1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 * 9 * This NAND controller driver handles two versions of the hardware, 10 * one is called NFCv1 and is available on PXA SoCs and the other is 11 * called NFCv2 and is available on Armada SoCs. 12 * 13 * The main visible difference is that NFCv1 only has Hamming ECC 14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA 15 * is not used with NFCv2. 16 * 17 * The ECC layouts are depicted in details in Marvell AN-379, but here 18 * is a brief description. 19 * 20 * When using Hamming, the data is split in 512B chunks (either 1, 2 21 * or 4) and each chunk will have its own ECC "digest" of 6B at the 22 * beginning of the OOB area and eventually the remaining free OOB 23 * bytes (also called "spare" bytes in the driver). This engine 24 * corrects up to 1 bit per chunk and detects reliably an error if 25 * there are at most 2 bitflips. Here is the page layout used by the 26 * controller when Hamming is chosen: 27 * 28 * +-------------------------------------------------------------+ 29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | 30 * +-------------------------------------------------------------+ 31 * 32 * When using the BCH engine, there are N identical (data + free OOB + 33 * ECC) sections and potentially an extra one to deal with 34 * configurations where the chosen (data + free OOB + ECC) sizes do 35 * not align with the page (data + OOB) size. ECC bytes are always 36 * 30B per ECC chunk. Here is the page layout used by the controller 37 * when BCH is chosen: 38 * 39 * +----------------------------------------- 40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ... 41 * +----------------------------------------- 42 * 43 * ------------------------------------------- 44 * ... | Data N | Free OOB bytes N | ECC N | 45 * ------------------------------------------- 46 * 47 * --------------------------------------------+ 48 * Last Data | Last Free OOB bytes | Last ECC | 49 * --------------------------------------------+ 50 * 51 * In both cases, the layout seen by the user is always: all data 52 * first, then all free OOB bytes and finally all ECC bytes. With BCH, 53 * ECC bytes are 30B long and are padded with 0xFF to align on 32 54 * bytes. 55 * 56 * The controller has certain limitations that are handled by the 57 * driver: 58 * - It can only read 2k at a time. To overcome this limitation, the 59 * driver issues data cycles on the bus, without issuing new 60 * CMD + ADDR cycles. The Marvell term is "naked" operations. 61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 62 * bits. What can be tuned is the ECC block size as long as it 63 * stays between 512B and 2kiB. It's usually chosen based on the 64 * chip ECC requirements. For instance, using 2kiB ECC chunks 65 * provides 4b/512B correctability. 66 * - The controller will always treat data bytes, free OOB bytes 67 * and ECC bytes in that order, no matter what the real layout is 68 * (which is usually all data then all OOB bytes). The 69 * marvell_nfc_layouts array below contains the currently 70 * supported layouts. 71 * - Because of these weird layouts, the Bad Block Markers can be 72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM 73 * option must be set to prevent scanning/writing bad block 74 * markers. 75 */ 76 77 #include <linux/module.h> 78 #include <linux/clk.h> 79 #include <linux/mtd/rawnand.h> 80 #include <linux/of_platform.h> 81 #include <linux/iopoll.h> 82 #include <linux/interrupt.h> 83 #include <linux/slab.h> 84 #include <linux/mfd/syscon.h> 85 #include <linux/regmap.h> 86 #include <asm/unaligned.h> 87 88 #include <linux/dmaengine.h> 89 #include <linux/dma-mapping.h> 90 #include <linux/dma/pxa-dma.h> 91 #include <linux/platform_data/mtd-nand-pxa3xx.h> 92 93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 94 #define FIFO_DEPTH 8 95 #define FIFO_REP(x) (x / sizeof(u32)) 96 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 97 /* NFC does not support transfers of larger chunks at a time */ 98 #define MAX_CHUNK_SIZE 2112 99 /* NFCv1 cannot read more that 7 bytes of ID */ 100 #define NFCV1_READID_LEN 7 101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 102 #define POLL_PERIOD 0 103 #define POLL_TIMEOUT 100000 104 /* Interrupt maximum wait period in ms */ 105 #define IRQ_TIMEOUT 1000 106 /* Latency in clock cycles between SoC pins and NFC logic */ 107 #define MIN_RD_DEL_CNT 3 108 /* Maximum number of contiguous address cycles */ 109 #define MAX_ADDRESS_CYC_NFCV1 5 110 #define MAX_ADDRESS_CYC_NFCV2 7 111 /* System control registers/bits to enable the NAND controller on some SoCs */ 112 #define GENCONF_SOC_DEVICE_MUX 0x208 113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 117 #define GENCONF_CLK_GATING_CTRL 0x220 118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 119 #define GENCONF_ND_CLK_CTRL 0x700 120 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 121 122 /* NAND controller data flash control register */ 123 #define NDCR 0x00 124 #define NDCR_ALL_INT GENMASK(11, 0) 125 #define NDCR_CS1_CMDDM BIT(7) 126 #define NDCR_CS0_CMDDM BIT(8) 127 #define NDCR_RDYM BIT(11) 128 #define NDCR_ND_ARB_EN BIT(12) 129 #define NDCR_RA_START BIT(15) 130 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 131 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 132 #define NDCR_DWIDTH_M BIT(26) 133 #define NDCR_DWIDTH_C BIT(27) 134 #define NDCR_ND_RUN BIT(28) 135 #define NDCR_DMA_EN BIT(29) 136 #define NDCR_ECC_EN BIT(30) 137 #define NDCR_SPARE_EN BIT(31) 138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 139 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 140 141 /* NAND interface timing parameter 0 register */ 142 #define NDTR0 0x04 143 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 144 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 145 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 146 #define NDTR0_SEL_NRE_EDGE BIT(7) 147 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 148 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 149 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 150 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 151 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 152 #define NDTR0_SELCNTR BIT(26) 153 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 154 155 /* NAND interface timing parameter 1 register */ 156 #define NDTR1 0x0C 157 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 158 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 159 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 160 #define NDTR1_PRESCALE BIT(14) 161 #define NDTR1_WAIT_MODE BIT(15) 162 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 163 164 /* NAND controller status register */ 165 #define NDSR 0x14 166 #define NDSR_WRCMDREQ BIT(0) 167 #define NDSR_RDDREQ BIT(1) 168 #define NDSR_WRDREQ BIT(2) 169 #define NDSR_CORERR BIT(3) 170 #define NDSR_UNCERR BIT(4) 171 #define NDSR_CMDD(cs) BIT(8 - cs) 172 #define NDSR_RDY(rb) BIT(11 + rb) 173 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 174 175 /* NAND ECC control register */ 176 #define NDECCCTRL 0x28 177 #define NDECCCTRL_BCH_EN BIT(0) 178 179 /* NAND controller data buffer register */ 180 #define NDDB 0x40 181 182 /* NAND controller command buffer 0 register */ 183 #define NDCB0 0x48 184 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 185 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 186 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 188 #define NDCB0_DBC BIT(19) 189 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 190 #define NDCB0_CSEL BIT(24) 191 #define NDCB0_RDY_BYP BIT(27) 192 #define NDCB0_LEN_OVRD BIT(28) 193 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 194 195 /* NAND controller command buffer 1 register */ 196 #define NDCB1 0x4C 197 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 198 #define NDCB1_ADDRS_PAGE(x) (x << 16) 199 200 /* NAND controller command buffer 2 register */ 201 #define NDCB2 0x50 202 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 203 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 204 205 /* NAND controller command buffer 3 register */ 206 #define NDCB3 0x54 207 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 208 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 209 210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 211 #define TYPE_READ 0 212 #define TYPE_WRITE 1 213 #define TYPE_ERASE 2 214 #define TYPE_READ_ID 3 215 #define TYPE_STATUS 4 216 #define TYPE_RESET 5 217 #define TYPE_NAKED_CMD 6 218 #define TYPE_NAKED_ADDR 7 219 #define TYPE_MASK 7 220 #define XTYPE_MONOLITHIC_RW 0 221 #define XTYPE_LAST_NAKED_RW 1 222 #define XTYPE_FINAL_COMMAND 3 223 #define XTYPE_READ 4 224 #define XTYPE_WRITE_DISPATCH 4 225 #define XTYPE_NAKED_RW 5 226 #define XTYPE_COMMAND_DISPATCH 6 227 #define XTYPE_MASK 7 228 229 /** 230 * Marvell ECC engine works differently than the others, in order to limit the 231 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 232 * per subpage, and depending on a the desired strength needed by the NAND chip, 233 * a particular layout mixing data/spare/ecc is defined, with a possible last 234 * chunk smaller that the others. 235 * 236 * @writesize: Full page size on which the layout applies 237 * @chunk: Desired ECC chunk size on which the layout applies 238 * @strength: Desired ECC strength (per chunk size bytes) on which the 239 * layout applies 240 * @nchunks: Total number of chunks 241 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 242 * repetitions of the pattern: 243 * (data_bytes + spare_bytes + ecc_bytes). 244 * @data_bytes: Number of data bytes per chunk 245 * @spare_bytes: Number of spare bytes per chunk 246 * @ecc_bytes: Number of ecc bytes per chunk 247 * @last_data_bytes: Number of data bytes in the last chunk 248 * @last_spare_bytes: Number of spare bytes in the last chunk 249 * @last_ecc_bytes: Number of ecc bytes in the last chunk 250 */ 251 struct marvell_hw_ecc_layout { 252 /* Constraints */ 253 int writesize; 254 int chunk; 255 int strength; 256 /* Corresponding layout */ 257 int nchunks; 258 int full_chunk_cnt; 259 int data_bytes; 260 int spare_bytes; 261 int ecc_bytes; 262 int last_data_bytes; 263 int last_spare_bytes; 264 int last_ecc_bytes; 265 }; 266 267 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 268 { \ 269 .writesize = ws, \ 270 .chunk = dc, \ 271 .strength = ds, \ 272 .nchunks = nc, \ 273 .full_chunk_cnt = fcc, \ 274 .data_bytes = db, \ 275 .spare_bytes = sb, \ 276 .ecc_bytes = eb, \ 277 .last_data_bytes = ldb, \ 278 .last_spare_bytes = lsb, \ 279 .last_ecc_bytes = leb, \ 280 } 281 282 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 283 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 284 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 285 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 286 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 287 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), 288 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 289 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 290 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), 291 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), 292 }; 293 294 /** 295 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 296 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 297 * The datasheet describes the logic with an error: ADDR5 field is once 298 * declared at the beginning of NDCB2, and another time at its end. Because the 299 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 300 * to use the last bit of this field instead of the first ones. 301 * 302 * @cs: Wanted CE lane. 303 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 304 * selecting the wanted CE lane. This is set once when 305 * the Device Tree is probed. 