1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * MTK NAND Flash controller driver. 4 * Copyright (C) 2016 MediaTek Inc. 5 * Authors: Xiaolei Li <xiaolei.li@mediatek.com> 6 * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org> 7 */ 8 9 #include <linux/platform_device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/interrupt.h> 12 #include <linux/delay.h> 13 #include <linux/clk.h> 14 #include <linux/mtd/rawnand.h> 15 #include <linux/mtd/mtd.h> 16 #include <linux/module.h> 17 #include <linux/iopoll.h> 18 #include <linux/of.h> 19 #include <linux/of_device.h> 20 #include "mtk_ecc.h" 21 22 /* NAND controller register definition */ 23 #define NFI_CNFG (0x00) 24 #define CNFG_AHB BIT(0) 25 #define CNFG_READ_EN BIT(1) 26 #define CNFG_DMA_BURST_EN BIT(2) 27 #define CNFG_BYTE_RW BIT(6) 28 #define CNFG_HW_ECC_EN BIT(8) 29 #define CNFG_AUTO_FMT_EN BIT(9) 30 #define CNFG_OP_CUST (6 << 12) 31 #define NFI_PAGEFMT (0x04) 32 #define PAGEFMT_FDM_ECC_SHIFT (12) 33 #define PAGEFMT_FDM_SHIFT (8) 34 #define PAGEFMT_SEC_SEL_512 BIT(2) 35 #define PAGEFMT_512_2K (0) 36 #define PAGEFMT_2K_4K (1) 37 #define PAGEFMT_4K_8K (2) 38 #define PAGEFMT_8K_16K (3) 39 /* NFI control */ 40 #define NFI_CON (0x08) 41 #define CON_FIFO_FLUSH BIT(0) 42 #define CON_NFI_RST BIT(1) 43 #define CON_BRD BIT(8) /* burst read */ 44 #define CON_BWR BIT(9) /* burst write */ 45 #define CON_SEC_SHIFT (12) 46 /* Timming control register */ 47 #define NFI_ACCCON (0x0C) 48 #define NFI_INTR_EN (0x10) 49 #define INTR_AHB_DONE_EN BIT(6) 50 #define NFI_INTR_STA (0x14) 51 #define NFI_CMD (0x20) 52 #define NFI_ADDRNOB (0x30) 53 #define NFI_COLADDR (0x34) 54 #define NFI_ROWADDR (0x38) 55 #define NFI_STRDATA (0x40) 56 #define STAR_EN (1) 57 #define STAR_DE (0) 58 #define NFI_CNRNB (0x44) 59 #define NFI_DATAW (0x50) 60 #define NFI_DATAR (0x54) 61 #define NFI_PIO_DIRDY (0x58) 62 #define PIO_DI_RDY (0x01) 63 #define NFI_STA (0x60) 64 #define STA_CMD BIT(0) 65 #define STA_ADDR BIT(1) 66 #define STA_BUSY BIT(8) 67 #define STA_EMP_PAGE BIT(12) 68 #define NFI_FSM_CUSTDATA (0xe << 16) 69 #define NFI_FSM_MASK (0xf << 16) 70 #define NFI_ADDRCNTR (0x70) 71 #define CNTR_MASK GENMASK(16, 12) 72 #define ADDRCNTR_SEC_SHIFT (12) 73 #define ADDRCNTR_SEC(val) \ 74 (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT) 75 #define NFI_STRADDR (0x80) 76 #define NFI_BYTELEN (0x84) 77 #define NFI_CSEL (0x90) 78 #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2) 79 #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2) 80 #define NFI_FDM_MAX_SIZE (8) 81 #define NFI_FDM_MIN_SIZE (1) 82 #define NFI_DEBUG_CON1 (0x220) 83 #define STROBE_MASK GENMASK(4, 3) 84 #define STROBE_SHIFT (3) 85 #define MAX_STROBE_DLY (3) 86 #define NFI_MASTER_STA (0x224) 87 #define MASTER_STA_MASK (0x0FFF) 88 #define NFI_EMPTY_THRESH (0x23C) 89 90 #define MTK_NAME "mtk-nand" 91 #define KB(x) ((x) * 1024UL) 92 #define MB(x) (KB(x) * 1024UL) 93 94 #define MTK_TIMEOUT (500000) 95 #define MTK_RESET_TIMEOUT (1000000) 96 #define MTK_NAND_MAX_NSELS (2) 97 #define MTK_NFC_MIN_SPARE (16) 98 #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \ 99 ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \ 100 (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt)) 101 102 struct mtk_nfc_caps { 103 const u8 *spare_size; 104 u8 num_spare_size; 105 u8 pageformat_spare_shift; 106 u8 nfi_clk_div; 107 u8 max_sector; 108 u32 max_sector_size; 109 }; 110 111 struct mtk_nfc_bad_mark_ctl { 112 void (*bm_swap)(struct mtd_info *, u8 *buf, int raw); 113 u32 sec; 114 u32 pos; 115 }; 116 117 /* 118 * FDM: region used to store free OOB data 119 */ 120 struct mtk_nfc_fdm { 121 u32 reg_size; 122 u32 ecc_size; 123 }; 124 125 struct mtk_nfc_nand_chip { 126 struct list_head node; 127 struct nand_chip nand; 128 129 struct mtk_nfc_bad_mark_ctl bad_mark; 130 struct mtk_nfc_fdm fdm; 131 u32 spare_per_sector; 132 133 int nsels; 134 u8 sels[]; 135 /* nothing after this field */ 136 }; 137 138 struct mtk_nfc_clk { 139 struct clk *nfi_clk; 140 struct clk *pad_clk; 141 }; 142 143 struct mtk_nfc { 144 struct nand_controller controller; 145 struct mtk_ecc_config ecc_cfg; 146 struct mtk_nfc_clk clk; 147 struct mtk_ecc *ecc; 148 149 struct device *dev; 150 const struct mtk_nfc_caps *caps; 151 void __iomem *regs; 152 153 struct completion done; 154 struct list_head chips; 155 156 u8 *buffer; 157 158 unsigned long assigned_cs; 159 }; 160 161 /* 162 * supported spare size of each IP. 163 * order should be the same with the spare size bitfiled defination of 164 * register NFI_PAGEFMT. 165 */ 166 static const u8 spare_size_mt2701[] = { 167 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64 168 }; 169 170 static const u8 spare_size_mt2712[] = { 171 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, 172 74 173 }; 174 175 static const u8 spare_size_mt7622[] = { 176 16, 26, 27, 28 177 }; 178 179 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand) 180 { 181 return container_of(nand, struct mtk_nfc_nand_chip, nand); 182 } 183 184 static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i) 185 { 186 return (u8 *)p + i * chip->ecc.size; 187 } 188 189 static inline u8 *oob_ptr(struct nand_chip *chip, int i) 190 { 191 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 192 u8 *poi; 193 194 /* map the sector's FDM data to free oob: 195 * the beginning of the oob area stores the FDM data of bad mark sectors 196 */ 197 198 if (i < mtk_nand->bad_mark.sec) 199 poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size; 200 else if (i == mtk_nand->bad_mark.sec) 201 poi = chip->oob_poi; 202 else 203 poi = chip->oob_poi + i * mtk_nand->fdm.reg_size; 204 205 return poi; 206 } 207 208 static inline int mtk_data_len(struct nand_chip *chip) 209 { 210 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 