1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 */ 9 10 #include <linux/module.h> 11 #include <linux/clk.h> 12 #include <linux/mtd/rawnand.h> 13 #include <linux/of_platform.h> 14 #include <linux/iopoll.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mfd/syscon.h> 18 #include <linux/regmap.h> 19 #include <asm/unaligned.h> 20 21 #include <linux/dmaengine.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dma/pxa-dma.h> 24 #include <linux/platform_data/mtd-nand-pxa3xx.h> 25 26 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 27 #define FIFO_DEPTH 8 28 #define FIFO_REP(x) (x / sizeof(u32)) 29 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 30 /* NFC does not support transfers of larger chunks at a time */ 31 #define MAX_CHUNK_SIZE 2112 32 /* NFCv1 cannot read more that 7 bytes of ID */ 33 #define NFCV1_READID_LEN 7 34 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 35 #define POLL_PERIOD 0 36 #define POLL_TIMEOUT 100000 37 /* Interrupt maximum wait period in ms */ 38 #define IRQ_TIMEOUT 1000 39 /* Latency in clock cycles between SoC pins and NFC logic */ 40 #define MIN_RD_DEL_CNT 3 41 /* Maximum number of contiguous address cycles */ 42 #define MAX_ADDRESS_CYC_NFCV1 5 43 #define MAX_ADDRESS_CYC_NFCV2 7 44 /* System control registers/bits to enable the NAND controller on some SoCs */ 45 #define GENCONF_SOC_DEVICE_MUX 0x208 46 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 47 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 48 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 49 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 50 #define GENCONF_CLK_GATING_CTRL 0x220 51 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 52 #define GENCONF_ND_CLK_CTRL 0x700 53 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 54 55 /* NAND controller data flash control register */ 56 #define NDCR 0x00 57 #define NDCR_ALL_INT GENMASK(11, 0) 58 #define NDCR_CS1_CMDDM BIT(7) 59 #define NDCR_CS0_CMDDM BIT(8) 60 #define NDCR_RDYM BIT(11) 61 #define NDCR_ND_ARB_EN BIT(12) 62 #define NDCR_RA_START BIT(15) 63 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 64 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 65 #define NDCR_DWIDTH_M BIT(26) 66 #define NDCR_DWIDTH_C BIT(27) 67 #define NDCR_ND_RUN BIT(28) 68 #define NDCR_DMA_EN BIT(29) 69 #define NDCR_ECC_EN BIT(30) 70 #define NDCR_SPARE_EN BIT(31) 71 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 72 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 73 74 /* NAND interface timing parameter 0 register */ 75 #define NDTR0 0x04 76 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 77 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 78 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 79 #define NDTR0_SEL_NRE_EDGE BIT(7) 80 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 81 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 82 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 83 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 84 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 85 #define NDTR0_SELCNTR BIT(26) 86 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 87 88 /* NAND interface timing parameter 1 register */ 89 #define NDTR1 0x0C 90 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 91 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 92 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 93 #define NDTR1_PRESCALE BIT(14) 94 #define NDTR1_WAIT_MODE BIT(15) 95 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 96 97 /* NAND controller status register */ 98 #define NDSR 0x14 99 #define NDSR_WRCMDREQ BIT(0) 100 #define NDSR_RDDREQ BIT(1) 101 #define NDSR_WRDREQ BIT(2) 102 #define NDSR_CORERR BIT(3) 103 #define NDSR_UNCERR BIT(4) 104 #define NDSR_CMDD(cs) BIT(8 - cs) 105 #define NDSR_RDY(rb) BIT(11 + rb) 106 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 107 108 /* NAND ECC control register */ 109 #define NDECCCTRL 0x28 110 #define NDECCCTRL_BCH_EN BIT(0) 111 112 /* NAND controller data buffer register */ 113 #define NDDB 0x40 114 115 /* NAND controller command buffer 0 register */ 116 #define NDCB0 0x48 117 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 118 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 119 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 120 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 121 #define NDCB0_DBC BIT(19) 122 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 123 #define NDCB0_CSEL BIT(24) 124 #define NDCB0_RDY_BYP BIT(27) 125 #define NDCB0_LEN_OVRD BIT(28) 126 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 127 128 /* NAND controller command buffer 1 register */ 129 #define NDCB1 0x4C 130 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 131 #define NDCB1_ADDRS_PAGE(x) (x << 16) 132 133 /* NAND controller command buffer 2 register */ 134 #define NDCB2 0x50 135 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 136 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 137 138 /* NAND controller command buffer 3 register */ 139 #define NDCB3 0x54 140 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 141 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 142 143 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 144 #define TYPE_READ 0 145 #define TYPE_WRITE 1 146 #define TYPE_ERASE 2 147 #define TYPE_READ_ID 3 148 #define TYPE_STATUS 4 149 #define TYPE_RESET 5 150 #define TYPE_NAKED_CMD 6 151 #define TYPE_NAKED_ADDR 7 152 #define TYPE_MASK 7 153 #define XTYPE_MONOLITHIC_RW 0 154 #define XTYPE_LAST_NAKED_RW 1 155 #define XTYPE_FINAL_COMMAND 3 156 #define XTYPE_READ 4 157 #define XTYPE_WRITE_DISPATCH 4 158 #define XTYPE_NAKED_RW 5 159 #define XTYPE_COMMAND_DISPATCH 6 160 #define XTYPE_MASK 7 161 162 /** 163 * Marvell ECC engine works differently than the others, in order to limit the 164 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 165 * per subpage, and depending on a the desired strength needed by the NAND chip, 166 * a particular layout mixing data/spare/ecc is defined, with a possible last 167 * chunk smaller that the others. 168 * 169 * @writesize: Full page size on which the layout applies 170 * @chunk: Desired ECC chunk size on which the layout applies 171 * @strength: Desired ECC strength (per chunk size bytes) on which the 172 * layout applies 173 * @nchunks: Total number of chunks 174 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 175 * repetitions of the pattern: 176 * (data_bytes + spare_bytes + ecc_bytes). 177 * @data_bytes: Number of data bytes per chunk 178 * @spare_bytes: Number of spare bytes per chunk 179 * @ecc_bytes: Number of ecc bytes per chunk 180 * @last_data_bytes: Number of data bytes in the last chunk 181 * @last_spare_bytes: Number of spare bytes in the last chunk 182 * @last_ecc_bytes: Number of ecc bytes in the last chunk 183 */ 184 struct marvell_hw_ecc_layout { 185 /* Constraints */ 186 int writesize; 187 int chunk; 188 int strength; 189 /* Corresponding layout */ 190 int nchunks; 191 int full_chunk_cnt; 192 int data_bytes; 193 int spare_bytes; 194 int ecc_bytes; 195 int last_data_bytes; 196 int last_spare_bytes; 197 int last_ecc_bytes; 198 }; 199 200 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 201 { \ 202 .writesize = ws, \ 203 .chunk = dc, \ 204 .strength = ds, \ 205 .nchunks = nc, \ 206 .full_chunk_cnt = fcc, \ 207 .data_bytes = db, \ 208 .spare_bytes = sb, \ 209 .ecc_bytes = eb, \ 210 .last_data_bytes = ldb, \ 211 .last_spare_bytes = lsb, \ 212 .last_ecc_bytes = leb, \ 213 } 214 215 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 216 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 217 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 218 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 219 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 220 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 221 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 222 }; 223 224 /** 225 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 226 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 227 * The datasheet describes the logic with an error: ADDR5 field is once 228 * declared at the beginning of NDCB2, and another time at its end. Because the 229 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 230 * to use the last bit of this field instead of the first ones. 231 * 232 * @cs: Wanted CE lane. 233 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 234 * selecting the wanted CE lane. This is set once when 235 * the Device Tree is probed. 236 * @rb: Ready/Busy pin for the flash chip 237 */ 238 struct marvell_nand_chip_sel { 239 unsigned int cs; 240 u32 ndcb0_csel; 241 unsigned int rb; 242 }; 243 244 /** 245 * NAND chip structure: stores NAND chip device related information 246 * 247 * @chip: Base NAND chip structure 248 * @node: Used to store NAND chips into a list 249 * @layout NAND layout when using hardware ECC 250 * @ndcr: Controller register value for this NAND chip 251 * @ndtr0: Timing registers 0 value for this NAND chip 252 * @ndtr1: Timing registers 1 value for this NAND chip 253 * @selected_die: Current active CS 254 * @nsels: Number of CS lines required by the NAND chip 255 * @sels: Array of CS lines descriptions 256 */ 257 struct marvell_nand_chip { 258 struct nand_chip chip; 259 struct list_head node; 260 const struct marvell_hw_ecc_layout *layout; 261 u32 ndcr; 262 u32 ndtr0; 263 u32 ndtr1; 264 int addr_cyc; 265 int selected_die; 266 unsigned int nsels; 267 struct marvell_nand_chip_sel sels[0]; 268 }; 269 270 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 271 { 272 return container_of(chip, struct marvell_nand_chip, chip); 273 } 274 275 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 276 *nand) 277 { 278 return &nand->sels[nand->selected_die]; 279 } 280 281 /** 282 * NAND controller capabilities for distinction between compatible strings 283 * 284 * @max_cs_nb: Number of Chip Select lines available 285 * @max_rb_nb: Number of Ready/Busy lines available 286 * @need_system_controller: Indicates if the SoC needs to have access to the 287 * system controller (ie. to enable the NAND controller) 288 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 289 * fashion way 290 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 291 * BCH error detection and correction algorithm, 292 * NDCB3 register has been added 293 * @use_dma: Use dma for data transfers 294 */ 295 struct marvell_nfc_caps { 296 unsigned int max_cs_nb; 297 unsigned int max_rb_nb; 298 bool need_system_controller; 299 bool legacy_of_bindings; 300 bool is_nfcv2; 301 bool use_dma; 302 }; 303 304 /** 305 * NAND controller structure: stores Marvell NAND controller information 306 * 307 * @controller: Base controller structure 308 * @dev: Parent device (used to print error messages) 309 * @regs: NAND controller registers 310 * @core_clk: Core clock 311 * @reg_clk: Regiters clock 312 * @complete: Completion object to wait for NAND controller events 313 * @assigned_cs: Bitmask describing already assigned CS lines 314 * @chips: List containing all the NAND chips attached to 315 * this NAND controller 316 * @caps: NAND controller capabilities for each compatible string 317 * @dma_chan: DMA channel (NFCv1 only) 318 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 319 */ 320 struct marvell_nfc { 321 struct nand_hw_control controller; 322 struct device *dev; 323 void __iomem *regs; 324 struct clk *core_clk; 325 struct clk *reg_clk; 326 struct completion complete; 327 unsigned long assigned_cs; 328 struct list_head chips; 329 struct nand_chip *selected_chip; 330 const struct marvell_nfc_caps *caps; 331 332 /* DMA (NFCv1 only) */ 333 bool use_dma; 334 struct dma_chan *dma_chan; 335 u8 *dma_buf; 336 }; 337 338 static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl) 339 { 340 return container_of(ctrl, struct marvell_nfc, controller); 341 } 342 343 /** 344 * NAND controller timings expressed in NAND Controller clock cycles 345 * 346 * @tRP: ND_nRE pulse width 347 * @tRH: ND_nRE high duration 348 * @tWP: ND_nWE pulse time 349 * @tWH: ND_nWE high duration 350 * @tCS: Enable signal setup time 351 * @tCH: Enable signal hold time 352 * @tADL: Address to write data delay 353 * @tAR: ND_ALE low to ND_nRE low delay 354 * @tWHR: ND_nWE high to ND_nRE low for status read 355 * @tRHW: ND_nRE high duration, read to write delay 356 * @tR: ND_nWE high to ND_nRE low for read 357 */ 358 struct marvell_nfc_timings { 359 /* NDTR0 fields */ 360 unsigned int tRP; 361 unsigned int tRH; 362 unsigned int tWP; 363 unsigned int tWH; 364 unsigned int tCS; 365 unsigned int tCH; 366 unsigned int tADL; 367 /* NDTR1 fields */ 368 unsigned int tAR; 369 unsigned int tWHR; 370 unsigned int tRHW; 371 unsigned int tR; 372 }; 373 374 /** 375 * Derives a duration in numbers of clock cycles. 