1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Marvell NAND flash controller driver
4  *
5  * Copyright (C) 2017 Marvell
6  * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7  *
8  *
9  * This NAND controller driver handles two versions of the hardware,
10  * one is called NFCv1 and is available on PXA SoCs and the other is
11  * called NFCv2 and is available on Armada SoCs.
12  *
13  * The main visible difference is that NFCv1 only has Hamming ECC
14  * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15  * is not used with NFCv2.
16  *
17  * The ECC layouts are depicted in details in Marvell AN-379, but here
18  * is a brief description.
19  *
20  * When using Hamming, the data is split in 512B chunks (either 1, 2
21  * or 4) and each chunk will have its own ECC "digest" of 6B at the
22  * beginning of the OOB area and eventually the remaining free OOB
23  * bytes (also called "spare" bytes in the driver). This engine
24  * corrects up to 1 bit per chunk and detects reliably an error if
25  * there are at most 2 bitflips. Here is the page layout used by the
26  * controller when Hamming is chosen:
27  *
28  * +-------------------------------------------------------------+
29  * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30  * +-------------------------------------------------------------+
31  *
32  * When using the BCH engine, there are N identical (data + free OOB +
33  * ECC) sections and potentially an extra one to deal with
34  * configurations where the chosen (data + free OOB + ECC) sizes do
35  * not align with the page (data + OOB) size. ECC bytes are always
36  * 30B per ECC chunk. Here is the page layout used by the controller
37  * when BCH is chosen:
38  *
39  * +-----------------------------------------
40  * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41  * +-----------------------------------------
42  *
43  *      -------------------------------------------
44  *       ... | Data N | Free OOB bytes N | ECC N |
45  *      -------------------------------------------
46  *
47  *           --------------------------------------------+
48  *            Last Data | Last Free OOB bytes | Last ECC |
49  *           --------------------------------------------+
50  *
51  * In both cases, the layout seen by the user is always: all data
52  * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53  * ECC bytes are 30B long and are padded with 0xFF to align on 32
54  * bytes.
55  *
56  * The controller has certain limitations that are handled by the
57  * driver:
58  *   - It can only read 2k at a time. To overcome this limitation, the
59  *     driver issues data cycles on the bus, without issuing new
60  *     CMD + ADDR cycles. The Marvell term is "naked" operations.
61  *   - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62  *     bits. What can be tuned is the ECC block size as long as it
63  *     stays between 512B and 2kiB. It's usually chosen based on the
64  *     chip ECC requirements. For instance, using 2kiB ECC chunks
65  *     provides 4b/512B correctability.
66  *   - The controller will always treat data bytes, free OOB bytes
67  *     and ECC bytes in that order, no matter what the real layout is
68  *     (which is usually all data then all OOB bytes). The
69  *     marvell_nfc_layouts array below contains the currently
70  *     supported layouts.
71  *   - Because of these weird layouts, the Bad Block Markers can be
72  *     located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73  *     option must be set to prevent scanning/writing bad block
74  *     markers.
75  */
76 
77 #include <linux/module.h>
78 #include <linux/clk.h>
79 #include <linux/mtd/rawnand.h>
80 #include <linux/of.h>
81 #include <linux/iopoll.h>
82 #include <linux/interrupt.h>
83 #include <linux/platform_device.h>
84 #include <linux/slab.h>
85 #include <linux/mfd/syscon.h>
86 #include <linux/regmap.h>
87 #include <asm/unaligned.h>
88 
89 #include <linux/dmaengine.h>
90 #include <linux/dma-mapping.h>
91 #include <linux/dma/pxa-dma.h>
92 #include <linux/platform_data/mtd-nand-pxa3xx.h>
93 
94 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
95 #define FIFO_DEPTH		8
96 #define FIFO_REP(x)		(x / sizeof(u32))
97 #define BCH_SEQ_READS		(32 / FIFO_DEPTH)
98 /* NFC does not support transfers of larger chunks at a time */
99 #define MAX_CHUNK_SIZE		2112
100 /* NFCv1 cannot read more that 7 bytes of ID */
101 #define NFCV1_READID_LEN	7
102 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
103 #define POLL_PERIOD		0
104 #define POLL_TIMEOUT		100000
105 /* Interrupt maximum wait period in ms */
106 #define IRQ_TIMEOUT		1000
107 /* Latency in clock cycles between SoC pins and NFC logic */
108 #define MIN_RD_DEL_CNT		3
109 /* Maximum number of contiguous address cycles */
110 #define MAX_ADDRESS_CYC_NFCV1	5
111 #define MAX_ADDRESS_CYC_NFCV2	7
112 /* System control registers/bits to enable the NAND controller on some SoCs */
113 #define GENCONF_SOC_DEVICE_MUX	0x208
114 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
115 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
116 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
117 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
118 #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27)
119 #define GENCONF_CLK_GATING_CTRL	0x220
120 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
121 #define GENCONF_ND_CLK_CTRL	0x700
122 #define GENCONF_ND_CLK_CTRL_EN	BIT(0)
123 
124 /* NAND controller data flash control register */
125 #define NDCR			0x00
126 #define NDCR_ALL_INT		GENMASK(11, 0)
127 #define NDCR_CS1_CMDDM		BIT(7)
128 #define NDCR_CS0_CMDDM		BIT(8)
129 #define NDCR_RDYM		BIT(11)
130 #define NDCR_ND_ARB_EN		BIT(12)
131 #define NDCR_RA_START		BIT(15)
132 #define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16)
133 #define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0)
134 #define NDCR_DWIDTH_M		BIT(26)
135 #define NDCR_DWIDTH_C		BIT(27)
136 #define NDCR_ND_RUN		BIT(28)
137 #define NDCR_DMA_EN		BIT(29)
138 #define NDCR_ECC_EN		BIT(30)
139 #define NDCR_SPARE_EN		BIT(31)
140 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
141 				    NDCR_DWIDTH_M | NDCR_DWIDTH_C))
142 
143 /* NAND interface timing parameter 0 register */
144 #define NDTR0			0x04
145 #define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0)
146 #define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3)
147 #define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3)
148 #define NDTR0_SEL_NRE_EDGE	BIT(7)
149 #define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8)
150 #define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11)
151 #define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16)
152 #define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19)
153 #define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22)
154 #define NDTR0_SELCNTR		BIT(26)
155 #define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27)
156 
157 /* NAND interface timing parameter 1 register */
158 #define NDTR1			0x0C
159 #define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0)
160 #define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4)
161 #define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8)
162 #define NDTR1_PRESCALE		BIT(14)
163 #define NDTR1_WAIT_MODE		BIT(15)
164 #define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16)
165 
166 /* NAND controller status register */
167 #define NDSR			0x14
168 #define NDSR_WRCMDREQ		BIT(0)
169 #define NDSR_RDDREQ		BIT(1)
170 #define NDSR_WRDREQ		BIT(2)
171 #define NDSR_CORERR		BIT(3)
172 #define NDSR_UNCERR		BIT(4)
173 #define NDSR_CMDD(cs)		BIT(8 - cs)
174 #define NDSR_RDY(rb)		BIT(11 + rb)
175 #define NDSR_ERRCNT(x)		((x >> 16) & 0x1F)
176 
177 /* NAND ECC control register */
178 #define NDECCCTRL		0x28
179 #define NDECCCTRL_BCH_EN	BIT(0)
180 
181 /* NAND controller data buffer register */
182 #define NDDB			0x40
183 
184 /* NAND controller command buffer 0 register */
185 #define NDCB0			0x48
186 #define NDCB0_CMD1(x)		((x & 0xFF) << 0)
187 #define NDCB0_CMD2(x)		((x & 0xFF) << 8)
188 #define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16)
189 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
190 #define NDCB0_DBC		BIT(19)
191 #define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21)
192 #define NDCB0_CSEL		BIT(24)
193 #define NDCB0_RDY_BYP		BIT(27)
194 #define NDCB0_LEN_OVRD		BIT(28)
195 #define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29)
196 
197 /* NAND controller command buffer 1 register */
198 #define NDCB1			0x4C
199 #define NDCB1_COLS(x)		((x & 0xFFFF) << 0)
200 #define NDCB1_ADDRS_PAGE(x)	(x << 16)
201 
202 /* NAND controller command buffer 2 register */
203 #define NDCB2			0x50
204 #define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0)
205 #define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0)
206 
207 /* NAND controller command buffer 3 register */
208 #define NDCB3			0x54
209 #define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16)
210 #define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24)
211 
212 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
213 #define TYPE_READ		0
214 #define TYPE_WRITE		1
215 #define TYPE_ERASE		2
216 #define TYPE_READ_ID		3
217 #define TYPE_STATUS		4
218 #define TYPE_RESET		5
219 #define TYPE_NAKED_CMD		6
220 #define TYPE_NAKED_ADDR		7
221 #define TYPE_MASK		7
222 #define XTYPE_MONOLITHIC_RW	0
223 #define XTYPE_LAST_NAKED_RW	1
224 #define XTYPE_FINAL_COMMAND	3
225 #define XTYPE_READ		4
226 #define XTYPE_WRITE_DISPATCH	4
227 #define XTYPE_NAKED_RW		5
228 #define XTYPE_COMMAND_DISPATCH	6
229 #define XTYPE_MASK		7
230 
231 /**
232  * struct marvell_hw_ecc_layout - layout of Marvell ECC
233  *
234  * Marvell ECC engine works differently than the others, in order to limit the
235  * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
236  * per subpage, and depending on a the desired strength needed by the NAND chip,
237  * a particular layout mixing data/spare/ecc is defined, with a possible last
238  * chunk smaller that the others.
239  *
240  * @writesize:		Full page size on which the layout applies
241  * @chunk:		Desired ECC chunk size on which the layout applies
242  * @strength:		Desired ECC strength (per chunk size bytes) on which the
243  *			layout applies
244  * @nchunks:		Total number of chunks
245  * @full_chunk_cnt:	Number of full-sized chunks, which is the number of
246  *			repetitions of the pattern:
247  *			(data_bytes + spare_bytes + ecc_bytes).
248  * @data_bytes:		Number of data bytes per chunk
249  * @spare_bytes:	Number of spare bytes per chunk
250  * @ecc_bytes:		Number of ecc bytes per chunk
251  * @last_data_bytes:	Number of data bytes in the last chunk
252  * @last_spare_bytes:	Number of spare bytes in the last chunk
253  * @last_ecc_bytes:	Number of ecc bytes in the last chunk
254  */
255 struct marvell_hw_ecc_layout {
256 	/* Constraints */
257 	int writesize;
258 	int chunk;
259 	int strength;
260 	/* Corresponding layout */
261 	int nchunks;
262 	int full_chunk_cnt;
263 	int data_bytes;
264 	int spare_bytes;
265 	int ecc_bytes;
266 	int last_data_bytes;
267 	int last_spare_bytes;
268 	int last_ecc_bytes;
269 };
270 
271 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\
272 	{								\
273 		.writesize = ws,					\
274 		.chunk = dc,						\
275 		.strength = ds,						\
276 		.nchunks = nc,						\
277 		.full_chunk_cnt = fcc,					\
278 		.data_bytes = db,					\
279 		.spare_bytes = sb,					\
280 		.ecc_bytes = eb,					\
281 		.last_data_bytes = ldb,					\
282 		.last_spare_bytes = lsb,				\
283 		.last_ecc_bytes = leb,					\
284 	}
285 
286 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
287 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
288 	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
289 	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
290 	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
291 	MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,32, 30),
292 	MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,64, 30),
293 	MARVELL_LAYOUT( 2048,   512,  12, 3,  2, 704,   0, 30,640,  0, 30),
294 	MARVELL_LAYOUT( 2048,   512,  16, 5,  4, 512,   0, 30,  0, 32, 30),
295 	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
296 	MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
297 	MARVELL_LAYOUT( 4096,   512,  12, 6,  5, 704,   0, 30,576, 32, 30),
298 	MARVELL_LAYOUT( 4096,   512,  16, 9,  8, 512,   0, 30,  0, 32, 30),
299 	MARVELL_LAYOUT( 8192,   512,  4,  4,  4, 2048,  0, 30,  0,  0,  0),
300 	MARVELL_LAYOUT( 8192,   512,  8,  9,  8, 1024,  0, 30,  0, 160, 30),
301 	MARVELL_LAYOUT( 8192,   512,  12, 12, 11, 704,  0, 30,448,  64, 30),
302 	MARVELL_LAYOUT( 8192,   512,  16, 17, 16, 512,  0, 30,  0,  32, 30),
303 };
304 
305 /**
306  * struct marvell_nand_chip_sel - CS line description
307  *
308  * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
309  * is made by a field in NDCB0 register, and in another field in NDCB2 register.
