xref: /openbmc/linux/drivers/mtd/nand/raw/mtk_nand.c (revision 0c874100)
1 /*
2  * MTK NAND Flash controller driver.
3  * Copyright (C) 2016 MediaTek Inc.
4  * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
5  *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/platform_device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/clk.h>
22 #include <linux/mtd/rawnand.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/module.h>
25 #include <linux/iopoll.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include "mtk_ecc.h"
29 
30 /* NAND controller register definition */
31 #define NFI_CNFG		(0x00)
32 #define		CNFG_AHB		BIT(0)
33 #define		CNFG_READ_EN		BIT(1)
34 #define		CNFG_DMA_BURST_EN	BIT(2)
35 #define		CNFG_BYTE_RW		BIT(6)
36 #define		CNFG_HW_ECC_EN		BIT(8)
37 #define		CNFG_AUTO_FMT_EN	BIT(9)
38 #define		CNFG_OP_CUST		(6 << 12)
39 #define NFI_PAGEFMT		(0x04)
40 #define		PAGEFMT_FDM_ECC_SHIFT	(12)
41 #define		PAGEFMT_FDM_SHIFT	(8)
42 #define		PAGEFMT_SEC_SEL_512	BIT(2)
43 #define		PAGEFMT_512_2K		(0)
44 #define		PAGEFMT_2K_4K		(1)
45 #define		PAGEFMT_4K_8K		(2)
46 #define		PAGEFMT_8K_16K		(3)
47 /* NFI control */
48 #define NFI_CON			(0x08)
49 #define		CON_FIFO_FLUSH		BIT(0)
50 #define		CON_NFI_RST		BIT(1)
51 #define		CON_BRD			BIT(8)  /* burst  read */
52 #define		CON_BWR			BIT(9)	/* burst  write */
53 #define		CON_SEC_SHIFT		(12)
54 /* Timming control register */
55 #define NFI_ACCCON		(0x0C)
56 #define NFI_INTR_EN		(0x10)
57 #define		INTR_AHB_DONE_EN	BIT(6)
58 #define NFI_INTR_STA		(0x14)
59 #define NFI_CMD			(0x20)
60 #define NFI_ADDRNOB		(0x30)
61 #define NFI_COLADDR		(0x34)
62 #define NFI_ROWADDR		(0x38)
63 #define NFI_STRDATA		(0x40)
64 #define		STAR_EN			(1)
65 #define		STAR_DE			(0)
66 #define NFI_CNRNB		(0x44)
67 #define NFI_DATAW		(0x50)
68 #define NFI_DATAR		(0x54)
69 #define NFI_PIO_DIRDY		(0x58)
70 #define		PIO_DI_RDY		(0x01)
71 #define NFI_STA			(0x60)
72 #define		STA_CMD			BIT(0)
73 #define		STA_ADDR		BIT(1)
74 #define		STA_BUSY		BIT(8)
75 #define		STA_EMP_PAGE		BIT(12)
76 #define		NFI_FSM_CUSTDATA	(0xe << 16)
77 #define		NFI_FSM_MASK		(0xf << 16)
78 #define NFI_ADDRCNTR		(0x70)
79 #define		CNTR_MASK		GENMASK(16, 12)
80 #define		ADDRCNTR_SEC_SHIFT	(12)
81 #define		ADDRCNTR_SEC(val) \
82 		(((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
83 #define NFI_STRADDR		(0x80)
84 #define NFI_BYTELEN		(0x84)
85 #define NFI_CSEL		(0x90)
86 #define NFI_FDML(x)		(0xA0 + (x) * sizeof(u32) * 2)
87 #define NFI_FDMM(x)		(0xA4 + (x) * sizeof(u32) * 2)
88 #define NFI_FDM_MAX_SIZE	(8)
89 #define NFI_FDM_MIN_SIZE	(1)
90 #define NFI_MASTER_STA		(0x224)
91 #define		MASTER_STA_MASK		(0x0FFF)
92 #define NFI_EMPTY_THRESH	(0x23C)
93 
94 #define MTK_NAME		"mtk-nand"
95 #define KB(x)			((x) * 1024UL)
96 #define MB(x)			(KB(x) * 1024UL)
97 
98 #define MTK_TIMEOUT		(500000)
99 #define MTK_RESET_TIMEOUT	(1000000)
100 #define MTK_NAND_MAX_NSELS	(2)
101 #define MTK_NFC_MIN_SPARE	(16)
102 #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
103 	((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
104 	(tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
105 
106 struct mtk_nfc_caps {
107 	const u8 *spare_size;
108 	u8 num_spare_size;
109 	u8 pageformat_spare_shift;
110 	u8 nfi_clk_div;
111 	u8 max_sector;
112 	u32 max_sector_size;
113 };
114 
115 struct mtk_nfc_bad_mark_ctl {
116 	void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
117 	u32 sec;
118 	u32 pos;
119 };
120 
121 /*
122  * FDM: region used to store free OOB data
123  */
124 struct mtk_nfc_fdm {
125 	u32 reg_size;
126 	u32 ecc_size;
127 };
128 
129 struct mtk_nfc_nand_chip {
130 	struct list_head node;
131 	struct nand_chip nand;
132 
133 	struct mtk_nfc_bad_mark_ctl bad_mark;
134 	struct mtk_nfc_fdm fdm;
135 	u32 spare_per_sector;
136 
137 	int nsels;
138 	u8 sels[0];
139 	/* nothing after this field */
140 };
141 
142 struct mtk_nfc_clk {
143 	struct clk *nfi_clk;
144 	struct clk *pad_clk;
145 };
146 
147 struct mtk_nfc {
148 	struct nand_controller controller;
149 	struct mtk_ecc_config ecc_cfg;
150 	struct mtk_nfc_clk clk;
151 	struct mtk_ecc *ecc;
152 
153 	struct device *dev;
154 	const struct mtk_nfc_caps *caps;
155 	void __iomem *regs;
156 
157 	struct completion done;
158 	struct list_head chips;
159 
160 	u8 *buffer;
161 };
162 
163 /*
164  * supported spare size of each IP.
