1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 * 9 * This NAND controller driver handles two versions of the hardware, 10 * one is called NFCv1 and is available on PXA SoCs and the other is 11 * called NFCv2 and is available on Armada SoCs. 12 * 13 * The main visible difference is that NFCv1 only has Hamming ECC 14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA 15 * is not used with NFCv2. 16 * 17 * The ECC layouts are depicted in details in Marvell AN-379, but here 18 * is a brief description. 19 * 20 * When using Hamming, the data is split in 512B chunks (either 1, 2 21 * or 4) and each chunk will have its own ECC "digest" of 6B at the 22 * beginning of the OOB area and eventually the remaining free OOB 23 * bytes (also called "spare" bytes in the driver). This engine 24 * corrects up to 1 bit per chunk and detects reliably an error if 25 * there are at most 2 bitflips. Here is the page layout used by the 26 * controller when Hamming is chosen: 27 * 28 * +-------------------------------------------------------------+ 29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | 30 * +-------------------------------------------------------------+ 31 * 32 * When using the BCH engine, there are N identical (data + free OOB + 33 * ECC) sections and potentially an extra one to deal with 34 * configurations where the chosen (data + free OOB + ECC) sizes do 35 * not align with the page (data + OOB) size. ECC bytes are always 36 * 30B per ECC chunk. Here is the page layout used by the controller 37 * when BCH is chosen: 38 * 39 * +----------------------------------------- 40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ... 41 * +----------------------------------------- 42 * 43 * ------------------------------------------- 44 * ... | Data N | Free OOB bytes N | ECC N | 45 * ------------------------------------------- 46 * 47 * --------------------------------------------+ 48 * Last Data | Last Free OOB bytes | Last ECC | 49 * --------------------------------------------+ 50 * 51 * In both cases, the layout seen by the user is always: all data 52 * first, then all free OOB bytes and finally all ECC bytes. With BCH, 53 * ECC bytes are 30B long and are padded with 0xFF to align on 32 54 * bytes. 55 * 56 * The controller has certain limitations that are handled by the 57 * driver: 58 * - It can only read 2k at a time. To overcome this limitation, the 59 * driver issues data cycles on the bus, without issuing new 60 * CMD + ADDR cycles. The Marvell term is "naked" operations. 61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 62 * bits. What can be tuned is the ECC block size as long as it 63 * stays between 512B and 2kiB. It's usually chosen based on the 64 * chip ECC requirements. For instance, using 2kiB ECC chunks 65 * provides 4b/512B correctability. 66 * - The controller will always treat data bytes, free OOB bytes 67 * and ECC bytes in that order, no matter what the real layout is 68 * (which is usually all data then all OOB bytes). The 69 * marvell_nfc_layouts array below contains the currently 70 * supported layouts. 71 * - Because of these weird layouts, the Bad Block Markers can be 72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM 73 * option must be set to prevent scanning/writing bad block 74 * markers. 75 */ 76 77 #include <linux/module.h> 78 #include <linux/clk.h> 79 #include <linux/mtd/rawnand.h> 80 #include <linux/of_platform.h> 81 #include <linux/iopoll.h> 82 #include <linux/interrupt.h> 83 #include <linux/slab.h> 84 #include <linux/mfd/syscon.h> 85 #include <linux/regmap.h> 86 #include <asm/unaligned.h> 87 88 #include <linux/dmaengine.h> 89 #include <linux/dma-mapping.h> 90 #include <linux/dma/pxa-dma.h> 91 #include <linux/platform_data/mtd-nand-pxa3xx.h> 92 93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 94 #define FIFO_DEPTH 8 95 #define FIFO_REP(x) (x / sizeof(u32)) 96 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 97 /* NFC does not support transfers of larger chunks at a time */ 98 #define MAX_CHUNK_SIZE 2112 99 /* NFCv1 cannot read more that 7 bytes of ID */ 100 #define NFCV1_READID_LEN 7 101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 102 #define POLL_PERIOD 0 103 #define POLL_TIMEOUT 100000 104 /* Interrupt maximum wait period in ms */ 105 #define IRQ_TIMEOUT 1000 106 /* Latency in clock cycles between SoC pins and NFC logic */ 107 #define MIN_RD_DEL_CNT 3 108 /* Maximum number of contiguous address cycles */ 109 #define MAX_ADDRESS_CYC_NFCV1 5 110 #define MAX_ADDRESS_CYC_NFCV2 7 111 /* System control registers/bits to enable the NAND controller on some SoCs */ 112 #define GENCONF_SOC_DEVICE_MUX 0x208 113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 117 #define GENCONF_CLK_GATING_CTRL 0x220 118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 119 #define GENCONF_ND_CLK_CTRL 0x700 120 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 121 122 /* NAND controller data flash control register */ 123 #define NDCR 0x00 124 #define NDCR_ALL_INT GENMASK(11, 0) 125 #define NDCR_CS1_CMDDM BIT(7) 126 #define NDCR_CS0_CMDDM BIT(8) 127 #define NDCR_RDYM BIT(11) 128 #define NDCR_ND_ARB_EN BIT(12) 129 #define NDCR_RA_START BIT(15) 130 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 131 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 132 #define NDCR_DWIDTH_M BIT(26) 133 #define NDCR_DWIDTH_C BIT(27) 134 #define NDCR_ND_RUN BIT(28) 135 #define NDCR_DMA_EN BIT(29) 136 #define NDCR_ECC_EN BIT(30) 137 #define NDCR_SPARE_EN BIT(31) 138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 139 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 140 141 /* NAND interface timing parameter 0 register */ 142 #define NDTR0 0x04 143 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 144 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 145 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 146 #define NDTR0_SEL_NRE_EDGE BIT(7) 147 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 148 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 149 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 150 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 151 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 152 #define NDTR0_SELCNTR BIT(26) 153 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 154 155 /* NAND interface timing parameter 1 register */ 156 #define NDTR1 0x0C 157 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 158 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 159 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 160 #define NDTR1_PRESCALE BIT(14) 161 #define NDTR1_WAIT_MODE BIT(15) 162 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 163 164 /* NAND controller status register */ 165 #define NDSR 0x14 166 #define NDSR_WRCMDREQ BIT(0) 167 #define NDSR_RDDREQ BIT(1) 168 #define NDSR_WRDREQ BIT(2) 169 #define NDSR_CORERR BIT(3) 170 #define NDSR_UNCERR BIT(4) 171 #define NDSR_CMDD(cs) BIT(8 - cs) 172 #define NDSR_RDY(rb) BIT(11 + rb) 173 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 174 175 /* NAND ECC control register */ 176 #define NDECCCTRL 0x28 177 #define NDECCCTRL_BCH_EN BIT(0) 178 179 /* NAND controller data buffer register */ 180 #define NDDB 0x40 181 182 /* NAND controller command buffer 0 register */ 183 #define NDCB0 0x48 184 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 185 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 186 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 188 #define NDCB0_DBC BIT(19) 189 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 190 #define NDCB0_CSEL BIT(24) 191 #define NDCB0_RDY_BYP BIT(27) 192 #define NDCB0_LEN_OVRD BIT(28) 193 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 194 195 /* NAND controller command buffer 1 register */ 196 #define NDCB1 0x4C 197 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 198 #define NDCB1_ADDRS_PAGE(x) (x << 16) 199 200 /* NAND controller command buffer 2 register */ 201 #define NDCB2 0x50 202 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 203 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 204 205 /* NAND controller command buffer 3 register */ 206 #define NDCB3 0x54 207 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 208 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 209 210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 211 #define TYPE_READ 0 212 #define TYPE_WRITE 1 213 #define TYPE_ERASE 2 214 #define TYPE_READ_ID 3 215 #define TYPE_STATUS 4 216 #define TYPE_RESET 5 217 #define TYPE_NAKED_CMD 6 218 #define TYPE_NAKED_ADDR 7 219 #define TYPE_MASK 7 220 #define XTYPE_MONOLITHIC_RW 0 221 #define XTYPE_LAST_NAKED_RW 1 222 #define XTYPE_FINAL_COMMAND 3 223 #define XTYPE_READ 4 224 #define XTYPE_WRITE_DISPATCH 4 225 #define XTYPE_NAKED_RW 5 226 #define XTYPE_COMMAND_DISPATCH 6 227 #define XTYPE_MASK 7 228 229 /** 230 * Marvell ECC engine works differently than the others, in order to limit the 231 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 232 * per subpage, and depending on a the desired strength needed by the NAND chip, 233 * a particular layout mixing data/spare/ecc is defined, with a possible last 234 * chunk smaller that the others. 235 * 236 * @writesize: Full page size on which the layout applies 237 * @chunk: Desired ECC chunk size on which the layout applies 238 * @strength: Desired ECC strength (per chunk size bytes) on which the 239 * layout applies 240 * @nchunks: Total number of chunks 241 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 242 * repetitions of the pattern: 243 * (data_bytes + spare_bytes + ecc_bytes). 244 * @data_bytes: Number of data bytes per chunk 245 * @spare_bytes: Number of spare bytes per chunk 246 * @ecc_bytes: Number of ecc bytes per chunk 247 * @last_data_bytes: Number of data bytes in the last chunk 248 * @last_spare_bytes: Number of spare bytes in the last chunk 249 * @last_ecc_bytes: Number of ecc bytes in the last chunk 250 */ 251 struct marvell_hw_ecc_layout { 252 /* Constraints */ 253 int writesize; 254 int chunk; 255 int strength; 256 /* Corresponding layout */ 257 int nchunks; 258 int full_chunk_cnt; 259 int data_bytes; 260 int spare_bytes; 261 int ecc_bytes; 262 int last_data_bytes; 263 int last_spare_bytes; 264 int last_ecc_bytes; 265 }; 266 267 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 268 { \ 269 .writesize = ws, \ 270 .chunk = dc, \ 271 .strength = ds, \ 272 .nchunks = nc, \ 273 .full_chunk_cnt = fcc, \ 274 .data_bytes = db, \ 275 .spare_bytes = sb, \ 276 .ecc_bytes = eb, \ 277 .last_data_bytes = ldb, \ 278 .last_spare_bytes = lsb, \ 279 .last_ecc_bytes = leb, \ 280 } 281 282 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 283 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 284 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 285 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 286 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 287 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), 288 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 289 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 290 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), 291 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), 292 }; 293 294 /** 295 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 296 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 297 * The datasheet describes the logic with an error: ADDR5 field is once 298 * declared at the beginning of NDCB2, and another time at its end. Because the 299 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 300 * to use the last bit of this field instead of the first ones. 301 * 302 * @cs: Wanted CE lane. 303 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 304 * selecting the wanted CE lane. This is set once when 305 * the Device Tree is probed. 