1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 * 9 * This NAND controller driver handles two versions of the hardware, 10 * one is called NFCv1 and is available on PXA SoCs and the other is 11 * called NFCv2 and is available on Armada SoCs. 12 * 13 * The main visible difference is that NFCv1 only has Hamming ECC 14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA 15 * is not used with NFCv2. 16 * 17 * The ECC layouts are depicted in details in Marvell AN-379, but here 18 * is a brief description. 19 * 20 * When using Hamming, the data is split in 512B chunks (either 1, 2 21 * or 4) and each chunk will have its own ECC "digest" of 6B at the 22 * beginning of the OOB area and eventually the remaining free OOB 23 * bytes (also called "spare" bytes in the driver). This engine 24 * corrects up to 1 bit per chunk and detects reliably an error if 25 * there are at most 2 bitflips. Here is the page layout used by the 26 * controller when Hamming is chosen: 27 * 28 * +-------------------------------------------------------------+ 29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | 30 * +-------------------------------------------------------------+ 31 * 32 * When using the BCH engine, there are N identical (data + free OOB + 33 * ECC) sections and potentially an extra one to deal with 34 * configurations where the chosen (data + free OOB + ECC) sizes do 35 * not align with the page (data + OOB) size. ECC bytes are always 36 * 30B per ECC chunk. Here is the page layout used by the controller 37 * when BCH is chosen: 38 * 39 * +----------------------------------------- 40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ... 41 * +----------------------------------------- 42 * 43 * ------------------------------------------- 44 * ... | Data N | Free OOB bytes N | ECC N | 45 * ------------------------------------------- 46 * 47 * --------------------------------------------+ 48 * Last Data | Last Free OOB bytes | Last ECC | 49 * --------------------------------------------+ 50 * 51 * In both cases, the layout seen by the user is always: all data 52 * first, then all free OOB bytes and finally all ECC bytes. With BCH, 53 * ECC bytes are 30B long and are padded with 0xFF to align on 32 54 * bytes. 55 * 56 * The controller has certain limitations that are handled by the 57 * driver: 58 * - It can only read 2k at a time. To overcome this limitation, the 59 * driver issues data cycles on the bus, without issuing new 60 * CMD + ADDR cycles. The Marvell term is "naked" operations. 61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 62 * bits. What can be tuned is the ECC block size as long as it 63 * stays between 512B and 2kiB. It's usually chosen based on the 64 * chip ECC requirements. For instance, using 2kiB ECC chunks 65 * provides 4b/512B correctability. 66 * - The controller will always treat data bytes, free OOB bytes 67 * and ECC bytes in that order, no matter what the real layout is 68 * (which is usually all data then all OOB bytes). The 69 * marvell_nfc_layouts array below contains the currently 70 * supported layouts. 71 * - Because of these weird layouts, the Bad Block Markers can be 72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM 73 * option must be set to prevent scanning/writing bad block 74 * markers. 75 */ 76 77 #include <linux/module.h> 78 #include <linux/clk.h> 79 #include <linux/mtd/rawnand.h> 80 #include <linux/of_platform.h> 81 #include <linux/iopoll.h> 82 #include <linux/interrupt.h> 83 #include <linux/slab.h> 84 #include <linux/mfd/syscon.h> 85 #include <linux/regmap.h> 86 #include <asm/unaligned.h> 87 88 #include <linux/dmaengine.h> 89 #include <linux/dma-mapping.h> 90 #include <linux/dma/pxa-dma.h> 91 #include <linux/platform_data/mtd-nand-pxa3xx.h> 92 93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 94 #define FIFO_DEPTH 8 95 #define FIFO_REP(x) (x / sizeof(u32)) 96 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 97 /* NFC does not support transfers of larger chunks at a time */ 98 #define MAX_CHUNK_SIZE 2112 99 /* NFCv1 cannot read more that 7 bytes of ID */ 100 #define NFCV1_READID_LEN 7 101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 102 #define POLL_PERIOD 0 103 #define POLL_TIMEOUT 100000 104 /* Interrupt maximum wait period in ms */ 105 #define IRQ_TIMEOUT 1000 106 /* Latency in clock cycles between SoC pins and NFC logic */ 107 #define MIN_RD_DEL_CNT 3 108 /* Maximum number of contiguous address cycles */ 109 #define MAX_ADDRESS_CYC_NFCV1 5 110 #define MAX_ADDRESS_CYC_NFCV2 7 111 /* System control registers/bits to enable the NAND controller on some SoCs */ 112 #define GENCONF_SOC_DEVICE_MUX 0x208 113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 117 #define GENCONF_CLK_GATING_CTRL 0x220 118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 119 #define GENCONF_ND_CLK_CTRL 0x700 120 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 121 122 /* NAND controller data flash control register */ 123 #define NDCR 0x00 124 #define NDCR_ALL_INT GENMASK(11, 0) 125 #define NDCR_CS1_CMDDM BIT(7) 126 #define NDCR_CS0_CMDDM BIT(8) 127 #define NDCR_RDYM BIT(11) 128 #define NDCR_ND_ARB_EN BIT(12) 129 #define NDCR_RA_START BIT(15) 130 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 131 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 132 #define NDCR_DWIDTH_M BIT(26) 133 #define NDCR_DWIDTH_C BIT(27) 134 #define NDCR_ND_RUN BIT(28) 135 #define NDCR_DMA_EN BIT(29) 136 #define NDCR_ECC_EN BIT(30) 137 #define NDCR_SPARE_EN BIT(31) 138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 139 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 140 141 /* NAND interface timing parameter 0 register */ 142 #define NDTR0 0x04 143 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 144 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 145 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 146 #define NDTR0_SEL_NRE_EDGE BIT(7) 147 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 148 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 149 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 150 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 151 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 152 #define NDTR0_SELCNTR BIT(26) 153 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 154 155 /* NAND interface timing parameter 1 register */ 156 #define NDTR1 0x0C 157 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 158 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 159 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 160 #define NDTR1_PRESCALE BIT(14) 161 #define NDTR1_WAIT_MODE BIT(15) 162 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 163 164 /* NAND controller status register */ 165 #define NDSR 0x14 166 #define NDSR_WRCMDREQ BIT(0) 167 #define NDSR_RDDREQ BIT(1) 168 #define NDSR_WRDREQ BIT(2) 169 #define NDSR_CORERR BIT(3) 170 #define NDSR_UNCERR BIT(4) 171 #define NDSR_CMDD(cs) BIT(8 - cs) 172 #define NDSR_RDY(rb) BIT(11 + rb) 173 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 174 175 /* NAND ECC control register */ 176 #define NDECCCTRL 0x28 177 #define NDECCCTRL_BCH_EN BIT(0) 178 179 /* NAND controller data buffer register */ 180 #define NDDB 0x40 181 182 /* NAND controller command buffer 0 register */ 183 #define NDCB0 0x48 184 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 185 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 186 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 188 #define NDCB0_DBC BIT(19) 189 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 190 #define NDCB0_CSEL BIT(24) 191 #define NDCB0_RDY_BYP BIT(27) 192 #define NDCB0_LEN_OVRD BIT(28) 193 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 194 195 /* NAND controller command buffer 1 register */ 196 #define NDCB1 0x4C 197 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 198 #define NDCB1_ADDRS_PAGE(x) (x << 16) 199 200 /* NAND controller command buffer 2 register */ 201 #define NDCB2 0x50 202 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 203 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 204 205 /* NAND controller command buffer 3 register */ 206 #define NDCB3 0x54 207 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 208 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 209 210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 211 #define TYPE_READ 0 212 #define TYPE_WRITE 1 213 #define TYPE_ERASE 2 214 #define TYPE_READ_ID 3 215 #define TYPE_STATUS 4 216 #define TYPE_RESET 5 217 #define TYPE_NAKED_CMD 6 218 #define TYPE_NAKED_ADDR 7 219 #define TYPE_MASK 7 220 #define XTYPE_MONOLITHIC_RW 0 221 #define XTYPE_LAST_NAKED_RW 1 222 #define XTYPE_FINAL_COMMAND 3 223 #define XTYPE_READ 4 224 #define XTYPE_WRITE_DISPATCH 4 225 #define XTYPE_NAKED_RW 5 226 #define XTYPE_COMMAND_DISPATCH 6 227 #define XTYPE_MASK 7 228 229 /** 230 * Marvell ECC engine works differently than the others, in order to limit the 231 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 232 * per subpage, and depending on a the desired strength needed by the NAND chip, 233 * a particular layout mixing data/spare/ecc is defined, with a possible last 234 * chunk smaller that the others. 235 * 236 * @writesize: Full page size on which the layout applies 237 * @chunk: Desired ECC chunk size on which the layout applies 238 * @strength: Desired ECC strength (per chunk size bytes) on which the 239 * layout applies 240 * @nchunks: Total number of chunks 241 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 242 * repetitions of the pattern: 243 * (data_bytes + spare_bytes + ecc_bytes). 244 * @data_bytes: Number of data bytes per chunk 245 * @spare_bytes: Number of spare bytes per chunk 246 * @ecc_bytes: Number of ecc bytes per chunk 247 * @last_data_bytes: Number of data bytes in the last chunk 248 * @last_spare_bytes: Number of spare bytes in the last chunk 249 * @last_ecc_bytes: Number of ecc bytes in the last chunk 250 */ 251 struct marvell_hw_ecc_layout { 252 /* Constraints */ 253 int writesize; 254 int chunk; 255 int strength; 256 /* Corresponding layout */ 257 int nchunks; 258 int full_chunk_cnt; 259 int data_bytes; 260 int spare_bytes; 261 int ecc_bytes; 262 int last_data_bytes; 263 int last_spare_bytes; 264 int last_ecc_bytes; 265 }; 266 267 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 268 { \ 269 .writesize = ws, \ 270 .chunk = dc, \ 271 .strength = ds, \ 272 .nchunks = nc, \ 273 .full_chunk_cnt = fcc, \ 274 .data_bytes = db, \ 275 .spare_bytes = sb, \ 276 .ecc_bytes = eb, \ 277 .last_data_bytes = ldb, \ 278 .last_spare_bytes = lsb, \ 279 .last_ecc_bytes = leb, \ 280 } 281 282 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 283 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 284 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 285 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 286 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 287 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), 288 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 289 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 290 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), 291 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), 292 }; 293 294 /** 295 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 296 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 297 * The datasheet describes the logic with an error: ADDR5 field is once 298 * declared at the beginning of NDCB2, and another time at its end. Because the 299 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 300 * to use the last bit of this field instead of the first ones. 301 * 302 * @cs: Wanted CE lane. 303 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 304 * selecting the wanted CE lane. This is set once when 305 * the Device Tree is probed. 