165  * order should be the same with the spare size bitfiled defination of
166  * register NFI_PAGEFMT.
167  */
168 static const u8 spare_size_mt2701[] = {
169 	16, 26, 27, 28, 32, 36, 40, 44,	48, 49, 50, 51, 52, 62, 63, 64
170 };
171 
172 static const u8 spare_size_mt2712[] = {
173 	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
174 	74
175 };
176 
177 static const u8 spare_size_mt7622[] = {
178 	16, 26, 27, 28
179 };
180 
181 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
182 {
183 	return container_of(nand, struct mtk_nfc_nand_chip, nand);
184 }
185 
186 static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
187 {
188 	return (u8 *)p + i * chip->ecc.size;
189 }
190 
191 static inline u8 *oob_ptr(struct nand_chip *chip, int i)
192 {
193 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
194 	u8 *poi;
195 
196 	/* map the sector's FDM data to free oob:
197 	 * the beginning of the oob area stores the FDM data of bad mark sectors
198 	 */
199 
200 	if (i < mtk_nand->bad_mark.sec)
201 		poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
202 	else if (i == mtk_nand->bad_mark.sec)
203 		poi = chip->oob_poi;
204 	else
205 		poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
206 
207 	return poi;
208 }
209 
210 static inline int mtk_data_len(struct nand_chip *chip)
211 {
212 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
213 
214 	return chip->ecc.size + mtk_nand->spare_per_sector;
215 }
216 
217 static inline u8 *mtk_data_ptr(struct nand_chip *chip,  int i)
218 {
219 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
220 
221 	return nfc->buffer + i * mtk_data_len(chip);
222 }
223 
224 static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
225 {
226 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
227 
228 	return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
229 }
230 
231 static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
232 {
233 	writel(val, nfc->regs + reg);
234 }
235 
236 static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
237 {
238 	writew(val, nfc->regs + reg);
239 }
240 
241 static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
242 {
243 	writeb(val, nfc->regs + reg);
244 }
245 
246 static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
247 {
248 	return readl_relaxed(nfc->regs + reg);
249 }
250 
251 static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
252 {
253 	return readw_relaxed(nfc->regs + reg);
254 }
255 
256 static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
257 {
258 	return readb_relaxed(nfc->regs + reg);
259 }
260 
261 static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
262 {
263 	struct device *dev = nfc->dev;
264 	u32 val;
265 	int ret;
266 
267 	/* reset all registers and force the NFI master to terminate */
268 	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
269 
270 	/* wait for the master to finish the last transaction */
271 	ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
272 				 !(val & MASTER_STA_MASK), 50,
273 				 MTK_RESET_TIMEOUT);
274 	if (ret)
275 		dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
276 			 NFI_MASTER_STA, val);
277 
278 	/* ensure any status register affected by the NFI master is reset */
279 	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
280 	nfi_writew(nfc, STAR_DE, NFI_STRDATA);
281 }
282 
283 static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
284 {
285 	struct device *dev = nfc->dev;
286 	u32 val;
287 	int ret;
288 
289 	nfi_writel(nfc, command, NFI_CMD);
290 
291 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
292 					!(val & STA_CMD), 10,  MTK_TIMEOUT);
293 	if (ret) {
294 		dev_warn(dev, "nfi core timed out entering command mode\n");
295 		return -EIO;
296 	}
297 
298 	return 0;
299 }
300 
301 static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
302 {
303 	struct device *dev = nfc->dev;
304 	u32 val;
305 	int ret;
306 
307 	nfi_writel(nfc, addr, NFI_COLADDR);
308 	nfi_writel(nfc, 0, NFI_ROWADDR);
309 	nfi_writew(nfc, 1, NFI_ADDRNOB);
310 
311 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
312 					!(val & STA_ADDR), 10, MTK_TIMEOUT);
313 	if (ret) {
314 		dev_warn(dev, "nfi core timed out entering address mode\n");
315 		return -EIO;
316 	}
317 
318 	return 0;
319 }
320 
321 static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
322 {
323 	struct nand_chip *chip = mtd_to_nand(mtd);
324 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
325 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
326 	u32 fmt, spare, i;
327 
328 	if (!mtd->writesize)
329 		return 0;
330 
331 	spare = mtk_nand->spare_per_sector;
332 
333 	switch (mtd->writesize) {
334 	case 512:
335 		fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
336 		break;
337 	case KB(2):
338 		if (chip->ecc.size == 512)
339 			fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
340 		else
341 			fmt = PAGEFMT_512_2K;
342 		break;
343 	case KB(4):
344 		if (chip->ecc.size == 512)
345 			fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
346 		else
347 			fmt = PAGEFMT_2K_4K;
348 		break;
349 	case KB(8):
350 		if (chip->ecc.size == 512)
351 			fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
352 		else
353 			fmt = PAGEFMT_4K_8K;
354 		break;
355 	case KB(16):
356 		fmt = PAGEFMT_8K_16K;
357 		break;
358 	default:
359 		dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
360 		return -EINVAL;
361 	}
362 
363 	/*
364 	 * the hardware will double the value for this eccsize, so we need to
365 	 * halve it
366 	 */
367 	if (chip->ecc.size == 1024)
368 		spare >>= 1;
369 
370 	for (i = 0; i < nfc->caps->num_spare_size; i++) {
371 		if (nfc->caps->spare_size[i] == spare)
372 			break;
373 	}
374 
375 	if (i == nfc->caps->num_spare_size) {
376 		dev_err(nfc->dev, "invalid spare size %d\n", spare);
377 		return -EINVAL;
378 	}
379 
380 	fmt |= i << nfc->caps->pageformat_spare_shift;
381 
382 	fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
383 	fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
384 	nfi_writel(nfc, fmt, NFI_PAGEFMT);
385 
386 	nfc->ecc_cfg.strength = chip->ecc.strength;
387 	nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
388 
389 	return 0;
390 }
391 
392 static void mtk_nfc_select_chip(struct nand_chip *nand, int chip)
393 {
394 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
395 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
