1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 * 9 * This NAND controller driver handles two versions of the hardware, 10 * one is called NFCv1 and is available on PXA SoCs and the other is 11 * called NFCv2 and is available on Armada SoCs. 12 * 13 * The main visible difference is that NFCv1 only has Hamming ECC 14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA 15 * is not used with NFCv2. 16 * 17 * The ECC layouts are depicted in details in Marvell AN-379, but here 18 * is a brief description. 19 * 20 * When using Hamming, the data is split in 512B chunks (either 1, 2 21 * or 4) and each chunk will have its own ECC "digest" of 6B at the 22 * beginning of the OOB area and eventually the remaining free OOB 23 * bytes (also called "spare" bytes in the driver). This engine 24 * corrects up to 1 bit per chunk and detects reliably an error if 25 * there are at most 2 bitflips. Here is the page layout used by the 26 * controller when Hamming is chosen: 27 * 28 * +-------------------------------------------------------------+ 29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | 30 * +-------------------------------------------------------------+ 31 * 32 * When using the BCH engine, there are N identical (data + free OOB + 33 * ECC) sections and potentially an extra one to deal with 34 * configurations where the chosen (data + free OOB + ECC) sizes do 35 * not align with the page (data + OOB) size. ECC bytes are always 36 * 30B per ECC chunk. Here is the page layout used by the controller 37 * when BCH is chosen: 38 * 39 * +----------------------------------------- 40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ... 41 * +----------------------------------------- 42 * 43 * ------------------------------------------- 44 * ... | Data N | Free OOB bytes N | ECC N | 45 * ------------------------------------------- 46 * 47 * --------------------------------------------+ 48 * Last Data | Last Free OOB bytes | Last ECC | 49 * --------------------------------------------+ 50 * 51 * In both cases, the layout seen by the user is always: all data 52 * first, then all free OOB bytes and finally all ECC bytes. With BCH, 53 * ECC bytes are 30B long and are padded with 0xFF to align on 32 54 * bytes. 55 * 56 * The controller has certain limitations that are handled by the 57 * driver: 58 * - It can only read 2k at a time. To overcome this limitation, the 59 * driver issues data cycles on the bus, without issuing new 60 * CMD + ADDR cycles. The Marvell term is "naked" operations. 61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 62 * bits. What can be tuned is the ECC block size as long as it 63 * stays between 512B and 2kiB. It's usually chosen based on the 64 * chip ECC requirements. For instance, using 2kiB ECC chunks 65 * provides 4b/512B correctability. 66 * - The controller will always treat data bytes, free OOB bytes 67 * and ECC bytes in that order, no matter what the real layout is 68 * (which is usually all data then all OOB bytes). The 69 * marvell_nfc_layouts array below contains the currently 70 * supported layouts. 71 * - Because of these weird layouts, the Bad Block Markers can be 72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM 73 * option must be set to prevent scanning/writing bad block 74 * markers. 75 */ 76 77 #include <linux/module.h> 78 #include <linux/clk.h> 79 #include <linux/mtd/rawnand.h> 80 #include <linux/of.h> 81 #include <linux/iopoll.h> 82 #include <linux/interrupt.h> 83 #include <linux/platform_device.h> 84 #include <linux/slab.h> 85 #include <linux/mfd/syscon.h> 86 #include <linux/regmap.h> 87 #include <asm/unaligned.h> 88 89 #include <linux/dmaengine.h> 90 #include <linux/dma-mapping.h> 91 #include <linux/dma/pxa-dma.h> 92 #include <linux/platform_data/mtd-nand-pxa3xx.h> 93 94 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 95 #define FIFO_DEPTH 8 96 #define FIFO_REP(x) (x / sizeof(u32)) 97 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 98 /* NFC does not support transfers of larger chunks at a time */ 99 #define MAX_CHUNK_SIZE 2112 100 /* NFCv1 cannot read more that 7 bytes of ID */ 101 #define NFCV1_READID_LEN 7 102 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 103 #define POLL_PERIOD 0 104 #define POLL_TIMEOUT 100000 105 /* Interrupt maximum wait period in ms */ 106 #define IRQ_TIMEOUT 1000 107 /* Latency in clock cycles between SoC pins and NFC logic */ 108 #define MIN_RD_DEL_CNT 3 109 /* Maximum number of contiguous address cycles */ 110 #define MAX_ADDRESS_CYC_NFCV1 5 111 #define MAX_ADDRESS_CYC_NFCV2 7 112 /* System control registers/bits to enable the NAND controller on some SoCs */ 113 #define GENCONF_SOC_DEVICE_MUX 0x208 114 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 115 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 116 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 117 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 118 #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27) 119 #define GENCONF_CLK_GATING_CTRL 0x220 120 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 121 #define GENCONF_ND_CLK_CTRL 0x700 122 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 123 124 /* NAND controller data flash control register */ 125 #define NDCR 0x00 126 #define NDCR_ALL_INT GENMASK(11, 0) 127 #define NDCR_CS1_CMDDM BIT(7) 128 #define NDCR_CS0_CMDDM BIT(8) 129 #define NDCR_RDYM BIT(11) 130 #define NDCR_ND_ARB_EN BIT(12) 131 #define NDCR_RA_START BIT(15) 132 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 133 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 134 #define NDCR_DWIDTH_M BIT(26) 135 #define NDCR_DWIDTH_C BIT(27) 136 #define NDCR_ND_RUN BIT(28) 137 #define NDCR_DMA_EN BIT(29) 138 #define NDCR_ECC_EN BIT(30) 139 #define NDCR_SPARE_EN BIT(31) 140 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 141 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 142 143 /* NAND interface timing parameter 0 register */ 144 #define NDTR0 0x04 145 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 146 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 147 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 148 #define NDTR0_SEL_NRE_EDGE BIT(7) 149 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 150 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 151 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 152 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 153 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 154 #define NDTR0_SELCNTR BIT(26) 155 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 156 157 /* NAND interface timing parameter 1 register */ 158 #define NDTR1 0x0C 159 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 160 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 161 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 162 #define NDTR1_PRESCALE BIT(14) 163 #define NDTR1_WAIT_MODE BIT(15) 164 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 165 166 /* NAND controller status register */ 167 #define NDSR 0x14 168 #define NDSR_WRCMDREQ BIT(0) 169 #define NDSR_RDDREQ BIT(1) 170 #define NDSR_WRDREQ BIT(2) 171 #define NDSR_CORERR BIT(3) 172 #define NDSR_UNCERR BIT(4) 173 #define NDSR_CMDD(cs) BIT(8 - cs) 174 #define NDSR_RDY(rb) BIT(11 + rb) 175 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 176 177 /* NAND ECC control register */ 178 #define NDECCCTRL 0x28 179 #define NDECCCTRL_BCH_EN BIT(0) 180 181 /* NAND controller data buffer register */ 182 #define NDDB 0x40 183 184 /* NAND controller command buffer 0 register */ 185 #define NDCB0 0x48 186 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 187 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 188 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 189 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 190 #define NDCB0_DBC BIT(19) 191 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 192 #define NDCB0_CSEL BIT(24) 193 #define NDCB0_RDY_BYP BIT(27) 194 #define NDCB0_LEN_OVRD BIT(28) 195 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 196 197 /* NAND controller command buffer 1 register */ 198 #define NDCB1 0x4C 199 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 200 #define NDCB1_ADDRS_PAGE(x) (x << 16) 201 202 /* NAND controller command buffer 2 register */ 203 #define NDCB2 0x50 204 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 205 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 206 207 /* NAND controller command buffer 3 register */ 208 #define NDCB3 0x54 209 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 210 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 211 212 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 213 #define TYPE_READ 0 214 #define TYPE_WRITE 1 215 #define TYPE_ERASE 2 216 #define TYPE_READ_ID 3 217 #define TYPE_STATUS 4 218 #define TYPE_RESET 5 219 #define TYPE_NAKED_CMD 6 220 #define TYPE_NAKED_ADDR 7 221 #define TYPE_MASK 7 222 #define XTYPE_MONOLITHIC_RW 0 223 #define XTYPE_LAST_NAKED_RW 1 224 #define XTYPE_FINAL_COMMAND 3 225 #define XTYPE_READ 4 226 #define XTYPE_WRITE_DISPATCH 4 227 #define XTYPE_NAKED_RW 5 228 #define XTYPE_COMMAND_DISPATCH 6 229 #define XTYPE_MASK 7 230 231 /** 232 * struct marvell_hw_ecc_layout - layout of Marvell ECC 233 * 234 * Marvell ECC engine works differently than the others, in order to limit the 235 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 236 * per subpage, and depending on a the desired strength needed by the NAND chip, 237 * a particular layout mixing data/spare/ecc is defined, with a possible last 238 * chunk smaller that the others. 239 * 240 * @writesize: Full page size on which the layout applies 241 * @chunk: Desired ECC chunk size on which the layout applies 242 * @strength: Desired ECC strength (per chunk size bytes) on which the 243 * layout applies 244 * @nchunks: Total number of chunks 245 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 246 * repetitions of the pattern: 247 * (data_bytes + spare_bytes + ecc_bytes). 248 * @data_bytes: Number of data bytes per chunk 249 * @spare_bytes: Number of spare bytes per chunk 250 * @ecc_bytes: Number of ecc bytes per chunk 251 * @last_data_bytes: Number of data bytes in the last chunk 252 * @last_spare_bytes: Number of spare bytes in the last chunk 253 * @last_ecc_bytes: Number of ecc bytes in the last chunk 254 */ 255 struct marvell_hw_ecc_layout { 256 /* Constraints */ 257 int writesize; 258 int chunk; 259 int strength; 260 /* Corresponding layout */ 261 int nchunks; 262 int full_chunk_cnt; 263 int data_bytes; 264 int spare_bytes; 265 int ecc_bytes; 266 int last_data_bytes; 267 int last_spare_bytes; 268 int last_ecc_bytes; 269 }; 270 271 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 272 { \ 273 .writesize = ws, \ 274 .chunk = dc, \ 275 .strength = ds, \ 276 .nchunks = nc, \ 277 .full_chunk_cnt = fcc, \ 278 .data_bytes = db, \ 279 .spare_bytes = sb, \ 280 .ecc_bytes = eb, \ 281 .last_data_bytes = ldb, \ 282 .last_spare_bytes = lsb, \ 283 .last_ecc_bytes = leb, \ 284 } 285 286 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 287 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 288 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 289 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 290 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 291 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), 292 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,64, 30), 293 MARVELL_LAYOUT( 2048, 512, 16, 4, 4, 512, 0, 30, 0, 32, 30), 294 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 295 MARVELL_LAYOUT( 4096, 512, 8, 4, 4, 1024, 0, 30, 0, 64, 30), 296 MARVELL_LAYOUT( 4096, 512, 16, 8, 8, 512, 0, 30, 0, 32, 30), 297 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), 298 MARVELL_LAYOUT( 8192, 512, 8, 8, 8, 1024, 0, 30, 0, 160, 30), 299 MARVELL_LAYOUT( 8192, 512, 16, 16, 16, 512, 0, 30, 0, 32, 30), 300 }; 301 302 /** 303 * struct marvell_nand_chip_sel - CS line description 304 * 305 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 306 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 307 * The datasheet describes the logic with an error: ADDR5 field is once 308 * declared at the beginning of NDCB2, and another time at its end. Because the 309 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 310 * to use the last bit of this field instead of the first ones. 311 * 312 * @cs: Wanted CE lane. 313 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 314 * selecting the wanted CE lane. This is set once when 315 * the Device Tree is probed. 