1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Marvell NAND flash controller driver
4  *
5  * Copyright (C) 2017 Marvell
6  * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7  *
8  */
9 
10 #include <linux/module.h>
11 #include <linux/clk.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/of_platform.h>
14 #include <linux/iopoll.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/regmap.h>
19 #include <asm/unaligned.h>
20 
21 #include <linux/dmaengine.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dma/pxa-dma.h>
24 #include <linux/platform_data/mtd-nand-pxa3xx.h>
25 
26 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
27 #define FIFO_DEPTH		8
28 #define FIFO_REP(x)		(x / sizeof(u32))
29 #define BCH_SEQ_READS		(32 / FIFO_DEPTH)
30 /* NFC does not support transfers of larger chunks at a time */
31 #define MAX_CHUNK_SIZE		2112
32 /* NFCv1 cannot read more that 7 bytes of ID */
33 #define NFCV1_READID_LEN	7
34 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
35 #define POLL_PERIOD		0
36 #define POLL_TIMEOUT		100000
37 /* Interrupt maximum wait period in ms */
38 #define IRQ_TIMEOUT		1000
39 /* Latency in clock cycles between SoC pins and NFC logic */
40 #define MIN_RD_DEL_CNT		3
41 /* Maximum number of contiguous address cycles */
42 #define MAX_ADDRESS_CYC_NFCV1	5
43 #define MAX_ADDRESS_CYC_NFCV2	7
44 /* System control registers/bits to enable the NAND controller on some SoCs */
45 #define GENCONF_SOC_DEVICE_MUX	0x208
46 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
47 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
48 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
49 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
50 #define GENCONF_CLK_GATING_CTRL	0x220
51 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
52 #define GENCONF_ND_CLK_CTRL	0x700
53 #define GENCONF_ND_CLK_CTRL_EN	BIT(0)
54 
55 /* NAND controller data flash control register */
56 #define NDCR			0x00
57 #define NDCR_ALL_INT		GENMASK(11, 0)
58 #define NDCR_CS1_CMDDM		BIT(7)
59 #define NDCR_CS0_CMDDM		BIT(8)
60 #define NDCR_RDYM		BIT(11)
61 #define NDCR_ND_ARB_EN		BIT(12)
62 #define NDCR_RA_START		BIT(15)
63 #define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16)
64 #define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0)
65 #define NDCR_DWIDTH_M		BIT(26)
66 #define NDCR_DWIDTH_C		BIT(27)
67 #define NDCR_ND_RUN		BIT(28)
68 #define NDCR_DMA_EN		BIT(29)
69 #define NDCR_ECC_EN		BIT(30)
70 #define NDCR_SPARE_EN		BIT(31)
71 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
72 				    NDCR_DWIDTH_M | NDCR_DWIDTH_C))
73 
74 /* NAND interface timing parameter 0 register */
75 #define NDTR0			0x04
76 #define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0)
77 #define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3)
78 #define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3)
79 #define NDTR0_SEL_NRE_EDGE	BIT(7)
80 #define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8)
81 #define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11)
82 #define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16)
83 #define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19)
84 #define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22)
85 #define NDTR0_SELCNTR		BIT(26)
86 #define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27)
87 
88 /* NAND interface timing parameter 1 register */
89 #define NDTR1			0x0C
90 #define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0)
91 #define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4)
92 #define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8)
93 #define NDTR1_PRESCALE		BIT(14)
94 #define NDTR1_WAIT_MODE		BIT(15)
95 #define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16)
96 
97 /* NAND controller status register */
98 #define NDSR			0x14
99 #define NDSR_WRCMDREQ		BIT(0)
100 #define NDSR_RDDREQ		BIT(1)
101 #define NDSR_WRDREQ		BIT(2)
102 #define NDSR_CORERR		BIT(3)
103 #define NDSR_UNCERR		BIT(4)
104 #define NDSR_CMDD(cs)		BIT(8 - cs)
105 #define NDSR_RDY(rb)		BIT(11 + rb)
106 #define NDSR_ERRCNT(x)		((x >> 16) & 0x1F)
107 
108 /* NAND ECC control register */
109 #define NDECCCTRL		0x28
110 #define NDECCCTRL_BCH_EN	BIT(0)
111 
112 /* NAND controller data buffer register */
113 #define NDDB			0x40
114 
115 /* NAND controller command buffer 0 register */
116 #define NDCB0			0x48
117 #define NDCB0_CMD1(x)		((x & 0xFF) << 0)
118 #define NDCB0_CMD2(x)		((x & 0xFF) << 8)
119 #define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16)
120 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
121 #define NDCB0_DBC		BIT(19)
122 #define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21)
123 #define NDCB0_CSEL		BIT(24)
124 #define NDCB0_RDY_BYP		BIT(27)
125 #define NDCB0_LEN_OVRD		BIT(28)
126 #define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29)
127 
128 /* NAND controller command buffer 1 register */
129 #define NDCB1			0x4C
130 #define NDCB1_COLS(x)		((x & 0xFFFF) << 0)
131 #define NDCB1_ADDRS_PAGE(x)	(x << 16)
132 
133 /* NAND controller command buffer 2 register */
134 #define NDCB2			0x50
135 #define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0)
136 #define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0)
137 
138 /* NAND controller command buffer 3 register */
139 #define NDCB3			0x54
140 #define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16)
141 #define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24)
142 
143 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
144 #define TYPE_READ		0
145 #define TYPE_WRITE		1
146 #define TYPE_ERASE		2
147 #define TYPE_READ_ID		3
148 #define TYPE_STATUS		4
149 #define TYPE_RESET		5
150 #define TYPE_NAKED_CMD		6
151 #define TYPE_NAKED_ADDR		7
152 #define TYPE_MASK		7
153 #define XTYPE_MONOLITHIC_RW	0
154 #define XTYPE_LAST_NAKED_RW	1
155 #define XTYPE_FINAL_COMMAND	3
156 #define XTYPE_READ		4
157 #define XTYPE_WRITE_DISPATCH	4
158 #define XTYPE_NAKED_RW		5
159 #define XTYPE_COMMAND_DISPATCH	6
160 #define XTYPE_MASK		7
161 
162 /**
163  * Marvell ECC engine works differently than the others, in order to limit the
164  * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
165  * per subpage, and depending on a the desired strength needed by the NAND chip,
166  * a particular layout mixing data/spare/ecc is defined, with a possible last
167  * chunk smaller that the others.
168  *
169  * @writesize:		Full page size on which the layout applies
170  * @chunk:		Desired ECC chunk size on which the layout applies
171  * @strength:		Desired ECC strength (per chunk size bytes) on which the
172  *			layout applies
173  * @nchunks:		Total number of chunks
174  * @full_chunk_cnt:	Number of full-sized chunks, which is the number of
175  *			repetitions of the pattern:
176  *			(data_bytes + spare_bytes + ecc_bytes).
177  * @data_bytes:		Number of data bytes per chunk
178  * @spare_bytes:	Number of spare bytes per chunk
179  * @ecc_bytes:		Number of ecc bytes per chunk
180  * @last_data_bytes:	Number of data bytes in the last chunk
181  * @last_spare_bytes:	Number of spare bytes in the last chunk
182  * @last_ecc_bytes:	Number of ecc bytes in the last chunk
183  */
184 struct marvell_hw_ecc_layout {
185 	/* Constraints */
186 	int writesize;
187 	int chunk;
188 	int strength;
189 	/* Corresponding layout */
190 	int nchunks;
191 	int full_chunk_cnt;
192 	int data_bytes;
193 	int spare_bytes;
194 	int ecc_bytes;
195 	int last_data_bytes;
196 	int last_spare_bytes;
197 	int last_ecc_bytes;
198 };
199 
200 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\
201 	{								\
202 		.writesize = ws,					\
203 		.chunk = dc,						\
204 		.strength = ds,						\
205 		.nchunks = nc,						\
206 		.full_chunk_cnt = fcc,					\
207 		.data_bytes = db,					\
208 		.spare_bytes = sb,					\
209 		.ecc_bytes = eb,					\
210 		.last_data_bytes = ldb,					\
211 		.last_spare_bytes = lsb,				\
212 		.last_ecc_bytes = leb,					\
213 	}
214 
215 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
216 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
217 	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
218 	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
219 	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
220 	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
221 	MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
222 };
223 
224 /**
225  * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
226  * is made by a field in NDCB0 register, and in another field in NDCB2 register.
227  * The datasheet describes the logic with an error: ADDR5 field is once
228  * declared at the beginning of NDCB2, and another time at its end. Because the
229  * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
230  * to use the last bit of this field instead of the first ones.
231  *
232  * @cs:			Wanted CE lane.
233  * @ndcb0_csel:		Value of the NDCB0 register with or without the flag
234  *			selecting the wanted CE lane. This is set once when
235  *			the Device Tree is probed.
236  * @rb:			Ready/Busy pin for the flash chip
237  */
238 struct marvell_nand_chip_sel {
239 	unsigned int cs;
240 	u32 ndcb0_csel;
241 	unsigned int rb;
242 };
243 
244 /**
245  * NAND chip structure: stores NAND chip device related information
246  *
247  * @chip:		Base NAND chip structure
248  * @node:		Used to store NAND chips into a list
249  * @layout		NAND layout when using hardware ECC
250  * @ndcr:		Controller register value for this NAND chip
251  * @ndtr0:		Timing registers 0 value for this NAND chip
252  * @ndtr1:		Timing registers 1 value for this NAND chip
253  * @selected_die:	Current active CS
254  * @nsels:		Number of CS lines required by the NAND chip
255  * @sels:		Array of CS lines descriptions
256  */
257 struct marvell_nand_chip {
258 	struct nand_chip chip;
259 	struct list_head node;
260 	const struct marvell_hw_ecc_layout *layout;
261 	u32 ndcr;
262 	u32 ndtr0;
263 	u32 ndtr1;
264 	int addr_cyc;
265 	int selected_die;
266 	unsigned int nsels;
267 	struct marvell_nand_chip_sel sels[0];
268 };
269 
270 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
271 {
272 	return container_of(chip, struct marvell_nand_chip, chip);
273 }
274 
275 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
276 							*nand)
277 {
278 	return &nand->sels[nand->selected_die];
279 }
280 
281 /**
282  * NAND controller capabilities for distinction between compatible strings
283  *
284  * @max_cs_nb:		Number of Chip Select lines available
285  * @max_rb_nb:		Number of Ready/Busy lines available
286  * @need_system_controller: Indicates if the SoC needs to have access to the
287  *                      system controller (ie. to enable the NAND controller)
288  * @legacy_of_bindings:	Indicates if DT parsing must be done using the old
289  *			fashion way
290  * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie.