396 
397 	if (chip < 0)
398 		return;
399 
400 	mtk_nfc_hw_runtime_config(nand_to_mtd(nand));
401 
402 	nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
403 }
404 
405 static int mtk_nfc_dev_ready(struct nand_chip *nand)
406 {
407 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
408 
409 	if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
410 		return 0;
411 
412 	return 1;
413 }
414 
415 static void mtk_nfc_cmd_ctrl(struct nand_chip *chip, int dat,
416 			     unsigned int ctrl)
417 {
418 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
419 
420 	if (ctrl & NAND_ALE) {
421 		mtk_nfc_send_address(nfc, dat);
422 	} else if (ctrl & NAND_CLE) {
423 		mtk_nfc_hw_reset(nfc);
424 
425 		nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
426 		mtk_nfc_send_command(nfc, dat);
427 	}
428 }
429 
430 static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
431 {
432 	int rc;
433 	u8 val;
434 
435 	rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
436 				       val & PIO_DI_RDY, 10, MTK_TIMEOUT);
437 	if (rc < 0)
438 		dev_err(nfc->dev, "data not ready\n");
439 }
440 
441 static inline u8 mtk_nfc_read_byte(struct nand_chip *chip)
442 {
443 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
444 	u32 reg;
445 
446 	/* after each byte read, the NFI_STA reg is reset by the hardware */
447 	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
448 	if (reg != NFI_FSM_CUSTDATA) {
449 		reg = nfi_readw(nfc, NFI_CNFG);
450 		reg |= CNFG_BYTE_RW | CNFG_READ_EN;
451 		nfi_writew(nfc, reg, NFI_CNFG);
452 
453 		/*
454 		 * set to max sector to allow the HW to continue reading over
455 		 * unaligned accesses
456 		 */
457 		reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
458 		nfi_writel(nfc, reg, NFI_CON);
459 
460 		/* trigger to fetch data */
461 		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
462 	}
463 
464 	mtk_nfc_wait_ioready(nfc);
465 
466 	return nfi_readb(nfc, NFI_DATAR);
467 }
468 
469 static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
470 {
471 	int i;
472 
473 	for (i = 0; i < len; i++)
474 		buf[i] = mtk_nfc_read_byte(chip);
475 }
476 
477 static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte)
478 {
479 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
480 	u32 reg;
481 
482 	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
483 
484 	if (reg != NFI_FSM_CUSTDATA) {
485 		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
486 		nfi_writew(nfc, reg, NFI_CNFG);
487 
488 		reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
489 		nfi_writel(nfc, reg, NFI_CON);
490 
491 		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
492 	}
493 
494 	mtk_nfc_wait_ioready(nfc);
495 	nfi_writeb(nfc, byte, NFI_DATAW);
496 }
497 
498 static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
499 {
500 	int i;
501 
502 	for (i = 0; i < len; i++)
503 		mtk_nfc_write_byte(chip, buf[i]);
504 }
505 
506 static int mtk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
507 					const struct nand_data_interface *conf)
508 {
509 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
510 	const struct nand_sdr_timings *timings;
511 	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
512 
513 	timings = nand_get_sdr_timings(conf);
514 	if (IS_ERR(timings))
515 		return -ENOTSUPP;
516 
517 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
518 		return 0;
519 
520 	rate = clk_get_rate(nfc->clk.nfi_clk);
521 	/* There is a frequency divider in some IPs */
522 	rate /= nfc->caps->nfi_clk_div;
523 
524 	/* turn clock rate into KHZ */
525 	rate /= 1000;
526 
527 	tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
528 	tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
529 	tpoecs &= 0xf;
530 
531 	tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
532 	tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
533 	tprecs &= 0x3f;
534 
535 	/* sdr interface has no tCR which means CE# low to RE# low */
536 	tc2r = 0;
537 
538 	tw2r = timings->tWHR_min / 1000;
539 	tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
540 	tw2r = DIV_ROUND_UP(tw2r - 1, 2);
541 	tw2r &= 0xf;
542 
543 	twh = max(timings->tREH_min, timings->tWH_min) / 1000;
544 	twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
545 	twh &= 0xf;
546 
547 	twst = timings->tWP_min / 1000;
548 	twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
549 	twst &= 0xf;
550 
551 	trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
552 	trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
553 	trlt &= 0xf;
554 
555 	/*
556 	 * ACCON: access timing control register
557 	 * -------------------------------------
558 	 * 31:28: tpoecs, minimum required time for CS post pulling down after
559 	 *        accessing the device
560 	 * 27:22: tprecs, minimum required time for CS pre pulling down before
561 	 *        accessing the device
562 	 * 21:16: tc2r, minimum required time from NCEB low to NREB low
563 	 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
564 	 * 11:08: twh, write enable hold time
565 	 * 07:04: twst, write wait states
566 	 * 03:00: trlt, read wait states
567 	 */
568 	trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
569 	nfi_writel(nfc, trlt, NFI_ACCCON);
570 
571 	return 0;
572 }
573 
574 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
575 {
576 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
577 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
578 	int size = chip->ecc.size + mtk_nand->fdm.reg_size;
579 
580 	nfc->ecc_cfg.mode = ECC_DMA_MODE;
581 	nfc->ecc_cfg.op = ECC_ENCODE;
582 
583 	return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
584 }
585 
586 static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
587 {
588 	/* nop */
589 }
590 
591 static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
592 {
593 	struct nand_chip *chip = mtd_to_nand(mtd);
594 	struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
595 	u32 bad_pos = nand->bad_mark.pos;
596 
597 	if (raw)
598 		bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
599 	else
600 		bad_pos += nand->bad_mark.sec * chip->ecc.size;
601 
602 	swap(chip->oob_poi[0], buf[bad_pos]);
603 }
604 
605 static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
606 				  u32 len, const u8 *buf)
607 {
608 	struct nand_chip *chip = mtd_to_nand(mtd);
609 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