376 * 377 * @ps: Duration in pico-seconds 378 * @period_ns: Clock period in nano-seconds 379 * 380 * Convert the duration in nano-seconds, then divide by the period and 381 * return the number of clock periods. 382 */ 383 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 384 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 385 period_ns)) 386 387 /** 388 * NAND driver structure filled during the parsing of the ->exec_op() subop 389 * subset of instructions. 390 * 391 * @ndcb: Array of values written to NDCBx registers 392 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 393 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 394 * @rdy_delay_ns: Optional delay after waiting for the RB pin 395 * @data_delay_ns: Optional delay after the data xfer 396 * @data_instr_idx: Index of the data instruction in the subop 397 * @data_instr: Pointer to the data instruction in the subop 398 */ 399 struct marvell_nfc_op { 400 u32 ndcb[4]; 401 unsigned int cle_ale_delay_ns; 402 unsigned int rdy_timeout_ms; 403 unsigned int rdy_delay_ns; 404 unsigned int data_delay_ns; 405 unsigned int data_instr_idx; 406 const struct nand_op_instr *data_instr; 407 }; 408 409 /* 410 * Internal helper to conditionnally apply a delay (from the above structure, 411 * most of the time). 412 */ 413 static void cond_delay(unsigned int ns) 414 { 415 if (!ns) 416 return; 417 418 if (ns < 10000) 419 ndelay(ns); 420 else 421 udelay(DIV_ROUND_UP(ns, 1000)); 422 } 423 424 /* 425 * The controller has many flags that could generate interrupts, most of them 426 * are disabled and polling is used. For the very slow signals, using interrupts 427 * may relax the CPU charge. 428 */ 429 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 430 { 431 u32 reg; 432 433 /* Writing 1 disables the interrupt */ 434 reg = readl_relaxed(nfc->regs + NDCR); 435 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 436 } 437 438 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 439 { 440 u32 reg; 441 442 /* Writing 0 enables the interrupt */ 443 reg = readl_relaxed(nfc->regs + NDCR); 444 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 445 } 446 447 static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 448 { 449 writel_relaxed(int_mask, nfc->regs + NDSR); 450 } 451 452 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 453 bool force_8bit) 454 { 455 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 456 u32 ndcr; 457 458 /* 459 * Callers of this function do not verify if the NAND is using a 16-bit 460 * an 8-bit bus for normal operations, so we need to take care of that 461 * here by leaving the configuration unchanged if the NAND does not have 462 * the NAND_BUSWIDTH_16 flag set. 463 */ 464 if (!(chip->options & NAND_BUSWIDTH_16)) 465 return; 466 467 ndcr = readl_relaxed(nfc->regs + NDCR); 468 469 if (force_8bit) 470 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 471 else 472 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 473 474 writel_relaxed(ndcr, nfc->regs + NDCR); 475 } 476 477 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 478 { 479 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 480 u32 val; 481 int ret; 482 483 /* 484 * The command is being processed, wait for the ND_RUN bit to be 485 * cleared by the NFC. If not, we must clear it by hand. 486 */ 487 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 488 (val & NDCR_ND_RUN) == 0, 489 POLL_PERIOD, POLL_TIMEOUT); 490 if (ret) { 491 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 492 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 493 nfc->regs + NDCR); 494 return ret; 495 } 496 497 return 0; 498 } 499 500 /* 501 * Any time a command has to be sent to the controller, the following sequence 502 * has to be followed: 503 * - call marvell_nfc_prepare_cmd() 504 * -> activate the ND_RUN bit that will kind of 'start a job' 505 * -> wait the signal indicating the NFC is waiting for a command 506 * - send the command (cmd and address cycles) 507 * - enventually send or receive the data 508 * - call marvell_nfc_end_cmd() with the corresponding flag 509 * -> wait the flag to be triggered or cancel the job with a timeout 510 * 511 * The following helpers are here to factorize the code a bit so that 512 * specialized functions responsible for executing the actual NAND 513 * operations do not have to replicate the same code blocks. 514 */ 515 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 516 { 517 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 518 u32 ndcr, val; 519 int ret; 520 521 /* Poll ND_RUN and clear NDSR before issuing any command */ 522 ret = marvell_nfc_wait_ndrun(chip); 523 if (ret) { 524 dev_err(nfc->dev, "Last operation did not succeed\n"); 525 return ret; 526 } 527 528 ndcr = readl_relaxed(nfc->regs + NDCR); 529 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 530 531 /* Assert ND_RUN bit and wait the NFC to be ready */ 532 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 533 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 534 val & NDSR_WRCMDREQ, 535 POLL_PERIOD, POLL_TIMEOUT); 536 if (ret) { 537 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 538 return -ETIMEDOUT; 539 } 540 541 /* Command may be written, clear WRCMDREQ status bit */ 542 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 543 544 return 0; 545 } 546 547 static void marvell_nfc_send_cmd(struct nand_chip *chip, 548 struct marvell_nfc_op *nfc_op) 549 { 550 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 551 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 552 553 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 554 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 555 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 556 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 557 558 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 559 nfc->regs + NDCB0); 560 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 561 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 562 563 /* 564 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 565 * fields are used (only available on NFCv2). 566 */ 567 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 568 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 569 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 570 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 571 } 572 } 573 574 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 575 const char *label) 576 { 577 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 578 u32 val; 579 int ret; 580 581 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 582 val & flag, 583 POLL_PERIOD, POLL_TIMEOUT); 584 585 if (ret) { 586 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 587 label, val); 588 if (nfc->dma_chan) 589 dmaengine_terminate_all(nfc->dma_chan); 590 return ret; 591 } 592 593 /* 594 * DMA function uses this helper to poll on CMDD bits without wanting 595 * them to be cleared. 596 */ 597 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 598 return 0; 599 600 writel_relaxed(flag, nfc->regs + NDSR); 601 602 return 0; 603 } 604 605 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 606 { 607 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 608 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 609 610 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 611 } 612 613 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 614 { 615 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 616 int ret; 617 618 /* Timeout is expressed in ms */ 619 if (!timeout_ms) 620 timeout_ms = IRQ_TIMEOUT; 621 622 init_completion(&nfc->complete); 623 624 marvell_nfc_enable_int(nfc, NDCR_RDYM); 625 ret = wait_for_completion_timeout(&nfc->complete, 626 msecs_to_jiffies(timeout_ms)); 627 marvell_nfc_disable_int(nfc, NDCR_RDYM); 628 marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 629 if (!ret) { 630 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 631 return -ETIMEDOUT; 632 } 633 634 return 0; 635 } 636 637 static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr) 638 { 639 struct nand_chip *chip = mtd_to_nand(mtd); 640 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 641 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 642 u32 ndcr_generic; 643 644 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 645 return; 646 647 if (die_nr < 0 || die_nr >= marvell_nand->nsels) { 648 nfc->selected_chip = NULL; 649 marvell_nand->selected_die = -1; 650 return; 651 } 652 653 /* 654 * Do not change the timing registers when using the DT property 655 * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the 656 * marvell_nand structure are supposedly empty. 657 */ 658 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 659 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 660 661 /* 662 * Reset the NDCR register to a clean state for this particular chip, 663 * also clear ND_RUN bit. 664 */ 665 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 666 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 667 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 668 669 /* Also reset the interrupt status register */ 670 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 671 672 nfc->selected_chip = chip; 673 marvell_nand->selected_die = die_nr; 674 } 675 676 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 677 { 678 struct marvell_nfc *nfc = dev_id; 679 u32 st = readl_relaxed(nfc->regs + NDSR); 680 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 681 682 /* 683 * RDY interrupt mask is one bit in NDCR while there are two status 684 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 685 */ 686 if (st & NDSR_RDY(1)) 687 st |= NDSR_RDY(0); 688 689 if (!