xref: /openbmc/linux/drivers/mtd/nand/raw/mtk_nand.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * MTK NAND Flash controller driver.
4  * Copyright (C) 2016 MediaTek Inc.
5  * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
6  *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
7  */
8 
9 #include <linux/platform_device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/delay.h>
13 #include <linux/clk.h>
14 #include <linux/mtd/rawnand.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/module.h>
17 #include <linux/iopoll.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include "mtk_ecc.h"
21 
22 /* NAND controller register definition */
23 #define NFI_CNFG		(0x00)
24 #define		CNFG_AHB		BIT(0)
25 #define		CNFG_READ_EN		BIT(1)
26 #define		CNFG_DMA_BURST_EN	BIT(2)
27 #define		CNFG_BYTE_RW		BIT(6)
28 #define		CNFG_HW_ECC_EN		BIT(8)
29 #define		CNFG_AUTO_FMT_EN	BIT(9)
30 #define		CNFG_OP_CUST		(6 << 12)
31 #define NFI_PAGEFMT		(0x04)
32 #define		PAGEFMT_FDM_ECC_SHIFT	(12)
33 #define		PAGEFMT_FDM_SHIFT	(8)
34 #define		PAGEFMT_SEC_SEL_512	BIT(2)
35 #define		PAGEFMT_512_2K		(0)
36 #define		PAGEFMT_2K_4K		(1)
37 #define		PAGEFMT_4K_8K		(2)
38 #define		PAGEFMT_8K_16K		(3)
39 /* NFI control */
40 #define NFI_CON			(0x08)
41 #define		CON_FIFO_FLUSH		BIT(0)
42 #define		CON_NFI_RST		BIT(1)
43 #define		CON_BRD			BIT(8)  /* burst  read */
44 #define		CON_BWR			BIT(9)	/* burst  write */
45 #define		CON_SEC_SHIFT		(12)
46 /* Timming control register */
47 #define NFI_ACCCON		(0x0C)
48 #define NFI_INTR_EN		(0x10)
49 #define		INTR_AHB_DONE_EN	BIT(6)
50 #define NFI_INTR_STA		(0x14)
51 #define NFI_CMD			(0x20)
52 #define NFI_ADDRNOB		(0x30)
53 #define NFI_COLADDR		(0x34)
54 #define NFI_ROWADDR		(0x38)
55 #define NFI_STRDATA		(0x40)
56 #define		STAR_EN			(1)
57 #define		STAR_DE			(0)
58 #define NFI_CNRNB		(0x44)
59 #define NFI_DATAW		(0x50)
60 #define NFI_DATAR		(0x54)
61 #define NFI_PIO_DIRDY		(0x58)
62 #define		PIO_DI_RDY		(0x01)
63 #define NFI_STA			(0x60)
64 #define		STA_CMD			BIT(0)
65 #define		STA_ADDR		BIT(1)
66 #define		STA_BUSY		BIT(8)
67 #define		STA_EMP_PAGE		BIT(12)
68 #define		NFI_FSM_CUSTDATA	(0xe << 16)
69 #define		NFI_FSM_MASK		(0xf << 16)
70 #define NFI_ADDRCNTR		(0x70)
71 #define		CNTR_MASK		GENMASK(16, 12)
72 #define		ADDRCNTR_SEC_SHIFT	(12)
73 #define		ADDRCNTR_SEC(val) \
74 		(((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
75 #define NFI_STRADDR		(0x80)
76 #define NFI_BYTELEN		(0x84)
77 #define NFI_CSEL		(0x90)
78 #define NFI_FDML(x)		(0xA0 + (x) * sizeof(u32) * 2)
79 #define NFI_FDMM(x)		(0xA4 + (x) * sizeof(u32) * 2)
80 #define NFI_FDM_MAX_SIZE	(8)
81 #define NFI_FDM_MIN_SIZE	(1)
82 #define NFI_MASTER_STA		(0x224)
83 #define		MASTER_STA_MASK		(0x0FFF)
84 #define NFI_EMPTY_THRESH	(0x23C)
85 
86 #define MTK_NAME		"mtk-nand"
87 #define KB(x)			((x) * 1024UL)
88 #define MB(x)			(KB(x) * 1024UL)
89 
90 #define MTK_TIMEOUT		(500000)
91 #define MTK_RESET_TIMEOUT	(1000000)
92 #define MTK_NAND_MAX_NSELS	(2)
93 #define MTK_NFC_MIN_SPARE	(16)
94 #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
95 	((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
96 	(tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
97 
98 struct mtk_nfc_caps {
99 	const u8 *spare_size;
100 	u8 num_spare_size;
101 	u8 pageformat_spare_shift;
102 	u8 nfi_clk_div;
103 	u8 max_sector;
104 	u32 max_sector_size;
105 };
106 
107 struct mtk_nfc_bad_mark_ctl {
108 	void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
109 	u32 sec;
110 	u32 pos;
111 };
112 
113 /*
114  * FDM: region used to store free OOB data
115  */
116 struct mtk_nfc_fdm {
117 	u32 reg_size;
118 	u32 ecc_size;
119 };
120 
121 struct mtk_nfc_nand_chip {
122 	struct list_head node;
123 	struct nand_chip nand;
124 
125 	struct mtk_nfc_bad_mark_ctl bad_mark;
126 	struct mtk_nfc_fdm fdm;
127 	u32 spare_per_sector;
128 
129 	int nsels;
130 	u8 sels[0];
131 	/* nothing after this field */
132 };
133 
134 struct mtk_nfc_clk {
135 	struct clk *nfi_clk;
136 	struct clk *pad_clk;
137 };
138 
139 struct mtk_nfc {
140 	struct nand_controller controller;
141 	struct mtk_ecc_config ecc_cfg;
142 	struct mtk_nfc_clk clk;
143 	struct mtk_ecc *ecc;
144 
145 	struct device *dev;
146 	const struct mtk_nfc_caps *caps;
147 	void __iomem *regs;
148 
149 	struct completion done;
150 	struct list_head chips;
151 
152 	u8 *buffer;
153 };
154 
155 /*
156  * supported spare size of each IP.