610 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
611 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
612 	u32 start, end;
613 	int i, ret;
614 
615 	start = offset / chip->ecc.size;
616 	end = DIV_ROUND_UP(offset + len, chip->ecc.size);
617 
618 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
619 	for (i = 0; i < chip->ecc.steps; i++) {
620 		memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
621 		       chip->ecc.size);
622 
623 		if (start > i || i >= end)
624 			continue;
625 
626 		if (i == mtk_nand->bad_mark.sec)
627 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
628 
629 		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
630 
631 		/* program the CRC back to the OOB */
632 		ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
633 		if (ret < 0)
634 			return ret;
635 	}
636 
637 	return 0;
638 }
639 
640 static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
641 {
642 	struct nand_chip *chip = mtd_to_nand(mtd);
643 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
644 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
645 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
646 	u32 i;
647 
648 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
649 	for (i = 0; i < chip->ecc.steps; i++) {
650 		if (buf)
651 			memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
652 			       chip->ecc.size);
653 
654 		if (i == mtk_nand->bad_mark.sec)
655 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
656 
657 		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
658 	}
659 }
660 
661 static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
662 				    u32 sectors)
663 {
664 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
665 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
666 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
667 	u32 vall, valm;
668 	u8 *oobptr;
669 	int i, j;
670 
671 	for (i = 0; i < sectors; i++) {
672 		oobptr = oob_ptr(chip, start + i);
673 		vall = nfi_readl(nfc, NFI_FDML(i));
674 		valm = nfi_readl(nfc, NFI_FDMM(i));
675 
676 		for (j = 0; j < fdm->reg_size; j++)
677 			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
678 	}
679 }
680 
681 static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
682 {
683 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
684 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
685 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
686 	u32 vall, valm;
687 	u8 *oobptr;
688 	int i, j;
689 
690 	for (i = 0; i < chip->ecc.steps; i++) {
691 		oobptr = oob_ptr(chip, i);
692 		vall = 0;
693 		valm = 0;
694 		for (j = 0; j < 8; j++) {
695 			if (j < 4)
696 				vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
697 						<< (j * 8);
698 			else
699 				valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
700 						<< ((j - 4) * 8);
701 		}
702 		nfi_writel(nfc, vall, NFI_FDML(i));
703 		nfi_writel(nfc, valm, NFI_FDMM(i));
704 	}
705 }
706 
707 static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
708 				 const u8 *buf, int page, int len)
709 {
710 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
711 	struct device *dev = nfc->dev;
712 	dma_addr_t addr;
713 	u32 reg;
714 	int ret;
715 
716 	addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
717 	ret = dma_mapping_error(nfc->dev, addr);
718 	if (ret) {
719 		dev_err(nfc->dev, "dma mapping error\n");
720 		return -EINVAL;
721 	}
722 
723 	reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
724 	nfi_writew(nfc, reg, NFI_CNFG);
725 
726 	nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
727 	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
728 	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
729 
730 	init_completion(&nfc->done);
731 
732 	reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
733 	nfi_writel(nfc, reg, NFI_CON);
734 	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
735 
736 	ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
737 	if (!ret) {
738 		dev_err(dev, "program ahb done timeout\n");
739 		nfi_writew(nfc, 0, NFI_INTR_EN);
740 		ret = -ETIMEDOUT;
741 		goto timeout;
742 	}
743 
744 	ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
745 					ADDRCNTR_SEC(reg) >= chip->ecc.steps,
746 					10, MTK_TIMEOUT);
747 	if (ret)
748 		dev_err(dev, "hwecc write timeout\n");
749 
750 timeout:
751 
752 	dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
753 	nfi_writel(nfc, 0, NFI_CON);
754 
755 	return ret;
756 }
757 
758 static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
759 			      const u8 *buf, int page, int raw)
760 {
761 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
762 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
763 	size_t len;
764 	const u8 *bufpoi;
765 	u32 reg;
766 	int ret;
767 
768 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
769 
770 	if (!raw) {
771 		/* OOB => FDM: from register,  ECC: from HW */
772 		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
773 		nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
774 
775 		nfc->ecc_cfg.op = ECC_ENCODE;
776 		nfc->ecc_cfg.mode = ECC_NFI_MODE;
777 		ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
778 		if (ret) {
779 			/* clear NFI config */
780 			reg = nfi_readw(nfc, NFI_CNFG);
781 			reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
782 			nfi_writew(nfc, reg, NFI_CNFG);
783 
784 			return ret;
785 		}
786 
787 		memcpy(nfc->buffer, buf, mtd->writesize);
788 		mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
789 		bufpoi = nfc->buffer;
790 
791 		/* write OOB into the FDM registers (OOB area in MTK NAND) */
792 		mtk_nfc_write_fdm(chip);
793 	} else {
794 		bufpoi = buf;
795 	}
796 
797 	len = mtd->writesize + (raw ? mtd->oobsize : 0);
798 	ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
799 
800 	if (!raw)
801 		mtk_ecc_disable(nfc->ecc);
802 
803 	if (ret)
804 		return ret;
805 
806 	return nand_prog_page_end_op(chip);
807 }
808 
809 static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
810 				    int oob_on, int page)
811 {
812 	return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
813 }
814 
815 static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
816 				  int oob_on, int pg)
817 {
818 	struct mtd_info *mtd = nand_to_mtd(chip);
819 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
820 
821 	mtk_nfc_format_page(mtd, buf);