(st & ien)) 690 return IRQ_NONE; 691 692 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 693 694 if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ))) 695 complete(&nfc->complete); 696 697 return IRQ_HANDLED; 698 } 699 700 /* HW ECC related functions */ 701 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 702 { 703 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 704 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 705 706 if (!(ndcr & NDCR_ECC_EN)) { 707 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 708 709 /* 710 * When enabling BCH, set threshold to 0 to always know the 711 * number of corrected bitflips. 712 */ 713 if (chip->ecc.algo == NAND_ECC_BCH) 714 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 715 } 716 } 717 718 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 719 { 720 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 721 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 722 723 if (ndcr & NDCR_ECC_EN) { 724 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 725 if (chip->ecc.algo == NAND_ECC_BCH) 726 writel_relaxed(0, nfc->regs + NDECCCTRL); 727 } 728 } 729 730 /* DMA related helpers */ 731 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 732 { 733 u32 reg; 734 735 reg = readl_relaxed(nfc->regs + NDCR); 736 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 737 } 738 739 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 740 { 741 u32 reg; 742 743 reg = readl_relaxed(nfc->regs + NDCR); 744 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 745 } 746 747 /* Read/write PIO/DMA accessors */ 748 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 749 enum dma_data_direction direction, 750 unsigned int len) 751 { 752 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 753 struct dma_async_tx_descriptor *tx; 754 struct scatterlist sg; 755 dma_cookie_t cookie; 756 int ret; 757 758 marvell_nfc_enable_dma(nfc); 759 /* Prepare the DMA transfer */ 760 sg_init_one(&sg, nfc->dma_buf, dma_len); 761 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 762 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 763 direction == DMA_FROM_DEVICE ? 764 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 765 DMA_PREP_INTERRUPT); 766 if (!tx) { 767 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 768 return -ENXIO; 769 } 770 771 /* Do the task and wait for it to finish */ 772 cookie = dmaengine_submit(tx); 773 ret = dma_submit_error(cookie); 774 if (ret) 775 return -EIO; 776 777 dma_async_issue_pending(nfc->dma_chan); 778 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 779 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 780 marvell_nfc_disable_dma(nfc); 781 if (ret) { 782 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 783 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 784 dmaengine_terminate_all(nfc->dma_chan); 785 return -ETIMEDOUT; 786 } 787 788 return 0; 789 } 790 791 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 792 unsigned int len) 793 { 794 unsigned int last_len = len % FIFO_DEPTH; 795 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 796 int i; 797 798 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 799 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 800 801 if (last_len) { 802 u8 tmp_buf[FIFO_DEPTH]; 803 804 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 805 memcpy(in + last_full_offset, tmp_buf, last_len); 806 } 807 808 return 0; 809 } 810 811 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 812 unsigned int len) 813 { 814 unsigned int last_len = len % FIFO_DEPTH; 815 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 816 int i; 817 818 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 819 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 820 821 if (last_len) { 822 u8 tmp_buf[FIFO_DEPTH]; 823 824 memcpy(tmp_buf, out + last_full_offset, last_len); 825 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 826 } 827 828 return 0; 829 } 830 831 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 832 u8 *data, int data_len, 833 u8 *spare, int spare_len, 834 u8 *ecc, int ecc_len, 835 unsigned int *max_bitflips) 836 { 837 struct mtd_info *mtd = nand_to_mtd(chip); 838 int bf; 839 840 /* 841 * Blank pages (all 0xFF) that have not been written may be recognized 842 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 843 * check if the entire page (with ECC bytes) is actually blank or not. 844 */ 845 if (!data) 846 data_len = 0; 847 if (!spare) 848 spare_len = 0; 849 if (!ecc) 850 ecc_len = 0; 851 852 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 853 spare, spare_len, chip->ecc.strength); 854 if (bf < 0) { 855 mtd->ecc_stats.failed++; 856 return; 857 } 858 859 /* Update the stats and max_bitflips */ 860 mtd->ecc_stats.corrected += bf; 861 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 862 } 863 864 /* 865 * Check a chunk is correct or not according to hardware ECC engine. 866 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 867 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 868 * value indicating that a check on the emptyness of the subpage must be 869 * performed before declaring the subpage corrupted. 870 */ 871 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip, 872 unsigned int *max_bitflips) 873 { 874 struct mtd_info *mtd = nand_to_mtd(chip); 875 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 876 int bf = 0; 877 u32 ndsr; 878 879 ndsr = readl_relaxed(nfc->regs + NDSR); 880 881 /* Check uncorrectable error flag */ 882 if (ndsr & NDSR_UNCERR) { 883 writel_relaxed(ndsr, nfc->regs + NDSR); 884 885 /* 886 * Do not increment ->ecc_stats.failed now, instead, return a 887 * non-zero value to indicate that this chunk was apparently 888 * bad, and it should be check to see if it empty or not. If 889 * the chunk (with ECC bytes) is not declared empty, the calling 890 * function must increment the failure count. 891 */ 892 return -EBADMSG; 893 } 894 895 /* Check correctable error flag */ 896 if (ndsr & NDSR_CORERR) { 897 writel_relaxed(ndsr, nfc->regs + NDSR); 898 899 if (chip->ecc.algo == NAND_ECC_BCH) 900 bf = NDSR_ERRCNT(ndsr); 901 else 902 bf = 1; 903 } 904 905 /* Update the stats and max_bitflips */ 906 mtd->ecc_stats.corrected += bf; 907 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 908 909 return 0; 910 } 911 912 /* Hamming read helpers */ 913 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 914 u8 *data_buf, u8 *oob_buf, 915 bool raw, int page) 916 { 917 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 918 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 919 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 920 struct marvell_nfc_op nfc_op = { 921 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 922 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 923 NDCB0_DBC | 924 NDCB0_CMD1(NAND_CMD_READ0) | 925 NDCB0_CMD2(NAND_CMD_READSTART), 926 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 927 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 928 }; 929 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 930 int ret; 931 932 /* NFCv2 needs more information about the operation being executed */ 933 if (nfc->caps->is_nfcv2) 934 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 935 936 ret = marvell_nfc_prepare_cmd(chip); 937 if (ret) 938 return ret; 939 940 marvell_nfc_send_cmd(chip, &nfc_op); 941 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 942 "RDDREQ while draining FIFO (data/oob)"); 943 if (ret) 944 return ret; 945 946 /* 947 * Read the page then the OOB area. Unlike what is shown in current 948 * documentation, spare bytes are protected by the ECC engine, and must 949 * be at the beginning of the OOB area or running this driver on legacy 950 * systems will prevent the discovery of the BBM/BBT. 951 */ 952 if (nfc->use_dma) { 953 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 954 lt->data_bytes + oob_bytes); 955 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 956 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 957 } else { 958 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 959 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 960 } 961 962 ret = marvell_nfc_wait_cmdd(chip); 963 964 return ret; 965 } 966 967 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd, 968 struct nand_chip *chip, u8 *buf, 969 int oob_required, int page) 970 { 971 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 972 true, page); 973 } 974 975 static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd, 976 struct nand_chip *chip, 977 u8 *buf, int oob_required, 978 int page) 979 { 980 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 981 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 982 int max_bitflips = 0, ret; 983 u8 *raw_buf; 984 985 marvell_nfc_enable_hw_ecc(chip); 986 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 987 page); 988 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 989 marvell_nfc_disable_hw_ecc(chip); 990 991 if (!ret) 992 return max_bitflips; 993 994 /* 995 * When ECC failures are detected, check if the full page has been 996 * written or not. Ignore the failure if it is actually empty. 997 */ 998 raw_buf = kmalloc(full_sz, GFP_KERNEL); 999 if (!raw_buf) 1000 return -ENOMEM; 1001 1002 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1003 lt->data_bytes, true, page); 1004 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1005 &max_bitflips); 1006 kfree(raw_buf); 1007 1008 return max_bitflips; 1009 } 1010 1011 /* 1012 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1013 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1014 * also stands for ->read_oob(). 1015 */ 1016 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd, 1017 struct nand_chip *chip, int page) 1018 { 1019 /* Invalidate page cache */ 1020 chip->pagebuf = -1; 1021 1022 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf, 1023 chip->oob_poi, true, page); 1024 } 1025 1026 /* Hamming write helpers */ 1027 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1028 const u8 *data_buf, 1029 const u8 *oob_buf, bool raw, 1030 int page) 1031 { 1032 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1033 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1034 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1035 struct marvell_nfc_op nfc_op = { 1036 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1037 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1038 NDCB0_CMD1(NAND_CMD_SEQIN) | 1039 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1040 NDCB0_DBC, 1041 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1042 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1043 }; 1044 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1045 int ret; 1046 1047 /* NFCv2 needs more information about the operation being executed */ 1048 if (nfc->caps->is_nfcv2) 1049 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1050 1051 ret = marvell_nfc_prepare_cmd(chip); 1052 if (ret) 1053 return ret; 1054 1055 marvell_nfc_send_cmd(chip, &nfc_op); 1056 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1057 "WRDREQ while loading FIFO (data)"); 1058 if (ret) 1059 return ret; 1060 1061 /* Write the page then the OOB area */ 1062 if (nfc->use_dma) { 1063 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1064 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1065 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1066 lt->ecc_bytes + lt->spare_bytes); 1067 } else { 1068 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1069 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1070 } 1071 1072 ret = marvell_nfc_wait_cmdd(chip); 1073 if (ret) 1074 return ret; 1075 1076 ret = marvell_nfc_wait_op(chip, 1077 chip->data_interface.timings.sdr.tPROG_max); 1078 return ret; 1079 } 1080 1081 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd, 1082 struct nand_chip *chip, 1083 const u8 *buf, 1084 int oob_required, int page) 1085 { 1086 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1087 true, page); 1088 } 1089 1090 static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd, 1091 struct nand_chip *chip, 1092 const u8 *buf, 1093 int oob_required, int page) 1094 { 1095 int ret; 1096 1097 marvell_nfc_enable_hw_ecc(chip); 1098 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1099 false, page); 1100 marvell_nfc_disable_hw_ecc(chip); 1101 1102 return ret; 1103 } 1104 1105 /* 1106 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1107 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1108 * also stands for ->write_oob(). 