291  *			BCH error detection and correction algorithm,
292  *			NDCB3 register has been added
293  * @use_dma:		Use dma for data transfers
294  */
295 struct marvell_nfc_caps {
296 	unsigned int max_cs_nb;
297 	unsigned int max_rb_nb;
298 	bool need_system_controller;
299 	bool legacy_of_bindings;
300 	bool is_nfcv2;
301 	bool use_dma;
302 };
303 
304 /**
305  * NAND controller structure: stores Marvell NAND controller information
306  *
307  * @controller:		Base controller structure
308  * @dev:		Parent device (used to print error messages)
309  * @regs:		NAND controller registers
310  * @core_clk:		Core clock
311  * @reg_clk:		Regiters clock
312  * @complete:		Completion object to wait for NAND controller events
313  * @assigned_cs:	Bitmask describing already assigned CS lines
314  * @chips:		List containing all the NAND chips attached to
315  *			this NAND controller
316  * @caps:		NAND controller capabilities for each compatible string
317  * @dma_chan:		DMA channel (NFCv1 only)
318  * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only)
319  */
320 struct marvell_nfc {
321 	struct nand_controller controller;
322 	struct device *dev;
323 	void __iomem *regs;
324 	struct clk *core_clk;
325 	struct clk *reg_clk;
326 	struct completion complete;
327 	unsigned long assigned_cs;
328 	struct list_head chips;
329 	struct nand_chip *selected_chip;
330 	const struct marvell_nfc_caps *caps;
331 
332 	/* DMA (NFCv1 only) */
333 	bool use_dma;
334 	struct dma_chan *dma_chan;
335 	u8 *dma_buf;
336 };
337 
338 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
339 {
340 	return container_of(ctrl, struct marvell_nfc, controller);
341 }
342 
343 /**
344  * NAND controller timings expressed in NAND Controller clock cycles
345  *
346  * @tRP:		ND_nRE pulse width
347  * @tRH:		ND_nRE high duration
348  * @tWP:		ND_nWE pulse time
349  * @tWH:		ND_nWE high duration
350  * @tCS:		Enable signal setup time
351  * @tCH:		Enable signal hold time
352  * @tADL:		Address to write data delay
353  * @tAR:		ND_ALE low to ND_nRE low delay
354  * @tWHR:		ND_nWE high to ND_nRE low for status read
355  * @tRHW:		ND_nRE high duration, read to write delay
356  * @tR:			ND_nWE high to ND_nRE low for read
357  */
358 struct marvell_nfc_timings {
359 	/* NDTR0 fields */
360 	unsigned int tRP;
361 	unsigned int tRH;
362 	unsigned int tWP;
363 	unsigned int tWH;
364 	unsigned int tCS;
365 	unsigned int tCH;
366 	unsigned int tADL;
367 	/* NDTR1 fields */
368 	unsigned int tAR;
369 	unsigned int tWHR;
370 	unsigned int tRHW;
371 	unsigned int tR;
372 };
373 
374 /**
375  * Derives a duration in numbers of clock cycles.
376  *
377  * @ps: Duration in pico-seconds
378  * @period_ns:  Clock period in nano-seconds
379  *
380  * Convert the duration in nano-seconds, then divide by the period and
381  * return the number of clock periods.
382  */
383 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
384 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
385 						     period_ns))
386 
387 /**
388  * NAND driver structure filled during the parsing of the ->exec_op() subop
389  * subset of instructions.
390  *
391  * @ndcb:		Array of values written to NDCBx registers
392  * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle
393  * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin
394  * @rdy_delay_ns:	Optional delay after waiting for the RB pin
395  * @data_delay_ns:	Optional delay after the data xfer
396  * @data_instr_idx:	Index of the data instruction in the subop
397  * @data_instr:		Pointer to the data instruction in the subop
398  */
399 struct marvell_nfc_op {
400 	u32 ndcb[4];
401 	unsigned int cle_ale_delay_ns;
402 	unsigned int rdy_timeout_ms;
403 	unsigned int rdy_delay_ns;
404 	unsigned int data_delay_ns;
405 	unsigned int data_instr_idx;
406 	const struct nand_op_instr *data_instr;
407 };
408 
409 /*
410  * Internal helper to conditionnally apply a delay (from the above structure,
411  * most of the time).
412  */
413 static void cond_delay(unsigned int ns)
414 {
415 	if (!ns)
416 		return;
417 
418 	if (ns < 10000)
419 		ndelay(ns);
420 	else
421 		udelay(DIV_ROUND_UP(ns, 1000));
422 }
423 
424 /*
425  * The controller has many flags that could generate interrupts, most of them
426  * are disabled and polling is used. For the very slow signals, using interrupts
427  * may relax the CPU charge.
428  */
429 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
430 {
431 	u32 reg;
432 
433 	/* Writing 1 disables the interrupt */
434 	reg = readl_relaxed(nfc->regs + NDCR);
435 	writel_relaxed(reg | int_mask, nfc->regs + NDCR);
436 }
437 
438 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
439 {
440 	u32 reg;
441 
442 	/* Writing 0 enables the interrupt */
443 	reg = readl_relaxed(nfc->regs + NDCR);
444 	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
445 }
446 
447 static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
448 {
449 	writel_relaxed(int_mask, nfc->regs + NDSR);
450 }
451 
452 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
453 					  bool force_8bit)
454 {
455 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
456 	u32 ndcr;
457 
458 	/*
459 	 * Callers of this function do not verify if the NAND is using a 16-bit
460 	 * an 8-bit bus for normal operations, so we need to take care of that
461 	 * here by leaving the configuration unchanged if the NAND does not have
462 	 * the NAND_BUSWIDTH_16 flag set.
463 	 */
464 	if (!(chip->options & NAND_BUSWIDTH_16))
465 		return;
466 
467 	ndcr = readl_relaxed(nfc->regs + NDCR);
468 
469 	if (force_8bit)
470 		ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
471 	else
472 		ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
473 
474 	writel_relaxed(ndcr, nfc->regs + NDCR);
475 }
476 
477 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
478 {
479 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
480 	u32 val;
481 	int ret;
482 
483 	/*
484 	 * The command is being processed, wait for the ND_RUN bit to be
485 	 * cleared by the NFC. If not, we must clear it by hand.
486 	 */
487 	ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
488 					 (val & NDCR_ND_RUN) == 0,
489 					 POLL_PERIOD, POLL_TIMEOUT);
490 	if (ret) {
491 		dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
492 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
493 			       nfc->regs + NDCR);
494 		return ret;
495 	}
496 
497 	return 0;
498 }
499 
500 /*
501  * Any time a command has to be sent to the controller, the following sequence
502  * has to be followed:
503  * - call marvell_nfc_prepare_cmd()
504  *      -> activate the ND_RUN bit that will kind of 'start a job'
505  *      -> wait the signal indicating the NFC is waiting for a command
506  * - send the command (cmd and address cycles)
507  * - enventually send or receive the data
508  * - call marvell_nfc_end_cmd() with the corresponding flag
509  *      -> wait the flag to be triggered or cancel the job with a timeout
510  *
511  * The following helpers are here to factorize the code a bit so that
512  * specialized functions responsible for executing the actual NAND
513  * operations do not have to replicate the same code blocks.
514  */
515 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
516 {
517 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
518 	u32 ndcr, val;
519 	int ret;
520 
521 	/* Poll ND_RUN and clear NDSR before issuing any command */
522 	ret = marvell_nfc_wait_ndrun(chip);
523 	if (ret) {
524 		dev_err(nfc->dev, "Last operation did not succeed\n");
525 		return ret;
526 	}
527 
528 	ndcr = readl_relaxed(nfc->regs + NDCR);
529 	writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
530 
531 	/* Assert ND_RUN bit and wait the NFC to be ready */
532 	writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
533 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
534 					 val & NDSR_WRCMDREQ,
535 					 POLL_PERIOD, POLL_TIMEOUT);
536 	if (ret) {
537 		dev_err(nfc->dev, "Timeout on WRCMDRE\n");
538 		return -ETIMEDOUT;
539 	}
540 
541 	/* Command may be written, clear WRCMDREQ status bit */
542 	writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
543 
544 	return 0;
545 }
546 
547 static void marvell_nfc_send_cmd(struct nand_chip *chip,
548 				 struct marvell_nfc_op *nfc_op)
549 {
550 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
551 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
552 
553 	dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
554 		"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
555 		(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
556 		nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
557 
558 	writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
559 		       nfc->regs + NDCB0);
560 	writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
561 	writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
562 
563 	/*
564 	 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
565 	 * fields are used (only available on NFCv2).
566 	 */
567 	if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
568 	    NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
569 		if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
570 			writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
571 	}
572 }
573 
574 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
575 			       const char *label)
576 {
577 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
578 	u32 val;
579 	int ret;
580 
581 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
582 					 val & flag,
583 					 POLL_PERIOD, POLL_TIMEOUT);
584 
585 	if (ret) {
586 		dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
587 			label, val);
588 		if (nfc->dma_chan)
589 			dmaengine_terminate_all(nfc->dma_chan);
590 		return ret;
591 	}
592 
593 	/*
594 	 * DMA function uses this helper to poll on CMDD bits without wanting
595 	 * them to be cleared.
596 	 */
597 	if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
598 		return 0;
599 
600 	writel_relaxed(flag, nfc->regs + NDSR);
601 
602 	return 0;
603 }
604 
605 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
606 {
607 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
608 	int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
609 
610 	return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
611 }
612 
613 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
614 {
615 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
616 	int ret;
617 
618 	/* Timeout is expressed in ms */
619 	if (!timeout_ms)
620 		timeout_ms = IRQ_TIMEOUT;
621 
622 	init_completion(&nfc->complete);
623 
624 	marvell_nfc_enable_int(nfc, NDCR_RDYM);
625 	ret = wait_for_completion_timeout(&nfc->complete,
626 					  msecs_to_jiffies(timeout_ms));
627 	marvell_nfc_disable_int(nfc, NDCR_RDYM);
628 	marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
629 	if (!ret) {
630 		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
631 		return -ETIMEDOUT;
632 	}
633 
634 	return 0;
635 }
636 
637 static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
638 {
639 	struct nand_chip *chip = mtd_to_nand(mtd);
640 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
641 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
642 	u32 ndcr_generic;
643 
644 	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
645 		return;
646 
647 	if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
648 		nfc->selected_chip = NULL;
649 		marvell_nand->selected_die = -1;
650 		return;
651 	}
652 
653 	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
654 	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
655 
656 	/*
657 	 * Reset the NDCR register to a clean state for this particular chip,
658 	 * also clear ND_RUN bit.
659 	 */
660 	ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
661 		       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
662 	writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
663 
664 	/* Also reset the interrupt status register */
665 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
666 
667 	nfc->selected_chip = chip;
668 	marvell_nand->selected_die = die_nr;
669 }
670 
671 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
672 {
673 	struct marvell_nfc *nfc = dev_id;
674 	u32 st = readl_relaxed(nfc->regs + NDSR);
675 	u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
676 
677 	/*
678 	 * RDY interrupt mask is one bit in NDCR while there are two status
679 	 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
680 	 */
681 	if (st & NDSR_RDY(1))
682 		st |= NDSR_RDY(0);
683 
684 	if (!(st & ien))
685 		return IRQ_NONE;
686 
687 	marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
688 
689 	if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
690 		complete(&nfc->complete);
691 
692 	return IRQ_HANDLED;
693 }
694 
695 /* HW ECC related functions */
696 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
697 {
698 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
699 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
700 
701 	if (!(ndcr & NDCR_ECC_EN)) {
702 		writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
703 
704 		/*
705 		 * When enabling BCH, set threshold to 0 to always know the
706 		 * number of corrected bitflips.
