1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 */ 9 10 #include <linux/module.h> 11 #include <linux/clk.h> 12 #include <linux/mtd/rawnand.h> 13 #include <linux/of_platform.h> 14 #include <linux/iopoll.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mfd/syscon.h> 18 #include <linux/regmap.h> 19 #include <asm/unaligned.h> 20 21 #include <linux/dmaengine.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dma/pxa-dma.h> 24 #include <linux/platform_data/mtd-nand-pxa3xx.h> 25 26 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 27 #define FIFO_DEPTH 8 28 #define FIFO_REP(x) (x / sizeof(u32)) 29 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 30 /* NFC does not support transfers of larger chunks at a time */ 31 #define MAX_CHUNK_SIZE 2112 32 /* NFCv1 cannot read more that 7 bytes of ID */ 33 #define NFCV1_READID_LEN 7 34 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 35 #define POLL_PERIOD 0 36 #define POLL_TIMEOUT 100000 37 /* Interrupt maximum wait period in ms */ 38 #define IRQ_TIMEOUT 1000 39 /* Latency in clock cycles between SoC pins and NFC logic */ 40 #define MIN_RD_DEL_CNT 3 41 /* Maximum number of contiguous address cycles */ 42 #define MAX_ADDRESS_CYC_NFCV1 5 43 #define MAX_ADDRESS_CYC_NFCV2 7 44 /* System control registers/bits to enable the NAND controller on some SoCs */ 45 #define GENCONF_SOC_DEVICE_MUX 0x208 46 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 47 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 48 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 49 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 50 #define GENCONF_CLK_GATING_CTRL 0x220 51 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 52 #define GENCONF_ND_CLK_CTRL 0x700 53 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 54 55 /* NAND controller data flash control register */ 56 #define NDCR 0x00 57 #define NDCR_ALL_INT GENMASK(11, 0) 58 #define NDCR_CS1_CMDDM BIT(7) 59 #define NDCR_CS0_CMDDM BIT(8) 60 #define NDCR_RDYM BIT(11) 61 #define NDCR_ND_ARB_EN BIT(12) 62 #define NDCR_RA_START BIT(15) 63 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 64 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 65 #define NDCR_DWIDTH_M BIT(26) 66 #define NDCR_DWIDTH_C BIT(27) 67 #define NDCR_ND_RUN BIT(28) 68 #define NDCR_DMA_EN BIT(29) 69 #define NDCR_ECC_EN BIT(30) 70 #define NDCR_SPARE_EN BIT(31) 71 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 72 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 73 74 /* NAND interface timing parameter 0 register */ 75 #define NDTR0 0x04 76 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 77 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 78 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 79 #define NDTR0_SEL_NRE_EDGE BIT(7) 80 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 81 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 82 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 83 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 84 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 85 #define NDTR0_SELCNTR BIT(26) 86 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 87 88 /* NAND interface timing parameter 1 register */ 89 #define NDTR1 0x0C 90 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 91 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 92 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 93 #define NDTR1_PRESCALE BIT(14) 94 #define NDTR1_WAIT_MODE BIT(15) 95 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 96 97 /* NAND controller status register */ 98 #define NDSR 0x14 99 #define NDSR_WRCMDREQ BIT(0) 100 #define NDSR_RDDREQ BIT(1) 101 #define NDSR_WRDREQ BIT(2) 102 #define NDSR_CORERR BIT(3) 103 #define NDSR_UNCERR BIT(4) 104 #define NDSR_CMDD(cs) BIT(8 - cs) 105 #define NDSR_RDY(rb) BIT(11 + rb) 106 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 107 108 /* NAND ECC control register */ 109 #define NDECCCTRL 0x28 110 #define NDECCCTRL_BCH_EN BIT(0) 111 112 /* NAND controller data buffer register */ 113 #define NDDB 0x40 114 115 /* NAND controller command buffer 0 register */ 116 #define NDCB0 0x48 117 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 118 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 119 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 120 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 121 #define NDCB0_DBC BIT(19) 122 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 123 #define NDCB0_CSEL BIT(24) 124 #define NDCB0_RDY_BYP BIT(27) 125 #define NDCB0_LEN_OVRD BIT(28) 126 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 127 128 /* NAND controller command buffer 1 register */ 129 #define NDCB1 0x4C 130 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 131 #define NDCB1_ADDRS_PAGE(x) (x << 16) 132 133 /* NAND controller command buffer 2 register */ 134 #define NDCB2 0x50 135 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 136 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 137 138 /* NAND controller command buffer 3 register */ 139 #define NDCB3 0x54 140 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 141 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 142 143 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 144 #define TYPE_READ 0 145 #define TYPE_WRITE 1 146 #define TYPE_ERASE 2 147 #define TYPE_READ_ID 3 148 #define TYPE_STATUS 4 149 #define TYPE_RESET 5 150 #define TYPE_NAKED_CMD 6 151 #define TYPE_NAKED_ADDR 7 152 #define TYPE_MASK 7 153 #define XTYPE_MONOLITHIC_RW 0 154 #define XTYPE_LAST_NAKED_RW 1 155 #define XTYPE_FINAL_COMMAND 3 156 #define XTYPE_READ 4 157 #define XTYPE_WRITE_DISPATCH 4 158 #define XTYPE_NAKED_RW 5 159 #define XTYPE_COMMAND_DISPATCH 6 160 #define XTYPE_MASK 7 161 162 /** 163 * Marvell ECC engine works differently than the others, in order to limit the 164 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 165 * per subpage, and depending on a the desired strength needed by the NAND chip, 166 * a particular layout mixing data/spare/ecc is defined, with a possible last 167 * chunk smaller that the others. 168 * 169 * @writesize: Full page size on which the layout applies 170 * @chunk: Desired ECC chunk size on which the layout applies 171 * @strength: Desired ECC strength (per chunk size bytes) on which the 172 * layout applies 173 * @nchunks: Total number of chunks 174 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 175 * repetitions of the pattern: 176 * (data_bytes + spare_bytes + ecc_bytes). 177 * @data_bytes: Number of data bytes per chunk 178 * @spare_bytes: Number of spare bytes per chunk 179 * @ecc_bytes: Number of ecc bytes per chunk 180 * @last_data_bytes: Number of data bytes in the last chunk 181 * @last_spare_bytes: Number of spare bytes in the last chunk 182 * @last_ecc_bytes: Number of ecc bytes in the last chunk 183 */ 184 struct marvell_hw_ecc_layout { 185 /* Constraints */ 186 int writesize; 187 int chunk; 188 int strength; 189 /* Corresponding layout */ 190 int nchunks; 191 int full_chunk_cnt; 192 int data_bytes; 193 int spare_bytes; 194 int ecc_bytes; 195 int last_data_bytes; 196 int last_spare_bytes; 197 int last_ecc_bytes; 198 }; 199 200 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 201 { \ 202 .writesize = ws, \ 203 .chunk = dc, \ 204 .strength = ds, \ 205 .nchunks = nc, \ 206 .full_chunk_cnt = fcc, \ 207 .data_bytes = db, \ 208 .spare_bytes = sb, \ 209 .ecc_bytes = eb, \ 210 .last_data_bytes = ldb, \ 211 .last_spare_bytes = lsb, \ 212 .last_ecc_bytes = leb, \ 213 } 214 215 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 216 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 217 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 218 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 219 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 220 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 221 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 222 }; 223 224 /** 225 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 226 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 227 * The datasheet describes the logic with an error: ADDR5 field is once 228 * declared at the beginning of NDCB2, and another time at its end. Because the 229 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 230 * to use the last bit of this field instead of the first ones. 231 * 232 * @cs: Wanted CE lane. 233 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 234 * selecting the wanted CE lane. This is set once when 235 * the Device Tree is probed. 236 * @rb: Ready/Busy pin for the flash chip 237 */ 238 struct marvell_nand_chip_sel { 239 unsigned int cs; 240 u32 ndcb0_csel; 241 unsigned int rb; 242 }; 243 244 /** 245 * NAND chip structure: stores NAND chip device related information 246 * 247 * @chip: Base NAND chip structure 248 * @node: Used to store NAND chips into a list 249 * @layout NAND layout when using hardware ECC 250 * @ndcr: Controller register value for this NAND chip 251 * @ndtr0: Timing registers 0 value for this NAND chip 252 * @ndtr1: Timing registers 1 value for this NAND chip 253 * @selected_die: Current active CS 254 * @nsels: Number of CS lines required by the NAND chip 255 * @sels: Array of CS lines descriptions 256 */ 257 struct marvell_nand_chip { 258 struct nand_chip chip; 259 struct list_head node; 260 const struct marvell_hw_ecc_layout *layout; 261 u32 ndcr; 262 u32 ndtr0; 263 u32 ndtr1; 264 int addr_cyc; 265 int selected_die; 266 unsigned int nsels; 267 struct marvell_nand_chip_sel sels[0]; 268 }; 269 270 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 271 { 272 return container_of(chip, struct marvell_nand_chip, chip); 273 } 274 275 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 276 *nand) 277 { 278 return &nand->sels[nand->selected_die]; 279 } 280 281 /** 282 * NAND controller capabilities for distinction between compatible strings 283 * 284 * @max_cs_nb: Number of Chip Select lines available 285 * @max_rb_nb: Number of Ready/Busy lines available 286 * @need_system_controller: Indicates if the SoC needs to have access to the 287 * system controller (ie. to enable the NAND controller) 288 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 289 * fashion way 290 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 291 * BCH error detection and correction algorithm, 292 * NDCB3 register has been added 293 * @use_dma: Use dma for data transfers 294 */ 295 struct marvell_nfc_caps { 296 unsigned int max_cs_nb; 297 unsigned int max_rb_nb; 298 bool need_system_controller; 299 bool legacy_of_bindings; 300 bool is_nfcv2; 301 bool use_dma; 302 }; 303 304 /** 305 * NAND controller structure: stores Marvell NAND controller information 306 * 307 * @controller: Base controller structure 308 * @dev: Parent device (used to print error messages) 309 * @regs: NAND controller registers 310 * @core_clk: Core clock 311 * @reg_clk: Regiters clock 312 * @complete: Completion object to wait for NAND controller events 313 * @assigned_cs: Bitmask describing already assigned CS lines 314 * @chips: List containing all the NAND chips attached to 315 * this NAND controller 316 * @caps: NAND controller capabilities for each compatible string 317 * @dma_chan: DMA channel (NFCv1 only) 318 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 319 */ 320 struct marvell_nfc { 321 struct nand_hw_control controller; 322 struct device *dev; 323 void __iomem *regs; 324 struct clk *core_clk; 325 struct clk *reg_clk; 326 struct completion complete; 327 unsigned long assigned_cs; 328 struct list_head chips; 329 struct nand_chip *selected_chip; 330 const struct marvell_nfc_caps *caps; 331 332 /* DMA (NFCv1 only) */ 333 bool use_dma; 334 struct dma_chan *dma_chan; 335 u8 *dma_buf; 336 }; 337 338 static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl) 339 { 340 return container_of(ctrl, struct marvell_nfc, controller); 341 } 342 343 /** 344 * NAND controller timings expressed in NAND Controller clock cycles 345 * 346 * @tRP: ND_nRE pulse width 347 * @tRH: ND_nRE high duration 348 * @tWP: ND_nWE pulse time 349 * @tWH: ND_nWE high duration 350 * @tCS: Enable signal setup time 351 * @tCH: Enable signal hold time 352 * @tADL: Address to write data delay 353 * @tAR: ND_ALE low to ND_nRE low delay 354 * @tWHR: ND_nWE high to ND_nRE low for status read 355 * @tRHW: ND_nRE high duration, read to write delay 356 * @tR: ND_nWE high to ND_nRE low for read 357 */ 358 struct marvell_nfc_timings { 359 /* NDTR0 fields */ 360 unsigned int tRP; 361 unsigned int tRH; 362 unsigned int tWP; 363 unsigned int tWH; 364 unsigned int tCS; 365 unsigned int tCH; 366 unsigned int tADL; 367 /* NDTR1 fields */ 368 unsigned int tAR; 369 unsigned int tWHR; 370 unsigned int tRHW; 371 unsigned int tR; 372 }; 373 374 /** 375 * Derives a duration in numbers of clock cycles. 