822 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
823 }
824 
825 static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
826 				       u32 data_len, const u8 *buf,
827 				       int oob_on, int page)
828 {
829 	struct mtd_info *mtd = nand_to_mtd(chip);
830 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
831 	int ret;
832 
833 	ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
834 	if (ret < 0)
835 		return ret;
836 
837 	/* use the data in the private buffer (now with FDM and CRC) */
838 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
839 }
840 
841 static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page)
842 {
843 	return mtk_nfc_write_page_raw(chip, NULL, 1, page);
844 }
845 
846 static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
847 {
848 	struct nand_chip *chip = mtd_to_nand(mtd);
849 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
850 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
851 	struct mtk_ecc_stats stats;
852 	int rc, i;
853 
854 	rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
855 	if (rc) {
856 		memset(buf, 0xff, sectors * chip->ecc.size);
857 		for (i = 0; i < sectors; i++)
858 			memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
859 		return 0;
860 	}
861 
862 	mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
863 	mtd->ecc_stats.corrected += stats.corrected;
864 	mtd->ecc_stats.failed += stats.failed;
865 
866 	return stats.bitflips;
867 }
868 
869 static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
870 				u32 data_offs, u32 readlen,
871 				u8 *bufpoi, int page, int raw)
872 {
873 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
874 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
875 	u32 spare = mtk_nand->spare_per_sector;
876 	u32 column, sectors, start, end, reg;
877 	dma_addr_t addr;
878 	int bitflips;
879 	size_t len;
880 	u8 *buf;
881 	int rc;
882 
883 	start = data_offs / chip->ecc.size;
884 	end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
885 
886 	sectors = end - start;
887 	column = start * (chip->ecc.size + spare);
888 
889 	len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
890 	buf = bufpoi + start * chip->ecc.size;
891 
892 	nand_read_page_op(chip, page, column, NULL, 0);
893 
894 	addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
895 	rc = dma_mapping_error(nfc->dev, addr);
896 	if (rc) {
897 		dev_err(nfc->dev, "dma mapping error\n");
898 
899 		return -EINVAL;
900 	}
901 
902 	reg = nfi_readw(nfc, NFI_CNFG);
903 	reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
904 	if (!raw) {
905 		reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
906 		nfi_writew(nfc, reg, NFI_CNFG);
907 
908 		nfc->ecc_cfg.mode = ECC_NFI_MODE;
909 		nfc->ecc_cfg.sectors = sectors;
910 		nfc->ecc_cfg.op = ECC_DECODE;
911 		rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
912 		if (rc) {
913 			dev_err(nfc->dev, "ecc enable\n");
914 			/* clear NFI_CNFG */
915 			reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
916 				CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
917 			nfi_writew(nfc, reg, NFI_CNFG);
918 			dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
919 
920 			return rc;
921 		}
922 	} else {
923 		nfi_writew(nfc, reg, NFI_CNFG);
924 	}
925 
926 	nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
927 	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
928 	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
929 
930 	init_completion(&nfc->done);
931 	reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
932 	nfi_writel(nfc, reg, NFI_CON);
933 	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
934 
935 	rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
936 	if (!rc)
937 		dev_warn(nfc->dev, "read ahb/dma done timeout\n");
938 
939 	rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
940 				       ADDRCNTR_SEC(reg) >= sectors, 10,
941 				       MTK_TIMEOUT);
942 	if (rc < 0) {
943 		dev_err(nfc->dev, "subpage done timeout\n");
944 		bitflips = -EIO;
945 	} else {
946 		bitflips = 0;
947 		if (!raw) {
948 			rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
949 			bitflips = rc < 0 ? -ETIMEDOUT :
950 				mtk_nfc_update_ecc_stats(mtd, buf, sectors);
951 			mtk_nfc_read_fdm(chip, start, sectors);
952 		}
953 	}
954 
955 	dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
956 
957 	if (raw)
958 		goto done;
959 
960 	mtk_ecc_disable(nfc->ecc);
961 
962 	if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
963 		mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
964 done:
965 	nfi_writel(nfc, 0, NFI_CON);
966 
967 	return bitflips;
968 }
969 
970 static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off,
971 				      u32 len, u8 *p, int pg)
972 {
973 	return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg,
974 				    0);
975 }
976 
977 static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
978 				   int pg)
979 {
980 	struct mtd_info *mtd = nand_to_mtd(chip);
981 
982 	return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
983 }
984 
985 static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
986 				 int page)
987 {
988 	struct mtd_info *mtd = nand_to_mtd(chip);
989 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
990 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
991 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
992 	int i, ret;
993 
994 	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
995 	ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
996 				   page, 1);
997 	if (ret < 0)
998 		return ret;
999 
1000 	for (i = 0; i < chip->ecc.steps; i++) {
1001 		memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
1002 
1003 		if (i == mtk_nand->bad_mark.sec)
1004 			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
1005 
1006 		if (buf)
1007 			memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
1008 			       chip->ecc.size);
1009 	}
1010 
1011 	return ret;
1012 }
1013 
1014 static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page)
1015 {
1016 	return mtk_nfc_read_page_raw(chip, NULL, 1, page);
1017 }
1018 
1019 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
1020 {
1021 	/*
1022 	 * CNRNB: nand ready/busy register
1023 	 * -------------------------------
1024 	 * 7:4: timeout register for polling the NAND busy/ready signal
1025 	 * 0  : poll the status of the busy/ready signal after [7:4]*16 cycles.