306 * @rb: Ready/Busy pin for the flash chip 307 */ 308 struct marvell_nand_chip_sel { 309 unsigned int cs; 310 u32 ndcb0_csel; 311 unsigned int rb; 312 }; 313 314 /** 315 * NAND chip structure: stores NAND chip device related information 316 * 317 * @chip: Base NAND chip structure 318 * @node: Used to store NAND chips into a list 319 * @layout NAND layout when using hardware ECC 320 * @ndcr: Controller register value for this NAND chip 321 * @ndtr0: Timing registers 0 value for this NAND chip 322 * @ndtr1: Timing registers 1 value for this NAND chip 323 * @selected_die: Current active CS 324 * @nsels: Number of CS lines required by the NAND chip 325 * @sels: Array of CS lines descriptions 326 */ 327 struct marvell_nand_chip { 328 struct nand_chip chip; 329 struct list_head node; 330 const struct marvell_hw_ecc_layout *layout; 331 u32 ndcr; 332 u32 ndtr0; 333 u32 ndtr1; 334 int addr_cyc; 335 int selected_die; 336 unsigned int nsels; 337 struct marvell_nand_chip_sel sels[0]; 338 }; 339 340 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 341 { 342 return container_of(chip, struct marvell_nand_chip, chip); 343 } 344 345 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 346 *nand) 347 { 348 return &nand->sels[nand->selected_die]; 349 } 350 351 /** 352 * NAND controller capabilities for distinction between compatible strings 353 * 354 * @max_cs_nb: Number of Chip Select lines available 355 * @max_rb_nb: Number of Ready/Busy lines available 356 * @need_system_controller: Indicates if the SoC needs to have access to the 357 * system controller (ie. to enable the NAND controller) 358 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 359 * fashion way 360 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 361 * BCH error detection and correction algorithm, 362 * NDCB3 register has been added 363 * @use_dma: Use dma for data transfers 364 */ 365 struct marvell_nfc_caps { 366 unsigned int max_cs_nb; 367 unsigned int max_rb_nb; 368 bool need_system_controller; 369 bool legacy_of_bindings; 370 bool is_nfcv2; 371 bool use_dma; 372 }; 373 374 /** 375 * NAND controller structure: stores Marvell NAND controller information 376 * 377 * @controller: Base controller structure 378 * @dev: Parent device (used to print error messages) 379 * @regs: NAND controller registers 380 * @core_clk: Core clock 381 * @reg_clk: Regiters clock 382 * @complete: Completion object to wait for NAND controller events 383 * @assigned_cs: Bitmask describing already assigned CS lines 384 * @chips: List containing all the NAND chips attached to 385 * this NAND controller 386 * @caps: NAND controller capabilities for each compatible string 387 * @dma_chan: DMA channel (NFCv1 only) 388 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 389 */ 390 struct marvell_nfc { 391 struct nand_controller controller; 392 struct device *dev; 393 void __iomem *regs; 394 struct clk *core_clk; 395 struct clk *reg_clk; 396 struct completion complete; 397 unsigned long assigned_cs; 398 struct list_head chips; 399 struct nand_chip *selected_chip; 400 const struct marvell_nfc_caps *caps; 401 402 /* DMA (NFCv1 only) */ 403 bool use_dma; 404 struct dma_chan *dma_chan; 405 u8 *dma_buf; 406 }; 407 408 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 409 { 410 return container_of(ctrl, struct marvell_nfc, controller); 411 } 412 413 /** 414 * NAND controller timings expressed in NAND Controller clock cycles 415 * 416 * @tRP: ND_nRE pulse width 417 * @tRH: ND_nRE high duration 418 * @tWP: ND_nWE pulse time 419 * @tWH: ND_nWE high duration 420 * @tCS: Enable signal setup time 421 * @tCH: Enable signal hold time 422 * @tADL: Address to write data delay 423 * @tAR: ND_ALE low to ND_nRE low delay 424 * @tWHR: ND_nWE high to ND_nRE low for status read 425 * @tRHW: ND_nRE high duration, read to write delay 426 * @tR: ND_nWE high to ND_nRE low for read 427 */ 428 struct marvell_nfc_timings { 429 /* NDTR0 fields */ 430 unsigned int tRP; 431 unsigned int tRH; 432 unsigned int tWP; 433 unsigned int tWH; 434 unsigned int tCS; 435 unsigned int tCH; 436 unsigned int tADL; 437 /* NDTR1 fields */ 438 unsigned int tAR; 439 unsigned int tWHR; 440 unsigned int tRHW; 441 unsigned int tR; 442 }; 443 444 /** 445 * Derives a duration in numbers of clock cycles. 446 * 447 * @ps: Duration in pico-seconds 448 * @period_ns: Clock period in nano-seconds 449 * 450 * Convert the duration in nano-seconds, then divide by the period and 451 * return the number of clock periods. 452 */ 453 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 454 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 455 period_ns)) 456 457 /** 458 * NAND driver structure filled during the parsing of the ->exec_op() subop 459 * subset of instructions. 460 * 461 * @ndcb: Array of values written to NDCBx registers 462 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 463 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 464 * @rdy_delay_ns: Optional delay after waiting for the RB pin 465 * @data_delay_ns: Optional delay after the data xfer 466 * @data_instr_idx: Index of the data instruction in the subop 467 * @data_instr: Pointer to the data instruction in the subop 468 */ 469 struct marvell_nfc_op { 470 u32 ndcb[4]; 471 unsigned int cle_ale_delay_ns; 472 unsigned int rdy_timeout_ms; 473 unsigned int rdy_delay_ns; 474 unsigned int data_delay_ns; 475 unsigned int data_instr_idx; 476 const struct nand_op_instr *data_instr; 477 }; 478 479 /* 480 * Internal helper to conditionnally apply a delay (from the above structure, 481 * most of the time). 482 */ 483 static void cond_delay(unsigned int ns) 484 { 485 if (!ns) 486 return; 487 488 if (ns < 10000) 489 ndelay(ns); 490 else 491 udelay(DIV_ROUND_UP(ns, 1000)); 492 } 493 494 /* 495 * The controller has many flags that could generate interrupts, most of them 496 * are disabled and polling is used. For the very slow signals, using interrupts 497 * may relax the CPU charge. 498 */ 499 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 500 { 501 u32 reg; 502 503 /* Writing 1 disables the interrupt */ 504 reg = readl_relaxed(nfc->regs + NDCR); 505 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 506 } 507 508 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 509 { 510 u32 reg; 511 512 /* Writing 0 enables the interrupt */ 513 reg = readl_relaxed(nfc->regs + NDCR); 514 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 515 } 516 517 static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 518 { 519 writel_relaxed(int_mask, nfc->regs + NDSR); 520 } 521 522 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 523 bool force_8bit) 524 { 525 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 526 u32 ndcr; 527 528 /* 529 * Callers of this function do not verify if the NAND is using a 16-bit 530 * an 8-bit bus for normal operations, so we need to take care of that 531 * here by leaving the configuration unchanged if the NAND does not have 532 * the NAND_BUSWIDTH_16 flag set. 533 */ 534 if (!(chip->options & NAND_BUSWIDTH_16)) 535 return; 536 537 ndcr = readl_relaxed(nfc->regs + NDCR); 538 539 if (force_8bit) 540 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 541 else 542 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 543 544 writel_relaxed(ndcr, nfc->regs + NDCR); 545 } 546 547 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 548 { 549 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 550 u32 val; 551 int ret; 552 553 /* 554 * The command is being processed, wait for the ND_RUN bit to be 555 * cleared by the NFC. If not, we must clear it by hand. 556 */ 557 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 558 (val & NDCR_ND_RUN) == 0, 559 POLL_PERIOD, POLL_TIMEOUT); 560 if (ret) { 561 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 562 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 563 nfc->regs + NDCR); 564 return ret; 565 } 566 567 return 0; 568 } 569 570 /* 571 * Any time a command has to be sent to the controller, the following sequence 572 * has to be followed: 573 * - call marvell_nfc_prepare_cmd() 574 * -> activate the ND_RUN bit that will kind of 'start a job' 575 * -> wait the signal indicating the NFC is waiting for a command 576 * - send the command (cmd and address cycles) 577 * - enventually send or receive the data 578 * - call marvell_nfc_end_cmd() with the corresponding flag 579 * -> wait the flag to be triggered or cancel the job with a timeout 580 * 581 * The following helpers are here to factorize the code a bit so that 582 * specialized functions responsible for executing the actual NAND 583 * operations do not have to replicate the same code blocks. 584 */ 585 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 586 { 587 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 588 u32 ndcr, val; 589 int ret; 590 591 /* Poll ND_RUN and clear NDSR before issuing any command */ 592 ret = marvell_nfc_wait_ndrun(chip); 593 if (ret) { 594 dev_err(nfc->dev, "Last operation did not succeed\n"); 595 return ret; 596 } 597 598 ndcr = readl_relaxed(nfc->regs + NDCR); 599 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 600 601 /* Assert ND_RUN bit and wait the NFC to be ready */ 602 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 603 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 604 val & NDSR_WRCMDREQ, 605 POLL_PERIOD, POLL_TIMEOUT); 606 if (ret) { 607 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 608 return -ETIMEDOUT; 609 } 610 611 /* Command may be written, clear WRCMDREQ status bit */ 612 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 613 614 return 0; 615 } 616 617 static void marvell_nfc_send_cmd(struct nand_chip *chip, 618 struct marvell_nfc_op *nfc_op) 619 { 620 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 621 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 622 623 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 624 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 625 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 626 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 627 628 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 629 nfc->regs + NDCB0); 630 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 631 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 632 633 /* 634 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 635 * fields are used (only available on NFCv2). 636 */ 637 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 638 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 639 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 640 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 641 } 642 } 643 644 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 645 const char *label) 646 { 647 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 648 u32 val; 649 int ret; 650 651 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 652 val & flag, 653 POLL_PERIOD, POLL_TIMEOUT); 654 655 if (ret) { 656 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 657 label, val); 658 if (nfc->dma_chan) 659 dmaengine_terminate_all(nfc->dma_chan); 660 return ret; 661 } 662 663 /* 664 * DMA function uses this helper to poll on CMDD bits without wanting 665 * them to be cleared. 