306 * @rb: Ready/Busy pin for the flash chip 307 */ 308 struct marvell_nand_chip_sel { 309 unsigned int cs; 310 u32 ndcb0_csel; 311 unsigned int rb; 312 }; 313 314 /** 315 * NAND chip structure: stores NAND chip device related information 316 * 317 * @chip: Base NAND chip structure 318 * @node: Used to store NAND chips into a list 319 * @layout NAND layout when using hardware ECC 320 * @ndcr: Controller register value for this NAND chip 321 * @ndtr0: Timing registers 0 value for this NAND chip 322 * @ndtr1: Timing registers 1 value for this NAND chip 323 * @selected_die: Current active CS 324 * @nsels: Number of CS lines required by the NAND chip 325 * @sels: Array of CS lines descriptions 326 */ 327 struct marvell_nand_chip { 328 struct nand_chip chip; 329 struct list_head node; 330 const struct marvell_hw_ecc_layout *layout; 331 u32 ndcr; 332 u32 ndtr0; 333 u32 ndtr1; 334 int addr_cyc; 335 int selected_die; 336 unsigned int nsels; 337 struct marvell_nand_chip_sel sels[0]; 338 }; 339 340 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 341 { 342 return container_of(chip, struct marvell_nand_chip, chip); 343 } 344 345 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 346 *nand) 347 { 348 return &nand->sels[nand->selected_die]; 349 } 350 351 /** 352 * NAND controller capabilities for distinction between compatible strings 353 * 354 * @max_cs_nb: Number of Chip Select lines available 355 * @max_rb_nb: Number of Ready/Busy lines available 356 * @need_system_controller: Indicates if the SoC needs to have access to the 357 * system controller (ie. to enable the NAND controller) 358 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 359 * fashion way 360 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 361 * BCH error detection and correction algorithm, 362 * NDCB3 register has been added 363 * @use_dma: Use dma for data transfers 364 */ 365 struct marvell_nfc_caps { 366 unsigned int max_cs_nb; 367 unsigned int max_rb_nb; 368 bool need_system_controller; 369 bool legacy_of_bindings; 370 bool is_nfcv2; 371 bool use_dma; 372 }; 373 374 /** 375 * NAND controller structure: stores Marvell NAND controller information 376 * 377 * @controller: Base controller structure 378 * @dev: Parent device (used to print error messages) 379 * @regs: NAND controller registers 380 * @core_clk: Core clock 381 * @reg_clk: Registers clock 382 * @complete: Completion object to wait for NAND controller events 383 * @assigned_cs: Bitmask describing already assigned CS lines 384 * @chips: List containing all the NAND chips attached to 385 * this NAND controller 386 * @caps: NAND controller capabilities for each compatible string 387 * @dma_chan: DMA channel (NFCv1 only) 388 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 389 */ 390 struct marvell_nfc { 391 struct nand_controller controller; 392 struct device *dev; 393 void __iomem *regs; 394 struct clk *core_clk; 395 struct clk *reg_clk; 396 struct completion complete; 397 unsigned long assigned_cs; 398 struct list_head chips; 399 struct nand_chip *selected_chip; 400 const struct marvell_nfc_caps *caps; 401 402 /* DMA (NFCv1 only) */ 403 bool use_dma; 404 struct dma_chan *dma_chan; 405 u8 *dma_buf; 406 }; 407 408 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 409 { 410 return container_of(ctrl, struct marvell_nfc, controller); 411 } 412 413 /** 414 * NAND controller timings expressed in NAND Controller clock cycles 415 * 416 * @tRP: ND_nRE pulse width 417 * @tRH: ND_nRE high duration 418 * @tWP: ND_nWE pulse time 419 * @tWH: ND_nWE high duration 420 * @tCS: Enable signal setup time 421 * @tCH: Enable signal hold time 422 * @tADL: Address to write data delay 423 * @tAR: ND_ALE low to ND_nRE low delay 424 * @tWHR: ND_nWE high to ND_nRE low for status read 425 * @tRHW: ND_nRE high duration, read to write delay 426 * @tR: ND_nWE high to ND_nRE low for read 427 */ 428 struct marvell_nfc_timings { 429 /* NDTR0 fields */ 430 unsigned int tRP; 431 unsigned int tRH; 432 unsigned int tWP; 433 unsigned int tWH; 434 unsigned int tCS; 435 unsigned int tCH; 436 unsigned int tADL; 437 /* NDTR1 fields */ 438 unsigned int tAR; 439 unsigned int tWHR; 440 unsigned int tRHW; 441 unsigned int tR; 442 }; 443 444 /** 445 * Derives a duration in numbers of clock cycles. 446 * 447 * @ps: Duration in pico-seconds 448 * @period_ns: Clock period in nano-seconds 449 * 450 * Convert the duration in nano-seconds, then divide by the period and 451 * return the number of clock periods. 452 */ 453 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 454 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 455 period_ns)) 456 457 /** 458 * NAND driver structure filled during the parsing of the ->exec_op() subop 459 * subset of instructions. 460 * 461 * @ndcb: Array of values written to NDCBx registers 462 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 463 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 464 * @rdy_delay_ns: Optional delay after waiting for the RB pin 465 * @data_delay_ns: Optional delay after the data xfer 466 * @data_instr_idx: Index of the data instruction in the subop 467 * @data_instr: Pointer to the data instruction in the subop 468 */ 469 struct marvell_nfc_op { 470 u32 ndcb[4]; 471 unsigned int cle_ale_delay_ns; 472 unsigned int rdy_timeout_ms; 473 unsigned int rdy_delay_ns; 474 unsigned int data_delay_ns; 475 unsigned int data_instr_idx; 476 const struct nand_op_instr *data_instr; 477 }; 478 479 /* 480 * Internal helper to conditionnally apply a delay (from the above structure, 481 * most of the time). 482 */ 483 static void cond_delay(unsigned int ns) 484 { 485 if (!ns) 486 return; 487 488 if (ns < 10000) 489 ndelay(ns); 490 else 491 udelay(DIV_ROUND_UP(ns, 1000)); 492 } 493 494 /* 495 * The controller has many flags that could generate interrupts, most of them 496 * are disabled and polling is used. For the very slow signals, using interrupts 497 * may relax the CPU charge. 498 */ 499 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 500 { 501 u32 reg; 502 503 /* Writing 1 disables the interrupt */ 504 reg = readl_relaxed(nfc->regs + NDCR); 505 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 506 } 507 508 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 509 { 510 u32 reg; 511 512 /* Writing 0 enables the interrupt */ 513 reg = readl_relaxed(nfc->regs + NDCR); 514 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 515 } 516 517 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 518 { 519 u32 reg; 520 521 reg = readl_relaxed(nfc->regs + NDSR); 522 writel_relaxed(int_mask, nfc->regs + NDSR); 523 524 return reg & int_mask; 525 } 526 527 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 528 bool force_8bit) 529 { 530 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 531 u32 ndcr; 532 533 /* 534 * Callers of this function do not verify if the NAND is using a 16-bit 535 * an 8-bit bus for normal operations, so we need to take care of that 536 * here by leaving the configuration unchanged if the NAND does not have 537 * the NAND_BUSWIDTH_16 flag set. 538 */ 539 if (!(chip->options & NAND_BUSWIDTH_16)) 540 return; 541 542 ndcr = readl_relaxed(nfc->regs + NDCR); 543 544 if (force_8bit) 545 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 546 else 547 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 548 549 writel_relaxed(ndcr, nfc->regs + NDCR); 550 } 551 552 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 553 { 554 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 555 u32 val; 556 int ret; 557 558 /* 559 * The command is being processed, wait for the ND_RUN bit to be 560 * cleared by the NFC. If not, we must clear it by hand. 561 */ 562 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 563 (val & NDCR_ND_RUN) == 0, 564 POLL_PERIOD, POLL_TIMEOUT); 565 if (ret) { 566 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 567 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 568 nfc->regs + NDCR); 569 return ret; 570 } 571 572 return 0; 573 } 574 575 /* 576 * Any time a command has to be sent to the controller, the following sequence 577 * has to be followed: 578 * - call marvell_nfc_prepare_cmd() 579 * -> activate the ND_RUN bit that will kind of 'start a job' 580 * -> wait the signal indicating the NFC is waiting for a command 581 * - send the command (cmd and address cycles) 582 * - enventually send or receive the data 583 * - call marvell_nfc_end_cmd() with the corresponding flag 584 * -> wait the flag to be triggered or cancel the job with a timeout 585 * 586 * The following helpers are here to factorize the code a bit so that 587 * specialized functions responsible for executing the actual NAND 588 * operations do not have to replicate the same code blocks. 589 */ 590 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 591 { 592 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 593 u32 ndcr, val; 594 int ret; 595 596 /* Poll ND_RUN and clear NDSR before issuing any command */ 597 ret = marvell_nfc_wait_ndrun(chip); 598 if (ret) { 599 dev_err(nfc->dev, "Last operation did not succeed\n"); 600 return ret; 601 } 602 603 ndcr = readl_relaxed(nfc->regs + NDCR); 604 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 605 606 /* Assert ND_RUN bit and wait the NFC to be ready */ 607 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 608 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 609 val & NDSR_WRCMDREQ, 610 POLL_PERIOD, POLL_TIMEOUT); 611 if (ret) { 612 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 613 return -ETIMEDOUT; 614 } 615 616 /* Command may be written, clear WRCMDREQ status bit */ 617 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 618 619 return 0; 620 } 621 622 static void marvell_nfc_send_cmd(struct nand_chip *chip, 623 struct marvell_nfc_op *nfc_op) 624 { 625 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 626 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 627 628 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 629 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 630 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 631 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 632 633 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 634 nfc->regs + NDCB0); 635 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 636 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 637 638 /* 639 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 640 * fields are used (only available on NFCv2). 641 */ 642 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 643 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 644 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 645 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 646 } 647 } 648 649 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 650 const char *label) 651 { 652 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 653 u32 val; 654 int ret; 655 656 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 657 val & flag, 658 POLL_PERIOD, POLL_TIMEOUT); 659 660 if (ret) { 661 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 662 label, val); 663 if (nfc->dma_chan) 664 dmaengine_terminate_all(nfc->dma_chan); 665 return ret; 666 } 667 668 /* 669 * DMA function uses this helper to poll on CMDD bits without wanting 670 * them to be cleared. 671 */ 672 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 673 return 0; 674 675 writel_relaxed(flag, nfc->regs + NDSR); 676 677 return 0; 678 } 679 680 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 681 { 682 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 683 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 684 685 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 686 } 687 688 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 689 { 690 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 691 u32 pending; 692 int ret; 693 694 /* Timeout is expressed in ms */ 695 if (!timeout_ms) 696 timeout_ms = IRQ_TIMEOUT; 697 698 init_completion(&nfc->complete); 699 700 marvell_nfc_enable_int(nfc, NDCR_RDYM); 701 ret = wait_for_completion_timeout(&nfc->complete, 702 msecs_to_jiffies(timeout_ms)); 703 marvell_nfc_disable_int(nfc, NDCR_RDYM); 704 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 705 706 /* 707 * In case the interrupt was not served in the required time frame, 708 * check if the ISR was not served or if something went actually wrong. 