1026 	 */
1027 	nfi_writew(nfc, 0xf1, NFI_CNRNB);
1028 	nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1029 
1030 	mtk_nfc_hw_reset(nfc);
1031 
1032 	nfi_readl(nfc, NFI_INTR_STA);
1033 	nfi_writel(nfc, 0, NFI_INTR_EN);
1034 }
1035 
1036 static irqreturn_t mtk_nfc_irq(int irq, void *id)
1037 {
1038 	struct mtk_nfc *nfc = id;
1039 	u16 sta, ien;
1040 
1041 	sta = nfi_readw(nfc, NFI_INTR_STA);
1042 	ien = nfi_readw(nfc, NFI_INTR_EN);
1043 
1044 	if (!(sta & ien))
1045 		return IRQ_NONE;
1046 
1047 	nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1048 	complete(&nfc->done);
1049 
1050 	return IRQ_HANDLED;
1051 }
1052 
1053 static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
1054 {
1055 	int ret;
1056 
1057 	ret = clk_prepare_enable(clk->nfi_clk);
1058 	if (ret) {
1059 		dev_err(dev, "failed to enable nfi clk\n");
1060 		return ret;
1061 	}
1062 
1063 	ret = clk_prepare_enable(clk->pad_clk);
1064 	if (ret) {
1065 		dev_err(dev, "failed to enable pad clk\n");
1066 		clk_disable_unprepare(clk->nfi_clk);
1067 		return ret;
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
1074 {
1075 	clk_disable_unprepare(clk->nfi_clk);
1076 	clk_disable_unprepare(clk->pad_clk);
1077 }
1078 
1079 static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1080 				  struct mtd_oob_region *oob_region)
1081 {
1082 	struct nand_chip *chip = mtd_to_nand(mtd);
1083 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1084 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1085 	u32 eccsteps;
1086 
1087 	eccsteps = mtd->writesize / chip->ecc.size;
1088 
1089 	if (section >= eccsteps)
1090 		return -ERANGE;
1091 
1092 	oob_region->length = fdm->reg_size - fdm->ecc_size;
1093 	oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1094 
1095 	return 0;
1096 }
1097 
1098 static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1099 				 struct mtd_oob_region *oob_region)
1100 {
1101 	struct nand_chip *chip = mtd_to_nand(mtd);
1102 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1103 	u32 eccsteps;
1104 
1105 	if (section)
1106 		return -ERANGE;
1107 
1108 	eccsteps = mtd->writesize / chip->ecc.size;
1109 	oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1110 	oob_region->length = mtd->oobsize - oob_region->offset;
1111 
1112 	return 0;
1113 }
1114 
1115 static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1116 	.free = mtk_nfc_ooblayout_free,
1117 	.ecc = mtk_nfc_ooblayout_ecc,
1118 };
1119 
1120 static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1121 {
1122 	struct nand_chip *nand = mtd_to_nand(mtd);
1123 	struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1124 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1125 	u32 ecc_bytes;
1126 
1127 	ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
1128 				 mtk_ecc_get_parity_bits(nfc->ecc), 8);
1129 
1130 	fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1131 	if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1132 		fdm->reg_size = NFI_FDM_MAX_SIZE;
1133 
1134 	/* bad block mark storage */
1135 	fdm->ecc_size = 1;
1136 }
1137 
1138 static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1139 				     struct mtd_info *mtd)
1140 {
1141 	struct nand_chip *nand = mtd_to_nand(mtd);
1142 
1143 	if (mtd->writesize == 512) {
1144 		bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1145 	} else {
1146 		bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1147 		bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1148 		bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1149 	}
1150 }
1151 
1152 static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1153 {
1154 	struct nand_chip *nand = mtd_to_nand(mtd);
1155 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1156 	const u8 *spare = nfc->caps->spare_size;
1157 	u32 eccsteps, i, closest_spare = 0;
1158 
1159 	eccsteps = mtd->writesize / nand->ecc.size;
1160 	*sps = mtd->oobsize / eccsteps;
1161 
1162 	if (nand->ecc.size == 1024)
1163 		*sps >>= 1;
1164 
1165 	if (*sps < MTK_NFC_MIN_SPARE)
1166 		return -EINVAL;
1167 
1168 	for (i = 0; i < nfc->caps->num_spare_size; i++) {
1169 		if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
1170 			closest_spare = i;
1171 			if (*sps == spare[i])
1172 				break;
1173 		}
1174 	}
1175 
1176 	*sps = spare[closest_spare];
1177 
1178 	if (nand->ecc.size == 1024)
1179 		*sps <<= 1;
1180 
1181 	return 0;
1182 }
1183 
1184 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1185 {
1186 	struct nand_chip *nand = mtd_to_nand(mtd);
1187 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
1188 	u32 spare;
1189 	int free, ret;
1190 
1191 	/* support only ecc hw mode */
1192 	if (nand->ecc.mode != NAND_ECC_HW) {
1193 		dev_err(dev, "ecc.mode not supported\n");
1194 		return -EINVAL;
1195 	}
1196 
1197 	/* if optional dt settings not present */
1198 	if (!nand->ecc.size || !nand->ecc.strength) {
1199 		/* use datasheet requirements */
1200 		nand->ecc.strength = nand->ecc_strength_ds;
1201 		nand->ecc.size = nand->ecc_step_ds;
1202 
1203 		/*
1204 		 * align eccstrength and eccsize
1205 		 * this controller only supports 512 and 1024 sizes
1206 		 */
1207 		if (nand->ecc.size < 1024) {
1208 			if (mtd->writesize > 512 &&
1209 			    nfc->caps->max_sector_size > 512) {
1210 				nand->ecc.size = 1024;
1211 				nand->ecc.strength <<= 1;
1212 			} else {
1213 				nand->ecc.size = 512;
1214 			}
1215 		} else {
1216 			nand->ecc.size = 1024;
1217 		}
1218 
1219 		ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
1220 		if (ret)
1221 			return ret;
1222 
1223 		/* calculate oob bytes except ecc parity data */
1224 		free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
1225 			+ 7) >> 3;
1226 		free = spare - free;
1227 
1228 		/*
1229 		 * enhance ecc strength if oob left is bigger than max FDM size
1230 		 * or reduce ecc strength if oob size is not enough for ecc
1231 		 * parity data.