306 * @rb: Ready/Busy pin for the flash chip 307 */ 308 struct marvell_nand_chip_sel { 309 unsigned int cs; 310 u32 ndcb0_csel; 311 unsigned int rb; 312 }; 313 314 /** 315 * NAND chip structure: stores NAND chip device related information 316 * 317 * @chip: Base NAND chip structure 318 * @node: Used to store NAND chips into a list 319 * @layout NAND layout when using hardware ECC 320 * @ndcr: Controller register value for this NAND chip 321 * @ndtr0: Timing registers 0 value for this NAND chip 322 * @ndtr1: Timing registers 1 value for this NAND chip 323 * @selected_die: Current active CS 324 * @nsels: Number of CS lines required by the NAND chip 325 * @sels: Array of CS lines descriptions 326 */ 327 struct marvell_nand_chip { 328 struct nand_chip chip; 329 struct list_head node; 330 const struct marvell_hw_ecc_layout *layout; 331 u32 ndcr; 332 u32 ndtr0; 333 u32 ndtr1; 334 int addr_cyc; 335 int selected_die; 336 unsigned int nsels; 337 struct marvell_nand_chip_sel sels[]; 338 }; 339 340 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 341 { 342 return container_of(chip, struct marvell_nand_chip, chip); 343 } 344 345 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 346 *nand) 347 { 348 return &nand->sels[nand->selected_die]; 349 } 350 351 /** 352 * NAND controller capabilities for distinction between compatible strings 353 * 354 * @max_cs_nb: Number of Chip Select lines available 355 * @max_rb_nb: Number of Ready/Busy lines available 356 * @need_system_controller: Indicates if the SoC needs to have access to the 357 * system controller (ie. to enable the NAND controller) 358 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 359 * fashion way 360 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 361 * BCH error detection and correction algorithm, 362 * NDCB3 register has been added 363 * @use_dma: Use dma for data transfers 364 */ 365 struct marvell_nfc_caps { 366 unsigned int max_cs_nb; 367 unsigned int max_rb_nb; 368 bool need_system_controller; 369 bool legacy_of_bindings; 370 bool is_nfcv2; 371 bool use_dma; 372 }; 373 374 /** 375 * NAND controller structure: stores Marvell NAND controller information 376 * 377 * @controller: Base controller structure 378 * @dev: Parent device (used to print error messages) 379 * @regs: NAND controller registers 380 * @core_clk: Core clock 381 * @reg_clk: Registers clock 382 * @complete: Completion object to wait for NAND controller events 383 * @assigned_cs: Bitmask describing already assigned CS lines 384 * @chips: List containing all the NAND chips attached to 385 * this NAND controller 386 * @caps: NAND controller capabilities for each compatible string 387 * @dma_chan: DMA channel (NFCv1 only) 388 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 389 */ 390 struct marvell_nfc { 391 struct nand_controller controller; 392 struct device *dev; 393 void __iomem *regs; 394 struct clk *core_clk; 395 struct clk *reg_clk; 396 struct completion complete; 397 unsigned long assigned_cs; 398 struct list_head chips; 399 struct nand_chip *selected_chip; 400 const struct marvell_nfc_caps *caps; 401 402 /* DMA (NFCv1 only) */ 403 bool use_dma; 404 struct dma_chan *dma_chan; 405 u8 *dma_buf; 406 }; 407 408 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 409 { 410 return container_of(ctrl, struct marvell_nfc, controller); 411 } 412 413 /** 414 * NAND controller timings expressed in NAND Controller clock cycles 415 * 416 * @tRP: ND_nRE pulse width 417 * @tRH: ND_nRE high duration 418 * @tWP: ND_nWE pulse time 419 * @tWH: ND_nWE high duration 420 * @tCS: Enable signal setup time 421 * @tCH: Enable signal hold time 422 * @tADL: Address to write data delay 423 * @tAR: ND_ALE low to ND_nRE low delay 424 * @tWHR: ND_nWE high to ND_nRE low for status read 425 * @tRHW: ND_nRE high duration, read to write delay 426 * @tR: ND_nWE high to ND_nRE low for read 427 */ 428 struct marvell_nfc_timings { 429 /* NDTR0 fields */ 430 unsigned int tRP; 431 unsigned int tRH; 432 unsigned int tWP; 433 unsigned int tWH; 434 unsigned int tCS; 435 unsigned int tCH; 436 unsigned int tADL; 437 /* NDTR1 fields */ 438 unsigned int tAR; 439 unsigned int tWHR; 440 unsigned int tRHW; 441 unsigned int tR; 442 }; 443 444 /** 445 * Derives a duration in numbers of clock cycles. 446 * 447 * @ps: Duration in pico-seconds 448 * @period_ns: Clock period in nano-seconds 449 * 450 * Convert the duration in nano-seconds, then divide by the period and 451 * return the number of clock periods. 452 */ 453 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 454 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 455 period_ns)) 456 457 /** 458 * NAND driver structure filled during the parsing of the ->exec_op() subop 459 * subset of instructions. 460 * 461 * @ndcb: Array of values written to NDCBx registers 462 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 463 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 464 * @rdy_delay_ns: Optional delay after waiting for the RB pin 465 * @data_delay_ns: Optional delay after the data xfer 466 * @data_instr_idx: Index of the data instruction in the subop 467 * @data_instr: Pointer to the data instruction in the subop 468 */ 469 struct marvell_nfc_op { 470 u32 ndcb[4]; 471 unsigned int cle_ale_delay_ns; 472 unsigned int rdy_timeout_ms; 473 unsigned int rdy_delay_ns; 474 unsigned int data_delay_ns; 475 unsigned int data_instr_idx; 476 const struct nand_op_instr *data_instr; 477 }; 478 479 /* 480 * Internal helper to conditionnally apply a delay (from the above structure, 481 * most of the time). 482 */ 483 static void cond_delay(unsigned int ns) 484 { 485 if (!ns) 486 return; 487 488 if (ns < 10000) 489 ndelay(ns); 490 else 491 udelay(DIV_ROUND_UP(ns, 1000)); 492 } 493 494 /* 495 * The controller has many flags that could generate interrupts, most of them 496 * are disabled and polling is used. For the very slow signals, using interrupts 497 * may relax the CPU charge. 498 */ 499 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 500 { 501 u32 reg; 502 503 /* Writing 1 disables the interrupt */ 504 reg = readl_relaxed(nfc->regs + NDCR); 505 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 506 } 507 508 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 509 { 510 u32 reg; 511 512 /* Writing 0 enables the interrupt */ 513 reg = readl_relaxed(nfc->regs + NDCR); 514 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 515 } 516 517 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 518 { 519 u32 reg; 520 521 reg = readl_relaxed(nfc->regs + NDSR); 522 writel_relaxed(int_mask, nfc->regs + NDSR); 523 524 return reg & int_mask; 525 } 526 527 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 528 bool force_8bit) 529 { 530 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 531 u32 ndcr; 532 533 /* 534 * Callers of this function do not verify if the NAND is using a 16-bit 535 * an 8-bit bus for normal operations, so we need to take care of that 536 * here by leaving the configuration unchanged if the NAND does not have 537 * the NAND_BUSWIDTH_16 flag set. 538 */ 539 if (!(chip->options & NAND_BUSWIDTH_16)) 540 return; 541 542 ndcr = readl_relaxed(nfc->regs + NDCR); 543 544 if (force_8bit) 545 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 546 else 547 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 548 549 writel_relaxed(ndcr, nfc->regs + NDCR); 550 } 551 552 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 553 { 554 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 555 u32 val; 556 int ret; 557 558 /* 559 * The command is being processed, wait for the ND_RUN bit to be 560 * cleared by the NFC. If not, we must clear it by hand. 561 */ 562 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 563 (val & NDCR_ND_RUN) == 0, 564 POLL_PERIOD, POLL_TIMEOUT); 565 if (ret) { 566 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 567 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 568 nfc->regs + NDCR); 569 return ret; 570 } 571 572 return 0; 573 } 574 575 /* 576 * Any time a command has to be sent to the controller, the following sequence 577 * has to be followed: 578 * - call marvell_nfc_prepare_cmd() 579 * -> activate the ND_RUN bit that will kind of 'start a job' 580 * -> wait the signal indicating the NFC is waiting for a command 581 * - send the command (cmd and address cycles) 582 * - enventually send or receive the data 583 * - call marvell_nfc_end_cmd() with the corresponding flag 584 * -> wait the flag to be triggered or cancel the job with a timeout 585 * 586 * The following helpers are here to factorize the code a bit so that 587 * specialized functions responsible for executing the actual NAND 588 * operations do not have to replicate the same code blocks. 589 */ 590 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 591 { 592 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 593 u32 ndcr, val; 594 int ret; 595 596 /* Poll ND_RUN and clear NDSR before issuing any command */ 597 ret = marvell_nfc_wait_ndrun(chip); 598 if (ret) { 599 dev_err(nfc->dev, "Last operation did not succeed\n"); 600 return ret; 601 } 602 603 ndcr = readl_relaxed(nfc->regs + NDCR); 604 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 605 606 /* Assert ND_RUN bit and wait the NFC to be ready */ 607 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 608 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 609 val & NDSR_WRCMDREQ, 610 POLL_PERIOD, POLL_TIMEOUT); 611 if (ret) { 612 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 613 return -ETIMEDOUT; 614 } 615 616 /* Command may be written, clear WRCMDREQ status bit */ 617 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 618 619 return 0; 620 } 621 622 static void marvell_nfc_send_cmd(struct nand_chip *chip, 623 struct marvell_nfc_op *nfc_op) 624 { 625 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 626 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 627 628 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 629 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 630 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 631 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 632 633 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 634 nfc->regs + NDCB0); 635 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 636 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 637 638 /* 639 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 640 * fields are used (only available on NFCv2). 641 */ 642 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 643 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 644 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 645 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 646 } 647 } 648 649 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 650 const char *label) 651 { 652 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 653 u32 val; 654 int ret; 655 656 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 657 val & flag, 658 POLL_PERIOD, POLL_TIMEOUT); 659 660 if (ret) { 661 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 662 label, val); 663 if (nfc->dma_chan) 664 dmaengine_terminate_all(nfc->dma_chan); 665 return ret; 666 } 667 668 /* 669 * DMA function uses this helper to poll on CMDD bits without wanting 670 * them to be cleared. 671 */ 672 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 673 return 0; 674 675 writel_relaxed(flag, nfc->regs + NDSR); 676 677 return 0; 678 } 679 680 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 681 { 682 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 683 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 684 685 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 686 } 687 688 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 689 { 690 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 691 u32 pending; 692 int ret; 693 694 /* Timeout is expressed in ms */ 695 if (!timeout_ms) 696 timeout_ms = IRQ_TIMEOUT; 697 698 init_completion(&nfc->complete); 699 700 marvell_nfc_enable_int(nfc, NDCR_RDYM); 701 ret = wait_for_completion_timeout(&nfc->complete, 702 msecs_to_jiffies(timeout_ms)); 703 marvell_nfc_disable_int(nfc, NDCR_RDYM); 704 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 705 706 /* 707 * In case the interrupt was not served in the required time frame, 708 * check if the ISR was not served or if something went actually wrong. 