157  * order should be the same with the spare size bitfiled defination of
158  * register NFI_PAGEFMT.
159  */
160 static const u8 spare_size_mt2701[] = {
161 	16, 26, 27, 28, 32, 36, 40, 44,	48, 49, 50, 51, 52, 62, 63, 64
162 };
163 
164 static const u8 spare_size_mt2712[] = {
165 	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
166 	74
167 };
168 
169 static const u8 spare_size_mt7622[] = {
170 	16, 26, 27, 28
171 };
172 
173 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
174 {
175 	return container_of(nand, struct mtk_nfc_nand_chip, nand);
176 }
177 
178 static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
179 {
180 	return (u8 *)p + i * chip->ecc.size;
181 }
182 
183 static inline u8 *oob_ptr(struct nand_chip *chip, int i)
184 {
185 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
186 	u8 *poi;
187 
188 	/* map the sector's FDM data to free oob:
189 	 * the beginning of the oob area stores the FDM data of bad mark sectors
190 	 */
191 
192 	if (i < mtk_nand->bad_mark.sec)
193 		poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
194 	else if (i == mtk_nand->bad_mark.sec)
195 		poi = chip->oob_poi;
196 	else
197 		poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
198 
199 	return poi;
200 }
201 
202 static inline int mtk_data_len(struct nand_chip *chip)
203 {
204 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
205 
206 	return chip->ecc.size + mtk_nand->spare_per_sector;
207 }
208 
209 static inline u8 *mtk_data_ptr(struct nand_chip *chip,  int i)
210 {
211 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
212 
213 	return nfc->buffer + i * mtk_data_len(chip);
214 }
215 
216 static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
217 {
218 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
219 
220 	return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
221 }
222 
223 static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
224 {
225 	writel(val, nfc->regs + reg);
226 }
227 
228 static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
229 {
230 	writew(val, nfc->regs + reg);
231 }
232 
233 static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
234 {
235 	writeb(val, nfc->regs + reg);
236 }
237 
238 static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
239 {
240 	return readl_relaxed(nfc->regs + reg);
241 }
242 
243 static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
244 {
245 	return readw_relaxed(nfc->regs + reg);
246 }
247 
248 static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
249 {
250 	return readb_relaxed(nfc->regs + reg);
251 }
252 
253 static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
254 {
255 	struct device *dev = nfc->dev;
256 	u32 val;
257 	int ret;
258 
259 	/* reset all registers and force the NFI master to terminate */
260 	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
261 
262 	/* wait for the master to finish the last transaction */
263 	ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
264 				 !(val & MASTER_STA_MASK), 50,
265 				 MTK_RESET_TIMEOUT);
266 	if (ret)
267 		dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
268 			 NFI_MASTER_STA, val);
269 
270 	/* ensure any status register affected by the NFI master is reset */
271 	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
272 	nfi_writew(nfc, STAR_DE, NFI_STRDATA);
273 }
274 
275 static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
276 {
277 	struct device *dev = nfc->dev;
278 	u32 val;
279 	int ret;
280 
281 	nfi_writel(nfc, command, NFI_CMD);
282 
283 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
284 					!(val & STA_CMD), 10,  MTK_TIMEOUT);
285 	if (ret) {
286 		dev_warn(dev, "nfi core timed out entering command mode\n");
287 		return -EIO;
288 	}
289 
290 	return 0;
291 }
292 
293 static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
294 {
295 	struct device *dev = nfc->dev;
296 	u32 val;
297 	int ret;
298 
299 	nfi_writel(nfc, addr, NFI_COLADDR);
300 	nfi_writel(nfc, 0, NFI_ROWADDR);
301 	nfi_writew(nfc, 1, NFI_ADDRNOB);
302 
303 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
304 					!(val & STA_ADDR), 10, MTK_TIMEOUT);
305 	if (ret) {
306 		dev_warn(dev, "nfi core timed out entering address mode\n");
307 		return -EIO;
308 	}
309 
310 	return 0;
311 }
312 
313 static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
314 {
315 	struct nand_chip *chip = mtd_to_nand(mtd);
316 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
317 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
318 	u32 fmt, spare, i;
319 
320 	if (!mtd->writesize)
321 		return 0;
322 
323 	spare = mtk_nand->spare_per_sector;
324 
325 	switch (mtd->writesize) {
326 	case 512:
327 		fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
328 		break;
329 	case KB(2):
330 		if (chip->ecc.size == 512)
331 			fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
332 		else
333 			fmt = PAGEFMT_512_2K;
334 		break;
335 	case KB(4):
336 		if (chip->ecc.size == 512)
337 			fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
338 		else
339 			fmt = PAGEFMT_2K_4K;
340 		break;
341 	case KB(8):
342 		if (chip->ecc.size == 512)
343 			fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
344 		else
345 			fmt = PAGEFMT_4K_8K;
346 		break;
347 	case KB(16):
348 		fmt = PAGEFMT_8K_16K;
349 		break;
350 	default:
351 		dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
352 		return -EINVAL;
353 	}
354 
355 	/*
356 	 * the hardware will double the value for this eccsize, so we need to
357 	 * halve it
358 	 */
359 	if (chip->ecc.size == 1024)
360 		spare >>= 1;
361 
362 	for (i = 0; i < nfc->caps->num_spare_size; i++) {
363 		if (nfc->caps->spare_size[i] == spare)
364 			break;
365 	}
366 
367 	if (i == nfc->caps->num_spare_size) {
368 		dev_err(nfc->dev, "invalid spare size %d\n", spare);
369 		return -EINVAL;
370 	}
371 
372 	fmt |= i << nfc->caps->pageformat_spare_shift;
373 
374 	fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
375 	fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
376 	nfi_writel(nfc, fmt, NFI_PAGEFMT);
377 
378 	nfc->ecc_cfg.strength = chip->ecc.strength;
379 	nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
380 
381 	return 0;
382 }
383 
384 static void mtk_nfc_select_chip(struct nand_chip *nand, int chip)
385 {
386 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
387 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