666 */ 667 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 668 return 0; 669 670 writel_relaxed(flag, nfc->regs + NDSR); 671 672 return 0; 673 } 674 675 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 676 { 677 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 678 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 679 680 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 681 } 682 683 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 684 { 685 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 686 int ret; 687 688 /* Timeout is expressed in ms */ 689 if (!timeout_ms) 690 timeout_ms = IRQ_TIMEOUT; 691 692 init_completion(&nfc->complete); 693 694 marvell_nfc_enable_int(nfc, NDCR_RDYM); 695 ret = wait_for_completion_timeout(&nfc->complete, 696 msecs_to_jiffies(timeout_ms)); 697 marvell_nfc_disable_int(nfc, NDCR_RDYM); 698 marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 699 if (!ret) { 700 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 701 return -ETIMEDOUT; 702 } 703 704 return 0; 705 } 706 707 static void marvell_nfc_select_chip(struct nand_chip *chip, int die_nr) 708 { 709 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 710 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 711 u32 ndcr_generic; 712 713 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 714 return; 715 716 if (die_nr < 0 || die_nr >= marvell_nand->nsels) { 717 nfc->selected_chip = NULL; 718 marvell_nand->selected_die = -1; 719 return; 720 } 721 722 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 723 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 724 725 /* 726 * Reset the NDCR register to a clean state for this particular chip, 727 * also clear ND_RUN bit. 728 */ 729 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 730 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 731 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 732 733 /* Also reset the interrupt status register */ 734 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 735 736 nfc->selected_chip = chip; 737 marvell_nand->selected_die = die_nr; 738 } 739 740 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 741 { 742 struct marvell_nfc *nfc = dev_id; 743 u32 st = readl_relaxed(nfc->regs + NDSR); 744 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 745 746 /* 747 * RDY interrupt mask is one bit in NDCR while there are two status 748 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 749 */ 750 if (st & NDSR_RDY(1)) 751 st |= NDSR_RDY(0); 752 753 if (!(st & ien)) 754 return IRQ_NONE; 755 756 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 757 758 if (st & (NDSR_RDY(0) | NDSR_RDY(1))) 759 complete(&nfc->complete); 760 761 return IRQ_HANDLED; 762 } 763 764 /* HW ECC related functions */ 765 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 766 { 767 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 768 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 769 770 if (!(ndcr & NDCR_ECC_EN)) { 771 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 772 773 /* 774 * When enabling BCH, set threshold to 0 to always know the 775 * number of corrected bitflips. 776 */ 777 if (chip->ecc.algo == NAND_ECC_BCH) 778 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 779 } 780 } 781 782 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 783 { 784 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 785 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 786 787 if (ndcr & NDCR_ECC_EN) { 788 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 789 if (chip->ecc.algo == NAND_ECC_BCH) 790 writel_relaxed(0, nfc->regs + NDECCCTRL); 791 } 792 } 793 794 /* DMA related helpers */ 795 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 796 { 797 u32 reg; 798 799 reg = readl_relaxed(nfc->regs + NDCR); 800 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 801 } 802 803 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 804 { 805 u32 reg; 806 807 reg = readl_relaxed(nfc->regs + NDCR); 808 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 809 } 810 811 /* Read/write PIO/DMA accessors */ 812 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 813 enum dma_data_direction direction, 814 unsigned int len) 815 { 816 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 817 struct dma_async_tx_descriptor *tx; 818 struct scatterlist sg; 819 dma_cookie_t cookie; 820 int ret; 821 822 marvell_nfc_enable_dma(nfc); 823 /* Prepare the DMA transfer */ 824 sg_init_one(&sg, nfc->dma_buf, dma_len); 825 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 826 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 827 direction == DMA_FROM_DEVICE ? 828 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 829 DMA_PREP_INTERRUPT); 830 if (!tx) { 831 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 832 return -ENXIO; 833 } 834 835 /* Do the task and wait for it to finish */ 836 cookie = dmaengine_submit(tx); 837 ret = dma_submit_error(cookie); 838 if (ret) 839 return -EIO; 840 841 dma_async_issue_pending(nfc->dma_chan); 842 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 843 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 844 marvell_nfc_disable_dma(nfc); 845 if (ret) { 846 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 847 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 848 dmaengine_terminate_all(nfc->dma_chan); 849 return -ETIMEDOUT; 850 } 851 852 return 0; 853 } 854 855 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 856 unsigned int len) 857 { 858 unsigned int last_len = len % FIFO_DEPTH; 859 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 860 int i; 861 862 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 863 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 864 865 if (last_len) { 866 u8 tmp_buf[FIFO_DEPTH]; 867 868 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 869 memcpy(in + last_full_offset, tmp_buf, last_len); 870 } 871 872 return 0; 873 } 874 875 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 876 unsigned int len) 877 { 878 unsigned int last_len = len % FIFO_DEPTH; 879 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 880 int i; 881 882 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 883 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 884 885 if (last_len) { 886 u8 tmp_buf[FIFO_DEPTH]; 887 888 memcpy(tmp_buf, out + last_full_offset, last_len); 889 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 890 } 891 892 return 0; 893 } 894 895 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 896 u8 *data, int data_len, 897 u8 *spare, int spare_len, 898 u8 *ecc, int ecc_len, 899 unsigned int *max_bitflips) 900 { 901 struct mtd_info *mtd = nand_to_mtd(chip); 902 int bf; 903 904 /* 905 * Blank pages (all 0xFF) that have not been written may be recognized 906 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 907 * check if the entire page (with ECC bytes) is actually blank or not. 908 */ 909 if (!data) 910 data_len = 0; 911 if (!spare) 912 spare_len = 0; 913 if (!ecc) 914 ecc_len = 0; 915 916 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 917 spare, spare_len, chip->ecc.strength); 918 if (bf < 0) { 919 mtd->ecc_stats.failed++; 920 return; 921 } 922 923 /* Update the stats and max_bitflips */ 924 mtd->ecc_stats.corrected += bf; 925 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 926 } 927 928 /* 929 * Check a chunk is correct or not according to hardware ECC engine. 930 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 931 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 932 * value indicating that a check on the emptyness of the subpage must be 933 * performed before declaring the subpage corrupted. 934 */ 935 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip, 936 unsigned int *max_bitflips) 937 { 938 struct mtd_info *mtd = nand_to_mtd(chip); 939 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 940 int bf = 0; 941 u32 ndsr; 942 943 ndsr = readl_relaxed(nfc->regs + NDSR); 944 945 /* Check uncorrectable error flag */ 946 if (ndsr & NDSR_UNCERR) { 947 writel_relaxed(ndsr, nfc->regs + NDSR); 948 949 /* 950 * Do not increment ->ecc_stats.failed now, instead, return a 951 * non-zero value to indicate that this chunk was apparently 952 * bad, and it should be check to see if it empty or not. If 953 * the chunk (with ECC bytes) is not declared empty, the calling 954 * function must increment the failure count. 955 */ 956 return -EBADMSG; 957 } 958 959 /* Check correctable error flag */ 960 if (ndsr & NDSR_CORERR) { 961 writel_relaxed(ndsr, nfc->regs + NDSR); 962 963 if (chip->ecc.algo == NAND_ECC_BCH) 964 bf = NDSR_ERRCNT(ndsr); 965 else 966 bf = 1; 967 } 968 969 /* Update the stats and max_bitflips */ 970 mtd->ecc_stats.corrected += bf; 971 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 972 973 return 0; 974 } 975 976 /* Hamming read helpers */ 977 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 978 u8 *data_buf, u8 *oob_buf, 979 bool raw, int page) 980 { 981 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 982 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 983 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 984 struct marvell_nfc_op nfc_op = { 985 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 986 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 987 NDCB0_DBC | 988 NDCB0_CMD1(NAND_CMD_READ0) | 989 NDCB0_CMD2(NAND_CMD_READSTART), 990 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 991 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 992 }; 993 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 994 int ret; 995 996 /* NFCv2 needs more information about the operation being executed */ 997 if (nfc->caps->is_nfcv2) 998 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 999 1000 ret = marvell_nfc_prepare_cmd(chip); 1001 if (ret) 1002 return ret; 1003 1004 marvell_nfc_send_cmd(chip, &nfc_op); 1005 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1006 "RDDREQ while draining FIFO (data/oob)"); 1007 if (ret) 1008 return ret; 1009 1010 /* 1011 * Read the page then the OOB area. Unlike what is shown in current 1012 * documentation, spare bytes are protected by the ECC engine, and must 1013 * be at the beginning of the OOB area or running this driver on legacy 1014 * systems will prevent the discovery of the BBM/BBT. 1015 */ 1016 if (nfc->use_dma) { 1017 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 1018 lt->data_bytes + oob_bytes); 1019 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 1020 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 1021 } else { 1022 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 1023 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 1024 } 1025 1026 ret = marvell_nfc_wait_cmdd(chip); 1027 1028 return ret; 1029 } 1030 1031 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, 1032 int oob_required, int page) 1033 { 1034 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1035 true, page); 1036 } 1037 1038 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, 1039 int oob_required, int page) 1040 { 1041 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1042 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1043 int max_bitflips = 0, ret; 1044 u8 *raw_buf; 1045 1046 marvell_nfc_enable_hw_ecc(chip); 1047 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 1048 page); 1049 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 1050 marvell_nfc_disable_hw_ecc(chip); 1051 1052 if (!ret) 1053 return max_bitflips; 1054 1055 /* 1056 * When ECC failures are detected, check if the full page has been 1057 * written or not. Ignore the failure if it is actually empty. 1058 */ 1059 raw_buf = kmalloc(full_sz, GFP_KERNEL); 1060 if (!raw_buf) 1061 return -ENOMEM; 1062 1063 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1064 lt->data_bytes, true, page); 1065 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1066 &max_bitflips); 1067 kfree(raw_buf); 1068 1069 return max_bitflips; 1070 } 1071 1072 /* 1073 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1074 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1075 * also stands for ->read_oob(). 