707 		 */
708 		if (chip->ecc.algo == NAND_ECC_BCH)
709 			writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
710 	}
711 }
712 
713 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
714 {
715 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
716 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
717 
718 	if (ndcr & NDCR_ECC_EN) {
719 		writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
720 		if (chip->ecc.algo == NAND_ECC_BCH)
721 			writel_relaxed(0, nfc->regs + NDECCCTRL);
722 	}
723 }
724 
725 /* DMA related helpers */
726 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
727 {
728 	u32 reg;
729 
730 	reg = readl_relaxed(nfc->regs + NDCR);
731 	writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
732 }
733 
734 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
735 {
736 	u32 reg;
737 
738 	reg = readl_relaxed(nfc->regs + NDCR);
739 	writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
740 }
741 
742 /* Read/write PIO/DMA accessors */
743 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
744 				     enum dma_data_direction direction,
745 				     unsigned int len)
746 {
747 	unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
748 	struct dma_async_tx_descriptor *tx;
749 	struct scatterlist sg;
750 	dma_cookie_t cookie;
751 	int ret;
752 
753 	marvell_nfc_enable_dma(nfc);
754 	/* Prepare the DMA transfer */
755 	sg_init_one(&sg, nfc->dma_buf, dma_len);
756 	dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
757 	tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
758 				     direction == DMA_FROM_DEVICE ?
759 				     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
760 				     DMA_PREP_INTERRUPT);
761 	if (!tx) {
762 		dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
763 		return -ENXIO;
764 	}
765 
766 	/* Do the task and wait for it to finish */
767 	cookie = dmaengine_submit(tx);
768 	ret = dma_submit_error(cookie);
769 	if (ret)
770 		return -EIO;
771 
772 	dma_async_issue_pending(nfc->dma_chan);
773 	ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
774 	dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
775 	marvell_nfc_disable_dma(nfc);
776 	if (ret) {
777 		dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
778 			dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
779 		dmaengine_terminate_all(nfc->dma_chan);
780 		return -ETIMEDOUT;
781 	}
782 
783 	return 0;
784 }
785 
786 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
787 					unsigned int len)
788 {
789 	unsigned int last_len = len % FIFO_DEPTH;
790 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
791 	int i;
792 
793 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
794 		ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
795 
796 	if (last_len) {
797 		u8 tmp_buf[FIFO_DEPTH];
798 
799 		ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
800 		memcpy(in + last_full_offset, tmp_buf, last_len);
801 	}
802 
803 	return 0;
804 }
805 
806 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
807 					 unsigned int len)
808 {
809 	unsigned int last_len = len % FIFO_DEPTH;
810 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
811 	int i;
812 
813 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
814 		iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
815 
816 	if (last_len) {
817 		u8 tmp_buf[FIFO_DEPTH];
818 
819 		memcpy(tmp_buf, out + last_full_offset, last_len);
820 		iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
821 	}
822 
823 	return 0;
824 }
825 
826 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
827 					  u8 *data, int data_len,
828 					  u8 *spare, int spare_len,
829 					  u8 *ecc, int ecc_len,
830 					  unsigned int *max_bitflips)
831 {
832 	struct mtd_info *mtd = nand_to_mtd(chip);
833 	int bf;
834 
835 	/*
836 	 * Blank pages (all 0xFF) that have not been written may be recognized
837 	 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
838 	 * check if the entire page (with ECC bytes) is actually blank or not.
839 	 */
840 	if (!data)
841 		data_len = 0;
842 	if (!spare)
843 		spare_len = 0;
844 	if (!ecc)
845 		ecc_len = 0;
846 
847 	bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
848 					 spare, spare_len, chip->ecc.strength);
849 	if (bf < 0) {
850 		mtd->ecc_stats.failed++;
851 		return;
852 	}
853 
854 	/* Update the stats and max_bitflips */
855 	mtd->ecc_stats.corrected += bf;
856 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
857 }
858 
859 /*
860  * Check a chunk is correct or not according to hardware ECC engine.
861  * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
862  * mtd->ecc_stats.failure is not, the function will instead return a non-zero
863  * value indicating that a check on the emptyness of the subpage must be
864  * performed before declaring the subpage corrupted.
865  */
866 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
867 				      unsigned int *max_bitflips)
868 {
869 	struct mtd_info *mtd = nand_to_mtd(chip);
870 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
871 	int bf = 0;
872 	u32 ndsr;
873 
874 	ndsr = readl_relaxed(nfc->regs + NDSR);
875 
876 	/* Check uncorrectable error flag */
877 	if (ndsr & NDSR_UNCERR) {
878 		writel_relaxed(ndsr, nfc->regs + NDSR);
879 
880 		/*
881 		 * Do not increment ->ecc_stats.failed now, instead, return a
882 		 * non-zero value to indicate that this chunk was apparently
883 		 * bad, and it should be check to see if it empty or not. If
884 		 * the chunk (with ECC bytes) is not declared empty, the calling
885 		 * function must increment the failure count.
886 		 */
887 		return -EBADMSG;
888 	}
889 
890 	/* Check correctable error flag */
891 	if (ndsr & NDSR_CORERR) {
892 		writel_relaxed(ndsr, nfc->regs + NDSR);
893 
894 		if (chip->ecc.algo == NAND_ECC_BCH)
895 			bf = NDSR_ERRCNT(ndsr);
896 		else
897 			bf = 1;
898 	}
899 
900 	/* Update the stats and max_bitflips */
901 	mtd->ecc_stats.corrected += bf;
902 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
903 
904 	return 0;
905 }
906 
907 /* Hamming read helpers */
908 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
909 					       u8 *data_buf, u8 *oob_buf,
910 					       bool raw, int page)
911 {
912 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
913 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
914 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
915 	struct marvell_nfc_op nfc_op = {
916 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
917 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
918 			   NDCB0_DBC |
919 			   NDCB0_CMD1(NAND_CMD_READ0) |
920 			   NDCB0_CMD2(NAND_CMD_READSTART),
921 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
922 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
923 	};
924 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
925 	int ret;
926 
927 	/* NFCv2 needs more information about the operation being executed */
928 	if (nfc->caps->is_nfcv2)
929 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
930 
931 	ret = marvell_nfc_prepare_cmd(chip);
932 	if (ret)
933 		return ret;
934 
935 	marvell_nfc_send_cmd(chip, &nfc_op);
936 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
937 				  "RDDREQ while draining FIFO (data/oob)");
938 	if (ret)
939 		return ret;
940 
941 	/*
942 	 * Read the page then the OOB area. Unlike what is shown in current
943 	 * documentation, spare bytes are protected by the ECC engine, and must
944 	 * be at the beginning of the OOB area or running this driver on legacy
945 	 * systems will prevent the discovery of the BBM/BBT.
946 	 */
947 	if (nfc->use_dma) {
948 		marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
949 					  lt->data_bytes + oob_bytes);
950 		memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
951 		memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
952 	} else {
953 		marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
954 		marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
955 	}
956 
957 	ret = marvell_nfc_wait_cmdd(chip);
958 
959 	return ret;
960 }
961 
962 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
963 						struct nand_chip *chip, u8 *buf,
964 						int oob_required, int page)
965 {
966 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
967 						   true, page);
968 }
969 
970 static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
971 					    struct nand_chip *chip,
972 					    u8 *buf, int oob_required,
973 					    int page)
974 {
975 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
976 	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
977 	int max_bitflips = 0, ret;
978 	u8 *raw_buf;
979 
980 	marvell_nfc_enable_hw_ecc(chip);
981 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
982 					    page);
983 	ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
984 	marvell_nfc_disable_hw_ecc(chip);
985 
986 	if (!ret)
987 		return max_bitflips;
988 
989 	/*
990 	 * When ECC failures are detected, check if the full page has been
991 	 * written or not. Ignore the failure if it is actually empty.
992 	 */
993 	raw_buf = kmalloc(full_sz, GFP_KERNEL);
994 	if (!raw_buf)
995 		return -ENOMEM;
996 
997 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
998 					    lt->data_bytes, true, page);
999 	marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1000 				      &max_bitflips);
1001 	kfree(raw_buf);
1002 
1003 	return max_bitflips;
1004 }
1005 
1006 /*
1007  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1008  * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1009  * also stands for ->read_oob().
1010  */
1011 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
1012 					       struct nand_chip *chip, int page)
1013 {
1014 	/* Invalidate page cache */
1015 	chip->pagebuf = -1;
1016 
1017 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1018 						   chip->oob_poi, true, page);
1019 }
1020 
1021 /* Hamming write helpers */
1022 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1023 						const u8 *data_buf,
1024 						const u8 *oob_buf, bool raw,
1025 						int page)
1026 {
1027 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1028 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1029 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1030 	struct marvell_nfc_op nfc_op = {
1031 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1032 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1033 			   NDCB0_CMD1(NAND_CMD_SEQIN) |
1034 			   NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1035 			   NDCB0_DBC,
1036 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1037 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1038 	};
1039 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1040 	int ret;
1041 
1042 	/* NFCv2 needs more information about the operation being executed */
1043 	if (nfc->caps->is_nfcv2)
1044 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1045 
1046 	ret = marvell_nfc_prepare_cmd(chip);
1047 	if (ret)
1048 		return ret;
1049 
1050 	marvell_nfc_send_cmd(chip, &nfc_op);
1051 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1052 				  "WRDREQ while loading FIFO (data)");
1053 	if (ret)
1054 		return ret;
1055 
1056 	/* Write the page then the OOB area */
1057 	if (nfc->use_dma) {
1058 		memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1059 		memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1060 		marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1061 					  lt->ecc_bytes + lt->spare_bytes);
1062 	} else {
1063 		marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1064 		marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1065 	}
1066 
1067 	ret = marvell_nfc_wait_cmdd(chip);
1068 	if (ret)
1069 		return ret;
1070 
1071 	ret = marvell_nfc_wait_op(chip,
1072 				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1073 	return ret;
1074 }
1075 
1076 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
1077 						 struct nand_chip *chip,
1078 						 const u8 *buf,
1079 						 int oob_required, int page)
1080 {
1081 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1082 						    true, page);
1083 }
1084 
1085 static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
1086 					     struct nand_chip *chip,
1087 					     const u8 *buf,
1088 					     int oob_required, int page)
1089 {
1090 	int ret;
1091 
1092 	marvell_nfc_enable_hw_ecc(chip);
1093 	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1094 						   false, page);
1095 	marvell_nfc_disable_hw_ecc(chip);
1096 
1097 	return ret;
1098 }
1099 
1100 /*
1101  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1102  * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1103  * also stands for ->write_oob().
