1296 	nand->select_chip = mtk_nfc_select_chip;
1297 	nand->write_byte = mtk_nfc_write_byte;
1298 	nand->write_buf = mtk_nfc_write_buf;
1299 	nand->read_byte = mtk_nfc_read_byte;
1300 	nand->read_buf = mtk_nfc_read_buf;
1301 	nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
1302 	nand->setup_data_interface = mtk_nfc_setup_data_interface;
1303 
1304 	/* set default mode in case dt entry is missing */
1305 	nand->ecc.mode = NAND_ECC_HW;
1306 
1307 	nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1308 	nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1309 	nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1310 	nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1311 	nand->ecc.write_oob = mtk_nfc_write_oob_std;
1312 
1313 	nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1314 	nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1315 	nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1316 	nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1317 	nand->ecc.read_oob = mtk_nfc_read_oob_std;
1318 
1319 	mtd = nand_to_mtd(nand);
1320 	mtd->owner = THIS_MODULE;
1321 	mtd->dev.parent = dev;
1322 	mtd->name = MTK_NAME;
1323 	mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1324 
1325 	mtk_nfc_hw_init(nfc);
1326 
1327 	ret = nand_scan_ident(mtd, nsels, NULL);
1328 	if (ret)
1329 		return ret;
1330 
1331 	/* store bbt magic in page, cause OOB is not protected */
1332 	if (nand->bbt_options & NAND_BBT_USE_FLASH)
1333 		nand->bbt_options |= NAND_BBT_NO_OOB;
1334 
1335 	ret = mtk_nfc_ecc_init(dev, mtd);
1336 	if (ret)
1337 		return -EINVAL;
1338 
1339 	if (nand->options & NAND_BUSWIDTH_16) {
1340 		dev_err(dev, "16bits buswidth not supported");
1341 		return -EINVAL;
1342 	}
1343 
1344 	ret = mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd);
1345 	if (ret)
1346 		return ret;
1347 
1348 	mtk_nfc_set_fdm(&chip->fdm, mtd);
1349 	mtk_nfc_set_bad_mark_ctl(&chip->bad_mark, mtd);
1350 
1351 	len = mtd->writesize + mtd->oobsize;
1352 	nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1353 	if (!nfc->buffer)
1354 		return  -ENOMEM;
1355 
1356 	ret = nand_scan_tail(mtd);
1357 	if (ret)
1358 		return ret;
1359 
1360 	ret = mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
1361 	if (ret) {
1362 		dev_err(dev, "mtd parse partition error\n");
1363 		nand_release(mtd);
1364 		return ret;
1365 	}
1366 
1367 	list_add_tail(&chip->node, &nfc->chips);
1368 
1369 	return 0;
1370 }
1371 
1372 static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1373 {
1374 	struct device_node *np = dev->of_node;
1375 	struct device_node *nand_np;
1376 	int ret;
1377 
1378 	for_each_child_of_node(np, nand_np) {
1379 		ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1380 		if (ret) {
1381 			of_node_put(nand_np);
1382 			return ret;
1383 		}
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
1390 	.spare_size = spare_size_mt2701,
1391 	.num_spare_size = 16,
1392 	.pageformat_spare_shift = 4,
1393 	.nfi_clk_div = 1,
1394 	.max_sector = 16,
1395 	.max_sector_size = 1024,
1396 };
1397 
1398 static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
1399 	.spare_size = spare_size_mt2712,
1400 	.num_spare_size = 19,
1401 	.pageformat_spare_shift = 16,
1402 	.nfi_clk_div = 2,
1403 	.max_sector = 16,
1404 	.max_sector_size = 1024,
1405 };
1406 
1407 static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
1408 	.spare_size = spare_size_mt7622,
1409 	.num_spare_size = 4,
1410 	.pageformat_spare_shift = 4,
1411 	.nfi_clk_div = 1,
1412 	.max_sector = 8,
1413 	.max_sector_size = 512,
1414 };
1415 
1416 static const struct of_device_id mtk_nfc_id_table[] = {
1417 	{
1418 		.compatible = "mediatek,mt2701-nfc",
1419 		.data = &mtk_nfc_caps_mt2701,
1420 	}, {
1421 		.compatible = "mediatek,mt2712-nfc",
1422 		.data = &mtk_nfc_caps_mt2712,
1423 	}, {
1424 		.compatible = "mediatek,mt7622-nfc",
1425 		.data = &mtk_nfc_caps_mt7622,
1426 	},
1427 	{}
1428 };
1429 MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1430 
1431 static int mtk_nfc_probe(struct platform_device *pdev)
1432 {
1433 	struct device *dev = &pdev->dev;