211 212 return chip->ecc.size + mtk_nand->spare_per_sector; 213 } 214 215 static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i) 216 { 217 struct mtk_nfc *nfc = nand_get_controller_data(chip); 218 219 return nfc->buffer + i * mtk_data_len(chip); 220 } 221 222 static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i) 223 { 224 struct mtk_nfc *nfc = nand_get_controller_data(chip); 225 226 return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size; 227 } 228 229 static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg) 230 { 231 writel(val, nfc->regs + reg); 232 } 233 234 static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg) 235 { 236 writew(val, nfc->regs + reg); 237 } 238 239 static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg) 240 { 241 writeb(val, nfc->regs + reg); 242 } 243 244 static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg) 245 { 246 return readl_relaxed(nfc->regs + reg); 247 } 248 249 static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg) 250 { 251 return readw_relaxed(nfc->regs + reg); 252 } 253 254 static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg) 255 { 256 return readb_relaxed(nfc->regs + reg); 257 } 258 259 static void mtk_nfc_hw_reset(struct mtk_nfc *nfc) 260 { 261 struct device *dev = nfc->dev; 262 u32 val; 263 int ret; 264 265 /* reset all registers and force the NFI master to terminate */ 266 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); 267 268 /* wait for the master to finish the last transaction */ 269 ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val, 270 !(val & MASTER_STA_MASK), 50, 271 MTK_RESET_TIMEOUT); 272 if (ret) 273 dev_warn(dev, "master active in reset [0x%x] = 0x%x\n", 274 NFI_MASTER_STA, val); 275 276 /* ensure any status register affected by the NFI master is reset */ 277 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); 278 nfi_writew(nfc, STAR_DE, NFI_STRDATA); 279 } 280 281 static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command) 282 { 283 struct device *dev = nfc->dev; 284 u32 val; 285 int ret; 286 287 nfi_writel(nfc, command, NFI_CMD); 288 289 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, 290 !(val & STA_CMD), 10, MTK_TIMEOUT); 291 if (ret) { 292 dev_warn(dev, "nfi core timed out entering command mode\n"); 293 return -EIO; 294 } 295 296 return 0; 297 } 298 299 static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr) 300 { 301 struct device *dev = nfc->dev; 302 u32 val; 303 int ret; 304 305 nfi_writel(nfc, addr, NFI_COLADDR); 306 nfi_writel(nfc, 0, NFI_ROWADDR); 307 nfi_writew(nfc, 1, NFI_ADDRNOB); 308 309 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, 310 !(val & STA_ADDR), 10, MTK_TIMEOUT); 311 if (ret) { 312 dev_warn(dev, "nfi core timed out entering address mode\n"); 313 return -EIO; 314 } 315 316 return 0; 317 } 318 319 static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd) 320 { 321 struct nand_chip *chip = mtd_to_nand(mtd); 322 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 323 struct mtk_nfc *nfc = nand_get_controller_data(chip); 324 u32 fmt, spare, i; 325 326 if (!mtd->writesize) 327 return 0; 328 329 spare = mtk_nand->spare_per_sector; 330 331 switch (mtd->writesize) { 332 case 512: 333 fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512; 334 break; 335 case KB(2): 336 if (chip->ecc.size == 512) 337 fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512; 338 else 339 fmt = PAGEFMT_512_2K; 340 break; 341 case KB(4): 342 if (chip->ecc.size == 512) 343 fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512; 344 else 345 fmt = PAGEFMT_2K_4K; 346 break; 347 case KB(8): 348 if (chip->ecc.size == 512) 349 fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512; 350 else 351 fmt = PAGEFMT_4K_8K; 352 break; 353 case KB(16): 354 fmt = PAGEFMT_8K_16K; 355 break; 356 default: 357 dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize); 358 return -EINVAL; 359 } 360 361 /* 362 * the hardware will double the value for this eccsize, so we need to 363 * halve it 364 */ 365 if (chip->ecc.size == 1024) 366 spare >>= 1; 367 368 for (i = 0; i < nfc->caps->num_spare_size; i++) { 369 if (nfc->caps->spare_size[i] == spare) 370 break; 371 } 372 373 if (i == nfc->caps->num_spare_size) { 374 dev_err(nfc->dev, "invalid spare size %d\n", spare); 375 return -EINVAL; 376 } 377 378 fmt |= i << nfc->caps->pageformat_spare_shift; 379 380 fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT; 381 fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT; 382 nfi_writel(nfc, fmt, NFI_PAGEFMT); 383 384 nfc->ecc_cfg.strength = chip->ecc.strength; 385 nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size; 386 387 return 0; 388 } 389 390 static void mtk_nfc_select_chip(struct nand_chip *nand, int chip) 391 { 392 struct mtk_nfc *nfc = nand_get_controller_data(nand); 393 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand); 394 395 if (chip < 0) 396 return; 397 398 mtk_nfc_hw_runtime_config(nand_to_mtd(nand)); 399 400 nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL); 401 } 402 403 static int mtk_nfc_dev_ready(struct nand_chip *nand) 404 { 405 struct mtk_nfc *nfc = nand_get_controller_data(nand); 406 407 if (nfi_readl(nfc, NFI_STA) & STA_BUSY) 408 return 0; 409 410 return 1; 411 } 412 413 static void mtk_nfc_cmd_ctrl(struct nand_chip *chip, int dat, 414 unsigned int ctrl) 415 { 416 struct mtk_nfc *nfc = nand_get_controller_data(chip); 417 418 if (ctrl & NAND_ALE) { 419 mtk_nfc_send_address(nfc, dat); 420 } else if (ctrl & NAND_CLE) { 421 mtk_nfc_hw_reset(nfc); 422 423 nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG); 424 mtk_nfc_send_command(nfc, dat); 425 } 426 } 427 428 static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc) 429 { 430 int rc; 431 u8 val; 432 433 rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val, 434 val & PIO_DI_RDY, 10, MTK_TIMEOUT); 435 if (rc < 0) 436 dev_err(nfc->dev, "data not ready\n"); 437 } 438 439 static inline u8 mtk_nfc_read_byte(struct nand_chip *chip) 440 { 441 struct mtk_nfc *nfc = nand_get_controller_data(chip); 442 u32 reg; 443 444 /* after each byte read, the NFI_STA reg is reset by the hardware */ 445 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; 446 if (reg != NFI_FSM_CUSTDATA) { 447 reg = nfi_readw(nfc, NFI_CNFG); 448 reg |= CNFG_BYTE_RW | CNFG_READ_EN; 449 nfi_writew(nfc, reg, NFI_CNFG); 450 451 /* 452 * set to max sector to allow the HW to continue reading over 453 * unaligned accesses 454 */ 455 reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD; 456 nfi_writel(nfc, reg, NFI_CON); 457 458 /* trigger to fetch data */ 459 nfi_writew(nfc, STAR_EN, NFI_STRDATA); 460 } 461 462 mtk_nfc_wait_ioready(nfc); 463 464 return nfi_readb(nfc, NFI_DATAR); 465 } 466 467 static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len) 468 { 469 int i; 470 471 for (i = 0; i < len; i++) 472 buf[i] = mtk_nfc_read_byte(chip); 473 } 474 475 static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte) 476 { 477 struct mtk_nfc *nfc = nand_get_controller_data(chip); 478 u32 reg; 479 480 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; 481 482 if (reg != NFI_FSM_CUSTDATA) { 483 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW; 484 nfi_writew(nfc, reg, NFI_CNFG); 485 486 reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR; 487 nfi_writel(nfc, reg, NFI_CON); 488 489 nfi_writew(nfc, STAR_EN, NFI_STRDATA); 490 } 491 492 mtk_nfc_wait_ioready(nfc); 493 nfi_writeb(nfc, byte, NFI_DATAW); 494 } 495 496 static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len) 497 { 498 int i; 499 500 for (i = 0; i < len; i++) 501 mtk_nfc_write_byte(chip, buf[i]); 502 } 503 504 static int mtk_nfc_setup_data_interface(struct nand_chip *chip, int csline, 505 const struct nand_data_interface *conf) 506 { 507 struct mtk_nfc *nfc = nand_get_controller_data(chip); 508 const struct nand_sdr_timings *timings; 509 u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst = 0, trlt = 0; 510 u32 temp, tsel = 0; 511 512 timings = nand_get_sdr_timings(conf); 513 if (IS_ERR(timings)) 514 return -ENOTSUPP; 515 516 if (csline == NAND_DATA_IFACE_CHECK_ONLY) 517 return 0; 518 519 rate = clk_get_rate(nfc->clk.nfi_clk); 520 /* There is a frequency divider in some IPs */ 521 rate /= nfc->caps->nfi_clk_div; 522 523 /* turn clock rate into KHZ */ 524 rate /= 1000; 525 526 tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000; 527 tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000); 528 tpoecs &= 0xf; 529 530 tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000; 531 tprecs = DIV_ROUND_UP(tprecs * rate, 1000000); 532 tprecs &= 0x3f; 533 534 /* sdr interface has no tCR which means CE# low to RE# low */ 535 tc2r = 0; 536 537 tw2r = timings->tWHR_min / 1000; 538 tw2r = DIV_ROUND_UP(tw2r * rate, 1000000); 539 tw2r = DIV_ROUND_UP(tw2r - 1, 2); 540 tw2r &= 0xf; 541 542 twh = max(timings->tREH_min, timings->tWH_min) / 1000; 543 twh = DIV_ROUND_UP(twh * rate, 1000000) - 1; 544 twh &= 0xf; 545 546 /* Calculate real WE#/RE# hold time in nanosecond */ 547 temp = (twh + 1) * 1000000 / rate; 548 /* nanosecond to picosecond */ 549 temp *= 1000; 550 551 /* 552 * WE# low level time should be expaned to meet WE# pulse time 553 * and WE# cycle time at the same time. 554 */ 555 if (temp < timings->tWC_min) 556 twst = timings->tWC_min - temp; 557 twst = max(timings->tWP_min, twst) / 1000; 558 twst = DIV_ROUND_UP(twst * rate, 1000000) - 1; 559 twst &= 0xf; 560 561 /* 562 * RE# low level time should be expaned to meet RE# pulse time 563 * and RE# cycle time at the same time. 564 */ 565 if (temp < timings->tRC_min) 566 trlt = timings->tRC_min - temp; 567 trlt = max(trlt, timings->tRP_min) / 1000; 568 trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1; 569 trlt &= 0xf; 570 571 /* Calculate RE# pulse time in nanosecond. */ 572 temp = (trlt + 1) * 1000000 / rate; 573 /* nanosecond to picosecond */ 574 temp *= 1000; 575 /* 576 * If RE# access time is bigger than RE# pulse time, 577 * delay sampling data timing. 578 */ 579 if (temp < timings->tREA_max) { 580 tsel = timings->tREA_max / 1000; 581 tsel = DIV_ROUND_UP(tsel * rate, 1000000); 582 tsel -= (trlt + 1); 583 if (tsel > MAX_STROBE_DLY) { 584 trlt += tsel - MAX_STROBE_DLY; 585 tsel = MAX_STROBE_DLY; 586 } 587 } 588 temp = nfi_readl(nfc, NFI_DEBUG_CON1); 589 temp &= ~STROBE_MASK; 590 temp |= tsel << STROBE_SHIFT; 591 nfi_writel(nfc, temp, NFI_DEBUG_CON1); 592 593 /* 594 * ACCON: access timing control register 595 * ------------------------------------- 596 * 31:28: tpoecs, minimum required time for CS post pulling down after 597 * accessing the device 598 * 27:22: tprecs, minimum required time for CS pre pulling down before 599 * accessing the device 600 * 21:16: tc2r, minimum required time from NCEB low to NREB low 601 * 15:12: tw2r, minimum required time from NWEB high to NREB low. 602 * 11:08: twh, write enable hold time 603 * 07:04: twst, write wait states 604 * 03:00: trlt, read wait states 605 */ 606 trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt); 607 nfi_writel(nfc, trlt, NFI_ACCCON); 608 609 return 0; 610 } 611 612 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data) 613 { 614 struct mtk_nfc *nfc = nand_get_controller_data(chip); 615 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 616 int size = chip->ecc.size + mtk_nand->fdm.reg_size; 617 618 nfc->ecc_cfg.mode = ECC_DMA_MODE; 619 nfc->ecc_cfg.op = ECC_ENCODE; 620 621 return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size); 622 } 623 624 static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c) 