1076 */ 1077 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) 1078 { 1079 /* Invalidate page cache */ 1080 chip->pagebuf = -1; 1081 1082 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf, 1083 chip->oob_poi, true, page); 1084 } 1085 1086 /* Hamming write helpers */ 1087 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1088 const u8 *data_buf, 1089 const u8 *oob_buf, bool raw, 1090 int page) 1091 { 1092 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1093 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1094 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1095 struct marvell_nfc_op nfc_op = { 1096 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1097 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1098 NDCB0_CMD1(NAND_CMD_SEQIN) | 1099 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1100 NDCB0_DBC, 1101 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1102 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1103 }; 1104 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1105 int ret; 1106 1107 /* NFCv2 needs more information about the operation being executed */ 1108 if (nfc->caps->is_nfcv2) 1109 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1110 1111 ret = marvell_nfc_prepare_cmd(chip); 1112 if (ret) 1113 return ret; 1114 1115 marvell_nfc_send_cmd(chip, &nfc_op); 1116 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1117 "WRDREQ while loading FIFO (data)"); 1118 if (ret) 1119 return ret; 1120 1121 /* Write the page then the OOB area */ 1122 if (nfc->use_dma) { 1123 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1124 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1125 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1126 lt->ecc_bytes + lt->spare_bytes); 1127 } else { 1128 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1129 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1130 } 1131 1132 ret = marvell_nfc_wait_cmdd(chip); 1133 if (ret) 1134 return ret; 1135 1136 ret = marvell_nfc_wait_op(chip, 1137 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); 1138 return ret; 1139 } 1140 1141 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, 1142 const u8 *buf, 1143 int oob_required, int page) 1144 { 1145 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1146 true, page); 1147 } 1148 1149 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, 1150 const u8 *buf, 1151 int oob_required, int page) 1152 { 1153 int ret; 1154 1155 marvell_nfc_enable_hw_ecc(chip); 1156 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1157 false, page); 1158 marvell_nfc_disable_hw_ecc(chip); 1159 1160 return ret; 1161 } 1162 1163 /* 1164 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1165 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1166 * also stands for ->write_oob(). 1167 */ 1168 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, 1169 int page) 1170 { 1171 struct mtd_info *mtd = nand_to_mtd(chip); 1172 1173 /* Invalidate page cache */ 1174 chip->pagebuf = -1; 1175 1176 memset(chip->data_buf, 0xFF, mtd->writesize); 1177 1178 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf, 1179 chip->oob_poi, true, page); 1180 } 1181 1182 /* BCH read helpers */ 1183 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, 1184 int oob_required, int page) 1185 { 1186 struct mtd_info *mtd = nand_to_mtd(chip); 1187 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1188 u8 *oob = chip->oob_poi; 1189 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1190 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1191 lt->last_spare_bytes; 1192 int data_len = lt->data_bytes; 1193 int spare_len = lt->spare_bytes; 1194 int ecc_len = lt->ecc_bytes; 1195 int chunk; 1196 1197 if (oob_required) 1198 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1199 1200 nand_read_page_op(chip, page, 0, NULL, 0); 1201 1202 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1203 /* Update last chunk length */ 1204 if (chunk >= lt->full_chunk_cnt) { 1205 data_len = lt->last_data_bytes; 1206 spare_len = lt->last_spare_bytes; 1207 ecc_len = lt->last_ecc_bytes; 1208 } 1209 1210 /* Read data bytes*/ 1211 nand_change_read_column_op(chip, chunk * chunk_size, 1212 buf + (lt->data_bytes * chunk), 1213 data_len, false); 1214 1215 /* Read spare bytes */ 1216 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1217 spare_len, false); 1218 1219 /* Read ECC bytes */ 1220 nand_read_data_op(chip, oob + ecc_offset + 1221 (ALIGN(lt->ecc_bytes, 32) * chunk), 1222 ecc_len, false); 1223 } 1224 1225 return 0; 1226 } 1227 1228 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1229 u8 *data, unsigned int data_len, 1230 u8 *spare, unsigned int spare_len, 1231 int page) 1232 { 1233 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1234 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1235 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1236 int i, ret; 1237 struct marvell_nfc_op nfc_op = { 1238 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1239 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1240 NDCB0_LEN_OVRD, 1241 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1242 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1243 .ndcb[3] = data_len + spare_len, 1244 }; 1245 1246 ret = marvell_nfc_prepare_cmd(chip); 1247 if (ret) 1248 return; 1249 1250 if (chunk == 0) 1251 nfc_op.ndcb[0] |= NDCB0_DBC | 1252 NDCB0_CMD1(NAND_CMD_READ0) | 1253 NDCB0_CMD2(NAND_CMD_READSTART); 1254 1255 /* 1256 * Trigger the monolithic read on the first chunk, then naked read on 1257 * intermediate chunks and finally a last naked read on the last chunk. 1258 */ 1259 if (chunk == 0) 1260 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1261 else if (chunk < lt->nchunks - 1) 1262 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1263 else 1264 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1265 1266 marvell_nfc_send_cmd(chip, &nfc_op); 1267 1268 /* 1269 * According to the datasheet, when reading from NDDB 1270 * with BCH enabled, after each 32 bytes reads, we 1271 * have to make sure that the NDSR.RDDREQ bit is set. 1272 * 1273 * Drain the FIFO, 8 32-bit reads at a time, and skip 1274 * the polling on the last read. 1275 * 1276 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1277 */ 1278 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1279 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1280 "RDDREQ while draining FIFO (data)"); 1281 marvell_nfc_xfer_data_in_pio(nfc, data, 1282 FIFO_DEPTH * BCH_SEQ_READS); 1283 data += FIFO_DEPTH * BCH_SEQ_READS; 1284 } 1285 1286 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1287 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1288 "RDDREQ while draining FIFO (OOB)"); 1289 marvell_nfc_xfer_data_in_pio(nfc, spare, 1290 FIFO_DEPTH * BCH_SEQ_READS); 1291 spare += FIFO_DEPTH * BCH_SEQ_READS; 1292 } 1293 } 1294 1295 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, 1296 u8 *buf, int oob_required, 1297 int page) 1298 { 1299 struct mtd_info *mtd = nand_to_mtd(chip); 1300 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1301 int data_len = lt->data_bytes, spare_len = lt->spare_bytes; 1302 u8 *data = buf, *spare = chip->oob_poi; 1303 int max_bitflips = 0; 1304 u32 failure_mask = 0; 1305 int chunk, ret; 1306 1307 /* 1308 * With BCH, OOB is not fully used (and thus not read entirely), not 1309 * expected bytes could show up at the end of the OOB buffer if not 1310 * explicitly erased. 1311 */ 1312 if (oob_required) 1313 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1314 1315 marvell_nfc_enable_hw_ecc(chip); 1316 1317 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1318 /* Update length for the last chunk */ 1319 if (chunk >= lt->full_chunk_cnt) { 1320 data_len = lt->last_data_bytes; 1321 spare_len = lt->last_spare_bytes; 1322 } 1323 1324 /* Read the chunk and detect number of bitflips */ 1325 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1326 spare, spare_len, page); 1327 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 1328 if (ret) 1329 failure_mask |= BIT(chunk); 1330 1331 data += data_len; 1332 spare += spare_len; 1333 } 1334 1335 marvell_nfc_disable_hw_ecc(chip); 1336 1337 if (!failure_mask) 1338 return max_bitflips; 1339 1340 /* 1341 * Please note that dumping the ECC bytes during a normal read with OOB 1342 * area would add a significant overhead as ECC bytes are "consumed" by 1343 * the controller in normal mode and must be re-read in raw mode. To 1344 * avoid dropping the performances, we prefer not to include them. The 1345 * user should re-read the page in raw mode if ECC bytes are required. 1346 */ 1347 1348 /* 1349 * In case there is any subpage read error reported by ->correct(), we 1350 * usually re-read only ECC bytes in raw mode and check if the whole 1351 * page is empty. In this case, it is normal that the ECC check failed 1352 * and we just ignore the error. 1353 * 1354 * However, it has been empirically observed that for some layouts (e.g 1355 * 2k page, 8b strength per 512B chunk), the controller tries to correct 1356 * bits and may create itself bitflips in the erased area. To overcome 1357 * this strange behavior, the whole page is re-read in raw mode, not 1358 * only the ECC bytes. 1359 */ 1360 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1361 int data_off_in_page, spare_off_in_page, ecc_off_in_page; 1362 int data_off, spare_off, ecc_off; 1363 int data_len, spare_len, ecc_len; 1364 1365 /* No failure reported for this chunk, move to the next one */ 1366 if (!(failure_mask & BIT(chunk))) 1367 continue; 1368 1369 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + 1370 lt->ecc_bytes); 1371 spare_off_in_page = data_off_in_page + 1372 (chunk < lt->full_chunk_cnt ? lt->data_bytes : 1373 lt->last_data_bytes); 1374 ecc_off_in_page = spare_off_in_page + 1375 (chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1376 lt->last_spare_bytes); 1377 1378 data_off = chunk * lt->data_bytes; 1379 spare_off = chunk * lt->spare_bytes; 1380 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + 1381 lt->last_spare_bytes + 1382 (chunk * (lt->ecc_bytes + 2)); 1383 1384 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : 1385 lt->last_data_bytes; 1386 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1387 lt->last_spare_bytes; 1388 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : 1389 lt->last_ecc_bytes; 1390 1391 /* 1392 * Only re-read the ECC bytes, unless we are using the 2k/8b 1393 * layout which is buggy in the sense that the ECC engine will 1394 * try to correct data bytes anyway, creating bitflips. In this 1395 * case, re-read the entire page. 1396 */ 1397 if (lt->writesize == 2048 && lt->strength == 8) { 1398 nand_change_read_column_op(chip, data_off_in_page, 1399 buf + data_off, data_len, 1400 false); 1401 nand_change_read_column_op(chip, spare_off_in_page, 1402 chip->oob_poi + spare_off, spare_len, 1403 false); 1404 } 1405 1406 nand_change_read_column_op(chip, ecc_off_in_page, 1407 chip->oob_poi + ecc_off, ecc_len, 1408 false); 1409 1410 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1411 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, 1412 chip->oob_poi + spare_off, spare_len, 1413 chip->oob_poi + ecc_off, ecc_len, 1414 &max_bitflips); 1415 } 1416 1417 return max_bitflips; 1418 } 1419 1420 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) 1421 { 1422 /* Invalidate page cache */ 1423 chip->pagebuf = -1; 1424 1425 return chip->ecc.read_page_raw(chip, chip->data_buf, true, page); 1426 } 1427 1428 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) 1429 { 1430 /* Invalidate page cache */ 1431 chip->pagebuf = -1; 1432 1433 return chip->ecc.read_page(chip, chip->data_buf, true, page); 1434 } 1435 1436 /* BCH write helpers */ 1437 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, 1438 const u8 *buf, 1439 int oob_required, int page) 1440 { 1441 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1442 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1443 int data_len = lt->data_bytes; 1444 int spare_len = lt->spare_bytes; 1445 int ecc_len = lt->ecc_bytes; 1446 int spare_offset = 0; 1447 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1448 lt->last_spare_bytes; 1449 int chunk; 1450 1451 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1452 1453 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1454 if (chunk >= lt->full_chunk_cnt) { 1455 data_len = lt->last_data_bytes; 1456 spare_len = lt->last_spare_bytes; 1457 ecc_len = lt->last_ecc_bytes; 1458 } 1459 1460 /* Point to the column of the next chunk */ 1461 nand_change_write_column_op(chip, chunk * full_chunk_size, 1462 NULL, 0, false); 1463 1464 /* Write the data */ 1465 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1466 data_len, false); 1467 1468 if (!oob_required) 1469 continue; 1470 1471 /* Write the spare bytes */ 1472 if (spare_len) 1473 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1474 spare_len, false); 1475 1476 /* Write the ECC bytes */ 1477 if (ecc_len) 1478 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1479 ecc_len, false); 1480 1481 spare_offset += spare_len; 1482 ecc_offset += ALIGN(ecc_len, 32); 1483 } 1484 1485 return nand_prog_page_end_op(chip); 1486 } 1487 1488 static int 1489 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1490 const u8 *data, unsigned int data_len, 1491 const u8 *spare, unsigned int spare_len, 1492 int page) 1493 { 1494 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1495 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1496 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1497 u32 xtype; 1498 int ret; 1499 struct marvell_nfc_op nfc_op = { 1500 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1501 .ndcb[3] = data_len + spare_len, 1502 }; 1503 1504 /* 1505 * First operation dispatches the CMD_SEQIN command, issue the address 1506 * cycles and asks for the first chunk of data. 1507 * All operations in the middle (if any) will issue a naked write and 1508 * also ask for data. 1509 * Last operation (if any) asks for the last chunk of data through a 1510 * last naked write. 