376 * 377 * @ps: Duration in pico-seconds 378 * @period_ns: Clock period in nano-seconds 379 * 380 * Convert the duration in nano-seconds, then divide by the period and 381 * return the number of clock periods. 382 */ 383 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 384 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 385 period_ns)) 386 387 /** 388 * NAND driver structure filled during the parsing of the ->exec_op() subop 389 * subset of instructions. 390 * 391 * @ndcb: Array of values written to NDCBx registers 392 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 393 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 394 * @rdy_delay_ns: Optional delay after waiting for the RB pin 395 * @data_delay_ns: Optional delay after the data xfer 396 * @data_instr_idx: Index of the data instruction in the subop 397 * @data_instr: Pointer to the data instruction in the subop 398 */ 399 struct marvell_nfc_op { 400 u32 ndcb[4]; 401 unsigned int cle_ale_delay_ns; 402 unsigned int rdy_timeout_ms; 403 unsigned int rdy_delay_ns; 404 unsigned int data_delay_ns; 405 unsigned int data_instr_idx; 406 const struct nand_op_instr *data_instr; 407 }; 408 409 /* 410 * Internal helper to conditionnally apply a delay (from the above structure, 411 * most of the time). 412 */ 413 static void cond_delay(unsigned int ns) 414 { 415 if (!ns) 416 return; 417 418 if (ns < 10000) 419 ndelay(ns); 420 else 421 udelay(DIV_ROUND_UP(ns, 1000)); 422 } 423 424 /* 425 * The controller has many flags that could generate interrupts, most of them 426 * are disabled and polling is used. For the very slow signals, using interrupts 427 * may relax the CPU charge. 428 */ 429 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 430 { 431 u32 reg; 432 433 /* Writing 1 disables the interrupt */ 434 reg = readl_relaxed(nfc->regs + NDCR); 435 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 436 } 437 438 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 439 { 440 u32 reg; 441 442 /* Writing 0 enables the interrupt */ 443 reg = readl_relaxed(nfc->regs + NDCR); 444 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 445 } 446 447 static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 448 { 449 writel_relaxed(int_mask, nfc->regs + NDSR); 450 } 451 452 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 453 bool force_8bit) 454 { 455 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 456 u32 ndcr; 457 458 /* 459 * Callers of this function do not verify if the NAND is using a 16-bit 460 * an 8-bit bus for normal operations, so we need to take care of that 461 * here by leaving the configuration unchanged if the NAND does not have 462 * the NAND_BUSWIDTH_16 flag set. 463 */ 464 if (!(chip->options & NAND_BUSWIDTH_16)) 465 return; 466 467 ndcr = readl_relaxed(nfc->regs + NDCR); 468 469 if (force_8bit) 470 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 471 else 472 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 473 474 writel_relaxed(ndcr, nfc->regs + NDCR); 475 } 476 477 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 478 { 479 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 480 u32 val; 481 int ret; 482 483 /* 484 * The command is being processed, wait for the ND_RUN bit to be 485 * cleared by the NFC. If not, we must clear it by hand. 486 */ 487 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 488 (val & NDCR_ND_RUN) == 0, 489 POLL_PERIOD, POLL_TIMEOUT); 490 if (ret) { 491 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 492 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 493 nfc->regs + NDCR); 494 return ret; 495 } 496 497 return 0; 498 } 499 500 /* 501 * Any time a command has to be sent to the controller, the following sequence 502 * has to be followed: 503 * - call marvell_nfc_prepare_cmd() 504 * -> activate the ND_RUN bit that will kind of 'start a job' 505 * -> wait the signal indicating the NFC is waiting for a command 506 * - send the command (cmd and address cycles) 507 * - enventually send or receive the data 508 * - call marvell_nfc_end_cmd() with the corresponding flag 509 * -> wait the flag to be triggered or cancel the job with a timeout 510 * 511 * The following helpers are here to factorize the code a bit so that 512 * specialized functions responsible for executing the actual NAND 513 * operations do not have to replicate the same code blocks. 514 */ 515 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 516 { 517 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 518 u32 ndcr, val; 519 int ret; 520 521 /* Poll ND_RUN and clear NDSR before issuing any command */ 522 ret = marvell_nfc_wait_ndrun(chip); 523 if (ret) { 524 dev_err(nfc->dev, "Last operation did not succeed\n"); 525 return ret; 526 } 527 528 ndcr = readl_relaxed(nfc->regs + NDCR); 529 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 530 531 /* Assert ND_RUN bit and wait the NFC to be ready */ 532 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 533 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 534 val & NDSR_WRCMDREQ, 535 POLL_PERIOD, POLL_TIMEOUT); 536 if (ret) { 537 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 538 return -ETIMEDOUT; 539 } 540 541 /* Command may be written, clear WRCMDREQ status bit */ 542 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 543 544 return 0; 545 } 546 547 static void marvell_nfc_send_cmd(struct nand_chip *chip, 548 struct marvell_nfc_op *nfc_op) 549 { 550 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 551 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 552 553 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 554 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 555 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 556 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 557 558 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 559 nfc->regs + NDCB0); 560 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 561 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 562 563 /* 564 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 565 * fields are used (only available on NFCv2). 566 */ 567 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 568 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 569 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 570 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 571 } 572 } 573 574 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 575 const char *label) 576 { 577 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 578 u32 val; 579 int ret; 580 581 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 582 val & flag, 583 POLL_PERIOD, POLL_TIMEOUT); 584 585 if (ret) { 586 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 587 label, val); 588 if (nfc->dma_chan) 589 dmaengine_terminate_all(nfc->dma_chan); 590 return ret; 591 } 592 593 /* 594 * DMA function uses this helper to poll on CMDD bits without wanting 595 * them to be cleared. 596 */ 597 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 598 return 0; 599 600 writel_relaxed(flag, nfc->regs + NDSR); 601 602 return 0; 603 } 604 605 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 606 { 607 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 608 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 609 610 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 611 } 612 613 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 614 { 615 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 616 int ret; 617 618 /* Timeout is expressed in ms */ 619 if (!timeout_ms) 620 timeout_ms = IRQ_TIMEOUT; 621 622 init_completion(&nfc->complete); 623 624 marvell_nfc_enable_int(nfc, NDCR_RDYM); 625 ret = wait_for_completion_timeout(&nfc->complete, 626 msecs_to_jiffies(timeout_ms)); 627 marvell_nfc_disable_int(nfc, NDCR_RDYM); 628 marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 629 if (!ret) { 630 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 631 return -ETIMEDOUT; 632 } 633 634 return 0; 635 } 636 637 static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr) 638 { 639 struct nand_chip *chip = mtd_to_nand(mtd); 640 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 641 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 642 u32 ndcr_generic; 643 644 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 645 return; 646 647 if (die_nr < 0 || die_nr >= marvell_nand->nsels) { 648 nfc->selected_chip = NULL; 649 marvell_nand->selected_die = -1; 650 return; 651 } 652 653 /* 654 * Do not change the timing registers when using the DT property 655 * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the 656 * marvell_nand structure are supposedly empty. 657 */ 658 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 659 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 660 661 /* 662 * Reset the NDCR register to a clean state for this particular chip, 663 * also clear ND_RUN bit. 664 */ 665 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 666 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 667 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 668 669 /* Also reset the interrupt status register */ 670 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 671 672 nfc->selected_chip = chip; 673 marvell_nand->selected_die = die_nr; 674 } 675 676 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 677 { 678 struct marvell_nfc *nfc = dev_id; 679 u32 st = readl_relaxed(nfc->regs + NDSR); 680 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 681 682 /* 683 * RDY interrupt mask is one bit in NDCR while there are two status 684 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 685 */ 686 if (st & NDSR_RDY(1)) 687 st |= NDSR_RDY(0); 688 689 if (!