1104  */
1105 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
1106 						struct nand_chip *chip,
1107 						int page)
1108 {
1109 	/* Invalidate page cache */
1110 	chip->pagebuf = -1;
1111 
1112 	memset(chip->data_buf, 0xFF, mtd->writesize);
1113 
1114 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1115 						    chip->oob_poi, true, page);
1116 }
1117 
1118 /* BCH read helpers */
1119 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
1120 						struct nand_chip *chip, u8 *buf,
1121 						int oob_required, int page)
1122 {
1123 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1124 	u8 *oob = chip->oob_poi;
1125 	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1126 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1127 		lt->last_spare_bytes;
1128 	int data_len = lt->data_bytes;
1129 	int spare_len = lt->spare_bytes;
1130 	int ecc_len = lt->ecc_bytes;
1131 	int chunk;
1132 
1133 	if (oob_required)
1134 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1135 
1136 	nand_read_page_op(chip, page, 0, NULL, 0);
1137 
1138 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1139 		/* Update last chunk length */
1140 		if (chunk >= lt->full_chunk_cnt) {
1141 			data_len = lt->last_data_bytes;
1142 			spare_len = lt->last_spare_bytes;
1143 			ecc_len = lt->last_ecc_bytes;
1144 		}
1145 
1146 		/* Read data bytes*/
1147 		nand_change_read_column_op(chip, chunk * chunk_size,
1148 					   buf + (lt->data_bytes * chunk),
1149 					   data_len, false);
1150 
1151 		/* Read spare bytes */
1152 		nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1153 				  spare_len, false);
1154 
1155 		/* Read ECC bytes */
1156 		nand_read_data_op(chip, oob + ecc_offset +
1157 				  (ALIGN(lt->ecc_bytes, 32) * chunk),
1158 				  ecc_len, false);
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1165 					      u8 *data, unsigned int data_len,
1166 					      u8 *spare, unsigned int spare_len,
1167 					      int page)
1168 {
1169 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1170 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1171 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1172 	int i, ret;
1173 	struct marvell_nfc_op nfc_op = {
1174 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1175 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1176 			   NDCB0_LEN_OVRD,
1177 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1178 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1179 		.ndcb[3] = data_len + spare_len,
1180 	};
1181 
1182 	ret = marvell_nfc_prepare_cmd(chip);
1183 	if (ret)
1184 		return;
1185 
1186 	if (chunk == 0)
1187 		nfc_op.ndcb[0] |= NDCB0_DBC |
1188 				  NDCB0_CMD1(NAND_CMD_READ0) |
1189 				  NDCB0_CMD2(NAND_CMD_READSTART);
1190 
1191 	/*
1192 	 * Trigger the monolithic read on the first chunk, then naked read on
1193 	 * intermediate chunks and finally a last naked read on the last chunk.
1194 	 */
1195 	if (chunk == 0)
1196 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1197 	else if (chunk < lt->nchunks - 1)
1198 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1199 	else
1200 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1201 
1202 	marvell_nfc_send_cmd(chip, &nfc_op);
1203 
1204 	/*
1205 	 * According to the datasheet, when reading from NDDB
1206 	 * with BCH enabled, after each 32 bytes reads, we
1207 	 * have to make sure that the NDSR.RDDREQ bit is set.
1208 	 *
1209 	 * Drain the FIFO, 8 32-bit reads at a time, and skip
1210 	 * the polling on the last read.
1211 	 *
1212 	 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1213 	 */
1214 	for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1215 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1216 				    "RDDREQ while draining FIFO (data)");
1217 		marvell_nfc_xfer_data_in_pio(nfc, data,
1218 					     FIFO_DEPTH * BCH_SEQ_READS);
1219 		data += FIFO_DEPTH * BCH_SEQ_READS;
1220 	}
1221 
1222 	for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1223 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1224 				    "RDDREQ while draining FIFO (OOB)");
1225 		marvell_nfc_xfer_data_in_pio(nfc, spare,
1226 					     FIFO_DEPTH * BCH_SEQ_READS);
1227 		spare += FIFO_DEPTH * BCH_SEQ_READS;
1228 	}
1229 }
1230 
1231 static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
1232 					    struct nand_chip *chip,
1233 					    u8 *buf, int oob_required,
1234 					    int page)
1235 {
1236 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1237 	int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
1238 	u8 *data = buf, *spare = chip->oob_poi, *ecc;
1239 	int max_bitflips = 0;
1240 	u32 failure_mask = 0;
1241 	int chunk, ecc_offset_in_page, ret;
1242 
1243 	/*
1244 	 * With BCH, OOB is not fully used (and thus not read entirely), not
1245 	 * expected bytes could show up at the end of the OOB buffer if not
1246 	 * explicitly erased.
1247 	 */
1248 	if (oob_required)
1249 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1250 
1251 	marvell_nfc_enable_hw_ecc(chip);
1252 
1253 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1254 		/* Update length for the last chunk */
1255 		if (chunk >= lt->full_chunk_cnt) {
1256 			data_len = lt->last_data_bytes;
1257 			spare_len = lt->last_spare_bytes;
1258 		}
1259 
1260 		/* Read the chunk and detect number of bitflips */
1261 		marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1262 						  spare, spare_len, page);
1263 		ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1264 		if (ret)
1265 			failure_mask |= BIT(chunk);
1266 
1267 		data += data_len;
1268 		spare += spare_len;
1269 	}
1270 
1271 	marvell_nfc_disable_hw_ecc(chip);
1272 
1273 	if (!failure_mask)
1274 		return max_bitflips;
1275 
1276 	/*
1277 	 * Please note that dumping the ECC bytes during a normal read with OOB
1278 	 * area would add a significant overhead as ECC bytes are "consumed" by
1279 	 * the controller in normal mode and must be re-read in raw mode. To
1280 	 * avoid dropping the performances, we prefer not to include them. The
1281 	 * user should re-read the page in raw mode if ECC bytes are required.
1282 	 *
1283 	 * However, for any subpage read error reported by ->correct(), the ECC
1284 	 * bytes must be read in raw mode and the full subpage must be checked
1285 	 * to see if it is entirely empty of if there was an actual error.
1286 	 */
1287 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1288 		/* No failure reported for this chunk, move to the next one */
1289 		if (!(failure_mask & BIT(chunk)))
1290 			continue;
1291 
1292 		/* Derive ECC bytes positions (in page/buffer) and length */
1293 		ecc = chip->oob_poi +
1294 			(lt->full_chunk_cnt * lt->spare_bytes) +
1295 			lt->last_spare_bytes +
1296 			(chunk * ALIGN(lt->ecc_bytes, 32));
1297 		ecc_offset_in_page =
1298 			(chunk * (lt->data_bytes + lt->spare_bytes +
1299 				  lt->ecc_bytes)) +
1300 			(chunk < lt->full_chunk_cnt ?
1301 			 lt->data_bytes + lt->spare_bytes :
1302 			 lt->last_data_bytes + lt->last_spare_bytes);
1303 		ecc_len = chunk < lt->full_chunk_cnt ?
1304 			lt->ecc_bytes : lt->last_ecc_bytes;
1305 
1306 		/* Do the actual raw read of the ECC bytes */
1307 		nand_change_read_column_op(chip, ecc_offset_in_page,
1308 					   ecc, ecc_len, false);
1309 
1310 		/* Derive data/spare bytes positions (in buffer) and length */
1311 		data = buf + (chunk * lt->data_bytes);
1312 		data_len = chunk < lt->full_chunk_cnt ?
1313 			lt->data_bytes : lt->last_data_bytes;
1314 		spare = chip->oob_poi + (chunk * (lt->spare_bytes +
1315 						  lt->ecc_bytes));
1316 		spare_len = chunk < lt->full_chunk_cnt ?
1317 			lt->spare_bytes : lt->last_spare_bytes;
1318 
1319 		/* Check the entire chunk (data + spare + ecc) for emptyness */
1320 		marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
1321 					      spare_len, ecc, ecc_len,
1322 					      &max_bitflips);
1323 	}
1324 
1325 	return max_bitflips;
1326 }
1327 
1328 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
1329 					       struct nand_chip *chip, int page)
1330 {
1331 	/* Invalidate page cache */
1332 	chip->pagebuf = -1;
1333 
1334 	return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
1335 }
1336 
1337 static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
1338 					   struct nand_chip *chip, int page)
1339 {
1340 	/* Invalidate page cache */
1341 	chip->pagebuf = -1;
1342 
1343 	return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
1344 }
1345 
1346 /* BCH write helpers */
1347 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
1348 						 struct nand_chip *chip,
1349 						 const u8 *buf,
1350 						 int oob_required, int page)
1351 {
1352 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1353 	int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1354 	int data_len = lt->data_bytes;
1355 	int spare_len = lt->spare_bytes;
1356 	int ecc_len = lt->ecc_bytes;
1357 	int spare_offset = 0;
1358 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1359 		lt->last_spare_bytes;
1360 	int chunk;
1361 
1362 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1363 
1364 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1365 		if (chunk >= lt->full_chunk_cnt) {
1366 			data_len = lt->last_data_bytes;
1367 			spare_len = lt->last_spare_bytes;
1368 			ecc_len = lt->last_ecc_bytes;
1369 		}
1370 
1371 		/* Point to the column of the next chunk */
1372 		nand_change_write_column_op(chip, chunk * full_chunk_size,
1373 					    NULL, 0, false);
1374 
1375 		/* Write the data */
1376 		nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1377 				   data_len, false);
1378 
1379 		if (!oob_required)
1380 			continue;
1381 
1382 		/* Write the spare bytes */
1383 		if (spare_len)
1384 			nand_write_data_op(chip, chip->oob_poi + spare_offset,
1385 					   spare_len, false);
1386 
1387 		/* Write the ECC bytes */
1388 		if (ecc_len)
1389 			nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1390 					   ecc_len, false);
1391 
1392 		spare_offset += spare_len;
1393 		ecc_offset += ALIGN(ecc_len, 32);
1394 	}
1395 
1396 	return nand_prog_page_end_op(chip);
1397 }
1398 
1399 static int
1400 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1401 				   const u8 *data, unsigned int data_len,
1402 				   const u8 *spare, unsigned int spare_len,
1403 				   int page)
1404 {
1405 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1406 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1407 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1408 	u32 xtype;
1409 	int ret;
1410 	struct marvell_nfc_op nfc_op = {
1411 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1412 		.ndcb[3] = data_len + spare_len,
1413 	};
1414 
1415 	/*
1416 	 * First operation dispatches the CMD_SEQIN command, issue the address
1417 	 * cycles and asks for the first chunk of data.
1418 	 * All operations in the middle (if any) will issue a naked write and
1419 	 * also ask for data.
1420 	 * Last operation (if any) asks for the last chunk of data through a
1421 	 * last naked write.
1422 	 */
1423 	if (chunk == 0) {
1424 		if (lt->nchunks == 1)
1425 			xtype = XTYPE_MONOLITHIC_RW;
1426 		else
1427 			xtype = XTYPE_WRITE_DISPATCH;
1428 
1429 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1430 				  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1431 				  NDCB0_CMD1(NAND_CMD_SEQIN);
1432 		nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1433 		nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1434 	} else if (chunk < lt->nchunks - 1) {
1435 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1436 	} else {
1437 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1438 	}
1439 
1440 	/* Always dispatch the PAGEPROG command on the last chunk */
1441 	if (chunk == lt->nchunks - 1)
1442 		nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1443 
1444 	ret = marvell_nfc_prepare_cmd(chip);
1445 	if (ret)
1446 		return ret;
1447 
1448 	marvell_nfc_send_cmd(chip, &nfc_op);
1449 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1450 				  "WRDREQ while loading FIFO (data)");
1451 	if (ret)
1452 		return ret;
1453 
1454 	/* Transfer the contents */
1455 	iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1456 	iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1457 
1458 	return 0;
1459 }
1460 
1461 static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
1462 					     struct nand_chip *chip,
1463 					     const u8 *buf,
1464 					     int oob_required, int page)
1465 {
1466 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1467 	const u8 *data = buf;
1468 	const u8 *spare = chip->oob_poi;
1469 	int data_len = lt->data_bytes;
1470 	int spare_len = lt->spare_bytes;
1471 	int chunk, ret;
1472 
1473 	/* Spare data will be written anyway, so clear it to avoid garbage */
1474 	if (!oob_required)
1475 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1476 
1477 	marvell_nfc_enable_hw_ecc(chip);
1478 
1479 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1480 		if (chunk >= lt->full_chunk_cnt) {
1481 			data_len = lt->last_data_bytes;
1482 			spare_len = lt->last_spare_bytes;
1483 		}
1484 
1485 		marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1486 						   spare, spare_len, page);
1487 		data += data_len;
1488 		spare += spare_len;
1489 
1490 		/*
1491 		 * Waiting only for CMDD or PAGED is not enough, ECC are
1492 		 * partially written. No flag is set once the operation is
1493 		 * really finished but the ND_RUN bit is cleared, so wait for it
1494 		 * before stepping into the next command.