709 */ 710 if (ret && !pending) { 711 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 712 return -ETIMEDOUT; 713 } 714 715 return 0; 716 } 717 718 static void marvell_nfc_select_target(struct nand_chip *chip, 719 unsigned int die_nr) 720 { 721 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 722 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 723 u32 ndcr_generic; 724 725 /* 726 * Reset the NDCR register to a clean state for this particular chip, 727 * also clear ND_RUN bit. 728 */ 729 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 730 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 731 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 732 733 /* Also reset the interrupt status register */ 734 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 735 736 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 737 return; 738 739 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 740 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 741 742 nfc->selected_chip = chip; 743 marvell_nand->selected_die = die_nr; 744 } 745 746 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 747 { 748 struct marvell_nfc *nfc = dev_id; 749 u32 st = readl_relaxed(nfc->regs + NDSR); 750 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 751 752 /* 753 * RDY interrupt mask is one bit in NDCR while there are two status 754 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 755 */ 756 if (st & NDSR_RDY(1)) 757 st |= NDSR_RDY(0); 758 759 if (!(st & ien)) 760 return IRQ_NONE; 761 762 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 763 764 if (st & (NDSR_RDY(0) | NDSR_RDY(1))) 765 complete(&nfc->complete); 766 767 return IRQ_HANDLED; 768 } 769 770 /* HW ECC related functions */ 771 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 772 { 773 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 774 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 775 776 if (!(ndcr & NDCR_ECC_EN)) { 777 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 778 779 /* 780 * When enabling BCH, set threshold to 0 to always know the 781 * number of corrected bitflips. 782 */ 783 if (chip->ecc.algo == NAND_ECC_BCH) 784 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 785 } 786 } 787 788 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 789 { 790 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 791 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 792 793 if (ndcr & NDCR_ECC_EN) { 794 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 795 if (chip->ecc.algo == NAND_ECC_BCH) 796 writel_relaxed(0, nfc->regs + NDECCCTRL); 797 } 798 } 799 800 /* DMA related helpers */ 801 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 802 { 803 u32 reg; 804 805 reg = readl_relaxed(nfc->regs + NDCR); 806 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 807 } 808 809 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 810 { 811 u32 reg; 812 813 reg = readl_relaxed(nfc->regs + NDCR); 814 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 815 } 816 817 /* Read/write PIO/DMA accessors */ 818 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 819 enum dma_data_direction direction, 820 unsigned int len) 821 { 822 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 823 struct dma_async_tx_descriptor *tx; 824 struct scatterlist sg; 825 dma_cookie_t cookie; 826 int ret; 827 828 marvell_nfc_enable_dma(nfc); 829 /* Prepare the DMA transfer */ 830 sg_init_one(&sg, nfc->dma_buf, dma_len); 831 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 832 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 833 direction == DMA_FROM_DEVICE ? 834 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 835 DMA_PREP_INTERRUPT); 836 if (!tx) { 837 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 838 return -ENXIO; 839 } 840 841 /* Do the task and wait for it to finish */ 842 cookie = dmaengine_submit(tx); 843 ret = dma_submit_error(cookie); 844 if (ret) 845 return -EIO; 846 847 dma_async_issue_pending(nfc->dma_chan); 848 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 849 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 850 marvell_nfc_disable_dma(nfc); 851 if (ret) { 852 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 853 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 854 dmaengine_terminate_all(nfc->dma_chan); 855 return -ETIMEDOUT; 856 } 857 858 return 0; 859 } 860 861 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 862 unsigned int len) 863 { 864 unsigned int last_len = len % FIFO_DEPTH; 865 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 866 int i; 867 868 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 869 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 870 871 if (last_len) { 872 u8 tmp_buf[FIFO_DEPTH]; 873 874 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 875 memcpy(in + last_full_offset, tmp_buf, last_len); 876 } 877 878 return 0; 879 } 880 881 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 882 unsigned int len) 883 { 884 unsigned int last_len = len % FIFO_DEPTH; 885 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 886 int i; 887 888 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 889 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 890 891 if (last_len) { 892 u8 tmp_buf[FIFO_DEPTH]; 893 894 memcpy(tmp_buf, out + last_full_offset, last_len); 895 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 896 } 897 898 return 0; 899 } 900 901 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 902 u8 *data, int data_len, 903 u8 *spare, int spare_len, 904 u8 *ecc, int ecc_len, 905 unsigned int *max_bitflips) 906 { 907 struct mtd_info *mtd = nand_to_mtd(chip); 908 int bf; 909 910 /* 911 * Blank pages (all 0xFF) that have not been written may be recognized 912 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 913 * check if the entire page (with ECC bytes) is actually blank or not. 914 */ 915 if (!data) 916 data_len = 0; 917 if (!spare) 918 spare_len = 0; 919 if (!ecc) 920 ecc_len = 0; 921 922 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 923 spare, spare_len, chip->ecc.strength); 924 if (bf < 0) { 925 mtd->ecc_stats.failed++; 926 return; 927 } 928 929 /* Update the stats and max_bitflips */ 930 mtd->ecc_stats.corrected += bf; 931 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 932 } 933 934 /* 935 * Check a chunk is correct or not according to hardware ECC engine. 936 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 937 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 938 * value indicating that a check on the emptyness of the subpage must be 939 * performed before declaring the subpage corrupted. 940 */ 941 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip, 942 unsigned int *max_bitflips) 943 { 944 struct mtd_info *mtd = nand_to_mtd(chip); 945 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 946 int bf = 0; 947 u32 ndsr; 948 949 ndsr = readl_relaxed(nfc->regs + NDSR); 950 951 /* Check uncorrectable error flag */ 952 if (ndsr & NDSR_UNCERR) { 953 writel_relaxed(ndsr, nfc->regs + NDSR); 954 955 /* 956 * Do not increment ->ecc_stats.failed now, instead, return a 957 * non-zero value to indicate that this chunk was apparently 958 * bad, and it should be check to see if it empty or not. If 959 * the chunk (with ECC bytes) is not declared empty, the calling 960 * function must increment the failure count. 961 */ 962 return -EBADMSG; 963 } 964 965 /* Check correctable error flag */ 966 if (ndsr & NDSR_CORERR) { 967 writel_relaxed(ndsr, nfc->regs + NDSR); 968 969 if (chip->ecc.algo == NAND_ECC_BCH) 970 bf = NDSR_ERRCNT(ndsr); 971 else 972 bf = 1; 973 } 974 975 /* Update the stats and max_bitflips */ 976 mtd->ecc_stats.corrected += bf; 977 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 978 979 return 0; 980 } 981 982 /* Hamming read helpers */ 983 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 984 u8 *data_buf, u8 *oob_buf, 985 bool raw, int page) 986 { 987 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 988 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 989 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 990 struct marvell_nfc_op nfc_op = { 991 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 992 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 993 NDCB0_DBC | 994 NDCB0_CMD1(NAND_CMD_READ0) | 995 NDCB0_CMD2(NAND_CMD_READSTART), 996 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 997 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 998 }; 999 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1000 int ret; 1001 1002 /* NFCv2 needs more information about the operation being executed */ 1003 if (nfc->caps->is_nfcv2) 1004 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1005 1006 ret = marvell_nfc_prepare_cmd(chip); 1007 if (ret) 1008 return ret; 1009 1010 marvell_nfc_send_cmd(chip, &nfc_op); 1011 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1012 "RDDREQ while draining FIFO (data/oob)"); 1013 if (ret) 1014 return ret; 1015 1016 /* 1017 * Read the page then the OOB area. Unlike what is shown in current 1018 * documentation, spare bytes are protected by the ECC engine, and must 1019 * be at the beginning of the OOB area or running this driver on legacy 1020 * systems will prevent the discovery of the BBM/BBT. 1021 */ 1022 if (nfc->use_dma) { 1023 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 1024 lt->data_bytes + oob_bytes); 1025 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 1026 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 1027 } else { 1028 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 1029 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 1030 } 1031 1032 ret = marvell_nfc_wait_cmdd(chip); 1033 return ret; 1034 } 1035 1036 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, 1037 int oob_required, int page) 1038 { 1039 marvell_nfc_select_target(chip, chip->cur_cs); 1040 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1041 true, page); 1042 } 1043 1044 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, 1045 int oob_required, int page) 1046 { 1047 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1048 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1049 int max_bitflips = 0, ret; 1050 u8 *raw_buf; 1051 1052 marvell_nfc_select_target(chip, chip->cur_cs); 1053 marvell_nfc_enable_hw_ecc(chip); 1054 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 1055 page); 1056 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 1057 marvell_nfc_disable_hw_ecc(chip); 1058 1059 if (!ret) 1060 return max_bitflips; 1061 1062 /* 1063 * When ECC failures are detected, check if the full page has been 1064 * written or not. Ignore the failure if it is actually empty. 1065 */ 1066 raw_buf = kmalloc(full_sz, GFP_KERNEL); 1067 if (!raw_buf) 1068 return -ENOMEM; 1069 1070 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1071 lt->data_bytes, true, page); 1072 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1073 &max_bitflips); 1074 kfree(raw_buf); 1075 1076 return max_bitflips; 1077 } 1078 1079 /* 1080 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1081 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1082 * also stands for ->read_oob(). 