709 */ 710 if (ret && !pending) { 711 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 712 return -ETIMEDOUT; 713 } 714 715 return 0; 716 } 717 718 static void marvell_nfc_select_target(struct nand_chip *chip, 719 unsigned int die_nr) 720 { 721 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 722 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 723 u32 ndcr_generic; 724 725 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 726 return; 727 728 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 729 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 730 731 /* 732 * Reset the NDCR register to a clean state for this particular chip, 733 * also clear ND_RUN bit. 734 */ 735 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 736 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 737 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 738 739 /* Also reset the interrupt status register */ 740 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 741 742 nfc->selected_chip = chip; 743 marvell_nand->selected_die = die_nr; 744 } 745 746 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 747 { 748 struct marvell_nfc *nfc = dev_id; 749 u32 st = readl_relaxed(nfc->regs + NDSR); 750 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 751 752 /* 753 * RDY interrupt mask is one bit in NDCR while there are two status 754 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 755 */ 756 if (st & NDSR_RDY(1)) 757 st |= NDSR_RDY(0); 758 759 if (!(st & ien)) 760 return IRQ_NONE; 761 762 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 763 764 if (st & (NDSR_RDY(0) | NDSR_RDY(1))) 765 complete(&nfc->complete); 766 767 return IRQ_HANDLED; 768 } 769 770 /* HW ECC related functions */ 771 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 772 { 773 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 774 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 775 776 if (!(ndcr & NDCR_ECC_EN)) { 777 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 778 779 /* 780 * When enabling BCH, set threshold to 0 to always know the 781 * number of corrected bitflips. 782 */ 783 if (chip->ecc.algo == NAND_ECC_BCH) 784 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 785 } 786 } 787 788 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 789 { 790 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 791 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 792 793 if (ndcr & NDCR_ECC_EN) { 794 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 795 if (chip->ecc.algo == NAND_ECC_BCH) 796 writel_relaxed(0, nfc->regs + NDECCCTRL); 797 } 798 } 799 800 /* DMA related helpers */ 801 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 802 { 803 u32 reg; 804 805 reg = readl_relaxed(nfc->regs + NDCR); 806 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 807 } 808 809 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 810 { 811 u32 reg; 812 813 reg = readl_relaxed(nfc->regs + NDCR); 814 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 815 } 816 817 /* Read/write PIO/DMA accessors */ 818 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 819 enum dma_data_direction direction, 820 unsigned int len) 821 { 822 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 823 struct dma_async_tx_descriptor *tx; 824 struct scatterlist sg; 825 dma_cookie_t cookie; 826 int ret; 827 828 marvell_nfc_enable_dma(nfc); 829 /* Prepare the DMA transfer */ 830 sg_init_one(&sg, nfc->dma_buf, dma_len); 831 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 832 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 833 direction == DMA_FROM_DEVICE ? 834 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 835 DMA_PREP_INTERRUPT); 836 if (!tx) { 837 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 838 return -ENXIO; 839 } 840 841 /* Do the task and wait for it to finish */ 842 cookie = dmaengine_submit(tx); 843 ret = dma_submit_error(cookie); 844 if (ret) 845 return -EIO; 846 847 dma_async_issue_pending(nfc->dma_chan); 848 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 849 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 850 marvell_nfc_disable_dma(nfc); 851 if (ret) { 852 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 853 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 854 dmaengine_terminate_all(nfc->dma_chan); 855 return -ETIMEDOUT; 856 } 857 858 return 0; 859 } 860 861 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 862 unsigned int len) 863 { 864 unsigned int last_len = len % FIFO_DEPTH; 865 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 866 int i; 867 868 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 869 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 870 871 if (last_len) { 872 u8 tmp_buf[FIFO_DEPTH]; 873 874 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 875 memcpy(in + last_full_offset, tmp_buf, last_len); 876 } 877 878 return 0; 879 } 880 881 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 882 unsigned int len) 883 { 884 unsigned int last_len = len % FIFO_DEPTH; 885 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 886 int i; 887 888 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 889 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 890 891 if (last_len) { 892 u8 tmp_buf[FIFO_DEPTH]; 893 894 memcpy(tmp_buf, out + last_full_offset, last_len); 895 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 896 } 897 898 return 0; 899 } 900 901 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 902 u8 *data, int data_len, 903 u8 *spare, int spare_len, 904 u8 *ecc, int ecc_len, 905 unsigned int *max_bitflips) 906 { 907 struct mtd_info *mtd = nand_to_mtd(chip); 908 int bf; 909 910 /* 911 * Blank pages (all 0xFF) that have not been written may be recognized 912 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 913 * check if the entire page (with ECC bytes) is actually blank or not. 914 */ 915 if (!data) 916 data_len = 0; 917 if (!spare) 918 spare_len = 0; 919 if (!ecc) 920 ecc_len = 0; 921 922 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 923 spare, spare_len, chip->ecc.strength); 924 if (bf < 0) { 925 mtd->ecc_stats.failed++; 926 return; 927 } 928 929 /* Update the stats and max_bitflips */ 930 mtd->ecc_stats.corrected += bf; 931 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 932 } 933 934 /* 935 * Check a chunk is correct or not according to hardware ECC engine. 936 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 937 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 938 * value indicating that a check on the emptyness of the subpage must be 939 * performed before declaring the subpage corrupted. 940 */ 941 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip, 942 unsigned int *max_bitflips) 943 { 944 struct mtd_info *mtd = nand_to_mtd(chip); 945 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 946 int bf = 0; 947 u32 ndsr; 948 949 ndsr = readl_relaxed(nfc->regs + NDSR); 950 951 /* Check uncorrectable error flag */ 952 if (ndsr & NDSR_UNCERR) { 953 writel_relaxed(ndsr, nfc->regs + NDSR); 954 955 /* 956 * Do not increment ->ecc_stats.failed now, instead, return a 957 * non-zero value to indicate that this chunk was apparently 958 * bad, and it should be check to see if it empty or not. If 959 * the chunk (with ECC bytes) is not declared empty, the calling 960 * function must increment the failure count. 961 */ 962 return -EBADMSG; 963 } 964 965 /* Check correctable error flag */ 966 if (ndsr & NDSR_CORERR) { 967 writel_relaxed(ndsr, nfc->regs + NDSR); 968 969 if (chip->ecc.algo == NAND_ECC_BCH) 970 bf = NDSR_ERRCNT(ndsr); 971 else 972 bf = 1; 973 } 974 975 /* Update the stats and max_bitflips */ 976 mtd->ecc_stats.corrected += bf; 977 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 978 979 return 0; 980 } 981 982 /* Hamming read helpers */ 983 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 984 u8 *data_buf, u8 *oob_buf, 985 bool raw, int page) 986 { 987 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 988 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 989 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 990 struct marvell_nfc_op nfc_op = { 991 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 992 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 993 NDCB0_DBC | 994 NDCB0_CMD1(NAND_CMD_READ0) | 995 NDCB0_CMD2(NAND_CMD_READSTART), 996 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 997 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 998 }; 999 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1000 int ret; 1001 1002 /* NFCv2 needs more information about the operation being executed */ 1003 if (nfc->caps->is_nfcv2) 1004 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1005 1006 ret = marvell_nfc_prepare_cmd(chip); 1007 if (ret) 1008 return ret; 1009 1010 marvell_nfc_send_cmd(chip, &nfc_op); 1011 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1012 "RDDREQ while draining FIFO (data/oob)"); 1013 if (ret) 1014 return ret; 1015 1016 /* 1017 * Read the page then the OOB area. Unlike what is shown in current 1018 * documentation, spare bytes are protected by the ECC engine, and must 1019 * be at the beginning of the OOB area or running this driver on legacy 1020 * systems will prevent the discovery of the BBM/BBT. 1021 */ 1022 if (nfc->use_dma) { 1023 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 1024 lt->data_bytes + oob_bytes); 1025 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 1026 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 1027 } else { 1028 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 1029 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 1030 } 1031 1032 ret = marvell_nfc_wait_cmdd(chip); 1033 return ret; 1034 } 1035 1036 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, 1037 int oob_required, int page) 1038 { 1039 marvell_nfc_select_target(chip, chip->cur_cs); 1040 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1041 true, page); 1042 } 1043 1044 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, 1045 int oob_required, int page) 1046 { 1047 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1048 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1049 int max_bitflips = 0, ret; 1050 u8 *raw_buf; 1051 1052 marvell_nfc_select_target(chip, chip->cur_cs); 1053 marvell_nfc_enable_hw_ecc(chip); 1054 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 1055 page); 1056 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 1057 marvell_nfc_disable_hw_ecc(chip); 1058 1059 if (!ret) 1060 return max_bitflips; 1061 1062 /* 1063 * When ECC failures are detected, check if the full page has been 1064 * written or not. Ignore the failure if it is actually empty. 1065 */ 1066 raw_buf = kmalloc(full_sz, GFP_KERNEL); 1067 if (!raw_buf) 1068 return -ENOMEM; 1069 1070 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1071 lt->data_bytes, true, page); 1072 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1073 &max_bitflips); 1074 kfree(raw_buf); 1075 1076 return max_bitflips; 1077 } 1078 1079 /* 1080 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1081 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1082 * also stands for ->read_oob(). 