xref: /openbmc/linux/drivers/mtd/nand/raw/mtk_nand.c (revision 42d13a09)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * MTK NAND Flash controller driver.
4  * Copyright (C) 2016 MediaTek Inc.
5  * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
6  *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
7  */
8 
9 #include <linux/platform_device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/delay.h>
13 #include <linux/clk.h>
14 #include <linux/mtd/rawnand.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/module.h>
17 #include <linux/iopoll.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include "mtk_ecc.h"
21 
22 /* NAND controller register definition */
23 #define NFI_CNFG		(0x00)
24 #define		CNFG_AHB		BIT(0)
25 #define		CNFG_READ_EN		BIT(1)
26 #define		CNFG_DMA_BURST_EN	BIT(2)
27 #define		CNFG_BYTE_RW		BIT(6)
28 #define		CNFG_HW_ECC_EN		BIT(8)
29 #define		CNFG_AUTO_FMT_EN	BIT(9)
30 #define		CNFG_OP_CUST		(6 << 12)
31 #define NFI_PAGEFMT		(0x04)
32 #define		PAGEFMT_FDM_ECC_SHIFT	(12)
33 #define		PAGEFMT_FDM_SHIFT	(8)
34 #define		PAGEFMT_SEC_SEL_512	BIT(2)
35 #define		PAGEFMT_512_2K		(0)
36 #define		PAGEFMT_2K_4K		(1)
37 #define		PAGEFMT_4K_8K		(2)
38 #define		PAGEFMT_8K_16K		(3)
39 /* NFI control */
40 #define NFI_CON			(0x08)
41 #define		CON_FIFO_FLUSH		BIT(0)
42 #define		CON_NFI_RST		BIT(1)
43 #define		CON_BRD			BIT(8)  /* burst  read */
44 #define		CON_BWR			BIT(9)	/* burst  write */
45 #define		CON_SEC_SHIFT		(12)
46 /* Timming control register */
47 #define NFI_ACCCON		(0x0C)
48 #define NFI_INTR_EN		(0x10)
49 #define		INTR_AHB_DONE_EN	BIT(6)
50 #define NFI_INTR_STA		(0x14)
51 #define NFI_CMD			(0x20)
52 #define NFI_ADDRNOB		(0x30)
53 #define NFI_COLADDR		(0x34)
54 #define NFI_ROWADDR		(0x38)
55 #define NFI_STRDATA		(0x40)
56 #define		STAR_EN			(1)
57 #define		STAR_DE			(0)
58 #define NFI_CNRNB		(0x44)
59 #define NFI_DATAW		(0x50)
60 #define NFI_DATAR		(0x54)
61 #define NFI_PIO_DIRDY		(0x58)
62 #define		PIO_DI_RDY		(0x01)
63 #define NFI_STA			(0x60)
64 #define		STA_CMD			BIT(0)
65 #define		STA_ADDR		BIT(1)
66 #define		STA_BUSY		BIT(8)
67 #define		STA_EMP_PAGE		BIT(12)
68 #define		NFI_FSM_CUSTDATA	(0xe << 16)
69 #define		NFI_FSM_MASK		(0xf << 16)
70 #define NFI_ADDRCNTR		(0x70)
71 #define		CNTR_MASK		GENMASK(16, 12)
72 #define		ADDRCNTR_SEC_SHIFT	(12)
73 #define		ADDRCNTR_SEC(val) \
74 		(((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
75 #define NFI_STRADDR		(0x80)
76 #define NFI_BYTELEN		(0x84)
77 #define NFI_CSEL		(0x90)
78 #define NFI_FDML(x)		(0xA0 + (x) * sizeof(u32) * 2)
79 #define NFI_FDMM(x)		(0xA4 + (x) * sizeof(u32) * 2)
80 #define NFI_FDM_MAX_SIZE	(8)
81 #define NFI_FDM_MIN_SIZE	(1)
82 #define NFI_DEBUG_CON1		(0x220)
83 #define		STROBE_MASK		GENMASK(4, 3)
84 #define		STROBE_SHIFT		(3)
85 #define		MAX_STROBE_DLY		(3)
86 #define NFI_MASTER_STA		(0x224)
87 #define		MASTER_STA_MASK		(0x0FFF)
88 #define NFI_EMPTY_THRESH	(0x23C)
89 
90 #define MTK_NAME		"mtk-nand"
91 #define KB(x)			((x) * 1024UL)
92 #define MB(x)			(KB(x) * 1024UL)
93 
94 #define MTK_TIMEOUT		(500000)
95 #define MTK_RESET_TIMEOUT	(1000000)
96 #define MTK_NAND_MAX_NSELS	(2)
97 #define MTK_NFC_MIN_SPARE	(16)
98 #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
99 	((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
100 	(tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
101 
102 struct mtk_nfc_caps {
103 	const u8 *spare_size;
104 	u8 num_spare_size;
105 	u8 pageformat_spare_shift;
106 	u8 nfi_clk_div;
107 	u8 max_sector;
108 	u32 max_sector_size;
109 };
110 
111 struct mtk_nfc_bad_mark_ctl {
112 	void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
113 	u32 sec;
114 	u32 pos;
115 };
116 
117 /*
118  * FDM: region used to store free OOB data
119  */
120 struct mtk_nfc_fdm {
121 	u32 reg_size;
122 	u32 ecc_size;
123 };
124 
125 struct mtk_nfc_nand_chip {
126 	struct list_head node;
127 	struct nand_chip nand;
128 
129 	struct mtk_nfc_bad_mark_ctl bad_mark;
130 	struct mtk_nfc_fdm fdm;
131 	u32 spare_per_sector;
132 
133 	int nsels;
134 	u8 sels[0];
135 	/* nothing after this field */
136 };
137 
138 struct mtk_nfc_clk {
139 	struct clk *nfi_clk;
140 	struct clk *pad_clk;
141 };
142 
143 struct mtk_nfc {
144 	struct nand_controller controller;
145 	struct mtk_ecc_config ecc_cfg;
146 	struct mtk_nfc_clk clk;
147 	struct mtk_ecc *ecc;
148 
149 	struct device *dev;
150 	const struct mtk_nfc_caps *caps;
151 	void __iomem *regs;
152 
153 	struct completion done;
154 	struct list_head chips;
155 
156 	u8 *buffer;
157 };
158 
159 /*
160  * supported spare size of each IP.