388 
389 	if (chip < 0)
390 		return;
391 
392 	mtk_nfc_hw_runtime_config(nand_to_mtd(nand));
393 
394 	nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
395 }
396 
397 static int mtk_nfc_dev_ready(struct nand_chip *nand)
398 {
399 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
400 
401 	if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
402 		return 0;
403 
404 	return 1;
405 }
406 
407 static void mtk_nfc_cmd_ctrl(struct nand_chip *chip, int dat,
408 			     unsigned int ctrl)
409 {
410 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
411 
412 	if (ctrl & NAND_ALE) {
413 		mtk_nfc_send_address(nfc, dat);
414 	} else if (ctrl & NAND_CLE) {
415 		mtk_nfc_hw_reset(nfc);
416 
417 		nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
418 		mtk_nfc_send_command(nfc, dat);
419 	}
420 }
421 
422 static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
423 {
424 	int rc;
425 	u8 val;
426 
427 	rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
428 				       val & PIO_DI_RDY, 10, MTK_TIMEOUT);
429 	if (rc < 0)
430 		dev_err(nfc->dev, "data not ready\n");
431 }
432 
433 static inline u8 mtk_nfc_read_byte(struct nand_chip *chip)
434 {
435 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
436 	u32 reg;
437 
438 	/* after each byte read, the NFI_STA reg is reset by the hardware */
439 	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
440 	if (reg != NFI_FSM_CUSTDATA) {
441 		reg = nfi_readw(nfc, NFI_CNFG);
442 		reg |= CNFG_BYTE_RW | CNFG_READ_EN;
443 		nfi_writew(nfc, reg, NFI_CNFG);
444 
445 		/*
446 		 * set to max sector to allow the HW to continue reading over
447 		 * unaligned accesses
448 		 */
449 		reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
450 		nfi_writel(nfc, reg, NFI_CON);
451 
452 		/* trigger to fetch data */
453 		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
454 	}
455 
456 	mtk_nfc_wait_ioready(nfc);
457 
458 	return nfi_readb(nfc, NFI_DATAR);
459 }
460 
461 static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
462 {
463 	int i;
464 
465 	for (i = 0; i < len; i++)
466 		buf[i] = mtk_nfc_read_byte(chip);
467 }
468 
469 static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte)
470 {
471 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
472 	u32 reg;
473 
474 	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
475 
476 	if (reg != NFI_FSM_CUSTDATA) {
477 		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
478 		nfi_writew(nfc, reg, NFI_CNFG);
479 
480 		reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
481 		nfi_writel(nfc, reg, NFI_CON);
482 
483 		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
484 	}
485 
486 	mtk_nfc_wait_ioready(nfc);
487 	nfi_writeb(nfc, byte, NFI_DATAW);
488 }
489 
490 static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
491 {
492 	int i;
493 
494 	for (i = 0; i < len; i++)
495 		mtk_nfc_write_byte(chip, buf[i]);
496 }
497 
498 static int mtk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
499 					const struct nand_data_interface *conf)
500 {
501 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
502 	const struct nand_sdr_timings *timings;
503 	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
504 
505 	timings = nand_get_sdr_timings(conf);
506 	if (IS_ERR(timings))
507 		return -ENOTSUPP;
508 
509 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
510 		return 0;
511 
512 	rate = clk_get_rate(nfc->clk.nfi_clk);
513 	/* There is a frequency divider in some IPs */
514 	rate /= nfc->caps->nfi_clk_div;
515 
516 	/* turn clock rate into KHZ */
517 	rate /= 1000;
518 
519 	tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
520 	tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
521 	tpoecs &= 0xf;
522 
523 	tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
524 	tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
525 	tprecs &= 0x3f;
526 
527 	/* sdr interface has no tCR which means CE# low to RE# low */
528 	tc2r = 0;
529 
530 	tw2r = timings->tWHR_min / 1000;
531 	tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
532 	tw2r = DIV_ROUND_UP(tw2r - 1, 2);
533 	tw2r &= 0xf;
534 
535 	twh = max(timings->tREH_min, timings->tWH_min) / 1000;
536 	twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
537 	twh &= 0xf;
538 
539 	twst = timings->tWP_min / 1000;
540 	twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
541 	twst &= 0xf;
542 
543 	trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
544 	trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
545 	trlt &= 0xf;
546 
547 	/*
548 	 * ACCON: access timing control register
549 	 * -------------------------------------
550 	 * 31:28: tpoecs, minimum required time for CS post pulling down after
551 	 *        accessing the device
552 	 * 27:22: tprecs, minimum required time for CS pre pulling down before
553 	 *        accessing the device
554 	 * 21:16: tc2r, minimum required time from NCEB low to NREB low
555 	 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
556 	 * 11:08: twh, write enable hold time
557 	 * 07:04: twst, write wait states
558 	 * 03:00: trlt, read wait states
559 	 */
560 	trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
561 	nfi_writel(nfc, trlt, NFI_ACCCON);
562 
563 	return 0;
564 }
565 
566 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
567 {
568 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
569 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
570 	int size = chip->ecc.size + mtk_nand->fdm.reg_size;
571 
572 	nfc->ecc_cfg.mode = ECC_DMA_MODE;
573 	nfc->ecc_cfg.op = ECC_ENCODE;
574 
575 	return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
576 }
577 
578 static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
579 {
580 	/* nop */
581 }
582 
583 static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
584 {
585 	struct nand_chip *chip = mtd_to_nand(mtd);
586 	struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
587 	u32 bad_pos = nand->bad_mark.pos;
588 
589 	if (raw)
590 		bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
591 	else
592 		bad_pos += nand->bad_mark.sec * chip->ecc.size;
593 
594 	swap(chip->oob_poi[0], buf[bad_pos]);
595 }
596 
597 static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
598 				  u32 len, const u8 *buf)
599 {
600 	struct nand_chip *chip = mtd_to_nand(mtd);
601 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