1495 		 */
1496 		marvell_nfc_wait_ndrun(chip);
1497 	}
1498 
1499 	ret = marvell_nfc_wait_op(chip,
1500 				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1501 
1502 	marvell_nfc_disable_hw_ecc(chip);
1503 
1504 	if (ret)
1505 		return ret;
1506 
1507 	return 0;
1508 }
1509 
1510 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
1511 						struct nand_chip *chip,
1512 						int page)
1513 {
1514 	/* Invalidate page cache */
1515 	chip->pagebuf = -1;
1516 
1517 	memset(chip->data_buf, 0xFF, mtd->writesize);
1518 
1519 	return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
1520 }
1521 
1522 static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
1523 					    struct nand_chip *chip, int page)
1524 {
1525 	/* Invalidate page cache */
1526 	chip->pagebuf = -1;
1527 
1528 	memset(chip->data_buf, 0xFF, mtd->writesize);
1529 
1530 	return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
1531 }
1532 
1533 /* NAND framework ->exec_op() hooks and related helpers */
1534 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1535 					   const struct nand_subop *subop,
1536 					   struct marvell_nfc_op *nfc_op)
1537 {
1538 	const struct nand_op_instr *instr = NULL;
1539 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1540 	bool first_cmd = true;
1541 	unsigned int op_id;
1542 	int i;
1543 
1544 	/* Reset the input structure as most of its fields will be OR'ed */
1545 	memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1546 
1547 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1548 		unsigned int offset, naddrs;
1549 		const u8 *addrs;
1550 		int len = nand_subop_get_data_len(subop, op_id);
1551 
1552 		instr = &subop->instrs[op_id];
1553 
1554 		switch (instr->type) {
1555 		case NAND_OP_CMD_INSTR:
1556 			if (first_cmd)
1557 				nfc_op->ndcb[0] |=
1558 					NDCB0_CMD1(instr->ctx.cmd.opcode);
1559 			else
1560 				nfc_op->ndcb[0] |=
1561 					NDCB0_CMD2(instr->ctx.cmd.opcode) |
1562 					NDCB0_DBC;
1563 
1564 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1565 			first_cmd = false;
1566 			break;
1567 
1568 		case NAND_OP_ADDR_INSTR:
1569 			offset = nand_subop_get_addr_start_off(subop, op_id);
1570 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1571 			addrs = &instr->ctx.addr.addrs[offset];
1572 
1573 			nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1574 
1575 			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1576 				nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1577 
1578 			if (naddrs >= 5)
1579 				nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1580 			if (naddrs >= 6)
1581 				nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1582 			if (naddrs == 7)
1583 				nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1584 
1585 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1586 			break;
1587 
1588 		case NAND_OP_DATA_IN_INSTR:
1589 			nfc_op->data_instr = instr;
1590 			nfc_op->data_instr_idx = op_id;
1591 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1592 			if (nfc->caps->is_nfcv2) {
1593 				nfc_op->ndcb[0] |=
1594 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1595 					NDCB0_LEN_OVRD;
1596 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1597 			}
1598 			nfc_op->data_delay_ns = instr->delay_ns;
1599 			break;
1600 
1601 		case NAND_OP_DATA_OUT_INSTR:
1602 			nfc_op->data_instr = instr;
1603 			nfc_op->data_instr_idx = op_id;
1604 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1605 			if (nfc->caps->is_nfcv2) {
1606 				nfc_op->ndcb[0] |=
1607 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1608 					NDCB0_LEN_OVRD;
1609 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1610 			}
1611 			nfc_op->data_delay_ns = instr->delay_ns;
1612 			break;
1613 
1614 		case NAND_OP_WAITRDY_INSTR:
1615 			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1616 			nfc_op->rdy_delay_ns = instr->delay_ns;
1617 			break;
1618 		}
1619 	}
1620 }
1621 
1622 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1623 				     const struct nand_subop *subop,
1624 				     struct marvell_nfc_op *nfc_op)
1625 {
1626 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1627 	const struct nand_op_instr *instr = nfc_op->data_instr;
1628 	unsigned int op_id = nfc_op->data_instr_idx;
1629 	unsigned int len = nand_subop_get_data_len(subop, op_id);
1630 	unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1631 	bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1632 	int ret;
1633 
1634 	if (instr->ctx.data.force_8bit)
1635 		marvell_nfc_force_byte_access(chip, true);
1636 
1637 	if (reading) {
1638 		u8 *in = instr->ctx.data.buf.in + offset;
1639 
1640 		ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1641 	} else {
1642 		const u8 *out = instr->ctx.data.buf.out + offset;
1643 
1644 		ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1645 	}
1646 
1647 	if (instr->ctx.data.force_8bit)
1648 		marvell_nfc_force_byte_access(chip, false);
1649 
1650 	return ret;
1651 }
1652 
1653 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1654 					      const struct nand_subop *subop)
1655 {
1656 	struct marvell_nfc_op nfc_op;
1657 	bool reading;
1658 	int ret;
1659 
1660 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1661 	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1662 
1663 	ret = marvell_nfc_prepare_cmd(chip);
1664 	if (ret)
1665 		return ret;
1666 
1667 	marvell_nfc_send_cmd(chip, &nfc_op);
1668 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1669 				  "RDDREQ/WRDREQ while draining raw data");
1670 	if (ret)
1671 		return ret;
1672 
1673 	cond_delay(nfc_op.cle_ale_delay_ns);
1674 
1675 	if (reading) {
1676 		if (nfc_op.rdy_timeout_ms) {
1677 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1678 			if (ret)
1679 				return ret;
1680 		}
1681 
1682 		cond_delay(nfc_op.rdy_delay_ns);
1683 	}
1684 
1685 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1686 	ret = marvell_nfc_wait_cmdd(chip);
1687 	if (ret)
1688 		return ret;
1689 
1690 	cond_delay(nfc_op.data_delay_ns);
1691 
1692 	if (!reading) {
1693 		if (nfc_op.rdy_timeout_ms) {
1694 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1695 			if (ret)
1696 				return ret;
1697 		}
1698 
1699 		cond_delay(nfc_op.rdy_delay_ns);
1700 	}
1701 
1702 	/*
1703 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1704 	 * operation but experience shows that the behavior is buggy when it
1705 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1706 	 */
1707 	if (!reading) {
1708 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1709 
1710 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1711 			       nfc->regs + NDCR);
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1718 					 const struct nand_subop *subop)
1719 {
1720 	struct marvell_nfc_op nfc_op;
1721 	int ret;
1722 
1723 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1724 
1725 	/*
1726 	 * Naked access are different in that they need to be flagged as naked
1727 	 * by the controller. Reset the controller registers fields that inform
1728 	 * on the type and refill them according to the ongoing operation.
1729 	 */
1730 	nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1731 			    NDCB0_CMD_XTYPE(XTYPE_MASK));
1732 	switch (subop->instrs[0].type) {
1733 	case NAND_OP_CMD_INSTR:
1734 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1735 		break;
1736 	case NAND_OP_ADDR_INSTR:
1737 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1738 		break;
1739 	case NAND_OP_DATA_IN_INSTR:
1740 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1741 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1742 		break;
1743 	case NAND_OP_DATA_OUT_INSTR:
1744 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1745 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1746 		break;
1747 	default:
1748 		/* This should never happen */
1749 		break;
1750 	}
1751 
1752 	ret = marvell_nfc_prepare_cmd(chip);
1753 	if (ret)
1754 		return ret;
1755 
1756 	marvell_nfc_send_cmd(chip, &nfc_op);
1757 
1758 	if (!nfc_op.data_instr) {
1759 		ret = marvell_nfc_wait_cmdd(chip);
1760 		cond_delay(nfc_op.cle_ale_delay_ns);
1761 		return ret;
1762 	}
1763 
1764 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1765 				  "RDDREQ/WRDREQ while draining raw data");
1766 	if (ret)
1767 		return ret;
1768 
1769 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1770 	ret = marvell_nfc_wait_cmdd(chip);
1771 	if (ret)
1772 		return ret;
1773 
1774 	/*
1775 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1776 	 * operation but experience shows that the behavior is buggy when it
1777 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1778 	 */
1779 	if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1780 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1781 
1782 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1783 			       nfc->regs + NDCR);
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1790 					  const struct nand_subop *subop)
1791 {
1792 	struct marvell_nfc_op nfc_op;
1793 	int ret;
1794 
1795 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1796 
1797 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1798 	cond_delay(nfc_op.rdy_delay_ns);
1799 
1800 	return ret;
1801 }
1802 
1803 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1804 					 const struct nand_subop *subop)
1805 {
1806 	struct marvell_nfc_op nfc_op;
1807 	int ret;
1808 
1809 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1810 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1811 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1812 
1813 	ret = marvell_nfc_prepare_cmd(chip);
1814 	if (ret)
1815 		return ret;
1816 
1817 	marvell_nfc_send_cmd(chip, &nfc_op);
1818 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1819 				  "RDDREQ while reading ID");
1820 	if (ret)
1821 		return ret;
1822 
1823 	cond_delay(nfc_op.cle_ale_delay_ns);
1824 
1825 	if (nfc_op.rdy_timeout_ms) {
1826 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1827 		if (ret)
1828 			return ret;
1829 	}
1830 
1831 	cond_delay(nfc_op.rdy_delay_ns);
1832 
1833 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1834 	ret = marvell_nfc_wait_cmdd(chip);
1835 	if (ret)
1836 		return ret;
1837 
1838 	cond_delay(nfc_op.data_delay_ns);
1839 
1840 	return 0;
1841 }
1842 
1843 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1844 					const struct nand_subop *subop)
1845 {
1846 	struct marvell_nfc_op nfc_op;
1847 	int ret;
1848 
1849 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1850 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1851 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1852 
1853 	ret = marvell_nfc_prepare_cmd(chip);
1854 	if (ret)
1855 		return ret;
1856 
1857 	marvell_nfc_send_cmd(chip, &nfc_op);
1858 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1859 				  "RDDREQ while reading status");
1860 	if (ret)
1861 		return ret;
1862 
1863 	cond_delay(nfc_op.cle_ale_delay_ns);
1864 
1865 	if (nfc_op.rdy_timeout_ms) {
1866 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1867 		if (ret)
1868 			return ret;
1869 	}
1870 
1871 	cond_delay(nfc_op.rdy_delay_ns);
1872 
1873 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1874 	ret = marvell_nfc_wait_cmdd(chip);
1875 	if (ret)
1876 		return ret;
1877 
1878 	cond_delay(nfc_op.data_delay_ns);
1879 
1880 	return 0;
1881 }
1882 
1883 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1884 					   const struct nand_subop *subop)
1885 {
1886 	struct marvell_nfc_op nfc_op;
1887 	int ret;
1888 
1889 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1890 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1891 
1892 	ret = marvell_nfc_prepare_cmd(chip);
1893 	if (ret)
1894 		return ret;
1895 
1896 	marvell_nfc_send_cmd(chip, &nfc_op);
1897 	ret = marvell_nfc_wait_cmdd(chip);
1898 	if (ret)
1899 		return ret;
1900 
1901 	cond_delay(nfc_op.cle_ale_delay_ns);
1902 
1903 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1904 	if (ret)
1905 		return ret;
1906 
1907 	cond_delay(nfc_op.rdy_delay_ns);
1908 
1909 	return 0;
1910 }
1911 
1912 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
1913 					   const struct nand_subop *subop)
1914 {
1915 	struct marvell_nfc_op nfc_op;
1916 	int ret;
1917 
1918 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1919 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
1920 
1921 	ret = marvell_nfc_prepare_cmd(chip);
1922 	if (ret)
1923 		return ret;
1924 
1925 	marvell_nfc_send_cmd(chip, &nfc_op);
1926 	ret = marvell_nfc_wait_cmdd(chip);
1927 	if (ret)
1928 		return ret;
1929 
1930 	cond_delay(nfc_op.cle_ale_delay_ns);
1931 
1932 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1933 	if (ret)
1934 		return ret;
1935 
1936 	cond_delay(nfc_op.rdy_delay_ns);
1937 
1938 	return 0;
1939 }
1940 
1941 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
1942 	/* Monolithic reads/writes */
1943 	NAND_OP_PARSER_PATTERN(
1944 		marvell_nfc_monolithic_access_exec,
1945 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1946 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
1947 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
1948 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1949 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1950 	NAND_OP_PARSER_PATTERN(
1951 		marvell_nfc_monolithic_access_exec,
1952 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1953 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
1954 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
1955 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
1956 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1957 	/* Naked commands */
1958 	NAND_OP_PARSER_PATTERN(
1959 		marvell_nfc_naked_access_exec,
1960 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
1961 	NAND_OP_PARSER_PATTERN(
1962 		marvell_nfc_naked_access_exec,
1963 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
1964 	NAND_OP_PARSER_PATTERN(
1965 		marvell_nfc_naked_access_exec,
1966 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1967 	NAND_OP_PARSER_PATTERN(
1968 		marvell_nfc_naked_access_exec,
1969 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
1970 	NAND_OP_PARSER_PATTERN(
1971 		marvell_nfc_naked_waitrdy_exec,
1972 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1973 	);
1974 
1975 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
1976 	/* Naked commands not supported, use a function for each pattern */
1977 	NAND_OP_PARSER_PATTERN(
1978 		marvell_nfc_read_id_type_exec,
1979 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1980 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1981 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1982 	NAND_OP_PARSER_PATTERN(
1983 		marvell_nfc_erase_cmd_type_exec,
1984 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1985 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1986 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1987 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1988 	NAND_OP_PARSER_PATTERN(
1989 		marvell_nfc_read_status_exec,
1990 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1991 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
1992 	NAND_OP_PARSER_PATTERN(
1993 		marvell_nfc_reset_cmd_type_exec,
1994 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1995 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1996 	NAND_OP_PARSER_PATTERN(
1997 		marvell_nfc_naked_waitrdy_exec,
1998 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1999 	);
2000 
2001 static int marvell_nfc_exec_op(struct nand_chip *chip,
2002 			       const struct nand_operation *op,
2003 			       bool check_only)
2004 {
2005 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2006 
2007 	if (nfc->caps->is_nfcv2)
2008 		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2009 					      op, check_only);
2010 	else
2011 		return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2012 					      op, check_only);
2013 }
2014 
2015 /*
2016  * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2017  * usable.