1083 */ 1084 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) 1085 { 1086 u8 *buf = nand_get_data_buf(chip); 1087 1088 marvell_nfc_select_target(chip, chip->cur_cs); 1089 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1090 true, page); 1091 } 1092 1093 /* Hamming write helpers */ 1094 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1095 const u8 *data_buf, 1096 const u8 *oob_buf, bool raw, 1097 int page) 1098 { 1099 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1100 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1101 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1102 struct marvell_nfc_op nfc_op = { 1103 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1104 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1105 NDCB0_CMD1(NAND_CMD_SEQIN) | 1106 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1107 NDCB0_DBC, 1108 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1109 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1110 }; 1111 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1112 int ret; 1113 1114 /* NFCv2 needs more information about the operation being executed */ 1115 if (nfc->caps->is_nfcv2) 1116 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1117 1118 ret = marvell_nfc_prepare_cmd(chip); 1119 if (ret) 1120 return ret; 1121 1122 marvell_nfc_send_cmd(chip, &nfc_op); 1123 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1124 "WRDREQ while loading FIFO (data)"); 1125 if (ret) 1126 return ret; 1127 1128 /* Write the page then the OOB area */ 1129 if (nfc->use_dma) { 1130 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1131 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1132 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1133 lt->ecc_bytes + lt->spare_bytes); 1134 } else { 1135 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1136 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1137 } 1138 1139 ret = marvell_nfc_wait_cmdd(chip); 1140 if (ret) 1141 return ret; 1142 1143 ret = marvell_nfc_wait_op(chip, 1144 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); 1145 return ret; 1146 } 1147 1148 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, 1149 const u8 *buf, 1150 int oob_required, int page) 1151 { 1152 marvell_nfc_select_target(chip, chip->cur_cs); 1153 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1154 true, page); 1155 } 1156 1157 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, 1158 const u8 *buf, 1159 int oob_required, int page) 1160 { 1161 int ret; 1162 1163 marvell_nfc_select_target(chip, chip->cur_cs); 1164 marvell_nfc_enable_hw_ecc(chip); 1165 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1166 false, page); 1167 marvell_nfc_disable_hw_ecc(chip); 1168 1169 return ret; 1170 } 1171 1172 /* 1173 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1174 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1175 * also stands for ->write_oob(). 1176 */ 1177 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, 1178 int page) 1179 { 1180 struct mtd_info *mtd = nand_to_mtd(chip); 1181 u8 *buf = nand_get_data_buf(chip); 1182 1183 memset(buf, 0xFF, mtd->writesize); 1184 1185 marvell_nfc_select_target(chip, chip->cur_cs); 1186 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1187 true, page); 1188 } 1189 1190 /* BCH read helpers */ 1191 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, 1192 int oob_required, int page) 1193 { 1194 struct mtd_info *mtd = nand_to_mtd(chip); 1195 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1196 u8 *oob = chip->oob_poi; 1197 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1198 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1199 lt->last_spare_bytes; 1200 int data_len = lt->data_bytes; 1201 int spare_len = lt->spare_bytes; 1202 int ecc_len = lt->ecc_bytes; 1203 int chunk; 1204 1205 marvell_nfc_select_target(chip, chip->cur_cs); 1206 1207 if (oob_required) 1208 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1209 1210 nand_read_page_op(chip, page, 0, NULL, 0); 1211 1212 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1213 /* Update last chunk length */ 1214 if (chunk >= lt->full_chunk_cnt) { 1215 data_len = lt->last_data_bytes; 1216 spare_len = lt->last_spare_bytes; 1217 ecc_len = lt->last_ecc_bytes; 1218 } 1219 1220 /* Read data bytes*/ 1221 nand_change_read_column_op(chip, chunk * chunk_size, 1222 buf + (lt->data_bytes * chunk), 1223 data_len, false); 1224 1225 /* Read spare bytes */ 1226 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1227 spare_len, false); 1228 1229 /* Read ECC bytes */ 1230 nand_read_data_op(chip, oob + ecc_offset + 1231 (ALIGN(lt->ecc_bytes, 32) * chunk), 1232 ecc_len, false); 1233 } 1234 1235 return 0; 1236 } 1237 1238 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1239 u8 *data, unsigned int data_len, 1240 u8 *spare, unsigned int spare_len, 1241 int page) 1242 { 1243 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1244 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1245 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1246 int i, ret; 1247 struct marvell_nfc_op nfc_op = { 1248 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1249 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1250 NDCB0_LEN_OVRD, 1251 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1252 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1253 .ndcb[3] = data_len + spare_len, 1254 }; 1255 1256 ret = marvell_nfc_prepare_cmd(chip); 1257 if (ret) 1258 return; 1259 1260 if (chunk == 0) 1261 nfc_op.ndcb[0] |= NDCB0_DBC | 1262 NDCB0_CMD1(NAND_CMD_READ0) | 1263 NDCB0_CMD2(NAND_CMD_READSTART); 1264 1265 /* 1266 * Trigger the monolithic read on the first chunk, then naked read on 1267 * intermediate chunks and finally a last naked read on the last chunk. 1268 */ 1269 if (chunk == 0) 1270 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1271 else if (chunk < lt->nchunks - 1) 1272 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1273 else 1274 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1275 1276 marvell_nfc_send_cmd(chip, &nfc_op); 1277 1278 /* 1279 * According to the datasheet, when reading from NDDB 1280 * with BCH enabled, after each 32 bytes reads, we 1281 * have to make sure that the NDSR.RDDREQ bit is set. 1282 * 1283 * Drain the FIFO, 8 32-bit reads at a time, and skip 1284 * the polling on the last read. 1285 * 1286 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1287 */ 1288 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1289 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1290 "RDDREQ while draining FIFO (data)"); 1291 marvell_nfc_xfer_data_in_pio(nfc, data, 1292 FIFO_DEPTH * BCH_SEQ_READS); 1293 data += FIFO_DEPTH * BCH_SEQ_READS; 1294 } 1295 1296 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1297 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1298 "RDDREQ while draining FIFO (OOB)"); 1299 marvell_nfc_xfer_data_in_pio(nfc, spare, 1300 FIFO_DEPTH * BCH_SEQ_READS); 1301 spare += FIFO_DEPTH * BCH_SEQ_READS; 1302 } 1303 } 1304 1305 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, 1306 u8 *buf, int oob_required, 1307 int page) 1308 { 1309 struct mtd_info *mtd = nand_to_mtd(chip); 1310 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1311 int data_len = lt->data_bytes, spare_len = lt->spare_bytes; 1312 u8 *data = buf, *spare = chip->oob_poi; 1313 int max_bitflips = 0; 1314 u32 failure_mask = 0; 1315 int chunk, ret; 1316 1317 marvell_nfc_select_target(chip, chip->cur_cs); 1318 1319 /* 1320 * With BCH, OOB is not fully used (and thus not read entirely), not 1321 * expected bytes could show up at the end of the OOB buffer if not 1322 * explicitly erased. 1323 */ 1324 if (oob_required) 1325 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1326 1327 marvell_nfc_enable_hw_ecc(chip); 1328 1329 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1330 /* Update length for the last chunk */ 1331 if (chunk >= lt->full_chunk_cnt) { 1332 data_len = lt->last_data_bytes; 1333 spare_len = lt->last_spare_bytes; 1334 } 1335 1336 /* Read the chunk and detect number of bitflips */ 1337 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1338 spare, spare_len, page); 1339 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 1340 if (ret) 1341 failure_mask |= BIT(chunk); 1342 1343 data += data_len; 1344 spare += spare_len; 1345 } 1346 1347 marvell_nfc_disable_hw_ecc(chip); 1348 1349 if (!failure_mask) 1350 return max_bitflips; 1351 1352 /* 1353 * Please note that dumping the ECC bytes during a normal read with OOB 1354 * area would add a significant overhead as ECC bytes are "consumed" by 1355 * the controller in normal mode and must be re-read in raw mode. To 1356 * avoid dropping the performances, we prefer not to include them. The 1357 * user should re-read the page in raw mode if ECC bytes are required. 1358 */ 1359 1360 /* 1361 * In case there is any subpage read error reported by ->correct(), we 1362 * usually re-read only ECC bytes in raw mode and check if the whole 1363 * page is empty. In this case, it is normal that the ECC check failed 1364 * and we just ignore the error. 1365 * 1366 * However, it has been empirically observed that for some layouts (e.g 1367 * 2k page, 8b strength per 512B chunk), the controller tries to correct 1368 * bits and may create itself bitflips in the erased area. To overcome 1369 * this strange behavior, the whole page is re-read in raw mode, not 1370 * only the ECC bytes. 1371 */ 1372 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1373 int data_off_in_page, spare_off_in_page, ecc_off_in_page; 1374 int data_off, spare_off, ecc_off; 1375 int data_len, spare_len, ecc_len; 1376 1377 /* No failure reported for this chunk, move to the next one */ 1378 if (!(failure_mask & BIT(chunk))) 1379 continue; 1380 1381 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + 1382 lt->ecc_bytes); 1383 spare_off_in_page = data_off_in_page + 1384 (chunk < lt->full_chunk_cnt ? lt->data_bytes : 1385 lt->last_data_bytes); 1386 ecc_off_in_page = spare_off_in_page + 1387 (chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1388 lt->last_spare_bytes); 1389 1390 data_off = chunk * lt->data_bytes; 1391 spare_off = chunk * lt->spare_bytes; 1392 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + 1393 lt->last_spare_bytes + 1394 (chunk * (lt->ecc_bytes + 2)); 1395 1396 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : 1397 lt->last_data_bytes; 1398 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1399 lt->last_spare_bytes; 1400 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : 1401 lt->last_ecc_bytes; 1402 1403 /* 1404 * Only re-read the ECC bytes, unless we are using the 2k/8b 1405 * layout which is buggy in the sense that the ECC engine will 1406 * try to correct data bytes anyway, creating bitflips. In this 1407 * case, re-read the entire page. 1408 */ 1409 if (lt->writesize == 2048 && lt->strength == 8) { 1410 nand_change_read_column_op(chip, data_off_in_page, 1411 buf + data_off, data_len, 1412 false); 1413 nand_change_read_column_op(chip, spare_off_in_page, 1414 chip->oob_poi + spare_off, spare_len, 1415 false); 1416 } 1417 1418 nand_change_read_column_op(chip, ecc_off_in_page, 1419 chip->oob_poi + ecc_off, ecc_len, 1420 false); 1421 1422 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1423 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, 1424 chip->oob_poi + spare_off, spare_len, 1425 chip->oob_poi + ecc_off, ecc_len, 1426 &max_bitflips); 1427 } 1428 1429 return max_bitflips; 1430 } 1431 1432 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) 1433 { 1434 u8 *buf = nand_get_data_buf(chip); 1435 1436 return chip->ecc.read_page_raw(chip, buf, true, page); 1437 } 1438 1439 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) 1440 { 1441 u8 *buf = nand_get_data_buf(chip); 1442 1443 return chip->ecc.read_page(chip, buf, true, page); 1444 } 1445 1446 /* BCH write helpers */ 1447 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, 1448 const u8 *buf, 1449 int oob_required, int page) 1450 { 1451 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1452 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1453 int data_len = lt->data_bytes; 1454 int spare_len = lt->spare_bytes; 1455 int ecc_len = lt->ecc_bytes; 1456 int spare_offset = 0; 1457 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1458 lt->last_spare_bytes; 1459 int chunk; 1460 1461 marvell_nfc_select_target(chip, chip->cur_cs); 1462 1463 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1464 1465 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1466 if (chunk >= lt->full_chunk_cnt) { 1467 data_len = lt->last_data_bytes; 1468 spare_len = lt->last_spare_bytes; 1469 ecc_len = lt->last_ecc_bytes; 1470 } 1471 1472 /* Point to the column of the next chunk */ 1473 nand_change_write_column_op(chip, chunk * full_chunk_size, 1474 NULL, 0, false); 1475 1476 /* Write the data */ 1477 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1478 data_len, false); 1479 1480 if (!oob_required) 1481 continue; 1482 1483 /* Write the spare bytes */ 1484 if (spare_len) 1485 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1486 spare_len, false); 1487 1488 /* Write the ECC bytes */ 1489 if (ecc_len) 1490 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1491 ecc_len, false); 1492 1493 spare_offset += spare_len; 1494 ecc_offset += ALIGN(ecc_len, 32); 1495 } 1496 1497 return nand_prog_page_end_op(chip); 1498 } 1499 1500 static int 1501 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1502 const u8 *data, unsigned int data_len, 1503 const u8 *spare, unsigned int spare_len, 1504 int page) 1505 { 1506 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1507 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1508 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1509 u32 xtype; 1510 int ret; 1511 struct marvell_nfc_op nfc_op = { 1512 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1513 .ndcb[3] = data_len + spare_len, 1514 }; 1515 1516 /* 1517 * First operation dispatches the CMD_SEQIN command, issue the address 1518 * cycles and asks for the first chunk of data. 1519 * All operations in the middle (if any) will issue a naked write and 1520 * also ask for data. 1521 * Last operation (if any) asks for the last chunk of data through a 1522 * last naked write. 