1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Marvell NAND flash controller driver
4  *
5  * Copyright (C) 2017 Marvell
6  * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7  *
8  */
9 
10 #include <linux/module.h>
11 #include <linux/clk.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/of_platform.h>
14 #include <linux/iopoll.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/regmap.h>
19 #include <asm/unaligned.h>
20 
21 #include <linux/dmaengine.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dma/pxa-dma.h>
24 #include <linux/platform_data/mtd-nand-pxa3xx.h>
25 
26 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
27 #define FIFO_DEPTH		8
28 #define FIFO_REP(x)		(x / sizeof(u32))
29 #define BCH_SEQ_READS		(32 / FIFO_DEPTH)
30 /* NFC does not support transfers of larger chunks at a time */
31 #define MAX_CHUNK_SIZE		2112
32 /* NFCv1 cannot read more that 7 bytes of ID */
33 #define NFCV1_READID_LEN	7
34 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
35 #define POLL_PERIOD		0
36 #define POLL_TIMEOUT		100000
37 /* Interrupt maximum wait period in ms */
38 #define IRQ_TIMEOUT		1000
39 /* Latency in clock cycles between SoC pins and NFC logic */
40 #define MIN_RD_DEL_CNT		3
41 /* Maximum number of contiguous address cycles */
42 #define MAX_ADDRESS_CYC_NFCV1	5
43 #define MAX_ADDRESS_CYC_NFCV2	7
44 /* System control registers/bits to enable the NAND controller on some SoCs */
45 #define GENCONF_SOC_DEVICE_MUX	0x208
46 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
47 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
48 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
49 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
50 #define GENCONF_CLK_GATING_CTRL	0x220
51 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
52 #define GENCONF_ND_CLK_CTRL	0x700
53 #define GENCONF_ND_CLK_CTRL_EN	BIT(0)
54 
55 /* NAND controller data flash control register */
56 #define NDCR			0x00
57 #define NDCR_ALL_INT		GENMASK(11, 0)
58 #define NDCR_CS1_CMDDM		BIT(7)
59 #define NDCR_CS0_CMDDM		BIT(8)
60 #define NDCR_RDYM		BIT(11)
61 #define NDCR_ND_ARB_EN		BIT(12)
62 #define NDCR_RA_START		BIT(15)
63 #define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16)
64 #define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0)
65 #define NDCR_DWIDTH_M		BIT(26)
66 #define NDCR_DWIDTH_C		BIT(27)
67 #define NDCR_ND_RUN		BIT(28)
68 #define NDCR_DMA_EN		BIT(29)
69 #define NDCR_ECC_EN		BIT(30)
70 #define NDCR_SPARE_EN		BIT(31)
71 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
72 				    NDCR_DWIDTH_M | NDCR_DWIDTH_C))
73 
74 /* NAND interface timing parameter 0 register */
75 #define NDTR0			0x04
76 #define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0)
77 #define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3)
78 #define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3)
79 #define NDTR0_SEL_NRE_EDGE	BIT(7)
80 #define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8)
81 #define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11)
82 #define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16)
83 #define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19)
84 #define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22)
85 #define NDTR0_SELCNTR		BIT(26)
86 #define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27)
87 
88 /* NAND interface timing parameter 1 register */
89 #define NDTR1			0x0C
90 #define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0)
91 #define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4)
92 #define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8)
93 #define NDTR1_PRESCALE		BIT(14)
94 #define NDTR1_WAIT_MODE		BIT(15)
95 #define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16)
96 
97 /* NAND controller status register */
98 #define NDSR			0x14
99 #define NDSR_WRCMDREQ		BIT(0)
100 #define NDSR_RDDREQ		BIT(1)
101 #define NDSR_WRDREQ		BIT(2)
102 #define NDSR_CORERR		BIT(3)
103 #define NDSR_UNCERR		BIT(4)
104 #define NDSR_CMDD(cs)		BIT(8 - cs)
105 #define NDSR_RDY(rb)		BIT(11 + rb)
106 #define NDSR_ERRCNT(x)		((x >> 16) & 0x1F)
107 
108 /* NAND ECC control register */
109 #define NDECCCTRL		0x28
110 #define NDECCCTRL_BCH_EN	BIT(0)
111 
112 /* NAND controller data buffer register */
113 #define NDDB			0x40
114 
115 /* NAND controller command buffer 0 register */
116 #define NDCB0			0x48
117 #define NDCB0_CMD1(x)		((x & 0xFF) << 0)
118 #define NDCB0_CMD2(x)		((x & 0xFF) << 8)
119 #define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16)