161  * order should be the same with the spare size bitfiled defination of
162  * register NFI_PAGEFMT.
163  */
164 static const u8 spare_size_mt2701[] = {
165 	16, 26, 27, 28, 32, 36, 40, 44,	48, 49, 50, 51, 52, 62, 63, 64
166 };
167 
168 static const u8 spare_size_mt2712[] = {
169 	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
170 	74
171 };
172 
173 static const u8 spare_size_mt7622[] = {
174 	16, 26, 27, 28
175 };
176 
177 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
178 {
179 	return container_of(nand, struct mtk_nfc_nand_chip, nand);
180 }
181 
182 static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
183 {
184 	return (u8 *)p + i * chip->ecc.size;
185 }
186 
187 static inline u8 *oob_ptr(struct nand_chip *chip, int i)
188 {
189 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
190 	u8 *poi;
191 
192 	/* map the sector's FDM data to free oob:
193 	 * the beginning of the oob area stores the FDM data of bad mark sectors
194 	 */
195 
196 	if (i < mtk_nand->bad_mark.sec)
197 		poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
198 	else if (i == mtk_nand->bad_mark.sec)
199 		poi = chip->oob_poi;
200 	else
201 		poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
202 
203 	return poi;
204 }
205 
206 static inline int mtk_data_len(struct nand_chip *chip)
207 {
208 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
209 
210 	return chip->ecc.size + mtk_nand->spare_per_sector;
211 }
212 
213 static inline u8 *mtk_data_ptr(struct nand_chip *chip,  int i)
214 {
215 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
216 
217 	return nfc->buffer + i * mtk_data_len(chip);
218 }
219 
220 static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
221 {
222 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
223 
224 	return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
225 }
226 
227 static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
228 {
229 	writel(val, nfc->regs + reg);
230 }
231 
232 static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
233 {
234 	writew(val, nfc->regs + reg);
235 }
236 
237 static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
238 {
239 	writeb(val, nfc->regs + reg);
240 }
241 
242 static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
243 {
244 	return readl_relaxed(nfc->regs + reg);
245 }
246 
247 static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
248 {
249 	return readw_relaxed(nfc->regs + reg);
250 }
251 
252 static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
253 {
254 	return readb_relaxed(nfc->regs + reg);
255 }
256 
257 static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
258 {
259 	struct device *dev = nfc->dev;
260 	u32 val;
261 	int ret;
262 
263 	/* reset all registers and force the NFI master to terminate */
264 	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
265 
266 	/* wait for the master to finish the last transaction */
267 	ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
268 				 !(val & MASTER_STA_MASK), 50,
269 				 MTK_RESET_TIMEOUT);
270 	if (ret)
271 		dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
272 			 NFI_MASTER_STA, val);
273 
274 	/* ensure any status register affected by the NFI master is reset */
275 	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
276 	nfi_writew(nfc, STAR_DE, NFI_STRDATA);
277 }
278 
279 static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
280 {
281 	struct device *dev = nfc->dev;
282 	u32 val;
283 	int ret;
284 
285 	nfi_writel(nfc, command, NFI_CMD);
286 
287 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
288 					!(val & STA_CMD), 10,  MTK_TIMEOUT);
289 	if (ret) {
290 		dev_warn(dev, "nfi core timed out entering command mode\n");
291 		return -EIO;
292 	}
293 
294 	return 0;
295 }
296 
297 static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
298 {
299 	struct device *dev = nfc->dev;
300 	u32 val;
301 	int ret;
302 
303 	nfi_writel(nfc, addr, NFI_COLADDR);
304 	nfi_writel(nfc, 0, NFI_ROWADDR);
305 	nfi_writew(nfc, 1, NFI_ADDRNOB);
306 
307 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
308 					!(val & STA_ADDR), 10, MTK_TIMEOUT);
309 	if (ret) {
310 		dev_warn(dev, "nfi core timed out entering address mode\n");
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
318 {
319 	struct nand_chip *chip = mtd_to_nand(mtd);
320 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
321 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
322 	u32 fmt, spare, i;
323 
324 	if (!mtd->writesize)
325 		return 0;
326 
327 	spare = mtk_nand->spare_per_sector;
328 
329 	switch (mtd->writesize) {
330 	case 512:
331 		fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
332 		break;
333 	case KB(2):
334 		if (chip->ecc.size == 512)
335 			fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
336 		else
337 			fmt = PAGEFMT_512_2K;
338 		break;
339 	case KB(4):
340 		if (chip->ecc.size == 512)
341 			fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
342 		else
343 			fmt = PAGEFMT_2K_4K;
344 		break;
345 	case KB(8):
346 		if (chip->ecc.size == 512)
347 			fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
348 		else
349 			fmt = PAGEFMT_4K_8K;
350 		break;
351 	case KB(16):
352 		fmt = PAGEFMT_8K_16K;
353 		break;
354 	default:
355 		dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
356 		return -EINVAL;
357 	}
358 
359 	/*
360 	 * the hardware will double the value for this eccsize, so we need to
361 	 * halve it
362 	 */
363 	if (chip->ecc.size == 1024)
364 		spare >>= 1;
365 
366 	for (i = 0; i < nfc->caps->num_spare_size; i++) {
367 		if (nfc->caps->spare_size[i] == spare)
368 			break;
369 	}
370 
371 	if (i == nfc->caps->num_spare_size) {
372 		dev_err(nfc->dev, "invalid spare size %d\n", spare);
373 		return -EINVAL;
374 	}
375 
376 	fmt |= i << nfc->caps->pageformat_spare_shift;
377 