2018  */
2019 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2020 				      struct mtd_oob_region *oobregion)
2021 {
2022 	struct nand_chip *chip = mtd_to_nand(mtd);
2023 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2024 
2025 	if (section)
2026 		return -ERANGE;
2027 
2028 	oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2029 			    lt->last_ecc_bytes;
2030 	oobregion->offset = mtd->oobsize - oobregion->length;
2031 
2032 	return 0;
2033 }
2034 
2035 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2036 				       struct mtd_oob_region *oobregion)
2037 {
2038 	struct nand_chip *chip = mtd_to_nand(mtd);
2039 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2040 
2041 	if (section)
2042 		return -ERANGE;
2043 
2044 	/*
2045 	 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2046 	 * 4KB page / 4bit BCH combination.
2047 	 */
2048 	if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2049 		oobregion->offset = 6;
2050 	else
2051 		oobregion->offset = 2;
2052 
2053 	oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2054 			    lt->last_spare_bytes - oobregion->offset;
2055 
2056 	return 0;
2057 }
2058 
2059 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2060 	.ecc = marvell_nand_ooblayout_ecc,
2061 	.free = marvell_nand_ooblayout_free,
2062 };
2063 
2064 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2065 					 struct nand_ecc_ctrl *ecc)
2066 {
2067 	struct nand_chip *chip = mtd_to_nand(mtd);
2068 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2069 	const struct marvell_hw_ecc_layout *l;
2070 	int i;
2071 
2072 	if (!nfc->caps->is_nfcv2 &&
2073 	    (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2074 		dev_err(nfc->dev,
2075 			"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2076 			mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2077 		return -ENOTSUPP;
2078 	}
2079 
2080 	to_marvell_nand(chip)->layout = NULL;
2081 	for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2082 		l = &marvell_nfc_layouts[i];
2083 		if (mtd->writesize == l->writesize &&
2084 		    ecc->size == l->chunk && ecc->strength == l->strength) {
2085 			to_marvell_nand(chip)->layout = l;
2086 			break;
2087 		}
2088 	}
2089 
2090 	if (!to_marvell_nand(chip)->layout ||
2091 	    (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2092 		dev_err(nfc->dev,
2093 			"ECC strength %d at page size %d is not supported\n",
2094 			ecc->strength, mtd->writesize);
2095 		return -ENOTSUPP;
2096 	}
2097 
2098 	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2099 	ecc->steps = l->nchunks;
2100 	ecc->size = l->data_bytes;
2101 
2102 	if (ecc->strength == 1) {
2103 		chip->ecc.algo = NAND_ECC_HAMMING;
2104 		ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2105 		ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2106 		ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2107 		ecc->read_oob = ecc->read_oob_raw;
2108 		ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2109 		ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2110 		ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2111 		ecc->write_oob = ecc->write_oob_raw;
2112 	} else {
2113 		chip->ecc.algo = NAND_ECC_BCH;
2114 		ecc->strength = 16;
2115 		ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2116 		ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2117 		ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2118 		ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2119 		ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2120 		ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2121 		ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2122 		ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2129 				 struct nand_ecc_ctrl *ecc)
2130 {
2131 	struct nand_chip *chip = mtd_to_nand(mtd);
2132 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2133 	int ret;
2134 
2135 	if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2136 		if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2137 			ecc->size = chip->ecc_step_ds;
2138 			ecc->strength = chip->ecc_strength_ds;
2139 		} else {
2140 			dev_info(nfc->dev,
2141 				 "No minimum ECC strength, using 1b/512B\n");
2142 			ecc->size = 512;
2143 			ecc->strength = 1;
2144 		}
2145 	}
2146 
2147 	switch (ecc->mode) {
2148 	case NAND_ECC_HW:
2149 		ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2150 		if (ret)
2151 			return ret;
2152 		break;
2153 	case NAND_ECC_NONE:
2154 	case NAND_ECC_SOFT:
2155 	case NAND_ECC_ON_DIE:
2156 		if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2157 		    mtd->writesize != SZ_2K) {
2158 			dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2159 				mtd->writesize);
2160 			return -EINVAL;
2161 		}
2162 		break;
2163 	default:
2164 		return -EINVAL;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2171 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2172 
2173 static struct nand_bbt_descr bbt_main_descr = {
2174 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2175 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2176 	.offs =	8,
2177 	.len = 6,
2178 	.veroffs = 14,
2179 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2180 	.pattern = bbt_pattern
2181 };
2182 
2183 static struct nand_bbt_descr bbt_mirror_descr = {
2184 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2185 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2186 	.offs =	8,
2187 	.len = 6,
2188 	.veroffs = 14,
2189 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2190 	.pattern = bbt_mirror_pattern
2191 };
2192 
2193 static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
2194 					    const struct nand_data_interface
2195 					    *conf)
2196 {
2197 	struct nand_chip *chip = mtd_to_nand(mtd);
2198 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2199 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2200 	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2201 	const struct nand_sdr_timings *sdr;
2202 	struct marvell_nfc_timings nfc_tmg;
2203 	int read_delay;
2204 
2205 	sdr = nand_get_sdr_timings(conf);
2206 	if (IS_ERR(sdr))
2207 		return PTR_ERR(sdr);
2208 
2209 	/*
2210 	 * SDR timings are given in pico-seconds while NFC timings must be
2211 	 * expressed in NAND controller clock cycles, which is half of the
2212 	 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2213 	 * This is not written anywhere in the datasheet but was observed
2214 	 * with an oscilloscope.
2215 	 *
2216 	 * NFC datasheet gives equations from which thoses calculations
2217 	 * are derived, they tend to be slightly more restrictives than the
2218 	 * given core timings and may improve the overall speed.
2219 	 */
2220 	nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2221 	nfc_tmg.tRH = nfc_tmg.tRP;
2222 	nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2223 	nfc_tmg.tWH = nfc_tmg.tWP;
2224 	nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2225 	nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2226 	nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2227 	/*
2228 	 * Read delay is the time of propagation from SoC pins to NFC internal
2229 	 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2230 	 * EDO mode, an additional delay of tRH must be taken into account so
2231 	 * the data is sampled on the falling edge instead of the rising edge.
2232 	 */
2233 	read_delay = sdr->tRC_min >= 30000 ?
2234 		MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2235 
2236 	nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2237 	/*
2238 	 * tWHR and tRHW are supposed to be read to write delays (and vice
2239 	 * versa) but in some cases, ie. when doing a change column, they must
2240 	 * be greater than that to be sure tCCS delay is respected.
2241 	 */
2242 	nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2243 				 period_ns) - 2,
2244 	nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2245 				 period_ns);
2246 
2247 	/*
2248 	 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2249 	 * NFCv1: No WAIT_MODE, tR must be maximal.
2250 	 */
2251 	if (nfc->caps->is_nfcv2) {
2252 		nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2253 	} else {
2254 		nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2255 					 period_ns);
2256 		if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2257 			nfc_tmg.tR = nfc_tmg.tCH - 3;
2258 		else
2259 			nfc_tmg.tR = 0;
2260 	}
2261 
2262 	if (chipnr < 0)
2263 		return 0;
2264 
2265 	marvell_nand->ndtr0 =
2266 		NDTR0_TRP(nfc_tmg.tRP) |
2267 		NDTR0_TRH(nfc_tmg.tRH) |
2268 		NDTR0_ETRP(nfc_tmg.tRP) |
2269 		NDTR0_TWP(nfc_tmg.tWP) |
2270 		NDTR0_TWH(nfc_tmg.tWH) |
2271 		NDTR0_TCS(nfc_tmg.tCS) |
2272 		NDTR0_TCH(nfc_tmg.tCH);
2273 
2274 	marvell_nand->ndtr1 =
2275 		NDTR1_TAR(nfc_tmg.tAR) |
2276 		NDTR1_TWHR(nfc_tmg.tWHR) |
2277 		NDTR1_TR(nfc_tmg.tR);
2278 
2279 	if (nfc->caps->is_nfcv2) {
2280 		marvell_nand->ndtr0 |=
2281 			NDTR0_RD_CNT_DEL(read_delay) |
2282 			NDTR0_SELCNTR |
2283 			NDTR0_TADL(nfc_tmg.tADL);
2284 
2285 		marvell_nand->ndtr1 |=
2286 			NDTR1_TRHW(nfc_tmg.tRHW) |
2287 			NDTR1_WAIT_MODE;
2288 	}
2289 
2290 	return 0;
2291 }
2292 
2293 static int marvell_nand_attach_chip(struct nand_chip *chip)
2294 {
2295 	struct mtd_info *mtd = nand_to_mtd(chip);
2296 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2297 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2298 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2299 	int ret;
2300 
2301 	if (pdata && pdata->flash_bbt)
2302 		chip->bbt_options |= NAND_BBT_USE_FLASH;
2303 
2304 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2305 		/*
2306 		 * We'll use a bad block table stored in-flash and don't
2307 		 * allow writing the bad block marker to the flash.