(st & ien)) 690 return IRQ_NONE; 691 692 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 693 694 if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ))) 695 complete(&nfc->complete); 696 697 return IRQ_HANDLED; 698 } 699 700 /* HW ECC related functions */ 701 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 702 { 703 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 704 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 705 706 if (!(ndcr & NDCR_ECC_EN)) { 707 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 708 709 /* 710 * When enabling BCH, set threshold to 0 to always know the 711 * number of corrected bitflips. 712 */ 713 if (chip->ecc.algo == NAND_ECC_BCH) 714 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 715 } 716 } 717 718 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 719 { 720 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 721 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 722 723 if (ndcr & NDCR_ECC_EN) { 724 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 725 if (chip->ecc.algo == NAND_ECC_BCH) 726 writel_relaxed(0, nfc->regs + NDECCCTRL); 727 } 728 } 729 730 /* DMA related helpers */ 731 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 732 { 733 u32 reg; 734 735 reg = readl_relaxed(nfc->regs + NDCR); 736 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 737 } 738 739 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 740 { 741 u32 reg; 742 743 reg = readl_relaxed(nfc->regs + NDCR); 744 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 745 } 746 747 /* Read/write PIO/DMA accessors */ 748 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 749 enum dma_data_direction direction, 750 unsigned int len) 751 { 752 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 753 struct dma_async_tx_descriptor *tx; 754 struct scatterlist sg; 755 dma_cookie_t cookie; 756 int ret; 757 758 marvell_nfc_enable_dma(nfc); 759 /* Prepare the DMA transfer */ 760 sg_init_one(&sg, nfc->dma_buf, dma_len); 761 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 762 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 763 direction == DMA_FROM_DEVICE ? 764 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 765 DMA_PREP_INTERRUPT); 766 if (!tx) { 767 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 768 return -ENXIO; 769 } 770 771 /* Do the task and wait for it to finish */ 772 cookie = dmaengine_submit(tx); 773 ret = dma_submit_error(cookie); 774 if (ret) 775 return -EIO; 776 777 dma_async_issue_pending(nfc->dma_chan); 778 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 779 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 780 marvell_nfc_disable_dma(nfc); 781 if (ret) { 782 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 783 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 784 dmaengine_terminate_all(nfc->dma_chan); 785 return -ETIMEDOUT; 786 } 787 788 return 0; 789 } 790 791 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 792 unsigned int len) 793 { 794 unsigned int last_len = len % FIFO_DEPTH; 795 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 796 int i; 797 798 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 799 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 800 801 if (last_len) { 802 u8 tmp_buf[FIFO_DEPTH]; 803 804 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 805 memcpy(in + last_full_offset, tmp_buf, last_len); 806 } 807 808 return 0; 809 } 810 811 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 812 unsigned int len) 813 { 814 unsigned int last_len = len % FIFO_DEPTH; 815 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 816 int i; 817 818 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 819 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 820 821 if (last_len) { 822 u8 tmp_buf[FIFO_DEPTH]; 823 824 memcpy(tmp_buf, out + last_full_offset, last_len); 825 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 826 } 827 828 return 0; 829 } 830 831 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 832 u8 *data, int data_len, 833 u8 *spare, int spare_len, 834 u8 *ecc, int ecc_len, 835 unsigned int *max_bitflips) 836 { 837 struct mtd_info *mtd = nand_to_mtd(chip); 838 int bf; 839 840 /* 841 * Blank pages (all 0xFF) that have not been written may be recognized 842 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 843 * check if the entire page (with ECC bytes) is actually blank or not. 844 */ 845 if (!data) 846 data_len = 0; 847 if (!spare) 848 spare_len = 0; 849 if (!ecc) 850 ecc_len = 0; 851 852 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 853 spare, spare_len, chip->ecc.strength); 854 if (bf < 0) { 855 mtd->ecc_stats.failed++; 856 return; 857 } 858 859 /* Update the stats and max_bitflips */ 860 mtd->ecc_stats.corrected += bf; 861 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 862 } 863 864 /* 865 * Check a chunk is correct or not according to hardware ECC engine. 866 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 867 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 868 * value indicating that a check on the emptyness of the subpage must be 869 * performed before declaring the subpage corrupted. 870 */ 871 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip, 872 unsigned int *max_bitflips) 873 { 874 struct mtd_info *mtd = nand_to_mtd(chip); 875 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 876 int bf = 0; 877 u32 ndsr; 878 879 ndsr = readl_relaxed(nfc->regs + NDSR); 880 881 /* Check uncorrectable error flag */ 882 if (ndsr & NDSR_UNCERR) { 883 writel_relaxed(ndsr, nfc->regs + NDSR); 884 885 /* 886 * Do not increment ->ecc_stats.failed now, instead, return a 887 * non-zero value to indicate that this chunk was apparently 888 * bad, and it should be check to see if it empty or not. If 889 * the chunk (with ECC bytes) is not declared empty, the calling 890 * function must increment the failure count. 891 */ 892 return -EBADMSG; 893 } 894 895 /* Check correctable error flag */ 896 if (ndsr & NDSR_CORERR) { 897 writel_relaxed(ndsr, nfc->regs + NDSR); 898 899 if (chip->ecc.algo == NAND_ECC_BCH) 900 bf = NDSR_ERRCNT(ndsr); 901 else 902 bf = 1; 903 } 904 905 /* Update the stats and max_bitflips */ 906 mtd->ecc_stats.corrected += bf; 907 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 908 909 return 0; 910 } 911 912 /* Hamming read helpers */ 913 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 914 u8 *data_buf, u8 *oob_buf, 915 bool raw, int page) 916 { 917 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 918 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 919 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 920 struct marvell_nfc_op nfc_op = { 921 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 922 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 923 NDCB0_DBC | 924 NDCB0_CMD1(NAND_CMD_READ0) | 925 NDCB0_CMD2(NAND_CMD_READSTART), 926 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 927 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 928 }; 929 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 930 int ret; 931 932 /* NFCv2 needs more information about the operation being executed */ 933 if (nfc->caps->is_nfcv2) 934 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 935 936 ret = marvell_nfc_prepare_cmd(chip); 937 if (ret) 938 return ret; 939 940 marvell_nfc_send_cmd(chip, &nfc_op); 941 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 942 "RDDREQ while draining FIFO (data/oob)"); 943 if (ret) 944 return ret; 945 946 /* 947 * Read the page then the OOB area. Unlike what is shown in current 948 * documentation, spare bytes are protected by the ECC engine, and must 949 * be at the beginning of the OOB area or running this driver on legacy 950 * systems will prevent the discovery of the BBM/BBT. 951 */ 952 if (nfc->use_dma) { 953 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 954 lt->data_bytes + oob_bytes); 955 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 956 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 957 } else { 958 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 959 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 960 } 961 962 ret = marvell_nfc_wait_cmdd(chip); 963 964 return ret; 965 } 966 967 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd, 968 struct nand_chip *chip, u8 *buf, 969 int oob_required, int page) 970 { 971 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 972 true, page); 973 } 974 975 static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd, 976 struct nand_chip *chip, 977 u8 *buf, int oob_required, 978 int page) 979 { 980 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 981 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 982 int max_bitflips = 0, ret; 983 u8 *raw_buf; 984 985 marvell_nfc_enable_hw_ecc(chip); 986 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 987 page); 988 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 989 marvell_nfc_disable_hw_ecc(chip); 990 991 if (!ret) 992 return max_bitflips; 993 994 /* 995 * When ECC failures are detected, check if the full page has been 996 * written or not. Ignore the failure if it is actually empty. 997 */ 998 raw_buf = kmalloc(full_sz, GFP_KERNEL); 999 if (!raw_buf) 1000 return -ENOMEM; 1001 1002 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1003 lt->data_bytes, true, page); 1004 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1005 &max_bitflips); 1006 kfree(raw_buf); 1007 1008 return max_bitflips; 1009 } 1010 1011 /* 1012 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1013 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1014 * also stands for ->read_oob(). 1015 */ 1016 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd, 1017 struct nand_chip *chip, int page) 1018 { 1019 /* Invalidate page cache */ 1020 chip->pagebuf = -1; 1021 1022 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf, 1023 chip->oob_poi, true, page); 1024 } 1025 1026 /* Hamming write helpers */ 1027 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1028 const u8 *data_buf, 1029 const u8 *oob_buf, bool raw, 1030 int page) 1031 { 1032 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1033 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1034 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1035 struct marvell_nfc_op nfc_op = { 1036 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1037 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1038 NDCB0_CMD1(NAND_CMD_SEQIN) | 1039 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1040 NDCB0_DBC, 1041 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1042 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1043 }; 1044 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1045 int ret; 1046 1047 /* NFCv2 needs more information about the operation being executed */ 1048 if (nfc->caps->is_nfcv2) 1049 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1050 1051 ret = marvell_nfc_prepare_cmd(chip); 1052 if (ret) 1053 return ret; 1054 1055 marvell_nfc_send_cmd(chip, &nfc_op); 1056 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1057 "WRDREQ while loading FIFO (data)"); 1058 if (ret) 1059 return ret; 1060 1061 /* Write the page then the OOB area */ 1062 if (nfc->use_dma) { 1063 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1064 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1065 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1066 lt->ecc_bytes + lt->spare_bytes); 1067 } else { 1068 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1069 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1070 } 1071 1072 ret = marvell_nfc_wait_cmdd(chip); 1073 if (ret) 1074 return ret; 1075 1076 ret = marvell_nfc_wait_op(chip, 1077 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); 1078 return ret; 1079 } 1080 1081 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd, 1082 struct nand_chip *chip, 1083 const u8 *buf, 1084 int oob_required, int page) 1085 { 1086 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1087 true, page); 1088 } 1089 1090 static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd, 1091 struct nand_chip *chip, 1092 const u8 *buf, 1093 int oob_required, int page) 1094 { 1095 int ret; 1096 1097 marvell_nfc_enable_hw_ecc(chip); 1098 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1099 false, page); 1100 marvell_nfc_disable_hw_ecc(chip); 1101 1102 return ret; 1103 } 1104 1105 /* 1106 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1107 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1108 * also stands for ->write_oob(). 