316 * @rb: Ready/Busy pin for the flash chip 317 */ 318 struct marvell_nand_chip_sel { 319 unsigned int cs; 320 u32 ndcb0_csel; 321 unsigned int rb; 322 }; 323 324 /** 325 * struct marvell_nand_chip - stores NAND chip device related information 326 * 327 * @chip: Base NAND chip structure 328 * @node: Used to store NAND chips into a list 329 * @layout: NAND layout when using hardware ECC 330 * @ndcr: Controller register value for this NAND chip 331 * @ndtr0: Timing registers 0 value for this NAND chip 332 * @ndtr1: Timing registers 1 value for this NAND chip 333 * @addr_cyc: Amount of cycles needed to pass column address 334 * @selected_die: Current active CS 335 * @nsels: Number of CS lines required by the NAND chip 336 * @sels: Array of CS lines descriptions 337 */ 338 struct marvell_nand_chip { 339 struct nand_chip chip; 340 struct list_head node; 341 const struct marvell_hw_ecc_layout *layout; 342 u32 ndcr; 343 u32 ndtr0; 344 u32 ndtr1; 345 int addr_cyc; 346 int selected_die; 347 unsigned int nsels; 348 struct marvell_nand_chip_sel sels[]; 349 }; 350 351 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 352 { 353 return container_of(chip, struct marvell_nand_chip, chip); 354 } 355 356 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 357 *nand) 358 { 359 return &nand->sels[nand->selected_die]; 360 } 361 362 /** 363 * struct marvell_nfc_caps - NAND controller capabilities for distinction 364 * between compatible strings 365 * 366 * @max_cs_nb: Number of Chip Select lines available 367 * @max_rb_nb: Number of Ready/Busy lines available 368 * @need_system_controller: Indicates if the SoC needs to have access to the 369 * system controller (ie. to enable the NAND controller) 370 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 371 * fashion way 372 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 373 * BCH error detection and correction algorithm, 374 * NDCB3 register has been added 375 * @use_dma: Use dma for data transfers 376 * @max_mode_number: Maximum timing mode supported by the controller 377 */ 378 struct marvell_nfc_caps { 379 unsigned int max_cs_nb; 380 unsigned int max_rb_nb; 381 bool need_system_controller; 382 bool legacy_of_bindings; 383 bool is_nfcv2; 384 bool use_dma; 385 unsigned int max_mode_number; 386 }; 387 388 /** 389 * struct marvell_nfc - stores Marvell NAND controller information 390 * 391 * @controller: Base controller structure 392 * @dev: Parent device (used to print error messages) 393 * @regs: NAND controller registers 394 * @core_clk: Core clock 395 * @reg_clk: Registers clock 396 * @complete: Completion object to wait for NAND controller events 397 * @assigned_cs: Bitmask describing already assigned CS lines 398 * @chips: List containing all the NAND chips attached to 399 * this NAND controller 400 * @selected_chip: Currently selected target chip 401 * @caps: NAND controller capabilities for each compatible string 402 * @use_dma: Whetner DMA is used 403 * @dma_chan: DMA channel (NFCv1 only) 404 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 405 */ 406 struct marvell_nfc { 407 struct nand_controller controller; 408 struct device *dev; 409 void __iomem *regs; 410 struct clk *core_clk; 411 struct clk *reg_clk; 412 struct completion complete; 413 unsigned long assigned_cs; 414 struct list_head chips; 415 struct nand_chip *selected_chip; 416 const struct marvell_nfc_caps *caps; 417 418 /* DMA (NFCv1 only) */ 419 bool use_dma; 420 struct dma_chan *dma_chan; 421 u8 *dma_buf; 422 }; 423 424 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 425 { 426 return container_of(ctrl, struct marvell_nfc, controller); 427 } 428 429 /** 430 * struct marvell_nfc_timings - NAND controller timings expressed in NAND 431 * Controller clock cycles 432 * 433 * @tRP: ND_nRE pulse width 434 * @tRH: ND_nRE high duration 435 * @tWP: ND_nWE pulse time 436 * @tWH: ND_nWE high duration 437 * @tCS: Enable signal setup time 438 * @tCH: Enable signal hold time 439 * @tADL: Address to write data delay 440 * @tAR: ND_ALE low to ND_nRE low delay 441 * @tWHR: ND_nWE high to ND_nRE low for status read 442 * @tRHW: ND_nRE high duration, read to write delay 443 * @tR: ND_nWE high to ND_nRE low for read 444 */ 445 struct marvell_nfc_timings { 446 /* NDTR0 fields */ 447 unsigned int tRP; 448 unsigned int tRH; 449 unsigned int tWP; 450 unsigned int tWH; 451 unsigned int tCS; 452 unsigned int tCH; 453 unsigned int tADL; 454 /* NDTR1 fields */ 455 unsigned int tAR; 456 unsigned int tWHR; 457 unsigned int tRHW; 458 unsigned int tR; 459 }; 460 461 /** 462 * TO_CYCLES() - Derives a duration in numbers of clock cycles. 463 * 464 * @ps: Duration in pico-seconds 465 * @period_ns: Clock period in nano-seconds 466 * 467 * Convert the duration in nano-seconds, then divide by the period and 468 * return the number of clock periods. 469 */ 470 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 471 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 472 period_ns)) 473 474 /** 475 * struct marvell_nfc_op - filled during the parsing of the ->exec_op() 476 * subop subset of instructions. 477 * 478 * @ndcb: Array of values written to NDCBx registers 479 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 480 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 481 * @rdy_delay_ns: Optional delay after waiting for the RB pin 482 * @data_delay_ns: Optional delay after the data xfer 483 * @data_instr_idx: Index of the data instruction in the subop 484 * @data_instr: Pointer to the data instruction in the subop 485 */ 486 struct marvell_nfc_op { 487 u32 ndcb[4]; 488 unsigned int cle_ale_delay_ns; 489 unsigned int rdy_timeout_ms; 490 unsigned int rdy_delay_ns; 491 unsigned int data_delay_ns; 492 unsigned int data_instr_idx; 493 const struct nand_op_instr *data_instr; 494 }; 495 496 /* 497 * Internal helper to conditionnally apply a delay (from the above structure, 498 * most of the time). 499 */ 500 static void cond_delay(unsigned int ns) 501 { 502 if (!ns) 503 return; 504 505 if (ns < 10000) 506 ndelay(ns); 507 else 508 udelay(DIV_ROUND_UP(ns, 1000)); 509 } 510 511 /* 512 * The controller has many flags that could generate interrupts, most of them 513 * are disabled and polling is used. For the very slow signals, using interrupts 514 * may relax the CPU charge. 515 */ 516 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 517 { 518 u32 reg; 519 520 /* Writing 1 disables the interrupt */ 521 reg = readl_relaxed(nfc->regs + NDCR); 522 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 523 } 524 525 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 526 { 527 u32 reg; 528 529 /* Writing 0 enables the interrupt */ 530 reg = readl_relaxed(nfc->regs + NDCR); 531 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 532 } 533 534 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 535 { 536 u32 reg; 537 538 reg = readl_relaxed(nfc->regs + NDSR); 539 writel_relaxed(int_mask, nfc->regs + NDSR); 540 541 return reg & int_mask; 542 } 543 544 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 545 bool force_8bit) 546 { 547 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 548 u32 ndcr; 549 550 /* 551 * Callers of this function do not verify if the NAND is using a 16-bit 552 * an 8-bit bus for normal operations, so we need to take care of that 553 * here by leaving the configuration unchanged if the NAND does not have 554 * the NAND_BUSWIDTH_16 flag set. 555 */ 556 if (!(chip->options & NAND_BUSWIDTH_16)) 557 return; 558 559 ndcr = readl_relaxed(nfc->regs + NDCR); 560 561 if (force_8bit) 562 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 563 else 564 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 565 566 writel_relaxed(ndcr, nfc->regs + NDCR); 567 } 568 569 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 570 { 571 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 572 u32 val; 573 int ret; 574 575 /* 576 * The command is being processed, wait for the ND_RUN bit to be 577 * cleared by the NFC. If not, we must clear it by hand. 578 */ 579 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 580 (val & NDCR_ND_RUN) == 0, 581 POLL_PERIOD, POLL_TIMEOUT); 582 if (ret) { 583 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 584 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 585 nfc->regs + NDCR); 586 return ret; 587 } 588 589 return 0; 590 } 591 592 /* 593 * Any time a command has to be sent to the controller, the following sequence 594 * has to be followed: 595 * - call marvell_nfc_prepare_cmd() 596 * -> activate the ND_RUN bit that will kind of 'start a job' 597 * -> wait the signal indicating the NFC is waiting for a command 598 * - send the command (cmd and address cycles) 599 * - enventually send or receive the data 600 * - call marvell_nfc_end_cmd() with the corresponding flag 601 * -> wait the flag to be triggered or cancel the job with a timeout 602 * 603 * The following helpers are here to factorize the code a bit so that 604 * specialized functions responsible for executing the actual NAND 605 * operations do not have to replicate the same code blocks. 606 */ 607 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 608 { 609 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 610 u32 ndcr, val; 611 int ret; 612 613 /* Poll ND_RUN and clear NDSR before issuing any command */ 614 ret = marvell_nfc_wait_ndrun(chip); 615 if (ret) { 616 dev_err(nfc->dev, "Last operation did not succeed\n"); 617 return ret; 618 } 619 620 ndcr = readl_relaxed(nfc->regs + NDCR); 621 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 622 623 /* Assert ND_RUN bit and wait the NFC to be ready */ 624 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 625 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 626 val & NDSR_WRCMDREQ, 627 POLL_PERIOD, POLL_TIMEOUT); 628 if (ret) { 629 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 630 return -ETIMEDOUT; 631 } 632 633 /* Command may be written, clear WRCMDREQ status bit */ 634 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 635 636 return 0; 637 } 638 639 static void marvell_nfc_send_cmd(struct nand_chip *chip, 640 struct marvell_nfc_op *nfc_op) 641 { 642 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 643 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 644 645 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 646 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 647 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 648 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 649 650 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 651 nfc->regs + NDCB0); 652 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 653 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 654 655 /* 656 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 657 * fields are used (only available on NFCv2). 658 */ 659 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 660 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 661 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 662 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 663 } 664 } 665 666 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 667 const char *label) 668 { 669 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 670 u32 val; 671 int ret; 672 673 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 674 val & flag, 675 POLL_PERIOD, POLL_TIMEOUT); 676 677 if (ret) { 678 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 679 label, val); 680 if (nfc->dma_chan) 681 dmaengine_terminate_all(nfc->dma_chan); 682 return ret; 683 } 684 685 /* 686 * DMA function uses this helper to poll on CMDD bits without wanting 687 * them to be cleared. 