1083 */ 1084 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) 1085 { 1086 /* Invalidate page cache */ 1087 chip->pagebuf = -1; 1088 1089 marvell_nfc_select_target(chip, chip->cur_cs); 1090 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf, 1091 chip->oob_poi, true, page); 1092 } 1093 1094 /* Hamming write helpers */ 1095 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1096 const u8 *data_buf, 1097 const u8 *oob_buf, bool raw, 1098 int page) 1099 { 1100 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1101 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1102 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1103 struct marvell_nfc_op nfc_op = { 1104 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1105 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1106 NDCB0_CMD1(NAND_CMD_SEQIN) | 1107 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1108 NDCB0_DBC, 1109 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1110 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1111 }; 1112 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1113 int ret; 1114 1115 /* NFCv2 needs more information about the operation being executed */ 1116 if (nfc->caps->is_nfcv2) 1117 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1118 1119 ret = marvell_nfc_prepare_cmd(chip); 1120 if (ret) 1121 return ret; 1122 1123 marvell_nfc_send_cmd(chip, &nfc_op); 1124 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1125 "WRDREQ while loading FIFO (data)"); 1126 if (ret) 1127 return ret; 1128 1129 /* Write the page then the OOB area */ 1130 if (nfc->use_dma) { 1131 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1132 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1133 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1134 lt->ecc_bytes + lt->spare_bytes); 1135 } else { 1136 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1137 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1138 } 1139 1140 ret = marvell_nfc_wait_cmdd(chip); 1141 if (ret) 1142 return ret; 1143 1144 ret = marvell_nfc_wait_op(chip, 1145 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); 1146 return ret; 1147 } 1148 1149 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, 1150 const u8 *buf, 1151 int oob_required, int page) 1152 { 1153 marvell_nfc_select_target(chip, chip->cur_cs); 1154 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1155 true, page); 1156 } 1157 1158 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, 1159 const u8 *buf, 1160 int oob_required, int page) 1161 { 1162 int ret; 1163 1164 marvell_nfc_select_target(chip, chip->cur_cs); 1165 marvell_nfc_enable_hw_ecc(chip); 1166 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1167 false, page); 1168 marvell_nfc_disable_hw_ecc(chip); 1169 1170 return ret; 1171 } 1172 1173 /* 1174 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1175 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1176 * also stands for ->write_oob(). 1177 */ 1178 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, 1179 int page) 1180 { 1181 struct mtd_info *mtd = nand_to_mtd(chip); 1182 1183 /* Invalidate page cache */ 1184 chip->pagebuf = -1; 1185 1186 memset(chip->data_buf, 0xFF, mtd->writesize); 1187 1188 marvell_nfc_select_target(chip, chip->cur_cs); 1189 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf, 1190 chip->oob_poi, true, page); 1191 } 1192 1193 /* BCH read helpers */ 1194 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, 1195 int oob_required, int page) 1196 { 1197 struct mtd_info *mtd = nand_to_mtd(chip); 1198 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1199 u8 *oob = chip->oob_poi; 1200 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1201 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1202 lt->last_spare_bytes; 1203 int data_len = lt->data_bytes; 1204 int spare_len = lt->spare_bytes; 1205 int ecc_len = lt->ecc_bytes; 1206 int chunk; 1207 1208 marvell_nfc_select_target(chip, chip->cur_cs); 1209 1210 if (oob_required) 1211 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1212 1213 nand_read_page_op(chip, page, 0, NULL, 0); 1214 1215 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1216 /* Update last chunk length */ 1217 if (chunk >= lt->full_chunk_cnt) { 1218 data_len = lt->last_data_bytes; 1219 spare_len = lt->last_spare_bytes; 1220 ecc_len = lt->last_ecc_bytes; 1221 } 1222 1223 /* Read data bytes*/ 1224 nand_change_read_column_op(chip, chunk * chunk_size, 1225 buf + (lt->data_bytes * chunk), 1226 data_len, false); 1227 1228 /* Read spare bytes */ 1229 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1230 spare_len, false); 1231 1232 /* Read ECC bytes */ 1233 nand_read_data_op(chip, oob + ecc_offset + 1234 (ALIGN(lt->ecc_bytes, 32) * chunk), 1235 ecc_len, false); 1236 } 1237 1238 return 0; 1239 } 1240 1241 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1242 u8 *data, unsigned int data_len, 1243 u8 *spare, unsigned int spare_len, 1244 int page) 1245 { 1246 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1247 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1248 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1249 int i, ret; 1250 struct marvell_nfc_op nfc_op = { 1251 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1252 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1253 NDCB0_LEN_OVRD, 1254 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1255 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1256 .ndcb[3] = data_len + spare_len, 1257 }; 1258 1259 ret = marvell_nfc_prepare_cmd(chip); 1260 if (ret) 1261 return; 1262 1263 if (chunk == 0) 1264 nfc_op.ndcb[0] |= NDCB0_DBC | 1265 NDCB0_CMD1(NAND_CMD_READ0) | 1266 NDCB0_CMD2(NAND_CMD_READSTART); 1267 1268 /* 1269 * Trigger the monolithic read on the first chunk, then naked read on 1270 * intermediate chunks and finally a last naked read on the last chunk. 1271 */ 1272 if (chunk == 0) 1273 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1274 else if (chunk < lt->nchunks - 1) 1275 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1276 else 1277 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1278 1279 marvell_nfc_send_cmd(chip, &nfc_op); 1280 1281 /* 1282 * According to the datasheet, when reading from NDDB 1283 * with BCH enabled, after each 32 bytes reads, we 1284 * have to make sure that the NDSR.RDDREQ bit is set. 1285 * 1286 * Drain the FIFO, 8 32-bit reads at a time, and skip 1287 * the polling on the last read. 1288 * 1289 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1290 */ 1291 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1292 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1293 "RDDREQ while draining FIFO (data)"); 1294 marvell_nfc_xfer_data_in_pio(nfc, data, 1295 FIFO_DEPTH * BCH_SEQ_READS); 1296 data += FIFO_DEPTH * BCH_SEQ_READS; 1297 } 1298 1299 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1300 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1301 "RDDREQ while draining FIFO (OOB)"); 1302 marvell_nfc_xfer_data_in_pio(nfc, spare, 1303 FIFO_DEPTH * BCH_SEQ_READS); 1304 spare += FIFO_DEPTH * BCH_SEQ_READS; 1305 } 1306 } 1307 1308 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, 1309 u8 *buf, int oob_required, 1310 int page) 1311 { 1312 struct mtd_info *mtd = nand_to_mtd(chip); 1313 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1314 int data_len = lt->data_bytes, spare_len = lt->spare_bytes; 1315 u8 *data = buf, *spare = chip->oob_poi; 1316 int max_bitflips = 0; 1317 u32 failure_mask = 0; 1318 int chunk, ret; 1319 1320 marvell_nfc_select_target(chip, chip->cur_cs); 1321 1322 /* 1323 * With BCH, OOB is not fully used (and thus not read entirely), not 1324 * expected bytes could show up at the end of the OOB buffer if not 1325 * explicitly erased. 1326 */ 1327 if (oob_required) 1328 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1329 1330 marvell_nfc_enable_hw_ecc(chip); 1331 1332 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1333 /* Update length for the last chunk */ 1334 if (chunk >= lt->full_chunk_cnt) { 1335 data_len = lt->last_data_bytes; 1336 spare_len = lt->last_spare_bytes; 1337 } 1338 1339 /* Read the chunk and detect number of bitflips */ 1340 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1341 spare, spare_len, page); 1342 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 1343 if (ret) 1344 failure_mask |= BIT(chunk); 1345 1346 data += data_len; 1347 spare += spare_len; 1348 } 1349 1350 marvell_nfc_disable_hw_ecc(chip); 1351 1352 if (!failure_mask) 1353 return max_bitflips; 1354 1355 /* 1356 * Please note that dumping the ECC bytes during a normal read with OOB 1357 * area would add a significant overhead as ECC bytes are "consumed" by 1358 * the controller in normal mode and must be re-read in raw mode. To 1359 * avoid dropping the performances, we prefer not to include them. The 1360 * user should re-read the page in raw mode if ECC bytes are required. 1361 */ 1362 1363 /* 1364 * In case there is any subpage read error reported by ->correct(), we 1365 * usually re-read only ECC bytes in raw mode and check if the whole 1366 * page is empty. In this case, it is normal that the ECC check failed 1367 * and we just ignore the error. 1368 * 1369 * However, it has been empirically observed that for some layouts (e.g 1370 * 2k page, 8b strength per 512B chunk), the controller tries to correct 1371 * bits and may create itself bitflips in the erased area. To overcome 1372 * this strange behavior, the whole page is re-read in raw mode, not 1373 * only the ECC bytes. 1374 */ 1375 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1376 int data_off_in_page, spare_off_in_page, ecc_off_in_page; 1377 int data_off, spare_off, ecc_off; 1378 int data_len, spare_len, ecc_len; 1379 1380 /* No failure reported for this chunk, move to the next one */ 1381 if (!(failure_mask & BIT(chunk))) 1382 continue; 1383 1384 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + 1385 lt->ecc_bytes); 1386 spare_off_in_page = data_off_in_page + 1387 (chunk < lt->full_chunk_cnt ? lt->data_bytes : 1388 lt->last_data_bytes); 1389 ecc_off_in_page = spare_off_in_page + 1390 (chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1391 lt->last_spare_bytes); 1392 1393 data_off = chunk * lt->data_bytes; 1394 spare_off = chunk * lt->spare_bytes; 1395 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + 1396 lt->last_spare_bytes + 1397 (chunk * (lt->ecc_bytes + 2)); 1398 1399 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : 1400 lt->last_data_bytes; 1401 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1402 lt->last_spare_bytes; 1403 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : 1404 lt->last_ecc_bytes; 1405 1406 /* 1407 * Only re-read the ECC bytes, unless we are using the 2k/8b 1408 * layout which is buggy in the sense that the ECC engine will 1409 * try to correct data bytes anyway, creating bitflips. In this 1410 * case, re-read the entire page. 1411 */ 1412 if (lt->writesize == 2048 && lt->strength == 8) { 1413 nand_change_read_column_op(chip, data_off_in_page, 1414 buf + data_off, data_len, 1415 false); 1416 nand_change_read_column_op(chip, spare_off_in_page, 1417 chip->oob_poi + spare_off, spare_len, 1418 false); 1419 } 1420 1421 nand_change_read_column_op(chip, ecc_off_in_page, 1422 chip->oob_poi + ecc_off, ecc_len, 1423 false); 1424 1425 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1426 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, 1427 chip->oob_poi + spare_off, spare_len, 1428 chip->oob_poi + ecc_off, ecc_len, 1429 &max_bitflips); 1430 } 1431 1432 return max_bitflips; 1433 } 1434 1435 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) 1436 { 1437 /* Invalidate page cache */ 1438 chip->pagebuf = -1; 1439 1440 return chip->ecc.read_page_raw(chip, chip->data_buf, true, page); 1441 } 1442 1443 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) 1444 { 1445 /* Invalidate page cache */ 1446 chip->pagebuf = -1; 1447 1448 return chip->ecc.read_page(chip, chip->data_buf, true, page); 1449 } 1450 1451 /* BCH write helpers */ 1452 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, 1453 const u8 *buf, 1454 int oob_required, int page) 1455 { 1456 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1457 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1458 int data_len = lt->data_bytes; 1459 int spare_len = lt->spare_bytes; 1460 int ecc_len = lt->ecc_bytes; 1461 int spare_offset = 0; 1462 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1463 lt->last_spare_bytes; 1464 int chunk; 1465 1466 marvell_nfc_select_target(chip, chip->cur_cs); 1467 1468 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1469 1470 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1471 if (chunk >= lt->full_chunk_cnt) { 1472 data_len = lt->last_data_bytes; 1473 spare_len = lt->last_spare_bytes; 1474 ecc_len = lt->last_ecc_bytes; 1475 } 1476 1477 /* Point to the column of the next chunk */ 1478 nand_change_write_column_op(chip, chunk * full_chunk_size, 1479 NULL, 0, false); 1480 1481 /* Write the data */ 1482 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1483 data_len, false); 1484 1485 if (!oob_required) 1486 continue; 1487 1488 /* Write the spare bytes */ 1489 if (spare_len) 1490 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1491 spare_len, false); 1492 1493 /* Write the ECC bytes */ 1494 if (ecc_len) 1495 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1496 ecc_len, false); 1497 1498 spare_offset += spare_len; 1499 ecc_offset += ALIGN(ecc_len, 32); 1500 } 1501 1502 return nand_prog_page_end_op(chip); 1503 } 1504 1505 static int 1506 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1507 const u8 *data, unsigned int data_len, 1508 const u8 *spare, unsigned int spare_len, 1509 int page) 1510 { 1511 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1512 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1513 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1514 u32 xtype; 1515 int ret; 1516 struct marvell_nfc_op nfc_op = { 1517 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1518 .ndcb[3] = data_len + spare_len, 1519 }; 1520 1521 /* 1522 * First operation dispatches the CMD_SEQIN command, issue the address 1523 * cycles and asks for the first chunk of data. 1524 * All operations in the middle (if any) will issue a naked write and 1525 * also ask for data. 1526 * Last operation (if any) asks for the last chunk of data through a 1527 * last naked write. 