1523 */ 1524 if (chunk == 0) { 1525 if (lt->nchunks == 1) 1526 xtype = XTYPE_MONOLITHIC_RW; 1527 else 1528 xtype = XTYPE_WRITE_DISPATCH; 1529 1530 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1531 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1532 NDCB0_CMD1(NAND_CMD_SEQIN); 1533 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1534 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1535 } else if (chunk < lt->nchunks - 1) { 1536 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1537 } else { 1538 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1539 } 1540 1541 /* Always dispatch the PAGEPROG command on the last chunk */ 1542 if (chunk == lt->nchunks - 1) 1543 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1544 1545 ret = marvell_nfc_prepare_cmd(chip); 1546 if (ret) 1547 return ret; 1548 1549 marvell_nfc_send_cmd(chip, &nfc_op); 1550 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1551 "WRDREQ while loading FIFO (data)"); 1552 if (ret) 1553 return ret; 1554 1555 /* Transfer the contents */ 1556 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1557 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1558 1559 return 0; 1560 } 1561 1562 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, 1563 const u8 *buf, 1564 int oob_required, int page) 1565 { 1566 struct mtd_info *mtd = nand_to_mtd(chip); 1567 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1568 const u8 *data = buf; 1569 const u8 *spare = chip->oob_poi; 1570 int data_len = lt->data_bytes; 1571 int spare_len = lt->spare_bytes; 1572 int chunk, ret; 1573 1574 marvell_nfc_select_target(chip, chip->cur_cs); 1575 1576 /* Spare data will be written anyway, so clear it to avoid garbage */ 1577 if (!oob_required) 1578 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1579 1580 marvell_nfc_enable_hw_ecc(chip); 1581 1582 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1583 if (chunk >= lt->full_chunk_cnt) { 1584 data_len = lt->last_data_bytes; 1585 spare_len = lt->last_spare_bytes; 1586 } 1587 1588 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1589 spare, spare_len, page); 1590 data += data_len; 1591 spare += spare_len; 1592 1593 /* 1594 * Waiting only for CMDD or PAGED is not enough, ECC are 1595 * partially written. No flag is set once the operation is 1596 * really finished but the ND_RUN bit is cleared, so wait for it 1597 * before stepping into the next command. 1598 */ 1599 marvell_nfc_wait_ndrun(chip); 1600 } 1601 1602 ret = marvell_nfc_wait_op(chip, 1603 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); 1604 1605 marvell_nfc_disable_hw_ecc(chip); 1606 1607 if (ret) 1608 return ret; 1609 1610 return 0; 1611 } 1612 1613 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, 1614 int page) 1615 { 1616 struct mtd_info *mtd = nand_to_mtd(chip); 1617 u8 *buf = nand_get_data_buf(chip); 1618 1619 memset(buf, 0xFF, mtd->writesize); 1620 1621 return chip->ecc.write_page_raw(chip, buf, true, page); 1622 } 1623 1624 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) 1625 { 1626 struct mtd_info *mtd = nand_to_mtd(chip); 1627 u8 *buf = nand_get_data_buf(chip); 1628 1629 memset(buf, 0xFF, mtd->writesize); 1630 1631 return chip->ecc.write_page(chip, buf, true, page); 1632 } 1633 1634 /* NAND framework ->exec_op() hooks and related helpers */ 1635 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1636 const struct nand_subop *subop, 1637 struct marvell_nfc_op *nfc_op) 1638 { 1639 const struct nand_op_instr *instr = NULL; 1640 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1641 bool first_cmd = true; 1642 unsigned int op_id; 1643 int i; 1644 1645 /* Reset the input structure as most of its fields will be OR'ed */ 1646 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1647 1648 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1649 unsigned int offset, naddrs; 1650 const u8 *addrs; 1651 int len; 1652 1653 instr = &subop->instrs[op_id]; 1654 1655 switch (instr->type) { 1656 case NAND_OP_CMD_INSTR: 1657 if (first_cmd) 1658 nfc_op->ndcb[0] |= 1659 NDCB0_CMD1(instr->ctx.cmd.opcode); 1660 else 1661 nfc_op->ndcb[0] |= 1662 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1663 NDCB0_DBC; 1664 1665 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1666 first_cmd = false; 1667 break; 1668 1669 case NAND_OP_ADDR_INSTR: 1670 offset = nand_subop_get_addr_start_off(subop, op_id); 1671 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1672 addrs = &instr->ctx.addr.addrs[offset]; 1673 1674 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1675 1676 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1677 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1678 1679 if (naddrs >= 5) 1680 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1681 if (naddrs >= 6) 1682 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1683 if (naddrs == 7) 1684 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1685 1686 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1687 break; 1688 1689 case NAND_OP_DATA_IN_INSTR: 1690 nfc_op->data_instr = instr; 1691 nfc_op->data_instr_idx = op_id; 1692 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1693 if (nfc->caps->is_nfcv2) { 1694 nfc_op->ndcb[0] |= 1695 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1696 NDCB0_LEN_OVRD; 1697 len = nand_subop_get_data_len(subop, op_id); 1698 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1699 } 1700 nfc_op->data_delay_ns = instr->delay_ns; 1701 break; 1702 1703 case NAND_OP_DATA_OUT_INSTR: 1704 nfc_op->data_instr = instr; 1705 nfc_op->data_instr_idx = op_id; 1706 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1707 if (nfc->caps->is_nfcv2) { 1708 nfc_op->ndcb[0] |= 1709 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1710 NDCB0_LEN_OVRD; 1711 len = nand_subop_get_data_len(subop, op_id); 1712 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1713 } 1714 nfc_op->data_delay_ns = instr->delay_ns; 1715 break; 1716 1717 case NAND_OP_WAITRDY_INSTR: 1718 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1719 nfc_op->rdy_delay_ns = instr->delay_ns; 1720 break; 1721 } 1722 } 1723 } 1724 1725 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1726 const struct nand_subop *subop, 1727 struct marvell_nfc_op *nfc_op) 1728 { 1729 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1730 const struct nand_op_instr *instr = nfc_op->data_instr; 1731 unsigned int op_id = nfc_op->data_instr_idx; 1732 unsigned int len = nand_subop_get_data_len(subop, op_id); 1733 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1734 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1735 int ret; 1736 1737 if (instr->ctx.data.force_8bit) 1738 marvell_nfc_force_byte_access(chip, true); 1739 1740 if (reading) { 1741 u8 *in = instr->ctx.data.buf.in + offset; 1742 1743 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1744 } else { 1745 const u8 *out = instr->ctx.data.buf.out + offset; 1746 1747 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1748 } 1749 1750 if (instr->ctx.data.force_8bit) 1751 marvell_nfc_force_byte_access(chip, false); 1752 1753 return ret; 1754 } 1755 1756 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1757 const struct nand_subop *subop) 1758 { 1759 struct marvell_nfc_op nfc_op; 1760 bool reading; 1761 int ret; 1762 1763 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1764 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1765 1766 ret = marvell_nfc_prepare_cmd(chip); 1767 if (ret) 1768 return ret; 1769 1770 marvell_nfc_send_cmd(chip, &nfc_op); 1771 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1772 "RDDREQ/WRDREQ while draining raw data"); 1773 if (ret) 1774 return ret; 1775 1776 cond_delay(nfc_op.cle_ale_delay_ns); 1777 1778 if (reading) { 1779 if (nfc_op.rdy_timeout_ms) { 1780 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1781 if (ret) 1782 return ret; 1783 } 1784 1785 cond_delay(nfc_op.rdy_delay_ns); 1786 } 1787 1788 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1789 ret = marvell_nfc_wait_cmdd(chip); 1790 if (ret) 1791 return ret; 1792 1793 cond_delay(nfc_op.data_delay_ns); 1794 1795 if (!reading) { 1796 if (nfc_op.rdy_timeout_ms) { 1797 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1798 if (ret) 1799 return ret; 1800 } 1801 1802 cond_delay(nfc_op.rdy_delay_ns); 1803 } 1804 1805 /* 1806 * NDCR ND_RUN bit should be cleared automatically at the end of each 1807 * operation but experience shows that the behavior is buggy when it 1808 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1809 */ 1810 if (!reading) { 1811 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1812 1813 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1814 nfc->regs + NDCR); 1815 } 1816 1817 return 0; 1818 } 1819 1820 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1821 const struct nand_subop *subop) 1822 { 1823 struct marvell_nfc_op nfc_op; 1824 int ret; 1825 1826 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1827 1828 /* 1829 * Naked access are different in that they need to be flagged as naked 1830 * by the controller. Reset the controller registers fields that inform 1831 * on the type and refill them according to the ongoing operation. 