688 */ 689 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 690 return 0; 691 692 writel_relaxed(flag, nfc->regs + NDSR); 693 694 return 0; 695 } 696 697 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 698 { 699 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 700 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 701 702 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 703 } 704 705 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, 706 u32 expected_val, unsigned long timeout_ms) 707 { 708 unsigned long limit; 709 u32 st; 710 711 limit = jiffies + msecs_to_jiffies(timeout_ms); 712 do { 713 st = readl_relaxed(nfc->regs + NDSR); 714 if (st & NDSR_RDY(1)) 715 st |= NDSR_RDY(0); 716 717 if ((st & mask) == expected_val) 718 return 0; 719 720 cpu_relax(); 721 } while (time_after(limit, jiffies)); 722 723 return -ETIMEDOUT; 724 } 725 726 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 727 { 728 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 729 struct mtd_info *mtd = nand_to_mtd(chip); 730 u32 pending; 731 int ret; 732 733 /* Timeout is expressed in ms */ 734 if (!timeout_ms) 735 timeout_ms = IRQ_TIMEOUT; 736 737 if (mtd->oops_panic_write) { 738 ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), 739 NDSR_RDY(0), 740 timeout_ms); 741 } else { 742 init_completion(&nfc->complete); 743 744 marvell_nfc_enable_int(nfc, NDCR_RDYM); 745 ret = wait_for_completion_timeout(&nfc->complete, 746 msecs_to_jiffies(timeout_ms)); 747 marvell_nfc_disable_int(nfc, NDCR_RDYM); 748 } 749 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 750 751 /* 752 * In case the interrupt was not served in the required time frame, 753 * check if the ISR was not served or if something went actually wrong. 754 */ 755 if (!ret && !pending) { 756 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 757 return -ETIMEDOUT; 758 } 759 760 return 0; 761 } 762 763 static void marvell_nfc_select_target(struct nand_chip *chip, 764 unsigned int die_nr) 765 { 766 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 767 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 768 u32 ndcr_generic; 769 770 /* 771 * Reset the NDCR register to a clean state for this particular chip, 772 * also clear ND_RUN bit. 773 */ 774 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 775 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 776 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 777 778 /* Also reset the interrupt status register */ 779 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 780 781 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 782 return; 783 784 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 785 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 786 787 nfc->selected_chip = chip; 788 marvell_nand->selected_die = die_nr; 789 } 790 791 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 792 { 793 struct marvell_nfc *nfc = dev_id; 794 u32 st = readl_relaxed(nfc->regs + NDSR); 795 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 796 797 /* 798 * RDY interrupt mask is one bit in NDCR while there are two status 799 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 800 */ 801 if (st & NDSR_RDY(1)) 802 st |= NDSR_RDY(0); 803 804 if (!(st & ien)) 805 return IRQ_NONE; 806 807 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 808 809 if (st & (NDSR_RDY(0) | NDSR_RDY(1))) 810 complete(&nfc->complete); 811 812 return IRQ_HANDLED; 813 } 814 815 /* HW ECC related functions */ 816 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 817 { 818 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 819 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 820 821 if (!(ndcr & NDCR_ECC_EN)) { 822 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 823 824 /* 825 * When enabling BCH, set threshold to 0 to always know the 826 * number of corrected bitflips. 827 */ 828 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 829 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 830 } 831 } 832 833 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 834 { 835 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 836 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 837 838 if (ndcr & NDCR_ECC_EN) { 839 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 840 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 841 writel_relaxed(0, nfc->regs + NDECCCTRL); 842 } 843 } 844 845 /* DMA related helpers */ 846 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 847 { 848 u32 reg; 849 850 reg = readl_relaxed(nfc->regs + NDCR); 851 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 852 } 853 854 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 855 { 856 u32 reg; 857 858 reg = readl_relaxed(nfc->regs + NDCR); 859 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 860 } 861 862 /* Read/write PIO/DMA accessors */ 863 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 864 enum dma_data_direction direction, 865 unsigned int len) 866 { 867 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 868 struct dma_async_tx_descriptor *tx; 869 struct scatterlist sg; 870 dma_cookie_t cookie; 871 int ret; 872 873 marvell_nfc_enable_dma(nfc); 874 /* Prepare the DMA transfer */ 875 sg_init_one(&sg, nfc->dma_buf, dma_len); 876 ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 877 if (!ret) { 878 dev_err(nfc->dev, "Could not map DMA S/G list\n"); 879 return -ENXIO; 880 } 881 882 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 883 direction == DMA_FROM_DEVICE ? 884 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 885 DMA_PREP_INTERRUPT); 886 if (!tx) { 887 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 888 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 889 return -ENXIO; 890 } 891 892 /* Do the task and wait for it to finish */ 893 cookie = dmaengine_submit(tx); 894 ret = dma_submit_error(cookie); 895 if (ret) 896 return -EIO; 897 898 dma_async_issue_pending(nfc->dma_chan); 899 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 900 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 901 marvell_nfc_disable_dma(nfc); 902 if (ret) { 903 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 904 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 905 dmaengine_terminate_all(nfc->dma_chan); 906 return -ETIMEDOUT; 907 } 908 909 return 0; 910 } 911 912 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 913 unsigned int len) 914 { 915 unsigned int last_len = len % FIFO_DEPTH; 916 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 917 int i; 918 919 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 920 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 921 922 if (last_len) { 923 u8 tmp_buf[FIFO_DEPTH]; 924 925 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 926 memcpy(in + last_full_offset, tmp_buf, last_len); 927 } 928 929 return 0; 930 } 931 932 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 933 unsigned int len) 934 { 935 unsigned int last_len = len % FIFO_DEPTH; 936 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 937 int i; 938 939 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 940 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 941 942 if (last_len) { 943 u8 tmp_buf[FIFO_DEPTH]; 944 945 memcpy(tmp_buf, out + last_full_offset, last_len); 946 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 947 } 948 949 return 0; 950 } 951 952 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 953 u8 *data, int data_len, 954 u8 *spare, int spare_len, 955 u8 *ecc, int ecc_len, 956 unsigned int *max_bitflips) 957 { 958 struct mtd_info *mtd = nand_to_mtd(chip); 959 int bf; 960 961 /* 962 * Blank pages (all 0xFF) that have not been written may be recognized 963 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 964 * check if the entire page (with ECC bytes) is actually blank or not. 965 */ 966 if (!data) 967 data_len = 0; 968 if (!spare) 969 spare_len = 0; 970 if (!ecc) 971 ecc_len = 0; 972 973 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 974 spare, spare_len, chip->ecc.strength); 975 if (bf < 0) { 976 mtd->ecc_stats.failed++; 977 return; 978 } 979 980 /* Update the stats and max_bitflips */ 981 mtd->ecc_stats.corrected += bf; 982 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 983 } 984 985 /* 986 * Check if a chunk is correct or not according to the hardware ECC engine. 987 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 988 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 989 * value indicating that a check on the emptyness of the subpage must be 990 * performed before actually declaring the subpage as "corrupted". 991 */ 992 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, 993 unsigned int *max_bitflips) 994 { 995 struct mtd_info *mtd = nand_to_mtd(chip); 996 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 997 int bf = 0; 998 u32 ndsr; 999 1000 ndsr = readl_relaxed(nfc->regs + NDSR); 1001 1002 /* Check uncorrectable error flag */ 1003 if (ndsr & NDSR_UNCERR) { 1004 writel_relaxed(ndsr, nfc->regs + NDSR); 1005 1006 /* 1007 * Do not increment ->ecc_stats.failed now, instead, return a 1008 * non-zero value to indicate that this chunk was apparently 1009 * bad, and it should be check to see if it empty or not. If 1010 * the chunk (with ECC bytes) is not declared empty, the calling 1011 * function must increment the failure count. 1012 */ 1013 return -EBADMSG; 1014 } 1015 1016 /* Check correctable error flag */ 1017 if (ndsr & NDSR_CORERR) { 1018 writel_relaxed(ndsr, nfc->regs + NDSR); 1019 1020 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 1021 bf = NDSR_ERRCNT(ndsr); 1022 else 1023 bf = 1; 1024 } 1025 1026 /* Update the stats and max_bitflips */ 1027 mtd->ecc_stats.corrected += bf; 1028 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 1029 1030 return 0; 1031 } 1032 1033 /* Hamming read helpers */ 1034 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 1035 u8 *data_buf, u8 *oob_buf, 1036 bool raw, int page) 1037 { 1038 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1039 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1040 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1041 struct marvell_nfc_op nfc_op = { 1042 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1043 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1044 NDCB0_DBC | 1045 NDCB0_CMD1(NAND_CMD_READ0) | 1046 NDCB0_CMD2(NAND_CMD_READSTART), 1047 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1048 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1049 }; 1050 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1051 int ret; 1052 1053 /* NFCv2 needs more information about the operation being executed */ 1054 if (nfc->caps->is_nfcv2) 1055 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1056 1057 ret = marvell_nfc_prepare_cmd(chip); 1058 if (ret) 1059 return ret; 1060 1061 marvell_nfc_send_cmd(chip, &nfc_op); 1062 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1063 "RDDREQ while draining FIFO (data/oob)"); 1064 if (ret) 1065 return ret; 1066 1067 /* 1068 * Read the page then the OOB area. Unlike what is shown in current 1069 * documentation, spare bytes are protected by the ECC engine, and must 1070 * be at the beginning of the OOB area or running this driver on legacy 1071 * systems will prevent the discovery of the BBM/BBT. 1072 */ 1073 if (nfc->use_dma) { 1074 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 1075 lt->data_bytes + oob_bytes); 1076 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 1077 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 1078 } else { 1079 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 1080 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 1081 } 1082 1083 ret = marvell_nfc_wait_cmdd(chip); 1084 return ret; 1085 } 1086 1087 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, 1088 int oob_required, int page) 1089 { 1090 marvell_nfc_select_target(chip, chip->cur_cs); 1091 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1092 true, page); 1093 } 1094 1095 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, 1096 int oob_required, int page) 1097 { 1098 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1099 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1100 int max_bitflips = 0, ret; 1101 u8 *raw_buf; 1102 1103 marvell_nfc_select_target(chip, chip->cur_cs); 1104 marvell_nfc_enable_hw_ecc(chip); 1105 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 1106 page); 1107 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1108 marvell_nfc_disable_hw_ecc(chip); 1109 1110 if (!ret) 1111 return max_bitflips; 1112 1113 /* 1114 * When ECC failures are detected, check if the full page has been 1115 * written or not. Ignore the failure if it is actually empty. 1116 */ 1117 raw_buf = kmalloc(full_sz, GFP_KERNEL); 1118 if (!raw_buf) 1119 return -ENOMEM; 1120 1121 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1122 lt->data_bytes, true, page); 1123 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1124 &max_bitflips); 1125 kfree(raw_buf); 1126 1127 return max_bitflips; 1128 } 1129 1130 /* 1131 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1132 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1133 * also stands for ->read_oob(). 