1528 */ 1529 if (chunk == 0) { 1530 if (lt->nchunks == 1) 1531 xtype = XTYPE_MONOLITHIC_RW; 1532 else 1533 xtype = XTYPE_WRITE_DISPATCH; 1534 1535 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1536 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1537 NDCB0_CMD1(NAND_CMD_SEQIN); 1538 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1539 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1540 } else if (chunk < lt->nchunks - 1) { 1541 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1542 } else { 1543 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1544 } 1545 1546 /* Always dispatch the PAGEPROG command on the last chunk */ 1547 if (chunk == lt->nchunks - 1) 1548 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1549 1550 ret = marvell_nfc_prepare_cmd(chip); 1551 if (ret) 1552 return ret; 1553 1554 marvell_nfc_send_cmd(chip, &nfc_op); 1555 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1556 "WRDREQ while loading FIFO (data)"); 1557 if (ret) 1558 return ret; 1559 1560 /* Transfer the contents */ 1561 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1562 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1563 1564 return 0; 1565 } 1566 1567 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, 1568 const u8 *buf, 1569 int oob_required, int page) 1570 { 1571 struct mtd_info *mtd = nand_to_mtd(chip); 1572 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1573 const u8 *data = buf; 1574 const u8 *spare = chip->oob_poi; 1575 int data_len = lt->data_bytes; 1576 int spare_len = lt->spare_bytes; 1577 int chunk, ret; 1578 1579 marvell_nfc_select_target(chip, chip->cur_cs); 1580 1581 /* Spare data will be written anyway, so clear it to avoid garbage */ 1582 if (!oob_required) 1583 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1584 1585 marvell_nfc_enable_hw_ecc(chip); 1586 1587 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1588 if (chunk >= lt->full_chunk_cnt) { 1589 data_len = lt->last_data_bytes; 1590 spare_len = lt->last_spare_bytes; 1591 } 1592 1593 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1594 spare, spare_len, page); 1595 data += data_len; 1596 spare += spare_len; 1597 1598 /* 1599 * Waiting only for CMDD or PAGED is not enough, ECC are 1600 * partially written. No flag is set once the operation is 1601 * really finished but the ND_RUN bit is cleared, so wait for it 1602 * before stepping into the next command. 1603 */ 1604 marvell_nfc_wait_ndrun(chip); 1605 } 1606 1607 ret = marvell_nfc_wait_op(chip, 1608 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); 1609 1610 marvell_nfc_disable_hw_ecc(chip); 1611 1612 if (ret) 1613 return ret; 1614 1615 return 0; 1616 } 1617 1618 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, 1619 int page) 1620 { 1621 struct mtd_info *mtd = nand_to_mtd(chip); 1622 1623 /* Invalidate page cache */ 1624 chip->pagebuf = -1; 1625 1626 memset(chip->data_buf, 0xFF, mtd->writesize); 1627 1628 return chip->ecc.write_page_raw(chip, chip->data_buf, true, page); 1629 } 1630 1631 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) 1632 { 1633 struct mtd_info *mtd = nand_to_mtd(chip); 1634 1635 /* Invalidate page cache */ 1636 chip->pagebuf = -1; 1637 1638 memset(chip->data_buf, 0xFF, mtd->writesize); 1639 1640 return chip->ecc.write_page(chip, chip->data_buf, true, page); 1641 } 1642 1643 /* NAND framework ->exec_op() hooks and related helpers */ 1644 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1645 const struct nand_subop *subop, 1646 struct marvell_nfc_op *nfc_op) 1647 { 1648 const struct nand_op_instr *instr = NULL; 1649 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1650 bool first_cmd = true; 1651 unsigned int op_id; 1652 int i; 1653 1654 /* Reset the input structure as most of its fields will be OR'ed */ 1655 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1656 1657 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1658 unsigned int offset, naddrs; 1659 const u8 *addrs; 1660 int len; 1661 1662 instr = &subop->instrs[op_id]; 1663 1664 switch (instr->type) { 1665 case NAND_OP_CMD_INSTR: 1666 if (first_cmd) 1667 nfc_op->ndcb[0] |= 1668 NDCB0_CMD1(instr->ctx.cmd.opcode); 1669 else 1670 nfc_op->ndcb[0] |= 1671 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1672 NDCB0_DBC; 1673 1674 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1675 first_cmd = false; 1676 break; 1677 1678 case NAND_OP_ADDR_INSTR: 1679 offset = nand_subop_get_addr_start_off(subop, op_id); 1680 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1681 addrs = &instr->ctx.addr.addrs[offset]; 1682 1683 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1684 1685 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1686 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1687 1688 if (naddrs >= 5) 1689 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1690 if (naddrs >= 6) 1691 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1692 if (naddrs == 7) 1693 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1694 1695 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1696 break; 1697 1698 case NAND_OP_DATA_IN_INSTR: 1699 nfc_op->data_instr = instr; 1700 nfc_op->data_instr_idx = op_id; 1701 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1702 if (nfc->caps->is_nfcv2) { 1703 nfc_op->ndcb[0] |= 1704 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1705 NDCB0_LEN_OVRD; 1706 len = nand_subop_get_data_len(subop, op_id); 1707 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1708 } 1709 nfc_op->data_delay_ns = instr->delay_ns; 1710 break; 1711 1712 case NAND_OP_DATA_OUT_INSTR: 1713 nfc_op->data_instr = instr; 1714 nfc_op->data_instr_idx = op_id; 1715 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1716 if (nfc->caps->is_nfcv2) { 1717 nfc_op->ndcb[0] |= 1718 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1719 NDCB0_LEN_OVRD; 1720 len = nand_subop_get_data_len(subop, op_id); 1721 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1722 } 1723 nfc_op->data_delay_ns = instr->delay_ns; 1724 break; 1725 1726 case NAND_OP_WAITRDY_INSTR: 1727 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1728 nfc_op->rdy_delay_ns = instr->delay_ns; 1729 break; 1730 } 1731 } 1732 } 1733 1734 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1735 const struct nand_subop *subop, 1736 struct marvell_nfc_op *nfc_op) 1737 { 1738 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1739 const struct nand_op_instr *instr = nfc_op->data_instr; 1740 unsigned int op_id = nfc_op->data_instr_idx; 1741 unsigned int len = nand_subop_get_data_len(subop, op_id); 1742 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1743 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1744 int ret; 1745 1746 if (instr->ctx.data.force_8bit) 1747 marvell_nfc_force_byte_access(chip, true); 1748 1749 if (reading) { 1750 u8 *in = instr->ctx.data.buf.in + offset; 1751 1752 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1753 } else { 1754 const u8 *out = instr->ctx.data.buf.out + offset; 1755 1756 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1757 } 1758 1759 if (instr->ctx.data.force_8bit) 1760 marvell_nfc_force_byte_access(chip, false); 1761 1762 return ret; 1763 } 1764 1765 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1766 const struct nand_subop *subop) 1767 { 1768 struct marvell_nfc_op nfc_op; 1769 bool reading; 1770 int ret; 1771 1772 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1773 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1774 1775 ret = marvell_nfc_prepare_cmd(chip); 1776 if (ret) 1777 return ret; 1778 1779 marvell_nfc_send_cmd(chip, &nfc_op); 1780 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1781 "RDDREQ/WRDREQ while draining raw data"); 1782 if (ret) 1783 return ret; 1784 1785 cond_delay(nfc_op.cle_ale_delay_ns); 1786 1787 if (reading) { 1788 if (nfc_op.rdy_timeout_ms) { 1789 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1790 if (ret) 1791 return ret; 1792 } 1793 1794 cond_delay(nfc_op.rdy_delay_ns); 1795 } 1796 1797 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1798 ret = marvell_nfc_wait_cmdd(chip); 1799 if (ret) 1800 return ret; 1801 1802 cond_delay(nfc_op.data_delay_ns); 1803 1804 if (!reading) { 1805 if (nfc_op.rdy_timeout_ms) { 1806 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1807 if (ret) 1808 return ret; 1809 } 1810 1811 cond_delay(nfc_op.rdy_delay_ns); 1812 } 1813 1814 /* 1815 * NDCR ND_RUN bit should be cleared automatically at the end of each 1816 * operation but experience shows that the behavior is buggy when it 1817 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1818 */ 1819 if (!reading) { 1820 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1821 1822 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1823 nfc->regs + NDCR); 1824 } 1825 1826 return 0; 1827 } 1828 1829 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1830 const struct nand_subop *subop) 1831 { 1832 struct marvell_nfc_op nfc_op; 1833 int ret; 1834 1835 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1836 1837 /* 1838 * Naked access are different in that they need to be flagged as naked 1839 * by the controller. Reset the controller registers fields that inform 1840 * on the type and refill them according to the ongoing operation. 