1109 */ 1110 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd, 1111 struct nand_chip *chip, 1112 int page) 1113 { 1114 /* Invalidate page cache */ 1115 chip->pagebuf = -1; 1116 1117 memset(chip->data_buf, 0xFF, mtd->writesize); 1118 1119 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf, 1120 chip->oob_poi, true, page); 1121 } 1122 1123 /* BCH read helpers */ 1124 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd, 1125 struct nand_chip *chip, u8 *buf, 1126 int oob_required, int page) 1127 { 1128 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1129 u8 *oob = chip->oob_poi; 1130 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1131 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1132 lt->last_spare_bytes; 1133 int data_len = lt->data_bytes; 1134 int spare_len = lt->spare_bytes; 1135 int ecc_len = lt->ecc_bytes; 1136 int chunk; 1137 1138 if (oob_required) 1139 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1140 1141 nand_read_page_op(chip, page, 0, NULL, 0); 1142 1143 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1144 /* Update last chunk length */ 1145 if (chunk >= lt->full_chunk_cnt) { 1146 data_len = lt->last_data_bytes; 1147 spare_len = lt->last_spare_bytes; 1148 ecc_len = lt->last_ecc_bytes; 1149 } 1150 1151 /* Read data bytes*/ 1152 nand_change_read_column_op(chip, chunk * chunk_size, 1153 buf + (lt->data_bytes * chunk), 1154 data_len, false); 1155 1156 /* Read spare bytes */ 1157 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1158 spare_len, false); 1159 1160 /* Read ECC bytes */ 1161 nand_read_data_op(chip, oob + ecc_offset + 1162 (ALIGN(lt->ecc_bytes, 32) * chunk), 1163 ecc_len, false); 1164 } 1165 1166 return 0; 1167 } 1168 1169 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1170 u8 *data, unsigned int data_len, 1171 u8 *spare, unsigned int spare_len, 1172 int page) 1173 { 1174 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1175 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1176 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1177 int i, ret; 1178 struct marvell_nfc_op nfc_op = { 1179 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1180 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1181 NDCB0_LEN_OVRD, 1182 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1183 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1184 .ndcb[3] = data_len + spare_len, 1185 }; 1186 1187 ret = marvell_nfc_prepare_cmd(chip); 1188 if (ret) 1189 return; 1190 1191 if (chunk == 0) 1192 nfc_op.ndcb[0] |= NDCB0_DBC | 1193 NDCB0_CMD1(NAND_CMD_READ0) | 1194 NDCB0_CMD2(NAND_CMD_READSTART); 1195 1196 /* 1197 * Trigger the monolithic read on the first chunk, then naked read on 1198 * intermediate chunks and finally a last naked read on the last chunk. 1199 */ 1200 if (chunk == 0) 1201 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1202 else if (chunk < lt->nchunks - 1) 1203 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1204 else 1205 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1206 1207 marvell_nfc_send_cmd(chip, &nfc_op); 1208 1209 /* 1210 * According to the datasheet, when reading from NDDB 1211 * with BCH enabled, after each 32 bytes reads, we 1212 * have to make sure that the NDSR.RDDREQ bit is set. 1213 * 1214 * Drain the FIFO, 8 32-bit reads at a time, and skip 1215 * the polling on the last read. 1216 * 1217 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1218 */ 1219 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1220 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1221 "RDDREQ while draining FIFO (data)"); 1222 marvell_nfc_xfer_data_in_pio(nfc, data, 1223 FIFO_DEPTH * BCH_SEQ_READS); 1224 data += FIFO_DEPTH * BCH_SEQ_READS; 1225 } 1226 1227 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1228 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1229 "RDDREQ while draining FIFO (OOB)"); 1230 marvell_nfc_xfer_data_in_pio(nfc, spare, 1231 FIFO_DEPTH * BCH_SEQ_READS); 1232 spare += FIFO_DEPTH * BCH_SEQ_READS; 1233 } 1234 } 1235 1236 static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd, 1237 struct nand_chip *chip, 1238 u8 *buf, int oob_required, 1239 int page) 1240 { 1241 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1242 int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len; 1243 u8 *data = buf, *spare = chip->oob_poi, *ecc; 1244 int max_bitflips = 0; 1245 u32 failure_mask = 0; 1246 int chunk, ecc_offset_in_page, ret; 1247 1248 /* 1249 * With BCH, OOB is not fully used (and thus not read entirely), not 1250 * expected bytes could show up at the end of the OOB buffer if not 1251 * explicitly erased. 1252 */ 1253 if (oob_required) 1254 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1255 1256 marvell_nfc_enable_hw_ecc(chip); 1257 1258 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1259 /* Update length for the last chunk */ 1260 if (chunk >= lt->full_chunk_cnt) { 1261 data_len = lt->last_data_bytes; 1262 spare_len = lt->last_spare_bytes; 1263 } 1264 1265 /* Read the chunk and detect number of bitflips */ 1266 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1267 spare, spare_len, page); 1268 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 1269 if (ret) 1270 failure_mask |= BIT(chunk); 1271 1272 data += data_len; 1273 spare += spare_len; 1274 } 1275 1276 marvell_nfc_disable_hw_ecc(chip); 1277 1278 if (!failure_mask) 1279 return max_bitflips; 1280 1281 /* 1282 * Please note that dumping the ECC bytes during a normal read with OOB 1283 * area would add a significant overhead as ECC bytes are "consumed" by 1284 * the controller in normal mode and must be re-read in raw mode. To 1285 * avoid dropping the performances, we prefer not to include them. The 1286 * user should re-read the page in raw mode if ECC bytes are required. 1287 * 1288 * However, for any subpage read error reported by ->correct(), the ECC 1289 * bytes must be read in raw mode and the full subpage must be checked 1290 * to see if it is entirely empty of if there was an actual error. 1291 */ 1292 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1293 /* No failure reported for this chunk, move to the next one */ 1294 if (!(failure_mask & BIT(chunk))) 1295 continue; 1296 1297 /* Derive ECC bytes positions (in page/buffer) and length */ 1298 ecc = chip->oob_poi + 1299 (lt->full_chunk_cnt * lt->spare_bytes) + 1300 lt->last_spare_bytes + 1301 (chunk * ALIGN(lt->ecc_bytes, 32)); 1302 ecc_offset_in_page = 1303 (chunk * (lt->data_bytes + lt->spare_bytes + 1304 lt->ecc_bytes)) + 1305 (chunk < lt->full_chunk_cnt ? 1306 lt->data_bytes + lt->spare_bytes : 1307 lt->last_data_bytes + lt->last_spare_bytes); 1308 ecc_len = chunk < lt->full_chunk_cnt ? 1309 lt->ecc_bytes : lt->last_ecc_bytes; 1310 1311 /* Do the actual raw read of the ECC bytes */ 1312 nand_change_read_column_op(chip, ecc_offset_in_page, 1313 ecc, ecc_len, false); 1314 1315 /* Derive data/spare bytes positions (in buffer) and length */ 1316 data = buf + (chunk * lt->data_bytes); 1317 data_len = chunk < lt->full_chunk_cnt ? 1318 lt->data_bytes : lt->last_data_bytes; 1319 spare = chip->oob_poi + (chunk * (lt->spare_bytes + 1320 lt->ecc_bytes)); 1321 spare_len = chunk < lt->full_chunk_cnt ? 1322 lt->spare_bytes : lt->last_spare_bytes; 1323 1324 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1325 marvell_nfc_check_empty_chunk(chip, data, data_len, spare, 1326 spare_len, ecc, ecc_len, 1327 &max_bitflips); 1328 } 1329 1330 return max_bitflips; 1331 } 1332 1333 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd, 1334 struct nand_chip *chip, int page) 1335 { 1336 /* Invalidate page cache */ 1337 chip->pagebuf = -1; 1338 1339 return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page); 1340 } 1341 1342 static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd, 1343 struct nand_chip *chip, int page) 1344 { 1345 /* Invalidate page cache */ 1346 chip->pagebuf = -1; 1347 1348 return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page); 1349 } 1350 1351 /* BCH write helpers */ 1352 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd, 1353 struct nand_chip *chip, 1354 const u8 *buf, 1355 int oob_required, int page) 1356 { 1357 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1358 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1359 int data_len = lt->data_bytes; 1360 int spare_len = lt->spare_bytes; 1361 int ecc_len = lt->ecc_bytes; 1362 int spare_offset = 0; 1363 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1364 lt->last_spare_bytes; 1365 int chunk; 1366 1367 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1368 1369 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1370 if (chunk >= lt->full_chunk_cnt) { 1371 data_len = lt->last_data_bytes; 1372 spare_len = lt->last_spare_bytes; 1373 ecc_len = lt->last_ecc_bytes; 1374 } 1375 1376 /* Point to the column of the next chunk */ 1377 nand_change_write_column_op(chip, chunk * full_chunk_size, 1378 NULL, 0, false); 1379 1380 /* Write the data */ 1381 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1382 data_len, false); 1383 1384 if (!oob_required) 1385 continue; 1386 1387 /* Write the spare bytes */ 1388 if (spare_len) 1389 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1390 spare_len, false); 1391 1392 /* Write the ECC bytes */ 1393 if (ecc_len) 1394 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1395 ecc_len, false); 1396 1397 spare_offset += spare_len; 1398 ecc_offset += ALIGN(ecc_len, 32); 1399 } 1400 1401 return nand_prog_page_end_op(chip); 1402 } 1403 1404 static int 1405 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1406 const u8 *data, unsigned int data_len, 1407 const u8 *spare, unsigned int spare_len, 1408 int page) 1409 { 1410 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1411 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1412 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1413 u32 xtype; 1414 int ret; 1415 struct marvell_nfc_op nfc_op = { 1416 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1417 .ndcb[3] = data_len + spare_len, 1418 }; 1419 1420 /* 1421 * First operation dispatches the CMD_SEQIN command, issue the address 1422 * cycles and asks for the first chunk of data. 1423 * All operations in the middle (if any) will issue a naked write and 1424 * also ask for data. 1425 * Last operation (if any) asks for the last chunk of data through a 1426 * last naked write. 