602 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
603 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
604 	u32 start, end;
605 	int i, ret;
606 
607 	start = offset / chip->ecc.size;
608 	end = DIV_ROUND_UP(offset + len, chip->ecc.size);
609 
610 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
611 	for (i = 0; i < chip->ecc.steps; i++) {
612 		memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
613 		       chip->ecc.size);
614 
615 		if (start > i || i >= end)
616 			continue;
617 
618 		if (i == mtk_nand->bad_mark.sec)
619 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
620 
621 		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
622 
623 		/* program the CRC back to the OOB */
624 		ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
625 		if (ret < 0)
626 			return ret;
627 	}
628 
629 	return 0;
630 }
631 
632 static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
633 {
634 	struct nand_chip *chip = mtd_to_nand(mtd);
635 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
636 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
637 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
638 	u32 i;
639 
640 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
641 	for (i = 0; i < chip->ecc.steps; i++) {
642 		if (buf)
643 			memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
644 			       chip->ecc.size);
645 
646 		if (i == mtk_nand->bad_mark.sec)
647 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
648 
649 		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
650 	}
651 }
652 
653 static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
654 				    u32 sectors)
655 {
656 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
657 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
658 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
659 	u32 vall, valm;
660 	u8 *oobptr;
661 	int i, j;
662 
663 	for (i = 0; i < sectors; i++) {
664 		oobptr = oob_ptr(chip, start + i);
665 		vall = nfi_readl(nfc, NFI_FDML(i));
666 		valm = nfi_readl(nfc, NFI_FDMM(i));
667 
668 		for (j = 0; j < fdm->reg_size; j++)
669 			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
670 	}
671 }
672 
673 static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
674 {
675 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
676 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
677 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
678 	u32 vall, valm;
679 	u8 *oobptr;
680 	int i, j;
681 
682 	for (i = 0; i < chip->ecc.steps; i++) {
683 		oobptr = oob_ptr(chip, i);
684 		vall = 0;
685 		valm = 0;
686 		for (j = 0; j < 8; j++) {
687 			if (j < 4)
688 				vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
689 						<< (j * 8);
690 			else
691 				valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
692 						<< ((j - 4) * 8);
693 		}
694 		nfi_writel(nfc, vall, NFI_FDML(i));
695 		nfi_writel(nfc, valm, NFI_FDMM(i));
696 	}
697 }
698 
699 static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
700 				 const u8 *buf, int page, int len)
701 {
702 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
703 	struct device *dev = nfc->dev;
704 	dma_addr_t addr;
705 	u32 reg;
706 	int ret;
707 
708 	addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
709 	ret = dma_mapping_error(nfc->dev, addr);
710 	if (ret) {
711 		dev_err(nfc->dev, "dma mapping error\n");
712 		return -EINVAL;
713 	}
714 
715 	reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
716 	nfi_writew(nfc, reg, NFI_CNFG);
717 
718 	nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
719 	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
720 	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
721 
722 	init_completion(&nfc->done);
723 
724 	reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
725 	nfi_writel(nfc, reg, NFI_CON);
726 	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
727 
728 	ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
729 	if (!ret) {
730 		dev_err(dev, "program ahb done timeout\n");
731 		nfi_writew(nfc, 0, NFI_INTR_EN);
732 		ret = -ETIMEDOUT;
733 		goto timeout;
734 	}
735 
736 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
737 					ADDRCNTR_SEC(reg) >= chip->ecc.steps,
738 					10, MTK_TIMEOUT);
739 	if (ret)
740 		dev_err(dev, "hwecc write timeout\n");
741 
742 timeout:
743 
744 	dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
745 	nfi_writel(nfc, 0, NFI_CON);
746 
747 	return ret;
748 }
749 
750 static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
751 			      const u8 *buf, int page, int raw)
752 {
753 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
754 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
755 	size_t len;
756 	const u8 *bufpoi;
757 	u32 reg;
758 	int ret;
759 
760 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
761 
762 	if (!raw) {
763 		/* OOB => FDM: from register,  ECC: from HW */
764 		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
765 		nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
766 
767 		nfc->ecc_cfg.op = ECC_ENCODE;
768 		nfc->ecc_cfg.mode = ECC_NFI_MODE;
769 		ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
770 		if (ret) {
771 			/* clear NFI config */
772 			reg = nfi_readw(nfc, NFI_CNFG);
773 			reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
774 			nfi_writew(nfc, reg, NFI_CNFG);
775 
776 			return ret;
777 		}
778 
779 		memcpy(nfc->buffer, buf, mtd->writesize);
780 		mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
781 		bufpoi = nfc->buffer;
782 
783 		/* write OOB into the FDM registers (OOB area in MTK NAND) */
784 		mtk_nfc_write_fdm(chip);
785 	} else {
786 		bufpoi = buf;
787 	}
788 
789 	len = mtd->writesize + (raw ? mtd->oobsize : 0);
790 	ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
791 
792 	if (!raw)
793 		mtk_ecc_disable(nfc->ecc);
794 
795 	if (ret)
796 		return ret;
797 
798 	return nand_prog_page_end_op(chip);
799 }
800 
801 static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
802 				    int oob_on, int page)
803 {
804 	return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
805 }
806 
807 static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
808 				  int oob_on, int pg)
809 {
810 	struct mtd_info *mtd = nand_to_mtd(chip);
811 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
812 
813 	mtk_nfc_format_page(mtd, buf);