1841 */ 1842 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1843 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1844 switch (subop->instrs[0].type) { 1845 case NAND_OP_CMD_INSTR: 1846 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1847 break; 1848 case NAND_OP_ADDR_INSTR: 1849 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1850 break; 1851 case NAND_OP_DATA_IN_INSTR: 1852 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1853 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1854 break; 1855 case NAND_OP_DATA_OUT_INSTR: 1856 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1857 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1858 break; 1859 default: 1860 /* This should never happen */ 1861 break; 1862 } 1863 1864 ret = marvell_nfc_prepare_cmd(chip); 1865 if (ret) 1866 return ret; 1867 1868 marvell_nfc_send_cmd(chip, &nfc_op); 1869 1870 if (!nfc_op.data_instr) { 1871 ret = marvell_nfc_wait_cmdd(chip); 1872 cond_delay(nfc_op.cle_ale_delay_ns); 1873 return ret; 1874 } 1875 1876 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1877 "RDDREQ/WRDREQ while draining raw data"); 1878 if (ret) 1879 return ret; 1880 1881 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1882 ret = marvell_nfc_wait_cmdd(chip); 1883 if (ret) 1884 return ret; 1885 1886 /* 1887 * NDCR ND_RUN bit should be cleared automatically at the end of each 1888 * operation but experience shows that the behavior is buggy when it 1889 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1890 */ 1891 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1892 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1893 1894 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1895 nfc->regs + NDCR); 1896 } 1897 1898 return 0; 1899 } 1900 1901 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1902 const struct nand_subop *subop) 1903 { 1904 struct marvell_nfc_op nfc_op; 1905 int ret; 1906 1907 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1908 1909 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1910 cond_delay(nfc_op.rdy_delay_ns); 1911 1912 return ret; 1913 } 1914 1915 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1916 const struct nand_subop *subop) 1917 { 1918 struct marvell_nfc_op nfc_op; 1919 int ret; 1920 1921 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1922 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1923 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1924 1925 ret = marvell_nfc_prepare_cmd(chip); 1926 if (ret) 1927 return ret; 1928 1929 marvell_nfc_send_cmd(chip, &nfc_op); 1930 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1931 "RDDREQ while reading ID"); 1932 if (ret) 1933 return ret; 1934 1935 cond_delay(nfc_op.cle_ale_delay_ns); 1936 1937 if (nfc_op.rdy_timeout_ms) { 1938 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1939 if (ret) 1940 return ret; 1941 } 1942 1943 cond_delay(nfc_op.rdy_delay_ns); 1944 1945 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1946 ret = marvell_nfc_wait_cmdd(chip); 1947 if (ret) 1948 return ret; 1949 1950 cond_delay(nfc_op.data_delay_ns); 1951 1952 return 0; 1953 } 1954 1955 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 1956 const struct nand_subop *subop) 1957 { 1958 struct marvell_nfc_op nfc_op; 1959 int ret; 1960 1961 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1962 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1963 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 1964 1965 ret = marvell_nfc_prepare_cmd(chip); 1966 if (ret) 1967 return ret; 1968 1969 marvell_nfc_send_cmd(chip, &nfc_op); 1970 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1971 "RDDREQ while reading status"); 1972 if (ret) 1973 return ret; 1974 1975 cond_delay(nfc_op.cle_ale_delay_ns); 1976 1977 if (nfc_op.rdy_timeout_ms) { 1978 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1979 if (ret) 1980 return ret; 1981 } 1982 1983 cond_delay(nfc_op.rdy_delay_ns); 1984 1985 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1986 ret = marvell_nfc_wait_cmdd(chip); 1987 if (ret) 1988 return ret; 1989 1990 cond_delay(nfc_op.data_delay_ns); 1991 1992 return 0; 1993 } 1994 1995 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 1996 const struct nand_subop *subop) 1997 { 1998 struct marvell_nfc_op nfc_op; 1999 int ret; 2000 2001 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2002 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 2003 2004 ret = marvell_nfc_prepare_cmd(chip); 2005 if (ret) 2006 return ret; 2007 2008 marvell_nfc_send_cmd(chip, &nfc_op); 2009 ret = marvell_nfc_wait_cmdd(chip); 2010 if (ret) 2011 return ret; 2012 2013 cond_delay(nfc_op.cle_ale_delay_ns); 2014 2015 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2016 if (ret) 2017 return ret; 2018 2019 cond_delay(nfc_op.rdy_delay_ns); 2020 2021 return 0; 2022 } 2023 2024 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 2025 const struct nand_subop *subop) 2026 { 2027 struct marvell_nfc_op nfc_op; 2028 int ret; 2029 2030 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2031 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 2032 2033 ret = marvell_nfc_prepare_cmd(chip); 2034 if (ret) 2035 return ret; 2036 2037 marvell_nfc_send_cmd(chip, &nfc_op); 2038 ret = marvell_nfc_wait_cmdd(chip); 2039 if (ret) 2040 return ret; 2041 2042 cond_delay(nfc_op.cle_ale_delay_ns); 2043 2044 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2045 if (ret) 2046 return ret; 2047 2048 cond_delay(nfc_op.rdy_delay_ns); 2049 2050 return 0; 2051 } 2052 2053 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 2054 /* Monolithic reads/writes */ 2055 NAND_OP_PARSER_PATTERN( 2056 marvell_nfc_monolithic_access_exec, 2057 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2058 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 2059 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2060 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 2061 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2062 NAND_OP_PARSER_PATTERN( 2063 marvell_nfc_monolithic_access_exec, 2064 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2065 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 2066 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 2067 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2068 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 2069 /* Naked commands */ 2070 NAND_OP_PARSER_PATTERN( 2071 marvell_nfc_naked_access_exec, 2072 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2073 NAND_OP_PARSER_PATTERN( 2074 marvell_nfc_naked_access_exec, 2075 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 2076 NAND_OP_PARSER_PATTERN( 2077 marvell_nfc_naked_access_exec, 2078 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2079 NAND_OP_PARSER_PATTERN( 2080 marvell_nfc_naked_access_exec, 2081 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 2082 NAND_OP_PARSER_PATTERN( 2083 marvell_nfc_naked_waitrdy_exec, 2084 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2085 ); 2086 2087 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 2088 /* Naked commands not supported, use a function for each pattern */ 2089 NAND_OP_PARSER_PATTERN( 2090 marvell_nfc_read_id_type_exec, 2091 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2092 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2093 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 2094 NAND_OP_PARSER_PATTERN( 2095 marvell_nfc_erase_cmd_type_exec, 2096 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2097 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2098 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2099 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2100 NAND_OP_PARSER_PATTERN( 2101 marvell_nfc_read_status_exec, 2102 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2103 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 2104 NAND_OP_PARSER_PATTERN( 2105 marvell_nfc_reset_cmd_type_exec, 2106 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2107 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2108 NAND_OP_PARSER_PATTERN( 2109 marvell_nfc_naked_waitrdy_exec, 2110 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2111 ); 2112 2113 static int marvell_nfc_exec_op(struct nand_chip *chip, 2114 const struct nand_operation *op, 2115 bool check_only) 2116 { 2117 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2118 2119 marvell_nfc_select_target(chip, op->cs); 2120 2121 if (nfc->caps->is_nfcv2) 2122 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2123 op, check_only); 2124 else 2125 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2126 op, check_only); 2127 } 2128 2129 /* 2130 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2131 * usable. 2132 */ 2133 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2134 struct mtd_oob_region *oobregion) 2135 { 2136 struct nand_chip *chip = mtd_to_nand(mtd); 2137 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2138 2139 if (section) 2140 return -ERANGE; 2141 2142 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2143 lt->last_ecc_bytes; 2144 oobregion->offset = mtd->oobsize - oobregion->length; 2145 2146 return 0; 2147 } 2148 2149 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2150 struct mtd_oob_region *oobregion) 2151 { 2152 struct nand_chip *chip = mtd_to_nand(mtd); 2153 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2154 2155 if (section) 2156 return -ERANGE; 2157 2158 /* 2159 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2160 * 4KB page / 4bit BCH combination. 2161 */ 2162 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2163 oobregion->offset = 6; 2164 else 2165 oobregion->offset = 2; 2166 2167 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2168 lt->last_spare_bytes - oobregion->offset; 2169 2170 return 0; 2171 } 2172 2173 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2174 .ecc = marvell_nand_ooblayout_ecc, 2175 .free = marvell_nand_ooblayout_free, 2176 }; 2177 2178 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, 2179 struct nand_ecc_ctrl *ecc) 2180 { 2181 struct nand_chip *chip = mtd_to_nand(mtd); 2182 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2183 const struct marvell_hw_ecc_layout *l; 2184 int i; 2185 2186 if (!nfc->caps->is_nfcv2 && 2187 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2188 dev_err(nfc->dev, 2189 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2190 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2191 return -ENOTSUPP; 2192 } 2193 2194 to_marvell_nand(chip)->layout = NULL; 2195 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2196 l = &marvell_nfc_layouts[i]; 2197 if (mtd->writesize == l->writesize && 2198 ecc->size == l->chunk && ecc->strength == l->strength) { 2199 to_marvell_nand(chip)->layout = l; 2200 break; 2201 } 2202 } 2203 2204 if (!to_marvell_nand(chip)->layout || 2205 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2206 dev_err(nfc->dev, 2207 "ECC strength %d at page size %d is not supported\n", 2208 ecc->strength, mtd->writesize); 2209 return -ENOTSUPP; 2210 } 2211 2212 /* Special care for the layout 2k/8-bit/512B */ 2213 if (l->writesize == 2048 && l->strength == 8) { 2214 if (mtd->oobsize < 128) { 2215 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); 2216 return -ENOTSUPP; 2217 } else { 2218 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2219 } 2220 } 2221 2222 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2223 ecc->steps = l->nchunks; 2224 ecc->size = l->data_bytes; 2225 2226 if (ecc->strength == 1) { 2227 chip->ecc.algo = NAND_ECC_HAMMING; 2228 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2229 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2230 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2231 ecc->read_oob = ecc->read_oob_raw; 2232 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2233 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2234 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2235 ecc->write_oob = ecc->write_oob_raw; 2236 } else { 2237 chip->ecc.algo = NAND_ECC_BCH; 2238 ecc->strength = 16; 2239 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2240 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2241 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2242 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2243 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2244 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2245 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2246 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2247 } 2248 2249 return 0; 2250 } 2251 2252 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2253 struct nand_ecc_ctrl *ecc) 2254 { 2255 struct nand_chip *chip = mtd_to_nand(mtd); 2256 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2257 int ret; 2258 2259 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) { 2260 if (chip->ecc_step_ds && chip->ecc_strength_ds) { 2261 ecc->size = chip->ecc_step_ds; 2262 ecc->strength = chip->ecc_strength_ds; 2263 } else { 2264 dev_info(nfc->dev, 2265 "No minimum ECC strength, using 1b/512B\n"); 2266 ecc->size = 512; 2267 ecc->strength = 1; 2268 } 2269 } 2270 2271 switch (ecc->mode) { 2272 case NAND_ECC_HW: 2273 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc); 2274 if (ret) 2275 return ret; 2276 break; 2277 case NAND_ECC_NONE: 