1511 */ 1512 if (chunk == 0) { 1513 if (lt->nchunks == 1) 1514 xtype = XTYPE_MONOLITHIC_RW; 1515 else 1516 xtype = XTYPE_WRITE_DISPATCH; 1517 1518 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1519 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1520 NDCB0_CMD1(NAND_CMD_SEQIN); 1521 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1522 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1523 } else if (chunk < lt->nchunks - 1) { 1524 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1525 } else { 1526 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1527 } 1528 1529 /* Always dispatch the PAGEPROG command on the last chunk */ 1530 if (chunk == lt->nchunks - 1) 1531 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1532 1533 ret = marvell_nfc_prepare_cmd(chip); 1534 if (ret) 1535 return ret; 1536 1537 marvell_nfc_send_cmd(chip, &nfc_op); 1538 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1539 "WRDREQ while loading FIFO (data)"); 1540 if (ret) 1541 return ret; 1542 1543 /* Transfer the contents */ 1544 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1545 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1546 1547 return 0; 1548 } 1549 1550 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, 1551 const u8 *buf, 1552 int oob_required, int page) 1553 { 1554 struct mtd_info *mtd = nand_to_mtd(chip); 1555 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1556 const u8 *data = buf; 1557 const u8 *spare = chip->oob_poi; 1558 int data_len = lt->data_bytes; 1559 int spare_len = lt->spare_bytes; 1560 int chunk, ret; 1561 1562 /* Spare data will be written anyway, so clear it to avoid garbage */ 1563 if (!oob_required) 1564 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1565 1566 marvell_nfc_enable_hw_ecc(chip); 1567 1568 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1569 if (chunk >= lt->full_chunk_cnt) { 1570 data_len = lt->last_data_bytes; 1571 spare_len = lt->last_spare_bytes; 1572 } 1573 1574 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1575 spare, spare_len, page); 1576 data += data_len; 1577 spare += spare_len; 1578 1579 /* 1580 * Waiting only for CMDD or PAGED is not enough, ECC are 1581 * partially written. No flag is set once the operation is 1582 * really finished but the ND_RUN bit is cleared, so wait for it 1583 * before stepping into the next command. 1584 */ 1585 marvell_nfc_wait_ndrun(chip); 1586 } 1587 1588 ret = marvell_nfc_wait_op(chip, 1589 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); 1590 1591 marvell_nfc_disable_hw_ecc(chip); 1592 1593 if (ret) 1594 return ret; 1595 1596 return 0; 1597 } 1598 1599 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, 1600 int page) 1601 { 1602 struct mtd_info *mtd = nand_to_mtd(chip); 1603 1604 /* Invalidate page cache */ 1605 chip->pagebuf = -1; 1606 1607 memset(chip->data_buf, 0xFF, mtd->writesize); 1608 1609 return chip->ecc.write_page_raw(chip, chip->data_buf, true, page); 1610 } 1611 1612 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) 1613 { 1614 struct mtd_info *mtd = nand_to_mtd(chip); 1615 1616 /* Invalidate page cache */ 1617 chip->pagebuf = -1; 1618 1619 memset(chip->data_buf, 0xFF, mtd->writesize); 1620 1621 return chip->ecc.write_page(chip, chip->data_buf, true, page); 1622 } 1623 1624 /* NAND framework ->exec_op() hooks and related helpers */ 1625 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1626 const struct nand_subop *subop, 1627 struct marvell_nfc_op *nfc_op) 1628 { 1629 const struct nand_op_instr *instr = NULL; 1630 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1631 bool first_cmd = true; 1632 unsigned int op_id; 1633 int i; 1634 1635 /* Reset the input structure as most of its fields will be OR'ed */ 1636 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1637 1638 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1639 unsigned int offset, naddrs; 1640 const u8 *addrs; 1641 int len; 1642 1643 instr = &subop->instrs[op_id]; 1644 1645 switch (instr->type) { 1646 case NAND_OP_CMD_INSTR: 1647 if (first_cmd) 1648 nfc_op->ndcb[0] |= 1649 NDCB0_CMD1(instr->ctx.cmd.opcode); 1650 else 1651 nfc_op->ndcb[0] |= 1652 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1653 NDCB0_DBC; 1654 1655 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1656 first_cmd = false; 1657 break; 1658 1659 case NAND_OP_ADDR_INSTR: 1660 offset = nand_subop_get_addr_start_off(subop, op_id); 1661 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1662 addrs = &instr->ctx.addr.addrs[offset]; 1663 1664 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1665 1666 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1667 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1668 1669 if (naddrs >= 5) 1670 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1671 if (naddrs >= 6) 1672 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1673 if (naddrs == 7) 1674 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1675 1676 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1677 break; 1678 1679 case NAND_OP_DATA_IN_INSTR: 1680 nfc_op->data_instr = instr; 1681 nfc_op->data_instr_idx = op_id; 1682 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1683 if (nfc->caps->is_nfcv2) { 1684 nfc_op->ndcb[0] |= 1685 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1686 NDCB0_LEN_OVRD; 1687 len = nand_subop_get_data_len(subop, op_id); 1688 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1689 } 1690 nfc_op->data_delay_ns = instr->delay_ns; 1691 break; 1692 1693 case NAND_OP_DATA_OUT_INSTR: 1694 nfc_op->data_instr = instr; 1695 nfc_op->data_instr_idx = op_id; 1696 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1697 if (nfc->caps->is_nfcv2) { 1698 nfc_op->ndcb[0] |= 1699 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1700 NDCB0_LEN_OVRD; 1701 len = nand_subop_get_data_len(subop, op_id); 1702 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1703 } 1704 nfc_op->data_delay_ns = instr->delay_ns; 1705 break; 1706 1707 case NAND_OP_WAITRDY_INSTR: 1708 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1709 nfc_op->rdy_delay_ns = instr->delay_ns; 1710 break; 1711 } 1712 } 1713 } 1714 1715 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1716 const struct nand_subop *subop, 1717 struct marvell_nfc_op *nfc_op) 1718 { 1719 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1720 const struct nand_op_instr *instr = nfc_op->data_instr; 1721 unsigned int op_id = nfc_op->data_instr_idx; 1722 unsigned int len = nand_subop_get_data_len(subop, op_id); 1723 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1724 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1725 int ret; 1726 1727 if (instr->ctx.data.force_8bit) 1728 marvell_nfc_force_byte_access(chip, true); 1729 1730 if (reading) { 1731 u8 *in = instr->ctx.data.buf.in + offset; 1732 1733 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1734 } else { 1735 const u8 *out = instr->ctx.data.buf.out + offset; 1736 1737 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1738 } 1739 1740 if (instr->ctx.data.force_8bit) 1741 marvell_nfc_force_byte_access(chip, false); 1742 1743 return ret; 1744 } 1745 1746 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1747 const struct nand_subop *subop) 1748 { 1749 struct marvell_nfc_op nfc_op; 1750 bool reading; 1751 int ret; 1752 1753 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1754 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1755 1756 ret = marvell_nfc_prepare_cmd(chip); 1757 if (ret) 1758 return ret; 1759 1760 marvell_nfc_send_cmd(chip, &nfc_op); 1761 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1762 "RDDREQ/WRDREQ while draining raw data"); 1763 if (ret) 1764 return ret; 1765 1766 cond_delay(nfc_op.cle_ale_delay_ns); 1767 1768 if (reading) { 1769 if (nfc_op.rdy_timeout_ms) { 1770 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1771 if (ret) 1772 return ret; 1773 } 1774 1775 cond_delay(nfc_op.rdy_delay_ns); 1776 } 1777 1778 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1779 ret = marvell_nfc_wait_cmdd(chip); 1780 if (ret) 1781 return ret; 1782 1783 cond_delay(nfc_op.data_delay_ns); 1784 1785 if (!reading) { 1786 if (nfc_op.rdy_timeout_ms) { 1787 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1788 if (ret) 1789 return ret; 1790 } 1791 1792 cond_delay(nfc_op.rdy_delay_ns); 1793 } 1794 1795 /* 1796 * NDCR ND_RUN bit should be cleared automatically at the end of each 1797 * operation but experience shows that the behavior is buggy when it 1798 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1799 */ 1800 if (!reading) { 1801 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1802 1803 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1804 nfc->regs + NDCR); 1805 } 1806 1807 return 0; 1808 } 1809 1810 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1811 const struct nand_subop *subop) 1812 { 1813 struct marvell_nfc_op nfc_op; 1814 int ret; 1815 1816 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1817 1818 /* 1819 * Naked access are different in that they need to be flagged as naked 1820 * by the controller. Reset the controller registers fields that inform 1821 * on the type and refill them according to the ongoing operation. 