814 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
815 }
816 
817 static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
818 				       u32 data_len, const u8 *buf,
819 				       int oob_on, int page)
820 {
821 	struct mtd_info *mtd = nand_to_mtd(chip);
822 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
823 	int ret;
824 
825 	ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
826 	if (ret < 0)
827 		return ret;
828 
829 	/* use the data in the private buffer (now with FDM and CRC) */
830 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
831 }
832 
833 static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page)
834 {
835 	return mtk_nfc_write_page_raw(chip, NULL, 1, page);
836 }
837 
838 static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
839 {
840 	struct nand_chip *chip = mtd_to_nand(mtd);
841 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
842 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
843 	struct mtk_ecc_stats stats;
844 	int rc, i;
845 
846 	rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
847 	if (rc) {
848 		memset(buf, 0xff, sectors * chip->ecc.size);
849 		for (i = 0; i < sectors; i++)
850 			memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
851 		return 0;
852 	}
853 
854 	mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
855 	mtd->ecc_stats.corrected += stats.corrected;
856 	mtd->ecc_stats.failed += stats.failed;
857 
858 	return stats.bitflips;
859 }
860 
861 static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
862 				u32 data_offs, u32 readlen,
863 				u8 *bufpoi, int page, int raw)
864 {
865 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
866 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
867 	u32 spare = mtk_nand->spare_per_sector;
868 	u32 column, sectors, start, end, reg;
869 	dma_addr_t addr;
870 	int bitflips;
871 	size_t len;
872 	u8 *buf;
873 	int rc;
874 
875 	start = data_offs / chip->ecc.size;
876 	end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
877 
878 	sectors = end - start;
879 	column = start * (chip->ecc.size + spare);
880 
881 	len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
882 	buf = bufpoi + start * chip->ecc.size;
883 
884 	nand_read_page_op(chip, page, column, NULL, 0);
885 
886 	addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
887 	rc = dma_mapping_error(nfc->dev, addr);
888 	if (rc) {
889 		dev_err(nfc->dev, "dma mapping error\n");
890 
891 		return -EINVAL;
892 	}
893 
894 	reg = nfi_readw(nfc, NFI_CNFG);
895 	reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
896 	if (!raw) {
897 		reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
898 		nfi_writew(nfc, reg, NFI_CNFG);
899 
900 		nfc->ecc_cfg.mode = ECC_NFI_MODE;
901 		nfc->ecc_cfg.sectors = sectors;
902 		nfc->ecc_cfg.op = ECC_DECODE;
903 		rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
904 		if (rc) {
905 			dev_err(nfc->dev, "ecc enable\n");
906 			/* clear NFI_CNFG */
907 			reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
908 				CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
909 			nfi_writew(nfc, reg, NFI_CNFG);
910 			dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
911 
912 			return rc;
913 		}
914 	} else {
915 		nfi_writew(nfc, reg, NFI_CNFG);
916 	}
917 
918 	nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
919 	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
920 	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
921 
922 	init_completion(&nfc->done);
923 	reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
924 	nfi_writel(nfc, reg, NFI_CON);
925 	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
926 
927 	rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
928 	if (!rc)
929 		dev_warn(nfc->dev, "read ahb/dma done timeout\n");
930 
931 	rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
932 				       ADDRCNTR_SEC(reg) >= sectors, 10,
933 				       MTK_TIMEOUT);
934 	if (rc < 0) {
935 		dev_err(nfc->dev, "subpage done timeout\n");
936 		bitflips = -EIO;
937 	} else {
938 		bitflips = 0;
939 		if (!raw) {
940 			rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
941 			bitflips = rc < 0 ? -ETIMEDOUT :
942 				mtk_nfc_update_ecc_stats(mtd, buf, sectors);
943 			mtk_nfc_read_fdm(chip, start, sectors);
944 		}
945 	}
946 
947 	dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
948 
949 	if (raw)
950 		goto done;
951 
952 	mtk_ecc_disable(nfc->ecc);
953 
954 	if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
955 		mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
956 done:
957 	nfi_writel(nfc, 0, NFI_CON);
958 
959 	return bitflips;
960 }
961 
962 static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off,
963 				      u32 len, u8 *p, int pg)
964 {
965 	return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg,
966 				    0);
967 }
968 
969 static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
970 				   int pg)
971 {
972 	struct mtd_info *mtd = nand_to_mtd(chip);
973 
974 	return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
975 }
976 
977 static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
978 				 int page)
979 {
980 	struct mtd_info *mtd = nand_to_mtd(chip);
981 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
982 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
983 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
984 	int i, ret;
985 
986 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
987 	ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
988 				   page, 1);
989 	if (ret < 0)
990 		return ret;
991 
992 	for (i = 0; i < chip->ecc.steps; i++) {
993 		memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
994 
995 		if (i == mtk_nand->bad_mark.sec)
996 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
997 
998 		if (buf)
999 			memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
1000 			       chip->ecc.size);
1001 	}
1002 
1003 	return ret;
1004 }
1005 
1006 static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page)
1007 {
1008 	return mtk_nfc_read_page_raw(chip, NULL, 1, page);
1009 }
1010 
1011 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
1012 {
1013 	/*
1014 	 * CNRNB: nand ready/busy register
1015 	 * -------------------------------
1016 	 * 7:4: timeout register for polling the NAND busy/ready signal
1017 	 * 0  : poll the status of the busy/ready signal after [7:4]*16 cycles.