310  * The datasheet describes the logic with an error: ADDR5 field is once
311  * declared at the beginning of NDCB2, and another time at its end. Because the
312  * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
313  * to use the last bit of this field instead of the first ones.
314  *
315  * @cs:			Wanted CE lane.
316  * @ndcb0_csel:		Value of the NDCB0 register with or without the flag
317  *			selecting the wanted CE lane. This is set once when
318  *			the Device Tree is probed.
319  * @rb:			Ready/Busy pin for the flash chip
320  */
321 struct marvell_nand_chip_sel {
322 	unsigned int cs;
323 	u32 ndcb0_csel;
324 	unsigned int rb;
325 };
326 
327 /**
328  * struct marvell_nand_chip - stores NAND chip device related information
329  *
330  * @chip:		Base NAND chip structure
331  * @node:		Used to store NAND chips into a list
332  * @layout:		NAND layout when using hardware ECC
333  * @ndcr:		Controller register value for this NAND chip
334  * @ndtr0:		Timing registers 0 value for this NAND chip
335  * @ndtr1:		Timing registers 1 value for this NAND chip
336  * @addr_cyc:		Amount of cycles needed to pass column address
337  * @selected_die:	Current active CS
338  * @nsels:		Number of CS lines required by the NAND chip
339  * @sels:		Array of CS lines descriptions
340  */
341 struct marvell_nand_chip {
342 	struct nand_chip chip;
343 	struct list_head node;
344 	const struct marvell_hw_ecc_layout *layout;
345 	u32 ndcr;
346 	u32 ndtr0;
347 	u32 ndtr1;
348 	int addr_cyc;
349 	int selected_die;
350 	unsigned int nsels;
351 	struct marvell_nand_chip_sel sels[];
352 };
353 
354 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
355 {
356 	return container_of(chip, struct marvell_nand_chip, chip);
357 }
358 
359 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
360 							*nand)
361 {
362 	return &nand->sels[nand->selected_die];
363 }
364 
365 /**
366  * struct marvell_nfc_caps - NAND controller capabilities for distinction
367  *                           between compatible strings
368  *
369  * @max_cs_nb:		Number of Chip Select lines available
370  * @max_rb_nb:		Number of Ready/Busy lines available
371  * @need_system_controller: Indicates if the SoC needs to have access to the
372  *                      system controller (ie. to enable the NAND controller)
373  * @legacy_of_bindings:	Indicates if DT parsing must be done using the old
374  *			fashion way
375  * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie.
376  *			BCH error detection and correction algorithm,
377  *			NDCB3 register has been added
378  * @use_dma:		Use dma for data transfers
379  */
380 struct marvell_nfc_caps {
381 	unsigned int max_cs_nb;
382 	unsigned int max_rb_nb;
383 	bool need_system_controller;
384 	bool legacy_of_bindings;
385 	bool is_nfcv2;
386 	bool use_dma;
387 };
388 
389 /**
390  * struct marvell_nfc - stores Marvell NAND controller information
391  *
392  * @controller:		Base controller structure
393  * @dev:		Parent device (used to print error messages)
394  * @regs:		NAND controller registers
395  * @core_clk:		Core clock
396  * @reg_clk:		Registers clock
397  * @complete:		Completion object to wait for NAND controller events
398  * @assigned_cs:	Bitmask describing already assigned CS lines
399  * @chips:		List containing all the NAND chips attached to
400  *			this NAND controller
401  * @selected_chip:	Currently selected target chip
402  * @caps:		NAND controller capabilities for each compatible string
403  * @use_dma:		Whetner DMA is used
404  * @dma_chan:		DMA channel (NFCv1 only)
405  * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only)
406  */
407 struct marvell_nfc {
408 	struct nand_controller controller;
409 	struct device *dev;
410 	void __iomem *regs;
411 	struct clk *core_clk;
412 	struct clk *reg_clk;
413 	struct completion complete;
414 	unsigned long assigned_cs;
415 	struct list_head chips;
416 	struct nand_chip *selected_chip;
417 	const struct marvell_nfc_caps *caps;
418 
419 	/* DMA (NFCv1 only) */
420 	bool use_dma;
421 	struct dma_chan *dma_chan;
422 	u8 *dma_buf;
423 };
424 
425 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
426 {
427 	return container_of(ctrl, struct marvell_nfc, controller);
428 }
429 
430 /**
431  * struct marvell_nfc_timings - NAND controller timings expressed in NAND
432  *                              Controller clock cycles
433  *
434  * @tRP:		ND_nRE pulse width
435  * @tRH:		ND_nRE high duration
436  * @tWP:		ND_nWE pulse time
437  * @tWH:		ND_nWE high duration
438  * @tCS:		Enable signal setup time
439  * @tCH:		Enable signal hold time
440  * @tADL:		Address to write data delay
441  * @tAR:		ND_ALE low to ND_nRE low delay
442  * @tWHR:		ND_nWE high to ND_nRE low for status read
443  * @tRHW:		ND_nRE high duration, read to write delay
444  * @tR:			ND_nWE high to ND_nRE low for read
445  */
446 struct marvell_nfc_timings {
447 	/* NDTR0 fields */
448 	unsigned int tRP;
449 	unsigned int tRH;
450 	unsigned int tWP;
451 	unsigned int tWH;
452 	unsigned int tCS;
453 	unsigned int tCH;
454 	unsigned int tADL;
455 	/* NDTR1 fields */
456 	unsigned int tAR;
457 	unsigned int tWHR;
458 	unsigned int tRHW;
459 	unsigned int tR;
460 };
461 
462 /**
463  * TO_CYCLES() - Derives a duration in numbers of clock cycles.
464  *
465  * @ps: Duration in pico-seconds
466  * @period_ns:  Clock period in nano-seconds
467  *
468  * Convert the duration in nano-seconds, then divide by the period and
469  * return the number of clock periods.
470  */
471 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
472 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
473 						     period_ns))
474 
475 /**
476  * struct marvell_nfc_op - filled during the parsing of the ->exec_op()
477  *                         subop subset of instructions.
478  *
479  * @ndcb:		Array of values written to NDCBx registers
480  * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle
481  * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin
482  * @rdy_delay_ns:	Optional delay after waiting for the RB pin
483  * @data_delay_ns:	Optional delay after the data xfer
484  * @data_instr_idx:	Index of the data instruction in the subop
485  * @data_instr:		Pointer to the data instruction in the subop
486  */
487 struct marvell_nfc_op {
488 	u32 ndcb[4];
489 	unsigned int cle_ale_delay_ns;
490 	unsigned int rdy_timeout_ms;
491 	unsigned int rdy_delay_ns;
492 	unsigned int data_delay_ns;
493 	unsigned int data_instr_idx;
494 	const struct nand_op_instr *data_instr;
495 };
496 
497 /*
498  * Internal helper to conditionnally apply a delay (from the above structure,
499  * most of the time).
500  */
501 static void cond_delay(unsigned int ns)
502 {
503 	if (!ns)
504 		return;
505 
506 	if (ns < 10000)
507 		ndelay(ns);
508 	else
509 		udelay(DIV_ROUND_UP(ns, 1000));
510 }
511 
512 /*
513  * The controller has many flags that could generate interrupts, most of them
514  * are disabled and polling is used. For the very slow signals, using interrupts
515  * may relax the CPU charge.
516  */
517 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
518 {
519 	u32 reg;
520 
521 	/* Writing 1 disables the interrupt */
522 	reg = readl_relaxed(nfc->regs + NDCR);
523 	writel_relaxed(reg | int_mask, nfc->regs + NDCR);
524 }
525 
526 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
527 {
528 	u32 reg;
529 
530 	/* Writing 0 enables the interrupt */
531 	reg = readl_relaxed(nfc->regs + NDCR);
532 	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
533 }
534 
535 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
536 {
537 	u32 reg;
538 
539 	reg = readl_relaxed(nfc->regs + NDSR);
540 	writel_relaxed(int_mask, nfc->regs + NDSR);
541 
542 	return reg & int_mask;
543 }
544 
545 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
546 					  bool force_8bit)
547 {
548 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
549 	u32 ndcr;
550 
551 	/*
552 	 * Callers of this function do not verify if the NAND is using a 16-bit
553 	 * an 8-bit bus for normal operations, so we need to take care of that
554 	 * here by leaving the configuration unchanged if the NAND does not have
555 	 * the NAND_BUSWIDTH_16 flag set.
556 	 */
557 	if (!(chip->options & NAND_BUSWIDTH_16))
558 		return;
559 
560 	ndcr = readl_relaxed(nfc->regs + NDCR);
561 
562 	if (force_8bit)
563 		ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
564 	else
565 		ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
566 
567 	writel_relaxed(ndcr, nfc->regs + NDCR);
568 }
569 
570 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
571 {
572 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
573 	u32 val;
574 	int ret;
575 
576 	/*
577 	 * The command is being processed, wait for the ND_RUN bit to be
578 	 * cleared by the NFC. If not, we must clear it by hand.
579 	 */
580 	ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
581 					 (val & NDCR_ND_RUN) == 0,
582 					 POLL_PERIOD, POLL_TIMEOUT);
583 	if (ret) {
584 		dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
585 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
586 			       nfc->regs + NDCR);
587 		return ret;
588 	}
589 
590 	return 0;
591 }
592 
593 /*
594  * Any time a command has to be sent to the controller, the following sequence
595  * has to be followed:
596  * - call marvell_nfc_prepare_cmd()
597  *      -> activate the ND_RUN bit that will kind of 'start a job'
598  *      -> wait the signal indicating the NFC is waiting for a command
599  * - send the command (cmd and address cycles)
600  * - enventually send or receive the data
601  * - call marvell_nfc_end_cmd() with the corresponding flag
602  *      -> wait the flag to be triggered or cancel the job with a timeout
603  *
604  * The following helpers are here to factorize the code a bit so that
605  * specialized functions responsible for executing the actual NAND
606  * operations do not have to replicate the same code blocks.
607  */
608 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
609 {
610 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
611 	u32 ndcr, val;
612 	int ret;
613 
614 	/* Poll ND_RUN and clear NDSR before issuing any command */
615 	ret = marvell_nfc_wait_ndrun(chip);
616 	if (ret) {
617 		dev_err(nfc->dev, "Last operation did not succeed\n");
618 		return ret;
619 	}
620 
621 	ndcr = readl_relaxed(nfc->regs + NDCR);
622 	writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
623 
624 	/* Assert ND_RUN bit and wait the NFC to be ready */
625 	writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
626 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
627 					 val & NDSR_WRCMDREQ,
628 					 POLL_PERIOD, POLL_TIMEOUT);
629 	if (ret) {
630 		dev_err(nfc->dev, "Timeout on WRCMDRE\n");
631 		return -ETIMEDOUT;
632 	}
633 
634 	/* Command may be written, clear WRCMDREQ status bit */
635 	writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
636 
637 	return 0;
638 }
639 
640 static void marvell_nfc_send_cmd(struct nand_chip *chip,
641 				 struct marvell_nfc_op *nfc_op)
642 {
643 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
644 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
645 
646 	dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
647 		"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
648 		(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
649 		nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
650 
651 	writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
652 		       nfc->regs + NDCB0);
653 	writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
654 	writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
655 
656 	/*
657 	 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
658 	 * fields are used (only available on NFCv2).
659 	 */
660 	if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
661 	    NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
662 		if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
663 			writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
664 	}
665 }
666 
667 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
668 			       const char *label)
669 {
670 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
671 	u32 val;
672 	int ret;
673 
674 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
675 					 val & flag,
676 					 POLL_PERIOD, POLL_TIMEOUT);
677 
678 	if (ret) {
679 		dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
680 			label, val);
681 		if (nfc->dma_chan)
682 			dmaengine_terminate_all(nfc->dma_chan);
683 		return ret;
684 	}
685 
686 	/*
687 	 * DMA function uses this helper to poll on CMDD bits without wanting
688 	 * them to be cleared.