378 	fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
379 	fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
380 	nfi_writel(nfc, fmt, NFI_PAGEFMT);
381 
382 	nfc->ecc_cfg.strength = chip->ecc.strength;
383 	nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
384 
385 	return 0;
386 }
387 
388 static void mtk_nfc_select_chip(struct nand_chip *nand, int chip)
389 {
390 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
391 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
392 
393 	if (chip < 0)
394 		return;
395 
396 	mtk_nfc_hw_runtime_config(nand_to_mtd(nand));
397 
398 	nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
399 }
400 
401 static int mtk_nfc_dev_ready(struct nand_chip *nand)
402 {
403 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
404 
405 	if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
406 		return 0;
407 
408 	return 1;
409 }
410 
411 static void mtk_nfc_cmd_ctrl(struct nand_chip *chip, int dat,
412 			     unsigned int ctrl)
413 {
414 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
415 
416 	if (ctrl & NAND_ALE) {
417 		mtk_nfc_send_address(nfc, dat);
418 	} else if (ctrl & NAND_CLE) {
419 		mtk_nfc_hw_reset(nfc);
420 
421 		nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
422 		mtk_nfc_send_command(nfc, dat);
423 	}
424 }
425 
426 static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
427 {
428 	int rc;
429 	u8 val;
430 
431 	rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
432 				       val & PIO_DI_RDY, 10, MTK_TIMEOUT);
433 	if (rc < 0)
434 		dev_err(nfc->dev, "data not ready\n");
435 }
436 
437 static inline u8 mtk_nfc_read_byte(struct nand_chip *chip)
438 {
439 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
440 	u32 reg;
441 
442 	/* after each byte read, the NFI_STA reg is reset by the hardware */
443 	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
444 	if (reg != NFI_FSM_CUSTDATA) {
445 		reg = nfi_readw(nfc, NFI_CNFG);
446 		reg |= CNFG_BYTE_RW | CNFG_READ_EN;
447 		nfi_writew(nfc, reg, NFI_CNFG);
448 
449 		/*
450 		 * set to max sector to allow the HW to continue reading over
451 		 * unaligned accesses
452 		 */
453 		reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
454 		nfi_writel(nfc, reg, NFI_CON);
455 
456 		/* trigger to fetch data */
457 		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
458 	}
459 
460 	mtk_nfc_wait_ioready(nfc);
461 
462 	return nfi_readb(nfc, NFI_DATAR);
463 }
464 
465 static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
466 {
467 	int i;
468 
469 	for (i = 0; i < len; i++)
470 		buf[i] = mtk_nfc_read_byte(chip);
471 }
472 
473 static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte)
474 {
475 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
476 	u32 reg;
477 
478 	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
479 
480 	if (reg != NFI_FSM_CUSTDATA) {
481 		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
482 		nfi_writew(nfc, reg, NFI_CNFG);
483 
484 		reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
485 		nfi_writel(nfc, reg, NFI_CON);
486 
487 		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
488 	}
489 
490 	mtk_nfc_wait_ioready(nfc);
491 	nfi_writeb(nfc, byte, NFI_DATAW);
492 }
493 
494 static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
495 {
496 	int i;
497 
498 	for (i = 0; i < len; i++)
499 		mtk_nfc_write_byte(chip, buf[i]);
500 }
501 
502 static int mtk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
503 					const struct nand_data_interface *conf)
504 {
505 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
506 	const struct nand_sdr_timings *timings;
507 	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst = 0, trlt = 0;
508 	u32 temp, tsel = 0;
509 
510 	timings = nand_get_sdr_timings(conf);
511 	if (IS_ERR(timings))
512 		return -ENOTSUPP;
513 
514 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
515 		return 0;
516 
517 	rate = clk_get_rate(nfc->clk.nfi_clk);
518 	/* There is a frequency divider in some IPs */
519 	rate /= nfc->caps->nfi_clk_div;
520 
521 	/* turn clock rate into KHZ */
522 	rate /= 1000;
523 
524 	tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
525 	tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
526 	tpoecs &= 0xf;
527 
528 	tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
529 	tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
530 	tprecs &= 0x3f;
531 
532 	/* sdr interface has no tCR which means CE# low to RE# low */
533 	tc2r = 0;
534 
535 	tw2r = timings->tWHR_min / 1000;
536 	tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
537 	tw2r = DIV_ROUND_UP(tw2r - 1, 2);
538 	tw2r &= 0xf;
539 
540 	twh = max(timings->tREH_min, timings->tWH_min) / 1000;
541 	twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
542 	twh &= 0xf;
543 
544 	/* Calculate real WE#/RE# hold time in nanosecond */
545 	temp = (twh + 1) * 1000000 / rate;
546 	/* nanosecond to picosecond */
547 	temp *= 1000;
548 
549 	/*
550 	 * WE# low level time should be expaned to meet WE# pulse time
551 	 * and WE# cycle time at the same time.
552 	 */
553 	if (temp < timings->tWC_min)
554 		twst = timings->tWC_min - temp;
555 	twst = max(timings->tWP_min, twst) / 1000;
556 	twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
557 	twst &= 0xf;
558 
559 	/*
560 	 * RE# low level time should be expaned to meet RE# pulse time
561 	 * and RE# cycle time at the same time.
562 	 */
563 	if (temp < timings->tRC_min)
564 		trlt = timings->tRC_min - temp;
565 	trlt = max(trlt, timings->tRP_min) / 1000;
566 	trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
567 	trlt &= 0xf;
568 
569 	/* Calculate RE# pulse time in nanosecond. */
570 	temp = (trlt + 1) * 1000000 / rate;
571 	/* nanosecond to picosecond */
572 	temp *= 1000;
573 	/*
574 	 * If RE# access time is bigger than RE# pulse time,
575 	 * delay sampling data timing.