2278 case NAND_ECC_SOFT: 2279 case NAND_ECC_ON_DIE: 2280 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2281 mtd->writesize != SZ_2K) { 2282 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2283 mtd->writesize); 2284 return -EINVAL; 2285 } 2286 break; 2287 default: 2288 return -EINVAL; 2289 } 2290 2291 return 0; 2292 } 2293 2294 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2295 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2296 2297 static struct nand_bbt_descr bbt_main_descr = { 2298 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2299 NAND_BBT_2BIT | NAND_BBT_VERSION, 2300 .offs = 8, 2301 .len = 6, 2302 .veroffs = 14, 2303 .maxblocks = 8, /* Last 8 blocks in each chip */ 2304 .pattern = bbt_pattern 2305 }; 2306 2307 static struct nand_bbt_descr bbt_mirror_descr = { 2308 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2309 NAND_BBT_2BIT | NAND_BBT_VERSION, 2310 .offs = 8, 2311 .len = 6, 2312 .veroffs = 14, 2313 .maxblocks = 8, /* Last 8 blocks in each chip */ 2314 .pattern = bbt_mirror_pattern 2315 }; 2316 2317 static int marvell_nfc_setup_data_interface(struct nand_chip *chip, int chipnr, 2318 const struct nand_data_interface 2319 *conf) 2320 { 2321 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2322 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2323 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2324 const struct nand_sdr_timings *sdr; 2325 struct marvell_nfc_timings nfc_tmg; 2326 int read_delay; 2327 2328 sdr = nand_get_sdr_timings(conf); 2329 if (IS_ERR(sdr)) 2330 return PTR_ERR(sdr); 2331 2332 /* 2333 * SDR timings are given in pico-seconds while NFC timings must be 2334 * expressed in NAND controller clock cycles, which is half of the 2335 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2336 * This is not written anywhere in the datasheet but was observed 2337 * with an oscilloscope. 2338 * 2339 * NFC datasheet gives equations from which thoses calculations 2340 * are derived, they tend to be slightly more restrictives than the 2341 * given core timings and may improve the overall speed. 2342 */ 2343 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2344 nfc_tmg.tRH = nfc_tmg.tRP; 2345 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2346 nfc_tmg.tWH = nfc_tmg.tWP; 2347 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2348 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2349 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2350 /* 2351 * Read delay is the time of propagation from SoC pins to NFC internal 2352 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2353 * EDO mode, an additional delay of tRH must be taken into account so 2354 * the data is sampled on the falling edge instead of the rising edge. 2355 */ 2356 read_delay = sdr->tRC_min >= 30000 ? 2357 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2358 2359 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2360 /* 2361 * tWHR and tRHW are supposed to be read to write delays (and vice 2362 * versa) but in some cases, ie. when doing a change column, they must 2363 * be greater than that to be sure tCCS delay is respected. 2364 */ 2365 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2366 period_ns) - 2, 2367 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2368 period_ns); 2369 2370 /* 2371 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2372 * NFCv1: No WAIT_MODE, tR must be maximal. 2373 */ 2374 if (nfc->caps->is_nfcv2) { 2375 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2376 } else { 2377 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2378 period_ns); 2379 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2380 nfc_tmg.tR = nfc_tmg.tCH - 3; 2381 else 2382 nfc_tmg.tR = 0; 2383 } 2384 2385 if (chipnr < 0) 2386 return 0; 2387 2388 marvell_nand->ndtr0 = 2389 NDTR0_TRP(nfc_tmg.tRP) | 2390 NDTR0_TRH(nfc_tmg.tRH) | 2391 NDTR0_ETRP(nfc_tmg.tRP) | 2392 NDTR0_TWP(nfc_tmg.tWP) | 2393 NDTR0_TWH(nfc_tmg.tWH) | 2394 NDTR0_TCS(nfc_tmg.tCS) | 2395 NDTR0_TCH(nfc_tmg.tCH); 2396 2397 marvell_nand->ndtr1 = 2398 NDTR1_TAR(nfc_tmg.tAR) | 2399 NDTR1_TWHR(nfc_tmg.tWHR) | 2400 NDTR1_TR(nfc_tmg.tR); 2401 2402 if (nfc->caps->is_nfcv2) { 2403 marvell_nand->ndtr0 |= 2404 NDTR0_RD_CNT_DEL(read_delay) | 2405 NDTR0_SELCNTR | 2406 NDTR0_TADL(nfc_tmg.tADL); 2407 2408 marvell_nand->ndtr1 |= 2409 NDTR1_TRHW(nfc_tmg.tRHW) | 2410 NDTR1_WAIT_MODE; 2411 } 2412 2413 return 0; 2414 } 2415 2416 static int marvell_nand_attach_chip(struct nand_chip *chip) 2417 { 2418 struct mtd_info *mtd = nand_to_mtd(chip); 2419 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2420 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2421 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2422 int ret; 2423 2424 if (pdata && pdata->flash_bbt) 2425 chip->bbt_options |= NAND_BBT_USE_FLASH; 2426 2427 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2428 /* 2429 * We'll use a bad block table stored in-flash and don't 2430 * allow writing the bad block marker to the flash. 2431 */ 2432 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2433 chip->bbt_td = &bbt_main_descr; 2434 chip->bbt_md = &bbt_mirror_descr; 2435 } 2436 2437 /* Save the chip-specific fields of NDCR */ 2438 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2439 if (chip->options & NAND_BUSWIDTH_16) 2440 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2441 2442 /* 2443 * On small page NANDs, only one cycle is needed to pass the 2444 * column address. 2445 */ 2446 if (mtd->writesize <= 512) { 2447 marvell_nand->addr_cyc = 1; 2448 } else { 2449 marvell_nand->addr_cyc = 2; 2450 marvell_nand->ndcr |= NDCR_RA_START; 2451 } 2452 2453 /* 2454 * Now add the number of cycles needed to pass the row 2455 * address. 2456 * 2457 * Addressing a chip using CS 2 or 3 should also need the third row 2458 * cycle but due to inconsistance in the documentation and lack of 2459 * hardware to test this situation, this case is not supported. 2460 */ 2461 if (chip->options & NAND_ROW_ADDR_3) 2462 marvell_nand->addr_cyc += 3; 2463 else 2464 marvell_nand->addr_cyc += 2; 2465 2466 if (pdata) { 2467 chip->ecc.size = pdata->ecc_step_size; 2468 chip->ecc.strength = pdata->ecc_strength; 2469 } 2470 2471 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2472 if (ret) { 2473 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2474 return ret; 2475 } 2476 2477 if (chip->ecc.mode == NAND_ECC_HW) { 2478 /* 2479 * Subpage write not available with hardware ECC, prohibit also 2480 * subpage read as in userspace subpage access would still be 2481 * allowed and subpage write, if used, would lead to numerous 2482 * uncorrectable ECC errors. 2483 */ 2484 chip->options |= NAND_NO_SUBPAGE_WRITE; 2485 } 2486 2487 if (pdata || nfc->caps->legacy_of_bindings) { 2488 /* 2489 * We keep the MTD name unchanged to avoid breaking platforms 2490 * where the MTD cmdline parser is used and the bootloader 2491 * has not been updated to use the new naming scheme. 2492 */ 2493 mtd->name = "pxa3xx_nand-0"; 2494 } else if (!mtd->name) { 2495 /* 2496 * If the new bindings are used and the bootloader has not been 2497 * updated to pass a new mtdparts parameter on the cmdline, you 2498 * should define the following property in your NAND node, ie: 2499 * 2500 * label = "main-storage"; 2501 * 2502 * This way, mtd->name will be set by the core when 2503 * nand_set_flash_node() is called. 2504 */ 2505 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2506 "%s:nand.%d", dev_name(nfc->dev), 2507 marvell_nand->sels[0].cs); 2508 if (!mtd->name) { 2509 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2510 return -ENOMEM; 2511 } 2512 } 2513 2514 return 0; 2515 } 2516 2517 static const struct nand_controller_ops marvell_nand_controller_ops = { 2518 .attach_chip = marvell_nand_attach_chip, 2519 .exec_op = marvell_nfc_exec_op, 2520 .setup_data_interface = marvell_nfc_setup_data_interface, 2521 }; 2522 2523 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2524 struct device_node *np) 2525 { 2526 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2527 struct marvell_nand_chip *marvell_nand; 2528 struct mtd_info *mtd; 2529 struct nand_chip *chip; 2530 int nsels, ret, i; 2531 u32 cs, rb; 2532 2533 /* 2534 * The legacy "num-cs" property indicates the number of CS on the only 2535 * chip connected to the controller (legacy bindings does not support 2536 * more than one chip). The CS and RB pins are always the #0. 2537 * 2538 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2539 * properties must be filled. For each chip, expressed as a subnode, 2540 * "reg" points to the CS lines and "nand-rb" to the RB line. 2541 */ 2542 if (pdata || nfc->caps->legacy_of_bindings) { 2543 nsels = 1; 2544 } else { 2545 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2546 if (nsels <= 0) { 2547 dev_err(dev, "missing/invalid reg property\n"); 2548 return -EINVAL; 2549 } 2550 } 2551 2552 /* Alloc the nand chip structure */ 2553 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) + 2554 (nsels * 2555 sizeof(struct marvell_nand_chip_sel)), 2556 GFP_KERNEL); 2557 if (!marvell_nand) { 2558 dev_err(dev, "could not allocate chip structure\n"); 2559 return -ENOMEM; 2560 } 2561 2562 marvell_nand->nsels = nsels; 2563 marvell_nand->selected_die = -1; 2564 2565 for (i = 0; i < nsels; i++) { 2566 if (pdata || nfc->caps->legacy_of_bindings) { 2567 /* 2568 * Legacy bindings use the CS lines in natural 2569 * order (0, 1, ...) 2570 */ 2571 cs = i; 2572 } else { 2573 /* Retrieve CS id */ 2574 ret = of_property_read_u32_index(np, "reg", i, &cs); 2575 if (ret) { 2576 dev_err(dev, "could not retrieve reg property: %d\n", 2577 ret); 2578 return ret; 2579 } 2580 } 2581 2582 if (cs >= nfc->caps->max_cs_nb) { 2583 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2584 cs, nfc->caps->max_cs_nb); 2585 return -EINVAL; 2586 } 2587 2588 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2589 dev_err(dev, "CS %d already assigned\n", cs); 2590 return -EINVAL; 2591 } 2592 2593 /* 2594 * The cs variable represents the chip select id, which must be 2595 * converted in bit fields for NDCB0 and NDCB2 to select the 2596 * right chip. Unfortunately, due to a lack of information on 2597 * the subject and incoherent documentation, the user should not 2598 * use CS1 and CS3 at all as asserting them is not supported in 2599 * a reliable way (due to multiplexing inside ADDR5 field). 2600 */ 2601 marvell_nand->sels[i].cs = cs; 2602 switch (cs) { 2603 case 0: 2604 case 2: 2605 marvell_nand->sels[i].ndcb0_csel = 0; 2606 break; 2607 case 1: 2608 case 3: 2609 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2610 break; 2611 default: 2612 return -EINVAL; 2613 } 2614 2615 /* Retrieve RB id */ 2616 if (pdata || nfc->caps->legacy_of_bindings) { 2617 /* Legacy bindings always use RB #0 */ 2618 rb = 0; 2619 } else { 2620 ret = of_property_read_u32_index(np, "nand-rb", i, 2621 &rb); 2622 if (ret) { 2623 dev_err(dev, 2624 "could not retrieve RB property: %d\n", 2625 ret); 2626 return ret; 2627 } 2628 } 2629 2630 if (rb >= nfc->caps->max_rb_nb) { 2631 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2632 rb, nfc->caps->max_rb_nb); 2633 return -EINVAL; 2634 } 2635 2636 marvell_nand->sels[i].rb = rb; 2637 } 2638 2639 chip = &marvell_nand->chip; 2640 chip->controller = &nfc->controller; 2641 nand_set_flash_node(chip, np); 2642 2643 if (!of_property_read_bool(np, "marvell,nand-keep-config")) 2644 chip->options |= NAND_KEEP_TIMINGS; 2645 2646 mtd = nand_to_mtd(chip); 2647 mtd->dev.parent = dev; 2648 2649 /* 2650 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2651 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2652 */ 2653 chip->ecc.mode = NAND_ECC_HW; 2654 2655 /* 2656 * Save a reference value for timing registers before 2657 * ->setup_data_interface() is called. 