689 	 */
690 	if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
691 		return 0;
692 
693 	writel_relaxed(flag, nfc->regs + NDSR);
694 
695 	return 0;
696 }
697 
698 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
699 {
700 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
701 	int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
702 
703 	return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
704 }
705 
706 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
707 				   u32 expected_val, unsigned long timeout_ms)
708 {
709 	unsigned long limit;
710 	u32 st;
711 
712 	limit = jiffies + msecs_to_jiffies(timeout_ms);
713 	do {
714 		st = readl_relaxed(nfc->regs + NDSR);
715 		if (st & NDSR_RDY(1))
716 			st |= NDSR_RDY(0);
717 
718 		if ((st & mask) == expected_val)
719 			return 0;
720 
721 		cpu_relax();
722 	} while (time_after(limit, jiffies));
723 
724 	return -ETIMEDOUT;
725 }
726 
727 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
728 {
729 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
730 	struct mtd_info *mtd = nand_to_mtd(chip);
731 	u32 pending;
732 	int ret;
733 
734 	/* Timeout is expressed in ms */
735 	if (!timeout_ms)
736 		timeout_ms = IRQ_TIMEOUT;
737 
738 	if (mtd->oops_panic_write) {
739 		ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
740 					      NDSR_RDY(0),
741 					      timeout_ms);
742 	} else {
743 		init_completion(&nfc->complete);
744 
745 		marvell_nfc_enable_int(nfc, NDCR_RDYM);
746 		ret = wait_for_completion_timeout(&nfc->complete,
747 						  msecs_to_jiffies(timeout_ms));
748 		marvell_nfc_disable_int(nfc, NDCR_RDYM);
749 	}
750 	pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
751 
752 	/*
753 	 * In case the interrupt was not served in the required time frame,
754 	 * check if the ISR was not served or if something went actually wrong.
755 	 */
756 	if (!ret && !pending) {
757 		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
758 		return -ETIMEDOUT;
759 	}
760 
761 	return 0;
762 }
763 
764 static void marvell_nfc_select_target(struct nand_chip *chip,
765 				      unsigned int die_nr)
766 {
767 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
768 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
769 	u32 ndcr_generic;
770 
771 	/*
772 	 * Reset the NDCR register to a clean state for this particular chip,
773 	 * also clear ND_RUN bit.
774 	 */
775 	ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
776 		       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
777 	writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
778 
779 	/* Also reset the interrupt status register */
780 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
781 
782 	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
783 		return;
784 
785 	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
786 	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
787 
788 	nfc->selected_chip = chip;
789 	marvell_nand->selected_die = die_nr;
790 }
791 
792 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
793 {
794 	struct marvell_nfc *nfc = dev_id;
795 	u32 st = readl_relaxed(nfc->regs + NDSR);
796 	u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
797 
798 	/*
799 	 * RDY interrupt mask is one bit in NDCR while there are two status
800 	 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
801 	 */
802 	if (st & NDSR_RDY(1))
803 		st |= NDSR_RDY(0);
804 
805 	if (!(st & ien))
806 		return IRQ_NONE;
807 
808 	marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
809 
810 	if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
811 		complete(&nfc->complete);
812 
813 	return IRQ_HANDLED;
814 }
815 
816 /* HW ECC related functions */
817 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
818 {
819 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
820 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
821 
822 	if (!(ndcr & NDCR_ECC_EN)) {
823 		writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
824 
825 		/*
826 		 * When enabling BCH, set threshold to 0 to always know the
827 		 * number of corrected bitflips.
828 		 */
829 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
830 			writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
831 	}
832 }
833 
834 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
835 {
836 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
837 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
838 
839 	if (ndcr & NDCR_ECC_EN) {
840 		writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
841 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
842 			writel_relaxed(0, nfc->regs + NDECCCTRL);
843 	}
844 }
845 
846 /* DMA related helpers */
847 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
848 {
849 	u32 reg;
850 
851 	reg = readl_relaxed(nfc->regs + NDCR);
852 	writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
853 }
854 
855 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
856 {
857 	u32 reg;
858 
859 	reg = readl_relaxed(nfc->regs + NDCR);
860 	writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
861 }
862 
863 /* Read/write PIO/DMA accessors */
864 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
865 				     enum dma_data_direction direction,
866 				     unsigned int len)
867 {
868 	unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
869 	struct dma_async_tx_descriptor *tx;
870 	struct scatterlist sg;
871 	dma_cookie_t cookie;
872 	int ret;
873 
874 	marvell_nfc_enable_dma(nfc);
875 	/* Prepare the DMA transfer */
876 	sg_init_one(&sg, nfc->dma_buf, dma_len);
877 	ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
878 	if (!ret) {
879 		dev_err(nfc->dev, "Could not map DMA S/G list\n");
880 		return -ENXIO;
881 	}
882 
883 	tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
884 				     direction == DMA_FROM_DEVICE ?
885 				     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
886 				     DMA_PREP_INTERRUPT);
887 	if (!tx) {
888 		dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
889 		dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
890 		return -ENXIO;
891 	}
892 
893 	/* Do the task and wait for it to finish */
894 	cookie = dmaengine_submit(tx);
895 	ret = dma_submit_error(cookie);
896 	if (ret)
897 		return -EIO;
898 
899 	dma_async_issue_pending(nfc->dma_chan);
900 	ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
901 	dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
902 	marvell_nfc_disable_dma(nfc);
903 	if (ret) {
904 		dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
905 			dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
906 		dmaengine_terminate_all(nfc->dma_chan);
907 		return -ETIMEDOUT;
908 	}
909 
910 	return 0;
911 }
912 
913 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
914 					unsigned int len)
915 {
916 	unsigned int last_len = len % FIFO_DEPTH;
917 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
918 	int i;
919 
920 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
921 		ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
922 
923 	if (last_len) {
924 		u8 tmp_buf[FIFO_DEPTH];
925 
926 		ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
927 		memcpy(in + last_full_offset, tmp_buf, last_len);
928 	}
929 
930 	return 0;
931 }
932 
933 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
934 					 unsigned int len)
935 {
936 	unsigned int last_len = len % FIFO_DEPTH;
937 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
938 	int i;
939 
940 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
941 		iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
942 
943 	if (last_len) {
944 		u8 tmp_buf[FIFO_DEPTH];
945 
946 		memcpy(tmp_buf, out + last_full_offset, last_len);
947 		iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
948 	}
949 
950 	return 0;
951 }
952 
953 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
954 					  u8 *data, int data_len,
955 					  u8 *spare, int spare_len,
956 					  u8 *ecc, int ecc_len,
957 					  unsigned int *max_bitflips)
958 {
959 	struct mtd_info *mtd = nand_to_mtd(chip);
960 	int bf;
961 
962 	/*
963 	 * Blank pages (all 0xFF) that have not been written may be recognized
964 	 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
965 	 * check if the entire page (with ECC bytes) is actually blank or not.
966 	 */
967 	if (!data)
968 		data_len = 0;
969 	if (!spare)
970 		spare_len = 0;
971 	if (!ecc)
972 		ecc_len = 0;
973 
974 	bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
975 					 spare, spare_len, chip->ecc.strength);
976 	if (bf < 0) {
977 		mtd->ecc_stats.failed++;
978 		return;
979 	}
980 
981 	/* Update the stats and max_bitflips */
982 	mtd->ecc_stats.corrected += bf;
983 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
984 }
985 
986 /*
987  * Check if a chunk is correct or not according to the hardware ECC engine.
988  * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
989  * mtd->ecc_stats.failure is not, the function will instead return a non-zero
990  * value indicating that a check on the emptyness of the subpage must be
991  * performed before actually declaring the subpage as "corrupted".
992  */
993 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
994 					     unsigned int *max_bitflips)
995 {
996 	struct mtd_info *mtd = nand_to_mtd(chip);
997 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
998 	int bf = 0;
999 	u32 ndsr;
1000 
1001 	ndsr = readl_relaxed(nfc->regs + NDSR);
1002 
1003 	/* Check uncorrectable error flag */
1004 	if (ndsr & NDSR_UNCERR) {
1005 		writel_relaxed(ndsr, nfc->regs + NDSR);
1006 
1007 		/*
1008 		 * Do not increment ->ecc_stats.failed now, instead, return a
1009 		 * non-zero value to indicate that this chunk was apparently
1010 		 * bad, and it should be check to see if it empty or not. If
1011 		 * the chunk (with ECC bytes) is not declared empty, the calling
1012 		 * function must increment the failure count.
1013 		 */
1014 		return -EBADMSG;
1015 	}
1016 
1017 	/* Check correctable error flag */
1018 	if (ndsr & NDSR_CORERR) {
1019 		writel_relaxed(ndsr, nfc->regs + NDSR);
1020 
1021 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
1022 			bf = NDSR_ERRCNT(ndsr);
1023 		else
1024 			bf = 1;
1025 	}
1026 
1027 	/* Update the stats and max_bitflips */
1028 	mtd->ecc_stats.corrected += bf;
1029 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
1030 
1031 	return 0;
1032 }
1033 
1034 /* Hamming read helpers */
1035 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
1036 					       u8 *data_buf, u8 *oob_buf,
1037 					       bool raw, int page)
1038 {
1039 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1040 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1041 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1042 	struct marvell_nfc_op nfc_op = {
1043 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1044 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1045 			   NDCB0_DBC |
1046 			   NDCB0_CMD1(NAND_CMD_READ0) |
1047 			   NDCB0_CMD2(NAND_CMD_READSTART),
1048 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1049 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1050 	};
1051 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1052 	int ret;
1053 
1054 	/* NFCv2 needs more information about the operation being executed */
1055 	if (nfc->caps->is_nfcv2)
1056 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1057 
1058 	ret = marvell_nfc_prepare_cmd(chip);
1059 	if (ret)
1060 		return ret;
1061 
1062 	marvell_nfc_send_cmd(chip, &nfc_op);
1063 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1064 				  "RDDREQ while draining FIFO (data/oob)");
1065 	if (ret)
1066 		return ret;
1067 
1068 	/*
1069 	 * Read the page then the OOB area. Unlike what is shown in current
1070 	 * documentation, spare bytes are protected by the ECC engine, and must
1071 	 * be at the beginning of the OOB area or running this driver on legacy
1072 	 * systems will prevent the discovery of the BBM/BBT.
1073 	 */
1074 	if (nfc->use_dma) {
1075 		marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1076 					  lt->data_bytes + oob_bytes);
1077 		memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1078 		memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1079 	} else {
1080 		marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1081 		marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1082 	}
1083 
1084 	ret = marvell_nfc_wait_cmdd(chip);
1085 	return ret;
1086 }
1087 
1088 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1089 						int oob_required, int page)
1090 {
1091 	marvell_nfc_select_target(chip, chip->cur_cs);
1092 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1093 						   true, page);
1094 }
1095 
1096 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1097 					    int oob_required, int page)
1098 {
1099 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1100 	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1101 	int max_bitflips = 0, ret;
1102 	u8 *raw_buf;
1103 
1104 	marvell_nfc_select_target(chip, chip->cur_cs);
1105 	marvell_nfc_enable_hw_ecc(chip);
1106 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1107 					    page);
1108 	ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1109 	marvell_nfc_disable_hw_ecc(chip);
1110 
1111 	if (!ret)
1112 		return max_bitflips;
1113 
1114 	/*
1115 	 * When ECC failures are detected, check if the full page has been
1116 	 * written or not. Ignore the failure if it is actually empty.
1117 	 */
1118 	raw_buf = kmalloc(full_sz, GFP_KERNEL);
1119 	if (!raw_buf)
1120 		return -ENOMEM;
1121 
1122 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1123 					    lt->data_bytes, true, page);
1124 	marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1125 				      &max_bitflips);
1126 	kfree(raw_buf);
1127 
1128 	return max_bitflips;
1129 }
1130 
1131 /*
1132  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1133  * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1134  * also stands for ->read_oob().