576 	 */
577 	if (temp < timings->tREA_max) {
578 		tsel = timings->tREA_max / 1000;
579 		tsel = DIV_ROUND_UP(tsel * rate, 1000000);
580 		tsel -= (trlt + 1);
581 		if (tsel > MAX_STROBE_DLY) {
582 			trlt += tsel - MAX_STROBE_DLY;
583 			tsel = MAX_STROBE_DLY;
584 		}
585 	}
586 	temp = nfi_readl(nfc, NFI_DEBUG_CON1);
587 	temp &= ~STROBE_MASK;
588 	temp |= tsel << STROBE_SHIFT;
589 	nfi_writel(nfc, temp, NFI_DEBUG_CON1);
590 
591 	/*
592 	 * ACCON: access timing control register
593 	 * -------------------------------------
594 	 * 31:28: tpoecs, minimum required time for CS post pulling down after
595 	 *        accessing the device
596 	 * 27:22: tprecs, minimum required time for CS pre pulling down before
597 	 *        accessing the device
598 	 * 21:16: tc2r, minimum required time from NCEB low to NREB low
599 	 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
600 	 * 11:08: twh, write enable hold time
601 	 * 07:04: twst, write wait states
602 	 * 03:00: trlt, read wait states
603 	 */
604 	trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
605 	nfi_writel(nfc, trlt, NFI_ACCCON);
606 
607 	return 0;
608 }
609 
610 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
611 {
612 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
613 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
614 	int size = chip->ecc.size + mtk_nand->fdm.reg_size;
615 
616 	nfc->ecc_cfg.mode = ECC_DMA_MODE;
617 	nfc->ecc_cfg.op = ECC_ENCODE;
618 
619 	return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
620 }
621 
622 static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
623 {
624 	/* nop */
625 }
626 
627 static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
628 {
629 	struct nand_chip *chip = mtd_to_nand(mtd);
630 	struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
631 	u32 bad_pos = nand->bad_mark.pos;
632 
633 	if (raw)
634 		bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
635 	else
636 		bad_pos += nand->bad_mark.sec * chip->ecc.size;
637 
638 	swap(chip->oob_poi[0], buf[bad_pos]);
639 }
640 
641 static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
642 				  u32 len, const u8 *buf)
643 {
644 	struct nand_chip *chip = mtd_to_nand(mtd);
645 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
646 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
647 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
648 	u32 start, end;
649 	int i, ret;
650 
651 	start = offset / chip->ecc.size;
652 	end = DIV_ROUND_UP(offset + len, chip->ecc.size);
653 
654 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
655 	for (i = 0; i < chip->ecc.steps; i++) {
656 		memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
657 		       chip->ecc.size);
658 
659 		if (start > i || i >= end)
660 			continue;
661 
662 		if (i == mtk_nand->bad_mark.sec)
663 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
664 
665 		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
666 
667 		/* program the CRC back to the OOB */
668 		ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
669 		if (ret < 0)
670 			return ret;
671 	}
672 
673 	return 0;
674 }
675 
676 static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
677 {
678 	struct nand_chip *chip = mtd_to_nand(mtd);
679 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
680 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
681 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
682 	u32 i;
683 
684 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
685 	for (i = 0; i < chip->ecc.steps; i++) {
686 		if (buf)
687 			memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
688 			       chip->ecc.size);
689 
690 		if (i == mtk_nand->bad_mark.sec)
691 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
692 
693 		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
694 	}
695 }
696 
697 static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
698 				    u32 sectors)
699 {
700 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
701 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
702 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
703 	u32 vall, valm;
704 	u8 *oobptr;
705 	int i, j;
706 
707 	for (i = 0; i < sectors; i++) {
708 		oobptr = oob_ptr(chip, start + i);
709 		vall = nfi_readl(nfc, NFI_FDML(i));
710 		valm = nfi_readl(nfc, NFI_FDMM(i));
711 
712 		for (j = 0; j < fdm->reg_size; j++)
713 			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
714 	}
715 }
716 
717 static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
718 {
719 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
720 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
721 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
722 	u32 vall, valm;
723 	u8 *oobptr;
724 	int i, j;
725 
726 	for (i = 0; i < chip->ecc.steps; i++) {
727 		oobptr = oob_ptr(chip, i);
728 		vall = 0;
729 		valm = 0;
730 		for (j = 0; j < 8; j++) {
731 			if (j < 4)
732 				vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
733 						<< (j * 8);
734 			else
735 				valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
736 						<< ((j - 4) * 8);
737 		}
738 		nfi_writel(nfc, vall, NFI_FDML(i));
739 		nfi_writel(nfc, valm, NFI_FDMM(i));
740 	}
741 }
742 
743 static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
744 				 const u8 *buf, int page, int len)
745 {
746 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
747 	struct device *dev = nfc->dev;
748 	dma_addr_t addr;
749 	u32 reg;
750 	int ret;
751 
752 	addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
753 	ret = dma_mapping_error(nfc->dev, addr);
754 	if (ret) {
755 		dev_err(nfc->dev, "dma mapping error\n");
756 		return -EINVAL;
757 	}
758 
759 	reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
760 	nfi_writew(nfc, reg, NFI_CNFG);
761 
762 	nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
763 	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
764 	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
765 
766 	init_completion(&nfc->done);
767 
768 	reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
769 	nfi_writel(nfc, reg, NFI_CON);
770 	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
771 
772 	ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
773 	if (!ret) {
774 		dev_err(dev, "program ahb done timeout\n");
775 		nfi_writew(nfc, 0, NFI_INTR_EN);
776 		ret = -ETIMEDOUT;
777 		goto timeout;
778 	}
779 
780 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
781 					ADDRCNTR_SEC(reg) >= chip->ecc.steps,
782 					10, MTK_TIMEOUT);
783 	if (ret)
784 		dev_err(dev, "hwecc write timeout\n");
785 
786 timeout:
787 
788 	dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
789 	nfi_writel(nfc, 0, NFI_CON);
790 
791 	return ret;
792 }
793 
794 static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
795 			      const u8 *buf, int page, int raw)
796 {
797 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
798 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
799 	size_t len;
800 	const u8 *bufpoi;
801 	u32 reg;
802 	int ret;
803 
804 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
805 
806 	if (!raw) {
807 		/* OOB => FDM: from register,  ECC: from HW */
808 		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
809 		nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
810 
811 		nfc->ecc_cfg.op = ECC_ENCODE;
812 		nfc->ecc_cfg.mode = ECC_NFI_MODE;
813 		ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
814 		if (ret) {
815 			/* clear NFI config */
816 			reg = nfi_readw(nfc, NFI_CNFG);