2658 */ 2659 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2660 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2661 2662 chip->options |= NAND_BUSWIDTH_AUTO; 2663 2664 ret = nand_scan(chip, marvell_nand->nsels); 2665 if (ret) { 2666 dev_err(dev, "could not scan the nand chip\n"); 2667 return ret; 2668 } 2669 2670 if (pdata) 2671 /* Legacy bindings support only one chip */ 2672 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2673 else 2674 ret = mtd_device_register(mtd, NULL, 0); 2675 if (ret) { 2676 dev_err(dev, "failed to register mtd device: %d\n", ret); 2677 nand_release(chip); 2678 return ret; 2679 } 2680 2681 list_add_tail(&marvell_nand->node, &nfc->chips); 2682 2683 return 0; 2684 } 2685 2686 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2687 { 2688 struct device_node *np = dev->of_node; 2689 struct device_node *nand_np; 2690 int max_cs = nfc->caps->max_cs_nb; 2691 int nchips; 2692 int ret; 2693 2694 if (!np) 2695 nchips = 1; 2696 else 2697 nchips = of_get_child_count(np); 2698 2699 if (nchips > max_cs) { 2700 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2701 max_cs); 2702 return -EINVAL; 2703 } 2704 2705 /* 2706 * Legacy bindings do not use child nodes to exhibit NAND chip 2707 * properties and layout. Instead, NAND properties are mixed with the 2708 * controller ones, and partitions are defined as direct subnodes of the 2709 * NAND controller node. 2710 */ 2711 if (nfc->caps->legacy_of_bindings) { 2712 ret = marvell_nand_chip_init(dev, nfc, np); 2713 return ret; 2714 } 2715 2716 for_each_child_of_node(np, nand_np) { 2717 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2718 if (ret) { 2719 of_node_put(nand_np); 2720 return ret; 2721 } 2722 } 2723 2724 return 0; 2725 } 2726 2727 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2728 { 2729 struct marvell_nand_chip *entry, *temp; 2730 2731 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2732 nand_release(&entry->chip); 2733 list_del(&entry->node); 2734 } 2735 } 2736 2737 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2738 { 2739 struct platform_device *pdev = container_of(nfc->dev, 2740 struct platform_device, 2741 dev); 2742 struct dma_slave_config config = {}; 2743 struct resource *r; 2744 int ret; 2745 2746 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2747 dev_warn(nfc->dev, 2748 "DMA not enabled in configuration\n"); 2749 return -ENOTSUPP; 2750 } 2751 2752 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2753 if (ret) 2754 return ret; 2755 2756 nfc->dma_chan = dma_request_slave_channel(nfc->dev, "data"); 2757 if (!nfc->dma_chan) { 2758 dev_err(nfc->dev, 2759 "Unable to request data DMA channel\n"); 2760 return -ENODEV; 2761 } 2762 2763 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2764 if (!r) 2765 return -ENXIO; 2766 2767 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2768 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2769 config.src_addr = r->start + NDDB; 2770 config.dst_addr = r->start + NDDB; 2771 config.src_maxburst = 32; 2772 config.dst_maxburst = 32; 2773 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2774 if (ret < 0) { 2775 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2776 return ret; 2777 } 2778 2779 /* 2780 * DMA must act on length multiple of 32 and this length may be 2781 * bigger than the destination buffer. Use this buffer instead 2782 * for DMA transfers and then copy the desired amount of data to 2783 * the provided buffer. 2784 */ 2785 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2786 if (!nfc->dma_buf) 2787 return -ENOMEM; 2788 2789 nfc->use_dma = true; 2790 2791 return 0; 2792 } 2793 2794 static void marvell_nfc_reset(struct marvell_nfc *nfc) 2795 { 2796 /* 2797 * ECC operations and interruptions are only enabled when specifically 2798 * needed. ECC shall not be activated in the early stages (fails probe). 2799 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2800 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2801 * offset in the read page and this will fail the protection. 2802 */ 2803 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2804 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2805 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2806 writel_relaxed(0, nfc->regs + NDECCCTRL); 2807 } 2808 2809 static int marvell_nfc_init(struct marvell_nfc *nfc) 2810 { 2811 struct device_node *np = nfc->dev->of_node; 2812 2813 /* 2814 * Some SoCs like A7k/A8k need to enable manually the NAND 2815 * controller, gated clocks and reset bits to avoid being bootloader 2816 * dependent. This is done through the use of the System Functions 2817 * registers. 2818 */ 2819 if (nfc->caps->need_system_controller) { 2820 struct regmap *sysctrl_base = 2821 syscon_regmap_lookup_by_phandle(np, 2822 "marvell,system-controller"); 2823 2824 if (IS_ERR(sysctrl_base)) 2825 return PTR_ERR(sysctrl_base); 2826 2827 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, 2828 GENCONF_SOC_DEVICE_MUX_NFC_EN | 2829 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2830 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2831 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN); 2832 2833 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, 2834 GENCONF_CLK_GATING_CTRL_ND_GATE, 2835 GENCONF_CLK_GATING_CTRL_ND_GATE); 2836 2837 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL, 2838 GENCONF_ND_CLK_CTRL_EN, 2839 GENCONF_ND_CLK_CTRL_EN); 2840 } 2841 2842 /* Configure the DMA if appropriate */ 2843 if (!nfc->caps->is_nfcv2) 2844 marvell_nfc_init_dma(nfc); 2845 2846 marvell_nfc_reset(nfc); 2847 2848 return 0; 2849 } 2850 2851 static int marvell_nfc_probe(struct platform_device *pdev) 2852 { 2853 struct device *dev = &pdev->dev; 2854 struct resource *r; 2855 struct marvell_nfc *nfc; 2856 int ret; 2857 int irq; 2858 2859 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2860 GFP_KERNEL); 2861 if (!nfc) 2862 return -ENOMEM; 2863 2864 nfc->dev = dev; 2865 nand_controller_init(&nfc->controller); 2866 nfc->controller.ops = &marvell_nand_controller_ops; 2867 INIT_LIST_HEAD(&nfc->chips); 2868 2869 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2870 nfc->regs = devm_ioremap_resource(dev, r); 2871 if (IS_ERR(nfc->regs)) 2872 return PTR_ERR(nfc->regs); 2873 2874 irq = platform_get_irq(pdev, 0); 2875 if (irq < 0) { 2876 dev_err(dev, "failed to retrieve irq\n"); 2877 return irq; 2878 } 2879 2880 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2881 2882 /* Managed the legacy case (when the first clock was not named) */ 2883 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2884 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2885 2886 if (IS_ERR(nfc->core_clk)) 2887 return PTR_ERR(nfc->core_clk); 2888 2889 ret = clk_prepare_enable(nfc->core_clk); 2890 if (ret) 2891 return ret; 2892 2893 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2894 if (IS_ERR(nfc->reg_clk)) { 2895 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2896 ret = PTR_ERR(nfc->reg_clk); 2897 goto unprepare_core_clk; 2898 } 2899 2900 nfc->reg_clk = NULL; 2901 } 2902 2903 ret = clk_prepare_enable(nfc->reg_clk); 2904 if (ret) 2905 goto unprepare_core_clk; 2906 2907 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2908 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2909 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2910 0, "marvell-nfc", nfc); 2911 if (ret) 2912 goto unprepare_reg_clk; 2913 2914 /* Get NAND controller capabilities */ 2915 if (pdev->id_entry) 2916 nfc->caps = (void *)pdev->id_entry->driver_data; 2917 else 2918 nfc->caps = of_device_get_match_data(&pdev->dev); 2919 2920 if (!nfc->caps) { 2921 dev_err(dev, "Could not retrieve NFC caps\n"); 2922 ret = -EINVAL; 2923 goto unprepare_reg_clk; 2924 } 2925 2926 /* Init the controller and then probe the chips */ 2927 ret = marvell_nfc_init(nfc); 2928 if (ret) 2929 goto unprepare_reg_clk; 2930 2931 platform_set_drvdata(pdev, nfc); 2932 2933 ret = marvell_nand_chips_init(dev, nfc); 2934 if (ret) 2935 goto unprepare_reg_clk; 2936 2937 return 0; 2938 2939 unprepare_reg_clk: 2940 clk_disable_unprepare(nfc->reg_clk); 2941 unprepare_core_clk: 2942 clk_disable_unprepare(nfc->core_clk); 2943 2944 return ret; 2945 } 2946 2947 static int marvell_nfc_remove(struct platform_device *pdev) 2948 { 2949 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 2950 2951 marvell_nand_chips_cleanup(nfc); 2952 2953 if (nfc->use_dma) { 2954 dmaengine_terminate_all(nfc->dma_chan); 2955 dma_release_channel(nfc->dma_chan); 2956 } 2957 2958 clk_disable_unprepare(nfc->reg_clk); 2959 clk_disable_unprepare(nfc->core_clk); 2960 2961 return 0; 2962 } 2963 2964 static int __maybe_unused marvell_nfc_suspend(struct device *dev) 2965 { 2966 struct marvell_nfc *nfc = dev_get_drvdata(dev); 2967 struct marvell_nand_chip *chip; 2968 2969 list_for_each_entry(chip, &nfc->chips, node) 2970 marvell_nfc_wait_ndrun(&chip->chip); 2971 2972 clk_disable_unprepare(nfc->reg_clk); 2973 clk_disable_unprepare(nfc->core_clk); 2974 2975 return 0; 2976 } 2977 2978 static int __maybe_unused marvell_nfc_resume(struct device *dev) 2979 { 2980 struct marvell_nfc *nfc = dev_get_drvdata(dev); 2981 int ret; 2982 2983 ret = clk_prepare_enable(nfc->core_clk); 2984 if (ret < 0) 2985 return ret; 2986 2987 ret = clk_prepare_enable(nfc->reg_clk); 2988 if (ret < 0) 2989 return ret; 2990 2991 /* 2992 * Reset nfc->selected_chip so the next command will cause the timing 2993 * registers to be restored in marvell_nfc_select_chip(). 2994 */ 2995 nfc->selected_chip = NULL; 2996 2997 /* Reset registers that have lost their contents */ 2998 marvell_nfc_reset(nfc); 2999 3000 return 0; 3001 } 3002 3003 static const struct dev_pm_ops marvell_nfc_pm_ops = { 3004 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 3005 }; 3006 3007 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 3008 .max_cs_nb = 4, 3009 .max_rb_nb = 2, 3010 .need_system_controller = true, 3011 .is_nfcv2 = true, 3012 }; 3013 3014 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 3015 .max_cs_nb = 4, 3016 .max_rb_nb = 2, 3017 .is_nfcv2 = true, 3018 }; 3019 3020 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 3021 .max_cs_nb = 2, 3022 .max_rb_nb = 1, 3023 .use_dma = true, 3024 }; 3025 3026 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 3027 .max_cs_nb = 4, 3028 .max_rb_nb = 2, 3029 .need_system_controller = true, 3030 .legacy_of_bindings = true, 3031 .is_nfcv2 = true, 3032 }; 3033 3034 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 3035 .max_cs_nb = 4, 3036 .max_rb_nb = 2, 3037 .legacy_of_bindings = true, 3038 .is_nfcv2 = true, 3039 }; 3040 3041 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 3042 .max_cs_nb = 2, 3043 .max_rb_nb = 1, 3044 .legacy_of_bindings = true, 3045 .use_dma = true, 3046 }; 3047 3048 static const struct platform_device_id marvell_nfc_platform_ids[] = { 3049 { 3050 .name = "pxa3xx-nand", 3051 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 3052 }, 3053 { /* sentinel */ }, 3054 }; 3055 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 3056 3057 static const struct of_device_id marvell_nfc_of_ids[] = { 3058 { 3059 .compatible = "marvell,armada-8k-nand-controller", 3060 .data = &marvell_armada_8k_nfc_caps, 3061 }, 3062 { 3063 .compatible = "marvell,armada370-nand-controller", 3064 .data = &marvell_armada370_nfc_caps, 3065 }, 3066 { 3067 .compatible = "marvell,pxa3xx-nand-controller", 3068 .data = &marvell_pxa3xx_nfc_caps, 3069 }, 3070 /* Support for old/deprecated bindings: */ 3071 { 3072 .compatible = "marvell,armada-8k-nand", 3073 .data = &marvell_armada_8k_nfc_legacy_caps, 3074 }, 3075 { 3076 .compatible = "marvell,armada370-nand", 3077 .data = &marvell_armada370_nfc_legacy_caps, 3078 }, 3079 { 3080 .compatible = "marvell,pxa3xx-nand", 3081 .data = &marvell_pxa3xx_nfc_legacy_caps, 3082 }, 3083 { /* sentinel */ }, 3084 }; 3085 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 3086 3087 static struct platform_driver marvell_nfc_driver = { 3088 .driver = { 3089 .name = "marvell-nfc", 3090 .of_match_table = marvell_nfc_of_ids, 3091 .pm = &marvell_nfc_pm_ops, 3092 }, 3093 .id_table = marvell_nfc_platform_ids, 3094 .probe = marvell_nfc_probe, 3095 .remove = marvell_nfc_remove, 3096 }; 3097 module_platform_driver(marvell_nfc_driver); 3098 3099 MODULE_LICENSE("GPL"); 3100 MODULE_DESCRIPTION("Marvell NAND controller driver"); 3101