120 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
121 #define NDCB0_DBC		BIT(19)
122 #define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21)
123 #define NDCB0_CSEL		BIT(24)
124 #define NDCB0_RDY_BYP		BIT(27)
125 #define NDCB0_LEN_OVRD		BIT(28)
126 #define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29)
127 
128 /* NAND controller command buffer 1 register */
129 #define NDCB1			0x4C
130 #define NDCB1_COLS(x)		((x & 0xFFFF) << 0)
131 #define NDCB1_ADDRS_PAGE(x)	(x << 16)
132 
133 /* NAND controller command buffer 2 register */
134 #define NDCB2			0x50
135 #define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0)
136 #define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0)
137 
138 /* NAND controller command buffer 3 register */
139 #define NDCB3			0x54
140 #define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16)
141 #define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24)
142 
143 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
144 #define TYPE_READ		0
145 #define TYPE_WRITE		1
146 #define TYPE_ERASE		2
147 #define TYPE_READ_ID		3
148 #define TYPE_STATUS		4
149 #define TYPE_RESET		5
150 #define TYPE_NAKED_CMD		6
151 #define TYPE_NAKED_ADDR		7
152 #define TYPE_MASK		7
153 #define XTYPE_MONOLITHIC_RW	0
154 #define XTYPE_LAST_NAKED_RW	1
155 #define XTYPE_FINAL_COMMAND	3
156 #define XTYPE_READ		4
157 #define XTYPE_WRITE_DISPATCH	4
158 #define XTYPE_NAKED_RW		5
159 #define XTYPE_COMMAND_DISPATCH	6
160 #define XTYPE_MASK		7
161 
162 /**
163  * Marvell ECC engine works differently than the others, in order to limit the
164  * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
165  * per subpage, and depending on a the desired strength needed by the NAND chip,
166  * a particular layout mixing data/spare/ecc is defined, with a possible last
167  * chunk smaller that the others.
168  *
169  * @writesize:		Full page size on which the layout applies
170  * @chunk:		Desired ECC chunk size on which the layout applies
171  * @strength:		Desired ECC strength (per chunk size bytes) on which the
172  *			layout applies
173  * @nchunks:		Total number of chunks
174  * @full_chunk_cnt:	Number of full-sized chunks, which is the number of
175  *			repetitions of the pattern:
176  *			(data_bytes + spare_bytes + ecc_bytes).
177  * @data_bytes:		Number of data bytes per chunk
178  * @spare_bytes:	Number of spare bytes per chunk
179  * @ecc_bytes:		Number of ecc bytes per chunk
180  * @last_data_bytes:	Number of data bytes in the last chunk
181  * @last_spare_bytes:	Number of spare bytes in the last chunk
182  * @last_ecc_bytes:	Number of ecc bytes in the last chunk
183  */
184 struct marvell_hw_ecc_layout {
185 	/* Constraints */
186 	int writesize;
187 	int chunk;
188 	int strength;
189 	/* Corresponding layout */
190 	int nchunks;
191 	int full_chunk_cnt;
192 	int data_bytes;
193 	int spare_bytes;
194 	int ecc_bytes;
195 	int last_data_bytes;
196 	int last_spare_bytes;
197 	int last_ecc_bytes;
198 };
199 
200 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\
201 	{								\
202 		.writesize = ws,					\
203 		.chunk = dc,						\
204 		.strength = ds,						\
205 		.nchunks = nc,						\
206 		.full_chunk_cnt = fcc,					\
207 		.data_bytes = db,					\
208 		.spare_bytes = sb,					\
209 		.ecc_bytes = eb,					\
210 		.last_data_bytes = ldb,					\
211 		.last_spare_bytes = lsb,				\
212 		.last_ecc_bytes = leb,					\
213 	}
214 
215 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
216 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
217 	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
218 	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
219 	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
220 	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
221 	MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
222 };
223 
224 /**
225  * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
226  * is made by a field in NDCB0 register, and in another field in NDCB2 register.
227  * The datasheet describes the logic with an error: ADDR5 field is once
228  * declared at the beginning of NDCB2, and another time at its end. Because the
229  * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
230  * to use the last bit of this field instead of the first ones.
231  *
232  * @cs:			Wanted CE lane.
233  * @ndcb0_csel:		Value of the NDCB0 register with or without the flag
234  *			selecting the wanted CE lane. This is set once when
235  *			the Device Tree is probed.