817 			reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
818 			nfi_writew(nfc, reg, NFI_CNFG);
819 
820 			return ret;
821 		}
822 
823 		memcpy(nfc->buffer, buf, mtd->writesize);
824 		mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
825 		bufpoi = nfc->buffer;
826 
827 		/* write OOB into the FDM registers (OOB area in MTK NAND) */
828 		mtk_nfc_write_fdm(chip);
829 	} else {
830 		bufpoi = buf;
831 	}
832 
833 	len = mtd->writesize + (raw ? mtd->oobsize : 0);
834 	ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
835 
836 	if (!raw)
837 		mtk_ecc_disable(nfc->ecc);
838 
839 	if (ret)
840 		return ret;
841 
842 	return nand_prog_page_end_op(chip);
843 }
844 
845 static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
846 				    int oob_on, int page)
847 {
848 	return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
849 }
850 
851 static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
852 				  int oob_on, int pg)
853 {
854 	struct mtd_info *mtd = nand_to_mtd(chip);
855 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
856 
857 	mtk_nfc_format_page(mtd, buf);
858 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
859 }
860 
861 static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
862 				       u32 data_len, const u8 *buf,
863 				       int oob_on, int page)
864 {
865 	struct mtd_info *mtd = nand_to_mtd(chip);
866 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
867 	int ret;
868 
869 	ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
870 	if (ret < 0)
871 		return ret;
872 
873 	/* use the data in the private buffer (now with FDM and CRC) */
874 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
875 }
876 
877 static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page)
878 {
879 	return mtk_nfc_write_page_raw(chip, NULL, 1, page);
880 }
881 
882 static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
883 {
884 	struct nand_chip *chip = mtd_to_nand(mtd);
885 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
886 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
887 	struct mtk_ecc_stats stats;
888 	int rc, i;
889 
890 	rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
891 	if (rc) {
892 		memset(buf, 0xff, sectors * chip->ecc.size);
893 		for (i = 0; i < sectors; i++)
894 			memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
895 		return 0;
896 	}
897 
898 	mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
899 	mtd->ecc_stats.corrected += stats.corrected;
900 	mtd->ecc_stats.failed += stats.failed;
901 
902 	return stats.bitflips;
903 }
904 
905 static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
906 				u32 data_offs, u32 readlen,
907 				u8 *bufpoi, int page, int raw)
908 {
909 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
910 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
911 	u32 spare = mtk_nand->spare_per_sector;
912 	u32 column, sectors, start, end, reg;
913 	dma_addr_t addr;
914 	int bitflips;
915 	size_t len;
916 	u8 *buf;
917 	int rc;
918 
919 	start = data_offs / chip->ecc.size;
920 	end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
921 
922 	sectors = end - start;
923 	column = start * (chip->ecc.size + spare);
924 
925 	len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
926 	buf = bufpoi + start * chip->ecc.size;
927 
928 	nand_read_page_op(chip, page, column, NULL, 0);
929 
930 	addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
931 	rc = dma_mapping_error(nfc->dev, addr);
932 	if (rc) {
933 		dev_err(nfc->dev, "dma mapping error\n");
934 
935 		return -EINVAL;
936 	}
937 
938 	reg = nfi_readw(nfc, NFI_CNFG);
939 	reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
940 	if (!raw) {
941 		reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
942 		nfi_writew(nfc, reg, NFI_CNFG);
943 
944 		nfc->ecc_cfg.mode = ECC_NFI_MODE;
945 		nfc->ecc_cfg.sectors = sectors;
946 		nfc->ecc_cfg.op = ECC_DECODE;
947 		rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
948 		if (rc) {
949 			dev_err(nfc->dev, "ecc enable\n");
950 			/* clear NFI_CNFG */
951 			reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
952 				CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
953 			nfi_writew(nfc, reg, NFI_CNFG);
954 			dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
955 
956 			return rc;
957 		}
958 	} else {
959 		nfi_writew(nfc, reg, NFI_CNFG);
960 	}
961 
962 	nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
963 	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
964 	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
965 
966 	init_completion(&nfc->done);
967 	reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
968 	nfi_writel(nfc, reg, NFI_CON);
969 	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
970 
971 	rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
972 	if (!rc)
973 		dev_warn(nfc->dev, "read ahb/dma done timeout\n");
974 
975 	rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
976 				       ADDRCNTR_SEC(reg) >= sectors, 10,
977 				       MTK_TIMEOUT);
978 	if (rc < 0) {
979 		dev_err(nfc->dev, "subpage done timeout\n");
980 		bitflips = -EIO;
981 	} else {
982 		bitflips = 0;
983 		if (!raw) {
984 			rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
985 			bitflips = rc < 0 ? -ETIMEDOUT :
986 				mtk_nfc_update_ecc_stats(mtd, buf, sectors);
987 			mtk_nfc_read_fdm(chip, start, sectors);
988 		}
989 	}
990 
991 	dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
992 
993 	if (raw)
994 		goto done;
995 
996 	mtk_ecc_disable(nfc->ecc);
997 
998 	if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
999 		mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
1000 done:
1001 	nfi_writel(nfc, 0, NFI_CON);
1002 
1003 	return bitflips;
1004 }
1005 
1006 static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off,
1007 				      u32 len, u8 *p, int pg)
1008 {
1009 	return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg,
1010 				    0);
1011 }
1012 
1013 static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
1014 				   int pg)
1015 {
1016 	struct mtd_info *mtd = nand_to_mtd(chip);
1017 
1018 	return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
1019 }
1020 
1021 static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
1022 				 int page)
1023 {
1024 	struct mtd_info *mtd = nand_to_mtd(chip);
1025 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1026 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
1027 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1028 	int i, ret;
1029 
1030 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
1031 	ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
1032 				   page, 1);
1033 	if (ret < 0)
1034 		return ret;
1035 
1036 	for (i = 0; i < chip->ecc.steps; i++) {
1037 		memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
1038 
1039 		if (i == mtk_nand->bad_mark.sec)
1040 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
1041 
1042 		if (buf)
1043 			memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
1044 			       chip->ecc.size);
1045 	}
1046 
1047 	return ret;
1048 }
1049 
1050 static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page)
1051 {
1052 	return mtk_nfc_read_page_raw(chip, NULL, 1, page);
1053 }
1054 
1055 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
1056 {
1057 	/*
1058 	 * CNRNB: nand ready/busy register
1059 	 * -------------------------------
1060 	 * 7:4: timeout register for polling the NAND busy/ready signal
1061 	 * 0  : poll the status of the busy/ready signal after [7:4]*16 cycles.