625 { 626 /* nop */ 627 } 628 629 static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw) 630 { 631 struct nand_chip *chip = mtd_to_nand(mtd); 632 struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip); 633 u32 bad_pos = nand->bad_mark.pos; 634 635 if (raw) 636 bad_pos += nand->bad_mark.sec * mtk_data_len(chip); 637 else 638 bad_pos += nand->bad_mark.sec * chip->ecc.size; 639 640 swap(chip->oob_poi[0], buf[bad_pos]); 641 } 642 643 static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset, 644 u32 len, const u8 *buf) 645 { 646 struct nand_chip *chip = mtd_to_nand(mtd); 647 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 648 struct mtk_nfc *nfc = nand_get_controller_data(chip); 649 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; 650 u32 start, end; 651 int i, ret; 652 653 start = offset / chip->ecc.size; 654 end = DIV_ROUND_UP(offset + len, chip->ecc.size); 655 656 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); 657 for (i = 0; i < chip->ecc.steps; i++) { 658 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), 659 chip->ecc.size); 660 661 if (start > i || i >= end) 662 continue; 663 664 if (i == mtk_nand->bad_mark.sec) 665 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); 666 667 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); 668 669 /* program the CRC back to the OOB */ 670 ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i)); 671 if (ret < 0) 672 return ret; 673 } 674 675 return 0; 676 } 677 678 static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf) 679 { 680 struct nand_chip *chip = mtd_to_nand(mtd); 681 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 682 struct mtk_nfc *nfc = nand_get_controller_data(chip); 683 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; 684 u32 i; 685 686 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); 687 for (i = 0; i < chip->ecc.steps; i++) { 688 if (buf) 689 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), 690 chip->ecc.size); 691 692 if (i == mtk_nand->bad_mark.sec) 693 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); 694 695 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); 696 } 697 } 698 699 static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start, 700 u32 sectors) 701 { 702 struct mtk_nfc *nfc = nand_get_controller_data(chip); 703 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 704 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; 705 u32 vall, valm; 706 u8 *oobptr; 707 int i, j; 708 709 for (i = 0; i < sectors; i++) { 710 oobptr = oob_ptr(chip, start + i); 711 vall = nfi_readl(nfc, NFI_FDML(i)); 712 valm = nfi_readl(nfc, NFI_FDMM(i)); 713 714 for (j = 0; j < fdm->reg_size; j++) 715 oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); 716 } 717 } 718 719 static inline void mtk_nfc_write_fdm(struct nand_chip *chip) 720 { 721 struct mtk_nfc *nfc = nand_get_controller_data(chip); 722 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 723 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; 724 u32 vall, valm; 725 u8 *oobptr; 726 int i, j; 727 728 for (i = 0; i < chip->ecc.steps; i++) { 729 oobptr = oob_ptr(chip, i); 730 vall = 0; 731 valm = 0; 732 for (j = 0; j < 8; j++) { 733 if (j < 4) 734 vall |= (j < fdm->reg_size ? oobptr[j] : 0xff) 735 << (j * 8); 736 else 737 valm |= (j < fdm->reg_size ? oobptr[j] : 0xff) 738 << ((j - 4) * 8); 739 } 740 nfi_writel(nfc, vall, NFI_FDML(i)); 741 nfi_writel(nfc, valm, NFI_FDMM(i)); 742 } 743 } 744 745 static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip, 746 const u8 *buf, int page, int len) 747 { 748 struct mtk_nfc *nfc = nand_get_controller_data(chip); 749 struct device *dev = nfc->dev; 750 dma_addr_t addr; 751 u32 reg; 752 int ret; 753 754 addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE); 755 ret = dma_mapping_error(nfc->dev, addr); 756 if (ret) { 757 dev_err(nfc->dev, "dma mapping error\n"); 758 return -EINVAL; 759 } 760 761 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN; 762 nfi_writew(nfc, reg, NFI_CNFG); 763 764 nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON); 765 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); 766 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); 767 768 init_completion(&nfc->done); 769 770 reg = nfi_readl(nfc, NFI_CON) | CON_BWR; 771 nfi_writel(nfc, reg, NFI_CON); 772 nfi_writew(nfc, STAR_EN, NFI_STRDATA); 773 774 ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); 775 if (!ret) { 776 dev_err(dev, "program ahb done timeout\n"); 777 nfi_writew(nfc, 0, NFI_INTR_EN); 778 ret = -ETIMEDOUT; 779 goto timeout; 780 } 781 782 ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg, 783 ADDRCNTR_SEC(reg) >= chip->ecc.steps, 784 10, MTK_TIMEOUT); 785 if (ret) 786 dev_err(dev, "hwecc write timeout\n"); 787 788 timeout: 789 790 dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE); 791 nfi_writel(nfc, 0, NFI_CON); 792 793 return ret; 794 } 795 796 static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, 797 const u8 *buf, int page, int raw) 798 { 799 struct mtk_nfc *nfc = nand_get_controller_data(chip); 800 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 801 size_t len; 802 const u8 *bufpoi; 803 u32 reg; 804 int ret; 805 806 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 807 808 if (!raw) { 809 /* OOB => FDM: from register, ECC: from HW */ 810 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN; 811 nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG); 812 813 nfc->ecc_cfg.op = ECC_ENCODE; 814 nfc->ecc_cfg.mode = ECC_NFI_MODE; 815 ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); 816 if (ret) { 817 /* clear NFI config */ 818 reg = nfi_readw(nfc, NFI_CNFG); 819 reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); 820 nfi_writew(nfc, reg, NFI_CNFG); 