1135  */
1136 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1137 {
1138 	u8 *buf = nand_get_data_buf(chip);
1139 
1140 	marvell_nfc_select_target(chip, chip->cur_cs);
1141 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1142 						   true, page);
1143 }
1144 
1145 /* Hamming write helpers */
1146 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1147 						const u8 *data_buf,
1148 						const u8 *oob_buf, bool raw,
1149 						int page)
1150 {
1151 	const struct nand_sdr_timings *sdr =
1152 		nand_get_sdr_timings(nand_get_interface_config(chip));
1153 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1154 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1155 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1156 	struct marvell_nfc_op nfc_op = {
1157 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1158 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1159 			   NDCB0_CMD1(NAND_CMD_SEQIN) |
1160 			   NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1161 			   NDCB0_DBC,
1162 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1163 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1164 	};
1165 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1166 	int ret;
1167 
1168 	/* NFCv2 needs more information about the operation being executed */
1169 	if (nfc->caps->is_nfcv2)
1170 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1171 
1172 	ret = marvell_nfc_prepare_cmd(chip);
1173 	if (ret)
1174 		return ret;
1175 
1176 	marvell_nfc_send_cmd(chip, &nfc_op);
1177 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1178 				  "WRDREQ while loading FIFO (data)");
1179 	if (ret)
1180 		return ret;
1181 
1182 	/* Write the page then the OOB area */
1183 	if (nfc->use_dma) {
1184 		memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1185 		memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1186 		marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1187 					  lt->ecc_bytes + lt->spare_bytes);
1188 	} else {
1189 		marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1190 		marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1191 	}
1192 
1193 	ret = marvell_nfc_wait_cmdd(chip);
1194 	if (ret)
1195 		return ret;
1196 
1197 	ret = marvell_nfc_wait_op(chip,
1198 				  PSEC_TO_MSEC(sdr->tPROG_max));
1199 	return ret;
1200 }
1201 
1202 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1203 						 const u8 *buf,
1204 						 int oob_required, int page)
1205 {
1206 	marvell_nfc_select_target(chip, chip->cur_cs);
1207 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1208 						    true, page);
1209 }
1210 
1211 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1212 					     const u8 *buf,
1213 					     int oob_required, int page)
1214 {
1215 	int ret;
1216 
1217 	marvell_nfc_select_target(chip, chip->cur_cs);
1218 	marvell_nfc_enable_hw_ecc(chip);
1219 	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1220 						   false, page);
1221 	marvell_nfc_disable_hw_ecc(chip);
1222 
1223 	return ret;
1224 }
1225 
1226 /*
1227  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1228  * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1229  * also stands for ->write_oob().
1230  */
1231 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1232 						int page)
1233 {
1234 	struct mtd_info *mtd = nand_to_mtd(chip);
1235 	u8 *buf = nand_get_data_buf(chip);
1236 
1237 	memset(buf, 0xFF, mtd->writesize);
1238 
1239 	marvell_nfc_select_target(chip, chip->cur_cs);
1240 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1241 						    true, page);
1242 }
1243 
1244 /* BCH read helpers */
1245 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1246 						int oob_required, int page)
1247 {
1248 	struct mtd_info *mtd = nand_to_mtd(chip);
1249 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1250 	u8 *oob = chip->oob_poi;
1251 	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1252 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1253 		lt->last_spare_bytes;
1254 	int data_len = lt->data_bytes;
1255 	int spare_len = lt->spare_bytes;
1256 	int ecc_len = lt->ecc_bytes;
1257 	int chunk;
1258 
1259 	marvell_nfc_select_target(chip, chip->cur_cs);
1260 
1261 	if (oob_required)
1262 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1263 
1264 	nand_read_page_op(chip, page, 0, NULL, 0);
1265 
1266 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1267 		/* Update last chunk length */
1268 		if (chunk >= lt->full_chunk_cnt) {
1269 			data_len = lt->last_data_bytes;
1270 			spare_len = lt->last_spare_bytes;
1271 			ecc_len = lt->last_ecc_bytes;
1272 		}
1273 
1274 		/* Read data bytes*/
1275 		nand_change_read_column_op(chip, chunk * chunk_size,
1276 					   buf + (lt->data_bytes * chunk),
1277 					   data_len, false);
1278 
1279 		/* Read spare bytes */
1280 		nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1281 				  spare_len, false, false);
1282 
1283 		/* Read ECC bytes */
1284 		nand_read_data_op(chip, oob + ecc_offset +
1285 				  (ALIGN(lt->ecc_bytes, 32) * chunk),
1286 				  ecc_len, false, false);
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1293 					      u8 *data, unsigned int data_len,
1294 					      u8 *spare, unsigned int spare_len,
1295 					      int page)
1296 {
1297 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1298 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1299 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1300 	int i, ret;
1301 	struct marvell_nfc_op nfc_op = {
1302 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1303 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1304 			   NDCB0_LEN_OVRD,
1305 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1306 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1307 		.ndcb[3] = data_len + spare_len,
1308 	};
1309 
1310 	ret = marvell_nfc_prepare_cmd(chip);
1311 	if (ret)
1312 		return;
1313 
1314 	if (chunk == 0)
1315 		nfc_op.ndcb[0] |= NDCB0_DBC |
1316 				  NDCB0_CMD1(NAND_CMD_READ0) |
1317 				  NDCB0_CMD2(NAND_CMD_READSTART);
1318 
1319 	/*
1320 	 * Trigger the monolithic read on the first chunk, then naked read on
1321 	 * intermediate chunks and finally a last naked read on the last chunk.
1322 	 */
1323 	if (chunk == 0)
1324 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1325 	else if (chunk < lt->nchunks - 1)
1326 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1327 	else
1328 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1329 
1330 	marvell_nfc_send_cmd(chip, &nfc_op);
1331 
1332 	/*
1333 	 * According to the datasheet, when reading from NDDB
1334 	 * with BCH enabled, after each 32 bytes reads, we
1335 	 * have to make sure that the NDSR.RDDREQ bit is set.
1336 	 *
1337 	 * Drain the FIFO, 8 32-bit reads at a time, and skip
1338 	 * the polling on the last read.
1339 	 *
1340 	 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1341 	 */
1342 	for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1343 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1344 				    "RDDREQ while draining FIFO (data)");
1345 		marvell_nfc_xfer_data_in_pio(nfc, data,
1346 					     FIFO_DEPTH * BCH_SEQ_READS);
1347 		data += FIFO_DEPTH * BCH_SEQ_READS;
1348 	}
1349 
1350 	for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1351 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1352 				    "RDDREQ while draining FIFO (OOB)");
1353 		marvell_nfc_xfer_data_in_pio(nfc, spare,
1354 					     FIFO_DEPTH * BCH_SEQ_READS);
1355 		spare += FIFO_DEPTH * BCH_SEQ_READS;
1356 	}
1357 }
1358 
1359 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1360 					    u8 *buf, int oob_required,
1361 					    int page)
1362 {
1363 	struct mtd_info *mtd = nand_to_mtd(chip);
1364 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1365 	int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1366 	u8 *data = buf, *spare = chip->oob_poi;
1367 	int max_bitflips = 0;
1368 	u32 failure_mask = 0;
1369 	int chunk, ret;
1370 
1371 	marvell_nfc_select_target(chip, chip->cur_cs);
1372 
1373 	/*
1374 	 * With BCH, OOB is not fully used (and thus not read entirely), not
1375 	 * expected bytes could show up at the end of the OOB buffer if not
1376 	 * explicitly erased.
1377 	 */
1378 	if (oob_required)
1379 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1380 
1381 	marvell_nfc_enable_hw_ecc(chip);
1382 
1383 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1384 		/* Update length for the last chunk */
1385 		if (chunk >= lt->full_chunk_cnt) {
1386 			data_len = lt->last_data_bytes;
1387 			spare_len = lt->last_spare_bytes;
1388 		}
1389 
1390 		/* Read the chunk and detect number of bitflips */
1391 		marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1392 						  spare, spare_len, page);
1393 		ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1394 		if (ret)
1395 			failure_mask |= BIT(chunk);
1396 
1397 		data += data_len;
1398 		spare += spare_len;
1399 	}
1400 
1401 	marvell_nfc_disable_hw_ecc(chip);
1402 
1403 	if (!failure_mask)
1404 		return max_bitflips;
1405 
1406 	/*
1407 	 * Please note that dumping the ECC bytes during a normal read with OOB
1408 	 * area would add a significant overhead as ECC bytes are "consumed" by
1409 	 * the controller in normal mode and must be re-read in raw mode. To
1410 	 * avoid dropping the performances, we prefer not to include them. The
1411 	 * user should re-read the page in raw mode if ECC bytes are required.
1412 	 */
1413 
1414 	/*
1415 	 * In case there is any subpage read error, we usually re-read only ECC
1416 	 * bytes in raw mode and check if the whole page is empty. In this case,
1417 	 * it is normal that the ECC check failed and we just ignore the error.
1418 	 *
1419 	 * However, it has been empirically observed that for some layouts (e.g
1420 	 * 2k page, 8b strength per 512B chunk), the controller tries to correct
1421 	 * bits and may create itself bitflips in the erased area. To overcome
1422 	 * this strange behavior, the whole page is re-read in raw mode, not
1423 	 * only the ECC bytes.
1424 	 */
1425 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1426 		int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1427 		int data_off, spare_off, ecc_off;
1428 		int data_len, spare_len, ecc_len;
1429 
1430 		/* No failure reported for this chunk, move to the next one */
1431 		if (!(failure_mask & BIT(chunk)))
1432 			continue;
1433 
1434 		data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1435 					    lt->ecc_bytes);
1436 		spare_off_in_page = data_off_in_page +
1437 			(chunk < lt->full_chunk_cnt ? lt->data_bytes :
1438 						      lt->last_data_bytes);
1439 		ecc_off_in_page = spare_off_in_page +
1440 			(chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1441 						      lt->last_spare_bytes);
1442 
1443 		data_off = chunk * lt->data_bytes;
1444 		spare_off = chunk * lt->spare_bytes;
1445 		ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1446 			  lt->last_spare_bytes +
1447 			  (chunk * (lt->ecc_bytes + 2));
1448 
1449 		data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1450 							lt->last_data_bytes;
1451 		spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1452 							 lt->last_spare_bytes;
1453 		ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1454 						       lt->last_ecc_bytes;
1455 
1456 		/*
1457 		 * Only re-read the ECC bytes, unless we are using the 2k/8b
1458 		 * layout which is buggy in the sense that the ECC engine will
1459 		 * try to correct data bytes anyway, creating bitflips. In this
1460 		 * case, re-read the entire page.
1461 		 */
1462 		if (lt->writesize == 2048 && lt->strength == 8) {
1463 			nand_change_read_column_op(chip, data_off_in_page,
1464 						   buf + data_off, data_len,
1465 						   false);
1466 			nand_change_read_column_op(chip, spare_off_in_page,
1467 						   chip->oob_poi + spare_off, spare_len,
1468 						   false);
1469 		}
1470 
1471 		nand_change_read_column_op(chip, ecc_off_in_page,
1472 					   chip->oob_poi + ecc_off, ecc_len,
1473 					   false);
1474 
1475 		/* Check the entire chunk (data + spare + ecc) for emptyness */
1476 		marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1477 					      chip->oob_poi + spare_off, spare_len,
1478 					      chip->oob_poi + ecc_off, ecc_len,
1479 					      &max_bitflips);
1480 	}
1481 
1482 	return max_bitflips;
1483 }
1484 
1485 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1486 {
1487 	u8 *buf = nand_get_data_buf(chip);
1488 
1489 	return chip->ecc.read_page_raw(chip, buf, true, page);
1490 }
1491 
1492 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1493 {
1494 	u8 *buf = nand_get_data_buf(chip);
1495 
1496 	return chip->ecc.read_page(chip, buf, true, page);
1497 }
1498 
1499 /* BCH write helpers */
1500 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1501 						 const u8 *buf,
1502 						 int oob_required, int page)
1503 {
1504 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1505 	int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1506 	int data_len = lt->data_bytes;
1507 	int spare_len = lt->spare_bytes;
1508 	int ecc_len = lt->ecc_bytes;
1509 	int spare_offset = 0;
1510 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1511 		lt->last_spare_bytes;
1512 	int chunk;
1513 
1514 	marvell_nfc_select_target(chip, chip->cur_cs);
1515 
1516 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1517 
1518 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1519 		if (chunk >= lt->full_chunk_cnt) {
1520 			data_len = lt->last_data_bytes;
1521 			spare_len = lt->last_spare_bytes;
1522 			ecc_len = lt->last_ecc_bytes;
1523 		}
1524 
1525 		/* Point to the column of the next chunk */
1526 		nand_change_write_column_op(chip, chunk * full_chunk_size,
1527 					    NULL, 0, false);
1528 
1529 		/* Write the data */
1530 		nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1531 				   data_len, false);
1532 
1533 		if (!oob_required)
1534 			continue;
1535 
1536 		/* Write the spare bytes */
1537 		if (spare_len)
1538 			nand_write_data_op(chip, chip->oob_poi + spare_offset,
1539 					   spare_len, false);
1540 
1541 		/* Write the ECC bytes */
1542 		if (ecc_len)
1543 			nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1544 					   ecc_len, false);
1545 
1546 		spare_offset += spare_len;
1547 		ecc_offset += ALIGN(ecc_len, 32);
1548 	}
1549 
1550 	return nand_prog_page_end_op(chip);
1551 }
1552 
1553 static int
1554 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1555 				   const u8 *data, unsigned int data_len,
1556 				   const u8 *spare, unsigned int spare_len,
1557 				   int page)
1558 {
1559 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1560 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1561 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1562 	u32 xtype;
1563 	int ret;
1564 	struct marvell_nfc_op nfc_op = {
1565 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1566 		.ndcb[3] = data_len + spare_len,
1567 	};
1568 
1569 	/*
1570 	 * First operation dispatches the CMD_SEQIN command, issue the address
1571 	 * cycles and asks for the first chunk of data.