1109 */ 1110 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd, 1111 struct nand_chip *chip, 1112 int page) 1113 { 1114 /* Invalidate page cache */ 1115 chip->pagebuf = -1; 1116 1117 memset(chip->data_buf, 0xFF, mtd->writesize); 1118 1119 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf, 1120 chip->oob_poi, true, page); 1121 } 1122 1123 /* BCH read helpers */ 1124 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd, 1125 struct nand_chip *chip, u8 *buf, 1126 int oob_required, int page) 1127 { 1128 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1129 u8 *oob = chip->oob_poi; 1130 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1131 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1132 lt->last_spare_bytes; 1133 int data_len = lt->data_bytes; 1134 int spare_len = lt->spare_bytes; 1135 int ecc_len = lt->ecc_bytes; 1136 int chunk; 1137 1138 if (oob_required) 1139 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1140 1141 nand_read_page_op(chip, page, 0, NULL, 0); 1142 1143 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1144 /* Update last chunk length */ 1145 if (chunk >= lt->full_chunk_cnt) { 1146 data_len = lt->last_data_bytes; 1147 spare_len = lt->last_spare_bytes; 1148 ecc_len = lt->last_ecc_bytes; 1149 } 1150 1151 /* Read data bytes*/ 1152 nand_change_read_column_op(chip, chunk * chunk_size, 1153 buf + (lt->data_bytes * chunk), 1154 data_len, false); 1155 1156 /* Read spare bytes */ 1157 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1158 spare_len, false); 1159 1160 /* Read ECC bytes */ 1161 nand_read_data_op(chip, oob + ecc_offset + 1162 (ALIGN(lt->ecc_bytes, 32) * chunk), 1163 ecc_len, false); 1164 } 1165 1166 return 0; 1167 } 1168 1169 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1170 u8 *data, unsigned int data_len, 1171 u8 *spare, unsigned int spare_len, 1172 int page) 1173 { 1174 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1175 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1176 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1177 int i, ret; 1178 struct marvell_nfc_op nfc_op = { 1179 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1180 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1181 NDCB0_LEN_OVRD, 1182 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1183 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1184 .ndcb[3] = data_len + spare_len, 1185 }; 1186 1187 ret = marvell_nfc_prepare_cmd(chip); 1188 if (ret) 1189 return; 1190 1191 if (chunk == 0) 1192 nfc_op.ndcb[0] |= NDCB0_DBC | 1193 NDCB0_CMD1(NAND_CMD_READ0) | 1194 NDCB0_CMD2(NAND_CMD_READSTART); 1195 1196 /* 1197 * Trigger the naked read operation only on the last chunk. 1198 * Otherwise, use monolithic read. 1199 */ 1200 if (lt->nchunks == 1 || (chunk < lt->nchunks - 1)) 1201 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1202 else 1203 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1204 1205 marvell_nfc_send_cmd(chip, &nfc_op); 1206 1207 /* 1208 * According to the datasheet, when reading from NDDB 1209 * with BCH enabled, after each 32 bytes reads, we 1210 * have to make sure that the NDSR.RDDREQ bit is set. 1211 * 1212 * Drain the FIFO, 8 32-bit reads at a time, and skip 1213 * the polling on the last read. 1214 * 1215 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1216 */ 1217 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1218 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1219 "RDDREQ while draining FIFO (data)"); 1220 marvell_nfc_xfer_data_in_pio(nfc, data, 1221 FIFO_DEPTH * BCH_SEQ_READS); 1222 data += FIFO_DEPTH * BCH_SEQ_READS; 1223 } 1224 1225 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1226 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1227 "RDDREQ while draining FIFO (OOB)"); 1228 marvell_nfc_xfer_data_in_pio(nfc, spare, 1229 FIFO_DEPTH * BCH_SEQ_READS); 1230 spare += FIFO_DEPTH * BCH_SEQ_READS; 1231 } 1232 } 1233 1234 static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd, 1235 struct nand_chip *chip, 1236 u8 *buf, int oob_required, 1237 int page) 1238 { 1239 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1240 int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len; 1241 u8 *data = buf, *spare = chip->oob_poi, *ecc; 1242 int max_bitflips = 0; 1243 u32 failure_mask = 0; 1244 int chunk, ecc_offset_in_page, ret; 1245 1246 /* 1247 * With BCH, OOB is not fully used (and thus not read entirely), not 1248 * expected bytes could show up at the end of the OOB buffer if not 1249 * explicitly erased. 1250 */ 1251 if (oob_required) 1252 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1253 1254 marvell_nfc_enable_hw_ecc(chip); 1255 1256 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1257 /* Update length for the last chunk */ 1258 if (chunk >= lt->full_chunk_cnt) { 1259 data_len = lt->last_data_bytes; 1260 spare_len = lt->last_spare_bytes; 1261 } 1262 1263 /* Read the chunk and detect number of bitflips */ 1264 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1265 spare, spare_len, page); 1266 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 1267 if (ret) 1268 failure_mask |= BIT(chunk); 1269 1270 data += data_len; 1271 spare += spare_len; 1272 } 1273 1274 marvell_nfc_disable_hw_ecc(chip); 1275 1276 if (!failure_mask) 1277 return max_bitflips; 1278 1279 /* 1280 * Please note that dumping the ECC bytes during a normal read with OOB 1281 * area would add a significant overhead as ECC bytes are "consumed" by 1282 * the controller in normal mode and must be re-read in raw mode. To 1283 * avoid dropping the performances, we prefer not to include them. The 1284 * user should re-read the page in raw mode if ECC bytes are required. 1285 * 1286 * However, for any subpage read error reported by ->correct(), the ECC 1287 * bytes must be read in raw mode and the full subpage must be checked 1288 * to see if it is entirely empty of if there was an actual error. 1289 */ 1290 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1291 /* No failure reported for this chunk, move to the next one */ 1292 if (!(failure_mask & BIT(chunk))) 1293 continue; 1294 1295 /* Derive ECC bytes positions (in page/buffer) and length */ 1296 ecc = chip->oob_poi + 1297 (lt->full_chunk_cnt * lt->spare_bytes) + 1298 lt->last_spare_bytes + 1299 (chunk * ALIGN(lt->ecc_bytes, 32)); 1300 ecc_offset_in_page = 1301 (chunk * (lt->data_bytes + lt->spare_bytes + 1302 lt->ecc_bytes)) + 1303 (chunk < lt->full_chunk_cnt ? 1304 lt->data_bytes + lt->spare_bytes : 1305 lt->last_data_bytes + lt->last_spare_bytes); 1306 ecc_len = chunk < lt->full_chunk_cnt ? 1307 lt->ecc_bytes : lt->last_ecc_bytes; 1308 1309 /* Do the actual raw read of the ECC bytes */ 1310 nand_change_read_column_op(chip, ecc_offset_in_page, 1311 ecc, ecc_len, false); 1312 1313 /* Derive data/spare bytes positions (in buffer) and length */ 1314 data = buf + (chunk * lt->data_bytes); 1315 data_len = chunk < lt->full_chunk_cnt ? 1316 lt->data_bytes : lt->last_data_bytes; 1317 spare = chip->oob_poi + (chunk * (lt->spare_bytes + 1318 lt->ecc_bytes)); 1319 spare_len = chunk < lt->full_chunk_cnt ? 1320 lt->spare_bytes : lt->last_spare_bytes; 1321 1322 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1323 marvell_nfc_check_empty_chunk(chip, data, data_len, spare, 1324 spare_len, ecc, ecc_len, 1325 &max_bitflips); 1326 } 1327 1328 return max_bitflips; 1329 } 1330 1331 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd, 1332 struct nand_chip *chip, int page) 1333 { 1334 /* Invalidate page cache */ 1335 chip->pagebuf = -1; 1336 1337 return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page); 1338 } 1339 1340 static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd, 1341 struct nand_chip *chip, int page) 1342 { 1343 /* Invalidate page cache */ 1344 chip->pagebuf = -1; 1345 1346 return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page); 1347 } 1348 1349 /* BCH write helpers */ 1350 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd, 1351 struct nand_chip *chip, 1352 const u8 *buf, 1353 int oob_required, int page) 1354 { 1355 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1356 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1357 int data_len = lt->data_bytes; 1358 int spare_len = lt->spare_bytes; 1359 int ecc_len = lt->ecc_bytes; 1360 int spare_offset = 0; 1361 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1362 lt->last_spare_bytes; 1363 int chunk; 1364 1365 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1366 1367 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1368 if (chunk >= lt->full_chunk_cnt) { 1369 data_len = lt->last_data_bytes; 1370 spare_len = lt->last_spare_bytes; 1371 ecc_len = lt->last_ecc_bytes; 1372 } 1373 1374 /* Point to the column of the next chunk */ 1375 nand_change_write_column_op(chip, chunk * full_chunk_size, 1376 NULL, 0, false); 1377 1378 /* Write the data */ 1379 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1380 data_len, false); 1381 1382 if (!oob_required) 1383 continue; 1384 1385 /* Write the spare bytes */ 1386 if (spare_len) 1387 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1388 spare_len, false); 1389 1390 /* Write the ECC bytes */ 1391 if (ecc_len) 1392 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1393 ecc_len, false); 1394 1395 spare_offset += spare_len; 1396 ecc_offset += ALIGN(ecc_len, 32); 1397 } 1398 1399 return nand_prog_page_end_op(chip); 1400 } 1401 1402 static int 1403 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1404 const u8 *data, unsigned int data_len, 1405 const u8 *spare, unsigned int spare_len, 1406 int page) 1407 { 1408 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1409 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1410 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1411 int ret; 1412 struct marvell_nfc_op nfc_op = { 1413 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1414 .ndcb[3] = data_len + spare_len, 1415 }; 1416 1417 /* 1418 * First operation dispatches the CMD_SEQIN command, issue the address 1419 * cycles and asks for the first chunk of data. 1420 * All operations in the middle (if any) will issue a naked write and 1421 * also ask for data. 1422 * Last operation (if any) asks for the last chunk of data through a 1423 * last naked write. 