1232 		 */
1233 		if (free > NFI_FDM_MAX_SIZE) {
1234 			spare -= NFI_FDM_MAX_SIZE;
1235 			nand->ecc.strength = (spare << 3) /
1236 					     mtk_ecc_get_parity_bits(nfc->ecc);
1237 		} else if (free < 0) {
1238 			spare -= NFI_FDM_MIN_SIZE;
1239 			nand->ecc.strength = (spare << 3) /
1240 					     mtk_ecc_get_parity_bits(nfc->ecc);
1241 		}
1242 	}
1243 
1244 	mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
1245 
1246 	dev_info(dev, "eccsize %d eccstrength %d\n",
1247 		 nand->ecc.size, nand->ecc.strength);
1248 
1249 	return 0;
1250 }
1251 
1252 static int mtk_nfc_attach_chip(struct nand_chip *chip)
1253 {
1254 	struct mtd_info *mtd = nand_to_mtd(chip);
1255 	struct device *dev = mtd->dev.parent;
1256 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
1257 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1258 	int len;
1259 	int ret;
1260 
1261 	if (chip->options & NAND_BUSWIDTH_16) {
1262 		dev_err(dev, "16bits buswidth not supported");
1263 		return -EINVAL;
1264 	}
1265 
1266 	/* store bbt magic in page, cause OOB is not protected */
1267 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1268 		chip->bbt_options |= NAND_BBT_NO_OOB;
1269 
1270 	ret = mtk_nfc_ecc_init(dev, mtd);
1271 	if (ret)
1272 		return ret;
1273 
1274 	ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
1275 	if (ret)
1276 		return ret;
1277 
1278 	mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
1279 	mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
1280 
1281 	len = mtd->writesize + mtd->oobsize;
1282 	nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1283 	if (!nfc->buffer)
1284 		return  -ENOMEM;
1285 
1286 	return 0;
1287 }
1288 
1289 static const struct nand_controller_ops mtk_nfc_controller_ops = {
1290 	.attach_chip = mtk_nfc_attach_chip,
1291 };
1292 
1293 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1294 				  struct device_node *np)
1295 {
1296 	struct mtk_nfc_nand_chip *chip;
1297 	struct nand_chip *nand;
1298 	struct mtd_info *mtd;
1299 	int nsels;
1300 	u32 tmp;
1301 	int ret;
1302 	int i;
1303 
1304 	if (!of_get_property(np, "reg", &nsels))
1305 		return -ENODEV;
1306 
1307 	nsels /= sizeof(u32);
1308 	if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1309 		dev_err(dev, "invalid reg property size %d\n", nsels);
1310 		return -EINVAL;
1311 	}
1312 
1313 	chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
1314 			    GFP_KERNEL);
1315 	if (!chip)
1316 		return -ENOMEM;
1317 
1318 	chip->nsels = nsels;
1319 	for (i = 0; i < nsels; i++) {
1320 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1321 		if (ret) {
1322 			dev_err(dev, "reg property failure : %d\n", ret);
1323 			return ret;
1324 		}
1325 		chip->sels[i] = tmp;
1326 	}
1327 
1328 	nand = &chip->nand;
1329 	nand->controller = &nfc->controller;
1330 
1331 	nand_set_flash_node(nand, np);
1332 	nand_set_controller_data(nand, nfc);
1333 
1334 	nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
1335 	nand->legacy.dev_ready = mtk_nfc_dev_ready;
1336 	nand->select_chip = mtk_nfc_select_chip;
1337 	nand->legacy.write_byte = mtk_nfc_write_byte;
1338 	nand->legacy.write_buf = mtk_nfc_write_buf;
1339 	nand->legacy.read_byte = mtk_nfc_read_byte;
1340 	nand->legacy.read_buf = mtk_nfc_read_buf;
1341 	nand->legacy.cmd_ctrl = mtk_nfc_cmd_ctrl;
1342 	nand->setup_data_interface = mtk_nfc_setup_data_interface;
1343 
1344 	/* set default mode in case dt entry is missing */
1345 	nand->ecc.mode = NAND_ECC_HW;
1346 
1347 	nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1348 	nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1349 	nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1350 	nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1351 	nand->ecc.write_oob = mtk_nfc_write_oob_std;
1352 
1353 	nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1354 	nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1355 	nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1356 	nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1357 	nand->ecc.read_oob = mtk_nfc_read_oob_std;
1358 
1359 	mtd = nand_to_mtd(nand);
1360 	mtd->owner = THIS_MODULE;
1361 	mtd->dev.parent = dev;
1362 	mtd->name = MTK_NAME;
1363 	mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1364 
1365 	mtk_nfc_hw_init(nfc);
1366 
1367 	ret = nand_scan(nand, nsels);
1368 	if (ret)
1369 		return ret;
1370 
1371 	ret = mtd_device_register(mtd, NULL, 0);
1372 	if (ret) {
1373 		dev_err(dev, "mtd parse partition error\n");
1374 		nand_release(nand);
1375 		return ret;
1376 	}
1377 
1378 	list_add_tail(&chip->node, &nfc->chips);
1379 
1380 	return 0;
1381 }
1382 
1383 static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1384 {
1385 	struct device_node *np = dev->of_node;
1386 	struct device_node *nand_np;
1387 	int ret;
1388 
1389 	for_each_child_of_node(np, nand_np) {
1390 		ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1391 		if (ret) {
1392 			of_node_put(nand_np);
1393 			return ret;
1394 		}
1395 	}
1396 
1397 	return 0;
1398 }
1399 
1400 static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
1401 	.spare_size = spare_size_mt2701,
1402 	.num_spare_size = 16,
1403 	.pageformat_spare_shift = 4,
1404 	.nfi_clk_div = 1,