1572 	 * All operations in the middle (if any) will issue a naked write and
1573 	 * also ask for data.
1574 	 * Last operation (if any) asks for the last chunk of data through a
1575 	 * last naked write.
1576 	 */
1577 	if (chunk == 0) {
1578 		if (lt->nchunks == 1)
1579 			xtype = XTYPE_MONOLITHIC_RW;
1580 		else
1581 			xtype = XTYPE_WRITE_DISPATCH;
1582 
1583 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1584 				  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1585 				  NDCB0_CMD1(NAND_CMD_SEQIN);
1586 		nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1587 		nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1588 	} else if (chunk < lt->nchunks - 1) {
1589 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1590 	} else {
1591 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1592 	}
1593 
1594 	/* Always dispatch the PAGEPROG command on the last chunk */
1595 	if (chunk == lt->nchunks - 1)
1596 		nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1597 
1598 	ret = marvell_nfc_prepare_cmd(chip);
1599 	if (ret)
1600 		return ret;
1601 
1602 	marvell_nfc_send_cmd(chip, &nfc_op);
1603 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1604 				  "WRDREQ while loading FIFO (data)");
1605 	if (ret)
1606 		return ret;
1607 
1608 	/* Transfer the contents */
1609 	iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1610 	iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1611 
1612 	return 0;
1613 }
1614 
1615 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1616 					     const u8 *buf,
1617 					     int oob_required, int page)
1618 {
1619 	const struct nand_sdr_timings *sdr =
1620 		nand_get_sdr_timings(nand_get_interface_config(chip));
1621 	struct mtd_info *mtd = nand_to_mtd(chip);
1622 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1623 	const u8 *data = buf;
1624 	const u8 *spare = chip->oob_poi;
1625 	int data_len = lt->data_bytes;
1626 	int spare_len = lt->spare_bytes;
1627 	int chunk, ret;
1628 
1629 	marvell_nfc_select_target(chip, chip->cur_cs);
1630 
1631 	/* Spare data will be written anyway, so clear it to avoid garbage */
1632 	if (!oob_required)
1633 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1634 
1635 	marvell_nfc_enable_hw_ecc(chip);
1636 
1637 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1638 		if (chunk >= lt->full_chunk_cnt) {
1639 			data_len = lt->last_data_bytes;
1640 			spare_len = lt->last_spare_bytes;
1641 		}
1642 
1643 		marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1644 						   spare, spare_len, page);
1645 		data += data_len;
1646 		spare += spare_len;
1647 
1648 		/*
1649 		 * Waiting only for CMDD or PAGED is not enough, ECC are
1650 		 * partially written. No flag is set once the operation is
1651 		 * really finished but the ND_RUN bit is cleared, so wait for it
1652 		 * before stepping into the next command.
1653 		 */
1654 		marvell_nfc_wait_ndrun(chip);
1655 	}
1656 
1657 	ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
1658 
1659 	marvell_nfc_disable_hw_ecc(chip);
1660 
1661 	if (ret)
1662 		return ret;
1663 
1664 	return 0;
1665 }
1666 
1667 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1668 						int page)
1669 {
1670 	struct mtd_info *mtd = nand_to_mtd(chip);
1671 	u8 *buf = nand_get_data_buf(chip);
1672 
1673 	memset(buf, 0xFF, mtd->writesize);
1674 
1675 	return chip->ecc.write_page_raw(chip, buf, true, page);
1676 }
1677 
1678 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1679 {
1680 	struct mtd_info *mtd = nand_to_mtd(chip);
1681 	u8 *buf = nand_get_data_buf(chip);
1682 
1683 	memset(buf, 0xFF, mtd->writesize);
1684 
1685 	return chip->ecc.write_page(chip, buf, true, page);
1686 }
1687 
1688 /* NAND framework ->exec_op() hooks and related helpers */
1689 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1690 					   const struct nand_subop *subop,
1691 					   struct marvell_nfc_op *nfc_op)
1692 {
1693 	const struct nand_op_instr *instr = NULL;
1694 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1695 	bool first_cmd = true;
1696 	unsigned int op_id;
1697 	int i;
1698 
1699 	/* Reset the input structure as most of its fields will be OR'ed */
1700 	memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1701 
1702 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1703 		unsigned int offset, naddrs;
1704 		const u8 *addrs;
1705 		int len;
1706 
1707 		instr = &subop->instrs[op_id];
1708 
1709 		switch (instr->type) {
1710 		case NAND_OP_CMD_INSTR:
1711 			if (first_cmd)
1712 				nfc_op->ndcb[0] |=
1713 					NDCB0_CMD1(instr->ctx.cmd.opcode);
1714 			else
1715 				nfc_op->ndcb[0] |=
1716 					NDCB0_CMD2(instr->ctx.cmd.opcode) |
1717 					NDCB0_DBC;
1718 
1719 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1720 			first_cmd = false;
1721 			break;
1722 
1723 		case NAND_OP_ADDR_INSTR:
1724 			offset = nand_subop_get_addr_start_off(subop, op_id);
1725 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1726 			addrs = &instr->ctx.addr.addrs[offset];
1727 
1728 			nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1729 
1730 			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1731 				nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1732 
1733 			if (naddrs >= 5)
1734 				nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1735 			if (naddrs >= 6)
1736 				nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1737 			if (naddrs == 7)
1738 				nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1739 
1740 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1741 			break;
1742 
1743 		case NAND_OP_DATA_IN_INSTR:
1744 			nfc_op->data_instr = instr;
1745 			nfc_op->data_instr_idx = op_id;
1746 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1747 			if (nfc->caps->is_nfcv2) {
1748 				nfc_op->ndcb[0] |=
1749 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1750 					NDCB0_LEN_OVRD;
1751 				len = nand_subop_get_data_len(subop, op_id);
1752 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1753 			}
1754 			nfc_op->data_delay_ns = instr->delay_ns;
1755 			break;
1756 
1757 		case NAND_OP_DATA_OUT_INSTR:
1758 			nfc_op->data_instr = instr;
1759 			nfc_op->data_instr_idx = op_id;
1760 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1761 			if (nfc->caps->is_nfcv2) {
1762 				nfc_op->ndcb[0] |=
1763 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1764 					NDCB0_LEN_OVRD;
1765 				len = nand_subop_get_data_len(subop, op_id);
1766 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1767 			}
1768 			nfc_op->data_delay_ns = instr->delay_ns;
1769 			break;
1770 
1771 		case NAND_OP_WAITRDY_INSTR:
1772 			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1773 			nfc_op->rdy_delay_ns = instr->delay_ns;
1774 			break;
1775 		}
1776 	}
1777 }
1778 
1779 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1780 				     const struct nand_subop *subop,
1781 				     struct marvell_nfc_op *nfc_op)
1782 {
1783 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1784 	const struct nand_op_instr *instr = nfc_op->data_instr;
1785 	unsigned int op_id = nfc_op->data_instr_idx;
1786 	unsigned int len = nand_subop_get_data_len(subop, op_id);
1787 	unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1788 	bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1789 	int ret;
1790 
1791 	if (instr->ctx.data.force_8bit)
1792 		marvell_nfc_force_byte_access(chip, true);
1793 
1794 	if (reading) {
1795 		u8 *in = instr->ctx.data.buf.in + offset;
1796 
1797 		ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1798 	} else {
1799 		const u8 *out = instr->ctx.data.buf.out + offset;
1800 
1801 		ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1802 	}
1803 
1804 	if (instr->ctx.data.force_8bit)
1805 		marvell_nfc_force_byte_access(chip, false);
1806 
1807 	return ret;
1808 }
1809 
1810 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1811 					      const struct nand_subop *subop)
1812 {
1813 	struct marvell_nfc_op nfc_op;
1814 	bool reading;
1815 	int ret;
1816 
1817 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1818 	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1819 
1820 	ret = marvell_nfc_prepare_cmd(chip);
1821 	if (ret)
1822 		return ret;
1823 
1824 	marvell_nfc_send_cmd(chip, &nfc_op);
1825 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1826 				  "RDDREQ/WRDREQ while draining raw data");
1827 	if (ret)
1828 		return ret;
1829 
1830 	cond_delay(nfc_op.cle_ale_delay_ns);
1831 
1832 	if (reading) {
1833 		if (nfc_op.rdy_timeout_ms) {
1834 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1835 			if (ret)
1836 				return ret;
1837 		}
1838 
1839 		cond_delay(nfc_op.rdy_delay_ns);
1840 	}
1841 
1842 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1843 	ret = marvell_nfc_wait_cmdd(chip);
1844 	if (ret)
1845 		return ret;
1846 
1847 	cond_delay(nfc_op.data_delay_ns);
1848 
1849 	if (!reading) {
1850 		if (nfc_op.rdy_timeout_ms) {
1851 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1852 			if (ret)
1853 				return ret;
1854 		}
1855 
1856 		cond_delay(nfc_op.rdy_delay_ns);
1857 	}
1858 
1859 	/*
1860 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1861 	 * operation but experience shows that the behavior is buggy when it
1862 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1863 	 */
1864 	if (!reading) {
1865 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1866 
1867 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1868 			       nfc->regs + NDCR);
1869 	}
1870 
1871 	return 0;
1872 }
1873 
1874 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1875 					 const struct nand_subop *subop)
1876 {
1877 	struct marvell_nfc_op nfc_op;
1878 	int ret;
1879 
1880 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1881 
1882 	/*
1883 	 * Naked access are different in that they need to be flagged as naked
1884 	 * by the controller. Reset the controller registers fields that inform
1885 	 * on the type and refill them according to the ongoing operation.