1018 	 */
1019 	nfi_writew(nfc, 0xf1, NFI_CNRNB);
1020 	nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1021 
1022 	mtk_nfc_hw_reset(nfc);
1023 
1024 	nfi_readl(nfc, NFI_INTR_STA);
1025 	nfi_writel(nfc, 0, NFI_INTR_EN);
1026 }
1027 
1028 static irqreturn_t mtk_nfc_irq(int irq, void *id)
1029 {
1030 	struct mtk_nfc *nfc = id;
1031 	u16 sta, ien;
1032 
1033 	sta = nfi_readw(nfc, NFI_INTR_STA);
1034 	ien = nfi_readw(nfc, NFI_INTR_EN);
1035 
1036 	if (!(sta & ien))
1037 		return IRQ_NONE;
1038 
1039 	nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1040 	complete(&nfc->done);
1041 
1042 	return IRQ_HANDLED;
1043 }
1044 
1045 static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
1046 {
1047 	int ret;
1048 
1049 	ret = clk_prepare_enable(clk->nfi_clk);
1050 	if (ret) {
1051 		dev_err(dev, "failed to enable nfi clk\n");
1052 		return ret;
1053 	}
1054 
1055 	ret = clk_prepare_enable(clk->pad_clk);
1056 	if (ret) {
1057 		dev_err(dev, "failed to enable pad clk\n");
1058 		clk_disable_unprepare(clk->nfi_clk);
1059 		return ret;
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
1066 {
1067 	clk_disable_unprepare(clk->nfi_clk);
1068 	clk_disable_unprepare(clk->pad_clk);
1069 }
1070 
1071 static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1072 				  struct mtd_oob_region *oob_region)
1073 {
1074 	struct nand_chip *chip = mtd_to_nand(mtd);
1075 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1076 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1077 	u32 eccsteps;
1078 
1079 	eccsteps = mtd->writesize / chip->ecc.size;
1080 
1081 	if (section >= eccsteps)
1082 		return -ERANGE;
1083 
1084 	oob_region->length = fdm->reg_size - fdm->ecc_size;
1085 	oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1086 
1087 	return 0;
1088 }
1089 
1090 static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1091 				 struct mtd_oob_region *oob_region)
1092 {
1093 	struct nand_chip *chip = mtd_to_nand(mtd);
1094 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1095 	u32 eccsteps;
1096 
1097 	if (section)
1098 		return -ERANGE;
1099 
1100 	eccsteps = mtd->writesize / chip->ecc.size;
1101 	oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1102 	oob_region->length = mtd->oobsize - oob_region->offset;
1103 
1104 	return 0;
1105 }
1106 
1107 static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1108 	.free = mtk_nfc_ooblayout_free,
1109 	.ecc = mtk_nfc_ooblayout_ecc,
1110 };
1111 
1112 static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1113 {
1114 	struct nand_chip *nand = mtd_to_nand(mtd);
1115 	struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1116 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1117 	u32 ecc_bytes;
1118 
1119 	ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
1120 				 mtk_ecc_get_parity_bits(nfc->ecc), 8);
1121 
1122 	fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1123 	if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1124 		fdm->reg_size = NFI_FDM_MAX_SIZE;
1125 
1126 	/* bad block mark storage */
1127 	fdm->ecc_size = 1;
1128 }
1129 
1130 static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1131 				     struct mtd_info *mtd)
1132 {
1133 	struct nand_chip *nand = mtd_to_nand(mtd);
1134 
1135 	if (mtd->writesize == 512) {
1136 		bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1137 	} else {
1138 		bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1139 		bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1140 		bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1141 	}
1142 }
1143 
1144 static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1145 {
1146 	struct nand_chip *nand = mtd_to_nand(mtd);
1147 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1148 	const u8 *spare = nfc->caps->spare_size;
1149 	u32 eccsteps, i, closest_spare = 0;
1150 
1151 	eccsteps = mtd->writesize / nand->ecc.size;
1152 	*sps = mtd->oobsize / eccsteps;
1153 
1154 	if (nand->ecc.size == 1024)
1155 		*sps >>= 1;
1156 
1157 	if (*sps < MTK_NFC_MIN_SPARE)
1158 		return -EINVAL;
1159 
1160 	for (i = 0; i < nfc->caps->num_spare_size; i++) {
1161 		if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
1162 			closest_spare = i;
1163 			if (*sps == spare[i])
1164 				break;
1165 		}
1166 	}
1167 
1168 	*sps = spare[closest_spare];
1169 
1170 	if (nand->ecc.size == 1024)
1171 		*sps <<= 1;
1172 
1173 	return 0;
1174 }
1175 
1176 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1177 {
1178 	struct nand_chip *nand = mtd_to_nand(mtd);
1179 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1180 	u32 spare;
1181 	int free, ret;
1182 
1183 	/* support only ecc hw mode */
1184 	if (nand->ecc.mode != NAND_ECC_HW) {
1185 		dev_err(dev, "ecc.mode not supported\n");
1186 		return -EINVAL;
1187 	}
1188 
1189 	/* if optional dt settings not present */
1190 	if (!nand->ecc.size || !nand->ecc.strength) {
1191 		/* use datasheet requirements */
1192 		nand->ecc.strength = nand->base.eccreq.strength;
1193 		nand->ecc.size = nand->base.eccreq.step_size;
1194 
1195 		/*
1196 		 * align eccstrength and eccsize
1197 		 * this controller only supports 512 and 1024 sizes
1198 		 */
1199 		if (nand->ecc.size < 1024) {
1200 			if (mtd->writesize > 512 &&
1201 			    nfc->caps->max_sector_size > 512) {
1202 				nand->ecc.size = 1024;
1203 				nand->ecc.strength <<= 1;
1204 			} else {
1205 				nand->ecc.size = 512;
1206 			}
1207 		} else {
1208 			nand->ecc.size = 1024;
1209 		}
1210 
1211 		ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
1212 		if (ret)
1213 			return ret;
1214 
1215 		/* calculate oob bytes except ecc parity data */
1216 		free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
1217 			+ 7) >> 3;
1218 		free = spare - free;
1219 
1220 		/*
1221 		 * enhance ecc strength if oob left is bigger than max FDM size
1222 		 * or reduce ecc strength if oob size is not enough for ecc
1223 		 * parity data.