1822 */ 1823 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1824 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1825 switch (subop->instrs[0].type) { 1826 case NAND_OP_CMD_INSTR: 1827 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1828 break; 1829 case NAND_OP_ADDR_INSTR: 1830 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1831 break; 1832 case NAND_OP_DATA_IN_INSTR: 1833 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1834 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1835 break; 1836 case NAND_OP_DATA_OUT_INSTR: 1837 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1838 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1839 break; 1840 default: 1841 /* This should never happen */ 1842 break; 1843 } 1844 1845 ret = marvell_nfc_prepare_cmd(chip); 1846 if (ret) 1847 return ret; 1848 1849 marvell_nfc_send_cmd(chip, &nfc_op); 1850 1851 if (!nfc_op.data_instr) { 1852 ret = marvell_nfc_wait_cmdd(chip); 1853 cond_delay(nfc_op.cle_ale_delay_ns); 1854 return ret; 1855 } 1856 1857 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1858 "RDDREQ/WRDREQ while draining raw data"); 1859 if (ret) 1860 return ret; 1861 1862 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1863 ret = marvell_nfc_wait_cmdd(chip); 1864 if (ret) 1865 return ret; 1866 1867 /* 1868 * NDCR ND_RUN bit should be cleared automatically at the end of each 1869 * operation but experience shows that the behavior is buggy when it 1870 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1871 */ 1872 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1873 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1874 1875 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1876 nfc->regs + NDCR); 1877 } 1878 1879 return 0; 1880 } 1881 1882 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1883 const struct nand_subop *subop) 1884 { 1885 struct marvell_nfc_op nfc_op; 1886 int ret; 1887 1888 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1889 1890 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1891 cond_delay(nfc_op.rdy_delay_ns); 1892 1893 return ret; 1894 } 1895 1896 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1897 const struct nand_subop *subop) 1898 { 1899 struct marvell_nfc_op nfc_op; 1900 int ret; 1901 1902 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1903 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1904 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1905 1906 ret = marvell_nfc_prepare_cmd(chip); 1907 if (ret) 1908 return ret; 1909 1910 marvell_nfc_send_cmd(chip, &nfc_op); 1911 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1912 "RDDREQ while reading ID"); 1913 if (ret) 1914 return ret; 1915 1916 cond_delay(nfc_op.cle_ale_delay_ns); 1917 1918 if (nfc_op.rdy_timeout_ms) { 1919 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1920 if (ret) 1921 return ret; 1922 } 1923 1924 cond_delay(nfc_op.rdy_delay_ns); 1925 1926 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1927 ret = marvell_nfc_wait_cmdd(chip); 1928 if (ret) 1929 return ret; 1930 1931 cond_delay(nfc_op.data_delay_ns); 1932 1933 return 0; 1934 } 1935 1936 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 1937 const struct nand_subop *subop) 1938 { 1939 struct marvell_nfc_op nfc_op; 1940 int ret; 1941 1942 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1943 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1944 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 1945 1946 ret = marvell_nfc_prepare_cmd(chip); 1947 if (ret) 1948 return ret; 1949 1950 marvell_nfc_send_cmd(chip, &nfc_op); 1951 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1952 "RDDREQ while reading status"); 1953 if (ret) 1954 return ret; 1955 1956 cond_delay(nfc_op.cle_ale_delay_ns); 1957 1958 if (nfc_op.rdy_timeout_ms) { 1959 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1960 if (ret) 1961 return ret; 1962 } 1963 1964 cond_delay(nfc_op.rdy_delay_ns); 1965 1966 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1967 ret = marvell_nfc_wait_cmdd(chip); 1968 if (ret) 1969 return ret; 1970 1971 cond_delay(nfc_op.data_delay_ns); 1972 1973 return 0; 1974 } 1975 1976 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 1977 const struct nand_subop *subop) 1978 { 1979 struct marvell_nfc_op nfc_op; 1980 int ret; 1981 1982 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1983 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 1984 1985 ret = marvell_nfc_prepare_cmd(chip); 1986 if (ret) 1987 return ret; 1988 1989 marvell_nfc_send_cmd(chip, &nfc_op); 1990 ret = marvell_nfc_wait_cmdd(chip); 1991 if (ret) 1992 return ret; 1993 1994 cond_delay(nfc_op.cle_ale_delay_ns); 1995 1996 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1997 if (ret) 1998 return ret; 1999 2000 cond_delay(nfc_op.rdy_delay_ns); 2001 2002 return 0; 2003 } 2004 2005 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 2006 const struct nand_subop *subop) 2007 { 2008 struct marvell_nfc_op nfc_op; 2009 int ret; 2010 2011 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2012 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 2013 2014 ret = marvell_nfc_prepare_cmd(chip); 2015 if (ret) 2016 return ret; 2017 2018 marvell_nfc_send_cmd(chip, &nfc_op); 2019 ret = marvell_nfc_wait_cmdd(chip); 2020 if (ret) 2021 return ret; 2022 2023 cond_delay(nfc_op.cle_ale_delay_ns); 2024 2025 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2026 if (ret) 2027 return ret; 2028 2029 cond_delay(nfc_op.rdy_delay_ns); 2030 2031 return 0; 2032 } 2033 2034 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 2035 /* Monolithic reads/writes */ 2036 NAND_OP_PARSER_PATTERN( 2037 marvell_nfc_monolithic_access_exec, 2038 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2039 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 2040 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2041 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 2042 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2043 NAND_OP_PARSER_PATTERN( 2044 marvell_nfc_monolithic_access_exec, 2045 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2046 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 2047 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 2048 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2049 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 2050 /* Naked commands */ 2051 NAND_OP_PARSER_PATTERN( 2052 marvell_nfc_naked_access_exec, 2053 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2054 NAND_OP_PARSER_PATTERN( 2055 marvell_nfc_naked_access_exec, 2056 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 2057 NAND_OP_PARSER_PATTERN( 2058 marvell_nfc_naked_access_exec, 2059 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2060 NAND_OP_PARSER_PATTERN( 2061 marvell_nfc_naked_access_exec, 2062 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 2063 NAND_OP_PARSER_PATTERN( 2064 marvell_nfc_naked_waitrdy_exec, 2065 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2066 ); 2067 2068 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 2069 /* Naked commands not supported, use a function for each pattern */ 2070 NAND_OP_PARSER_PATTERN( 2071 marvell_nfc_read_id_type_exec, 2072 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2073 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2074 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 2075 NAND_OP_PARSER_PATTERN( 2076 marvell_nfc_erase_cmd_type_exec, 2077 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2078 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2079 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2080 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2081 NAND_OP_PARSER_PATTERN( 2082 marvell_nfc_read_status_exec, 2083 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2084 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 2085 NAND_OP_PARSER_PATTERN( 2086 marvell_nfc_reset_cmd_type_exec, 2087 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2088 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2089 NAND_OP_PARSER_PATTERN( 2090 marvell_nfc_naked_waitrdy_exec, 2091 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2092 ); 2093 2094 static int marvell_nfc_exec_op(struct nand_chip *chip, 2095 const struct nand_operation *op, 2096 bool check_only) 2097 { 2098 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2099 2100 if (nfc->caps->is_nfcv2) 2101 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2102 op, check_only); 2103 else 2104 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2105 op, check_only); 2106 } 2107 2108 /* 2109 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2110 * usable. 2111 */ 2112 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2113 struct mtd_oob_region *oobregion) 2114 { 2115 struct nand_chip *chip = mtd_to_nand(mtd); 2116 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2117 2118 if (section) 2119 return -ERANGE; 2120 2121 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2122 lt->last_ecc_bytes; 2123 oobregion->offset = mtd->oobsize - oobregion->length; 2124 2125 return 0; 2126 } 2127 2128 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2129 struct mtd_oob_region *oobregion) 2130 { 2131 struct nand_chip *chip = mtd_to_nand(mtd); 2132 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2133 2134 if (section) 2135 return -ERANGE; 2136 2137 /* 2138 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2139 * 4KB page / 4bit BCH combination. 2140 */ 2141 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2142 oobregion->offset = 6; 2143 else 2144 oobregion->offset = 2; 2145 2146 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2147 lt->last_spare_bytes - oobregion->offset; 2148 2149 return 0; 2150 } 2151 2152 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2153 .ecc = marvell_nand_ooblayout_ecc, 2154 .free = marvell_nand_ooblayout_free, 2155 }; 2156 2157 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, 2158 struct nand_ecc_ctrl *ecc) 2159 { 2160 struct nand_chip *chip = mtd_to_nand(mtd); 2161 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2162 const struct marvell_hw_ecc_layout *l; 2163 int i; 2164 2165 if (!nfc->caps->is_nfcv2 && 2166 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2167 dev_err(nfc->dev, 2168 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2169 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2170 return -ENOTSUPP; 2171 } 2172 2173 to_marvell_nand(chip)->layout = NULL; 2174 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2175 l = &marvell_nfc_layouts[i]; 2176 if (mtd->writesize == l->writesize && 2177 ecc->size == l->chunk && ecc->strength == l->strength) { 2178 to_marvell_nand(chip)->layout = l; 2179 break; 2180 } 2181 } 2182 2183 if (!to_marvell_nand(chip)->layout || 2184 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2185 dev_err(nfc->dev, 2186 "ECC strength %d at page size %d is not supported\n", 2187 ecc->strength, mtd->writesize); 2188 return -ENOTSUPP; 2189 } 2190 2191 /* Special care for the layout 2k/8-bit/512B */ 2192 if (l->writesize == 2048 && l->strength == 8) { 2193 if (mtd->oobsize < 128) { 2194 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); 2195 return -ENOTSUPP; 2196 } else { 2197 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2198 } 2199 } 2200 2201 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2202 ecc->steps = l->nchunks; 2203 ecc->size = l->data_bytes; 2204 2205 if (ecc->strength == 1) { 2206 chip->ecc.algo = NAND_ECC_HAMMING; 2207 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2208 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2209 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2210 ecc->read_oob = ecc->read_oob_raw; 2211 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2212 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2213 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2214 ecc->write_oob = ecc->write_oob_raw; 2215 } else { 2216 chip->ecc.algo = NAND_ECC_BCH; 2217 ecc->strength = 16; 2218 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2219 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2220 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2221 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2222 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2223 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2224 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2225 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2226 } 2227 2228 return 0; 2229 } 2230 2231 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2232 struct nand_ecc_ctrl *ecc) 2233 { 2234 struct nand_chip *chip = mtd_to_nand(mtd); 2235 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2236 int ret; 2237 2238 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) { 2239 if (chip->ecc_step_ds && chip->ecc_strength_ds) { 2240 ecc->size = chip->ecc_step_ds; 2241 ecc->strength = chip->ecc_strength_ds; 2242 } else { 2243 dev_info(nfc->dev, 2244 "No minimum ECC strength, using 1b/512B\n"); 2245 ecc->size = 512; 2246 ecc->strength = 1; 2247 } 2248 } 2249 2250 switch (ecc->mode) { 2251 case NAND_ECC_HW: 2252 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc); 2253 if (ret) 2254 return ret; 2255 break; 2256 case NAND_ECC_NONE: 2257 case NAND_ECC_SOFT: 2258 case NAND_ECC_ON_DIE: 2259 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2260 mtd->writesize != SZ_2K) { 2261 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2262 mtd->writesize); 2263 return -EINVAL; 2264 } 2265 break; 2266 default: 2267 return -EINVAL; 2268 } 2269 2270 return 0; 2271 } 2272 2273 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2274 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2275 2276 static struct nand_bbt_descr bbt_main_descr = { 2277 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2278 NAND_BBT_2BIT | NAND_BBT_VERSION, 2279 .offs = 8, 2280 .len = 6, 2281 .veroffs = 14, 2282 .maxblocks = 8, /* Last 8 blocks in each chip */ 2283 .pattern = bbt_pattern 2284 }; 2285 2286 static struct nand_bbt_descr bbt_mirror_descr = { 2287 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2288 NAND_BBT_2BIT | NAND_BBT_VERSION, 2289 .offs = 8, 2290 .len = 6, 2291 .veroffs = 14, 2292 .maxblocks = 8, /* Last 8 blocks in each chip */ 2293 .pattern = bbt_mirror_pattern 2294 }; 2295 2296 static int marvell_nfc_setup_data_interface(struct nand_chip *chip, int chipnr, 2297 const struct nand_data_interface 2298 *conf) 2299 { 2300 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2301 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2302 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2303 const struct nand_sdr_timings *sdr; 2304 struct marvell_nfc_timings nfc_tmg; 2305 int read_delay; 2306 2307 sdr = nand_get_sdr_timings(conf); 2308 if (IS_ERR(sdr)) 2309 return PTR_ERR(sdr); 2310 2311 /* 2312 * SDR timings are given in pico-seconds while NFC timings must be 2313 * expressed in NAND controller clock cycles, which is half of the 2314 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2315 * This is not written anywhere in the datasheet but was observed 2316 * with an oscilloscope. 