1886 	 */
1887 	nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1888 			    NDCB0_CMD_XTYPE(XTYPE_MASK));
1889 	switch (subop->instrs[0].type) {
1890 	case NAND_OP_CMD_INSTR:
1891 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1892 		break;
1893 	case NAND_OP_ADDR_INSTR:
1894 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1895 		break;
1896 	case NAND_OP_DATA_IN_INSTR:
1897 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1898 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1899 		break;
1900 	case NAND_OP_DATA_OUT_INSTR:
1901 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1902 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1903 		break;
1904 	default:
1905 		/* This should never happen */
1906 		break;
1907 	}
1908 
1909 	ret = marvell_nfc_prepare_cmd(chip);
1910 	if (ret)
1911 		return ret;
1912 
1913 	marvell_nfc_send_cmd(chip, &nfc_op);
1914 
1915 	if (!nfc_op.data_instr) {
1916 		ret = marvell_nfc_wait_cmdd(chip);
1917 		cond_delay(nfc_op.cle_ale_delay_ns);
1918 		return ret;
1919 	}
1920 
1921 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1922 				  "RDDREQ/WRDREQ while draining raw data");
1923 	if (ret)
1924 		return ret;
1925 
1926 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1927 	ret = marvell_nfc_wait_cmdd(chip);
1928 	if (ret)
1929 		return ret;
1930 
1931 	/*
1932 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1933 	 * operation but experience shows that the behavior is buggy when it
1934 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1935 	 */
1936 	if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1937 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1938 
1939 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1940 			       nfc->regs + NDCR);
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1947 					  const struct nand_subop *subop)
1948 {
1949 	struct marvell_nfc_op nfc_op;
1950 	int ret;
1951 
1952 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1953 
1954 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1955 	cond_delay(nfc_op.rdy_delay_ns);
1956 
1957 	return ret;
1958 }
1959 
1960 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1961 					 const struct nand_subop *subop)
1962 {
1963 	struct marvell_nfc_op nfc_op;
1964 	int ret;
1965 
1966 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1967 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1968 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1969 
1970 	ret = marvell_nfc_prepare_cmd(chip);
1971 	if (ret)
1972 		return ret;
1973 
1974 	marvell_nfc_send_cmd(chip, &nfc_op);
1975 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1976 				  "RDDREQ while reading ID");
1977 	if (ret)
1978 		return ret;
1979 
1980 	cond_delay(nfc_op.cle_ale_delay_ns);
1981 
1982 	if (nfc_op.rdy_timeout_ms) {
1983 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1984 		if (ret)
1985 			return ret;
1986 	}
1987 
1988 	cond_delay(nfc_op.rdy_delay_ns);
1989 
1990 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1991 	ret = marvell_nfc_wait_cmdd(chip);
1992 	if (ret)
1993 		return ret;
1994 
1995 	cond_delay(nfc_op.data_delay_ns);
1996 
1997 	return 0;
1998 }
1999 
2000 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
2001 					const struct nand_subop *subop)
2002 {
2003 	struct marvell_nfc_op nfc_op;
2004 	int ret;
2005 
2006 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2007 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
2008 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
2009 
2010 	ret = marvell_nfc_prepare_cmd(chip);
2011 	if (ret)
2012 		return ret;
2013 
2014 	marvell_nfc_send_cmd(chip, &nfc_op);
2015 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
2016 				  "RDDREQ while reading status");
2017 	if (ret)
2018 		return ret;
2019 
2020 	cond_delay(nfc_op.cle_ale_delay_ns);
2021 
2022 	if (nfc_op.rdy_timeout_ms) {
2023 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2024 		if (ret)
2025 			return ret;
2026 	}
2027 
2028 	cond_delay(nfc_op.rdy_delay_ns);
2029 
2030 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2031 	ret = marvell_nfc_wait_cmdd(chip);
2032 	if (ret)
2033 		return ret;
2034 
2035 	cond_delay(nfc_op.data_delay_ns);
2036 
2037 	return 0;
2038 }
2039 
2040 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
2041 					   const struct nand_subop *subop)
2042 {
2043 	struct marvell_nfc_op nfc_op;
2044 	int ret;
2045 
2046 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2047 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
2048 
2049 	ret = marvell_nfc_prepare_cmd(chip);
2050 	if (ret)
2051 		return ret;
2052 
2053 	marvell_nfc_send_cmd(chip, &nfc_op);
2054 	ret = marvell_nfc_wait_cmdd(chip);
2055 	if (ret)
2056 		return ret;
2057 
2058 	cond_delay(nfc_op.cle_ale_delay_ns);
2059 
2060 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2061 	if (ret)
2062 		return ret;
2063 
2064 	cond_delay(nfc_op.rdy_delay_ns);
2065 
2066 	return 0;
2067 }
2068 
2069 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2070 					   const struct nand_subop *subop)
2071 {
2072 	struct marvell_nfc_op nfc_op;
2073 	int ret;
2074 
2075 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2076 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2077 
2078 	ret = marvell_nfc_prepare_cmd(chip);
2079 	if (ret)
2080 		return ret;
2081 
2082 	marvell_nfc_send_cmd(chip, &nfc_op);
2083 	ret = marvell_nfc_wait_cmdd(chip);
2084 	if (ret)
2085 		return ret;
2086 
2087 	cond_delay(nfc_op.cle_ale_delay_ns);
2088 
2089 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2090 	if (ret)
2091 		return ret;
2092 
2093 	cond_delay(nfc_op.rdy_delay_ns);
2094 
2095 	return 0;
2096 }
2097 
2098 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2099 	/* Monolithic reads/writes */
2100 	NAND_OP_PARSER_PATTERN(
2101 		marvell_nfc_monolithic_access_exec,
2102 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2103 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2104 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
2105 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2106 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2107 	NAND_OP_PARSER_PATTERN(
2108 		marvell_nfc_monolithic_access_exec,
2109 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2110 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2111 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2112 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
2113 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2114 	/* Naked commands */
2115 	NAND_OP_PARSER_PATTERN(
2116 		marvell_nfc_naked_access_exec,
2117 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2118 	NAND_OP_PARSER_PATTERN(
2119 		marvell_nfc_naked_access_exec,
2120 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2121 	NAND_OP_PARSER_PATTERN(
2122 		marvell_nfc_naked_access_exec,
2123 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2124 	NAND_OP_PARSER_PATTERN(
2125 		marvell_nfc_naked_access_exec,
2126 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2127 	NAND_OP_PARSER_PATTERN(
2128 		marvell_nfc_naked_waitrdy_exec,
2129 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2130 	);
2131 
2132 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2133 	/* Naked commands not supported, use a function for each pattern */
2134 	NAND_OP_PARSER_PATTERN(
2135 		marvell_nfc_read_id_type_exec,
2136 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2137 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2138 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2139 	NAND_OP_PARSER_PATTERN(
2140 		marvell_nfc_erase_cmd_type_exec,
2141 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2142 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2143 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2144 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2145 	NAND_OP_PARSER_PATTERN(
2146 		marvell_nfc_read_status_exec,
2147 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2148 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2149 	NAND_OP_PARSER_PATTERN(
2150 		marvell_nfc_reset_cmd_type_exec,
2151 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2152 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2153 	NAND_OP_PARSER_PATTERN(
2154 		marvell_nfc_naked_waitrdy_exec,
2155 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2156 	);
2157 
2158 static int marvell_nfc_exec_op(struct nand_chip *chip,
2159 			       const struct nand_operation *op,
2160 			       bool check_only)
2161 {
2162 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2163 
2164 	if (!check_only)
2165 		marvell_nfc_select_target(chip, op->cs);
2166 
2167 	if (nfc->caps->is_nfcv2)
2168 		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2169 					      op, check_only);
2170 	else
2171 		return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2172 					      op, check_only);
2173 }
2174 
2175 /*
2176  * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2177  * usable.
2178  */
2179 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2180 				      struct mtd_oob_region *oobregion)
2181 {
2182 	struct nand_chip *chip = mtd_to_nand(mtd);
2183 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2184 
2185 	if (section)
2186 		return -ERANGE;
2187 
2188 	oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2189 			    lt->last_ecc_bytes;
2190 	oobregion->offset = mtd->oobsize - oobregion->length;
2191 
2192 	return 0;
2193 }
2194 
2195 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2196 				       struct mtd_oob_region *oobregion)
2197 {
2198 	struct nand_chip *chip = mtd_to_nand(mtd);
2199 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2200 
2201 	if (section)
2202 		return -ERANGE;
2203 
2204 	/*
2205 	 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2206 	 * 4KB page / 4bit BCH combination.
2207 	 */
2208 	if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2209 		oobregion->offset = 6;
2210 	else
2211 		oobregion->offset = 2;
2212 
2213 	oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2214 			    lt->last_spare_bytes - oobregion->offset;
2215 
2216 	return 0;
2217 }
2218 
2219 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2220 	.ecc = marvell_nand_ooblayout_ecc,
2221 	.free = marvell_nand_ooblayout_free,
2222 };
2223 
2224 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
2225 					       struct nand_ecc_ctrl *ecc)
2226 {
2227 	struct nand_chip *chip = mtd_to_nand(mtd);
2228 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2229 	const struct marvell_hw_ecc_layout *l;
2230 	int i;
2231 
2232 	if (!nfc->caps->is_nfcv2 &&
2233 	    (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2234 		dev_err(nfc->dev,
2235 			"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2236 			mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2237 		return -ENOTSUPP;
2238 	}
2239 
2240 	to_marvell_nand(chip)->layout = NULL;
2241 	for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2242 		l = &marvell_nfc_layouts[i];
2243 		if (mtd->writesize == l->writesize &&
2244 		    ecc->size == l->chunk && ecc->strength == l->strength) {
2245 			to_marvell_nand(chip)->layout = l;
2246 			break;
2247 		}
2248 	}
2249 
2250 	if (!to_marvell_nand(chip)->layout ||
2251 	    (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2252 		dev_err(nfc->dev,
2253 			"ECC strength %d at page size %d is not supported\n",
2254 			ecc->strength, mtd->writesize);
2255 		return -ENOTSUPP;
2256 	}
2257 
2258 	/* Special care for the layout 2k/8-bit/512B  */
2259 	if (l->writesize == 2048 && l->strength == 8) {
2260 		if (mtd->oobsize < 128) {
2261 			dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2262 			return -ENOTSUPP;
2263 		} else {
2264 			chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2265 		}
2266 	}
2267 
2268 	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2269 	ecc->steps = l->nchunks;
2270 	ecc->size = l->data_bytes;
2271 
2272 	if (ecc->strength == 1) {
2273 		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2274 		ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2275 		ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2276 		ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2277 		ecc->read_oob = ecc->read_oob_raw;
2278 		ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2279 		ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2280 		ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2281 		ecc->write_oob = ecc->write_oob_raw;
2282 	} else {
2283 		chip->ecc.algo = NAND_ECC_ALGO_BCH;
2284 		ecc->strength = 16;
2285 		ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2286 		ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2287 		ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2288 		ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2289 		ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2290 		ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2291 		ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2292 		ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2299 				 struct nand_ecc_ctrl *ecc)
2300 {
2301 	struct nand_chip *chip = mtd_to_nand(mtd);
2302 	const struct nand_ecc_props *requirements =
2303 		nanddev_get_ecc_requirements(&chip->base);
2304 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2305 	int ret;
2306 
2307 	if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2308 	    (!ecc->size || !ecc->strength)) {
2309 		if (requirements->step_size && requirements->strength) {
2310 			ecc->size = requirements->step_size;
2311 			ecc->strength = requirements->strength;
2312 		} else {
2313 			dev_info(nfc->dev,
2314 				 "No minimum ECC strength, using 1b/512B\n");
2315 			ecc->size = 512;
2316 			ecc->strength = 1;
2317 		}
2318 	}
2319 
2320 	switch (ecc->engine_type) {
2321 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
2322 		ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
2323 		if (ret)
2324 			return ret;
2325 		break;
2326 	case NAND_ECC_ENGINE_TYPE_NONE:
2327 	case NAND_ECC_ENGINE_TYPE_SOFT:
2328 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
2329 		if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2330 		    mtd->writesize != SZ_2K) {
2331 			dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2332 				mtd->writesize);
2333 			return -EINVAL;
2334 		}
2335 		break;
2336 	default:
2337 		return -EINVAL;
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2344 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2345 
2346 static struct nand_bbt_descr bbt_main_descr = {
2347 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2348 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2349 	.offs =	8,
2350 	.len = 6,
2351 	.veroffs = 14,
2352 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2353 	.pattern = bbt_pattern
2354 };
2355 
2356 static struct nand_bbt_descr bbt_mirror_descr = {
2357 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2358 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2359 	.offs =	8,
2360 	.len = 6,
2361 	.veroffs = 14,
2362 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2363 	.pattern = bbt_mirror_pattern
2364 };
2365 
2366 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
2367 				       const struct nand_interface_config *conf)
2368 {
2369 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2370 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2371 	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2372 	const struct nand_sdr_timings *sdr;
2373 	struct marvell_nfc_timings nfc_tmg;
2374 	int read_delay;
2375 
2376 	sdr = nand_get_sdr_timings(conf);
2377 	if (IS_ERR(sdr))
2378 		return PTR_ERR(sdr);
2379 
2380 	/*
2381 	 * SDR timings are given in pico-seconds while NFC timings must be
2382 	 * expressed in NAND controller clock cycles, which is half of the
2383 	 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2384 	 * This is not written anywhere in the datasheet but was observed
2385 	 * with an oscilloscope.
2386 	 *
2387 	 * NFC datasheet gives equations from which thoses calculations
2388 	 * are derived, they tend to be slightly more restrictives than the
2389 	 * given core timings and may improve the overall speed.
2390 	 */
2391 	nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2392 	nfc_tmg.tRH = nfc_tmg.tRP;
2393 	nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2394 	nfc_tmg.tWH = nfc_tmg.tWP;
2395 	nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2396 	nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2397 	nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2398 	/*
2399 	 * Read delay is the time of propagation from SoC pins to NFC internal
2400 	 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2401 	 * EDO mode, an additional delay of tRH must be taken into account so
2402 	 * the data is sampled on the falling edge instead of the rising edge.
2403 	 */
2404 	read_delay = sdr->tRC_min >= 30000 ?
2405 		MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2406 
2407 	nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2408 	/*
2409 	 * tWHR and tRHW are supposed to be read to write delays (and vice
2410 	 * versa) but in some cases, ie. when doing a change column, they must
2411 	 * be greater than that to be sure tCCS delay is respected.
2412 	 */
2413 	nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2414 				 period_ns) - 2;
2415 	nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2416 				 period_ns);
2417 
2418 	/*
2419 	 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2420 	 * NFCv1: No WAIT_MODE, tR must be maximal.