1427 */ 1428 if (chunk == 0) { 1429 if (lt->nchunks == 1) 1430 xtype = XTYPE_MONOLITHIC_RW; 1431 else 1432 xtype = XTYPE_WRITE_DISPATCH; 1433 1434 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1435 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1436 NDCB0_CMD1(NAND_CMD_SEQIN); 1437 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1438 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1439 } else if (chunk < lt->nchunks - 1) { 1440 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1441 } else { 1442 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1443 } 1444 1445 /* Always dispatch the PAGEPROG command on the last chunk */ 1446 if (chunk == lt->nchunks - 1) 1447 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1448 1449 ret = marvell_nfc_prepare_cmd(chip); 1450 if (ret) 1451 return ret; 1452 1453 marvell_nfc_send_cmd(chip, &nfc_op); 1454 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1455 "WRDREQ while loading FIFO (data)"); 1456 if (ret) 1457 return ret; 1458 1459 /* Transfer the contents */ 1460 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1461 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1462 1463 return 0; 1464 } 1465 1466 static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd, 1467 struct nand_chip *chip, 1468 const u8 *buf, 1469 int oob_required, int page) 1470 { 1471 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1472 const u8 *data = buf; 1473 const u8 *spare = chip->oob_poi; 1474 int data_len = lt->data_bytes; 1475 int spare_len = lt->spare_bytes; 1476 int chunk, ret; 1477 1478 /* Spare data will be written anyway, so clear it to avoid garbage */ 1479 if (!oob_required) 1480 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1481 1482 marvell_nfc_enable_hw_ecc(chip); 1483 1484 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1485 if (chunk >= lt->full_chunk_cnt) { 1486 data_len = lt->last_data_bytes; 1487 spare_len = lt->last_spare_bytes; 1488 } 1489 1490 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1491 spare, spare_len, page); 1492 data += data_len; 1493 spare += spare_len; 1494 1495 /* 1496 * Waiting only for CMDD or PAGED is not enough, ECC are 1497 * partially written. No flag is set once the operation is 1498 * really finished but the ND_RUN bit is cleared, so wait for it 1499 * before stepping into the next command. 1500 */ 1501 marvell_nfc_wait_ndrun(chip); 1502 } 1503 1504 ret = marvell_nfc_wait_op(chip, 1505 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); 1506 1507 marvell_nfc_disable_hw_ecc(chip); 1508 1509 if (ret) 1510 return ret; 1511 1512 return 0; 1513 } 1514 1515 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd, 1516 struct nand_chip *chip, 1517 int page) 1518 { 1519 /* Invalidate page cache */ 1520 chip->pagebuf = -1; 1521 1522 memset(chip->data_buf, 0xFF, mtd->writesize); 1523 1524 return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page); 1525 } 1526 1527 static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd, 1528 struct nand_chip *chip, int page) 1529 { 1530 /* Invalidate page cache */ 1531 chip->pagebuf = -1; 1532 1533 memset(chip->data_buf, 0xFF, mtd->writesize); 1534 1535 return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page); 1536 } 1537 1538 /* NAND framework ->exec_op() hooks and related helpers */ 1539 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1540 const struct nand_subop *subop, 1541 struct marvell_nfc_op *nfc_op) 1542 { 1543 const struct nand_op_instr *instr = NULL; 1544 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1545 bool first_cmd = true; 1546 unsigned int op_id; 1547 int i; 1548 1549 /* Reset the input structure as most of its fields will be OR'ed */ 1550 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1551 1552 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1553 unsigned int offset, naddrs; 1554 const u8 *addrs; 1555 int len = nand_subop_get_data_len(subop, op_id); 1556 1557 instr = &subop->instrs[op_id]; 1558 1559 switch (instr->type) { 1560 case NAND_OP_CMD_INSTR: 1561 if (first_cmd) 1562 nfc_op->ndcb[0] |= 1563 NDCB0_CMD1(instr->ctx.cmd.opcode); 1564 else 1565 nfc_op->ndcb[0] |= 1566 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1567 NDCB0_DBC; 1568 1569 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1570 first_cmd = false; 1571 break; 1572 1573 case NAND_OP_ADDR_INSTR: 1574 offset = nand_subop_get_addr_start_off(subop, op_id); 1575 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1576 addrs = &instr->ctx.addr.addrs[offset]; 1577 1578 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1579 1580 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1581 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1582 1583 if (naddrs >= 5) 1584 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1585 if (naddrs >= 6) 1586 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1587 if (naddrs == 7) 1588 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1589 1590 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1591 break; 1592 1593 case NAND_OP_DATA_IN_INSTR: 1594 nfc_op->data_instr = instr; 1595 nfc_op->data_instr_idx = op_id; 1596 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1597 if (nfc->caps->is_nfcv2) { 1598 nfc_op->ndcb[0] |= 1599 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1600 NDCB0_LEN_OVRD; 1601 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1602 } 1603 nfc_op->data_delay_ns = instr->delay_ns; 1604 break; 1605 1606 case NAND_OP_DATA_OUT_INSTR: 1607 nfc_op->data_instr = instr; 1608 nfc_op->data_instr_idx = op_id; 1609 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1610 if (nfc->caps->is_nfcv2) { 1611 nfc_op->ndcb[0] |= 1612 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1613 NDCB0_LEN_OVRD; 1614 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1615 } 1616 nfc_op->data_delay_ns = instr->delay_ns; 1617 break; 1618 1619 case NAND_OP_WAITRDY_INSTR: 1620 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1621 nfc_op->rdy_delay_ns = instr->delay_ns; 1622 break; 1623 } 1624 } 1625 } 1626 1627 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1628 const struct nand_subop *subop, 1629 struct marvell_nfc_op *nfc_op) 1630 { 1631 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1632 const struct nand_op_instr *instr = nfc_op->data_instr; 1633 unsigned int op_id = nfc_op->data_instr_idx; 1634 unsigned int len = nand_subop_get_data_len(subop, op_id); 1635 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1636 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1637 int ret; 1638 1639 if (instr->ctx.data.force_8bit) 1640 marvell_nfc_force_byte_access(chip, true); 1641 1642 if (reading) { 1643 u8 *in = instr->ctx.data.buf.in + offset; 1644 1645 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1646 } else { 1647 const u8 *out = instr->ctx.data.buf.out + offset; 1648 1649 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1650 } 1651 1652 if (instr->ctx.data.force_8bit) 1653 marvell_nfc_force_byte_access(chip, false); 1654 1655 return ret; 1656 } 1657 1658 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1659 const struct nand_subop *subop) 1660 { 1661 struct marvell_nfc_op nfc_op; 1662 bool reading; 1663 int ret; 1664 1665 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1666 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1667 1668 ret = marvell_nfc_prepare_cmd(chip); 1669 if (ret) 1670 return ret; 1671 1672 marvell_nfc_send_cmd(chip, &nfc_op); 1673 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1674 "RDDREQ/WRDREQ while draining raw data"); 1675 if (ret) 1676 return ret; 1677 1678 cond_delay(nfc_op.cle_ale_delay_ns); 1679 1680 if (reading) { 1681 if (nfc_op.rdy_timeout_ms) { 1682 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1683 if (ret) 1684 return ret; 1685 } 1686 1687 cond_delay(nfc_op.rdy_delay_ns); 1688 } 1689 1690 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1691 ret = marvell_nfc_wait_cmdd(chip); 1692 if (ret) 1693 return ret; 1694 1695 cond_delay(nfc_op.data_delay_ns); 1696 1697 if (!reading) { 1698 if (nfc_op.rdy_timeout_ms) { 1699 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1700 if (ret) 1701 return ret; 1702 } 1703 1704 cond_delay(nfc_op.rdy_delay_ns); 1705 } 1706 1707 /* 1708 * NDCR ND_RUN bit should be cleared automatically at the end of each 1709 * operation but experience shows that the behavior is buggy when it 1710 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1711 */ 1712 if (!reading) { 1713 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1714 1715 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1716 nfc->regs + NDCR); 1717 } 1718 1719 return 0; 1720 } 1721 1722 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1723 const struct nand_subop *subop) 1724 { 1725 struct marvell_nfc_op nfc_op; 1726 int ret; 1727 1728 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1729 1730 /* 1731 * Naked access are different in that they need to be flagged as naked 1732 * by the controller. Reset the controller registers fields that inform 1733 * on the type and refill them according to the ongoing operation. 1734 */ 1735 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1736 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1737 switch (subop->instrs[0].type) { 1738 case NAND_OP_CMD_INSTR: 1739 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1740 break; 1741 case NAND_OP_ADDR_INSTR: 1742 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1743 break; 1744 case NAND_OP_DATA_IN_INSTR: 1745 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1746 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1747 break; 1748 case NAND_OP_DATA_OUT_INSTR: 1749 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1750 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1751 break; 1752 default: 1753 /* This should never happen */ 1754 break; 1755 } 1756 1757 ret = marvell_nfc_prepare_cmd(chip); 1758 if (ret) 1759 return ret; 1760 1761 marvell_nfc_send_cmd(chip, &nfc_op); 1762 1763 if (!nfc_op.data_instr) { 1764 ret = marvell_nfc_wait_cmdd(chip); 1765 cond_delay(nfc_op.cle_ale_delay_ns); 1766 return ret; 1767 } 1768 1769 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1770 "RDDREQ/WRDREQ while draining raw data"); 1771 if (ret) 1772 return ret; 1773 1774 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1775 ret = marvell_nfc_wait_cmdd(chip); 1776 if (ret) 1777 return ret; 1778 1779 /* 1780 * NDCR ND_RUN bit should be cleared automatically at the end of each 1781 * operation but experience shows that the behavior is buggy when it 1782 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1783 */ 1784 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1785 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1786 1787 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1788 nfc->regs + NDCR); 1789 } 1790 1791 return 0; 1792 } 1793 1794 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1795 const struct nand_subop *subop) 1796 { 1797 struct marvell_nfc_op nfc_op; 1798 int ret; 1799 1800 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1801 