1134 */ 1135 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) 1136 { 1137 u8 *buf = nand_get_data_buf(chip); 1138 1139 marvell_nfc_select_target(chip, chip->cur_cs); 1140 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1141 true, page); 1142 } 1143 1144 /* Hamming write helpers */ 1145 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1146 const u8 *data_buf, 1147 const u8 *oob_buf, bool raw, 1148 int page) 1149 { 1150 const struct nand_sdr_timings *sdr = 1151 nand_get_sdr_timings(nand_get_interface_config(chip)); 1152 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1153 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1154 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1155 struct marvell_nfc_op nfc_op = { 1156 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1157 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1158 NDCB0_CMD1(NAND_CMD_SEQIN) | 1159 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1160 NDCB0_DBC, 1161 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1162 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1163 }; 1164 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1165 u8 status; 1166 int ret; 1167 1168 /* NFCv2 needs more information about the operation being executed */ 1169 if (nfc->caps->is_nfcv2) 1170 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1171 1172 ret = marvell_nfc_prepare_cmd(chip); 1173 if (ret) 1174 return ret; 1175 1176 marvell_nfc_send_cmd(chip, &nfc_op); 1177 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1178 "WRDREQ while loading FIFO (data)"); 1179 if (ret) 1180 return ret; 1181 1182 /* Write the page then the OOB area */ 1183 if (nfc->use_dma) { 1184 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1185 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1186 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1187 lt->ecc_bytes + lt->spare_bytes); 1188 } else { 1189 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1190 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1191 } 1192 1193 ret = marvell_nfc_wait_cmdd(chip); 1194 if (ret) 1195 return ret; 1196 1197 ret = marvell_nfc_wait_op(chip, 1198 PSEC_TO_MSEC(sdr->tPROG_max)); 1199 if (ret) 1200 return ret; 1201 1202 /* Check write status on the chip side */ 1203 ret = nand_status_op(chip, &status); 1204 if (ret) 1205 return ret; 1206 1207 if (status & NAND_STATUS_FAIL) 1208 return -EIO; 1209 1210 return 0; 1211 } 1212 1213 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, 1214 const u8 *buf, 1215 int oob_required, int page) 1216 { 1217 marvell_nfc_select_target(chip, chip->cur_cs); 1218 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1219 true, page); 1220 } 1221 1222 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, 1223 const u8 *buf, 1224 int oob_required, int page) 1225 { 1226 int ret; 1227 1228 marvell_nfc_select_target(chip, chip->cur_cs); 1229 marvell_nfc_enable_hw_ecc(chip); 1230 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1231 false, page); 1232 marvell_nfc_disable_hw_ecc(chip); 1233 1234 return ret; 1235 } 1236 1237 /* 1238 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1239 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1240 * also stands for ->write_oob(). 1241 */ 1242 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, 1243 int page) 1244 { 1245 struct mtd_info *mtd = nand_to_mtd(chip); 1246 u8 *buf = nand_get_data_buf(chip); 1247 1248 memset(buf, 0xFF, mtd->writesize); 1249 1250 marvell_nfc_select_target(chip, chip->cur_cs); 1251 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1252 true, page); 1253 } 1254 1255 /* BCH read helpers */ 1256 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, 1257 int oob_required, int page) 1258 { 1259 struct mtd_info *mtd = nand_to_mtd(chip); 1260 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1261 u8 *oob = chip->oob_poi; 1262 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1263 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1264 lt->last_spare_bytes; 1265 int data_len = lt->data_bytes; 1266 int spare_len = lt->spare_bytes; 1267 int ecc_len = lt->ecc_bytes; 1268 int chunk; 1269 1270 marvell_nfc_select_target(chip, chip->cur_cs); 1271 1272 if (oob_required) 1273 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1274 1275 nand_read_page_op(chip, page, 0, NULL, 0); 1276 1277 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1278 /* Update last chunk length */ 1279 if (chunk >= lt->full_chunk_cnt) { 1280 data_len = lt->last_data_bytes; 1281 spare_len = lt->last_spare_bytes; 1282 ecc_len = lt->last_ecc_bytes; 1283 } 1284 1285 /* Read data bytes*/ 1286 nand_change_read_column_op(chip, chunk * chunk_size, 1287 buf + (lt->data_bytes * chunk), 1288 data_len, false); 1289 1290 /* Read spare bytes */ 1291 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1292 spare_len, false, false); 1293 1294 /* Read ECC bytes */ 1295 nand_read_data_op(chip, oob + ecc_offset + 1296 (ALIGN(lt->ecc_bytes, 32) * chunk), 1297 ecc_len, false, false); 1298 } 1299 1300 return 0; 1301 } 1302 1303 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1304 u8 *data, unsigned int data_len, 1305 u8 *spare, unsigned int spare_len, 1306 int page) 1307 { 1308 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1309 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1310 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1311 int i, ret; 1312 struct marvell_nfc_op nfc_op = { 1313 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1314 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1315 NDCB0_LEN_OVRD, 1316 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1317 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1318 .ndcb[3] = data_len + spare_len, 1319 }; 1320 1321 ret = marvell_nfc_prepare_cmd(chip); 1322 if (ret) 1323 return; 1324 1325 if (chunk == 0) 1326 nfc_op.ndcb[0] |= NDCB0_DBC | 1327 NDCB0_CMD1(NAND_CMD_READ0) | 1328 NDCB0_CMD2(NAND_CMD_READSTART); 1329 1330 /* 1331 * Trigger the monolithic read on the first chunk, then naked read on 1332 * intermediate chunks and finally a last naked read on the last chunk. 1333 */ 1334 if (chunk == 0) 1335 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1336 else if (chunk < lt->nchunks - 1) 1337 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1338 else 1339 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1340 1341 marvell_nfc_send_cmd(chip, &nfc_op); 1342 1343 /* 1344 * According to the datasheet, when reading from NDDB 1345 * with BCH enabled, after each 32 bytes reads, we 1346 * have to make sure that the NDSR.RDDREQ bit is set. 1347 * 1348 * Drain the FIFO, 8 32-bit reads at a time, and skip 1349 * the polling on the last read. 1350 * 1351 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1352 */ 1353 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1354 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1355 "RDDREQ while draining FIFO (data)"); 1356 marvell_nfc_xfer_data_in_pio(nfc, data, 1357 FIFO_DEPTH * BCH_SEQ_READS); 1358 data += FIFO_DEPTH * BCH_SEQ_READS; 1359 } 1360 1361 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1362 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1363 "RDDREQ while draining FIFO (OOB)"); 1364 marvell_nfc_xfer_data_in_pio(nfc, spare, 1365 FIFO_DEPTH * BCH_SEQ_READS); 1366 spare += FIFO_DEPTH * BCH_SEQ_READS; 1367 } 1368 } 1369 1370 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, 1371 u8 *buf, int oob_required, 1372 int page) 1373 { 1374 struct mtd_info *mtd = nand_to_mtd(chip); 1375 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1376 int data_len = lt->data_bytes, spare_len = lt->spare_bytes; 1377 u8 *data = buf, *spare = chip->oob_poi; 1378 int max_bitflips = 0; 1379 u32 failure_mask = 0; 1380 int chunk, ret; 1381 1382 marvell_nfc_select_target(chip, chip->cur_cs); 1383 1384 /* 1385 * With BCH, OOB is not fully used (and thus not read entirely), not 1386 * expected bytes could show up at the end of the OOB buffer if not 1387 * explicitly erased. 1388 */ 1389 if (oob_required) 1390 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1391 1392 marvell_nfc_enable_hw_ecc(chip); 1393 1394 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1395 /* Update length for the last chunk */ 1396 if (chunk >= lt->full_chunk_cnt) { 1397 data_len = lt->last_data_bytes; 1398 spare_len = lt->last_spare_bytes; 1399 } 1400 1401 /* Read the chunk and detect number of bitflips */ 1402 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1403 spare, spare_len, page); 1404 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1405 if (ret) 1406 failure_mask |= BIT(chunk); 1407 1408 data += data_len; 1409 spare += spare_len; 1410 } 1411 1412 marvell_nfc_disable_hw_ecc(chip); 1413 1414 if (!failure_mask) 1415 return max_bitflips; 1416 1417 /* 1418 * Please note that dumping the ECC bytes during a normal read with OOB 1419 * area would add a significant overhead as ECC bytes are "consumed" by 1420 * the controller in normal mode and must be re-read in raw mode. To 1421 * avoid dropping the performances, we prefer not to include them. The 1422 * user should re-read the page in raw mode if ECC bytes are required. 1423 */ 1424 1425 /* 1426 * In case there is any subpage read error, we usually re-read only ECC 1427 * bytes in raw mode and check if the whole page is empty. In this case, 1428 * it is normal that the ECC check failed and we just ignore the error. 1429 * 1430 * However, it has been empirically observed that for some layouts (e.g 1431 * 2k page, 8b strength per 512B chunk), the controller tries to correct 1432 * bits and may create itself bitflips in the erased area. To overcome 1433 * this strange behavior, the whole page is re-read in raw mode, not 1434 * only the ECC bytes. 1435 */ 1436 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1437 int data_off_in_page, spare_off_in_page, ecc_off_in_page; 1438 int data_off, spare_off, ecc_off; 1439 int data_len, spare_len, ecc_len; 1440 1441 /* No failure reported for this chunk, move to the next one */ 1442 if (!(failure_mask & BIT(chunk))) 1443 continue; 1444 1445 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + 1446 lt->ecc_bytes); 1447 spare_off_in_page = data_off_in_page + 1448 (chunk < lt->full_chunk_cnt ? lt->data_bytes : 1449 lt->last_data_bytes); 1450 ecc_off_in_page = spare_off_in_page + 1451 (chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1452 lt->last_spare_bytes); 1453 1454 data_off = chunk * lt->data_bytes; 1455 spare_off = chunk * lt->spare_bytes; 1456 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + 1457 lt->last_spare_bytes + 1458 (chunk * (lt->ecc_bytes + 2)); 1459 1460 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : 1461 lt->last_data_bytes; 1462 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1463 lt->last_spare_bytes; 1464 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : 1465 lt->last_ecc_bytes; 1466 1467 /* 1468 * Only re-read the ECC bytes, unless we are using the 2k/8b 1469 * layout which is buggy in the sense that the ECC engine will 1470 * try to correct data bytes anyway, creating bitflips. In this 1471 * case, re-read the entire page. 1472 */ 1473 if (lt->writesize == 2048 && lt->strength == 8) { 1474 nand_change_read_column_op(chip, data_off_in_page, 1475 buf + data_off, data_len, 1476 false); 1477 nand_change_read_column_op(chip, spare_off_in_page, 1478 chip->oob_poi + spare_off, spare_len, 1479 false); 1480 } 1481 1482 nand_change_read_column_op(chip, ecc_off_in_page, 1483 chip->oob_poi + ecc_off, ecc_len, 1484 false); 1485 1486 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1487 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, 1488 chip->oob_poi + spare_off, spare_len, 1489 chip->oob_poi + ecc_off, ecc_len, 1490 &max_bitflips); 1491 } 1492 1493 return max_bitflips; 1494 } 1495 1496 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) 1497 { 1498 u8 *buf = nand_get_data_buf(chip); 1499 1500 return chip->ecc.read_page_raw(chip, buf, true, page); 1501 } 1502 1503 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) 1504 { 1505 u8 *buf = nand_get_data_buf(chip); 1506 1507 return chip->ecc.read_page(chip, buf, true, page); 1508 } 1509 1510 /* BCH write helpers */ 1511 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, 1512 const u8 *buf, 1513 int oob_required, int page) 1514 { 1515 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1516 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1517 int data_len = lt->data_bytes; 1518 int spare_len = lt->spare_bytes; 1519 int ecc_len = lt->ecc_bytes; 1520 int spare_offset = 0; 1521 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1522 lt->last_spare_bytes; 1523 int chunk; 1524 1525 marvell_nfc_select_target(chip, chip->cur_cs); 1526 1527 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1528 1529 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1530 if (chunk >= lt->full_chunk_cnt) { 1531 data_len = lt->last_data_bytes; 1532 spare_len = lt->last_spare_bytes; 1533 ecc_len = lt->last_ecc_bytes; 1534 } 1535 1536 /* Point to the column of the next chunk */ 1537 nand_change_write_column_op(chip, chunk * full_chunk_size, 1538 NULL, 0, false); 1539 1540 /* Write the data */ 1541 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1542 data_len, false); 1543 1544 if (!oob_required) 1545 continue; 1546 1547 /* Write the spare bytes */ 1548 if (spare_len) 1549 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1550 spare_len, false); 1551 1552 /* Write the ECC bytes */ 1553 if (ecc_len) 1554 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1555 ecc_len, false); 1556 1557 spare_offset += spare_len; 1558 ecc_offset += ALIGN(ecc_len, 32); 1559 } 1560 1561 return nand_prog_page_end_op(chip); 1562 } 1563 1564 static int 1565 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1566 const u8 *data, unsigned int data_len, 1567 const u8 *spare, unsigned int spare_len, 1568 int page) 1569 { 1570 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1571 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1572 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1573 u32 xtype; 1574 int ret; 1575 struct marvell_nfc_op nfc_op = { 1576 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1577 .ndcb[3] = data_len + spare_len, 1578 }; 1579 1580 /* 1581 * First operation dispatches the CMD_SEQIN command, issue the address 1582 * cycles and asks for the first chunk of data. 1583 * All operations in the middle (if any) will issue a naked write and 1584 * also ask for data. 1585 * Last operation (if any) asks for the last chunk of data through a 1586 * last naked write. 1587 */ 1588 if (chunk == 0) { 1589 if (lt->nchunks == 1) 1590 xtype = XTYPE_MONOLITHIC_RW; 1591 else 1592 xtype = XTYPE_WRITE_DISPATCH; 1593 1594 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1595 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1596 NDCB0_CMD1(NAND_CMD_SEQIN); 1597 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1598 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1599 } else if (chunk < lt->nchunks - 1) { 1600 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1601 } else { 1602 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1603 } 1604 1605 /* Always dispatch the PAGEPROG command on the last chunk */ 1606 if (chunk == lt->nchunks - 1) 1607 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1608 1609 ret = marvell_nfc_prepare_cmd(chip); 1610 if (ret) 1611 return ret; 1612 1613 marvell_nfc_send_cmd(chip, &nfc_op); 1614 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1615 "WRDREQ while loading FIFO (data)"); 1616 if (ret) 1617 return ret; 1618 1619 /* Transfer the contents */ 1620 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1621 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1622 1623 return 0; 1624 } 1625 1626 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, 1627 const u8 *buf, 1628 int oob_required, int page) 1629 { 1630 const struct nand_sdr_timings *sdr = 1631 nand_get_sdr_timings(nand_get_interface_config(chip)); 1632 struct mtd_info *mtd = nand_to_mtd(chip); 1633 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1634 const u8 *data = buf; 1635 const u8 *spare = chip->oob_poi; 1636 int data_len = lt->data_bytes; 1637 int spare_len = lt->spare_bytes; 1638 int chunk, ret; 1639 u8 status; 1640 1641 marvell_nfc_select_target(chip, chip->cur_cs); 1642 1643 /* Spare data will be written anyway, so clear it to avoid garbage */ 1644 if (!oob_required) 1645 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1646 1647 marvell_nfc_enable_hw_ecc(chip); 1648 1649 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1650 if (chunk >= lt->full_chunk_cnt) { 1651 data_len = lt->last_data_bytes; 1652 spare_len = lt->last_spare_bytes; 1653 } 1654 1655 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1656 spare, spare_len, page); 1657 data += data_len; 1658 spare += spare_len; 1659 1660 /* 1661 * Waiting only for CMDD or PAGED is not enough, ECC are 1662 * partially written. No flag is set once the operation is 1663 * really finished but the ND_RUN bit is cleared, so wait for it 1664 * before stepping into the next command. 1665 */ 1666 marvell_nfc_wait_ndrun(chip); 1667 } 1668 1669 ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); 1670 1671 marvell_nfc_disable_hw_ecc(chip); 1672 1673 if (ret) 1674 return ret; 1675 1676 /* Check write status on the chip side */ 1677 ret = nand_status_op(chip, &status); 1678 if (ret) 1679 return ret; 1680 1681 if (status & NAND_STATUS_FAIL) 1682 return -EIO; 1683 1684 return 0; 1685 } 1686 1687 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, 1688 int page) 1689 { 1690 struct mtd_info *mtd = nand_to_mtd(chip); 1691 u8 *buf = nand_get_data_buf(chip); 1692 1693 memset(buf, 0xFF, mtd->writesize); 1694 1695 return chip->ecc.write_page_raw(chip, buf, true, page); 1696 } 1697 1698 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) 1699 { 1700 struct mtd_info *mtd = nand_to_mtd(chip); 1701 u8 *buf = nand_get_data_buf(chip); 1702 1703 memset(buf, 0xFF, mtd->writesize); 1704 1705 return chip->ecc.write_page(chip, buf, true, page); 1706 } 1707 1708 /* NAND framework ->exec_op() hooks and related helpers */ 1709 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1710 const struct nand_subop *subop, 1711 struct marvell_nfc_op *nfc_op) 1712 { 1713 const struct nand_op_instr *instr = NULL; 1714 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1715 bool first_cmd = true; 1716 unsigned int op_id; 1717 int i; 1718 1719 /* Reset the input structure as most of its fields will be OR'ed */ 1720 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1721 1722 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1723 unsigned int offset, naddrs; 1724 const u8 *addrs; 1725 int len; 1726 1727 instr = &subop->instrs[op_id]; 1728 1729 switch (instr->type) { 1730 case NAND_OP_CMD_INSTR: 1731 if (first_cmd) 1732 nfc_op->ndcb[0] |= 1733 NDCB0_CMD1(instr->ctx.cmd.opcode); 1734 else 1735 nfc_op->ndcb[0] |= 1736 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1737 NDCB0_DBC; 1738 1739 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1740 first_cmd = false; 1741 break; 1742 1743 case NAND_OP_ADDR_INSTR: 1744 offset = nand_subop_get_addr_start_off(subop, op_id); 1745 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1746 addrs = &instr->ctx.addr.addrs[offset]; 1747 1748 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1749 1750 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1751 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1752 1753 if (naddrs >= 5) 1754 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1755 if (naddrs >= 6) 1756 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1757 if (naddrs == 7) 1758 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1759 1760 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1761 break; 1762 1763 case NAND_OP_DATA_IN_INSTR: 1764 nfc_op->data_instr = instr; 1765 nfc_op->data_instr_idx = op_id; 1766 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1767 if (nfc->caps->is_nfcv2) { 1768 nfc_op->ndcb[0] |= 1769 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1770 NDCB0_LEN_OVRD; 1771 len = nand_subop_get_data_len(subop, op_id); 1772 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1773 } 1774 nfc_op->data_delay_ns = instr->delay_ns; 1775 break; 1776 1777 case NAND_OP_DATA_OUT_INSTR: 1778 nfc_op->data_instr = instr; 1779 nfc_op->data_instr_idx = op_id; 1780 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1781 if (nfc->caps->is_nfcv2) { 1782 nfc_op->ndcb[0] |= 1783 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1784 NDCB0_LEN_OVRD; 1785 len = nand_subop_get_data_len(subop, op_id); 1786 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1787 } 1788 nfc_op->data_delay_ns = instr->delay_ns; 1789 break; 1790 1791 case NAND_OP_WAITRDY_INSTR: 1792 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1793 nfc_op->rdy_delay_ns = instr->delay_ns; 1794 break; 1795 } 1796 } 1797 } 1798 1799 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1800 const struct nand_subop *subop, 1801 struct marvell_nfc_op *nfc_op) 1802 { 1803 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1804 const struct nand_op_instr *instr = nfc_op->data_instr; 1805 unsigned int op_id = nfc_op->data_instr_idx; 1806 unsigned int len = nand_subop_get_data_len(subop, op_id); 1807 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1808 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1809 int ret; 1810 1811 if (instr->ctx.data.force_8bit) 1812 marvell_nfc_force_byte_access(chip, true); 1813 1814 if (reading) { 1815 u8 *in = instr->ctx.data.buf.in + offset; 1816 1817 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1818 } else { 1819 const u8 *out = instr->ctx.data.buf.out + offset; 1820 1821 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1822 } 1823 1824 if (instr->ctx.data.force_8bit) 1825 marvell_nfc_force_byte_access(chip, false); 1826 1827 return ret; 1828 } 1829 1830 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1831 const struct nand_subop *subop) 1832 { 1833 struct marvell_nfc_op nfc_op; 1834 bool reading; 1835 int ret; 1836 1837 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1838 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1839 1840 ret = marvell_nfc_prepare_cmd(chip); 1841 if (ret) 1842 return ret; 1843 1844 marvell_nfc_send_cmd(chip, &nfc_op); 1845 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1846 "RDDREQ/WRDREQ while draining raw data"); 1847 if (ret) 1848 return ret; 1849 1850 cond_delay(nfc_op.cle_ale_delay_ns); 1851 1852 if (reading) { 1853 if (nfc_op.rdy_timeout_ms) { 1854 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1855 if (ret) 1856 return ret; 1857 } 1858 1859 cond_delay(nfc_op.rdy_delay_ns); 1860 } 1861 1862 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1863 ret = marvell_nfc_wait_cmdd(chip); 1864 if (ret) 1865 return ret; 1866 1867 cond_delay(nfc_op.data_delay_ns); 1868 1869 if (!reading) { 1870 if (nfc_op.rdy_timeout_ms) { 1871 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1872 if (ret) 1873 return ret; 1874 } 1875 1876 cond_delay(nfc_op.rdy_delay_ns); 1877 } 1878 1879 /* 1880 * NDCR ND_RUN bit should be cleared automatically at the end of each 1881 * operation but experience shows that the behavior is buggy when it 1882 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1883 */ 1884 if (!reading) { 1885 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1886 1887 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1888 nfc->regs + NDCR); 1889 } 1890 1891 return 0; 1892 } 1893 1894 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1895 const struct nand_subop *subop) 1896 { 1897 struct marvell_nfc_op nfc_op; 1898 int ret; 1899 1900 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1901 1902 /* 1903 * Naked access are different in that they need to be flagged as naked 1904 * by the controller. Reset the controller registers fields that inform 1905 * on the type and refill them according to the ongoing operation. 