2421 	 */
2422 	if (nfc->caps->is_nfcv2) {
2423 		nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2424 	} else {
2425 		nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2426 					 period_ns);
2427 		if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2428 			nfc_tmg.tR = nfc_tmg.tCH - 3;
2429 		else
2430 			nfc_tmg.tR = 0;
2431 	}
2432 
2433 	if (chipnr < 0)
2434 		return 0;
2435 
2436 	marvell_nand->ndtr0 =
2437 		NDTR0_TRP(nfc_tmg.tRP) |
2438 		NDTR0_TRH(nfc_tmg.tRH) |
2439 		NDTR0_ETRP(nfc_tmg.tRP) |
2440 		NDTR0_TWP(nfc_tmg.tWP) |
2441 		NDTR0_TWH(nfc_tmg.tWH) |
2442 		NDTR0_TCS(nfc_tmg.tCS) |
2443 		NDTR0_TCH(nfc_tmg.tCH);
2444 
2445 	marvell_nand->ndtr1 =
2446 		NDTR1_TAR(nfc_tmg.tAR) |
2447 		NDTR1_TWHR(nfc_tmg.tWHR) |
2448 		NDTR1_TR(nfc_tmg.tR);
2449 
2450 	if (nfc->caps->is_nfcv2) {
2451 		marvell_nand->ndtr0 |=
2452 			NDTR0_RD_CNT_DEL(read_delay) |
2453 			NDTR0_SELCNTR |
2454 			NDTR0_TADL(nfc_tmg.tADL);
2455 
2456 		marvell_nand->ndtr1 |=
2457 			NDTR1_TRHW(nfc_tmg.tRHW) |
2458 			NDTR1_WAIT_MODE;
2459 	}
2460 
2461 	/*
2462 	 * Reset nfc->selected_chip so the next command will cause the timing
2463 	 * registers to be updated in marvell_nfc_select_target().
2464 	 */
2465 	nfc->selected_chip = NULL;
2466 
2467 	return 0;
2468 }
2469 
2470 static int marvell_nand_attach_chip(struct nand_chip *chip)
2471 {
2472 	struct mtd_info *mtd = nand_to_mtd(chip);
2473 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2474 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2475 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2476 	int ret;
2477 
2478 	if (pdata && pdata->flash_bbt)
2479 		chip->bbt_options |= NAND_BBT_USE_FLASH;
2480 
2481 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2482 		/*
2483 		 * We'll use a bad block table stored in-flash and don't
2484 		 * allow writing the bad block marker to the flash.
2485 		 */
2486 		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2487 		chip->bbt_td = &bbt_main_descr;
2488 		chip->bbt_md = &bbt_mirror_descr;
2489 	}
2490 
2491 	/* Save the chip-specific fields of NDCR */
2492 	marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2493 	if (chip->options & NAND_BUSWIDTH_16)
2494 		marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2495 
2496 	/*
2497 	 * On small page NANDs, only one cycle is needed to pass the
2498 	 * column address.
2499 	 */
2500 	if (mtd->writesize <= 512) {
2501 		marvell_nand->addr_cyc = 1;
2502 	} else {
2503 		marvell_nand->addr_cyc = 2;
2504 		marvell_nand->ndcr |= NDCR_RA_START;
2505 	}
2506 
2507 	/*
2508 	 * Now add the number of cycles needed to pass the row
2509 	 * address.
2510 	 *
2511 	 * Addressing a chip using CS 2 or 3 should also need the third row
2512 	 * cycle but due to inconsistance in the documentation and lack of
2513 	 * hardware to test this situation, this case is not supported.
2514 	 */
2515 	if (chip->options & NAND_ROW_ADDR_3)
2516 		marvell_nand->addr_cyc += 3;
2517 	else
2518 		marvell_nand->addr_cyc += 2;
2519 
2520 	if (pdata) {
2521 		chip->ecc.size = pdata->ecc_step_size;
2522 		chip->ecc.strength = pdata->ecc_strength;
2523 	}
2524 
2525 	ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2526 	if (ret) {
2527 		dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2528 		return ret;
2529 	}
2530 
2531 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
2532 		/*
2533 		 * Subpage write not available with hardware ECC, prohibit also
2534 		 * subpage read as in userspace subpage access would still be
2535 		 * allowed and subpage write, if used, would lead to numerous
2536 		 * uncorrectable ECC errors.
2537 		 */
2538 		chip->options |= NAND_NO_SUBPAGE_WRITE;
2539 	}
2540 
2541 	if (pdata || nfc->caps->legacy_of_bindings) {
2542 		/*
2543 		 * We keep the MTD name unchanged to avoid breaking platforms
2544 		 * where the MTD cmdline parser is used and the bootloader
2545 		 * has not been updated to use the new naming scheme.
2546 		 */
2547 		mtd->name = "pxa3xx_nand-0";
2548 	} else if (!mtd->name) {
2549 		/*
2550 		 * If the new bindings are used and the bootloader has not been
2551 		 * updated to pass a new mtdparts parameter on the cmdline, you
2552 		 * should define the following property in your NAND node, ie:
2553 		 *
2554 		 *	label = "main-storage";
2555 		 *
2556 		 * This way, mtd->name will be set by the core when
2557 		 * nand_set_flash_node() is called.
2558 		 */
2559 		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2560 					   "%s:nand.%d", dev_name(nfc->dev),
2561 					   marvell_nand->sels[0].cs);
2562 		if (!mtd->name) {
2563 			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2564 			return -ENOMEM;
2565 		}
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static const struct nand_controller_ops marvell_nand_controller_ops = {
2572 	.attach_chip = marvell_nand_attach_chip,
2573 	.exec_op = marvell_nfc_exec_op,
2574 	.setup_interface = marvell_nfc_setup_interface,
2575 };
2576 
2577 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2578 				  struct device_node *np)
2579 {
2580 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2581 	struct marvell_nand_chip *marvell_nand;
2582 	struct mtd_info *mtd;
2583 	struct nand_chip *chip;
2584 	int nsels, ret, i;
2585 	u32 cs, rb;
2586 
2587 	/*
2588 	 * The legacy "num-cs" property indicates the number of CS on the only
2589 	 * chip connected to the controller (legacy bindings does not support
2590 	 * more than one chip). The CS and RB pins are always the #0.
2591 	 *
2592 	 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2593 	 * properties must be filled. For each chip, expressed as a subnode,
2594 	 * "reg" points to the CS lines and "nand-rb" to the RB line.
2595 	 */
2596 	if (pdata || nfc->caps->legacy_of_bindings) {
2597 		nsels = 1;
2598 	} else {
2599 		nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2600 		if (nsels <= 0) {
2601 			dev_err(dev, "missing/invalid reg property\n");
2602 			return -EINVAL;
2603 		}
2604 	}
2605 
2606 	/* Alloc the nand chip structure */
2607 	marvell_nand = devm_kzalloc(dev,
2608 				    struct_size(marvell_nand, sels, nsels),
2609 				    GFP_KERNEL);
2610 	if (!marvell_nand) {
2611 		dev_err(dev, "could not allocate chip structure\n");
2612 		return -ENOMEM;
2613 	}
2614 
2615 	marvell_nand->nsels = nsels;
2616 	marvell_nand->selected_die = -1;
2617 
2618 	for (i = 0; i < nsels; i++) {
2619 		if (pdata || nfc->caps->legacy_of_bindings) {
2620 			/*
2621 			 * Legacy bindings use the CS lines in natural
2622 			 * order (0, 1, ...)
2623 			 */
2624 			cs = i;
2625 		} else {
2626 			/* Retrieve CS id */
2627 			ret = of_property_read_u32_index(np, "reg", i, &cs);
2628 			if (ret) {
2629 				dev_err(dev, "could not retrieve reg property: %d\n",
2630 					ret);
2631 				return ret;
2632 			}
2633 		}
2634 
2635 		if (cs >= nfc->caps->max_cs_nb) {
2636 			dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2637 				cs, nfc->caps->max_cs_nb);
2638 			return -EINVAL;
2639 		}
2640 
2641 		if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2642 			dev_err(dev, "CS %d already assigned\n", cs);
2643 			return -EINVAL;
2644 		}
2645 
2646 		/*
2647 		 * The cs variable represents the chip select id, which must be
2648 		 * converted in bit fields for NDCB0 and NDCB2 to select the
2649 		 * right chip. Unfortunately, due to a lack of information on
2650 		 * the subject and incoherent documentation, the user should not
2651 		 * use CS1 and CS3 at all as asserting them is not supported in
2652 		 * a reliable way (due to multiplexing inside ADDR5 field).
2653 		 */
2654 		marvell_nand->sels[i].cs = cs;
2655 		switch (cs) {
2656 		case 0:
2657 		case 2:
2658 			marvell_nand->sels[i].ndcb0_csel = 0;
2659 			break;
2660 		case 1:
2661 		case 3:
2662 			marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2663 			break;
2664 		default:
2665 			return -EINVAL;
2666 		}
2667 
2668 		/* Retrieve RB id */
2669 		if (pdata || nfc->caps->legacy_of_bindings) {
2670 			/* Legacy bindings always use RB #0 */
2671 			rb = 0;
2672 		} else {
2673 			ret = of_property_read_u32_index(np, "nand-rb", i,
2674 							 &rb);
2675 			if (ret) {
2676 				dev_err(dev,
2677 					"could not retrieve RB property: %d\n",
2678 					ret);
2679 				return ret;
2680 			}
2681 		}
2682 
2683 		if (rb >= nfc->caps->max_rb_nb) {
2684 			dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2685 				rb, nfc->caps->max_rb_nb);
2686 			return -EINVAL;
2687 		}
2688 
2689 		marvell_nand->sels[i].rb = rb;
2690 	}
2691 
2692 	chip = &marvell_nand->chip;
2693 	chip->controller = &nfc->controller;
2694 	nand_set_flash_node(chip, np);
2695 
2696 	if (of_property_read_bool(np, "marvell,nand-keep-config"))
2697 		chip->options |= NAND_KEEP_TIMINGS;
2698 
2699 	mtd = nand_to_mtd(chip);
2700 	mtd->dev.parent = dev;
2701 
2702 	/*
2703 	 * Save a reference value for timing registers before
2704 	 * ->setup_interface() is called.
2705 	 */
2706 	marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2707 	marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2708 
2709 	chip->options |= NAND_BUSWIDTH_AUTO;
2710 
2711 	ret = nand_scan(chip, marvell_nand->nsels);
2712 	if (ret) {
2713 		dev_err(dev, "could not scan the nand chip\n");
2714 		return ret;
2715 	}
2716 
2717 	if (pdata)
2718 		/* Legacy bindings support only one chip */
2719 		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2720 	else
2721 		ret = mtd_device_register(mtd, NULL, 0);
2722 	if (ret) {
2723 		dev_err(dev, "failed to register mtd device: %d\n", ret);
2724 		nand_cleanup(chip);
2725 		return ret;
2726 	}
2727 
2728 	list_add_tail(&marvell_nand->node, &nfc->chips);
2729 
2730 	return 0;
2731 }
2732 
2733 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2734 {
2735 	struct marvell_nand_chip *entry, *temp;
2736 	struct nand_chip *chip;
2737 	int ret;
2738 
2739 	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2740 		chip = &entry->chip;
2741 		ret = mtd_device_unregister(nand_to_mtd(chip));
2742 		WARN_ON(ret);
2743 		nand_cleanup(chip);
2744 		list_del(&entry->node);
2745 	}
2746 }
2747 
2748 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2749 {
2750 	struct device_node *np = dev->of_node;
2751 	struct device_node *nand_np;
2752 	int max_cs = nfc->caps->max_cs_nb;
2753 	int nchips;
2754 	int ret;
2755 
2756 	if (!np)
2757 		nchips = 1;
2758 	else
2759 		nchips = of_get_child_count(np);
2760 
2761 	if (nchips > max_cs) {
2762 		dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2763 			max_cs);
2764 		return -EINVAL;
2765 	}
2766 
2767 	/*
2768 	 * Legacy bindings do not use child nodes to exhibit NAND chip
2769 	 * properties and layout. Instead, NAND properties are mixed with the
2770 	 * controller ones, and partitions are defined as direct subnodes of the
2771 	 * NAND controller node.