2308 		 */
2309 		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2310 		chip->bbt_td = &bbt_main_descr;
2311 		chip->bbt_md = &bbt_mirror_descr;
2312 	}
2313 
2314 	/* Save the chip-specific fields of NDCR */
2315 	marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2316 	if (chip->options & NAND_BUSWIDTH_16)
2317 		marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2318 
2319 	/*
2320 	 * On small page NANDs, only one cycle is needed to pass the
2321 	 * column address.
2322 	 */
2323 	if (mtd->writesize <= 512) {
2324 		marvell_nand->addr_cyc = 1;
2325 	} else {
2326 		marvell_nand->addr_cyc = 2;
2327 		marvell_nand->ndcr |= NDCR_RA_START;
2328 	}
2329 
2330 	/*
2331 	 * Now add the number of cycles needed to pass the row
2332 	 * address.
2333 	 *
2334 	 * Addressing a chip using CS 2 or 3 should also need the third row
2335 	 * cycle but due to inconsistance in the documentation and lack of
2336 	 * hardware to test this situation, this case is not supported.
2337 	 */
2338 	if (chip->options & NAND_ROW_ADDR_3)
2339 		marvell_nand->addr_cyc += 3;
2340 	else
2341 		marvell_nand->addr_cyc += 2;
2342 
2343 	if (pdata) {
2344 		chip->ecc.size = pdata->ecc_step_size;
2345 		chip->ecc.strength = pdata->ecc_strength;
2346 	}
2347 
2348 	ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2349 	if (ret) {
2350 		dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2351 		return ret;
2352 	}
2353 
2354 	if (chip->ecc.mode == NAND_ECC_HW) {
2355 		/*
2356 		 * Subpage write not available with hardware ECC, prohibit also
2357 		 * subpage read as in userspace subpage access would still be
2358 		 * allowed and subpage write, if used, would lead to numerous
2359 		 * uncorrectable ECC errors.
2360 		 */
2361 		chip->options |= NAND_NO_SUBPAGE_WRITE;
2362 	}
2363 
2364 	if (pdata || nfc->caps->legacy_of_bindings) {
2365 		/*
2366 		 * We keep the MTD name unchanged to avoid breaking platforms
2367 		 * where the MTD cmdline parser is used and the bootloader
2368 		 * has not been updated to use the new naming scheme.
2369 		 */
2370 		mtd->name = "pxa3xx_nand-0";
2371 	} else if (!mtd->name) {
2372 		/*
2373 		 * If the new bindings are used and the bootloader has not been
2374 		 * updated to pass a new mtdparts parameter on the cmdline, you
2375 		 * should define the following property in your NAND node, ie:
2376 		 *
2377 		 *	label = "main-storage";
2378 		 *
2379 		 * This way, mtd->name will be set by the core when
2380 		 * nand_set_flash_node() is called.
2381 		 */
2382 		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2383 					   "%s:nand.%d", dev_name(nfc->dev),
2384 					   marvell_nand->sels[0].cs);
2385 		if (!mtd->name) {
2386 			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2387 			return -ENOMEM;
2388 		}
2389 	}
2390 
2391 	return 0;
2392 }
2393 
2394 static const struct nand_controller_ops marvell_nand_controller_ops = {
2395 	.attach_chip = marvell_nand_attach_chip,
2396 };
2397 
2398 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2399 				  struct device_node *np)
2400 {
2401 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2402 	struct marvell_nand_chip *marvell_nand;
2403 	struct mtd_info *mtd;
2404 	struct nand_chip *chip;
2405 	int nsels, ret, i;
2406 	u32 cs, rb;
2407 
2408 	/*
2409 	 * The legacy "num-cs" property indicates the number of CS on the only
2410 	 * chip connected to the controller (legacy bindings does not support
2411 	 * more than one chip). The CS and RB pins are always the #0.
2412 	 *
2413 	 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2414 	 * properties must be filled. For each chip, expressed as a subnode,
2415 	 * "reg" points to the CS lines and "nand-rb" to the RB line.
2416 	 */
2417 	if (pdata || nfc->caps->legacy_of_bindings) {
2418 		nsels = 1;
2419 	} else {
2420 		nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2421 		if (nsels <= 0) {
2422 			dev_err(dev, "missing/invalid reg property\n");
2423 			return -EINVAL;
2424 		}
2425 	}
2426 
2427 	/* Alloc the nand chip structure */
2428 	marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
2429 				    (nsels *
2430 				     sizeof(struct marvell_nand_chip_sel)),
2431 				    GFP_KERNEL);
2432 	if (!marvell_nand) {
2433 		dev_err(dev, "could not allocate chip structure\n");
2434 		return -ENOMEM;
2435 	}
2436 
2437 	marvell_nand->nsels = nsels;
2438 	marvell_nand->selected_die = -1;
2439 
2440 	for (i = 0; i < nsels; i++) {
2441 		if (pdata || nfc->caps->legacy_of_bindings) {
2442 			/*
2443 			 * Legacy bindings use the CS lines in natural
2444 			 * order (0, 1, ...)
2445 			 */
2446 			cs = i;
2447 		} else {
2448 			/* Retrieve CS id */
2449 			ret = of_property_read_u32_index(np, "reg", i, &cs);
2450 			if (ret) {
2451 				dev_err(dev, "could not retrieve reg property: %d\n",
2452 					ret);
2453 				return ret;
2454 			}
2455 		}
2456 
2457 		if (cs >= nfc->caps->max_cs_nb) {
2458 			dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2459 				cs, nfc->caps->max_cs_nb);
2460 			return -EINVAL;
2461 		}
2462 
2463 		if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2464 			dev_err(dev, "CS %d already assigned\n", cs);
2465 			return -EINVAL;
2466 		}
2467 
2468 		/*
2469 		 * The cs variable represents the chip select id, which must be
2470 		 * converted in bit fields for NDCB0 and NDCB2 to select the
2471 		 * right chip. Unfortunately, due to a lack of information on
2472 		 * the subject and incoherent documentation, the user should not
2473 		 * use CS1 and CS3 at all as asserting them is not supported in
2474 		 * a reliable way (due to multiplexing inside ADDR5 field).
2475 		 */
2476 		marvell_nand->sels[i].cs = cs;
2477 		switch (cs) {
2478 		case 0:
2479 		case 2:
2480 			marvell_nand->sels[i].ndcb0_csel = 0;
2481 			break;
2482 		case 1:
2483 		case 3:
2484 			marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2485 			break;
2486 		default:
2487 			return -EINVAL;
2488 		}
2489 
2490 		/* Retrieve RB id */
2491 		if (pdata || nfc->caps->legacy_of_bindings) {
2492 			/* Legacy bindings always use RB #0 */
2493 			rb = 0;
2494 		} else {
2495 			ret = of_property_read_u32_index(np, "nand-rb", i,
2496 							 &rb);
2497 			if (ret) {
2498 				dev_err(dev,
2499 					"could not retrieve RB property: %d\n",
2500 					ret);
2501 				return ret;
2502 			}
2503 		}
2504 
2505 		if (rb >= nfc->caps->max_rb_nb) {
2506 			dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2507 				rb, nfc->caps->max_rb_nb);
2508 			return -EINVAL;
2509 		}
2510 
2511 		marvell_nand->sels[i].rb = rb;
2512 	}
2513 
2514 	chip = &marvell_nand->chip;
2515 	chip->controller = &nfc->controller;
2516 	nand_set_flash_node(chip, np);
2517 
2518 	chip->exec_op = marvell_nfc_exec_op;
2519 	chip->select_chip = marvell_nfc_select_chip;
2520 	if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2521 		chip->setup_data_interface = marvell_nfc_setup_data_interface;
2522 
2523 	mtd = nand_to_mtd(chip);
2524 	mtd->dev.parent = dev;
2525 
2526 	/*
2527 	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2528 	 * in the DT node, this entry will be overwritten in nand_scan_ident().
2529 	 */
2530 	chip->ecc.mode = NAND_ECC_HW;
2531 
2532 	/*
2533 	 * Save a reference value for timing registers before
2534 	 * ->setup_data_interface() is called.
2535 	 */
2536 	marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2537 	marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2538 
2539 	chip->options |= NAND_BUSWIDTH_AUTO;
2540 
2541 	ret = nand_scan(mtd, marvell_nand->nsels);
2542 	if (ret) {
2543 		dev_err(dev, "could not scan the nand chip\n");
2544 		return ret;
2545 	}
2546 
2547 	if (pdata)
2548 		/* Legacy bindings support only one chip */
2549 		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2550 	else
2551 		ret = mtd_device_register(mtd, NULL, 0);
2552 	if (ret) {
2553 		dev_err(dev, "failed to register mtd device: %d\n", ret);
2554 		nand_release(mtd);
2555 		return ret;
2556 	}
2557 
2558 	list_add_tail(&marvell_nand->node, &nfc->chips);
2559 
2560 	return 0;
2561 }
2562 
2563 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2564 {
2565 	struct device_node *np = dev->of_node;
2566 	struct device_node *nand_np;
2567 	int max_cs = nfc->caps->max_cs_nb;
2568 	int nchips;
2569 	int ret;
2570 
2571 	if (!np)
2572 		nchips = 1;
2573 	else
2574 		nchips = of_get_child_count(np);
2575 
2576 	if (nchips > max_cs) {
2577 		dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2578 			max_cs);
2579 		return -EINVAL;
2580 	}
2581 
2582 	/*
2583 	 * Legacy bindings do not use child nodes to exhibit NAND chip
2584 	 * properties and layout. Instead, NAND properties are mixed with the
2585 	 * controller ones, and partitions are defined as direct subnodes of the
2586 	 * NAND controller node.
2587 	 */
2588 	if (nfc->caps->legacy_of_bindings) {
2589 		ret = marvell_nand_chip_init(dev, nfc, np);
2590 		return ret;
2591 	}
2592 
2593 	for_each_child_of_node(np, nand_np) {
2594 		ret = marvell_nand_chip_init(dev, nfc, nand_np);
2595 		if (ret) {
2596 			of_node_put(nand_np);
2597 			return ret;
2598 		}
2599 	}
2600 
2601 	return 0;
2602 }
2603 
2604 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2605 {
2606 	struct marvell_nand_chip *entry, *temp;
2607 
2608 	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2609 		nand_release(nand_to_mtd(&entry->chip));
2610 		list_del(&entry->node);
2611 	}
2612 }
2613 
2614 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2615 {
2616 	struct platform_device *pdev = container_of(nfc->dev,
2617 						    struct platform_device,
2618 						    dev);
2619 	struct dma_slave_config config = {};
2620 	struct resource *r;
2621 	int ret;
2622 
2623 	if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2624 		dev_warn(nfc->dev,
2625 			 "DMA not enabled in configuration\n");
2626 		return -ENOTSUPP;
2627 	}
2628 
2629 	ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2630 	if (ret)
2631 		return ret;
2632 
2633 	nfc->dma_chan =	dma_request_slave_channel(nfc->dev, "data");
2634 	if (!nfc->dma_chan) {
2635 		dev_err(nfc->dev,
2636 			"Unable to request data DMA channel\n");
2637 		return -ENODEV;
2638 	}
2639 
2640 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2641 	if (!r)
2642 		return -ENXIO;
2643 
2644 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2645 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2646 	config.src_addr = r->start + NDDB;
2647 	config.dst_addr = r->start + NDDB;
2648 	config.src_maxburst = 32;
2649 	config.dst_maxburst = 32;
2650 	ret = dmaengine_slave_config(nfc->dma_chan, &config);
2651 	if (ret < 0) {
2652 		dev_err(nfc->dev, "Failed to configure DMA channel\n");
2653 		return ret;
2654 	}
2655 
2656 	/*
2657 	 * DMA must act on length multiple of 32 and this length may be
2658 	 * bigger than the destination buffer. Use this buffer instead
2659 	 * for DMA transfers and then copy the desired amount of data to
2660 	 * the provided buffer.