1062 	 */
1063 	nfi_writew(nfc, 0xf1, NFI_CNRNB);
1064 	nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1065 
1066 	mtk_nfc_hw_reset(nfc);
1067 
1068 	nfi_readl(nfc, NFI_INTR_STA);
1069 	nfi_writel(nfc, 0, NFI_INTR_EN);
1070 }
1071 
1072 static irqreturn_t mtk_nfc_irq(int irq, void *id)
1073 {
1074 	struct mtk_nfc *nfc = id;
1075 	u16 sta, ien;
1076 
1077 	sta = nfi_readw(nfc, NFI_INTR_STA);
1078 	ien = nfi_readw(nfc, NFI_INTR_EN);
1079 
1080 	if (!(sta & ien))
1081 		return IRQ_NONE;
1082 
1083 	nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1084 	complete(&nfc->done);
1085 
1086 	return IRQ_HANDLED;
1087 }
1088 
1089 static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
1090 {
1091 	int ret;
1092 
1093 	ret = clk_prepare_enable(clk->nfi_clk);
1094 	if (ret) {
1095 		dev_err(dev, "failed to enable nfi clk\n");
1096 		return ret;
1097 	}
1098 
1099 	ret = clk_prepare_enable(clk->pad_clk);
1100 	if (ret) {
1101 		dev_err(dev, "failed to enable pad clk\n");
1102 		clk_disable_unprepare(clk->nfi_clk);
1103 		return ret;
1104 	}
1105 
1106 	return 0;
1107 }
1108 
1109 static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
1110 {
1111 	clk_disable_unprepare(clk->nfi_clk);
1112 	clk_disable_unprepare(clk->pad_clk);
1113 }
1114 
1115 static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1116 				  struct mtd_oob_region *oob_region)
1117 {
1118 	struct nand_chip *chip = mtd_to_nand(mtd);
1119 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1120 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1121 	u32 eccsteps;
1122 
1123 	eccsteps = mtd->writesize / chip->ecc.size;
1124 
1125 	if (section >= eccsteps)
1126 		return -ERANGE;
1127 
1128 	oob_region->length = fdm->reg_size - fdm->ecc_size;
1129 	oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1130 
1131 	return 0;
1132 }
1133 
1134 static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1135 				 struct mtd_oob_region *oob_region)
1136 {
1137 	struct nand_chip *chip = mtd_to_nand(mtd);
1138 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1139 	u32 eccsteps;
1140 
1141 	if (section)
1142 		return -ERANGE;
1143 
1144 	eccsteps = mtd->writesize / chip->ecc.size;
1145 	oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1146 	oob_region->length = mtd->oobsize - oob_region->offset;
1147 
1148 	return 0;
1149 }
1150 
1151 static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1152 	.free = mtk_nfc_ooblayout_free,
1153 	.ecc = mtk_nfc_ooblayout_ecc,
1154 };
1155 
1156 static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1157 {
1158 	struct nand_chip *nand = mtd_to_nand(mtd);
1159 	struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1160 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1161 	u32 ecc_bytes;
1162 
1163 	ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
1164 				 mtk_ecc_get_parity_bits(nfc->ecc), 8);
1165 
1166 	fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1167 	if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1168 		fdm->reg_size = NFI_FDM_MAX_SIZE;
1169 
1170 	/* bad block mark storage */
1171 	fdm->ecc_size = 1;
1172 }
1173 
1174 static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1175 				     struct mtd_info *mtd)
1176 {
1177 	struct nand_chip *nand = mtd_to_nand(mtd);
1178 
1179 	if (mtd->writesize == 512) {
1180 		bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1181 	} else {
1182 		bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1183 		bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1184 		bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1185 	}
1186 }
1187 
1188 static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1189 {
1190 	struct nand_chip *nand = mtd_to_nand(mtd);
1191 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1192 	const u8 *spare = nfc->caps->spare_size;
1193 	u32 eccsteps, i, closest_spare = 0;
1194 
1195 	eccsteps = mtd->writesize / nand->ecc.size;
1196 	*sps = mtd->oobsize / eccsteps;
1197 
1198 	if (nand->ecc.size == 1024)
1199 		*sps >>= 1;
1200 
1201 	if (*sps < MTK_NFC_MIN_SPARE)
1202 		return -EINVAL;
1203 
1204 	for (i = 0; i < nfc->caps->num_spare_size; i++) {
1205 		if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
1206 			closest_spare = i;
1207 			if (*sps == spare[i])
1208 				break;
1209 		}
1210 	}
1211 
1212 	*sps = spare[closest_spare];
1213 
1214 	if (nand->ecc.size == 1024)
1215 		*sps <<= 1;
1216 
1217 	return 0;
1218 }
1219 
1220 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1221 {
1222 	struct nand_chip *nand = mtd_to_nand(mtd);
1223 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1224 	u32 spare;
1225 	int free, ret;
1226 
1227 	/* support only ecc hw mode */
1228 	if (nand->ecc.mode != NAND_ECC_HW) {
1229 		dev_err(dev, "ecc.mode not supported\n");
1230 		return -EINVAL;
1231 	}
1232 
1233 	/* if optional dt settings not present */
1234 	if (!nand->ecc.size || !nand->ecc.strength) {
1235 		/* use datasheet requirements */
1236 		nand->ecc.strength = nand->base.eccreq.strength;
1237 		nand->ecc.size = nand->base.eccreq.step_size;
1238 
1239 		/*
1240 		 * align eccstrength and eccsize
1241 		 * this controller only supports 512 and 1024 sizes
1242 		 */
1243 		if (nand->ecc.size < 1024) {
1244 			if (mtd->writesize > 512 &&
1245 			    nfc->caps->max_sector_size > 512) {
1246 				nand->ecc.size = 1024;
1247 				nand->ecc.strength <<= 1;
1248 			} else {
1249 				nand->ecc.size = 512;
1250 			}
1251 		} else {
1252 			nand->ecc.size = 1024;
1253 		}
1254 
1255 		ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
1256 		if (ret)
1257 			return ret;
1258 
1259 		/* calculate oob bytes except ecc parity data */
1260 		free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
1261 			+ 7) >> 3;
1262 		free = spare - free;
1263 
1264 		/*
1265 		 * enhance ecc strength if oob left is bigger than max FDM size
1266 		 * or reduce ecc strength if oob size is not enough for ecc
1267 		 * parity data.