1424 */ 1425 if (chunk == 0) { 1426 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_WRITE_DISPATCH) | 1427 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1428 NDCB0_CMD1(NAND_CMD_SEQIN); 1429 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1430 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1431 } else if (chunk < lt->nchunks - 1) { 1432 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1433 } else { 1434 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1435 } 1436 1437 /* Always dispatch the PAGEPROG command on the last chunk */ 1438 if (chunk == lt->nchunks - 1) 1439 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1440 1441 ret = marvell_nfc_prepare_cmd(chip); 1442 if (ret) 1443 return ret; 1444 1445 marvell_nfc_send_cmd(chip, &nfc_op); 1446 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1447 "WRDREQ while loading FIFO (data)"); 1448 if (ret) 1449 return ret; 1450 1451 /* Transfer the contents */ 1452 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1453 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1454 1455 return 0; 1456 } 1457 1458 static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd, 1459 struct nand_chip *chip, 1460 const u8 *buf, 1461 int oob_required, int page) 1462 { 1463 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1464 const u8 *data = buf; 1465 const u8 *spare = chip->oob_poi; 1466 int data_len = lt->data_bytes; 1467 int spare_len = lt->spare_bytes; 1468 int chunk, ret; 1469 1470 /* Spare data will be written anyway, so clear it to avoid garbage */ 1471 if (!oob_required) 1472 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1473 1474 marvell_nfc_enable_hw_ecc(chip); 1475 1476 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1477 if (chunk >= lt->full_chunk_cnt) { 1478 data_len = lt->last_data_bytes; 1479 spare_len = lt->last_spare_bytes; 1480 } 1481 1482 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1483 spare, spare_len, page); 1484 data += data_len; 1485 spare += spare_len; 1486 1487 /* 1488 * Waiting only for CMDD or PAGED is not enough, ECC are 1489 * partially written. No flag is set once the operation is 1490 * really finished but the ND_RUN bit is cleared, so wait for it 1491 * before stepping into the next command. 1492 */ 1493 marvell_nfc_wait_ndrun(chip); 1494 } 1495 1496 ret = marvell_nfc_wait_op(chip, 1497 chip->data_interface.timings.sdr.tPROG_max); 1498 1499 marvell_nfc_disable_hw_ecc(chip); 1500 1501 if (ret) 1502 return ret; 1503 1504 return 0; 1505 } 1506 1507 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd, 1508 struct nand_chip *chip, 1509 int page) 1510 { 1511 /* Invalidate page cache */ 1512 chip->pagebuf = -1; 1513 1514 memset(chip->data_buf, 0xFF, mtd->writesize); 1515 1516 return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page); 1517 } 1518 1519 static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd, 1520 struct nand_chip *chip, int page) 1521 { 1522 /* Invalidate page cache */ 1523 chip->pagebuf = -1; 1524 1525 memset(chip->data_buf, 0xFF, mtd->writesize); 1526 1527 return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page); 1528 } 1529 1530 /* NAND framework ->exec_op() hooks and related helpers */ 1531 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1532 const struct nand_subop *subop, 1533 struct marvell_nfc_op *nfc_op) 1534 { 1535 const struct nand_op_instr *instr = NULL; 1536 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1537 bool first_cmd = true; 1538 unsigned int op_id; 1539 int i; 1540 1541 /* Reset the input structure as most of its fields will be OR'ed */ 1542 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1543 1544 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1545 unsigned int offset, naddrs; 1546 const u8 *addrs; 1547 int len = nand_subop_get_data_len(subop, op_id); 1548 1549 instr = &subop->instrs[op_id]; 1550 1551 switch (instr->type) { 1552 case NAND_OP_CMD_INSTR: 1553 if (first_cmd) 1554 nfc_op->ndcb[0] |= 1555 NDCB0_CMD1(instr->ctx.cmd.opcode); 1556 else 1557 nfc_op->ndcb[0] |= 1558 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1559 NDCB0_DBC; 1560 1561 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1562 first_cmd = false; 1563 break; 1564 1565 case NAND_OP_ADDR_INSTR: 1566 offset = nand_subop_get_addr_start_off(subop, op_id); 1567 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1568 addrs = &instr->ctx.addr.addrs[offset]; 1569 1570 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1571 1572 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1573 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1574 1575 if (naddrs >= 5) 1576 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1577 if (naddrs >= 6) 1578 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1579 if (naddrs == 7) 1580 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1581 1582 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1583 break; 1584 1585 case NAND_OP_DATA_IN_INSTR: 1586 nfc_op->data_instr = instr; 1587 nfc_op->data_instr_idx = op_id; 1588 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1589 if (nfc->caps->is_nfcv2) { 1590 nfc_op->ndcb[0] |= 1591 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1592 NDCB0_LEN_OVRD; 1593 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1594 } 1595 nfc_op->data_delay_ns = instr->delay_ns; 1596 break; 1597 1598 case NAND_OP_DATA_OUT_INSTR: 1599 nfc_op->data_instr = instr; 1600 nfc_op->data_instr_idx = op_id; 1601 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1602 if (nfc->caps->is_nfcv2) { 1603 nfc_op->ndcb[0] |= 1604 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1605 NDCB0_LEN_OVRD; 1606 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1607 } 1608 nfc_op->data_delay_ns = instr->delay_ns; 1609 break; 1610 1611 case NAND_OP_WAITRDY_INSTR: 1612 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1613 nfc_op->rdy_delay_ns = instr->delay_ns; 1614 break; 1615 } 1616 } 1617 } 1618 1619 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1620 const struct nand_subop *subop, 1621 struct marvell_nfc_op *nfc_op) 1622 { 1623 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1624 const struct nand_op_instr *instr = nfc_op->data_instr; 1625 unsigned int op_id = nfc_op->data_instr_idx; 1626 unsigned int len = nand_subop_get_data_len(subop, op_id); 1627 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1628 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1629 int ret; 1630 1631 if (instr->ctx.data.force_8bit) 1632 marvell_nfc_force_byte_access(chip, true); 1633 1634 if (reading) { 1635 u8 *in = instr->ctx.data.buf.in + offset; 1636 1637 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1638 } else { 1639 const u8 *out = instr->ctx.data.buf.out + offset; 1640 1641 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1642 } 1643 1644 if (instr->ctx.data.force_8bit) 1645 marvell_nfc_force_byte_access(chip, false); 1646 1647 return ret; 1648 } 1649 1650 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1651 const struct nand_subop *subop) 1652 { 1653 struct marvell_nfc_op nfc_op; 1654 bool reading; 1655 int ret; 1656 1657 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1658 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1659 1660 ret = marvell_nfc_prepare_cmd(chip); 1661 if (ret) 1662 return ret; 1663 1664 marvell_nfc_send_cmd(chip, &nfc_op); 1665 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1666 "RDDREQ/WRDREQ while draining raw data"); 1667 if (ret) 1668 return ret; 1669 1670 cond_delay(nfc_op.cle_ale_delay_ns); 1671 1672 if (reading) { 1673 if (nfc_op.rdy_timeout_ms) { 1674 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1675 if (ret) 1676 return ret; 1677 } 1678 1679 cond_delay(nfc_op.rdy_delay_ns); 1680 } 1681 1682 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1683 ret = marvell_nfc_wait_cmdd(chip); 1684 if (ret) 1685 return ret; 1686 1687 cond_delay(nfc_op.data_delay_ns); 1688 1689 if (!reading) { 1690 if (nfc_op.rdy_timeout_ms) { 1691 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1692 if (ret) 1693 return ret; 1694 } 1695 1696 cond_delay(nfc_op.rdy_delay_ns); 1697 } 1698 1699 /* 1700 * NDCR ND_RUN bit should be cleared automatically at the end of each 1701 * operation but experience shows that the behavior is buggy when it 1702 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1703 */ 1704 if (!reading) { 1705 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1706 1707 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1708 nfc->regs + NDCR); 1709 } 1710 1711 return 0; 1712 } 1713 1714 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1715 const struct nand_subop *subop) 1716 { 1717 struct marvell_nfc_op nfc_op; 1718 int ret; 1719 1720 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1721 1722 /* 1723 * Naked access are different in that they need to be flagged as naked 1724 * by the controller. Reset the controller registers fields that inform 1725 * on the type and refill them according to the ongoing operation. 1726 */ 1727 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1728 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1729 switch (subop->instrs[0].type) { 1730 case NAND_OP_CMD_INSTR: 1731 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1732 break; 1733 case NAND_OP_ADDR_INSTR: 1734 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1735 break; 1736 case NAND_OP_DATA_IN_INSTR: 1737 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1738 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1739 break; 1740 case NAND_OP_DATA_OUT_INSTR: 1741 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1742 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1743 break; 1744 default: 1745 /* This should never happen */ 1746 break; 1747 } 1748 1749 ret = marvell_nfc_prepare_cmd(chip); 1750 if (ret) 1751 return ret; 1752 1753 marvell_nfc_send_cmd(chip, &nfc_op); 1754 1755 if (!nfc_op.data_instr) { 1756 ret = marvell_nfc_wait_cmdd(chip); 1757 cond_delay(nfc_op.cle_ale_delay_ns); 1758 return ret; 1759 } 1760 1761 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1762 "RDDREQ/WRDREQ while draining raw data"); 1763 if (ret) 1764 return ret; 1765 1766 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1767 ret = marvell_nfc_wait_cmdd(chip); 1768 if (ret) 1769 return ret; 1770 1771 /* 1772 * NDCR ND_RUN bit should be cleared automatically at the end of each 1773 * operation but experience shows that the behavior is buggy when it 1774 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1775 */ 1776 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1777 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1778 1779 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1780 nfc->regs + NDCR); 1781 } 1782 1783 return 0; 1784 } 1785 1786 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1787 const struct nand_subop *subop) 1788 { 1789 struct marvell_nfc_op nfc_op; 1790 int ret; 1791 1792 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1793 1794 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1795 cond_delay(nfc_op.rdy_delay_ns); 1796 1797 return ret; 1798 } 1799 1800 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1801 const struct nand_subop *subop) 1802 { 1803 struct