1832 */ 1833 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1834 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1835 switch (subop->instrs[0].type) { 1836 case NAND_OP_CMD_INSTR: 1837 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1838 break; 1839 case NAND_OP_ADDR_INSTR: 1840 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1841 break; 1842 case NAND_OP_DATA_IN_INSTR: 1843 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1844 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1845 break; 1846 case NAND_OP_DATA_OUT_INSTR: 1847 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1848 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1849 break; 1850 default: 1851 /* This should never happen */ 1852 break; 1853 } 1854 1855 ret = marvell_nfc_prepare_cmd(chip); 1856 if (ret) 1857 return ret; 1858 1859 marvell_nfc_send_cmd(chip, &nfc_op); 1860 1861 if (!nfc_op.data_instr) { 1862 ret = marvell_nfc_wait_cmdd(chip); 1863 cond_delay(nfc_op.cle_ale_delay_ns); 1864 return ret; 1865 } 1866 1867 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1868 "RDDREQ/WRDREQ while draining raw data"); 1869 if (ret) 1870 return ret; 1871 1872 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1873 ret = marvell_nfc_wait_cmdd(chip); 1874 if (ret) 1875 return ret; 1876 1877 /* 1878 * NDCR ND_RUN bit should be cleared automatically at the end of each 1879 * operation but experience shows that the behavior is buggy when it 1880 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1881 */ 1882 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1883 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1884 1885 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1886 nfc->regs + NDCR); 1887 } 1888 1889 return 0; 1890 } 1891 1892 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1893 const struct nand_subop *subop) 1894 { 1895 struct marvell_nfc_op nfc_op; 1896 int ret; 1897 1898 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1899 1900 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1901 cond_delay(nfc_op.rdy_delay_ns); 1902 1903 return ret; 1904 } 1905 1906 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1907 const struct nand_subop *subop) 1908 { 1909 struct marvell_nfc_op nfc_op; 1910 int ret; 1911 1912 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1913 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1914 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1915 1916 ret = marvell_nfc_prepare_cmd(chip); 1917 if (ret) 1918 return ret; 1919 1920 marvell_nfc_send_cmd(chip, &nfc_op); 1921 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1922 "RDDREQ while reading ID"); 1923 if (ret) 1924 return ret; 1925 1926 cond_delay(nfc_op.cle_ale_delay_ns); 1927 1928 if (nfc_op.rdy_timeout_ms) { 1929 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1930 if (ret) 1931 return ret; 1932 } 1933 1934 cond_delay(nfc_op.rdy_delay_ns); 1935 1936 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1937 ret = marvell_nfc_wait_cmdd(chip); 1938 if (ret) 1939 return ret; 1940 1941 cond_delay(nfc_op.data_delay_ns); 1942 1943 return 0; 1944 } 1945 1946 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 1947 const struct nand_subop *subop) 1948 { 1949 struct marvell_nfc_op nfc_op; 1950 int ret; 1951 1952 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1953 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1954 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 1955 1956 ret = marvell_nfc_prepare_cmd(chip); 1957 if (ret) 1958 return ret; 1959 1960 marvell_nfc_send_cmd(chip, &nfc_op); 1961 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1962 "RDDREQ while reading status"); 1963 if (ret) 1964 return ret; 1965 1966 cond_delay(nfc_op.cle_ale_delay_ns); 1967 1968 if (nfc_op.rdy_timeout_ms) { 1969 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1970 if (ret) 1971 return ret; 1972 } 1973 1974 cond_delay(nfc_op.rdy_delay_ns); 1975 1976 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1977 ret = marvell_nfc_wait_cmdd(chip); 1978 if (ret) 1979 return ret; 1980 1981 cond_delay(nfc_op.data_delay_ns); 1982 1983 return 0; 1984 } 1985 1986 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 1987 const struct nand_subop *subop) 1988 { 1989 struct marvell_nfc_op nfc_op; 1990 int ret; 1991 1992 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1993 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 1994 1995 ret = marvell_nfc_prepare_cmd(chip); 1996 if (ret) 1997 return ret; 1998 1999 marvell_nfc_send_cmd(chip, &nfc_op); 2000 ret = marvell_nfc_wait_cmdd(chip); 2001 if (ret) 2002 return ret; 2003 2004 cond_delay(nfc_op.cle_ale_delay_ns); 2005 2006 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2007 if (ret) 2008 return ret; 2009 2010 cond_delay(nfc_op.rdy_delay_ns); 2011 2012 return 0; 2013 } 2014 2015 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 2016 const struct nand_subop *subop) 2017 { 2018 struct marvell_nfc_op nfc_op; 2019 int ret; 2020 2021 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2022 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 2023 2024 ret = marvell_nfc_prepare_cmd(chip); 2025 if (ret) 2026 return ret; 2027 2028 marvell_nfc_send_cmd(chip, &nfc_op); 2029 ret = marvell_nfc_wait_cmdd(chip); 2030 if (ret) 2031 return ret; 2032 2033 cond_delay(nfc_op.cle_ale_delay_ns); 2034 2035 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2036 if (ret) 2037 return ret; 2038 2039 cond_delay(nfc_op.rdy_delay_ns); 2040 2041 return 0; 2042 } 2043 2044 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 2045 /* Monolithic reads/writes */ 2046 NAND_OP_PARSER_PATTERN( 2047 marvell_nfc_monolithic_access_exec, 2048 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2049 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 2050 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2051 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 2052 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2053 NAND_OP_PARSER_PATTERN( 2054 marvell_nfc_monolithic_access_exec, 2055 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2056 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 2057 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 2058 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2059 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 2060 /* Naked commands */ 2061 NAND_OP_PARSER_PATTERN( 2062 marvell_nfc_naked_access_exec, 2063 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2064 NAND_OP_PARSER_PATTERN( 2065 marvell_nfc_naked_access_exec, 2066 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 2067 NAND_OP_PARSER_PATTERN( 2068 marvell_nfc_naked_access_exec, 2069 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2070 NAND_OP_PARSER_PATTERN( 2071 marvell_nfc_naked_access_exec, 2072 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 2073 NAND_OP_PARSER_PATTERN( 2074 marvell_nfc_naked_waitrdy_exec, 2075 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2076 ); 2077 2078 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 2079 /* Naked commands not supported, use a function for each pattern */ 2080 NAND_OP_PARSER_PATTERN( 2081 marvell_nfc_read_id_type_exec, 2082 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2083 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2084 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 2085 NAND_OP_PARSER_PATTERN( 2086 marvell_nfc_erase_cmd_type_exec, 2087 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2088 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2089 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2090 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2091 NAND_OP_PARSER_PATTERN( 2092 marvell_nfc_read_status_exec, 2093 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2094 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 2095 NAND_OP_PARSER_PATTERN( 2096 marvell_nfc_reset_cmd_type_exec, 2097 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2098 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2099 NAND_OP_PARSER_PATTERN( 2100 marvell_nfc_naked_waitrdy_exec, 2101 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2102 ); 2103 2104 static int marvell_nfc_exec_op(struct nand_chip *chip, 2105 const struct nand_operation *op, 2106 bool check_only) 2107 { 2108 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2109 2110 marvell_nfc_select_target(chip, op->cs); 2111 2112 if (nfc->caps->is_nfcv2) 2113 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2114 op, check_only); 2115 else 2116 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2117 op, check_only); 2118 } 2119 2120 /* 2121 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2122 * usable. 2123 */ 2124 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2125 struct mtd_oob_region *oobregion) 2126 { 2127 struct nand_chip *chip = mtd_to_nand(mtd); 2128 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2129 2130 if (section) 2131 return -ERANGE; 2132 2133 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2134 lt->last_ecc_bytes; 2135 oobregion->offset = mtd->oobsize - oobregion->length; 2136 2137 return 0; 2138 } 2139 2140 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2141 struct mtd_oob_region *oobregion) 2142 { 2143 struct nand_chip *chip = mtd_to_nand(mtd); 2144 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2145 2146 if (section) 2147 return -ERANGE; 2148 2149 /* 2150 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2151 * 4KB page / 4bit BCH combination. 2152 */ 2153 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2154 oobregion->offset = 6; 2155 else 2156 oobregion->offset = 2; 2157 2158 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2159 lt->last_spare_bytes - oobregion->offset; 2160 2161 return 0; 2162 } 2163 2164 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2165 .ecc = marvell_nand_ooblayout_ecc, 2166 .free = marvell_nand_ooblayout_free, 2167 }; 2168 2169 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, 2170 struct nand_ecc_ctrl *ecc) 2171 { 2172 struct nand_chip *chip = mtd_to_nand(mtd); 2173 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2174 const struct marvell_hw_ecc_layout *l; 2175 int i; 2176 2177 if (!nfc->caps->is_nfcv2 && 2178 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2179 dev_err(nfc->dev, 2180 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2181 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2182 return -ENOTSUPP; 2183 } 2184 2185 to_marvell_nand(chip)->layout = NULL; 2186 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2187 l = &marvell_nfc_layouts[i]; 2188 if (mtd->writesize == l->writesize && 2189 ecc->size == l->chunk && ecc->strength == l->strength) { 2190 to_marvell_nand(chip)->layout = l; 2191 break; 2192 } 2193 } 2194 2195 if (!to_marvell_nand(chip)->layout || 2196 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2197 dev_err(nfc->dev, 2198 "ECC strength %d at page size %d is not supported\n", 2199 ecc->strength, mtd->writesize); 2200 return -ENOTSUPP; 2201 } 2202 2203 /* Special care for the layout 2k/8-bit/512B */ 2204 if (l->writesize == 2048 && l->strength == 8) { 2205 if (mtd->oobsize < 128) { 2206 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); 2207 return -ENOTSUPP; 2208 } else { 2209 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2210 } 2211 } 2212 2213 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2214 ecc->steps = l->nchunks; 2215 ecc->size = l->data_bytes; 2216 2217 if (ecc->strength == 1) { 2218 chip->ecc.algo = NAND_ECC_HAMMING; 2219 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2220 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2221 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2222 ecc->read_oob = ecc->read_oob_raw; 2223 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2224 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2225 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2226 ecc->write_oob = ecc->write_oob_raw; 2227 } else { 2228 chip->ecc.algo = NAND_ECC_BCH; 2229 ecc->strength = 16; 2230 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2231 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2232 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2233 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2234 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2235 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2236 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2237 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2238 } 2239 2240 return 0; 2241 } 2242 2243 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2244 struct nand_ecc_ctrl *ecc) 2245 { 2246 struct nand_chip *chip = mtd_to_nand(mtd); 2247 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2248 int ret; 2249 2250 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) { 2251 if (chip->base.eccreq.step_size && chip->base.eccreq.strength) { 2252 ecc->size = chip->base.eccreq.step_size; 2253 ecc->strength = chip->base.eccreq.strength; 2254 } else { 2255 dev_info(nfc->dev, 2256 "No minimum ECC strength, using 1b/512B\n"); 2257 ecc->size = 512; 2258 ecc->strength = 1; 2259 } 2260 } 2261 2262 switch (ecc->mode) { 2263 case NAND_ECC_HW: 2264 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc); 2265 if (ret) 2266 return ret; 2267 break; 2268 case NAND_ECC_NONE: 2269 case NAND_ECC_SOFT: 2270 case NAND_ECC_ON_DIE: 2271 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2272 mtd->writesize != SZ_2K) { 2273 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2274 mtd->writesize); 2275 return -EINVAL; 2276 } 2277 break; 2278 default: 2279 return -EINVAL; 2280 } 2281 2282 return 0; 2283 } 2284 2285 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2286 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2287 2288 static struct nand_bbt_descr bbt_main_descr = { 2289 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2290 NAND_BBT_2BIT | NAND_BBT_VERSION, 2291 .offs = 8, 2292 .len = 6, 2293 .veroffs = 14, 2294 .maxblocks = 8, /* Last 8 blocks in each chip */ 2295 .pattern = bbt_pattern 2296 }; 2297 2298 static struct nand_bbt_descr bbt_mirror_descr = { 2299 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2300 NAND_BBT_2BIT | NAND_BBT_VERSION, 2301 .offs = 8, 2302 .len = 6, 2303 .veroffs = 14, 2304 .maxblocks = 8, /* Last 8 blocks in each chip */ 2305 .pattern = bbt_mirror_pattern 2306 }; 2307 2308 static int marvell_nfc_setup_data_interface(struct nand_chip *chip, int chipnr, 2309 const struct nand_data_interface 2310 *conf) 2311 { 2312 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2313 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2314 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2315 const struct nand_sdr_timings *sdr; 2316 struct marvell_nfc_timings nfc_tmg; 2317 int read_delay; 2318 2319 sdr = nand_get_sdr_timings(conf); 2320 if (IS_ERR(sdr)) 2321 return PTR_ERR(sdr); 2322 2323 /* 2324 * SDR timings are given in pico-seconds while NFC timings must be 2325 * expressed in NAND controller clock cycles, which is half of the 2326 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2327 * This is not written anywhere in the datasheet but was observed 2328 * with an oscilloscope. 