821 822 return ret; 823 } 824 825 memcpy(nfc->buffer, buf, mtd->writesize); 826 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw); 827 bufpoi = nfc->buffer; 828 829 /* write OOB into the FDM registers (OOB area in MTK NAND) */ 830 mtk_nfc_write_fdm(chip); 831 } else { 832 bufpoi = buf; 833 } 834 835 len = mtd->writesize + (raw ? mtd->oobsize : 0); 836 ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len); 837 838 if (!raw) 839 mtk_ecc_disable(nfc->ecc); 840 841 if (ret) 842 return ret; 843 844 return nand_prog_page_end_op(chip); 845 } 846 847 static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, 848 int oob_on, int page) 849 { 850 return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0); 851 } 852 853 static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, 854 int oob_on, int pg) 855 { 856 struct mtd_info *mtd = nand_to_mtd(chip); 857 struct mtk_nfc *nfc = nand_get_controller_data(chip); 858 859 mtk_nfc_format_page(mtd, buf); 860 return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1); 861 } 862 863 static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset, 864 u32 data_len, const u8 *buf, 865 int oob_on, int page) 866 { 867 struct mtd_info *mtd = nand_to_mtd(chip); 868 struct mtk_nfc *nfc = nand_get_controller_data(chip); 869 int ret; 870 871 ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf); 872 if (ret < 0) 873 return ret; 874 875 /* use the data in the private buffer (now with FDM and CRC) */ 876 return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1); 877 } 878 879 static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page) 880 { 881 return mtk_nfc_write_page_raw(chip, NULL, 1, page); 882 } 883 884 static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 start, 885 u32 sectors) 886 { 887 struct nand_chip *chip = mtd_to_nand(mtd); 888 struct mtk_nfc *nfc = nand_get_controller_data(chip); 889 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 890 struct mtk_ecc_stats stats; 891 u32 reg_size = mtk_nand->fdm.reg_size; 892 int rc, i; 893 894 rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE; 895 if (rc) { 896 memset(buf, 0xff, sectors * chip->ecc.size); 897 for (i = 0; i < sectors; i++) 898 memset(oob_ptr(chip, start + i), 0xff, reg_size); 899 return 0; 900 } 901 902 mtk_ecc_get_stats(nfc->ecc, &stats, sectors); 903 mtd->ecc_stats.corrected += stats.corrected; 904 mtd->ecc_stats.failed += stats.failed; 905 906 return stats.bitflips; 907 } 908 909 static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, 910 u32 data_offs, u32 readlen, 911 u8 *bufpoi, int page, int raw) 912 { 913 struct mtk_nfc *nfc = nand_get_controller_data(chip); 914 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 915 u32 spare = mtk_nand->spare_per_sector; 916 u32 column, sectors, start, end, reg; 917 dma_addr_t addr; 918 int bitflips = 0; 919 size_t len; 920 u8 *buf; 921 int rc; 922 923 start = data_offs / chip->ecc.size; 924 end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size); 925 926 sectors = end - start; 927 column = start * (chip->ecc.size + spare); 928 929 len = sectors * chip->ecc.size + (raw ? sectors * spare : 0); 930 buf = bufpoi + start * chip->ecc.size; 931 932 nand_read_page_op(chip, page, column, NULL, 0); 933 934 addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE); 935 rc = dma_mapping_error(nfc->dev, addr); 936 if (rc) { 937 dev_err(nfc->dev, "dma mapping error\n"); 938 939 return -EINVAL; 940 } 941 942 reg = nfi_readw(nfc, NFI_CNFG); 943 reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB; 944 if (!raw) { 945 reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN; 946 nfi_writew(nfc, reg, NFI_CNFG); 947 948 nfc->ecc_cfg.mode = ECC_NFI_MODE; 949 nfc->ecc_cfg.sectors = sectors; 950 nfc->ecc_cfg.op = ECC_DECODE; 951 rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); 952 if (rc) { 953 dev_err(nfc->dev, "ecc enable\n"); 954 /* clear NFI_CNFG */ 955 reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN | 956 CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); 957 nfi_writew(nfc, reg, NFI_CNFG); 958 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); 959 960 return rc; 961 } 962 } else { 963 nfi_writew(nfc, reg, NFI_CNFG); 964 } 965 966 nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON); 967 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); 968 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); 969 970 init_completion(&nfc->done); 971 reg = nfi_readl(nfc, NFI_CON) | CON_BRD; 972 nfi_writel(nfc, reg, NFI_CON); 973 nfi_writew(nfc, STAR_EN, NFI_STRDATA); 974 975 rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); 976 if (!rc) 977 dev_warn(nfc->dev, "read ahb/dma done timeout\n"); 978 979 rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg, 980 ADDRCNTR_SEC(reg) >= sectors, 10, 981 MTK_TIMEOUT); 982 if (rc < 0) { 983 dev_err(nfc->dev, "subpage done timeout\n"); 984 bitflips = -EIO; 985 } else if (!raw) { 986 rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE); 987 bitflips = rc < 0 ? -ETIMEDOUT : 988 mtk_nfc_update_ecc_stats(mtd, buf, start, sectors); 989 mtk_nfc_read_fdm(chip, start, sectors); 990 } 991 992 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); 993 994 if (raw) 995 goto done; 996 997 mtk_ecc_disable(nfc->ecc); 998 999 if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec) 1000 mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw); 1001 done: 1002 nfi_writel(nfc, 0, NFI_CON); 1003 1004 return bitflips; 1005 } 1006 1007 static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off, 1008 u32 len, u8 *p, int pg) 1009 { 1010 return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg, 1011 0); 1012 } 1013 1014 static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on, 1015 int pg) 1016 { 1017 