marvell_nfc_op nfc_op; 1804 int ret; 1805 1806 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1807 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1808 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1809 1810 ret = marvell_nfc_prepare_cmd(chip); 1811 if (ret) 1812 return ret; 1813 1814 marvell_nfc_send_cmd(chip, &nfc_op); 1815 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1816 "RDDREQ while reading ID"); 1817 if (ret) 1818 return ret; 1819 1820 cond_delay(nfc_op.cle_ale_delay_ns); 1821 1822 if (nfc_op.rdy_timeout_ms) { 1823 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1824 if (ret) 1825 return ret; 1826 } 1827 1828 cond_delay(nfc_op.rdy_delay_ns); 1829 1830 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1831 ret = marvell_nfc_wait_cmdd(chip); 1832 if (ret) 1833 return ret; 1834 1835 cond_delay(nfc_op.data_delay_ns); 1836 1837 return 0; 1838 } 1839 1840 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 1841 const struct nand_subop *subop) 1842 { 1843 struct marvell_nfc_op nfc_op; 1844 int ret; 1845 1846 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1847 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1848 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 1849 1850 ret = marvell_nfc_prepare_cmd(chip); 1851 if (ret) 1852 return ret; 1853 1854 marvell_nfc_send_cmd(chip, &nfc_op); 1855 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1856 "RDDREQ while reading status"); 1857 if (ret) 1858 return ret; 1859 1860 cond_delay(nfc_op.cle_ale_delay_ns); 1861 1862 if (nfc_op.rdy_timeout_ms) { 1863 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1864 if (ret) 1865 return ret; 1866 } 1867 1868 cond_delay(nfc_op.rdy_delay_ns); 1869 1870 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1871 ret = marvell_nfc_wait_cmdd(chip); 1872 if (ret) 1873 return ret; 1874 1875 cond_delay(nfc_op.data_delay_ns); 1876 1877 return 0; 1878 } 1879 1880 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 1881 const struct nand_subop *subop) 1882 { 1883 struct marvell_nfc_op nfc_op; 1884 int ret; 1885 1886 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1887 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 1888 1889 ret = marvell_nfc_prepare_cmd(chip); 1890 if (ret) 1891 return ret; 1892 1893 marvell_nfc_send_cmd(chip, &nfc_op); 1894 ret = marvell_nfc_wait_cmdd(chip); 1895 if (ret) 1896 return ret; 1897 1898 cond_delay(nfc_op.cle_ale_delay_ns); 1899 1900 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1901 if (ret) 1902 return ret; 1903 1904 cond_delay(nfc_op.rdy_delay_ns); 1905 1906 return 0; 1907 } 1908 1909 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 1910 const struct nand_subop *subop) 1911 { 1912 struct marvell_nfc_op nfc_op; 1913 int ret; 1914 1915 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1916 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 1917 1918 ret = marvell_nfc_prepare_cmd(chip); 1919 if (ret) 1920 return ret; 1921 1922 marvell_nfc_send_cmd(chip, &nfc_op); 1923 ret = marvell_nfc_wait_cmdd(chip); 1924 if (ret) 1925 return ret; 1926 1927 cond_delay(nfc_op.cle_ale_delay_ns); 1928 1929 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1930 if (ret) 1931 return ret; 1932 1933 cond_delay(nfc_op.rdy_delay_ns); 1934 1935 return 0; 1936 } 1937 1938 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 1939 /* Monolithic reads/writes */ 1940 NAND_OP_PARSER_PATTERN( 1941 marvell_nfc_monolithic_access_exec, 1942 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1943 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 1944 NAND_OP_PARSER_PAT_CMD_ELEM(true), 1945 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 1946 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 1947 NAND_OP_PARSER_PATTERN( 1948 marvell_nfc_monolithic_access_exec, 1949 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1950 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 1951 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 1952 NAND_OP_PARSER_PAT_CMD_ELEM(true), 1953 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 1954 /* Naked commands */ 1955 NAND_OP_PARSER_PATTERN( 1956 marvell_nfc_naked_access_exec, 1957 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 1958 NAND_OP_PARSER_PATTERN( 1959 marvell_nfc_naked_access_exec, 1960 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 1961 NAND_OP_PARSER_PATTERN( 1962 marvell_nfc_naked_access_exec, 1963 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 1964 NAND_OP_PARSER_PATTERN( 1965 marvell_nfc_naked_access_exec, 1966 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 1967 NAND_OP_PARSER_PATTERN( 1968 marvell_nfc_naked_waitrdy_exec, 1969 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 1970 ); 1971 1972 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 1973 /* Naked commands not supported, use a function for each pattern */ 1974 NAND_OP_PARSER_PATTERN( 1975 marvell_nfc_read_id_type_exec, 1976 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1977 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 1978 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 1979 NAND_OP_PARSER_PATTERN( 1980 marvell_nfc_erase_cmd_type_exec, 1981 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1982 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 1983 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1984 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 1985 NAND_OP_PARSER_PATTERN( 1986 marvell_nfc_read_status_exec, 1987 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1988 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 1989 NAND_OP_PARSER_PATTERN( 1990 marvell_nfc_reset_cmd_type_exec, 1991 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1992 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 1993 NAND_OP_PARSER_PATTERN( 1994 marvell_nfc_naked_waitrdy_exec, 1995 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 1996 ); 1997 1998 static int marvell_nfc_exec_op(struct nand_chip *chip, 1999 const struct nand_operation *op, 2000 bool check_only) 2001 { 2002 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2003 2004 if (nfc->caps->is_nfcv2) 2005 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2006 op, check_only); 2007 else 2008 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2009 op, check_only); 2010 } 2011 2012 /* 2013 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2014 * usable. 2015 */ 2016 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2017 struct mtd_oob_region *oobregion) 2018 { 2019 struct nand_chip *chip = mtd_to_nand(mtd); 2020 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2021 2022 if (section) 2023 return -ERANGE; 2024 2025 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2026 lt->last_ecc_bytes; 2027 oobregion->offset = mtd->oobsize - oobregion->length; 2028 2029 return 0; 2030 } 2031 2032 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2033 struct mtd_oob_region *oobregion) 2034 { 2035 struct nand_chip *chip = mtd_to_nand(mtd); 2036 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2037 2038 if (section) 2039 return -ERANGE; 2040 2041 /* 2042 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2043 * 4KB page / 4bit BCH combination. 2044 */ 2045 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2046 oobregion->offset = 6; 2047 else 2048 oobregion->offset = 2; 2049 2050 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2051 lt->last_spare_bytes - oobregion->offset; 2052 2053 return 0; 2054 } 2055 2056 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2057 .ecc = marvell_nand_ooblayout_ecc, 2058 .free = marvell_nand_ooblayout_free, 2059 }; 2060 2061 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, 2062 struct nand_ecc_ctrl *ecc) 2063 { 2064 struct nand_chip *chip = mtd_to_nand(mtd); 2065 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2066 const struct marvell_hw_ecc_layout *l; 2067 int i; 2068 2069 if (!nfc->caps->is_nfcv2 && 2070 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2071 dev_err(nfc->dev, 2072 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2073 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2074 return -ENOTSUPP; 2075 } 2076 2077 to_marvell_nand(chip)->layout = NULL; 2078 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2079 l = &marvell_nfc_layouts[i]; 2080 if (mtd->writesize == l->writesize && 2081 ecc->size == l->chunk && ecc->strength == l->strength) { 2082 to_marvell_nand(chip)->layout = l; 2083 break; 2084 } 2085 } 2086 2087 if (!to_marvell_nand(chip)->layout || 2088 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2089 dev_err(nfc->dev, 2090 "ECC strength %d at page size %d is not supported\n", 2091 ecc->strength, mtd->writesize); 2092 return -ENOTSUPP; 2093 } 2094 2095 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2096 ecc->steps = l->nchunks; 2097 ecc->size = l->data_bytes; 2098 2099 if (ecc->strength == 1) { 2100 chip->ecc.algo = NAND_ECC_HAMMING; 2101 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2102 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2103 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2104 ecc->read_oob = ecc->read_oob_raw; 2105 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2106 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2107 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2108 ecc->write_oob = ecc->write_oob_raw; 2109 } else { 2110 chip->ecc.algo = NAND_ECC_BCH; 2111 ecc->strength = 16; 2112 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2113 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2114 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2115 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2116 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2117 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2118 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2119 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2120 } 2121 2122 return 0; 2123 } 2124 2125 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2126 struct nand_ecc_ctrl *ecc) 2127 { 2128 struct nand_chip *chip = mtd_to_nand(mtd); 2129 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2130 int ret; 2131 2132 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) { 2133 if (chip->ecc_step_ds && chip->ecc_strength_ds) { 2134 ecc->size = chip->ecc_step_ds; 2135 ecc->strength = chip->ecc_strength_ds; 2136 } else { 2137 dev_info(nfc->dev, 2138 "No minimum ECC strength, using 1b/512B\n"); 2139 ecc->size = 512; 2140 ecc->strength = 1; 2141 } 2142 } 2143 2144 switch (ecc->mode) { 2145 case NAND_ECC_HW: 2146 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc); 2147 if (ret) 2148 return ret; 2149 break; 2150 case NAND_ECC_NONE: 2151 case NAND_ECC_SOFT: 2152 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2153 mtd->writesize != SZ_2K) { 2154 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2155 mtd->writesize); 2156 return -EINVAL; 2157 } 2158 break; 2159 default: 2160 return -EINVAL; 2161 } 2162 2163 return 0; 2164 } 2165 2166 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2167 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2168 2169 static struct nand_bbt_descr bbt_main_descr = { 2170 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2171 NAND_BBT_2BIT | NAND_BBT_VERSION, 2172 .offs = 8, 2173 .len = 6, 2174 .veroffs = 14, 2175 .maxblocks = 8, /* Last 8 blocks in each chip */ 2176 .pattern = bbt_pattern 2177 }; 2178 2179 static struct nand_bbt_descr bbt_mirror_descr = { 2180 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2181 NAND_BBT_2BIT | NAND_BBT_VERSION, 2182 .offs = 8, 2183 .len = 6, 2184 .veroffs = 14, 2185 .maxblocks = 8, /* Last 8 blocks in each chip */ 2186 .pattern = bbt_mirror_pattern 2187 }; 2188 2189 static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr, 2190 const struct nand_data_interface 2191 *conf) 2192 { 2193 struct nand_chip *chip = mtd_to_nand(mtd); 2194 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2195 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2196 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2197 const struct nand_sdr_timings *sdr; 2198 struct marvell_nfc_timings nfc_tmg; 2199 int read_delay; 2200 2201 sdr = nand_get_sdr_timings(conf); 2202 if (IS_ERR(sdr)) 2203 return PTR_ERR(sdr); 2204 2205 /* 2206 * SDR timings are given in pico-seconds while NFC timings must be 2207 * expressed in NAND controller clock cycles, which is half of the 2208 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2209 * This is not written anywhere in the datasheet but was observed 2210 * with an oscilloscope. 