1268 		 */
1269 		if (free > NFI_FDM_MAX_SIZE) {
1270 			spare -= NFI_FDM_MAX_SIZE;
1271 			nand->ecc.strength = (spare << 3) /
1272 					     mtk_ecc_get_parity_bits(nfc->ecc);
1273 		} else if (free < 0) {
1274 			spare -= NFI_FDM_MIN_SIZE;
1275 			nand->ecc.strength = (spare << 3) /
1276 					     mtk_ecc_get_parity_bits(nfc->ecc);
1277 		}
1278 	}
1279 
1280 	mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
1281 
1282 	dev_info(dev, "eccsize %d eccstrength %d\n",
1283 		 nand->ecc.size, nand->ecc.strength);
1284 
1285 	return 0;
1286 }
1287 
1288 static int mtk_nfc_attach_chip(struct nand_chip *chip)
1289 {
1290 	struct mtd_info *mtd = nand_to_mtd(chip);
1291 	struct device *dev = mtd->dev.parent;
1292 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
1293 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1294 	int len;
1295 	int ret;
1296 
1297 	if (chip->options & NAND_BUSWIDTH_16) {
1298 		dev_err(dev, "16bits buswidth not supported");
1299 		return -EINVAL;
1300 	}
1301 
1302 	/* store bbt magic in page, cause OOB is not protected */
1303 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1304 		chip->bbt_options |= NAND_BBT_NO_OOB;
1305 
1306 	ret = mtk_nfc_ecc_init(dev, mtd);
1307 	if (ret)
1308 		return ret;
1309 
1310 	ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
1311 	if (ret)
1312 		return ret;
1313 
1314 	mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
1315 	mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
1316 
1317 	len = mtd->writesize + mtd->oobsize;
1318 	nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1319 	if (!nfc->buffer)
1320 		return  -ENOMEM;
1321 
1322 	return 0;
1323 }
1324 
1325 static const struct nand_controller_ops mtk_nfc_controller_ops = {
1326 	.attach_chip = mtk_nfc_attach_chip,
1327 	.setup_data_interface = mtk_nfc_setup_data_interface,
1328 };
1329 
1330 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1331 				  struct device_node *np)
1332 {
1333 	struct mtk_nfc_nand_chip *chip;
1334 	struct nand_chip *nand;
1335 	struct mtd_info *mtd;
1336 	int nsels;
1337 	u32 tmp;
1338 	int ret;
1339 	int i;
1340 
1341 	if (!of_get_property(np, "reg", &nsels))
1342 		return -ENODEV;
1343 
1344 	nsels /= sizeof(u32);
1345 	if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1346 		dev_err(dev, "invalid reg property size %d\n", nsels);
1347 		return -EINVAL;
1348 	}
1349 
1350 	chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
1351 			    GFP_KERNEL);
1352 	if (!chip)
1353 		return -ENOMEM;
1354 
1355 	chip->nsels = nsels;
1356 	for (i = 0; i < nsels; i++) {
1357 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1358 		if (ret) {
1359 			dev_err(dev, "reg property failure : %d\n", ret);
1360 			return ret;
1361 		}
1362 		chip->sels[i] = tmp;
1363 	}
1364 
1365 	nand = &chip->nand;
1366 	nand->controller = &nfc->controller;
1367 
1368 	nand_set_flash_node(nand, np);
1369 	nand_set_controller_data(nand, nfc);
1370 
1371 	nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
1372 	nand->legacy.dev_ready = mtk_nfc_dev_ready;
1373 	nand->legacy.select_chip = mtk_nfc_select_chip;
1374 	nand->legacy.write_byte = mtk_nfc_write_byte;
1375 	nand->legacy.write_buf = mtk_nfc_write_buf;
1376 	nand->legacy.read_byte = mtk_nfc_read_byte;
1377 	nand->legacy.read_buf = mtk_nfc_read_buf;
1378 	nand->legacy.cmd_ctrl = mtk_nfc_cmd_ctrl;
1379 
1380 	/* set default mode in case dt entry is missing */
1381 	nand->ecc.mode = NAND_ECC_HW;
1382 
1383 	nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1384 	nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1385 	nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1386 	nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1387 	nand->ecc.write_oob = mtk_nfc_write_oob_std;
1388 
1389 	nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1390 	nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1391 	nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1392 	nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1393 	nand->ecc.read_oob = mtk_nfc_read_oob_std;
1394 
1395 	mtd = nand_to_mtd(nand);
1396 	mtd->owner = THIS_MODULE;
1397 	mtd->dev.parent = dev;
1398 	mtd->name = MTK_NAME;
1399 	mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1400 
1401 	mtk_nfc_hw_init(nfc);
1402 
1403 	ret = nand_scan(nand, nsels);
1404 	if (ret)
1405 		return ret;
1406 
1407 	ret = mtd_device_register(mtd, NULL, 0);
1408 	if (ret) {
1409 		dev_err(dev, "mtd parse partition error\n");
1410 		nand_release(nand);
1411 		return ret;
1412 	}
1413 
1414 	list_add_tail(&chip->node, &nfc->chips);
1415 
1416 	return 0;
1417 }
1418 
1419 static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1420 {
1421 	struct device_node *np = dev->of_node;
1422 	struct device_node *nand_np;
1423 	int ret;
1424 
1425 	for_each_child_of_node(np, nand_np) {
1426 		ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1427 		if (ret) {
1428 			of_node_put(nand_np);
1429 			return ret;
1430 		}
1431 	}
1432 
1433 	return 0;
1434 }
1435 
1436 static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
1437 	.spare_size = spare_size_mt2701,
1438 	.num_spare_size = 16,
1439 	.pageformat_spare_shift = 4,
1440 	.nfi_clk_div = 1,
1441 	.max_sector = 16,