2329 * 2330 * NFC datasheet gives equations from which thoses calculations 2331 * are derived, they tend to be slightly more restrictives than the 2332 * given core timings and may improve the overall speed. 2333 */ 2334 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2335 nfc_tmg.tRH = nfc_tmg.tRP; 2336 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2337 nfc_tmg.tWH = nfc_tmg.tWP; 2338 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2339 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2340 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2341 /* 2342 * Read delay is the time of propagation from SoC pins to NFC internal 2343 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2344 * EDO mode, an additional delay of tRH must be taken into account so 2345 * the data is sampled on the falling edge instead of the rising edge. 2346 */ 2347 read_delay = sdr->tRC_min >= 30000 ? 2348 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2349 2350 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2351 /* 2352 * tWHR and tRHW are supposed to be read to write delays (and vice 2353 * versa) but in some cases, ie. when doing a change column, they must 2354 * be greater than that to be sure tCCS delay is respected. 2355 */ 2356 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2357 period_ns) - 2, 2358 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2359 period_ns); 2360 2361 /* 2362 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2363 * NFCv1: No WAIT_MODE, tR must be maximal. 2364 */ 2365 if (nfc->caps->is_nfcv2) { 2366 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2367 } else { 2368 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2369 period_ns); 2370 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2371 nfc_tmg.tR = nfc_tmg.tCH - 3; 2372 else 2373 nfc_tmg.tR = 0; 2374 } 2375 2376 if (chipnr < 0) 2377 return 0; 2378 2379 marvell_nand->ndtr0 = 2380 NDTR0_TRP(nfc_tmg.tRP) | 2381 NDTR0_TRH(nfc_tmg.tRH) | 2382 NDTR0_ETRP(nfc_tmg.tRP) | 2383 NDTR0_TWP(nfc_tmg.tWP) | 2384 NDTR0_TWH(nfc_tmg.tWH) | 2385 NDTR0_TCS(nfc_tmg.tCS) | 2386 NDTR0_TCH(nfc_tmg.tCH); 2387 2388 marvell_nand->ndtr1 = 2389 NDTR1_TAR(nfc_tmg.tAR) | 2390 NDTR1_TWHR(nfc_tmg.tWHR) | 2391 NDTR1_TR(nfc_tmg.tR); 2392 2393 if (nfc->caps->is_nfcv2) { 2394 marvell_nand->ndtr0 |= 2395 NDTR0_RD_CNT_DEL(read_delay) | 2396 NDTR0_SELCNTR | 2397 NDTR0_TADL(nfc_tmg.tADL); 2398 2399 marvell_nand->ndtr1 |= 2400 NDTR1_TRHW(nfc_tmg.tRHW) | 2401 NDTR1_WAIT_MODE; 2402 } 2403 2404 return 0; 2405 } 2406 2407 static int marvell_nand_attach_chip(struct nand_chip *chip) 2408 { 2409 struct mtd_info *mtd = nand_to_mtd(chip); 2410 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2411 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2412 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2413 int ret; 2414 2415 if (pdata && pdata->flash_bbt) 2416 chip->bbt_options |= NAND_BBT_USE_FLASH; 2417 2418 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2419 /* 2420 * We'll use a bad block table stored in-flash and don't 2421 * allow writing the bad block marker to the flash. 2422 */ 2423 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2424 chip->bbt_td = &bbt_main_descr; 2425 chip->bbt_md = &bbt_mirror_descr; 2426 } 2427 2428 /* Save the chip-specific fields of NDCR */ 2429 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2430 if (chip->options & NAND_BUSWIDTH_16) 2431 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2432 2433 /* 2434 * On small page NANDs, only one cycle is needed to pass the 2435 * column address. 2436 */ 2437 if (mtd->writesize <= 512) { 2438 marvell_nand->addr_cyc = 1; 2439 } else { 2440 marvell_nand->addr_cyc = 2; 2441 marvell_nand->ndcr |= NDCR_RA_START; 2442 } 2443 2444 /* 2445 * Now add the number of cycles needed to pass the row 2446 * address. 2447 * 2448 * Addressing a chip using CS 2 or 3 should also need the third row 2449 * cycle but due to inconsistance in the documentation and lack of 2450 * hardware to test this situation, this case is not supported. 2451 */ 2452 if (chip->options & NAND_ROW_ADDR_3) 2453 marvell_nand->addr_cyc += 3; 2454 else 2455 marvell_nand->addr_cyc += 2; 2456 2457 if (pdata) { 2458 chip->ecc.size = pdata->ecc_step_size; 2459 chip->ecc.strength = pdata->ecc_strength; 2460 } 2461 2462 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2463 if (ret) { 2464 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2465 return ret; 2466 } 2467 2468 if (chip->ecc.mode == NAND_ECC_HW) { 2469 /* 2470 * Subpage write not available with hardware ECC, prohibit also 2471 * subpage read as in userspace subpage access would still be 2472 * allowed and subpage write, if used, would lead to numerous 2473 * uncorrectable ECC errors. 2474 */ 2475 chip->options |= NAND_NO_SUBPAGE_WRITE; 2476 } 2477 2478 if (pdata || nfc->caps->legacy_of_bindings) { 2479 /* 2480 * We keep the MTD name unchanged to avoid breaking platforms 2481 * where the MTD cmdline parser is used and the bootloader 2482 * has not been updated to use the new naming scheme. 2483 */ 2484 mtd->name = "pxa3xx_nand-0"; 2485 } else if (!mtd->name) { 2486 /* 2487 * If the new bindings are used and the bootloader has not been 2488 * updated to pass a new mtdparts parameter on the cmdline, you 2489 * should define the following property in your NAND node, ie: 2490 * 2491 * label = "main-storage"; 2492 * 2493 * This way, mtd->name will be set by the core when 2494 * nand_set_flash_node() is called. 2495 */ 2496 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2497 "%s:nand.%d", dev_name(nfc->dev), 2498 marvell_nand->sels[0].cs); 2499 if (!mtd->name) { 2500 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2501 return -ENOMEM; 2502 } 2503 } 2504 2505 return 0; 2506 } 2507 2508 static const struct nand_controller_ops marvell_nand_controller_ops = { 2509 .attach_chip = marvell_nand_attach_chip, 2510 .exec_op = marvell_nfc_exec_op, 2511 .setup_data_interface = marvell_nfc_setup_data_interface, 2512 }; 2513 2514 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2515 struct device_node *np) 2516 { 2517 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2518 struct marvell_nand_chip *marvell_nand; 2519 struct mtd_info *mtd; 2520 struct nand_chip *chip; 2521 int nsels, ret, i; 2522 u32 cs, rb; 2523 2524 /* 2525 * The legacy "num-cs" property indicates the number of CS on the only 2526 * chip connected to the controller (legacy bindings does not support 2527 * more than one chip). The CS and RB pins are always the #0. 2528 * 2529 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2530 * properties must be filled. For each chip, expressed as a subnode, 2531 * "reg" points to the CS lines and "nand-rb" to the RB line. 2532 */ 2533 if (pdata || nfc->caps->legacy_of_bindings) { 2534 nsels = 1; 2535 } else { 2536 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2537 if (nsels <= 0) { 2538 dev_err(dev, "missing/invalid reg property\n"); 2539 return -EINVAL; 2540 } 2541 } 2542 2543 /* Alloc the nand chip structure */ 2544 marvell_nand = devm_kzalloc(dev, 2545 struct_size(marvell_nand, sels, nsels), 2546 GFP_KERNEL); 2547 if (!marvell_nand) { 2548 dev_err(dev, "could not allocate chip structure\n"); 2549 return -ENOMEM; 2550 } 2551 2552 marvell_nand->nsels = nsels; 2553 marvell_nand->selected_die = -1; 2554 2555 for (i = 0; i < nsels; i++) { 2556 if (pdata || nfc->caps->legacy_of_bindings) { 2557 /* 2558 * Legacy bindings use the CS lines in natural 2559 * order (0, 1, ...) 2560 */ 2561 cs = i; 2562 } else { 2563 /* Retrieve CS id */ 2564 ret = of_property_read_u32_index(np, "reg", i, &cs); 2565 if (ret) { 2566 dev_err(dev, "could not retrieve reg property: %d\n", 2567 ret); 2568 return ret; 2569 } 2570 } 2571 2572 if (cs >= nfc->caps->max_cs_nb) { 2573 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2574 cs, nfc->caps->max_cs_nb); 2575 return -EINVAL; 2576 } 2577 2578 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2579 dev_err(dev, "CS %d already assigned\n", cs); 2580 return -EINVAL; 2581 } 2582 2583 /* 2584 * The cs variable represents the chip select id, which must be 2585 * converted in bit fields for NDCB0 and NDCB2 to select the 2586 * right chip. Unfortunately, due to a lack of information on 2587 * the subject and incoherent documentation, the user should not 2588 * use CS1 and CS3 at all as asserting them is not supported in 2589 * a reliable way (due to multiplexing inside ADDR5 field). 2590 */ 2591 marvell_nand->sels[i].cs = cs; 2592 switch (cs) { 2593 case 0: 2594 case 2: 2595 marvell_nand->sels[i].ndcb0_csel = 0; 2596 break; 2597 case 1: 2598 case 3: 2599 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2600 break; 2601 default: 2602 return -EINVAL; 2603 } 2604 2605 /* Retrieve RB id */ 2606 if (pdata || nfc->caps->legacy_of_bindings) { 2607 /* Legacy bindings always use RB #0 */ 2608 rb = 0; 2609 } else { 2610 ret = of_property_read_u32_index(np, "nand-rb", i, 2611 &rb); 2612 if (ret) { 2613 dev_err(dev, 2614 "could not retrieve RB property: %d\n", 2615 ret); 2616 return ret; 2617 } 2618 } 2619 2620 if (rb >= nfc->caps->max_rb_nb) { 2621 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2622 rb, nfc->caps->max_rb_nb); 2623 return -EINVAL; 2624 } 2625 2626 marvell_nand->sels[i].rb = rb; 2627 } 2628 2629 chip = &marvell_nand->chip; 2630 chip->controller = &nfc->controller; 2631 nand_set_flash_node(chip, np); 2632 2633 if (!of_property_read_bool(np, "marvell,nand-keep-config")) 2634 chip->options |= NAND_KEEP_TIMINGS; 2635 2636 mtd = nand_to_mtd(chip); 2637 mtd->dev.parent = dev; 2638 2639 /* 2640 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2641 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2642 */ 2643 chip->ecc.mode = NAND_ECC_HW; 2644 2645 /* 2646 * Save a reference value for timing registers before 2647 * ->setup_data_interface() is called. 