2211 * 2212 * NFC datasheet gives equations from which thoses calculations 2213 * are derived, they tend to be slightly more restrictives than the 2214 * given core timings and may improve the overall speed. 2215 */ 2216 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2217 nfc_tmg.tRH = nfc_tmg.tRP; 2218 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2219 nfc_tmg.tWH = nfc_tmg.tWP; 2220 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2221 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2222 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2223 /* 2224 * Read delay is the time of propagation from SoC pins to NFC internal 2225 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2226 * EDO mode, an additional delay of tRH must be taken into account so 2227 * the data is sampled on the falling edge instead of the rising edge. 2228 */ 2229 read_delay = sdr->tRC_min >= 30000 ? 2230 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2231 2232 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2233 /* 2234 * tWHR and tRHW are supposed to be read to write delays (and vice 2235 * versa) but in some cases, ie. when doing a change column, they must 2236 * be greater than that to be sure tCCS delay is respected. 2237 */ 2238 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2239 period_ns) - 2, 2240 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2241 period_ns); 2242 2243 /* 2244 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2245 * NFCv1: No WAIT_MODE, tR must be maximal. 2246 */ 2247 if (nfc->caps->is_nfcv2) { 2248 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2249 } else { 2250 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2251 period_ns); 2252 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2253 nfc_tmg.tR = nfc_tmg.tCH - 3; 2254 else 2255 nfc_tmg.tR = 0; 2256 } 2257 2258 if (chipnr < 0) 2259 return 0; 2260 2261 marvell_nand->ndtr0 = 2262 NDTR0_TRP(nfc_tmg.tRP) | 2263 NDTR0_TRH(nfc_tmg.tRH) | 2264 NDTR0_ETRP(nfc_tmg.tRP) | 2265 NDTR0_TWP(nfc_tmg.tWP) | 2266 NDTR0_TWH(nfc_tmg.tWH) | 2267 NDTR0_TCS(nfc_tmg.tCS) | 2268 NDTR0_TCH(nfc_tmg.tCH); 2269 2270 marvell_nand->ndtr1 = 2271 NDTR1_TAR(nfc_tmg.tAR) | 2272 NDTR1_TWHR(nfc_tmg.tWHR) | 2273 NDTR1_TR(nfc_tmg.tR); 2274 2275 if (nfc->caps->is_nfcv2) { 2276 marvell_nand->ndtr0 |= 2277 NDTR0_RD_CNT_DEL(read_delay) | 2278 NDTR0_SELCNTR | 2279 NDTR0_TADL(nfc_tmg.tADL); 2280 2281 marvell_nand->ndtr1 |= 2282 NDTR1_TRHW(nfc_tmg.tRHW) | 2283 NDTR1_WAIT_MODE; 2284 } 2285 2286 return 0; 2287 } 2288 2289 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2290 struct device_node *np) 2291 { 2292 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2293 struct marvell_nand_chip *marvell_nand; 2294 struct mtd_info *mtd; 2295 struct nand_chip *chip; 2296 int nsels, ret, i; 2297 u32 cs, rb; 2298 2299 /* 2300 * The legacy "num-cs" property indicates the number of CS on the only 2301 * chip connected to the controller (legacy bindings does not support 2302 * more than one chip). CS are only incremented one by one while the RB 2303 * pin is always the #0. 2304 * 2305 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2306 * properties must be filled. For each chip, expressed as a subnode, 2307 * "reg" points to the CS lines and "nand-rb" to the RB line. 2308 */ 2309 if (pdata) { 2310 nsels = 1; 2311 } else if (nfc->caps->legacy_of_bindings && 2312 !of_get_property(np, "num-cs", &nsels)) { 2313 dev_err(dev, "missing num-cs property\n"); 2314 return -EINVAL; 2315 } else if (!of_get_property(np, "reg", &nsels)) { 2316 dev_err(dev, "missing reg property\n"); 2317 return -EINVAL; 2318 } 2319 2320 if (!pdata) 2321 nsels /= sizeof(u32); 2322 if (!nsels) { 2323 dev_err(dev, "invalid reg property size\n"); 2324 return -EINVAL; 2325 } 2326 2327 /* Alloc the nand chip structure */ 2328 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) + 2329 (nsels * 2330 sizeof(struct marvell_nand_chip_sel)), 2331 GFP_KERNEL); 2332 if (!marvell_nand) { 2333 dev_err(dev, "could not allocate chip structure\n"); 2334 return -ENOMEM; 2335 } 2336 2337 marvell_nand->nsels = nsels; 2338 marvell_nand->selected_die = -1; 2339 2340 for (i = 0; i < nsels; i++) { 2341 if (pdata || nfc->caps->legacy_of_bindings) { 2342 /* 2343 * Legacy bindings use the CS lines in natural 2344 * order (0, 1, ...) 2345 */ 2346 cs = i; 2347 } else { 2348 /* Retrieve CS id */ 2349 ret = of_property_read_u32_index(np, "reg", i, &cs); 2350 if (ret) { 2351 dev_err(dev, "could not retrieve reg property: %d\n", 2352 ret); 2353 return ret; 2354 } 2355 } 2356 2357 if (cs >= nfc->caps->max_cs_nb) { 2358 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2359 cs, nfc->caps->max_cs_nb); 2360 return -EINVAL; 2361 } 2362 2363 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2364 dev_err(dev, "CS %d already assigned\n", cs); 2365 return -EINVAL; 2366 } 2367 2368 /* 2369 * The cs variable represents the chip select id, which must be 2370 * converted in bit fields for NDCB0 and NDCB2 to select the 2371 * right chip. Unfortunately, due to a lack of information on 2372 * the subject and incoherent documentation, the user should not 2373 * use CS1 and CS3 at all as asserting them is not supported in 2374 * a reliable way (due to multiplexing inside ADDR5 field). 2375 */ 2376 marvell_nand->sels[i].cs = cs; 2377 switch (cs) { 2378 case 0: 2379 case 2: 2380 marvell_nand->sels[i].ndcb0_csel = 0; 2381 break; 2382 case 1: 2383 case 3: 2384 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2385 break; 2386 default: 2387 return -EINVAL; 2388 } 2389 2390 /* Retrieve RB id */ 2391 if (pdata || nfc->caps->legacy_of_bindings) { 2392 /* Legacy bindings always use RB #0 */ 2393 rb = 0; 2394 } else { 2395 ret = of_property_read_u32_index(np, "nand-rb", i, 2396 &rb); 2397 if (ret) { 2398 dev_err(dev, 2399 "could not retrieve RB property: %d\n", 2400 ret); 2401 return ret; 2402 } 2403 } 2404 2405 if (rb >= nfc->caps->max_rb_nb) { 2406 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2407 rb, nfc->caps->max_rb_nb); 2408 return -EINVAL; 2409 } 2410 2411 marvell_nand->sels[i].rb = rb; 2412 } 2413 2414 chip = &marvell_nand->chip; 2415 chip->controller = &nfc->controller; 2416 nand_set_flash_node(chip, np); 2417 2418 chip->exec_op = marvell_nfc_exec_op; 2419 chip->select_chip = marvell_nfc_select_chip; 2420 if (!of_property_read_bool(np, "marvell,nand-keep-config")) 2421 chip->setup_data_interface = marvell_nfc_setup_data_interface; 2422 2423 mtd = nand_to_mtd(chip); 2424 mtd->dev.parent = dev; 2425 2426 /* 2427 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2428 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2429 */ 2430 chip->ecc.mode = NAND_ECC_HW; 2431 2432 /* 2433 * Save a reference value for timing registers before 2434 * ->setup_data_interface() is called. 2435 */ 2436 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2437 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2438 2439 chip->options |= NAND_BUSWIDTH_AUTO; 2440 ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL); 2441 if (ret) { 2442 dev_err(dev, "could not identify the nand chip\n"); 2443 return ret; 2444 } 2445 2446 if (pdata && pdata->flash_bbt) 2447 chip->bbt_options |= NAND_BBT_USE_FLASH; 2448 2449 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2450 /* 2451 * We'll use a bad block table stored in-flash and don't 2452 * allow writing the bad block marker to the flash. 2453 */ 2454 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2455 chip->bbt_td = &bbt_main_descr; 2456 chip->bbt_md = &bbt_mirror_descr; 2457 } 2458 2459 /* Save the chip-specific fields of NDCR */ 2460 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2461 if (chip->options & NAND_BUSWIDTH_16) 2462 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2463 2464 /* 2465 * On small page NANDs, only one cycle is needed to pass the 2466 * column address. 2467 */ 2468 if (mtd->writesize <= 512) { 2469 marvell_nand->addr_cyc = 1; 2470 } else { 2471 marvell_nand->addr_cyc = 2; 2472 marvell_nand->ndcr |= NDCR_RA_START; 2473 } 2474 2475 /* 2476 * Now add the number of cycles needed to pass the row 2477 * address. 2478 * 2479 * Addressing a chip using CS 2 or 3 should also need the third row 2480 * cycle but due to inconsistance in the documentation and lack of 2481 * hardware to test this situation, this case is not supported. 2482 */ 2483 if (chip->options & NAND_ROW_ADDR_3) 2484 marvell_nand->addr_cyc += 3; 2485 else 2486 marvell_nand->addr_cyc += 2; 2487 2488 if (pdata) { 2489 chip->ecc.size = pdata->ecc_step_size; 2490 chip->ecc.strength = pdata->ecc_strength; 2491 } 2492 2493 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2494 if (ret) { 2495 dev_err(dev, "ECC init failed: %d\n", ret); 2496 return ret; 2497 } 2498 2499 if (chip->ecc.mode == NAND_ECC_HW) { 2500 /* 2501 * Subpage write not available with hardware ECC, prohibit also 2502 * subpage read as in userspace subpage access would still be 2503 * allowed and subpage write, if used, would lead to numerous 2504 * uncorrectable ECC errors. 2505 */ 2506 chip->options |= NAND_NO_SUBPAGE_WRITE; 2507 } 2508 2509 if (pdata || nfc->caps->legacy_of_bindings) { 2510 /* 2511 * We keep the MTD name unchanged to avoid breaking platforms 2512 * where the MTD cmdline parser is used and the bootloader 2513 * has not been updated to use the new naming scheme. 2514 */ 2515 mtd->name = "pxa3xx_nand-0"; 2516 } else if (!mtd->name) { 2517 /* 2518 * If the new bindings are used and the bootloader has not been 2519 * updated to pass a new mtdparts parameter on the cmdline, you 2520 * should define the following property in your NAND node, ie: 2521 * 2522 * label = "main-storage"; 2523 * 2524 * This way, mtd->name will be set by the core when 2525 * nand_set_flash_node() is called. 2526 */ 2527 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2528 "%s:nand.