2317 * 2318 * NFC datasheet gives equations from which thoses calculations 2319 * are derived, they tend to be slightly more restrictives than the 2320 * given core timings and may improve the overall speed. 2321 */ 2322 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2323 nfc_tmg.tRH = nfc_tmg.tRP; 2324 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2325 nfc_tmg.tWH = nfc_tmg.tWP; 2326 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2327 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2328 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2329 /* 2330 * Read delay is the time of propagation from SoC pins to NFC internal 2331 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2332 * EDO mode, an additional delay of tRH must be taken into account so 2333 * the data is sampled on the falling edge instead of the rising edge. 2334 */ 2335 read_delay = sdr->tRC_min >= 30000 ? 2336 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2337 2338 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2339 /* 2340 * tWHR and tRHW are supposed to be read to write delays (and vice 2341 * versa) but in some cases, ie. when doing a change column, they must 2342 * be greater than that to be sure tCCS delay is respected. 2343 */ 2344 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2345 period_ns) - 2, 2346 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2347 period_ns); 2348 2349 /* 2350 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2351 * NFCv1: No WAIT_MODE, tR must be maximal. 2352 */ 2353 if (nfc->caps->is_nfcv2) { 2354 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2355 } else { 2356 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2357 period_ns); 2358 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2359 nfc_tmg.tR = nfc_tmg.tCH - 3; 2360 else 2361 nfc_tmg.tR = 0; 2362 } 2363 2364 if (chipnr < 0) 2365 return 0; 2366 2367 marvell_nand->ndtr0 = 2368 NDTR0_TRP(nfc_tmg.tRP) | 2369 NDTR0_TRH(nfc_tmg.tRH) | 2370 NDTR0_ETRP(nfc_tmg.tRP) | 2371 NDTR0_TWP(nfc_tmg.tWP) | 2372 NDTR0_TWH(nfc_tmg.tWH) | 2373 NDTR0_TCS(nfc_tmg.tCS) | 2374 NDTR0_TCH(nfc_tmg.tCH); 2375 2376 marvell_nand->ndtr1 = 2377 NDTR1_TAR(nfc_tmg.tAR) | 2378 NDTR1_TWHR(nfc_tmg.tWHR) | 2379 NDTR1_TR(nfc_tmg.tR); 2380 2381 if (nfc->caps->is_nfcv2) { 2382 marvell_nand->ndtr0 |= 2383 NDTR0_RD_CNT_DEL(read_delay) | 2384 NDTR0_SELCNTR | 2385 NDTR0_TADL(nfc_tmg.tADL); 2386 2387 marvell_nand->ndtr1 |= 2388 NDTR1_TRHW(nfc_tmg.tRHW) | 2389 NDTR1_WAIT_MODE; 2390 } 2391 2392 return 0; 2393 } 2394 2395 static int marvell_nand_attach_chip(struct nand_chip *chip) 2396 { 2397 struct mtd_info *mtd = nand_to_mtd(chip); 2398 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2399 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2400 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2401 int ret; 2402 2403 if (pdata && pdata->flash_bbt) 2404 chip->bbt_options |= NAND_BBT_USE_FLASH; 2405 2406 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2407 /* 2408 * We'll use a bad block table stored in-flash and don't 2409 * allow writing the bad block marker to the flash. 2410 */ 2411 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2412 chip->bbt_td = &bbt_main_descr; 2413 chip->bbt_md = &bbt_mirror_descr; 2414 } 2415 2416 /* Save the chip-specific fields of NDCR */ 2417 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2418 if (chip->options & NAND_BUSWIDTH_16) 2419 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2420 2421 /* 2422 * On small page NANDs, only one cycle is needed to pass the 2423 * column address. 2424 */ 2425 if (mtd->writesize <= 512) { 2426 marvell_nand->addr_cyc = 1; 2427 } else { 2428 marvell_nand->addr_cyc = 2; 2429 marvell_nand->ndcr |= NDCR_RA_START; 2430 } 2431 2432 /* 2433 * Now add the number of cycles needed to pass the row 2434 * address. 2435 * 2436 * Addressing a chip using CS 2 or 3 should also need the third row 2437 * cycle but due to inconsistance in the documentation and lack of 2438 * hardware to test this situation, this case is not supported. 2439 */ 2440 if (chip->options & NAND_ROW_ADDR_3) 2441 marvell_nand->addr_cyc += 3; 2442 else 2443 marvell_nand->addr_cyc += 2; 2444 2445 if (pdata) { 2446 chip->ecc.size = pdata->ecc_step_size; 2447 chip->ecc.strength = pdata->ecc_strength; 2448 } 2449 2450 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2451 if (ret) { 2452 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2453 return ret; 2454 } 2455 2456 if (chip->ecc.mode == NAND_ECC_HW) { 2457 /* 2458 * Subpage write not available with hardware ECC, prohibit also 2459 * subpage read as in userspace subpage access would still be 2460 * allowed and subpage write, if used, would lead to numerous 2461 * uncorrectable ECC errors. 2462 */ 2463 chip->options |= NAND_NO_SUBPAGE_WRITE; 2464 } 2465 2466 if (pdata || nfc->caps->legacy_of_bindings) { 2467 /* 2468 * We keep the MTD name unchanged to avoid breaking platforms 2469 * where the MTD cmdline parser is used and the bootloader 2470 * has not been updated to use the new naming scheme. 2471 */ 2472 mtd->name = "pxa3xx_nand-0"; 2473 } else if (!mtd->name) { 2474 /* 2475 * If the new bindings are used and the bootloader has not been 2476 * updated to pass a new mtdparts parameter on the cmdline, you 2477 * should define the following property in your NAND node, ie: 2478 * 2479 * label = "main-storage"; 2480 * 2481 * This way, mtd->name will be set by the core when 2482 * nand_set_flash_node() is called. 2483 */ 2484 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2485 "%s:nand.%d", dev_name(nfc->dev), 2486 marvell_nand->sels[0].cs); 2487 if (!mtd->name) { 2488 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2489 return -ENOMEM; 2490 } 2491 } 2492 2493 return 0; 2494 } 2495 2496 static const struct nand_controller_ops marvell_nand_controller_ops = { 2497 .attach_chip = marvell_nand_attach_chip, 2498 }; 2499 2500 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2501 struct device_node *np) 2502 { 2503 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2504 struct marvell_nand_chip *marvell_nand; 2505 struct mtd_info *mtd; 2506 struct nand_chip *chip; 2507 int nsels, ret, i; 2508 u32 cs, rb; 2509 2510 /* 2511 * The legacy "num-cs" property indicates the number of CS on the only 2512 * chip connected to the controller (legacy bindings does not support 2513 * more than one chip). The CS and RB pins are always the #0. 2514 * 2515 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2516 * properties must be filled. For each chip, expressed as a subnode, 2517 * "reg" points to the CS lines and "nand-rb" to the RB line. 2518 */ 2519 if (pdata || nfc->caps->legacy_of_bindings) { 2520 nsels = 1; 2521 } else { 2522 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2523 if (nsels <= 0) { 2524 dev_err(dev, "missing/invalid reg property\n"); 2525 return -EINVAL; 2526 } 2527 } 2528 2529 /* Alloc the nand chip structure */ 2530 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) + 2531 (nsels * 2532 sizeof(struct marvell_nand_chip_sel)), 2533 GFP_KERNEL); 2534 if (!marvell_nand) { 2535 dev_err(dev, "could not allocate chip structure\n"); 2536 return -ENOMEM; 2537 } 2538 2539 marvell_nand->nsels = nsels; 2540 marvell_nand->selected_die = -1; 2541 2542 for (i = 0; i < nsels; i++) { 2543 if (pdata || nfc->caps->legacy_of_bindings) { 2544 /* 2545 * Legacy bindings use the CS lines in natural 2546 * order (0, 1, ...) 2547 */ 2548 cs = i; 2549 } else { 2550 /* Retrieve CS id */ 2551 ret = of_property_read_u32_index(np, "reg", i, &cs); 2552 if (ret) { 2553 dev_err(dev, "could not retrieve reg property: %d\n", 2554 ret); 2555 return ret; 2556 } 2557 } 2558 2559 if (cs >= nfc->caps->max_cs_nb) { 2560 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2561 cs, nfc->caps->max_cs_nb); 2562 return -EINVAL; 2563 } 2564 2565 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2566 dev_err(dev, "CS %d already assigned\n", cs); 2567 return -EINVAL; 2568 } 2569 2570 /* 2571 * The cs variable represents the chip select id, which must be 2572 * converted in bit fields for NDCB0 and NDCB2 to select the 2573 * right chip. Unfortunately, due to a lack of information on 2574 * the subject and incoherent documentation, the user should not 2575 * use CS1 and CS3 at all as asserting them is not supported in 2576 * a reliable way (due to multiplexing inside ADDR5 field). 2577 */ 2578 marvell_nand->sels[i].cs = cs; 2579 switch (cs) { 2580 case 0: 2581 case 2: 2582 marvell_nand->sels[i].ndcb0_csel = 0; 2583 break; 2584 case 1: 2585 case 3: 2586 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2587 break; 2588 default: 2589 return -EINVAL; 2590 } 2591 2592 /* Retrieve RB id */ 2593 if (pdata || nfc->caps->legacy_of_bindings) { 2594 /* Legacy bindings always use RB #0 */ 2595 rb = 0; 2596 } else { 2597 ret = of_property_read_u32_index(np, "nand-rb", i, 2598 &rb); 2599 if (ret) { 2600 dev_err(dev, 2601 "could not retrieve RB property: %d\n", 2602 ret); 2603 return ret; 2604 } 2605 } 2606 2607 if (rb >= nfc->caps->max_rb_nb) { 2608 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2609 rb, nfc->caps->max_rb_nb); 2610 return -EINVAL; 2611 } 2612 2613 marvell_nand->sels[i].rb = rb; 2614 } 2615 2616 chip = &marvell_nand->chip; 2617 chip->controller = &nfc->controller; 2618 nand_set_flash_node(chip, np); 2619 2620 chip->exec_op = marvell_nfc_exec_op; 2621 chip->select_chip = marvell_nfc_select_chip; 2622 if (!of_property_read_bool(np, "marvell,nand-keep-config")) 2623 chip->setup_data_interface = marvell_nfc_setup_data_interface; 2624 2625 mtd = nand_to_mtd(chip); 2626 mtd->dev.parent = dev; 2627 2628 /* 2629 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2630 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2631 */ 2632 chip->ecc.mode = NAND_ECC_HW; 2633 2634 /* 2635 * Save a reference value for timing registers before 2636 * ->setup_data_interface() is called. 