1802 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1803 cond_delay(nfc_op.rdy_delay_ns); 1804 1805 return ret; 1806 } 1807 1808 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1809 const struct nand_subop *subop) 1810 { 1811 struct marvell_nfc_op nfc_op; 1812 int ret; 1813 1814 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1815 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1816 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1817 1818 ret = marvell_nfc_prepare_cmd(chip); 1819 if (ret) 1820 return ret; 1821 1822 marvell_nfc_send_cmd(chip, &nfc_op); 1823 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1824 "RDDREQ while reading ID"); 1825 if (ret) 1826 return ret; 1827 1828 cond_delay(nfc_op.cle_ale_delay_ns); 1829 1830 if (nfc_op.rdy_timeout_ms) { 1831 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1832 if (ret) 1833 return ret; 1834 } 1835 1836 cond_delay(nfc_op.rdy_delay_ns); 1837 1838 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1839 ret = marvell_nfc_wait_cmdd(chip); 1840 if (ret) 1841 return ret; 1842 1843 cond_delay(nfc_op.data_delay_ns); 1844 1845 return 0; 1846 } 1847 1848 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 1849 const struct nand_subop *subop) 1850 { 1851 struct marvell_nfc_op nfc_op; 1852 int ret; 1853 1854 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1855 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1856 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 1857 1858 ret = marvell_nfc_prepare_cmd(chip); 1859 if (ret) 1860 return ret; 1861 1862 marvell_nfc_send_cmd(chip, &nfc_op); 1863 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1864 "RDDREQ while reading status"); 1865 if (ret) 1866 return ret; 1867 1868 cond_delay(nfc_op.cle_ale_delay_ns); 1869 1870 if (nfc_op.rdy_timeout_ms) { 1871 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1872 if (ret) 1873 return ret; 1874 } 1875 1876 cond_delay(nfc_op.rdy_delay_ns); 1877 1878 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1879 ret = marvell_nfc_wait_cmdd(chip); 1880 if (ret) 1881 return ret; 1882 1883 cond_delay(nfc_op.data_delay_ns); 1884 1885 return 0; 1886 } 1887 1888 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 1889 const struct nand_subop *subop) 1890 { 1891 struct marvell_nfc_op nfc_op; 1892 int ret; 1893 1894 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1895 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 1896 1897 ret = marvell_nfc_prepare_cmd(chip); 1898 if (ret) 1899 return ret; 1900 1901 marvell_nfc_send_cmd(chip, &nfc_op); 1902 ret = marvell_nfc_wait_cmdd(chip); 1903 if (ret) 1904 return ret; 1905 1906 cond_delay(nfc_op.cle_ale_delay_ns); 1907 1908 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1909 if (ret) 1910 return ret; 1911 1912 cond_delay(nfc_op.rdy_delay_ns); 1913 1914 return 0; 1915 } 1916 1917 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 1918 const struct nand_subop *subop) 1919 { 1920 struct marvell_nfc_op nfc_op; 1921 int ret; 1922 1923 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1924 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 1925 1926 ret = marvell_nfc_prepare_cmd(chip); 1927 if (ret) 1928 return ret; 1929 1930 marvell_nfc_send_cmd(chip, &nfc_op); 1931 ret = marvell_nfc_wait_cmdd(chip); 1932 if (ret) 1933 return ret; 1934 1935 cond_delay(nfc_op.cle_ale_delay_ns); 1936 1937 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1938 if (ret) 1939 return ret; 1940 1941 cond_delay(nfc_op.rdy_delay_ns); 1942 1943 return 0; 1944 } 1945 1946 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 1947 /* Monolithic reads/writes */ 1948 NAND_OP_PARSER_PATTERN( 1949 marvell_nfc_monolithic_access_exec, 1950 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1951 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 1952 NAND_OP_PARSER_PAT_CMD_ELEM(true), 1953 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 1954 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 1955 NAND_OP_PARSER_PATTERN( 1956 marvell_nfc_monolithic_access_exec, 1957 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1958 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 1959 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 1960 NAND_OP_PARSER_PAT_CMD_ELEM(true), 1961 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 1962 /* Naked commands */ 1963 NAND_OP_PARSER_PATTERN( 1964 marvell_nfc_naked_access_exec, 1965 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 1966 NAND_OP_PARSER_PATTERN( 1967 marvell_nfc_naked_access_exec, 1968 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 1969 NAND_OP_PARSER_PATTERN( 1970 marvell_nfc_naked_access_exec, 1971 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 1972 NAND_OP_PARSER_PATTERN( 1973 marvell_nfc_naked_access_exec, 1974 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 1975 NAND_OP_PARSER_PATTERN( 1976 marvell_nfc_naked_waitrdy_exec, 1977 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 1978 ); 1979 1980 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 1981 /* Naked commands not supported, use a function for each pattern */ 1982 NAND_OP_PARSER_PATTERN( 1983 marvell_nfc_read_id_type_exec, 1984 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1985 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 1986 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 1987 NAND_OP_PARSER_PATTERN( 1988 marvell_nfc_erase_cmd_type_exec, 1989 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1990 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 1991 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1992 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 1993 NAND_OP_PARSER_PATTERN( 1994 marvell_nfc_read_status_exec, 1995 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1996 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 1997 NAND_OP_PARSER_PATTERN( 1998 marvell_nfc_reset_cmd_type_exec, 1999 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2000 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2001 NAND_OP_PARSER_PATTERN( 2002 marvell_nfc_naked_waitrdy_exec, 2003 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2004 ); 2005 2006 static int marvell_nfc_exec_op(struct nand_chip *chip, 2007 const struct nand_operation *op, 2008 bool check_only) 2009 { 2010 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2011 2012 if (nfc->caps->is_nfcv2) 2013 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2014 op, check_only); 2015 else 2016 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2017 op, check_only); 2018 } 2019 2020 /* 2021 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2022 * usable. 2023 */ 2024 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2025 struct mtd_oob_region *oobregion) 2026 { 2027 struct nand_chip *chip = mtd_to_nand(mtd); 2028 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2029 2030 if (section) 2031 return -ERANGE; 2032 2033 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2034 lt->last_ecc_bytes; 2035 oobregion->offset = mtd->oobsize - oobregion->length; 2036 2037 return 0; 2038 } 2039 2040 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2041 struct mtd_oob_region *oobregion) 2042 { 2043 struct nand_chip *chip = mtd_to_nand(mtd); 2044 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2045 2046 if (section) 2047 return -ERANGE; 2048 2049 /* 2050 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2051 * 4KB page / 4bit BCH combination. 2052 */ 2053 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2054 oobregion->offset = 6; 2055 else 2056 oobregion->offset = 2; 2057 2058 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2059 lt->last_spare_bytes - oobregion->offset; 2060 2061 return 0; 2062 } 2063 2064 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2065 .ecc = marvell_nand_ooblayout_ecc, 2066 .free = marvell_nand_ooblayout_free, 2067 }; 2068 2069 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, 2070 struct nand_ecc_ctrl *ecc) 2071 { 2072 struct nand_chip *chip = mtd_to_nand(mtd); 2073 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2074 const struct marvell_hw_ecc_layout *l; 2075 int i; 2076 2077 if (!nfc->caps->is_nfcv2 && 2078 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2079 dev_err(nfc->dev, 2080 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2081 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2082 return -ENOTSUPP; 2083 } 2084 2085 to_marvell_nand(chip)->layout = NULL; 2086 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2087 l = &marvell_nfc_layouts[i]; 2088 if (mtd->writesize == l->writesize && 2089 ecc->size == l->chunk && ecc->strength == l->strength) { 2090 to_marvell_nand(chip)->layout = l; 2091 break; 2092 } 2093 } 2094 2095 if (!to_marvell_nand(chip)->layout || 2096 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2097 dev_err(nfc->dev, 2098 "ECC strength %d at page size %d is not supported\n", 2099 ecc->strength, mtd->writesize); 2100 return -ENOTSUPP; 2101 } 2102 2103 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2104 ecc->steps = l->nchunks; 2105 ecc->size = l->data_bytes; 2106 2107 if (ecc->strength == 1) { 2108 chip->ecc.algo = NAND_ECC_HAMMING; 2109 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2110 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2111 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2112 ecc->read_oob = ecc->read_oob_raw; 2113 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2114 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2115 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2116 ecc->write_oob = ecc->write_oob_raw; 2117 } else { 2118 chip->ecc.algo = NAND_ECC_BCH; 2119 ecc->strength = 16; 2120 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2121 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2122 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2123 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2124 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2125 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2126 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2127 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2128 } 2129 2130 return 0; 2131 } 2132 2133 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2134 struct nand_ecc_ctrl *ecc) 2135 { 2136 struct nand_chip *chip = mtd_to_nand(mtd); 2137 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2138 int ret; 2139 2140 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) { 2141 if (chip->ecc_step_ds && chip->ecc_strength_ds) { 2142 ecc->size = chip->ecc_step_ds; 2143 ecc->strength = chip->ecc_strength_ds; 2144 } else { 2145 dev_info(nfc->dev, 2146 "No minimum ECC strength, using 1b/512B\n"); 2147 ecc->size = 512; 2148 ecc->strength = 1; 2149 } 2150 } 2151 2152 switch (ecc->mode) { 2153 case NAND_ECC_HW: 2154 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc); 2155 if (ret) 2156 return ret; 2157 break; 2158 case NAND_ECC_NONE: 2159 case NAND_ECC_SOFT: 2160 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2161 mtd->writesize != SZ_2K) { 2162 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2163 mtd->writesize); 2164 return -EINVAL; 2165 } 2166 break; 2167 default: 2168 return -EINVAL; 2169 } 2170 2171 return 0; 2172 } 2173 2174 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2175 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2176 2177 static struct nand_bbt_descr bbt_main_descr = { 2178 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2179 NAND_BBT_2BIT | NAND_BBT_VERSION, 2180 .offs = 8, 2181 .len = 6, 2182 .veroffs = 14, 2183 .maxblocks = 8, /* Last 8 blocks in each chip */ 2184 .pattern = bbt_pattern 2185 }; 2186 2187 static struct nand_bbt_descr bbt_mirror_descr = { 2188 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2189 NAND_BBT_2BIT | NAND_BBT_VERSION, 2190 .offs = 8, 2191 .len = 6, 2192 .veroffs = 14, 2193 .maxblocks = 8, /* Last 8 blocks in each chip */ 2194 .pattern = bbt_mirror_pattern 2195 }; 2196 2197 static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr, 2198 const struct nand_data_interface 2199 *conf) 2200 { 2201 struct nand_chip *chip = mtd_to_nand(mtd); 2202 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2203 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2204 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2205 const struct nand_sdr_timings *sdr; 2206 struct marvell_nfc_timings nfc_tmg; 2207 int read_delay; 2208 2209 sdr = nand_get_sdr_timings(conf); 2210 if (IS_ERR(sdr)) 2211 return PTR_ERR(sdr); 2212 2213 /* 2214 * SDR timings are given in pico-seconds while NFC timings must be 2215 * expressed in NAND controller clock cycles, which is half of the 2216 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2217 * This is not written anywhere in the datasheet but was observed 2218 * with an oscilloscope. 