2648 */ 2649 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2650 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2651 2652 chip->options |= NAND_BUSWIDTH_AUTO; 2653 2654 ret = nand_scan(chip, marvell_nand->nsels); 2655 if (ret) { 2656 dev_err(dev, "could not scan the nand chip\n"); 2657 return ret; 2658 } 2659 2660 if (pdata) 2661 /* Legacy bindings support only one chip */ 2662 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2663 else 2664 ret = mtd_device_register(mtd, NULL, 0); 2665 if (ret) { 2666 dev_err(dev, "failed to register mtd device: %d\n", ret); 2667 nand_release(chip); 2668 return ret; 2669 } 2670 2671 list_add_tail(&marvell_nand->node, &nfc->chips); 2672 2673 return 0; 2674 } 2675 2676 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2677 { 2678 struct device_node *np = dev->of_node; 2679 struct device_node *nand_np; 2680 int max_cs = nfc->caps->max_cs_nb; 2681 int nchips; 2682 int ret; 2683 2684 if (!np) 2685 nchips = 1; 2686 else 2687 nchips = of_get_child_count(np); 2688 2689 if (nchips > max_cs) { 2690 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2691 max_cs); 2692 return -EINVAL; 2693 } 2694 2695 /* 2696 * Legacy bindings do not use child nodes to exhibit NAND chip 2697 * properties and layout. Instead, NAND properties are mixed with the 2698 * controller ones, and partitions are defined as direct subnodes of the 2699 * NAND controller node. 2700 */ 2701 if (nfc->caps->legacy_of_bindings) { 2702 ret = marvell_nand_chip_init(dev, nfc, np); 2703 return ret; 2704 } 2705 2706 for_each_child_of_node(np, nand_np) { 2707 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2708 if (ret) { 2709 of_node_put(nand_np); 2710 return ret; 2711 } 2712 } 2713 2714 return 0; 2715 } 2716 2717 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2718 { 2719 struct marvell_nand_chip *entry, *temp; 2720 2721 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2722 nand_release(&entry->chip); 2723 list_del(&entry->node); 2724 } 2725 } 2726 2727 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2728 { 2729 struct platform_device *pdev = container_of(nfc->dev, 2730 struct platform_device, 2731 dev); 2732 struct dma_slave_config config = {}; 2733 struct resource *r; 2734 int ret; 2735 2736 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2737 dev_warn(nfc->dev, 2738 "DMA not enabled in configuration\n"); 2739 return -ENOTSUPP; 2740 } 2741 2742 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2743 if (ret) 2744 return ret; 2745 2746 nfc->dma_chan = dma_request_chan(nfc->dev, "data"); 2747 if (IS_ERR(nfc->dma_chan)) { 2748 ret = PTR_ERR(nfc->dma_chan); 2749 nfc->dma_chan = NULL; 2750 if (ret != -EPROBE_DEFER) 2751 dev_err(nfc->dev, "DMA channel request failed: %d\n", 2752 ret); 2753 return ret; 2754 } 2755 2756 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2757 if (!r) { 2758 ret = -ENXIO; 2759 goto release_channel; 2760 } 2761 2762 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2763 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2764 config.src_addr = r->start + NDDB; 2765 config.dst_addr = r->start + NDDB; 2766 config.src_maxburst = 32; 2767 config.dst_maxburst = 32; 2768 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2769 if (ret < 0) { 2770 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2771 goto release_channel; 2772 } 2773 2774 /* 2775 * DMA must act on length multiple of 32 and this length may be 2776 * bigger than the destination buffer. Use this buffer instead 2777 * for DMA transfers and then copy the desired amount of data to 2778 * the provided buffer. 2779 */ 2780 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2781 if (!nfc->dma_buf) { 2782 ret = -ENOMEM; 2783 goto release_channel; 2784 } 2785 2786 nfc->use_dma = true; 2787 2788 return 0; 2789 2790 release_channel: 2791 dma_release_channel(nfc->dma_chan); 2792 nfc->dma_chan = NULL; 2793 2794 return ret; 2795 } 2796 2797 static void marvell_nfc_reset(struct marvell_nfc *nfc) 2798 { 2799 /* 2800 * ECC operations and interruptions are only enabled when specifically 2801 * needed. ECC shall not be activated in the early stages (fails probe). 2802 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2803 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2804 * offset in the read page and this will fail the protection. 2805 */ 2806 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2807 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2808 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2809 writel_relaxed(0, nfc->regs + NDECCCTRL); 2810 } 2811 2812 static int marvell_nfc_init(struct marvell_nfc *nfc) 2813 { 2814 struct device_node *np = nfc->dev->of_node; 2815 2816 /* 2817 * Some SoCs like A7k/A8k need to enable manually the NAND 2818 * controller, gated clocks and reset bits to avoid being bootloader 2819 * dependent. This is done through the use of the System Functions 2820 * registers. 2821 */ 2822 if (nfc->caps->need_system_controller) { 2823 struct regmap *sysctrl_base = 2824 syscon_regmap_lookup_by_phandle(np, 2825 "marvell,system-controller"); 2826 2827 if (IS_ERR(sysctrl_base)) 2828 return PTR_ERR(sysctrl_base); 2829 2830 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, 2831 GENCONF_SOC_DEVICE_MUX_NFC_EN | 2832 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2833 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2834 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN); 2835 2836 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, 2837 GENCONF_CLK_GATING_CTRL_ND_GATE, 2838 GENCONF_CLK_GATING_CTRL_ND_GATE); 2839 2840 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL, 2841 GENCONF_ND_CLK_CTRL_EN, 2842 GENCONF_ND_CLK_CTRL_EN); 2843 } 2844 2845 /* Configure the DMA if appropriate */ 2846 if (!nfc->caps->is_nfcv2) 2847 marvell_nfc_init_dma(nfc); 2848 2849 marvell_nfc_reset(nfc); 2850 2851 return 0; 2852 } 2853 2854 static int marvell_nfc_probe(struct platform_device *pdev) 2855 { 2856 struct device *dev = &pdev->dev; 2857 struct resource *r; 2858 struct marvell_nfc *nfc; 2859 int ret; 2860 int irq; 2861 2862 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2863 GFP_KERNEL); 2864 if (!nfc) 2865 return -ENOMEM; 2866 2867 nfc->dev = dev; 2868 nand_controller_init(&nfc->controller); 2869 nfc->controller.ops = &marvell_nand_controller_ops; 2870 INIT_LIST_HEAD(&nfc->chips); 2871 2872 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2873 nfc->regs = devm_ioremap_resource(dev, r); 2874 if (IS_ERR(nfc->regs)) 2875 return PTR_ERR(nfc->regs); 2876 2877 irq = platform_get_irq(pdev, 0); 2878 if (irq < 0) 2879 return irq; 2880 2881 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2882 2883 /* Managed the legacy case (when the first clock was not named) */ 2884 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2885 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2886 2887 if (IS_ERR(nfc->core_clk)) 2888 return PTR_ERR(nfc->core_clk); 2889 2890 ret = clk_prepare_enable(nfc->core_clk); 2891 if (ret) 2892 return ret; 2893 2894 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2895 if (IS_ERR(nfc->reg_clk)) { 2896 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2897 ret = PTR_ERR(nfc->reg_clk); 2898 goto unprepare_core_clk; 2899 } 2900 2901 nfc->reg_clk = NULL; 2902 } 2903 2904 ret = clk_prepare_enable(nfc->reg_clk); 2905 if (ret) 2906 goto unprepare_core_clk; 2907 2908 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2909 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2910 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2911 0, "marvell-nfc", nfc); 2912 if (ret) 2913 goto unprepare_reg_clk; 2914 2915 /* Get NAND controller capabilities */ 2916 if (pdev->id_entry) 2917 nfc->caps = (void *)pdev->id_entry->driver_data; 2918 else 2919 nfc->caps = of_device_get_match_data(&pdev->dev); 2920 2921 if (!nfc->caps) { 2922 dev_err(dev, "Could not retrieve NFC caps\n"); 2923 ret = -EINVAL; 2924 goto unprepare_reg_clk; 2925 } 2926 2927 /* Init the controller and then probe the chips */ 2928 ret = marvell_nfc_init(nfc); 2929 if (ret) 2930 goto unprepare_reg_clk; 2931 2932 platform_set_drvdata(pdev, nfc); 2933 2934 ret = marvell_nand_chips_init(dev, nfc); 2935 if (ret) 2936 goto release_dma; 2937 2938 return 0; 2939 2940 release_dma: 2941 if (nfc->use_dma) 2942 dma_release_channel(nfc->dma_chan); 2943 unprepare_reg_clk: 2944 clk_disable_unprepare(nfc->reg_clk); 2945 unprepare_core_clk: 2946 clk_disable_unprepare(nfc->core_clk); 2947 2948 return ret; 2949 } 2950 2951 static int marvell_nfc_remove(struct platform_device *pdev) 2952 { 2953 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 2954 2955 marvell_nand_chips_cleanup(nfc); 2956 2957 if (nfc->use_dma) { 2958 dmaengine_terminate_all(nfc->dma_chan); 2959 dma_release_channel(nfc->dma_chan); 2960 } 2961 2962 clk_disable_unprepare(nfc->reg_clk); 2963 clk_disable_unprepare(nfc->core_clk); 2964 2965 return 0; 2966 } 2967 2968 static int __maybe_unused marvell_nfc_suspend(struct device *dev) 2969 { 2970 struct marvell_nfc *nfc = dev_get_drvdata(dev); 2971 struct marvell_nand_chip *chip; 2972 2973 list_for_each_entry(chip, &nfc->chips, node) 2974 marvell_nfc_wait_ndrun(&chip->chip); 2975 2976 clk_disable_unprepare(nfc->reg_clk); 2977 clk_disable_unprepare(nfc->core_clk); 2978 2979 return 0; 2980 } 2981 2982 static int __maybe_unused marvell_nfc_resume(struct device *dev) 2983 { 2984 struct marvell_nfc *nfc = dev_get_drvdata(dev); 2985 int ret; 2986 2987 ret = clk_prepare_enable(nfc->core_clk); 2988 if (ret < 0) 2989 return ret; 2990 2991 ret = clk_prepare_enable(nfc->reg_clk); 2992 if (ret < 0) 2993 return ret; 2994 2995 /* 2996 * Reset nfc->selected_chip so the next command will cause the timing 2997 * registers to be restored in marvell_nfc_select_target(). 2998 */ 2999 nfc->selected_chip = NULL; 3000 3001 /* Reset registers that have lost their contents */ 3002 marvell_nfc_reset(nfc); 3003 3004 return 0; 3005 } 3006 3007 static const struct dev_pm_ops marvell_nfc_pm_ops = { 3008 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 3009 }; 3010 3011 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 3012 .max_cs_nb = 4, 3013 .max_rb_nb = 2, 3014 .need_system_controller = true, 3015 .is_nfcv2 = true, 3016 }; 3017 3018 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 3019 .max_cs_nb = 4, 3020 .max_rb_nb = 2, 3021 .is_nfcv2 = true, 3022 }; 3023 3024 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 3025 .max_cs_nb = 2, 3026 .max_rb_nb = 1, 3027 .use_dma = true, 3028 }; 3029 3030 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 3031 .max_cs_nb = 4, 3032 .max_rb_nb = 2, 3033 .need_system_controller = true, 3034 .legacy_of_bindings = true, 3035 .is_nfcv2 = true, 3036 }; 3037 3038 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 3039 .max_cs_nb = 4, 3040 .max_rb_nb = 2, 3041 .legacy_of_bindings = true, 3042 .is_nfcv2 = true, 3043 }; 3044 3045 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 3046 .max_cs_nb = 2, 3047 .max_rb_nb = 1, 3048 .legacy_of_bindings = true, 3049 .use_dma = true, 3050 }; 3051 3052 static const struct platform_device_id marvell_nfc_platform_ids[] = { 3053 { 3054 .name = "pxa3xx-nand", 3055 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 3056 }, 3057 { /* sentinel */ }, 3058 }; 3059 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 3060 3061 static const struct of_device_id marvell_nfc_of_ids[] = { 3062 { 3063 .compatible = "marvell,armada-8k-nand-controller", 3064 .data = &marvell_armada_8k_nfc_caps, 3065 }, 3066 { 3067 .compatible = "marvell,armada370-nand-controller", 3068 .data = &marvell_armada370_nfc_caps, 3069 }, 3070 { 3071 .compatible = "marvell,pxa3xx-nand-controller", 3072 .data = &marvell_pxa3xx_nfc_caps, 3073 }, 3074 /* Support for old/deprecated bindings: */ 3075 { 3076 .compatible = "marvell,armada-8k-nand", 3077 .data = &marvell_armada_8k_nfc_legacy_caps, 3078 }, 3079 { 3080 .compatible = "marvell,armada370-nand", 3081 .data = &marvell_armada370_nfc_legacy_caps, 3082 }, 3083 { 3084 .compatible = "marvell,pxa3xx-nand", 3085 .data = &marvell_pxa3xx_nfc_legacy_caps, 3086 }, 3087 { /* sentinel */ }, 3088 }; 3089 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 3090 3091 static struct platform_driver marvell_nfc_driver = { 3092 .driver = { 3093 .name = "marvell-nfc", 3094 .of_match_table = marvell_nfc_of_ids, 3095 .pm = &marvell_nfc_pm_ops, 3096 }, 3097 .id_table = marvell_nfc_platform_ids, 3098 .probe = marvell_nfc_probe, 3099 .remove = marvell_nfc_remove, 3100 }; 3101 module_platform_driver(marvell_nfc_driver); 3102 3103 MODULE_LICENSE("GPL"); 3104 MODULE_DESCRIPTION("Marvell NAND controller driver"); 3105