1224 		 */
1225 		if (free > NFI_FDM_MAX_SIZE) {
1226 			spare -= NFI_FDM_MAX_SIZE;
1227 			nand->ecc.strength = (spare << 3) /
1228 					     mtk_ecc_get_parity_bits(nfc->ecc);
1229 		} else if (free < 0) {
1230 			spare -= NFI_FDM_MIN_SIZE;
1231 			nand->ecc.strength = (spare << 3) /
1232 					     mtk_ecc_get_parity_bits(nfc->ecc);
1233 		}
1234 	}
1235 
1236 	mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
1237 
1238 	dev_info(dev, "eccsize %d eccstrength %d\n",
1239 		 nand->ecc.size, nand->ecc.strength);
1240 
1241 	return 0;
1242 }
1243 
1244 static int mtk_nfc_attach_chip(struct nand_chip *chip)
1245 {
1246 	struct mtd_info *mtd = nand_to_mtd(chip);
1247 	struct device *dev = mtd->dev.parent;
1248 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
1249 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1250 	int len;
1251 	int ret;
1252 
1253 	if (chip->options & NAND_BUSWIDTH_16) {
1254 		dev_err(dev, "16bits buswidth not supported");
1255 		return -EINVAL;
1256 	}
1257 
1258 	/* store bbt magic in page, cause OOB is not protected */
1259 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1260 		chip->bbt_options |= NAND_BBT_NO_OOB;
1261 
1262 	ret = mtk_nfc_ecc_init(dev, mtd);
1263 	if (ret)
1264 		return ret;
1265 
1266 	ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
1267 	if (ret)
1268 		return ret;
1269 
1270 	mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
1271 	mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
1272 
1273 	len = mtd->writesize + mtd->oobsize;
1274 	nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1275 	if (!nfc->buffer)
1276 		return  -ENOMEM;
1277 
1278 	return 0;
1279 }
1280 
1281 static const struct nand_controller_ops mtk_nfc_controller_ops = {
1282 	.attach_chip = mtk_nfc_attach_chip,
1283 	.setup_data_interface = mtk_nfc_setup_data_interface,
1284 };
1285 
1286 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1287 				  struct device_node *np)
1288 {
1289 	struct mtk_nfc_nand_chip *chip;
1290 	struct nand_chip *nand;
1291 	struct mtd_info *mtd;
1292 	int nsels;
1293 	u32 tmp;
1294 	int ret;
1295 	int i;
1296 
1297 	if (!of_get_property(np, "reg", &nsels))
1298 		return -ENODEV;
1299 
1300 	nsels /= sizeof(u32);
1301 	if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1302 		dev_err(dev, "invalid reg property size %d\n", nsels);
1303 		return -EINVAL;
1304 	}
1305 
1306 	chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
1307 			    GFP_KERNEL);
1308 	if (!chip)
1309 		return -ENOMEM;
1310 
1311 	chip->nsels = nsels;
1312 	for (i = 0; i < nsels; i++) {
1313 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1314 		if (ret) {
1315 			dev_err(dev, "reg property failure : %d\n", ret);
1316 			return ret;
1317 		}
1318 		chip->sels[i] = tmp;
1319 	}
1320 
1321 	nand = &chip->nand;
1322 	nand->controller = &nfc->controller;
1323 
1324 	nand_set_flash_node(nand, np);
1325 	nand_set_controller_data(nand, nfc);
1326 
1327 	nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
1328 	nand->legacy.dev_ready = mtk_nfc_dev_ready;
1329 	nand->legacy.select_chip = mtk_nfc_select_chip;
1330 	nand->legacy.write_byte = mtk_nfc_write_byte;
1331 	nand->legacy.write_buf = mtk_nfc_write_buf;
1332 	nand->legacy.read_byte = mtk_nfc_read_byte;
1333 	nand->legacy.read_buf = mtk_nfc_read_buf;
1334 	nand->legacy.cmd_ctrl = mtk_nfc_cmd_ctrl;
1335 
1336 	/* set default mode in case dt entry is missing */
1337 	nand->ecc.mode = NAND_ECC_HW;
1338 
1339 	nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1340 	nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1341 	nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1342 	nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1343 	nand->ecc.write_oob = mtk_nfc_write_oob_std;
1344 
1345 	nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1346 	nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1347 	nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1348 	nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1349 	nand->ecc.read_oob = mtk_nfc_read_oob_std;
1350 
1351 	mtd = nand_to_mtd(nand);
1352 	mtd->owner = THIS_MODULE;
1353 	mtd->dev.parent = dev;
1354 	mtd->name = MTK_NAME;
1355 	mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1356 
1357 	mtk_nfc_hw_init(nfc);
1358 
1359 	ret = nand_scan(nand, nsels);
1360 	if (ret)
1361 		return ret;
1362 
1363 	ret = mtd_device_register(mtd, NULL, 0);
1364 	if (ret) {
1365 		dev_err(dev, "mtd parse partition error\n");
1366 		nand_release(nand);
1367 		return ret;
1368 	}
1369 
1370 	list_add_tail(&chip->node, &nfc->chips);
1371 
1372 	return 0;
1373 }
1374 
1375 static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1376 {
1377 	struct device_node *np = dev->of_node;
1378 	struct device_node *nand_np;
1379 	int ret;
1380 
1381 	for_each_child_of_node(np, nand_np) {
1382 		ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1383 		if (ret) {
1384 			of_node_put(nand_np);
1385 			return ret;
1386 		}
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
1393 	.spare_size = spare_size_mt2701,
1394 	.num_spare_size = 16,
1395 	.pageformat_spare_shift = 4,
1396 	.nfi_clk_div = 1,
1397 	.max_sector = 16,