1906 */ 1907 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1908 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1909 switch (subop->instrs[0].type) { 1910 case NAND_OP_CMD_INSTR: 1911 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1912 break; 1913 case NAND_OP_ADDR_INSTR: 1914 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1915 break; 1916 case NAND_OP_DATA_IN_INSTR: 1917 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1918 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1919 break; 1920 case NAND_OP_DATA_OUT_INSTR: 1921 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1922 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1923 break; 1924 default: 1925 /* This should never happen */ 1926 break; 1927 } 1928 1929 ret = marvell_nfc_prepare_cmd(chip); 1930 if (ret) 1931 return ret; 1932 1933 marvell_nfc_send_cmd(chip, &nfc_op); 1934 1935 if (!nfc_op.data_instr) { 1936 ret = marvell_nfc_wait_cmdd(chip); 1937 cond_delay(nfc_op.cle_ale_delay_ns); 1938 return ret; 1939 } 1940 1941 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1942 "RDDREQ/WRDREQ while draining raw data"); 1943 if (ret) 1944 return ret; 1945 1946 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1947 ret = marvell_nfc_wait_cmdd(chip); 1948 if (ret) 1949 return ret; 1950 1951 /* 1952 * NDCR ND_RUN bit should be cleared automatically at the end of each 1953 * operation but experience shows that the behavior is buggy when it 1954 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1955 */ 1956 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1957 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1958 1959 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1960 nfc->regs + NDCR); 1961 } 1962 1963 return 0; 1964 } 1965 1966 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1967 const struct nand_subop *subop) 1968 { 1969 struct marvell_nfc_op nfc_op; 1970 int ret; 1971 1972 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1973 1974 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1975 cond_delay(nfc_op.rdy_delay_ns); 1976 1977 return ret; 1978 } 1979 1980 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1981 const struct nand_subop *subop) 1982 { 1983 struct marvell_nfc_op nfc_op; 1984 int ret; 1985 1986 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1987 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1988 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1989 1990 ret = marvell_nfc_prepare_cmd(chip); 1991 if (ret) 1992 return ret; 1993 1994 marvell_nfc_send_cmd(chip, &nfc_op); 1995 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1996 "RDDREQ while reading ID"); 1997 if (ret) 1998 return ret; 1999 2000 cond_delay(nfc_op.cle_ale_delay_ns); 2001 2002 if (nfc_op.rdy_timeout_ms) { 2003 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2004 if (ret) 2005 return ret; 2006 } 2007 2008 cond_delay(nfc_op.rdy_delay_ns); 2009 2010 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 2011 ret = marvell_nfc_wait_cmdd(chip); 2012 if (ret) 2013 return ret; 2014 2015 cond_delay(nfc_op.data_delay_ns); 2016 2017 return 0; 2018 } 2019 2020 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 2021 const struct nand_subop *subop) 2022 { 2023 struct marvell_nfc_op nfc_op; 2024 int ret; 2025 2026 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2027 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 2028 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 2029 2030 ret = marvell_nfc_prepare_cmd(chip); 2031 if (ret) 2032 return ret; 2033 2034 marvell_nfc_send_cmd(chip, &nfc_op); 2035 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 2036 "RDDREQ while reading status"); 2037 if (ret) 2038 return ret; 2039 2040 cond_delay(nfc_op.cle_ale_delay_ns); 2041 2042 if (nfc_op.rdy_timeout_ms) { 2043 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2044 if (ret) 2045 return ret; 2046 } 2047 2048 cond_delay(nfc_op.rdy_delay_ns); 2049 2050 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 2051 ret = marvell_nfc_wait_cmdd(chip); 2052 if (ret) 2053 return ret; 2054 2055 cond_delay(nfc_op.data_delay_ns); 2056 2057 return 0; 2058 } 2059 2060 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 2061 const struct nand_subop *subop) 2062 { 2063 struct marvell_nfc_op nfc_op; 2064 int ret; 2065 2066 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2067 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 2068 2069 ret = marvell_nfc_prepare_cmd(chip); 2070 if (ret) 2071 return ret; 2072 2073 marvell_nfc_send_cmd(chip, &nfc_op); 2074 ret = marvell_nfc_wait_cmdd(chip); 2075 if (ret) 2076 return ret; 2077 2078 cond_delay(nfc_op.cle_ale_delay_ns); 2079 2080 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2081 if (ret) 2082 return ret; 2083 2084 cond_delay(nfc_op.rdy_delay_ns); 2085 2086 return 0; 2087 } 2088 2089 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 2090 const struct nand_subop *subop) 2091 { 2092 struct marvell_nfc_op nfc_op; 2093 int ret; 2094 2095 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2096 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 2097 2098 ret = marvell_nfc_prepare_cmd(chip); 2099 if (ret) 2100 return ret; 2101 2102 marvell_nfc_send_cmd(chip, &nfc_op); 2103 ret = marvell_nfc_wait_cmdd(chip); 2104 if (ret) 2105 return ret; 2106 2107 cond_delay(nfc_op.cle_ale_delay_ns); 2108 2109 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2110 if (ret) 2111 return ret; 2112 2113 cond_delay(nfc_op.rdy_delay_ns); 2114 2115 return 0; 2116 } 2117 2118 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 2119 /* Monolithic reads/writes */ 2120 NAND_OP_PARSER_PATTERN( 2121 marvell_nfc_monolithic_access_exec, 2122 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2123 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 2124 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2125 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 2126 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2127 NAND_OP_PARSER_PATTERN( 2128 marvell_nfc_monolithic_access_exec, 2129 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2130 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 2131 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 2132 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2133 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 2134 /* Naked commands */ 2135 NAND_OP_PARSER_PATTERN( 2136 marvell_nfc_naked_access_exec, 2137 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2138 NAND_OP_PARSER_PATTERN( 2139 marvell_nfc_naked_access_exec, 2140 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 2141 NAND_OP_PARSER_PATTERN( 2142 marvell_nfc_naked_access_exec, 2143 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2144 NAND_OP_PARSER_PATTERN( 2145 marvell_nfc_naked_access_exec, 2146 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 2147 NAND_OP_PARSER_PATTERN( 2148 marvell_nfc_naked_waitrdy_exec, 2149 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2150 ); 2151 2152 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 2153 /* Naked commands not supported, use a function for each pattern */ 2154 NAND_OP_PARSER_PATTERN( 2155 marvell_nfc_read_id_type_exec, 2156 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2157 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2158 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 2159 NAND_OP_PARSER_PATTERN( 2160 marvell_nfc_erase_cmd_type_exec, 2161 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2162 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2163 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2164 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2165 NAND_OP_PARSER_PATTERN( 2166 marvell_nfc_read_status_exec, 2167 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2168 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 2169 NAND_OP_PARSER_PATTERN( 2170 marvell_nfc_reset_cmd_type_exec, 2171 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2172 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2173 NAND_OP_PARSER_PATTERN( 2174 marvell_nfc_naked_waitrdy_exec, 2175 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2176 ); 2177 2178 static int marvell_nfc_exec_op(struct nand_chip *chip, 2179 const struct nand_operation *op, 2180 bool check_only) 2181 { 2182 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2183 2184 if (!check_only) 2185 marvell_nfc_select_target(chip, op->cs); 2186 2187 if (nfc->caps->is_nfcv2) 2188 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2189 op, check_only); 2190 else 2191 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2192 op, check_only); 2193 } 2194 2195 /* 2196 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2197 * usable. 2198 */ 2199 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2200 struct mtd_oob_region *oobregion) 2201 { 2202 struct nand_chip *chip = mtd_to_nand(mtd); 2203 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2204 2205 if (section) 2206 return -ERANGE; 2207 2208 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2209 lt->last_ecc_bytes; 2210 oobregion->offset = mtd->oobsize - oobregion->length; 2211 2212 return 0; 2213 } 2214 2215 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2216 struct mtd_oob_region *oobregion) 2217 { 2218 struct nand_chip *chip = mtd_to_nand(mtd); 2219 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2220 2221 if (section) 2222 return -ERANGE; 2223 2224 /* 2225 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2226 * 4KB page / 4bit BCH combination. 2227 */ 2228 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2229 oobregion->offset = 6; 2230 else 2231 oobregion->offset = 2; 2232 2233 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2234 lt->last_spare_bytes - oobregion->offset; 2235 2236 return 0; 2237 } 2238 2239 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2240 .ecc = marvell_nand_ooblayout_ecc, 2241 .free = marvell_nand_ooblayout_free, 2242 }; 2243 2244 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, 2245 struct nand_ecc_ctrl *ecc) 2246 { 2247 struct nand_chip *chip = mtd_to_nand(mtd); 2248 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2249 const struct marvell_hw_ecc_layout *l; 2250 int i; 2251 2252 if (!nfc->caps->is_nfcv2 && 2253 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2254 dev_err(nfc->dev, 2255 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2256 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2257 return -ENOTSUPP; 2258 } 2259 2260 to_marvell_nand(chip)->layout = NULL; 2261 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2262 l = &marvell_nfc_layouts[i]; 2263 if (mtd->writesize == l->writesize && 2264 ecc->size == l->chunk && ecc->strength == l->strength) { 2265 to_marvell_nand(chip)->layout = l; 2266 break; 2267 } 2268 } 2269 2270 if (!to_marvell_nand(chip)->layout || 2271 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2272 dev_err(nfc->dev, 2273 "ECC strength %d at page size %d is not supported\n", 2274 ecc->strength, mtd->writesize); 2275 return -ENOTSUPP; 2276 } 2277 2278 /* Special care for the layout 2k/8-bit/512B */ 2279 if (l->writesize == 2048 && l->strength == 8) { 2280 if (mtd->oobsize < 128) { 2281 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); 2282 return -ENOTSUPP; 2283 } else { 2284 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2285 } 2286 } 2287 2288 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2289 ecc->steps = l->nchunks; 2290 ecc->size = l->data_bytes; 2291 2292 if (ecc->strength == 1) { 2293 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 2294 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2295 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2296 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2297 ecc->read_oob = ecc->read_oob_raw; 2298 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2299 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2300 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2301 ecc->write_oob = ecc->write_oob_raw; 2302 } else { 2303 chip->ecc.algo = NAND_ECC_ALGO_BCH; 2304 ecc->strength = 16; 2305 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2306 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2307 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2308 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2309 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2310 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2311 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2312 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2313 } 2314 2315 return 0; 2316 } 2317 2318 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2319 struct nand_ecc_ctrl *ecc) 2320 { 2321 struct nand_chip *chip = mtd_to_nand(mtd); 2322 const struct nand_ecc_props *requirements = 2323 nanddev_get_ecc_requirements(&chip->base); 2324 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2325 int ret; 2326 2327 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && 2328 (!ecc->size || !ecc->strength)) { 2329 if (requirements->step_size && requirements->strength) { 2330 ecc->size = requirements->step_size; 2331 ecc->strength = requirements->strength; 2332 } else { 2333 dev_info(nfc->dev, 2334 "No minimum ECC strength, using 1b/512B\n"); 2335 ecc->size = 512; 2336 ecc->strength = 1; 2337 } 2338 } 2339 2340 switch (ecc->engine_type) { 2341 case NAND_ECC_ENGINE_TYPE_ON_HOST: 2342 ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); 2343 if (ret) 2344 return ret; 2345 break; 2346 case NAND_ECC_ENGINE_TYPE_NONE: 2347 case NAND_ECC_ENGINE_TYPE_SOFT: 2348 case NAND_ECC_ENGINE_TYPE_ON_DIE: 2349 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2350 mtd->writesize != SZ_2K) { 2351 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2352 mtd->writesize); 2353 return -EINVAL; 2354 } 2355 break; 2356 default: 2357 return -EINVAL; 2358 } 2359 2360 return 0; 2361 } 2362 2363 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2364 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2365 2366 static struct nand_bbt_descr bbt_main_descr = { 2367 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2368 NAND_BBT_2BIT | NAND_BBT_VERSION, 2369 .offs = 8, 2370 .len = 6, 2371 .veroffs = 14, 2372 .maxblocks = 8, /* Last 8 blocks in each chip */ 2373 .pattern = bbt_pattern 2374 }; 2375 2376 static struct nand_bbt_descr bbt_mirror_descr = { 2377 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2378 NAND_BBT_2BIT | NAND_BBT_VERSION, 2379 .offs = 8, 2380 .len = 6, 2381 .veroffs = 14, 2382 .maxblocks = 8, /* Last 8 blocks in each chip */ 2383 .pattern = bbt_mirror_pattern 2384 }; 2385 2386 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, 2387 const struct nand_interface_config *conf) 2388 { 2389 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2390 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2391 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2392 const struct nand_sdr_timings *sdr; 2393 struct marvell_nfc_timings nfc_tmg; 2394 int read_delay; 2395 2396 sdr = nand_get_sdr_timings(conf); 2397 if (IS_ERR(sdr)) 2398 return PTR_ERR(sdr); 2399 2400 if (nfc->caps->max_mode_number && nfc->caps->max_mode_number < conf->timings.mode) 2401 return -EOPNOTSUPP; 2402 2403 /* 2404 * SDR timings are given in pico-seconds while NFC timings must be 2405 * expressed in NAND controller clock cycles, which is half of the 2406 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2407 * This is not written anywhere in the datasheet but was observed 2408 * with an oscilloscope. 2409 * 2410 * NFC datasheet gives equations from which thoses calculations 2411 * are derived, they tend to be slightly more restrictives than the 2412 * given core timings and may improve the overall speed. 2413 */ 2414 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2415 nfc_tmg.tRH = nfc_tmg.tRP; 2416 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2417 nfc_tmg.tWH = nfc_tmg.tWP; 2418 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2419 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2420 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2421 /* 2422 * Read delay is the time of propagation from SoC pins to NFC internal 2423 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2424 * EDO mode, an additional delay of tRH must be taken into account so 2425 * the data is sampled on the falling edge instead of the rising edge. 2426 */ 2427 read_delay = sdr->tRC_min >= 30000 ? 2428 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2429 2430 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2431 /* 2432 * tWHR and tRHW are supposed to be read to write delays (and vice 2433 * versa) but in some cases, ie. when doing a change column, they must 2434 * be greater than that to be sure tCCS delay is respected. 2435 */ 2436 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2437 period_ns) - 2; 2438 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2439 period_ns); 2440 2441 /* 2442 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2443 * NFCv1: No WAIT_MODE, tR must be maximal. 2444 */ 2445 if (nfc->caps->is_nfcv2) { 2446 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2447 } else { 2448 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2449 period_ns); 2450 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2451 nfc_tmg.tR = nfc_tmg.tCH - 3; 2452 else 2453 nfc_tmg.tR = 0; 2454 } 2455 2456 if (chipnr < 0) 2457 return 0; 2458 2459 marvell_nand->ndtr0 = 2460 NDTR0_TRP(nfc_tmg.tRP) | 2461 NDTR0_TRH(nfc_tmg.tRH) | 2462 NDTR0_ETRP(nfc_tmg.tRP) | 2463 NDTR0_TWP(nfc_tmg.tWP) | 2464 NDTR0_TWH(nfc_tmg.tWH) | 2465 NDTR0_TCS(nfc_tmg.tCS) | 2466 NDTR0_TCH(nfc_tmg.tCH); 2467 2468 marvell_nand->ndtr1 = 2469 NDTR1_TAR(nfc_tmg.tAR) | 2470 NDTR1_TWHR(nfc_tmg.tWHR) | 2471 NDTR1_TR(nfc_tmg.tR); 2472 2473 if (nfc->caps->is_nfcv2) { 2474 marvell_nand->ndtr0 |= 2475 NDTR0_RD_CNT_DEL(read_delay) | 2476 NDTR0_SELCNTR | 2477 NDTR0_TADL(nfc_tmg.tADL); 2478 2479 marvell_nand->ndtr1 |= 2480 NDTR1_TRHW(nfc_tmg.tRHW) | 2481 NDTR1_WAIT_MODE; 2482 } 2483 2484 /* 2485 * Reset nfc->selected_chip so the next command will cause the timing 2486 * registers to be updated in marvell_nfc_select_target(). 2487 */ 2488 nfc->selected_chip = NULL; 2489 2490 return 0; 2491 } 2492 2493 static int marvell_nand_attach_chip(struct nand_chip *chip) 2494 { 2495 struct mtd_info *mtd = nand_to_mtd(chip); 2496 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2497 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2498 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2499 int ret; 2500 2501 if (pdata && pdata->flash_bbt) 2502 chip->bbt_options |= NAND_BBT_USE_FLASH; 2503 2504 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2505 /* 2506 * We'll use a bad block table stored in-flash and don't 2507 * allow writing the bad block marker to the flash. 2508 */ 2509 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2510 chip->bbt_td = &bbt_main_descr; 2511 chip->bbt_md = &bbt_mirror_descr; 2512 } 2513 2514 /* Save the chip-specific fields of NDCR */ 2515 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2516 if (chip->options & NAND_BUSWIDTH_16) 2517 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2518 2519 /* 2520 * On small page NANDs, only one cycle is needed to pass the 2521 * column address. 2522 */ 2523 if (mtd->writesize <= 512) { 2524 marvell_nand->addr_cyc = 1; 2525 } else { 2526 marvell_nand->addr_cyc = 2; 2527 marvell_nand->ndcr |= NDCR_RA_START; 2528 } 2529 2530 /* 2531 * Now add the number of cycles needed to pass the row 2532 * address. 2533 * 2534 * Addressing a chip using CS 2 or 3 should also need the third row 2535 * cycle but due to inconsistance in the documentation and lack of 2536 * hardware to test this situation, this case is not supported. 2537 */ 2538 if (chip->options & NAND_ROW_ADDR_3) 2539 marvell_nand->addr_cyc += 3; 2540 else 2541 marvell_nand->addr_cyc += 2; 2542 2543 if (pdata) { 2544 chip->ecc.size = pdata->ecc_step_size; 2545 chip->ecc.strength = pdata->ecc_strength; 2546 } 2547 2548 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2549 if (ret) { 2550 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2551 return ret; 2552 } 2553 2554 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { 2555 /* 2556 * Subpage write not available with hardware ECC, prohibit also 2557 * subpage read as in userspace subpage access would still be 2558 * allowed and subpage write, if used, would lead to numerous 2559 * uncorrectable ECC errors. 2560 */ 2561 chip->options |= NAND_NO_SUBPAGE_WRITE; 2562 } 2563 2564 if (pdata || nfc->caps->legacy_of_bindings) { 2565 /* 2566 * We keep the MTD name unchanged to avoid breaking platforms 2567 * where the MTD cmdline parser is used and the bootloader 2568 * has not been updated to use the new naming scheme. 2569 */ 2570 mtd->name = "pxa3xx_nand-0"; 2571 } else if (!mtd->name) { 2572 /* 2573 * If the new bindings are used and the bootloader has not been 2574 * updated to pass a new mtdparts parameter on the cmdline, you 2575 * should define the following property in your NAND node, ie: 2576 * 2577 * label = "main-storage"; 2578 * 2579 * This way, mtd->name will be set by the core when 2580 * nand_set_flash_node() is called. 2581 */ 2582 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2583 "%s:nand.%d", dev_name(nfc->dev), 2584 marvell_nand->sels[0].cs); 2585 if (!mtd->name) { 2586 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2587 return -ENOMEM; 2588 } 2589 } 2590 2591 return 0; 2592 } 2593 2594 static const struct nand_controller_ops marvell_nand_controller_ops = { 2595 .attach_chip = marvell_nand_attach_chip, 2596 .exec_op = marvell_nfc_exec_op, 2597 .setup_interface = marvell_nfc_setup_interface, 2598 }; 2599 2600 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2601 struct device_node *np) 2602 { 2603 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2604 struct marvell_nand_chip *marvell_nand; 2605 struct mtd_info *mtd; 2606 struct nand_chip *chip; 2607 int nsels, ret, i; 2608 u32 cs, rb; 2609 2610 /* 2611 * The legacy "num-cs" property indicates the number of CS on the only 2612 * chip connected to the controller (legacy bindings does not support 2613 * more than one chip). The CS and RB pins are always the #0. 2614 * 2615 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2616 * properties must be filled. For each chip, expressed as a subnode, 2617 * "reg" points to the CS lines and "nand-rb" to the RB line. 2618 */ 2619 if (pdata || nfc->caps->legacy_of_bindings) { 2620 nsels = 1; 2621 } else { 2622 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2623 if (nsels <= 0) { 2624 dev_err(dev, "missing/invalid reg property\n"); 2625 return -EINVAL; 2626 } 2627 } 2628 2629 /* Alloc the nand chip structure */ 2630 marvell_nand = devm_kzalloc(dev, 2631 struct_size(marvell_nand, sels, nsels), 2632 GFP_KERNEL); 2633 if (!marvell_nand) { 2634 dev_err(dev, "could not allocate chip structure\n"); 2635 return -ENOMEM; 2636 } 2637 2638 marvell_nand->nsels = nsels; 2639 marvell_nand->selected_die = -1; 2640 2641 for (i = 0; i < nsels; i++) { 2642 if (pdata || nfc->caps->legacy_of_bindings) { 2643 /* 2644 * Legacy bindings use the CS lines in natural 2645 * order (0, 1, ...) 2646 */ 2647 cs = i; 2648 } else { 2649 /* Retrieve CS id */ 2650 ret = of_property_read_u32_index(np, "reg", i, &cs); 2651 if (ret) { 2652 dev_err(dev, "could not retrieve reg property: %d\n", 2653 ret); 2654 return ret; 2655 } 2656 } 2657 2658 if (cs >= nfc->caps->max_cs_nb) { 2659 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2660 cs, nfc->caps->max_cs_nb); 2661 return -EINVAL; 2662 } 2663 2664 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2665 dev_err(dev, "CS %d already assigned\n", cs); 2666 return -EINVAL; 2667 } 2668 2669 /* 2670 * The cs variable represents the chip select id, which must be 2671 * converted in bit fields for NDCB0 and NDCB2 to select the 2672 * right chip. Unfortunately, due to a lack of information on 2673 * the subject and incoherent documentation, the user should not 2674 * use CS1 and CS3 at all as asserting them is not supported in 2675 * a reliable way (due to multiplexing inside ADDR5 field). 2676 */ 2677 marvell_nand->sels[i].cs = cs; 2678 switch (cs) { 2679 case 0: 2680 case 2: 2681 marvell_nand->sels[i].ndcb0_csel = 0; 2682 break; 2683 case 1: 2684 case 3: 2685 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2686 break; 2687 default: 2688 return -EINVAL; 2689 } 2690 2691 /* Retrieve RB id */ 2692 if (pdata || nfc->caps->legacy_of_bindings) { 2693 /* Legacy bindings always use RB #0 */ 2694 rb = 0; 2695 } else { 2696 ret = of_property_read_u32_index(np, "nand-rb", i, 2697 &rb); 2698 if (ret) { 2699 dev_err(dev, 2700 "could not retrieve RB property: %d\n", 2701 ret); 2702 return ret; 2703 } 2704 } 2705 2706 if (rb >= nfc->caps->max_rb_nb) { 2707 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2708 rb, nfc->caps->max_rb_nb); 2709 return -EINVAL; 2710 } 2711 2712 marvell_nand->sels[i].rb = rb; 2713 } 2714 2715 chip = &marvell_nand->chip; 2716 chip->controller = &nfc->controller; 2717 nand_set_flash_node(chip, np); 2718 2719 if (of_property_read_bool(np, "marvell,nand-keep-config")) 2720 chip->options |= NAND_KEEP_TIMINGS; 2721 2722 mtd = nand_to_mtd(chip); 2723 mtd->dev.parent = dev; 2724 2725 /* 2726 * Save a reference value for timing registers before 2727 * ->setup_interface() is called. 