1442 	.max_sector_size = 1024,
1443 };
1444 
1445 static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
1446 	.spare_size = spare_size_mt2712,
1447 	.num_spare_size = 19,
1448 	.pageformat_spare_shift = 16,
1449 	.nfi_clk_div = 2,
1450 	.max_sector = 16,
1451 	.max_sector_size = 1024,
1452 };
1453 
1454 static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
1455 	.spare_size = spare_size_mt7622,
1456 	.num_spare_size = 4,
1457 	.pageformat_spare_shift = 4,
1458 	.nfi_clk_div = 1,
1459 	.max_sector = 8,
1460 	.max_sector_size = 512,
1461 };
1462 
1463 static const struct of_device_id mtk_nfc_id_table[] = {
1464 	{
1465 		.compatible = "mediatek,mt2701-nfc",
1466 		.data = &mtk_nfc_caps_mt2701,
1467 	}, {
1468 		.compatible = "mediatek,mt2712-nfc",
1469 		.data = &mtk_nfc_caps_mt2712,
1470 	}, {
1471 		.compatible = "mediatek,mt7622-nfc",
1472 		.data = &mtk_nfc_caps_mt7622,
1473 	},
1474 	{}
1475 };
1476 MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1477 
1478 static int mtk_nfc_probe(struct platform_device *pdev)
1479 {
1480 	struct device *dev = &pdev->dev;
1481 	struct device_node *np = dev->of_node;
1482 	struct mtk_nfc *nfc;
1483 	struct resource *res;
1484 	int ret, irq;
1485 
1486 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1487 	if (!nfc)
1488 		return -ENOMEM;
1489 
1490 	nand_controller_init(&nfc->controller);
1491 	INIT_LIST_HEAD(&nfc->chips);
1492 	nfc->controller.ops = &mtk_nfc_controller_ops;
1493 
1494 	/* probe defer if not ready */
1495 	nfc->ecc = of_mtk_ecc_get(np);
1496 	if (IS_ERR(nfc->ecc))
1497 		return PTR_ERR(nfc->ecc);
1498 	else if (!nfc->ecc)
1499 		return -ENODEV;
1500 
1501 	nfc->caps = of_device_get_match_data(dev);
1502 	nfc->dev = dev;
1503 
1504 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1505 	nfc->regs = devm_ioremap_resource(dev, res);
1506 	if (IS_ERR(nfc->regs)) {
1507 		ret = PTR_ERR(nfc->regs);
1508 		goto release_ecc;
1509 	}
1510 
1511 	nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
1512 	if (IS_ERR(nfc->clk.nfi_clk)) {
1513 		dev_err(dev, "no clk\n");
1514 		ret = PTR_ERR(nfc->clk.nfi_clk);
1515 		goto release_ecc;
1516 	}
1517 
1518 	nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
1519 	if (IS_ERR(nfc->clk.pad_clk)) {
1520 		dev_err(dev, "no pad clk\n");
1521 		ret = PTR_ERR(nfc->clk.pad_clk);
1522 		goto release_ecc;
1523 	}
1524 
1525 	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1526 	if (ret)
1527 		goto release_ecc;
1528 
1529 	irq = platform_get_irq(pdev, 0);
1530 	if (irq < 0) {
1531 		dev_err(dev, "no nfi irq resource\n");
1532 		ret = -EINVAL;
1533 		goto clk_disable;
1534 	}
1535 
1536 	ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1537 	if (ret) {
1538 		dev_err(dev, "failed to request nfi irq\n");
1539 		goto clk_disable;
1540 	}
1541 
1542 	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1543 	if (ret) {
1544 		dev_err(dev, "failed to set dma mask\n");
1545 		goto clk_disable;
1546 	}
1547 
1548 	platform_set_drvdata(pdev, nfc);
1549 
1550 	ret = mtk_nfc_nand_chips_init(dev, nfc);
1551 	if (ret) {
1552 		dev_err(dev, "failed to init nand chips\n");
1553 		goto clk_disable;
1554 	}
1555 
1556 	return 0;
1557 
1558 clk_disable:
1559 	mtk_nfc_disable_clk(&nfc->clk);
1560 
1561 release_ecc:
1562 	mtk_ecc_release(nfc->ecc);
1563 
1564 	return ret;
1565 }
1566 
1567 static int mtk_nfc_remove(struct platform_device *pdev)
1568 {
1569 	struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1570 	struct mtk_nfc_nand_chip *chip;
1571 
1572 	while (!list_empty(&nfc->chips)) {
1573 		chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
1574 					node);
1575 		nand_release(&chip->nand);
1576 		list_del(&chip->node);
1577 	}
1578 
1579 	mtk_ecc_release(nfc->ecc);
1580 	mtk_nfc_disable_clk(&nfc->clk);
1581 
1582 	return 0;
1583 }
1584 
1585 #ifdef CONFIG_PM_SLEEP
1586 static int mtk_nfc_suspend(struct device *dev)
1587 {
1588 	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1589 
1590 	mtk_nfc_disable_clk(&nfc->clk);
1591 
1592 	return 0;
1593 }
1594 
1595 static int mtk_nfc_resume(struct device *dev)
1596 {
1597 	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1598 	struct mtk_nfc_nand_chip *chip;
1599 	struct nand_chip *nand;
1600 	int ret;
1601 	u32 i;
1602 
1603 	udelay(200);
1604 
1605 	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1606 	if (ret)
1607 		return ret;
1608 
1609 	/* reset NAND chip if VCC was powered off */
1610 	list_for_each_entry(chip, &nfc->chips, node) {
1611 		nand = &chip->nand;
1612 		for (i = 0; i < chip->nsels; i++)
1613 			nand_reset(nand, i);
1614 	}
1615 
1616 	return 0;
1617 }
1618 
1619 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1620 #endif
1621 
1622 static struct platform_driver mtk_nfc_driver = {
1623 	.probe  = mtk_nfc_probe,
1624 	.remove = mtk_nfc_remove,
1625 	.driver = {
1626 		.name  = MTK_NAME,
1627 		.of_match_table = mtk_nfc_id_table,
1628 #ifdef CONFIG_PM_SLEEP
1629 		.pm = &mtk_nfc_pm_ops,
1630 #endif
1631 	},
1632 };
1633 
1634 module_platform_driver(mtk_nfc_driver);
1635 
1636 MODULE_LICENSE("GPL");
1637 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
1638 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
1639