1398 	.max_sector_size = 1024,
1399 };
1400 
1401 static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
1402 	.spare_size = spare_size_mt2712,
1403 	.num_spare_size = 19,
1404 	.pageformat_spare_shift = 16,
1405 	.nfi_clk_div = 2,
1406 	.max_sector = 16,
1407 	.max_sector_size = 1024,
1408 };
1409 
1410 static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
1411 	.spare_size = spare_size_mt7622,
1412 	.num_spare_size = 4,
1413 	.pageformat_spare_shift = 4,
1414 	.nfi_clk_div = 1,
1415 	.max_sector = 8,
1416 	.max_sector_size = 512,
1417 };
1418 
1419 static const struct of_device_id mtk_nfc_id_table[] = {
1420 	{
1421 		.compatible = "mediatek,mt2701-nfc",
1422 		.data = &mtk_nfc_caps_mt2701,
1423 	}, {
1424 		.compatible = "mediatek,mt2712-nfc",
1425 		.data = &mtk_nfc_caps_mt2712,
1426 	}, {
1427 		.compatible = "mediatek,mt7622-nfc",
1428 		.data = &mtk_nfc_caps_mt7622,
1429 	},
1430 	{}
1431 };
1432 MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1433 
1434 static int mtk_nfc_probe(struct platform_device *pdev)
1435 {
1436 	struct device *dev = &pdev->dev;
1437 	struct device_node *np = dev->of_node;
1438 	struct mtk_nfc *nfc;
1439 	struct resource *res;
1440 	int ret, irq;
1441 
1442 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1443 	if (!nfc)
1444 		return -ENOMEM;
1445 
1446 	nand_controller_init(&nfc->controller);
1447 	INIT_LIST_HEAD(&nfc->chips);
1448 	nfc->controller.ops = &mtk_nfc_controller_ops;
1449 
1450 	/* probe defer if not ready */
1451 	nfc->ecc = of_mtk_ecc_get(np);
1452 	if (IS_ERR(nfc->ecc))
1453 		return PTR_ERR(nfc->ecc);
1454 	else if (!nfc->ecc)
1455 		return -ENODEV;
1456 
1457 	nfc->caps = of_device_get_match_data(dev);
1458 	nfc->dev = dev;
1459 
1460 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1461 	nfc->regs = devm_ioremap_resource(dev, res);
1462 	if (IS_ERR(nfc->regs)) {
1463 		ret = PTR_ERR(nfc->regs);
1464 		goto release_ecc;
1465 	}
1466 
1467 	nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
1468 	if (IS_ERR(nfc->clk.nfi_clk)) {
1469 		dev_err(dev, "no clk\n");
1470 		ret = PTR_ERR(nfc->clk.nfi_clk);
1471 		goto release_ecc;
1472 	}
1473 
1474 	nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
1475 	if (IS_ERR(nfc->clk.pad_clk)) {
1476 		dev_err(dev, "no pad clk\n");
1477 		ret = PTR_ERR(nfc->clk.pad_clk);
1478 		goto release_ecc;
1479 	}
1480 
1481 	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1482 	if (ret)
1483 		goto release_ecc;
1484 
1485 	irq = platform_get_irq(pdev, 0);
1486 	if (irq < 0) {
1487 		dev_err(dev, "no nfi irq resource\n");
1488 		ret = -EINVAL;
1489 		goto clk_disable;
1490 	}
1491 
1492 	ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1493 	if (ret) {
1494 		dev_err(dev, "failed to request nfi irq\n");
1495 		goto clk_disable;
1496 	}
1497 
1498 	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1499 	if (ret) {
1500 		dev_err(dev, "failed to set dma mask\n");
1501 		goto clk_disable;
1502 	}
1503 
1504 	platform_set_drvdata(pdev, nfc);
1505 
1506 	ret = mtk_nfc_nand_chips_init(dev, nfc);
1507 	if (ret) {
1508 		dev_err(dev, "failed to init nand chips\n");
1509 		goto clk_disable;
1510 	}
1511 
1512 	return 0;
1513 
1514 clk_disable:
1515 	mtk_nfc_disable_clk(&nfc->clk);
1516 
1517 release_ecc:
1518 	mtk_ecc_release(nfc->ecc);
1519 
1520 	return ret;
1521 }
1522 
1523 static int mtk_nfc_remove(struct platform_device *pdev)
1524 {
1525 	struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1526 	struct mtk_nfc_nand_chip *chip;
1527 
1528 	while (!list_empty(&nfc->chips)) {
1529 		chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
1530 					node);
1531 		nand_release(&chip->nand);
1532 		list_del(&chip->node);
1533 	}
1534 
1535 	mtk_ecc_release(nfc->ecc);
1536 	mtk_nfc_disable_clk(&nfc->clk);
1537 
1538 	return 0;
1539 }
1540 
1541 #ifdef CONFIG_PM_SLEEP
1542 static int mtk_nfc_suspend(struct device *dev)
1543 {
1544 	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1545 
1546 	mtk_nfc_disable_clk(&nfc->clk);
1547 
1548 	return 0;
1549 }
1550 
1551 static int mtk_nfc_resume(struct device *dev)
1552 {
1553 	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1554 	struct mtk_nfc_nand_chip *chip;
1555 	struct nand_chip *nand;
1556 	int ret;
1557 	u32 i;
1558 
1559 	udelay(200);
1560 
1561 	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1562 	if (ret)
1563 		return ret;
1564 
1565 	/* reset NAND chip if VCC was powered off */
1566 	list_for_each_entry(chip, &nfc->chips, node) {
1567 		nand = &chip->nand;
1568 		for (i = 0; i < chip->nsels; i++)
1569 			nand_reset(nand, i);
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1576 #endif
1577 
1578 static struct platform_driver mtk_nfc_driver = {
1579 	.probe  = mtk_nfc_probe,
1580 	.remove = mtk_nfc_remove,
1581 	.driver = {
1582 		.name  = MTK_NAME,
1583 		.of_match_table = mtk_nfc_id_table,
1584 #ifdef CONFIG_PM_SLEEP
1585 		.pm = &mtk_nfc_pm_ops,
1586 #endif
1587 	},
1588 };
1589 
1590 module_platform_driver(mtk_nfc_driver);
1591 
1592 MODULE_LICENSE("GPL");
1593 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
1594 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
1595