struct mtd_info *mtd = nand_to_mtd(chip); 1018 1019 return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0); 1020 } 1021 1022 static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, 1023 int page) 1024 { 1025 struct mtd_info *mtd = nand_to_mtd(chip); 1026 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 1027 struct mtk_nfc *nfc = nand_get_controller_data(chip); 1028 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; 1029 int i, ret; 1030 1031 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); 1032 ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer, 1033 page, 1); 1034 if (ret < 0) 1035 return ret; 1036 1037 for (i = 0; i < chip->ecc.steps; i++) { 1038 memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size); 1039 1040 if (i == mtk_nand->bad_mark.sec) 1041 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); 1042 1043 if (buf) 1044 memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i), 1045 chip->ecc.size); 1046 } 1047 1048 return ret; 1049 } 1050 1051 static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page) 1052 { 1053 return mtk_nfc_read_page_raw(chip, NULL, 1, page); 1054 } 1055 1056 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc) 1057 { 1058 /* 1059 * CNRNB: nand ready/busy register 1060 * ------------------------------- 1061 * 7:4: timeout register for polling the NAND busy/ready signal 1062 * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles. 1063 */ 1064 nfi_writew(nfc, 0xf1, NFI_CNRNB); 1065 nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT); 1066 1067 mtk_nfc_hw_reset(nfc); 1068 1069 nfi_readl(nfc, NFI_INTR_STA); 1070 nfi_writel(nfc, 0, NFI_INTR_EN); 1071 } 1072 1073 static irqreturn_t mtk_nfc_irq(int irq, void *id) 1074 { 1075 struct mtk_nfc *nfc = id; 1076 u16 sta, ien; 1077 1078 sta = nfi_readw(nfc, NFI_INTR_STA); 1079 ien = nfi_readw(nfc, NFI_INTR_EN); 1080 1081 if (!(sta & ien)) 1082 return IRQ_NONE; 1083 1084 nfi_writew(nfc, ~sta & ien, NFI_INTR_EN); 1085 complete(&nfc->done); 1086 1087 return IRQ_HANDLED; 1088 } 1089 1090 static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk) 1091 { 1092 int ret; 1093 1094 ret = clk_prepare_enable(clk->nfi_clk); 1095 if (ret) { 1096 dev_err(dev, "failed to enable nfi clk\n"); 1097 return ret; 1098 } 1099 1100 ret = clk_prepare_enable(clk->pad_clk); 1101 if (ret) { 1102 dev_err(dev, "failed to enable pad clk\n"); 1103 clk_disable_unprepare(clk->nfi_clk); 1104 return ret; 1105 } 1106 1107 return 0; 1108 } 1109 1110 static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk) 1111 { 1112 clk_disable_unprepare(clk->nfi_clk); 1113 clk_disable_unprepare(clk->pad_clk); 1114 } 1115 1116 static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section, 1117 struct mtd_oob_region *oob_region) 1118 { 1119 struct nand_chip *chip = mtd_to_nand(mtd); 1120 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 1121 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; 1122 u32 eccsteps; 1123 1124 eccsteps = mtd->writesize / chip->ecc.size; 1125 1126 if (section >= eccsteps) 1127 return -ERANGE; 1128 1129 oob_region->length = fdm->reg_size - fdm->ecc_size; 1130 oob_region->offset = section * fdm->reg_size + fdm->ecc_size; 1131 1132 return 0; 1133 } 1134 1135 static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, 1136 struct mtd_oob_region *oob_region) 1137 { 1138 struct nand_chip *chip = mtd_to_nand(mtd); 1139 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 1140 u32 eccsteps; 1141 1142 if (section) 1143 return -ERANGE; 1144 1145 eccsteps = mtd->writesize / chip->ecc.size; 1146 oob_region->offset = mtk_nand->fdm.reg_size * eccsteps; 1147 oob_region->length = mtd->oobsize - oob_region->offset; 1148 1149 return 0; 1150 } 1151 1152 static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = { 1153 .free = mtk_nfc_ooblayout_free, 1154 .ecc = mtk_nfc_ooblayout_ecc, 1155 }; 1156 1157 static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd) 1158 { 1159 struct nand_chip *nand = mtd_to_nand(mtd); 1160 struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand); 1161 struct mtk_nfc *nfc = nand_get_controller_data(nand); 1162 u32 ecc_bytes; 1163 1164 ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * 1165 mtk_ecc_get_parity_bits(nfc->ecc), 8); 1166 1167 fdm->reg_size = chip->spare_per_sector - ecc_bytes; 1168 if (fdm->reg_size > NFI_FDM_MAX_SIZE) 1169 fdm->reg_size = NFI_FDM_MAX_SIZE; 1170 1171 /* bad block mark storage */ 1172 fdm->ecc_size = 1; 1173 } 1174 1175 static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl, 1176 struct mtd_info *mtd) 1177 { 1178 struct nand_chip *nand = mtd_to_nand(mtd); 1179 1180 if (mtd->writesize == 512) { 1181 bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap; 1182 } else { 1183 bm_ctl->bm_swap = mtk_nfc_bad_mark_swap; 1184 bm_ctl->sec = mtd->writesize / mtk_data_len(nand); 1185 bm_ctl->pos = mtd->writesize % mtk_data_len(nand); 1186 } 1187 } 1188 1189 static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd) 1190 { 1191 struct nand_chip *nand = mtd_to_nand(mtd); 1192 struct mtk_nfc *nfc = nand_get_controller_data(nand); 1193 const u8 *spare = nfc->caps->spare_size; 1194 u32 eccsteps, i, closest_spare = 0; 1195 1196 eccsteps = mtd->writesize / nand->ecc.size; 1197 *sps = mtd->oobsize / eccsteps; 1198 1199 if (nand->ecc.size == 1024) 1200 *sps >>= 1; 1201 1202 if (*sps < MTK_NFC_MIN_SPARE) 1203 return -EINVAL; 1204 1205 for (i = 0; i < nfc->caps->num_spare_size; i++) { 1206 if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) { 1207 closest_spare = i; 1208 if (*sps == spare[i]) 1209 break; 1210 } 1211 } 1212 1213 *sps = spare[closest_spare]; 1214 1215 if (nand->ecc.size == 1024) 1216 *sps <<= 1; 1217 1218 return 0; 1219 } 1220 1221 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) 