2772 	 */
2773 	if (nfc->caps->legacy_of_bindings) {
2774 		ret = marvell_nand_chip_init(dev, nfc, np);
2775 		return ret;
2776 	}
2777 
2778 	for_each_child_of_node(np, nand_np) {
2779 		ret = marvell_nand_chip_init(dev, nfc, nand_np);
2780 		if (ret) {
2781 			of_node_put(nand_np);
2782 			goto cleanup_chips;
2783 		}
2784 	}
2785 
2786 	return 0;
2787 
2788 cleanup_chips:
2789 	marvell_nand_chips_cleanup(nfc);
2790 
2791 	return ret;
2792 }
2793 
2794 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2795 {
2796 	struct platform_device *pdev = container_of(nfc->dev,
2797 						    struct platform_device,
2798 						    dev);
2799 	struct dma_slave_config config = {};
2800 	struct resource *r;
2801 	int ret;
2802 
2803 	if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2804 		dev_warn(nfc->dev,
2805 			 "DMA not enabled in configuration\n");
2806 		return -ENOTSUPP;
2807 	}
2808 
2809 	ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2810 	if (ret)
2811 		return ret;
2812 
2813 	nfc->dma_chan =	dma_request_chan(nfc->dev, "data");
2814 	if (IS_ERR(nfc->dma_chan)) {
2815 		ret = PTR_ERR(nfc->dma_chan);
2816 		nfc->dma_chan = NULL;
2817 		return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
2818 	}
2819 
2820 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2821 	if (!r) {
2822 		ret = -ENXIO;
2823 		goto release_channel;
2824 	}
2825 
2826 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2827 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2828 	config.src_addr = r->start + NDDB;
2829 	config.dst_addr = r->start + NDDB;
2830 	config.src_maxburst = 32;
2831 	config.dst_maxburst = 32;
2832 	ret = dmaengine_slave_config(nfc->dma_chan, &config);
2833 	if (ret < 0) {
2834 		dev_err(nfc->dev, "Failed to configure DMA channel\n");
2835 		goto release_channel;
2836 	}
2837 
2838 	/*
2839 	 * DMA must act on length multiple of 32 and this length may be
2840 	 * bigger than the destination buffer. Use this buffer instead
2841 	 * for DMA transfers and then copy the desired amount of data to
2842 	 * the provided buffer.
2843 	 */
2844 	nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2845 	if (!nfc->dma_buf) {
2846 		ret = -ENOMEM;
2847 		goto release_channel;
2848 	}
2849 
2850 	nfc->use_dma = true;
2851 
2852 	return 0;
2853 
2854 release_channel:
2855 	dma_release_channel(nfc->dma_chan);
2856 	nfc->dma_chan = NULL;
2857 
2858 	return ret;
2859 }
2860 
2861 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2862 {
2863 	/*
2864 	 * ECC operations and interruptions are only enabled when specifically
2865 	 * needed. ECC shall not be activated in the early stages (fails probe).
2866 	 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2867 	 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2868 	 * offset in the read page and this will fail the protection.
2869 	 */
2870 	writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2871 		       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2872 	writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2873 	writel_relaxed(0, nfc->regs + NDECCCTRL);
2874 }
2875 
2876 static int marvell_nfc_init(struct marvell_nfc *nfc)
2877 {
2878 	struct device_node *np = nfc->dev->of_node;
2879 
2880 	/*
2881 	 * Some SoCs like A7k/A8k need to enable manually the NAND
2882 	 * controller, gated clocks and reset bits to avoid being bootloader
2883 	 * dependent. This is done through the use of the System Functions
2884 	 * registers.
2885 	 */
2886 	if (nfc->caps->need_system_controller) {
2887 		struct regmap *sysctrl_base =
2888 			syscon_regmap_lookup_by_phandle(np,
2889 							"marvell,system-controller");
2890 
2891 		if (IS_ERR(sysctrl_base))
2892 			return PTR_ERR(sysctrl_base);
2893 
2894 		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2895 			     GENCONF_SOC_DEVICE_MUX_NFC_EN |
2896 			     GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2897 			     GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2898 			     GENCONF_SOC_DEVICE_MUX_NFC_INT_EN |
2899 			     GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN);
2900 
2901 		regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2902 				   GENCONF_CLK_GATING_CTRL_ND_GATE,
2903 				   GENCONF_CLK_GATING_CTRL_ND_GATE);
2904 	}
2905 
2906 	/* Configure the DMA if appropriate */
2907 	if (!nfc->caps->is_nfcv2)
2908 		marvell_nfc_init_dma(nfc);
2909 
2910 	marvell_nfc_reset(nfc);
2911 
2912 	return 0;
2913 }
2914 
2915 static int marvell_nfc_probe(struct platform_device *pdev)
2916 {
2917 	struct device *dev = &pdev->dev;
2918 	struct marvell_nfc *nfc;
2919 	int ret;
2920 	int irq;
2921 
2922 	nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2923 			   GFP_KERNEL);
2924 	if (!nfc)
2925 		return -ENOMEM;
2926 
2927 	nfc->dev = dev;
2928 	nand_controller_init(&nfc->controller);
2929 	nfc->controller.ops = &marvell_nand_controller_ops;
2930 	INIT_LIST_HEAD(&nfc->chips);
2931 
2932 	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
2933 	if (IS_ERR(nfc->regs))
2934 		return PTR_ERR(nfc->regs);
2935 
2936 	irq = platform_get_irq(pdev, 0);
2937 	if (irq < 0)
2938 		return irq;
2939 
2940 	nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2941 
2942 	/* Managed the legacy case (when the first clock was not named) */
2943 	if (nfc->core_clk == ERR_PTR(-ENOENT))
2944 		nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2945 
2946 	if (IS_ERR(nfc->core_clk))
2947 		return PTR_ERR(nfc->core_clk);
2948 
2949 	ret = clk_prepare_enable(nfc->core_clk);
2950 	if (ret)
2951 		return ret;
2952 
2953 	nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2954 	if (IS_ERR(nfc->reg_clk)) {
2955 		if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2956 			ret = PTR_ERR(nfc->reg_clk);
2957 			goto unprepare_core_clk;
2958 		}
2959 
2960 		nfc->reg_clk = NULL;
2961 	}
2962 
2963 	ret = clk_prepare_enable(nfc->reg_clk);
2964 	if (ret)
2965 		goto unprepare_core_clk;
2966 
2967 	marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2968 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2969 	ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2970 			       0, "marvell-nfc", nfc);
2971 	if (ret)
2972 		goto unprepare_reg_clk;
2973 
2974 	/* Get NAND controller capabilities */
2975 	if (pdev->id_entry)
2976 		nfc->caps = (void *)pdev->id_entry->driver_data;
2977 	else
2978 		nfc->caps = of_device_get_match_data(&pdev->dev);
2979 
2980 	if (!nfc->caps) {
2981 		dev_err(dev, "Could not retrieve NFC caps\n");
2982 		ret = -EINVAL;
2983 		goto unprepare_reg_clk;
2984 	}
2985 
2986 	/* Init the controller and then probe the chips */
2987 	ret = marvell_nfc_init(nfc);
2988 	if (ret)
2989 		goto unprepare_reg_clk;
2990 
2991 	platform_set_drvdata(pdev, nfc);
2992 
2993 	ret = marvell_nand_chips_init(dev, nfc);
2994 	if (ret)
2995 		goto release_dma;
2996 
2997 	return 0;
2998 
2999 release_dma:
3000 	if (nfc->use_dma)
3001 		dma_release_channel(nfc->dma_chan);
3002 unprepare_reg_clk:
3003 	clk_disable_unprepare(nfc->reg_clk);
3004 unprepare_core_clk:
3005 	clk_disable_unprepare(nfc->core_clk);
3006 
3007 	return ret;
3008 }
3009 
3010 static void marvell_nfc_remove(struct platform_device *pdev)
3011 {
3012 	struct marvell_nfc *nfc = platform_get_drvdata(pdev);
3013 
3014 	marvell_nand_chips_cleanup(nfc);
3015 
3016 	if (nfc->use_dma) {
3017 		dmaengine_terminate_all(nfc->dma_chan);
3018 		dma_release_channel(nfc->dma_chan);
3019 	}
3020 
3021 	clk_disable_unprepare(nfc->reg_clk);
3022 	clk_disable_unprepare(nfc->core_clk);
3023 }
3024 
3025 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
3026 {
3027 	struct marvell_nfc *nfc = dev_get_drvdata(dev);
3028 	struct marvell_nand_chip *chip;
3029 
3030 	list_for_each_entry(chip, &nfc->chips, node)
3031 		marvell_nfc_wait_ndrun(&chip->chip);
3032 
3033 	clk_disable_unprepare(nfc->reg_clk);
3034 	clk_disable_unprepare(nfc->core_clk);
3035 
3036 	return 0;
3037 }
3038 
3039 static int __maybe_unused marvell_nfc_resume(struct device *dev)
3040 {
3041 	struct marvell_nfc *nfc = dev_get_drvdata(dev);
3042 	int ret;
3043 
3044 	ret = clk_prepare_enable(nfc->core_clk);
3045 	if (ret < 0)
3046 		return ret;
3047 
3048 	ret = clk_prepare_enable(nfc->reg_clk);
3049 	if (ret < 0) {
3050 		clk_disable_unprepare(nfc->core_clk);
3051 		return ret;
3052 	}
3053 
3054 	/*
3055 	 * Reset nfc->selected_chip so the next command will cause the timing
3056 	 * registers to be restored in marvell_nfc_select_target().
3057 	 */
3058 	nfc->selected_chip = NULL;
3059 
3060 	/* Reset registers that have lost their contents */
3061 	marvell_nfc_reset(nfc);
3062 
3063 	return 0;
3064 }
3065 
3066 static const struct dev_pm_ops marvell_nfc_pm_ops = {
3067 	SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
3068 };
3069 
3070 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
3071 	.max_cs_nb = 4,
3072 	.max_rb_nb = 2,
3073 	.need_system_controller = true,
3074 	.is_nfcv2 = true,
3075 };
3076 
3077 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3078 	.max_cs_nb = 4,
3079 	.max_rb_nb = 2,
3080 	.is_nfcv2 = true,
3081 };
3082 
3083 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3084 	.max_cs_nb = 2,
3085 	.max_rb_nb = 1,
3086 	.use_dma = true,
3087 };
3088 
3089 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3090 	.max_cs_nb = 4,
3091 	.max_rb_nb = 2,
3092 	.need_system_controller = true,
3093 	.legacy_of_bindings = true,
3094 	.is_nfcv2 = true,
3095 };
3096 
3097 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3098 	.max_cs_nb = 4,
3099 	.max_rb_nb = 2,
3100 	.legacy_of_bindings = true,
3101 	.is_nfcv2 = true,
3102 };
3103 
3104 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3105 	.max_cs_nb = 2,
3106 	.max_rb_nb = 1,
3107 	.legacy_of_bindings = true,
3108 	.use_dma = true,
3109 };
3110 
3111 static const struct platform_device_id marvell_nfc_platform_ids[] = {
3112 	{
3113 		.name = "pxa3xx-nand",
3114 		.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3115 	},
3116 	{ /* sentinel */ },
3117 };
3118 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3119 
3120 static const struct of_device_id marvell_nfc_of_ids[] = {
3121 	{
3122 		.compatible = "marvell,armada-8k-nand-controller",
3123 		.data = &marvell_armada_8k_nfc_caps,
3124 	},
3125 	{
3126 		.compatible = "marvell,armada370-nand-controller",
3127 		.data = &marvell_armada370_nfc_caps,
3128 	},
3129 	{
3130 		.compatible = "marvell,pxa3xx-nand-controller",
3131 		.data = &marvell_pxa3xx_nfc_caps,
3132 	},
3133 	/* Support for old/deprecated bindings: */
3134 	{
3135 		.compatible = "marvell,armada-8k-nand",
3136 		.data = &marvell_armada_8k_nfc_legacy_caps,
3137 	},
3138 	{
3139 		.compatible = "marvell,armada370-nand",
3140 		.data = &marvell_armada370_nfc_legacy_caps,
3141 	},
3142 	{
3143 		.compatible = "marvell,pxa3xx-nand",
3144 		.data = &marvell_pxa3xx_nfc_legacy_caps,
3145 	},
3146 	{ /* sentinel */ },
3147 };
3148 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3149 
3150 static struct platform_driver marvell_nfc_driver = {
3151 	.driver	= {
3152 		.name		= "marvell-nfc",
3153 		.of_match_table = marvell_nfc_of_ids,
3154 		.pm		= &marvell_nfc_pm_ops,
3155 	},
3156 	.id_table = marvell_nfc_platform_ids,
3157 	.probe = marvell_nfc_probe,
3158 	.remove_new = marvell_nfc_remove,
3159 };
3160 module_platform_driver(marvell_nfc_driver);
3161 
3162 MODULE_LICENSE("GPL");
3163 MODULE_DESCRIPTION("Marvell NAND controller driver");
3164