1434 	struct device_node *np = dev->of_node;
1435 	struct mtk_nfc *nfc;
1436 	struct resource *res;
1437 	int ret, irq;
1438 
1439 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1440 	if (!nfc)
1441 		return -ENOMEM;
1442 
1443 	spin_lock_init(&nfc->controller.lock);
1444 	init_waitqueue_head(&nfc->controller.wq);
1445 	INIT_LIST_HEAD(&nfc->chips);
1446 
1447 	/* probe defer if not ready */
1448 	nfc->ecc = of_mtk_ecc_get(np);
1449 	if (IS_ERR(nfc->ecc))
1450 		return PTR_ERR(nfc->ecc);
1451 	else if (!nfc->ecc)
1452 		return -ENODEV;
1453 
1454 	nfc->caps = of_device_get_match_data(dev);
1455 	nfc->dev = dev;
1456 
1457 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1458 	nfc->regs = devm_ioremap_resource(dev, res);
1459 	if (IS_ERR(nfc->regs)) {
1460 		ret = PTR_ERR(nfc->regs);
1461 		goto release_ecc;
1462 	}
1463 
1464 	nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
1465 	if (IS_ERR(nfc->clk.nfi_clk)) {
1466 		dev_err(dev, "no clk\n");
1467 		ret = PTR_ERR(nfc->clk.nfi_clk);
1468 		goto release_ecc;
1469 	}
1470 
1471 	nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
1472 	if (IS_ERR(nfc->clk.pad_clk)) {
1473 		dev_err(dev, "no pad clk\n");
1474 		ret = PTR_ERR(nfc->clk.pad_clk);
1475 		goto release_ecc;
1476 	}
1477 
1478 	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1479 	if (ret)
1480 		goto release_ecc;
1481 
1482 	irq = platform_get_irq(pdev, 0);
1483 	if (irq < 0) {
1484 		dev_err(dev, "no nfi irq resource\n");
1485 		ret = -EINVAL;
1486 		goto clk_disable;
1487 	}
1488 
1489 	ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1490 	if (ret) {
1491 		dev_err(dev, "failed to request nfi irq\n");
1492 		goto clk_disable;
1493 	}
1494 
1495 	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1496 	if (ret) {
1497 		dev_err(dev, "failed to set dma mask\n");
1498 		goto clk_disable;
1499 	}
1500 
1501 	platform_set_drvdata(pdev, nfc);
1502 
1503 	ret = mtk_nfc_nand_chips_init(dev, nfc);
1504 	if (ret) {
1505 		dev_err(dev, "failed to init nand chips\n");
1506 		goto clk_disable;
1507 	}
1508 
1509 	return 0;
1510 
1511 clk_disable:
1512 	mtk_nfc_disable_clk(&nfc->clk);
1513 
1514 release_ecc:
1515 	mtk_ecc_release(nfc->ecc);
1516 
1517 	return ret;
1518 }
1519 
1520 static int mtk_nfc_remove(struct platform_device *pdev)
1521 {
1522 	struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1523 	struct mtk_nfc_nand_chip *chip;
1524 
1525 	while (!list_empty(&nfc->chips)) {
1526 		chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
1527 					node);
1528 		nand_release(nand_to_mtd(&chip->nand));
1529 		list_del(&chip->node);
1530 	}
1531 
1532 	mtk_ecc_release(nfc->ecc);
1533 	mtk_nfc_disable_clk(&nfc->clk);
1534 
1535 	return 0;
1536 }
1537 
1538 #ifdef CONFIG_PM_SLEEP
1539 static int mtk_nfc_suspend(struct device *dev)
1540 {
1541 	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1542 
1543 	mtk_nfc_disable_clk(&nfc->clk);
1544 
1545 	return 0;
1546 }
1547 
1548 static int mtk_nfc_resume(struct device *dev)
1549 {
1550 	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1551 	struct mtk_nfc_nand_chip *chip;
1552 	struct nand_chip *nand;
1553 	int ret;
1554 	u32 i;
1555 
1556 	udelay(200);
1557 
1558 	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1559 	if (ret)
1560 		return ret;
1561 
1562 	/* reset NAND chip if VCC was powered off */
1563 	list_for_each_entry(chip, &nfc->chips, node) {
1564 		nand = &chip->nand;
1565 		for (i = 0; i < chip->nsels; i++)
1566 			nand_reset(nand, i);
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1573 #endif
1574 
1575 static struct platform_driver mtk_nfc_driver = {
1576 	.probe  = mtk_nfc_probe,
1577 	.remove = mtk_nfc_remove,
1578 	.driver = {
1579 		.name  = MTK_NAME,
1580 		.of_match_table = mtk_nfc_id_table,
1581 #ifdef CONFIG_PM_SLEEP
1582 		.pm = &mtk_nfc_pm_ops,
1583 #endif
1584 	},
1585 };
1586 
1587 module_platform_driver(mtk_nfc_driver);
1588 
1589 MODULE_LICENSE("GPL");
1590 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
1591 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
1592