2661 	 */
2662 	nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2663 	if (!nfc->dma_buf)
2664 		return -ENOMEM;
2665 
2666 	nfc->use_dma = true;
2667 
2668 	return 0;
2669 }
2670 
2671 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2672 {
2673 	/*
2674 	 * ECC operations and interruptions are only enabled when specifically
2675 	 * needed. ECC shall not be activated in the early stages (fails probe).
2676 	 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2677 	 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2678 	 * offset in the read page and this will fail the protection.
2679 	 */
2680 	writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2681 		       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2682 	writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2683 	writel_relaxed(0, nfc->regs + NDECCCTRL);
2684 }
2685 
2686 static int marvell_nfc_init(struct marvell_nfc *nfc)
2687 {
2688 	struct device_node *np = nfc->dev->of_node;
2689 
2690 	/*
2691 	 * Some SoCs like A7k/A8k need to enable manually the NAND
2692 	 * controller, gated clocks and reset bits to avoid being bootloader
2693 	 * dependent. This is done through the use of the System Functions
2694 	 * registers.
2695 	 */
2696 	if (nfc->caps->need_system_controller) {
2697 		struct regmap *sysctrl_base =
2698 			syscon_regmap_lookup_by_phandle(np,
2699 							"marvell,system-controller");
2700 		u32 reg;
2701 
2702 		if (IS_ERR(sysctrl_base))
2703 			return PTR_ERR(sysctrl_base);
2704 
2705 		reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
2706 		      GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2707 		      GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2708 		      GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
2709 		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
2710 
2711 		regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, &reg);
2712 		reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
2713 		regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
2714 
2715 		regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, &reg);
2716 		reg |= GENCONF_ND_CLK_CTRL_EN;
2717 		regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
2718 	}
2719 
2720 	/* Configure the DMA if appropriate */
2721 	if (!nfc->caps->is_nfcv2)
2722 		marvell_nfc_init_dma(nfc);
2723 
2724 	marvell_nfc_reset(nfc);
2725 
2726 	return 0;
2727 }
2728 
2729 static int marvell_nfc_probe(struct platform_device *pdev)
2730 {
2731 	struct device *dev = &pdev->dev;
2732 	struct resource *r;
2733 	struct marvell_nfc *nfc;
2734 	int ret;
2735 	int irq;
2736 
2737 	nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2738 			   GFP_KERNEL);
2739 	if (!nfc)
2740 		return -ENOMEM;
2741 
2742 	nfc->dev = dev;
2743 	nand_controller_init(&nfc->controller);
2744 	nfc->controller.ops = &marvell_nand_controller_ops;
2745 	INIT_LIST_HEAD(&nfc->chips);
2746 
2747 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2748 	nfc->regs = devm_ioremap_resource(dev, r);
2749 	if (IS_ERR(nfc->regs))
2750 		return PTR_ERR(nfc->regs);
2751 
2752 	irq = platform_get_irq(pdev, 0);
2753 	if (irq < 0) {
2754 		dev_err(dev, "failed to retrieve irq\n");
2755 		return irq;
2756 	}
2757 
2758 	nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2759 
2760 	/* Managed the legacy case (when the first clock was not named) */
2761 	if (nfc->core_clk == ERR_PTR(-ENOENT))
2762 		nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2763 
2764 	if (IS_ERR(nfc->core_clk))
2765 		return PTR_ERR(nfc->core_clk);
2766 
2767 	ret = clk_prepare_enable(nfc->core_clk);
2768 	if (ret)
2769 		return ret;
2770 
2771 	nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2772 	if (IS_ERR(nfc->reg_clk)) {
2773 		if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2774 			ret = PTR_ERR(nfc->reg_clk);
2775 			goto unprepare_core_clk;
2776 		}
2777 
2778 		nfc->reg_clk = NULL;
2779 	}
2780 
2781 	ret = clk_prepare_enable(nfc->reg_clk);
2782 	if (ret)
2783 		goto unprepare_core_clk;
2784 
2785 	marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2786 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2787 	ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2788 			       0, "marvell-nfc", nfc);
2789 	if (ret)
2790 		goto unprepare_reg_clk;
2791 
2792 	/* Get NAND controller capabilities */
2793 	if (pdev->id_entry)
2794 		nfc->caps = (void *)pdev->id_entry->driver_data;
2795 	else
2796 		nfc->caps = of_device_get_match_data(&pdev->dev);
2797 
2798 	if (!nfc->caps) {
2799 		dev_err(dev, "Could not retrieve NFC caps\n");
2800 		ret = -EINVAL;
2801 		goto unprepare_reg_clk;
2802 	}
2803 
2804 	/* Init the controller and then probe the chips */
2805 	ret = marvell_nfc_init(nfc);
2806 	if (ret)
2807 		goto unprepare_reg_clk;
2808 
2809 	platform_set_drvdata(pdev, nfc);
2810 
2811 	ret = marvell_nand_chips_init(dev, nfc);
2812 	if (ret)
2813 		goto unprepare_reg_clk;
2814 
2815 	return 0;
2816 
2817 unprepare_reg_clk:
2818 	clk_disable_unprepare(nfc->reg_clk);
2819 unprepare_core_clk:
2820 	clk_disable_unprepare(nfc->core_clk);
2821 
2822 	return ret;
2823 }
2824 
2825 static int marvell_nfc_remove(struct platform_device *pdev)
2826 {
2827 	struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2828 
2829 	marvell_nand_chips_cleanup(nfc);
2830 
2831 	if (nfc->use_dma) {
2832 		dmaengine_terminate_all(nfc->dma_chan);
2833 		dma_release_channel(nfc->dma_chan);
2834 	}
2835 
2836 	clk_disable_unprepare(nfc->reg_clk);
2837 	clk_disable_unprepare(nfc->core_clk);
2838 
2839 	return 0;
2840 }
2841 
2842 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
2843 {
2844 	struct marvell_nfc *nfc = dev_get_drvdata(dev);
2845 	struct marvell_nand_chip *chip;
2846 
2847 	list_for_each_entry(chip, &nfc->chips, node)
2848 		marvell_nfc_wait_ndrun(&chip->chip);
2849 
2850 	clk_disable_unprepare(nfc->reg_clk);
2851 	clk_disable_unprepare(nfc->core_clk);
2852 
2853 	return 0;
2854 }
2855 
2856 static int __maybe_unused marvell_nfc_resume(struct device *dev)
2857 {
2858 	struct marvell_nfc *nfc = dev_get_drvdata(dev);
2859 	int ret;
2860 
2861 	ret = clk_prepare_enable(nfc->core_clk);
2862 	if (ret < 0)
2863 		return ret;
2864 
2865 	ret = clk_prepare_enable(nfc->reg_clk);
2866 	if (ret < 0)
2867 		return ret;
2868 
2869 	/*
2870 	 * Reset nfc->selected_chip so the next command will cause the timing
2871 	 * registers to be restored in marvell_nfc_select_chip().
2872 	 */
2873 	nfc->selected_chip = NULL;
2874 
2875 	/* Reset registers that have lost their contents */
2876 	marvell_nfc_reset(nfc);
2877 
2878 	return 0;
2879 }
2880 
2881 static const struct dev_pm_ops marvell_nfc_pm_ops = {
2882 	SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
2883 };
2884 
2885 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2886 	.max_cs_nb = 4,
2887 	.max_rb_nb = 2,
2888 	.need_system_controller = true,
2889 	.is_nfcv2 = true,
2890 };
2891 
2892 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
2893 	.max_cs_nb = 4,
2894 	.max_rb_nb = 2,
2895 	.is_nfcv2 = true,
2896 };
2897 
2898 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
2899 	.max_cs_nb = 2,
2900 	.max_rb_nb = 1,
2901 	.use_dma = true,
2902 };
2903 
2904 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
2905 	.max_cs_nb = 4,
2906 	.max_rb_nb = 2,
2907 	.need_system_controller = true,
2908 	.legacy_of_bindings = true,
2909 	.is_nfcv2 = true,
2910 };
2911 
2912 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
2913 	.max_cs_nb = 4,
2914 	.max_rb_nb = 2,
2915 	.legacy_of_bindings = true,
2916 	.is_nfcv2 = true,
2917 };
2918 
2919 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
2920 	.max_cs_nb = 2,
2921 	.max_rb_nb = 1,
2922 	.legacy_of_bindings = true,
2923 	.use_dma = true,
2924 };
2925 
2926 static const struct platform_device_id marvell_nfc_platform_ids[] = {
2927 	{
2928 		.name = "pxa3xx-nand",
2929 		.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
2930 	},
2931 	{ /* sentinel */ },
2932 };
2933 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
2934 
2935 static const struct of_device_id marvell_nfc_of_ids[] = {
2936 	{
2937 		.compatible = "marvell,armada-8k-nand-controller",
2938 		.data = &marvell_armada_8k_nfc_caps,
2939 	},
2940 	{
2941 		.compatible = "marvell,armada370-nand-controller",
2942 		.data = &marvell_armada370_nfc_caps,
2943 	},
2944 	{
2945 		.compatible = "marvell,pxa3xx-nand-controller",
2946 		.data = &marvell_pxa3xx_nfc_caps,
2947 	},
2948 	/* Support for old/deprecated bindings: */
2949 	{
2950 		.compatible = "marvell,armada-8k-nand",
2951 		.data = &marvell_armada_8k_nfc_legacy_caps,
2952 	},
2953 	{
2954 		.compatible = "marvell,armada370-nand",
2955 		.data = &marvell_armada370_nfc_legacy_caps,
2956 	},
2957 	{
2958 		.compatible = "marvell,pxa3xx-nand",
2959 		.data = &marvell_pxa3xx_nfc_legacy_caps,
2960 	},
2961 	{ /* sentinel */ },
2962 };
2963 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
2964 
2965 static struct platform_driver marvell_nfc_driver = {
2966 	.driver	= {
2967 		.name		= "marvell-nfc",
2968 		.of_match_table = marvell_nfc_of_ids,
2969 		.pm		= &marvell_nfc_pm_ops,
2970 	},
2971 	.id_table = marvell_nfc_platform_ids,
2972 	.probe = marvell_nfc_probe,
2973 	.remove	= marvell_nfc_remove,
2974 };
2975 module_platform_driver(marvell_nfc_driver);
2976 
2977 MODULE_LICENSE("GPL");
2978 MODULE_DESCRIPTION("Marvell NAND controller driver");
2979