2219 * 2220 * NFC datasheet gives equations from which thoses calculations 2221 * are derived, they tend to be slightly more restrictives than the 2222 * given core timings and may improve the overall speed. 2223 */ 2224 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2225 nfc_tmg.tRH = nfc_tmg.tRP; 2226 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2227 nfc_tmg.tWH = nfc_tmg.tWP; 2228 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2229 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2230 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2231 /* 2232 * Read delay is the time of propagation from SoC pins to NFC internal 2233 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2234 * EDO mode, an additional delay of tRH must be taken into account so 2235 * the data is sampled on the falling edge instead of the rising edge. 2236 */ 2237 read_delay = sdr->tRC_min >= 30000 ? 2238 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2239 2240 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2241 /* 2242 * tWHR and tRHW are supposed to be read to write delays (and vice 2243 * versa) but in some cases, ie. when doing a change column, they must 2244 * be greater than that to be sure tCCS delay is respected. 2245 */ 2246 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2247 period_ns) - 2, 2248 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2249 period_ns); 2250 2251 /* 2252 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2253 * NFCv1: No WAIT_MODE, tR must be maximal. 2254 */ 2255 if (nfc->caps->is_nfcv2) { 2256 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2257 } else { 2258 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2259 period_ns); 2260 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2261 nfc_tmg.tR = nfc_tmg.tCH - 3; 2262 else 2263 nfc_tmg.tR = 0; 2264 } 2265 2266 if (chipnr < 0) 2267 return 0; 2268 2269 marvell_nand->ndtr0 = 2270 NDTR0_TRP(nfc_tmg.tRP) | 2271 NDTR0_TRH(nfc_tmg.tRH) | 2272 NDTR0_ETRP(nfc_tmg.tRP) | 2273 NDTR0_TWP(nfc_tmg.tWP) | 2274 NDTR0_TWH(nfc_tmg.tWH) | 2275 NDTR0_TCS(nfc_tmg.tCS) | 2276 NDTR0_TCH(nfc_tmg.tCH); 2277 2278 marvell_nand->ndtr1 = 2279 NDTR1_TAR(nfc_tmg.tAR) | 2280 NDTR1_TWHR(nfc_tmg.tWHR) | 2281 NDTR1_TR(nfc_tmg.tR); 2282 2283 if (nfc->caps->is_nfcv2) { 2284 marvell_nand->ndtr0 |= 2285 NDTR0_RD_CNT_DEL(read_delay) | 2286 NDTR0_SELCNTR | 2287 NDTR0_TADL(nfc_tmg.tADL); 2288 2289 marvell_nand->ndtr1 |= 2290 NDTR1_TRHW(nfc_tmg.tRHW) | 2291 NDTR1_WAIT_MODE; 2292 } 2293 2294 return 0; 2295 } 2296 2297 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2298 struct device_node *np) 2299 { 2300 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2301 struct marvell_nand_chip *marvell_nand; 2302 struct mtd_info *mtd; 2303 struct nand_chip *chip; 2304 int nsels, ret, i; 2305 u32 cs, rb; 2306 2307 /* 2308 * The legacy "num-cs" property indicates the number of CS on the only 2309 * chip connected to the controller (legacy bindings does not support 2310 * more than one chip). The CS and RB pins are always the #0. 2311 * 2312 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2313 * properties must be filled. For each chip, expressed as a subnode, 2314 * "reg" points to the CS lines and "nand-rb" to the RB line. 2315 */ 2316 if (pdata || nfc->caps->legacy_of_bindings) { 2317 nsels = 1; 2318 } else { 2319 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2320 if (nsels <= 0) { 2321 dev_err(dev, "missing/invalid reg property\n"); 2322 return -EINVAL; 2323 } 2324 } 2325 2326 /* Alloc the nand chip structure */ 2327 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) + 2328 (nsels * 2329 sizeof(struct marvell_nand_chip_sel)), 2330 GFP_KERNEL); 2331 if (!marvell_nand) { 2332 dev_err(dev, "could not allocate chip structure\n"); 2333 return -ENOMEM; 2334 } 2335 2336 marvell_nand->nsels = nsels; 2337 marvell_nand->selected_die = -1; 2338 2339 for (i = 0; i < nsels; i++) { 2340 if (pdata || nfc->caps->legacy_of_bindings) { 2341 /* 2342 * Legacy bindings use the CS lines in natural 2343 * order (0, 1, ...) 2344 */ 2345 cs = i; 2346 } else { 2347 /* Retrieve CS id */ 2348 ret = of_property_read_u32_index(np, "reg", i, &cs); 2349 if (ret) { 2350 dev_err(dev, "could not retrieve reg property: %d\n", 2351 ret); 2352 return ret; 2353 } 2354 } 2355 2356 if (cs >= nfc->caps->max_cs_nb) { 2357 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2358 cs, nfc->caps->max_cs_nb); 2359 return -EINVAL; 2360 } 2361 2362 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2363 dev_err(dev, "CS %d already assigned\n", cs); 2364 return -EINVAL; 2365 } 2366 2367 /* 2368 * The cs variable represents the chip select id, which must be 2369 * converted in bit fields for NDCB0 and NDCB2 to select the 2370 * right chip. Unfortunately, due to a lack of information on 2371 * the subject and incoherent documentation, the user should not 2372 * use CS1 and CS3 at all as asserting them is not supported in 2373 * a reliable way (due to multiplexing inside ADDR5 field). 2374 */ 2375 marvell_nand->sels[i].cs = cs; 2376 switch (cs) { 2377 case 0: 2378 case 2: 2379 marvell_nand->sels[i].ndcb0_csel = 0; 2380 break; 2381 case 1: 2382 case 3: 2383 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2384 break; 2385 default: 2386 return -EINVAL; 2387 } 2388 2389 /* Retrieve RB id */ 2390 if (pdata || nfc->caps->legacy_of_bindings) { 2391 /* Legacy bindings always use RB #0 */ 2392 rb = 0; 2393 } else { 2394 ret = of_property_read_u32_index(np, "nand-rb", i, 2395 &rb); 2396 if (ret) { 2397 dev_err(dev, 2398 "could not retrieve RB property: %d\n", 2399 ret); 2400 return ret; 2401 } 2402 } 2403 2404 if (rb >= nfc->caps->max_rb_nb) { 2405 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2406 rb, nfc->caps->max_rb_nb); 2407 return -EINVAL; 2408 } 2409 2410 marvell_nand->sels[i].rb = rb; 2411 } 2412 2413 chip = &marvell_nand->chip; 2414 chip->controller = &nfc->controller; 2415 nand_set_flash_node(chip, np); 2416 2417 chip->exec_op = marvell_nfc_exec_op; 2418 chip->select_chip = marvell_nfc_select_chip; 2419 if (!of_property_read_bool(np, "marvell,nand-keep-config")) 2420 chip->setup_data_interface = marvell_nfc_setup_data_interface; 2421 2422 mtd = nand_to_mtd(chip); 2423 mtd->dev.parent = dev; 2424 2425 /* 2426 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2427 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2428 */ 2429 chip->ecc.mode = NAND_ECC_HW; 2430 2431 /* 2432 * Save a reference value for timing registers before 2433 * ->setup_data_interface() is called. 2434 */ 2435 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2436 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2437 2438 chip->options |= NAND_BUSWIDTH_AUTO; 2439 ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL); 2440 if (ret) { 2441 dev_err(dev, "could not identify the nand chip\n"); 2442 return ret; 2443 } 2444 2445 if (pdata && pdata->flash_bbt) 2446 chip->bbt_options |= NAND_BBT_USE_FLASH; 2447 2448 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2449 /* 2450 * We'll use a bad block table stored in-flash and don't 2451 * allow writing the bad block marker to the flash. 2452 */ 2453 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2454 chip->bbt_td = &bbt_main_descr; 2455 chip->bbt_md = &bbt_mirror_descr; 2456 } 2457 2458 /* Save the chip-specific fields of NDCR */ 2459 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2460 if (chip->options & NAND_BUSWIDTH_16) 2461 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2462 2463 /* 2464 * On small page NANDs, only one cycle is needed to pass the 2465 * column address. 2466 */ 2467 if (mtd->writesize <= 512) { 2468 marvell_nand->addr_cyc = 1; 2469 } else { 2470 marvell_nand->addr_cyc = 2; 2471 marvell_nand->ndcr |= NDCR_RA_START; 2472 } 2473 2474 /* 2475 * Now add the number of cycles needed to pass the row 2476 * address. 2477 * 2478 * Addressing a chip using CS 2 or 3 should also need the third row 2479 * cycle but due to inconsistance in the documentation and lack of 2480 * hardware to test this situation, this case is not supported. 2481 */ 2482 if (chip->options & NAND_ROW_ADDR_3) 2483 marvell_nand->addr_cyc += 3; 2484 else 2485 marvell_nand->addr_cyc += 2; 2486 2487 if (pdata) { 2488 chip->ecc.size = pdata->ecc_step_size; 2489 chip->ecc.strength = pdata->ecc_strength; 2490 } 2491 2492 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2493 if (ret) { 2494 dev_err(dev, "ECC init failed: %d\n", ret); 2495 return ret; 2496 } 2497 2498 if (chip->ecc.mode == NAND_ECC_HW) { 2499 /* 2500 * Subpage write not available with hardware ECC, prohibit also 2501 * subpage read as in userspace subpage access would still be 2502 * allowed and subpage write, if used, would lead to numerous 2503 * uncorrectable ECC errors. 2504 */ 2505 chip->options |= NAND_NO_SUBPAGE_WRITE; 2506 } 2507 2508 if (pdata || nfc->caps->legacy_of_bindings) { 2509 /* 2510 * We keep the MTD name unchanged to avoid breaking platforms 2511 * where the MTD cmdline parser is used and the bootloader 2512 * has not been updated to use the new naming scheme. 2513 */ 2514 mtd->name = "pxa3xx_nand-0"; 2515 } else if (!mtd->name) { 2516 /* 2517 * If the new bindings are used and the bootloader has not been 2518 * updated to pass a new mtdparts parameter on the cmdline, you 2519 * should define the following property in your NAND node, ie: 2520 * 2521 * label = "main-storage"; 2522 * 2523 * This way, mtd->name will be set by the core when 2524 * nand_set_flash_node() is called. 2525 */ 2526 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2527 "%s:nand.