2728 */ 2729 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2730 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2731 2732 chip->options |= NAND_BUSWIDTH_AUTO; 2733 2734 ret = nand_scan(chip, marvell_nand->nsels); 2735 if (ret) { 2736 dev_err(dev, "could not scan the nand chip\n"); 2737 return ret; 2738 } 2739 2740 if (pdata) 2741 /* Legacy bindings support only one chip */ 2742 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2743 else 2744 ret = mtd_device_register(mtd, NULL, 0); 2745 if (ret) { 2746 dev_err(dev, "failed to register mtd device: %d\n", ret); 2747 nand_cleanup(chip); 2748 return ret; 2749 } 2750 2751 list_add_tail(&marvell_nand->node, &nfc->chips); 2752 2753 return 0; 2754 } 2755 2756 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2757 { 2758 struct marvell_nand_chip *entry, *temp; 2759 struct nand_chip *chip; 2760 int ret; 2761 2762 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2763 chip = &entry->chip; 2764 ret = mtd_device_unregister(nand_to_mtd(chip)); 2765 WARN_ON(ret); 2766 nand_cleanup(chip); 2767 list_del(&entry->node); 2768 } 2769 } 2770 2771 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2772 { 2773 struct device_node *np = dev->of_node; 2774 struct device_node *nand_np; 2775 int max_cs = nfc->caps->max_cs_nb; 2776 int nchips; 2777 int ret; 2778 2779 if (!np) 2780 nchips = 1; 2781 else 2782 nchips = of_get_child_count(np); 2783 2784 if (nchips > max_cs) { 2785 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2786 max_cs); 2787 return -EINVAL; 2788 } 2789 2790 /* 2791 * Legacy bindings do not use child nodes to exhibit NAND chip 2792 * properties and layout. Instead, NAND properties are mixed with the 2793 * controller ones, and partitions are defined as direct subnodes of the 2794 * NAND controller node. 2795 */ 2796 if (nfc->caps->legacy_of_bindings) { 2797 ret = marvell_nand_chip_init(dev, nfc, np); 2798 return ret; 2799 } 2800 2801 for_each_child_of_node(np, nand_np) { 2802 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2803 if (ret) { 2804 of_node_put(nand_np); 2805 goto cleanup_chips; 2806 } 2807 } 2808 2809 return 0; 2810 2811 cleanup_chips: 2812 marvell_nand_chips_cleanup(nfc); 2813 2814 return ret; 2815 } 2816 2817 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2818 { 2819 struct platform_device *pdev = container_of(nfc->dev, 2820 struct platform_device, 2821 dev); 2822 struct dma_slave_config config = {}; 2823 struct resource *r; 2824 int ret; 2825 2826 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2827 dev_warn(nfc->dev, 2828 "DMA not enabled in configuration\n"); 2829 return -ENOTSUPP; 2830 } 2831 2832 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2833 if (ret) 2834 return ret; 2835 2836 nfc->dma_chan = dma_request_chan(nfc->dev, "data"); 2837 if (IS_ERR(nfc->dma_chan)) { 2838 ret = PTR_ERR(nfc->dma_chan); 2839 nfc->dma_chan = NULL; 2840 return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); 2841 } 2842 2843 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2844 if (!r) { 2845 ret = -ENXIO; 2846 goto release_channel; 2847 } 2848 2849 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2850 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2851 config.src_addr = r->start + NDDB; 2852 config.dst_addr = r->start + NDDB; 2853 config.src_maxburst = 32; 2854 config.dst_maxburst = 32; 2855 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2856 if (ret < 0) { 2857 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2858 goto release_channel; 2859 } 2860 2861 /* 2862 * DMA must act on length multiple of 32 and this length may be 2863 * bigger than the destination buffer. Use this buffer instead 2864 * for DMA transfers and then copy the desired amount of data to 2865 * the provided buffer. 2866 */ 2867 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2868 if (!nfc->dma_buf) { 2869 ret = -ENOMEM; 2870 goto release_channel; 2871 } 2872 2873 nfc->use_dma = true; 2874 2875 return 0; 2876 2877 release_channel: 2878 dma_release_channel(nfc->dma_chan); 2879 nfc->dma_chan = NULL; 2880 2881 return ret; 2882 } 2883 2884 static void marvell_nfc_reset(struct marvell_nfc *nfc) 2885 { 2886 /* 2887 * ECC operations and interruptions are only enabled when specifically 2888 * needed. ECC shall not be activated in the early stages (fails probe). 2889 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2890 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2891 * offset in the read page and this will fail the protection. 2892 */ 2893 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2894 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2895 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2896 writel_relaxed(0, nfc->regs + NDECCCTRL); 2897 } 2898 2899 static int marvell_nfc_init(struct marvell_nfc *nfc) 2900 { 2901 struct device_node *np = nfc->dev->of_node; 2902 2903 /* 2904 * Some SoCs like A7k/A8k need to enable manually the NAND 2905 * controller, gated clocks and reset bits to avoid being bootloader 2906 * dependent. This is done through the use of the System Functions 2907 * registers. 2908 */ 2909 if (nfc->caps->need_system_controller) { 2910 struct regmap *sysctrl_base = 2911 syscon_regmap_lookup_by_phandle(np, 2912 "marvell,system-controller"); 2913 2914 if (IS_ERR(sysctrl_base)) 2915 return PTR_ERR(sysctrl_base); 2916 2917 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, 2918 GENCONF_SOC_DEVICE_MUX_NFC_EN | 2919 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2920 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2921 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN | 2922 GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN); 2923 2924 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, 2925 GENCONF_CLK_GATING_CTRL_ND_GATE, 2926 GENCONF_CLK_GATING_CTRL_ND_GATE); 2927 } 2928 2929 /* Configure the DMA if appropriate */ 2930 if (!nfc->caps->is_nfcv2) 2931 marvell_nfc_init_dma(nfc); 2932 2933 marvell_nfc_reset(nfc); 2934 2935 return 0; 2936 } 2937 2938 static int marvell_nfc_probe(struct platform_device *pdev) 2939 { 2940 struct device *dev = &pdev->dev; 2941 struct marvell_nfc *nfc; 2942 int ret; 2943 int irq; 2944 2945 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2946 GFP_KERNEL); 2947 if (!nfc) 2948 return -ENOMEM; 2949 2950 nfc->dev = dev; 2951 nand_controller_init(&nfc->controller); 2952 nfc->controller.ops = &marvell_nand_controller_ops; 2953 INIT_LIST_HEAD(&nfc->chips); 2954 2955 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 2956 if (IS_ERR(nfc->regs)) 2957 return PTR_ERR(nfc->regs); 2958 2959 irq = platform_get_irq(pdev, 0); 2960 if (irq < 0) 2961 return irq; 2962 2963 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2964 2965 /* Managed the legacy case (when the first clock was not named) */ 2966 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2967 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2968 2969 if (IS_ERR(nfc->core_clk)) 2970 return PTR_ERR(nfc->core_clk); 2971 2972 ret = clk_prepare_enable(nfc->core_clk); 2973 if (ret) 2974 return ret; 2975 2976 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2977 if (IS_ERR(nfc->reg_clk)) { 2978 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2979 ret = PTR_ERR(nfc->reg_clk); 2980 goto unprepare_core_clk; 2981 } 2982 2983 nfc->reg_clk = NULL; 2984 } 2985 2986 ret = clk_prepare_enable(nfc->reg_clk); 2987 if (ret) 2988 goto unprepare_core_clk; 2989 2990 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2991 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2992 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2993 0, "marvell-nfc", nfc); 2994 if (ret) 2995 goto unprepare_reg_clk; 2996 2997 /* Get NAND controller capabilities */ 2998 if (pdev->id_entry) 2999 nfc->caps = (void *)pdev->id_entry->driver_data; 3000 else 3001 nfc->caps = of_device_get_match_data(&pdev->dev); 3002 3003 if (!nfc->caps) { 3004 dev_err(dev, "Could not retrieve NFC caps\n"); 3005 ret = -EINVAL; 3006 goto unprepare_reg_clk; 3007 } 3008 3009 /* Init the controller and then probe the chips */ 3010 ret = marvell_nfc_init(nfc); 3011 if (ret) 3012 goto unprepare_reg_clk; 3013 3014 platform_set_drvdata(pdev, nfc); 3015 3016 ret = marvell_nand_chips_init(dev, nfc); 3017 if (ret) 3018 goto release_dma; 3019 3020 return 0; 3021 3022 release_dma: 3023 if (nfc->use_dma) 3024 dma_release_channel(nfc->dma_chan); 3025 unprepare_reg_clk: 3026 clk_disable_unprepare(nfc->reg_clk); 3027 unprepare_core_clk: 3028 clk_disable_unprepare(nfc->core_clk); 3029 3030 return ret; 3031 } 3032 3033 static void marvell_nfc_remove(struct platform_device *pdev) 3034 { 3035 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 3036 3037 marvell_nand_chips_cleanup(nfc); 3038 3039 if (nfc->use_dma) { 3040 dmaengine_terminate_all(nfc->dma_chan); 3041 dma_release_channel(nfc->dma_chan); 3042 } 3043 3044 clk_disable_unprepare(nfc->reg_clk); 3045 clk_disable_unprepare(nfc->core_clk); 3046 } 3047 3048 static int __maybe_unused marvell_nfc_suspend(struct device *dev) 3049 { 3050 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3051 struct marvell_nand_chip *chip; 3052 3053 list_for_each_entry(chip, &nfc->chips, node) 3054 marvell_nfc_wait_ndrun(&chip->chip); 3055 3056 clk_disable_unprepare(nfc->reg_clk); 3057 clk_disable_unprepare(nfc->core_clk); 3058 3059 return 0; 3060 } 3061 3062 static int __maybe_unused marvell_nfc_resume(struct device *dev) 3063 { 3064 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3065 int ret; 3066 3067 ret = clk_prepare_enable(nfc->core_clk); 3068 if (ret < 0) 3069 return ret; 3070 3071 ret = clk_prepare_enable(nfc->reg_clk); 3072 if (ret < 0) { 3073 clk_disable_unprepare(nfc->core_clk); 3074 return ret; 3075 } 3076 3077 /* 3078 * Reset nfc->selected_chip so the next command will cause the timing 3079 * registers to be restored in marvell_nfc_select_target(). 3080 */ 3081 nfc->selected_chip = NULL; 3082 3083 /* Reset registers that have lost their contents */ 3084 marvell_nfc_reset(nfc); 3085 3086 return 0; 3087 } 3088 3089 static const struct dev_pm_ops marvell_nfc_pm_ops = { 3090 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 3091 }; 3092 3093 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 3094 .max_cs_nb = 4, 3095 .max_rb_nb = 2, 3096 .need_system_controller = true, 3097 .is_nfcv2 = true, 3098 }; 3099 3100 static const struct marvell_nfc_caps marvell_ac5_caps = { 3101 .max_cs_nb = 2, 3102 .max_rb_nb = 1, 3103 .is_nfcv2 = true, 3104 .max_mode_number = 3, 3105 }; 3106 3107 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 3108 .max_cs_nb = 4, 3109 .max_rb_nb = 2, 3110 .is_nfcv2 = true, 3111 }; 3112 3113 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 3114 .max_cs_nb = 2, 3115 .max_rb_nb = 1, 3116 .use_dma = true, 3117 }; 3118 3119 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 3120 .max_cs_nb = 4, 3121 .max_rb_nb = 2, 3122 .need_system_controller = true, 3123 .legacy_of_bindings = true, 3124 .is_nfcv2 = true, 3125 }; 3126 3127 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 3128 .max_cs_nb = 4, 3129 .max_rb_nb = 2, 3130 .legacy_of_bindings = true, 3131 .is_nfcv2 = true, 3132 }; 3133 3134 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 3135 .max_cs_nb = 2, 3136 .max_rb_nb = 1, 3137 .legacy_of_bindings = true, 3138 .use_dma = true, 3139 }; 3140 3141 static const struct platform_device_id marvell_nfc_platform_ids[] = { 3142 { 3143 .name = "pxa3xx-nand", 3144 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 3145 }, 3146 { /* sentinel */ }, 3147 }; 3148 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 3149 3150 static const struct of_device_id marvell_nfc_of_ids[] = { 3151 { 3152 .compatible = "marvell,armada-8k-nand-controller", 3153 .data = &marvell_armada_8k_nfc_caps, 3154 }, 3155 { 3156 .compatible = "marvell,ac5-nand-controller", 3157 .data = &marvell_ac5_caps, 3158 }, 3159 { 3160 .compatible = "marvell,armada370-nand-controller", 3161 .data = &marvell_armada370_nfc_caps, 3162 }, 3163 { 3164 .compatible = "marvell,pxa3xx-nand-controller", 3165 .data = &marvell_pxa3xx_nfc_caps, 3166 }, 3167 /* Support for old/deprecated bindings: */ 3168 { 3169 .compatible = "marvell,armada-8k-nand", 3170 .data = &marvell_armada_8k_nfc_legacy_caps, 3171 }, 3172 { 3173 .compatible = "marvell,armada370-nand", 3174 .data = &marvell_armada370_nfc_legacy_caps, 3175 }, 3176 { 3177 .compatible = "marvell,pxa3xx-nand", 3178 .data = &marvell_pxa3xx_nfc_legacy_caps, 3179 }, 3180 { /* sentinel */ }, 3181 }; 3182 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 3183 3184 static struct platform_driver marvell_nfc_driver = { 3185 .driver = { 3186 .name = "marvell-nfc", 3187 .of_match_table = marvell_nfc_of_ids, 3188 .pm = &marvell_nfc_pm_ops, 3189 }, 3190 .id_table = marvell_nfc_platform_ids, 3191 .probe = marvell_nfc_probe, 3192 .remove_new = marvell_nfc_remove, 3193 }; 3194 module_platform_driver(marvell_nfc_driver); 3195 3196 MODULE_LICENSE("GPL"); 3197 MODULE_DESCRIPTION("Marvell NAND controller driver"); 3198