1405 	.max_sector = 16,
1406 	.max_sector_size = 1024,
1407 };
1408 
1409 static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
1410 	.spare_size = spare_size_mt2712,
1411 	.num_spare_size = 19,
1412 	.pageformat_spare_shift = 16,
1413 	.nfi_clk_div = 2,
1414 	.max_sector = 16,
1415 	.max_sector_size = 1024,
1416 };
1417 
1418 static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
1419 	.spare_size = spare_size_mt7622,
1420 	.num_spare_size = 4,
1421 	.pageformat_spare_shift = 4,
1422 	.nfi_clk_div = 1,
1423 	.max_sector = 8,
1424 	.max_sector_size = 512,
1425 };
1426 
1427 static const struct of_device_id mtk_nfc_id_table[] = {
1428 	{
1429 		.compatible = "mediatek,mt2701-nfc",
1430 		.data = &mtk_nfc_caps_mt2701,
1431 	}, {
1432 		.compatible = "mediatek,mt2712-nfc",
1433 		.data = &mtk_nfc_caps_mt2712,
1434 	}, {
1435 		.compatible = "mediatek,mt7622-nfc",
1436 		.data = &mtk_nfc_caps_mt7622,
1437 	},
1438 	{}
1439 };
1440 MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1441 
1442 static int mtk_nfc_probe(struct platform_device *pdev)
1443 {
1444 	struct device *dev = &pdev->dev;
1445 	struct device_node *np = dev->of_node;
1446 	struct mtk_nfc *nfc;
1447 	struct resource *res;
1448 	int ret, irq;
1449 
1450 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1451 	if (!nfc)
1452 		return -ENOMEM;
1453 
1454 	spin_lock_init(&nfc->controller.lock);
1455 	init_waitqueue_head(&nfc->controller.wq);
1456 	INIT_LIST_HEAD(&nfc->chips);
1457 	nfc->controller.ops = &mtk_nfc_controller_ops;
1458 
1459 	/* probe defer if not ready */
1460 	nfc->ecc = of_mtk_ecc_get(np);
1461 	if (IS_ERR(nfc->ecc))
1462 		return PTR_ERR(nfc->ecc);
1463 	else if (!nfc->ecc)
1464 		return -ENODEV;
1465 
1466 	nfc->caps = of_device_get_match_data(dev);
1467 	nfc->dev = dev;
1468 
1469 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1470 	nfc->regs = devm_ioremap_resource(dev, res);
1471 	if (IS_ERR(nfc->regs)) {
1472 		ret = PTR_ERR(nfc->regs);
1473 		goto release_ecc;
1474 	}
1475 
1476 	nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
1477 	if (IS_ERR(nfc->clk.nfi_clk)) {
1478 		dev_err(dev, "no clk\n");
1479 		ret = PTR_ERR(nfc->clk.nfi_clk);
1480 		goto release_ecc;
1481 	}
1482 
1483 	nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
1484 	if (IS_ERR(nfc->clk.pad_clk)) {
1485 		dev_err(dev, "no pad clk\n");
1486 		ret = PTR_ERR(nfc->clk.pad_clk);
1487 		goto release_ecc;
1488 	}
1489 
1490 	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1491 	if (ret)
1492 		goto release_ecc;
1493 
1494 	irq = platform_get_irq(pdev, 0);
1495 	if (irq < 0) {
1496 		dev_err(dev, "no nfi irq resource\n");
1497 		ret = -EINVAL;
1498 		goto clk_disable;
1499 	}
1500 
1501 	ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1502 	if (ret) {
1503 		dev_err(dev, "failed to request nfi irq\n");
1504 		goto clk_disable;
1505 	}
1506 
1507 	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1508 	if (ret) {
1509 		dev_err(dev, "failed to set dma mask\n");
1510 		goto clk_disable;
1511 	}
1512 
1513 	platform_set_drvdata(pdev, nfc);
1514 
1515 	ret = mtk_nfc_nand_chips_init(dev, nfc);
1516 	if (ret) {
1517 		dev_err(dev, "failed to init nand chips\n");
1518 		goto clk_disable;
1519 	}
1520 
1521 	return 0;
1522 
1523 clk_disable:
1524 	mtk_nfc_disable_clk(&nfc->clk);
1525 
1526 release_ecc:
1527 	mtk_ecc_release(nfc->ecc);
1528 
1529 	return ret;
1530 }
1531 
1532 static int mtk_nfc_remove(struct platform_device *pdev)
1533 {
1534 	struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1535 	struct mtk_nfc_nand_chip *chip;
1536 
1537 	while (!list_empty(&nfc->chips)) {
1538 		chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
1539 					node);
1540 		nand_release(&chip->nand);
1541 		list_del(&chip->node);
1542 	}
1543 
1544 	mtk_ecc_release(nfc->ecc);
1545 	mtk_nfc_disable_clk(&nfc->clk);
1546 
1547 	return 0;
1548 }
1549 
1550 #ifdef CONFIG_PM_SLEEP
1551 static int mtk_nfc_suspend(struct device *dev)
1552 {
1553 	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1554 
1555 	mtk_nfc_disable_clk(&nfc->clk);
1556 
1557 	return 0;
1558 }
1559 
1560 static int mtk_nfc_resume(struct device *dev)
1561 {
1562 	struct mtk_nfc *nfc = dev_get_drvdata(dev);
1563 	struct mtk_nfc_nand_chip *chip;
1564 	struct nand_chip *nand;
1565 	int ret;
1566 	u32 i;
1567 
1568 	udelay(200);
1569 
1570 	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1571 	if (ret)
1572 		return ret;
1573 
1574 	/* reset NAND chip if VCC was powered off */
1575 	list_for_each_entry(chip, &nfc->chips, node) {
1576 		nand = &chip->nand;
1577 		for (i = 0; i < chip->nsels; i++)
1578 			nand_reset(nand, i);
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1585 #endif
1586 
1587 static struct platform_driver mtk_nfc_driver = {
1588 	.probe  = mtk_nfc_probe,
1589 	.remove = mtk_nfc_remove,
1590 	.driver = {
1591 		.name  = MTK_NAME,
1592 		.of_match_table = mtk_nfc_id_table,
1593 #ifdef CONFIG_PM_SLEEP
1594 		.pm = &mtk_nfc_pm_ops,
1595 #endif
1596 	},
1597 };
1598 
1599 module_platform_driver(mtk_nfc_driver);
1600 
1601 MODULE_LICENSE("GPL");
1602 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
1603 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
1604