%d", dev_name(nfc->dev), 2528 marvell_nand->sels[0].cs); 2529 if (!mtd->name) { 2530 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2531 return -ENOMEM; 2532 } 2533 } 2534 2535 ret = nand_scan_tail(mtd); 2536 if (ret) { 2537 dev_err(dev, "nand_scan_tail failed: %d\n", ret); 2538 return ret; 2539 } 2540 2541 if (pdata) 2542 /* Legacy bindings support only one chip */ 2543 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2544 else 2545 ret = mtd_device_register(mtd, NULL, 0); 2546 if (ret) { 2547 dev_err(dev, "failed to register mtd device: %d\n", ret); 2548 nand_release(mtd); 2549 return ret; 2550 } 2551 2552 list_add_tail(&marvell_nand->node, &nfc->chips); 2553 2554 return 0; 2555 } 2556 2557 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2558 { 2559 struct device_node *np = dev->of_node; 2560 struct device_node *nand_np; 2561 int max_cs = nfc->caps->max_cs_nb; 2562 int nchips; 2563 int ret; 2564 2565 if (!np) 2566 nchips = 1; 2567 else 2568 nchips = of_get_child_count(np); 2569 2570 if (nchips > max_cs) { 2571 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2572 max_cs); 2573 return -EINVAL; 2574 } 2575 2576 /* 2577 * Legacy bindings do not use child nodes to exhibit NAND chip 2578 * properties and layout. Instead, NAND properties are mixed with the 2579 * controller ones, and partitions are defined as direct subnodes of the 2580 * NAND controller node. 2581 */ 2582 if (nfc->caps->legacy_of_bindings) { 2583 ret = marvell_nand_chip_init(dev, nfc, np); 2584 return ret; 2585 } 2586 2587 for_each_child_of_node(np, nand_np) { 2588 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2589 if (ret) { 2590 of_node_put(nand_np); 2591 return ret; 2592 } 2593 } 2594 2595 return 0; 2596 } 2597 2598 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2599 { 2600 struct marvell_nand_chip *entry, *temp; 2601 2602 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2603 nand_release(nand_to_mtd(&entry->chip)); 2604 list_del(&entry->node); 2605 } 2606 } 2607 2608 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2609 { 2610 struct platform_device *pdev = container_of(nfc->dev, 2611 struct platform_device, 2612 dev); 2613 struct dma_slave_config config = {}; 2614 struct resource *r; 2615 dma_cap_mask_t mask; 2616 struct pxad_param param; 2617 int ret; 2618 2619 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2620 dev_warn(nfc->dev, 2621 "DMA not enabled in configuration\n"); 2622 return -ENOTSUPP; 2623 } 2624 2625 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2626 if (ret) 2627 return ret; 2628 2629 r = platform_get_resource(pdev, IORESOURCE_DMA, 0); 2630 if (!r) { 2631 dev_err(nfc->dev, "No resource defined for data DMA\n"); 2632 return -ENXIO; 2633 } 2634 2635 param.drcmr = r->start; 2636 param.prio = PXAD_PRIO_LOWEST; 2637 dma_cap_zero(mask); 2638 dma_cap_set(DMA_SLAVE, mask); 2639 nfc->dma_chan = 2640 dma_request_slave_channel_compat(mask, pxad_filter_fn, 2641 ¶m, nfc->dev, 2642 "data"); 2643 if (!nfc->dma_chan) { 2644 dev_err(nfc->dev, 2645 "Unable to request data DMA channel\n"); 2646 return -ENODEV; 2647 } 2648 2649 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2650 if (!r) 2651 return -ENXIO; 2652 2653 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2654 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2655 config.src_addr = r->start + NDDB; 2656 config.dst_addr = r->start + NDDB; 2657 config.src_maxburst = 32; 2658 config.dst_maxburst = 32; 2659 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2660 if (ret < 0) { 2661 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2662 return ret; 2663 } 2664 2665 /* 2666 * DMA must act on length multiple of 32 and this length may be 2667 * bigger than the destination buffer. Use this buffer instead 2668 * for DMA transfers and then copy the desired amount of data to 2669 * the provided buffer. 2670 */ 2671 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2672 if (!nfc->dma_buf) 2673 return -ENOMEM; 2674 2675 nfc->use_dma = true; 2676 2677 return 0; 2678 } 2679 2680 static int marvell_nfc_init(struct marvell_nfc *nfc) 2681 { 2682 struct device_node *np = nfc->dev->of_node; 2683 2684 /* 2685 * Some SoCs like A7k/A8k need to enable manually the NAND 2686 * controller, gated clocks and reset bits to avoid being bootloader 2687 * dependent. This is done through the use of the System Functions 2688 * registers. 2689 */ 2690 if (nfc->caps->need_system_controller) { 2691 struct regmap *sysctrl_base = 2692 syscon_regmap_lookup_by_phandle(np, 2693 "marvell,system-controller"); 2694 u32 reg; 2695 2696 if (IS_ERR(sysctrl_base)) 2697 return PTR_ERR(sysctrl_base); 2698 2699 reg = GENCONF_SOC_DEVICE_MUX_NFC_EN | 2700 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2701 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2702 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN; 2703 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg); 2704 2705 regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, ®); 2706 reg |= GENCONF_CLK_GATING_CTRL_ND_GATE; 2707 regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg); 2708 2709 regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, ®); 2710 reg |= GENCONF_ND_CLK_CTRL_EN; 2711 regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg); 2712 } 2713 2714 /* Configure the DMA if appropriate */ 2715 if (!nfc->caps->is_nfcv2) 2716 marvell_nfc_init_dma(nfc); 2717 2718 /* 2719 * ECC operations and interruptions are only enabled when specifically 2720 * needed. ECC shall not be activated in the early stages (fails probe). 2721 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2722 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2723 * offset in the read page and this will fail the protection. 2724 */ 2725 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2726 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2727 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2728 writel_relaxed(0, nfc->regs + NDECCCTRL); 2729 2730 return 0; 2731 } 2732 2733 static int marvell_nfc_probe(struct platform_device *pdev) 2734 { 2735 struct device *dev = &pdev->dev; 2736 struct resource *r; 2737 struct marvell_nfc *nfc; 2738 int ret; 2739 int irq; 2740 2741 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2742 GFP_KERNEL); 2743 if (!nfc) 2744 return -ENOMEM; 2745 2746 nfc->dev = dev; 2747 nand_hw_control_init(&nfc->controller); 2748 INIT_LIST_HEAD(&nfc->chips); 2749 2750 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2751 nfc->regs = devm_ioremap_resource(dev, r); 2752 if (IS_ERR(nfc->regs)) 2753 return PTR_ERR(nfc->regs); 2754 2755 irq = platform_get_irq(pdev, 0); 2756 if (irq < 0) { 2757 dev_err(dev, "failed to retrieve irq\n"); 2758 return irq; 2759 } 2760 2761 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2762 2763 /* Managed the legacy case (when the first clock was not named) */ 2764 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2765 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2766 2767 if (IS_ERR(nfc->core_clk)) 2768 return PTR_ERR(nfc->core_clk); 2769 2770 ret = clk_prepare_enable(nfc->core_clk); 2771 if (ret) 2772 return ret; 2773 2774 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2775 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2776 if (!IS_ERR(nfc->reg_clk)) { 2777 ret = clk_prepare_enable(nfc->reg_clk); 2778 if (ret) 2779 goto unprepare_core_clk; 2780 } else { 2781 ret = PTR_ERR(nfc->reg_clk); 2782 goto unprepare_core_clk; 2783 } 2784 } 2785 2786 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2787 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2788 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2789 0, "marvell-nfc", nfc); 2790 if (ret) 2791 goto unprepare_reg_clk; 2792 2793 /* Get NAND controller capabilities */ 2794 if (pdev->id_entry) 2795 nfc->caps = (void *)pdev->id_entry->driver_data; 2796 else 2797 nfc->caps = of_device_get_match_data(&pdev->dev); 2798 2799 if (!nfc->caps) { 2800 dev_err(dev, "Could not retrieve NFC caps\n"); 2801 ret = -EINVAL; 2802 goto unprepare_reg_clk; 2803 } 2804 2805 /* Init the controller and then probe the chips */ 2806 ret = marvell_nfc_init(nfc); 2807 if (ret) 2808 goto unprepare_reg_clk; 2809 2810 platform_set_drvdata(pdev, nfc); 2811 2812 ret = marvell_nand_chips_init(dev, nfc); 2813 if (ret) 2814 goto unprepare_reg_clk; 2815 2816 return 0; 2817 2818 unprepare_reg_clk: 2819 clk_disable_unprepare(nfc->reg_clk); 2820 unprepare_core_clk: 2821 clk_disable_unprepare(nfc->core_clk); 2822 2823 return ret; 2824 } 2825 2826 static int marvell_nfc_remove(struct platform_device *pdev) 2827 { 2828 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 2829 2830 marvell_nand_chips_cleanup(nfc); 2831 2832 if (nfc->use_dma) { 2833 dmaengine_terminate_all(nfc->dma_chan); 2834 dma_release_channel(nfc->dma_chan); 2835 } 2836 2837 clk_disable_unprepare(nfc->reg_clk); 2838 clk_disable_unprepare(nfc->core_clk); 2839 2840 return 0; 2841 } 2842 2843 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 2844 .max_cs_nb = 4, 2845 .max_rb_nb = 2, 2846 .need_system_controller = true, 2847 .is_nfcv2 = true, 2848 }; 2849 2850 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 2851 .max_cs_nb = 4, 2852 .max_rb_nb = 2, 2853 .is_nfcv2 = true, 2854 }; 2855 2856 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 2857 .max_cs_nb = 2, 2858 .max_rb_nb = 1, 2859 .use_dma = true, 2860 }; 2861 2862 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 2863 .max_cs_nb = 4, 2864 .max_rb_nb = 2, 2865 .need_system_controller = true, 2866 .legacy_of_bindings = true, 2867 .is_nfcv2 = true, 2868 }; 2869 2870 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 2871 .max_cs_nb = 4, 2872 .max_rb_nb = 2, 2873 .legacy_of_bindings = true, 2874 .is_nfcv2 = true, 2875 }; 2876 2877 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 2878 .max_cs_nb = 2, 2879 .max_rb_nb = 1, 2880 .legacy_of_bindings = true, 2881 .use_dma = true, 2882 }; 2883 2884 static const struct platform_device_id marvell_nfc_platform_ids[] = { 2885 { 2886 .name = "pxa3xx-nand", 2887 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 2888 }, 2889 { /* sentinel */ }, 2890 }; 2891 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 2892 2893 static const struct of_device_id marvell_nfc_of_ids[] = { 2894 { 2895 .compatible = "marvell,armada-8k-nand-controller", 2896 .data = &marvell_armada_8k_nfc_caps, 2897 }, 2898 { 2899 .compatible = "marvell,armada370-nand-controller", 2900 .data = &marvell_armada370_nfc_caps, 2901 }, 2902 { 2903 .compatible = "marvell,pxa3xx-nand-controller", 2904 .data = &marvell_pxa3xx_nfc_caps, 2905 }, 2906 /* Support for old/deprecated bindings: */ 2907 { 2908 .compatible = "marvell,armada-8k-nand", 2909 .data = &marvell_armada_8k_nfc_legacy_caps, 2910 }, 2911 { 2912 .compatible = "marvell,armada370-nand", 2913 .data = &marvell_armada370_nfc_legacy_caps, 2914 }, 2915 { 2916 .compatible = "marvell,pxa3xx-nand", 2917 .data = &marvell_pxa3xx_nfc_legacy_caps, 2918 }, 2919 { /* sentinel */ }, 2920 }; 2921 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 2922 2923 static struct platform_driver marvell_nfc_driver = { 2924 .driver = { 2925 .name = "marvell-nfc", 2926 .of_match_table = marvell_nfc_of_ids, 2927 }, 2928 .id_table = marvell_nfc_platform_ids, 2929 .probe = marvell_nfc_probe, 2930 .remove = marvell_nfc_remove, 2931 }; 2932 module_platform_driver(marvell_nfc_driver); 2933 2934 MODULE_LICENSE("GPL"); 2935 MODULE_DESCRIPTION("Marvell NAND controller driver"); 2936