1222 { 1223 struct nand_chip *nand = mtd_to_nand(mtd); 1224 struct mtk_nfc *nfc = nand_get_controller_data(nand); 1225 u32 spare; 1226 int free, ret; 1227 1228 /* support only ecc hw mode */ 1229 if (nand->ecc.mode != NAND_ECC_HW) { 1230 dev_err(dev, "ecc.mode not supported\n"); 1231 return -EINVAL; 1232 } 1233 1234 /* if optional dt settings not present */ 1235 if (!nand->ecc.size || !nand->ecc.strength) { 1236 /* use datasheet requirements */ 1237 nand->ecc.strength = nand->base.eccreq.strength; 1238 nand->ecc.size = nand->base.eccreq.step_size; 1239 1240 /* 1241 * align eccstrength and eccsize 1242 * this controller only supports 512 and 1024 sizes 1243 */ 1244 if (nand->ecc.size < 1024) { 1245 if (mtd->writesize > 512 && 1246 nfc->caps->max_sector_size > 512) { 1247 nand->ecc.size = 1024; 1248 nand->ecc.strength <<= 1; 1249 } else { 1250 nand->ecc.size = 512; 1251 } 1252 } else { 1253 nand->ecc.size = 1024; 1254 } 1255 1256 ret = mtk_nfc_set_spare_per_sector(&spare, mtd); 1257 if (ret) 1258 return ret; 1259 1260 /* calculate oob bytes except ecc parity data */ 1261 free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc) 1262 + 7) >> 3; 1263 free = spare - free; 1264 1265 /* 1266 * enhance ecc strength if oob left is bigger than max FDM size 1267 * or reduce ecc strength if oob size is not enough for ecc 1268 * parity data. 1269 */ 1270 if (free > NFI_FDM_MAX_SIZE) { 1271 spare -= NFI_FDM_MAX_SIZE; 1272 nand->ecc.strength = (spare << 3) / 1273 mtk_ecc_get_parity_bits(nfc->ecc); 1274 } else if (free < 0) { 1275 spare -= NFI_FDM_MIN_SIZE; 1276 nand->ecc.strength = (spare << 3) / 1277 mtk_ecc_get_parity_bits(nfc->ecc); 1278 } 1279 } 1280 1281 mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength); 1282 1283 dev_info(dev, "eccsize %d eccstrength %d\n", 1284 nand->ecc.size, nand->ecc.strength); 1285 1286 return 0; 1287 } 1288 1289 static int mtk_nfc_attach_chip(struct nand_chip *chip) 1290 { 1291 struct mtd_info *mtd = nand_to_mtd(chip); 1292 struct device *dev = mtd->dev.parent; 1293 struct mtk_nfc *nfc = nand_get_controller_data(chip); 1294 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); 1295 int len; 1296 int ret; 1297 1298 if (chip->options & NAND_BUSWIDTH_16) { 1299 dev_err(dev, "16bits buswidth not supported"); 1300 return -EINVAL; 1301 } 1302 1303 /* store bbt magic in page, cause OOB is not protected */ 1304 if (chip->bbt_options & NAND_BBT_USE_FLASH) 1305 chip->bbt_options |= NAND_BBT_NO_OOB; 1306 1307 ret = mtk_nfc_ecc_init(dev, mtd); 1308 if (ret) 1309 return ret; 1310 1311 ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd); 1312 if (ret) 1313 return ret; 1314 1315 mtk_nfc_set_fdm(&mtk_nand->fdm, mtd); 1316 mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd); 1317 1318 len = mtd->writesize + mtd->oobsize; 1319 nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL); 1320 if (!nfc->buffer) 1321 return -ENOMEM; 1322 1323 return 0; 1324 } 1325 1326 static const struct nand_controller_ops mtk_nfc_controller_ops = { 1327 .attach_chip = mtk_nfc_attach_chip, 1328 .setup_data_interface = mtk_nfc_setup_data_interface, 1329 }; 1330 1331 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc, 1332 struct device_node *np) 1333 { 1334 struct mtk_nfc_nand_chip *chip; 1335 struct nand_chip *nand; 1336 struct mtd_info *mtd; 1337 int nsels; 1338 u32 tmp; 1339 int ret; 1340 int i; 1341 1342 if (!of_get_property(np, "reg", &nsels)) 1343 return -ENODEV; 1344 1345 nsels /= sizeof(u32); 1346 if (!nsels || nsels > MTK_NAND_MAX_NSELS) { 1347 dev_err(dev, "invalid reg property size %d\n", nsels); 1348 return -EINVAL; 1349 } 1350 1351 chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8), 1352 GFP_KERNEL); 1353 if (!chip) 1354 return -ENOMEM; 1355 1356 chip->nsels = nsels; 1357 for (i = 0; i < nsels; i++) { 1358 ret = of_property_read_u32_index(np, "reg", i, &tmp); 1359 if (ret) { 1360 dev_err(dev, "reg property failure : %d\n", ret); 1361 return ret; 1362 } 1363 1364 if (tmp >= MTK_NAND_MAX_NSELS) { 1365 dev_err(dev, "invalid CS: %u\n", tmp); 1366 return -EINVAL; 1367 } 1368 1369 if (test_and_set_bit(tmp, &nfc->assigned_cs)) { 1370 dev_err(dev, "CS %u already assigned\n", tmp); 1371 return -EINVAL; 1372 } 1373 1374 chip->sels[i] = tmp; 1375 } 1376 1377 nand = &chip->nand; 1378 nand->controller = &nfc->controller; 1379 1380 nand_set_flash_node(nand, np); 1381 nand_set_controller_data(nand, nfc); 1382 1383 nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ; 1384 nand->legacy.dev_ready = mtk_nfc_dev_ready; 1385 nand->legacy.select_chip = mtk_nfc_select_chip; 1386 nand->legacy.write_byte = mtk_nfc_write_byte; 1387 nand->legacy.write_buf = mtk_nfc_write_buf; 1388 nand->legacy.read_byte = mtk_nfc_read_byte; 1389 nand->legacy.read_buf = mtk_nfc_read_buf; 1390 nand->legacy.cmd_ctrl = mtk_nfc_cmd_ctrl; 1391 1392 /* set default mode in case dt entry is missing */ 1393 nand->ecc.mode = NAND_ECC_HW; 1394 1395 nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc; 1396 nand->ecc.write_page_raw = mtk_nfc_write_page_raw; 1397 nand->ecc.write_page = mtk_nfc_write_page_hwecc; 1398 nand->ecc.write_oob_raw = mtk_nfc_write_oob_std; 1399 nand->ecc.write_oob = mtk_nfc_write_oob_std; 1400 1401 nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc; 1402 nand->ecc.read_page_raw = mtk_nfc_read_page_raw; 1403 nand->ecc.read_page = mtk_nfc_read_page_hwecc; 1404 nand->ecc.read_oob_raw = mtk_nfc_read_oob_std; 1405 nand->ecc.read_oob = mtk_nfc_read_oob_std; 1406 1407 mtd = nand_to_mtd(nand); 1408 mtd->owner = THIS_MODULE; 1409 mtd->dev.parent = dev; 1410 mtd->name = MTK_NAME; 1411 mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops); 1412 1413 mtk_nfc_hw_init(nfc); 1414 1415 ret = nand_scan(nand, nsels); 1416 if (ret) 1417 return ret; 1418 1419 ret = mtd_device_register(mtd, NULL, 0); 1420 if (ret) { 1421 dev_err(dev, "mtd parse partition error\n"); 1422 nand_release(nand); 1423 return ret; 1424 } 1425 1426 list_add_tail(&chip->node, &nfc->chips); 1427 1428 return 0; 1429 } 1430 1431 static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc) 1432 { 1433 struct device_node *np = dev->of_node; 1434 struct device_node *nand_np; 1435 int ret; 1436 1437 for_each_child_of_node(np, nand_np) { 1438 ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np); 1439 if (ret) { 1440 of_node_put(nand_np); 1441 return ret; 1442 } 1443 } 1444 1445 return 0; 1446 } 1447 1448 static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = { 1449 .spare_size = spare_size_mt2701, 1450 .num_spare_size = 16, 1451 .pageformat_spare_shift = 4, 1452 .nfi_clk_div = 1, 1453 .max_sector = 16, 1454 .max_sector_size = 1024, 1455 }; 1456 1457 static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = { 1458 .spare_size = spare_size_mt2712, 1459 .num_spare_size = 19, 1460 .pageformat_spare_shift = 16, 1461 .nfi_clk_div = 2, 1462 .max_sector = 16, 1463 .max_sector_size = 1024, 1464 }; 1465 1466 static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = { 1467 .spare_size = spare_size_mt7622, 1468 .num_spare_size = 4, 1469 .pageformat_spare_shift = 4, 1470 .nfi_clk_div = 1, 1471 .max_sector = 8, 1472 .max_sector_size = 512, 1473 }; 1474 1475 static const struct of_device_id mtk_nfc_id_table[] = { 1476 { 1477 .compatible = "mediatek,mt2701-nfc", 1478 .data = &mtk_nfc_caps_mt2701, 1479 }, { 1480 .compatible = "mediatek,mt2712-nfc", 1481 .data = &mtk_nfc_caps_mt2712, 1482 }, { 1483 .compatible = "mediatek,mt7622-nfc", 1484 .data = &mtk_nfc_caps_mt7622, 1485 }, 1486 {} 1487 }; 1488 MODULE_DEVICE_TABLE(of, mtk_nfc_id_table); 1489 1490 static int mtk_nfc_probe(struct platform_device *pdev) 1491 { 1492 struct device *dev = &pdev->dev; 1493 struct device_node *np = dev->of_node; 1494 struct mtk_nfc *nfc; 1495 struct resource *res; 1496 int ret, irq; 1497 1498 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); 1499 if (!nfc) 1500 return -ENOMEM; 1501 1502 nand_controller_init(&nfc->controller); 1503 INIT_LIST_HEAD(&nfc->chips); 1504 nfc->controller.ops = &mtk_nfc_controller_ops; 1505 1506 /* probe defer if not ready */ 1507 nfc->ecc = of_mtk_ecc_get(np); 1508 if (IS_ERR(nfc->ecc)) 1509 return PTR_ERR(nfc->ecc); 1510 else if (!nfc->ecc) 1511 return -ENODEV; 1512 1513 nfc->caps = of_device_get_match_data(dev); 1514 nfc->dev = dev; 1515 1516 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1517 nfc->regs = devm_ioremap_resource(dev, res); 1518 if (IS_ERR(nfc->regs)) { 1519 ret = PTR_ERR(nfc->regs); 1520 goto release_ecc; 1521 } 1522 1523 nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk"); 1524 if (IS_ERR(nfc->clk.nfi_clk)) { 1525 dev_err(dev, "no clk\n"); 1526 ret = PTR_ERR(nfc->clk.nfi_clk); 1527 goto release_ecc; 1528 } 1529 1530 nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk"); 1531 if (IS_ERR(nfc->clk.pad_clk)) { 1532 dev_err(dev, "no pad clk\n"); 1533 ret = PTR_ERR(nfc->clk.pad_clk); 1534 goto release_ecc; 1535 } 1536 1537 ret = mtk_nfc_enable_clk(dev, &nfc->clk); 1538 if (ret) 1539 goto release_ecc; 1540 1541 irq = platform_get_irq(pdev, 0); 1542 if (irq < 0) { 1543 ret = -EINVAL; 1544 goto clk_disable; 1545 } 1546 1547 ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc); 1548 if (ret) { 1549 dev_err(dev, "failed to request nfi irq\n"); 1550 goto clk_disable; 1551 } 1552 1553 ret = dma_set_mask(dev, DMA_BIT_MASK(32)); 1554 if (ret) { 1555 dev_err(dev, "failed to set dma mask\n"); 1556 goto clk_disable; 1557 } 1558 1559 platform_set_drvdata(pdev, nfc); 1560 1561 ret = mtk_nfc_nand_chips_init(dev, nfc); 1562 if (ret) { 1563 dev_err(dev, "failed to init nand chips\n"); 1564 goto clk_disable; 1565 } 1566 1567 return 0; 1568 1569 clk_disable: 1570 mtk_nfc_disable_clk(&nfc->clk); 1571 1572 release_ecc: 1573 mtk_ecc_release(nfc->ecc); 1574 1575 return ret; 1576 } 1577 1578 static int mtk_nfc_remove(struct platform_device *pdev) 1579 { 1580 struct mtk_nfc *nfc = platform_get_drvdata(pdev); 1581 struct mtk_nfc_nand_chip *chip; 1582 1583 while (!list_empty(&nfc->chips)) { 1584 chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip, 1585 node); 1586 nand_release(&chip->nand); 1587 list_del(&chip->node); 1588 } 1589 1590 mtk_ecc_release(nfc->ecc); 1591 mtk_nfc_disable_clk(&nfc->clk); 1592 1593 return 0; 1594 } 1595 1596 #ifdef CONFIG_PM_SLEEP 1597 static int mtk_nfc_suspend(struct device *dev) 1598 { 1599 struct mtk_nfc *nfc = dev_get_drvdata(dev); 1600 1601 mtk_nfc_disable_clk(&nfc->clk); 1602 1603 return 0; 1604 } 1605 1606 static int mtk_nfc_resume(struct device *dev) 1607 { 1608 struct mtk_nfc *nfc = dev_get_drvdata(dev); 1609 struct mtk_nfc_nand_chip *chip; 1610 struct nand_chip *nand; 1611 int ret; 1612 u32 i; 1613 1614 udelay(200); 1615 1616 ret = mtk_nfc_enable_clk(dev, &nfc->clk); 1617 if (ret) 1618 return ret; 1619 1620 /* reset NAND chip if VCC was powered off */ 1621 list_for_each_entry(chip, &nfc->chips, node) { 1622 nand = &chip->nand; 1623 for (i = 0; i < chip->nsels; i++) 1624 nand_reset(nand, i); 1625 } 1626 1627 return 0; 1628 } 1629 1630 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume); 1631 #endif 1632 1633 static struct platform_driver mtk_nfc_driver = { 1634 .probe = mtk_nfc_probe, 1635 .remove = mtk_nfc_remove, 1636 .driver = { 1637 .name = MTK_NAME, 1638 .of_match_table = mtk_nfc_id_table, 1639 #ifdef CONFIG_PM_SLEEP 1640 .pm = &mtk_nfc_pm_ops, 1641 #endif 1642 }, 1643 }; 1644 1645 module_platform_driver(mtk_nfc_driver); 1646 1647 MODULE_LICENSE("Dual MIT/GPL"); 1648 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>"); 1649 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver"); 1650