2637 */ 2638 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2639 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2640 2641 chip->options |= NAND_BUSWIDTH_AUTO; 2642 2643 ret = nand_scan(chip, marvell_nand->nsels); 2644 if (ret) { 2645 dev_err(dev, "could not scan the nand chip\n"); 2646 return ret; 2647 } 2648 2649 if (pdata) 2650 /* Legacy bindings support only one chip */ 2651 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2652 else 2653 ret = mtd_device_register(mtd, NULL, 0); 2654 if (ret) { 2655 dev_err(dev, "failed to register mtd device: %d\n", ret); 2656 nand_release(chip); 2657 return ret; 2658 } 2659 2660 list_add_tail(&marvell_nand->node, &nfc->chips); 2661 2662 return 0; 2663 } 2664 2665 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2666 { 2667 struct device_node *np = dev->of_node; 2668 struct device_node *nand_np; 2669 int max_cs = nfc->caps->max_cs_nb; 2670 int nchips; 2671 int ret; 2672 2673 if (!np) 2674 nchips = 1; 2675 else 2676 nchips = of_get_child_count(np); 2677 2678 if (nchips > max_cs) { 2679 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2680 max_cs); 2681 return -EINVAL; 2682 } 2683 2684 /* 2685 * Legacy bindings do not use child nodes to exhibit NAND chip 2686 * properties and layout. Instead, NAND properties are mixed with the 2687 * controller ones, and partitions are defined as direct subnodes of the 2688 * NAND controller node. 2689 */ 2690 if (nfc->caps->legacy_of_bindings) { 2691 ret = marvell_nand_chip_init(dev, nfc, np); 2692 return ret; 2693 } 2694 2695 for_each_child_of_node(np, nand_np) { 2696 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2697 if (ret) { 2698 of_node_put(nand_np); 2699 return ret; 2700 } 2701 } 2702 2703 return 0; 2704 } 2705 2706 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2707 { 2708 struct marvell_nand_chip *entry, *temp; 2709 2710 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2711 nand_release(&entry->chip); 2712 list_del(&entry->node); 2713 } 2714 } 2715 2716 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2717 { 2718 struct platform_device *pdev = container_of(nfc->dev, 2719 struct platform_device, 2720 dev); 2721 struct dma_slave_config config = {}; 2722 struct resource *r; 2723 int ret; 2724 2725 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2726 dev_warn(nfc->dev, 2727 "DMA not enabled in configuration\n"); 2728 return -ENOTSUPP; 2729 } 2730 2731 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2732 if (ret) 2733 return ret; 2734 2735 nfc->dma_chan = dma_request_slave_channel(nfc->dev, "data"); 2736 if (!nfc->dma_chan) { 2737 dev_err(nfc->dev, 2738 "Unable to request data DMA channel\n"); 2739 return -ENODEV; 2740 } 2741 2742 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2743 if (!r) 2744 return -ENXIO; 2745 2746 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2747 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2748 config.src_addr = r->start + NDDB; 2749 config.dst_addr = r->start + NDDB; 2750 config.src_maxburst = 32; 2751 config.dst_maxburst = 32; 2752 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2753 if (ret < 0) { 2754 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2755 return ret; 2756 } 2757 2758 /* 2759 * DMA must act on length multiple of 32 and this length may be 2760 * bigger than the destination buffer. Use this buffer instead 2761 * for DMA transfers and then copy the desired amount of data to 2762 * the provided buffer. 2763 */ 2764 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2765 if (!nfc->dma_buf) 2766 return -ENOMEM; 2767 2768 nfc->use_dma = true; 2769 2770 return 0; 2771 } 2772 2773 static void marvell_nfc_reset(struct marvell_nfc *nfc) 2774 { 2775 /* 2776 * ECC operations and interruptions are only enabled when specifically 2777 * needed. ECC shall not be activated in the early stages (fails probe). 2778 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2779 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2780 * offset in the read page and this will fail the protection. 2781 */ 2782 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2783 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2784 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2785 writel_relaxed(0, nfc->regs + NDECCCTRL); 2786 } 2787 2788 static int marvell_nfc_init(struct marvell_nfc *nfc) 2789 { 2790 struct device_node *np = nfc->dev->of_node; 2791 2792 /* 2793 * Some SoCs like A7k/A8k need to enable manually the NAND 2794 * controller, gated clocks and reset bits to avoid being bootloader 2795 * dependent. This is done through the use of the System Functions 2796 * registers. 2797 */ 2798 if (nfc->caps->need_system_controller) { 2799 struct regmap *sysctrl_base = 2800 syscon_regmap_lookup_by_phandle(np, 2801 "marvell,system-controller"); 2802 2803 if (IS_ERR(sysctrl_base)) 2804 return PTR_ERR(sysctrl_base); 2805 2806 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, 2807 GENCONF_SOC_DEVICE_MUX_NFC_EN | 2808 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2809 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2810 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN); 2811 2812 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, 2813 GENCONF_CLK_GATING_CTRL_ND_GATE, 2814 GENCONF_CLK_GATING_CTRL_ND_GATE); 2815 2816 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL, 2817 GENCONF_ND_CLK_CTRL_EN, 2818 GENCONF_ND_CLK_CTRL_EN); 2819 } 2820 2821 /* Configure the DMA if appropriate */ 2822 if (!nfc->caps->is_nfcv2) 2823 marvell_nfc_init_dma(nfc); 2824 2825 marvell_nfc_reset(nfc); 2826 2827 return 0; 2828 } 2829 2830 static int marvell_nfc_probe(struct platform_device *pdev) 2831 { 2832 struct device *dev = &pdev->dev; 2833 struct resource *r; 2834 struct marvell_nfc *nfc; 2835 int ret; 2836 int irq; 2837 2838 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2839 GFP_KERNEL); 2840 if (!nfc) 2841 return -ENOMEM; 2842 2843 nfc->dev = dev; 2844 nand_controller_init(&nfc->controller); 2845 nfc->controller.ops = &marvell_nand_controller_ops; 2846 INIT_LIST_HEAD(&nfc->chips); 2847 2848 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2849 nfc->regs = devm_ioremap_resource(dev, r); 2850 if (IS_ERR(nfc->regs)) 2851 return PTR_ERR(nfc->regs); 2852 2853 irq = platform_get_irq(pdev, 0); 2854 if (irq < 0) { 2855 dev_err(dev, "failed to retrieve irq\n"); 2856 return irq; 2857 } 2858 2859 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2860 2861 /* Managed the legacy case (when the first clock was not named) */ 2862 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2863 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2864 2865 if (IS_ERR(nfc->core_clk)) 2866 return PTR_ERR(nfc->core_clk); 2867 2868 ret = clk_prepare_enable(nfc->core_clk); 2869 if (ret) 2870 return ret; 2871 2872 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2873 if (IS_ERR(nfc->reg_clk)) { 2874 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2875 ret = PTR_ERR(nfc->reg_clk); 2876 goto unprepare_core_clk; 2877 } 2878 2879 nfc->reg_clk = NULL; 2880 } 2881 2882 ret = clk_prepare_enable(nfc->reg_clk); 2883 if (ret) 2884 goto unprepare_core_clk; 2885 2886 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2887 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2888 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2889 0, "marvell-nfc", nfc); 2890 if (ret) 2891 goto unprepare_reg_clk; 2892 2893 /* Get NAND controller capabilities */ 2894 if (pdev->id_entry) 2895 nfc->caps = (void *)pdev->id_entry->driver_data; 2896 else 2897 nfc->caps = of_device_get_match_data(&pdev->dev); 2898 2899 if (!nfc->caps) { 2900 dev_err(dev, "Could not retrieve NFC caps\n"); 2901 ret = -EINVAL; 2902 goto unprepare_reg_clk; 2903 } 2904 2905 /* Init the controller and then probe the chips */ 2906 ret = marvell_nfc_init(nfc); 2907 if (ret) 2908 goto unprepare_reg_clk; 2909 2910 platform_set_drvdata(pdev, nfc); 2911 2912 ret = marvell_nand_chips_init(dev, nfc); 2913 if (ret) 2914 goto unprepare_reg_clk; 2915 2916 return 0; 2917 2918 unprepare_reg_clk: 2919 clk_disable_unprepare(nfc->reg_clk); 2920 unprepare_core_clk: 2921 clk_disable_unprepare(nfc->core_clk); 2922 2923 return ret; 2924 } 2925 2926 static int marvell_nfc_remove(struct platform_device *pdev) 2927 { 2928 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 2929 2930 marvell_nand_chips_cleanup(nfc); 2931 2932 if (nfc->use_dma) { 2933 dmaengine_terminate_all(nfc->dma_chan); 2934 dma_release_channel(nfc->dma_chan); 2935 } 2936 2937 clk_disable_unprepare(nfc->reg_clk); 2938 clk_disable_unprepare(nfc->core_clk); 2939 2940 return 0; 2941 } 2942 2943 static int __maybe_unused marvell_nfc_suspend(struct device *dev) 2944 { 2945 struct marvell_nfc *nfc = dev_get_drvdata(dev); 2946 struct marvell_nand_chip *chip; 2947 2948 list_for_each_entry(chip, &nfc->chips, node) 2949 marvell_nfc_wait_ndrun(&chip->chip); 2950 2951 clk_disable_unprepare(nfc->reg_clk); 2952 clk_disable_unprepare(nfc->core_clk); 2953 2954 return 0; 2955 } 2956 2957 static int __maybe_unused marvell_nfc_resume(struct device *dev) 2958 { 2959 struct marvell_nfc *nfc = dev_get_drvdata(dev); 2960 int ret; 2961 2962 ret = clk_prepare_enable(nfc->core_clk); 2963 if (ret < 0) 2964 return ret; 2965 2966 ret = clk_prepare_enable(nfc->reg_clk); 2967 if (ret < 0) 2968 return ret; 2969 2970 /* 2971 * Reset nfc->selected_chip so the next command will cause the timing 2972 * registers to be restored in marvell_nfc_select_chip(). 2973 */ 2974 nfc->selected_chip = NULL; 2975 2976 /* Reset registers that have lost their contents */ 2977 marvell_nfc_reset(nfc); 2978 2979 return 0; 2980 } 2981 2982 static const struct dev_pm_ops marvell_nfc_pm_ops = { 2983 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 2984 }; 2985 2986 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 2987 .max_cs_nb = 4, 2988 .max_rb_nb = 2, 2989 .need_system_controller = true, 2990 .is_nfcv2 = true, 2991 }; 2992 2993 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 2994 .max_cs_nb = 4, 2995 .max_rb_nb = 2, 2996 .is_nfcv2 = true, 2997 }; 2998 2999 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 3000 .max_cs_nb = 2, 3001 .max_rb_nb = 1, 3002 .use_dma = true, 3003 }; 3004 3005 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 3006 .max_cs_nb = 4, 3007 .max_rb_nb = 2, 3008 .need_system_controller = true, 3009 .legacy_of_bindings = true, 3010 .is_nfcv2 = true, 3011 }; 3012 3013 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 3014 .max_cs_nb = 4, 3015 .max_rb_nb = 2, 3016 .legacy_of_bindings = true, 3017 .is_nfcv2 = true, 3018 }; 3019 3020 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 3021 .max_cs_nb = 2, 3022 .max_rb_nb = 1, 3023 .legacy_of_bindings = true, 3024 .use_dma = true, 3025 }; 3026 3027 static const struct platform_device_id marvell_nfc_platform_ids[] = { 3028 { 3029 .name = "pxa3xx-nand", 3030 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 3031 }, 3032 { /* sentinel */ }, 3033 }; 3034 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 3035 3036 static const struct of_device_id marvell_nfc_of_ids[] = { 3037 { 3038 .compatible = "marvell,armada-8k-nand-controller", 3039 .data = &marvell_armada_8k_nfc_caps, 3040 }, 3041 { 3042 .compatible = "marvell,armada370-nand-controller", 3043 .data = &marvell_armada370_nfc_caps, 3044 }, 3045 { 3046 .compatible = "marvell,pxa3xx-nand-controller", 3047 .data = &marvell_pxa3xx_nfc_caps, 3048 }, 3049 /* Support for old/deprecated bindings: */ 3050 { 3051 .compatible = "marvell,armada-8k-nand", 3052 .data = &marvell_armada_8k_nfc_legacy_caps, 3053 }, 3054 { 3055 .compatible = "marvell,armada370-nand", 3056 .data = &marvell_armada370_nfc_legacy_caps, 3057 }, 3058 { 3059 .compatible = "marvell,pxa3xx-nand", 3060 .data = &marvell_pxa3xx_nfc_legacy_caps, 3061 }, 3062 { /* sentinel */ }, 3063 }; 3064 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 3065 3066 static struct platform_driver marvell_nfc_driver = { 3067 .driver = { 3068 .name = "marvell-nfc", 3069 .of_match_table = marvell_nfc_of_ids, 3070 .pm = &marvell_nfc_pm_ops, 3071 }, 3072 .id_table = marvell_nfc_platform_ids, 3073 .probe = marvell_nfc_probe, 3074 .remove = marvell_nfc_remove, 3075 }; 3076 module_platform_driver(marvell_nfc_driver); 3077 3078 MODULE_LICENSE("GPL"); 3079 MODULE_DESCRIPTION("Marvell NAND controller driver"); 3080