%d", dev_name(nfc->dev), 2529 marvell_nand->sels[0].cs); 2530 if (!mtd->name) { 2531 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2532 return -ENOMEM; 2533 } 2534 } 2535 2536 ret = nand_scan_tail(mtd); 2537 if (ret) { 2538 dev_err(dev, "nand_scan_tail failed: %d\n", ret); 2539 return ret; 2540 } 2541 2542 if (pdata) 2543 /* Legacy bindings support only one chip */ 2544 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2545 else 2546 ret = mtd_device_register(mtd, NULL, 0); 2547 if (ret) { 2548 dev_err(dev, "failed to register mtd device: %d\n", ret); 2549 nand_release(mtd); 2550 return ret; 2551 } 2552 2553 list_add_tail(&marvell_nand->node, &nfc->chips); 2554 2555 return 0; 2556 } 2557 2558 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2559 { 2560 struct device_node *np = dev->of_node; 2561 struct device_node *nand_np; 2562 int max_cs = nfc->caps->max_cs_nb; 2563 int nchips; 2564 int ret; 2565 2566 if (!np) 2567 nchips = 1; 2568 else 2569 nchips = of_get_child_count(np); 2570 2571 if (nchips > max_cs) { 2572 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2573 max_cs); 2574 return -EINVAL; 2575 } 2576 2577 /* 2578 * Legacy bindings do not use child nodes to exhibit NAND chip 2579 * properties and layout. Instead, NAND properties are mixed with the 2580 * controller ones, and partitions are defined as direct subnodes of the 2581 * NAND controller node. 2582 */ 2583 if (nfc->caps->legacy_of_bindings) { 2584 ret = marvell_nand_chip_init(dev, nfc, np); 2585 return ret; 2586 } 2587 2588 for_each_child_of_node(np, nand_np) { 2589 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2590 if (ret) { 2591 of_node_put(nand_np); 2592 return ret; 2593 } 2594 } 2595 2596 return 0; 2597 } 2598 2599 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2600 { 2601 struct marvell_nand_chip *entry, *temp; 2602 2603 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2604 nand_release(nand_to_mtd(&entry->chip)); 2605 list_del(&entry->node); 2606 } 2607 } 2608 2609 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2610 { 2611 struct platform_device *pdev = container_of(nfc->dev, 2612 struct platform_device, 2613 dev); 2614 struct dma_slave_config config = {}; 2615 struct resource *r; 2616 dma_cap_mask_t mask; 2617 struct pxad_param param; 2618 int ret; 2619 2620 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2621 dev_warn(nfc->dev, 2622 "DMA not enabled in configuration\n"); 2623 return -ENOTSUPP; 2624 } 2625 2626 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2627 if (ret) 2628 return ret; 2629 2630 r = platform_get_resource(pdev, IORESOURCE_DMA, 0); 2631 if (!r) { 2632 dev_err(nfc->dev, "No resource defined for data DMA\n"); 2633 return -ENXIO; 2634 } 2635 2636 param.drcmr = r->start; 2637 param.prio = PXAD_PRIO_LOWEST; 2638 dma_cap_zero(mask); 2639 dma_cap_set(DMA_SLAVE, mask); 2640 nfc->dma_chan = 2641 dma_request_slave_channel_compat(mask, pxad_filter_fn, 2642 ¶m, nfc->dev, 2643 "data"); 2644 if (!nfc->dma_chan) { 2645 dev_err(nfc->dev, 2646 "Unable to request data DMA channel\n"); 2647 return -ENODEV; 2648 } 2649 2650 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2651 if (!r) 2652 return -ENXIO; 2653 2654 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2655 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2656 config.src_addr = r->start + NDDB; 2657 config.dst_addr = r->start + NDDB; 2658 config.src_maxburst = 32; 2659 config.dst_maxburst = 32; 2660 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2661 if (ret < 0) { 2662 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2663 return ret; 2664 } 2665 2666 /* 2667 * DMA must act on length multiple of 32 and this length may be 2668 * bigger than the destination buffer. Use this buffer instead 2669 * for DMA transfers and then copy the desired amount of data to 2670 * the provided buffer. 2671 */ 2672 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2673 if (!nfc->dma_buf) 2674 return -ENOMEM; 2675 2676 nfc->use_dma = true; 2677 2678 return 0; 2679 } 2680 2681 static int marvell_nfc_init(struct marvell_nfc *nfc) 2682 { 2683 struct device_node *np = nfc->dev->of_node; 2684 2685 /* 2686 * Some SoCs like A7k/A8k need to enable manually the NAND 2687 * controller, gated clocks and reset bits to avoid being bootloader 2688 * dependent. This is done through the use of the System Functions 2689 * registers. 2690 */ 2691 if (nfc->caps->need_system_controller) { 2692 struct regmap *sysctrl_base = 2693 syscon_regmap_lookup_by_phandle(np, 2694 "marvell,system-controller"); 2695 u32 reg; 2696 2697 if (IS_ERR(sysctrl_base)) 2698 return PTR_ERR(sysctrl_base); 2699 2700 reg = GENCONF_SOC_DEVICE_MUX_NFC_EN | 2701 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2702 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2703 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN; 2704 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg); 2705 2706 regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, ®); 2707 reg |= GENCONF_CLK_GATING_CTRL_ND_GATE; 2708 regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg); 2709 2710 regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, ®); 2711 reg |= GENCONF_ND_CLK_CTRL_EN; 2712 regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg); 2713 } 2714 2715 /* Configure the DMA if appropriate */ 2716 if (!nfc->caps->is_nfcv2) 2717 marvell_nfc_init_dma(nfc); 2718 2719 /* 2720 * ECC operations and interruptions are only enabled when specifically 2721 * needed. ECC shall not be activated in the early stages (fails probe). 2722 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2723 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2724 * offset in the read page and this will fail the protection. 2725 */ 2726 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2727 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2728 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2729 writel_relaxed(0, nfc->regs + NDECCCTRL); 2730 2731 return 0; 2732 } 2733 2734 static int marvell_nfc_probe(struct platform_device *pdev) 2735 { 2736 struct device *dev = &pdev->dev; 2737 struct resource *r; 2738 struct marvell_nfc *nfc; 2739 int ret; 2740 int irq; 2741 2742 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2743 GFP_KERNEL); 2744 if (!nfc) 2745 return -ENOMEM; 2746 2747 nfc->dev = dev; 2748 nand_hw_control_init(&nfc->controller); 2749 INIT_LIST_HEAD(&nfc->chips); 2750 2751 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2752 nfc->regs = devm_ioremap_resource(dev, r); 2753 if (IS_ERR(nfc->regs)) 2754 return PTR_ERR(nfc->regs); 2755 2756 irq = platform_get_irq(pdev, 0); 2757 if (irq < 0) { 2758 dev_err(dev, "failed to retrieve irq\n"); 2759 return irq; 2760 } 2761 2762 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2763 2764 /* Managed the legacy case (when the first clock was not named) */ 2765 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2766 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2767 2768 if (IS_ERR(nfc->core_clk)) 2769 return PTR_ERR(nfc->core_clk); 2770 2771 ret = clk_prepare_enable(nfc->core_clk); 2772 if (ret) 2773 return ret; 2774 2775 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2776 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2777 if (!IS_ERR(nfc->reg_clk)) { 2778 ret = clk_prepare_enable(nfc->reg_clk); 2779 if (ret) 2780 goto unprepare_core_clk; 2781 } else { 2782 ret = PTR_ERR(nfc->reg_clk); 2783 goto unprepare_core_clk; 2784 } 2785 } 2786 2787 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2788 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2789 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2790 0, "marvell-nfc", nfc); 2791 if (ret) 2792 goto unprepare_reg_clk; 2793 2794 /* Get NAND controller capabilities */ 2795 if (pdev->id_entry) 2796 nfc->caps = (void *)pdev->id_entry->driver_data; 2797 else 2798 nfc->caps = of_device_get_match_data(&pdev->dev); 2799 2800 if (!nfc->caps) { 2801 dev_err(dev, "Could not retrieve NFC caps\n"); 2802 ret = -EINVAL; 2803 goto unprepare_reg_clk; 2804 } 2805 2806 /* Init the controller and then probe the chips */ 2807 ret = marvell_nfc_init(nfc); 2808 if (ret) 2809 goto unprepare_reg_clk; 2810 2811 platform_set_drvdata(pdev, nfc); 2812 2813 ret = marvell_nand_chips_init(dev, nfc); 2814 if (ret) 2815 goto unprepare_reg_clk; 2816 2817 return 0; 2818 2819 unprepare_reg_clk: 2820 clk_disable_unprepare(nfc->reg_clk); 2821 unprepare_core_clk: 2822 clk_disable_unprepare(nfc->core_clk); 2823 2824 return ret; 2825 } 2826 2827 static int marvell_nfc_remove(struct platform_device *pdev) 2828 { 2829 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 2830 2831 marvell_nand_chips_cleanup(nfc); 2832 2833 if (nfc->use_dma) { 2834 dmaengine_terminate_all(nfc->dma_chan); 2835 dma_release_channel(nfc->dma_chan); 2836 } 2837 2838 clk_disable_unprepare(nfc->reg_clk); 2839 clk_disable_unprepare(nfc->core_clk); 2840 2841 return 0; 2842 } 2843 2844 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 2845 .max_cs_nb = 4, 2846 .max_rb_nb = 2, 2847 .need_system_controller = true, 2848 .is_nfcv2 = true, 2849 }; 2850 2851 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 2852 .max_cs_nb = 4, 2853 .max_rb_nb = 2, 2854 .is_nfcv2 = true, 2855 }; 2856 2857 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 2858 .max_cs_nb = 2, 2859 .max_rb_nb = 1, 2860 .use_dma = true, 2861 }; 2862 2863 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 2864 .max_cs_nb = 4, 2865 .max_rb_nb = 2, 2866 .need_system_controller = true, 2867 .legacy_of_bindings = true, 2868 .is_nfcv2 = true, 2869 }; 2870 2871 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 2872 .max_cs_nb = 4, 2873 .max_rb_nb = 2, 2874 .legacy_of_bindings = true, 2875 .is_nfcv2 = true, 2876 }; 2877 2878 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 2879 .max_cs_nb = 2, 2880 .max_rb_nb = 1, 2881 .legacy_of_bindings = true, 2882 .use_dma = true, 2883 }; 2884 2885 static const struct platform_device_id marvell_nfc_platform_ids[] = { 2886 { 2887 .name = "pxa3xx-nand", 2888 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 2889 }, 2890 { /* sentinel */ }, 2891 }; 2892 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 2893 2894 static const struct of_device_id marvell_nfc_of_ids[] = { 2895 { 2896 .compatible = "marvell,armada-8k-nand-controller", 2897 .data = &marvell_armada_8k_nfc_caps, 2898 }, 2899 { 2900 .compatible = "marvell,armada370-nand-controller", 2901 .data = &marvell_armada370_nfc_caps, 2902 }, 2903 { 2904 .compatible = "marvell,pxa3xx-nand-controller", 2905 .data = &marvell_pxa3xx_nfc_caps, 2906 }, 2907 /* Support for old/deprecated bindings: */ 2908 { 2909 .compatible = "marvell,armada-8k-nand", 2910 .data = &marvell_armada_8k_nfc_legacy_caps, 2911 }, 2912 { 2913 .compatible = "marvell,armada370-nand", 2914 .data = &marvell_armada370_nfc_legacy_caps, 2915 }, 2916 { 2917 .compatible = "marvell,pxa3xx-nand", 2918 .data = &marvell_pxa3xx_nfc_legacy_caps, 2919 }, 2920 { /* sentinel */ }, 2921 }; 2922 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 2923 2924 static struct platform_driver marvell_nfc_driver = { 2925 .driver = { 2926 .name = "marvell-nfc", 2927 .of_match_table = marvell_nfc_of_ids, 2928 }, 2929 .id_table = marvell_nfc_platform_ids, 2930 .probe = marvell_nfc_probe, 2931 .remove = marvell_nfc_remove, 2932 }; 2933 module_platform_driver(marvell_nfc_driver); 2934 2935 MODULE_LICENSE("GPL"); 2936 MODULE_DESCRIPTION("Marvell NAND controller driver"); 2937