236  * @rb:			Ready/Busy pin for the flash chip
237  */
238 struct marvell_nand_chip_sel {
239 	unsigned int cs;
240 	u32 ndcb0_csel;
241 	unsigned int rb;
242 };
243 
244 /**
245  * NAND chip structure: stores NAND chip device related information
246  *
247  * @chip:		Base NAND chip structure
248  * @node:		Used to store NAND chips into a list
249  * @layout		NAND layout when using hardware ECC
250  * @ndcr:		Controller register value for this NAND chip
251  * @ndtr0:		Timing registers 0 value for this NAND chip
252  * @ndtr1:		Timing registers 1 value for this NAND chip
253  * @selected_die:	Current active CS
254  * @nsels:		Number of CS lines required by the NAND chip
255  * @sels:		Array of CS lines descriptions
256  */
257 struct marvell_nand_chip {
258 	struct nand_chip chip;
259 	struct list_head node;
260 	const struct marvell_hw_ecc_layout *layout;
261 	u32 ndcr;
262 	u32 ndtr0;
263 	u32 ndtr1;
264 	int addr_cyc;
265 	int selected_die;
266 	unsigned int nsels;
267 	struct marvell_nand_chip_sel sels[0];
268 };
269 
270 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
271 {
272 	return container_of(chip, struct marvell_nand_chip, chip);
273 }
274 
275 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
276 							*nand)
277 {
278 	return &nand->sels[nand->selected_die];
279 }
280 
281 /**
282  * NAND controller capabilities for distinction between compatible strings
283  *
284  * @max_cs_nb:		Number of Chip Select lines available
285  * @max_rb_nb:		Number of Ready/Busy lines available
286  * @need_system_controller: Indicates if the SoC needs to have access to the
287  *                      system controller (ie. to enable the NAND controller)
288  * @legacy_of_bindings:	Indicates if DT parsing must be done using the old
289  *			fashion way
290  * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie.
291  *			BCH error detection and correction algorithm,
292  *			NDCB3 register has been added
293  * @use_dma:		Use dma for data transfers
294  */
295 struct marvell_nfc_caps {
296 	unsigned int max_cs_nb;
297 	unsigned int max_rb_nb;
298 	bool need_system_controller;
299 	bool legacy_of_bindings;
300 	bool is_nfcv2;
301 	bool use_dma;
302 };
303 
304 /**
305  * NAND controller structure: stores Marvell NAND controller information
306  *
307  * @controller:		Base controller structure
308  * @dev:		Parent device (used to print error messages)
309  * @regs:		NAND controller registers
310  * @core_clk:		Core clock
311  * @reg_clk:		Regiters clock
312  * @complete:		Completion object to wait for NAND controller events
313  * @assigned_cs:	Bitmask describing already assigned CS lines
314  * @chips:		List containing all the NAND chips attached to
315  *			this NAND controller
316  * @caps:		NAND controller capabilities for each compatible string
317  * @dma_chan:		DMA channel (NFCv1 only)
318  * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only)
319  */
320 struct marvell_nfc {
321 	struct nand_hw_control controller;
322 	struct device *dev;
323 	void __iomem *regs;
324 	struct clk *core_clk;
325 	struct clk *reg_clk;
326 	struct completion complete;
327 	unsigned long assigned_cs;
328 	struct list_head chips;
329 	struct nand_chip *selected_chip;
330 	const struct marvell_nfc_caps *caps;
331 
332 	/* DMA (NFCv1 only) */
333 	bool use_dma;
334 	struct dma_chan *dma_chan;
335 	u8 *dma_buf;
336 };
337 
338 static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl)
339 {
340 	return container_of(ctrl, struct marvell_nfc, controller);
341 }
342 
343 /**
344  * NAND controller timings expressed in NAND Controller clock cycles
345  *
346  * @tRP:		ND_nRE pulse width
347  * @tRH:		ND_nRE high duration
348  * @tWP:		ND_nWE pulse time
349  * @tWH:		ND_nWE high duration
350  * @tCS:		Enable signal setup time
351  * @tCH:		Enable signal hold time
352  * @tADL:		Address to write data delay
353  * @tAR:		ND_ALE low to ND_nRE low delay
354  * @tWHR:		ND_nWE high to ND_nRE low for status read
355  * @tRHW:		ND_nRE high duration, read to write delay
356  * @tR:			ND_nWE high to ND_nRE low for read
357  */
358 struct marvell_nfc_timings {
359 	/* NDTR0 fields */
360 	unsigned int tRP;
361 	unsigned int tRH;
362 	unsigned int tWP;
363 	unsigned int tWH;
364 	unsigned int tCS;
365 	unsigned int tCH;
366 	unsigned int tADL;
367 	/* NDTR1 fields */
368 	unsigned int tAR;
369 	unsigned int tWHR;
370 	unsigned int tRHW;
371 	unsigned int tR;
372 };
373 
374 /**
375  * Derives a duration in numbers of clock cycles.
376  *
377  * @ps: Duration in pico-seconds
378  * @period_ns:  Clock period in nano-seconds
379  *
380  * Convert the duration in nano-seconds, then divide by the period and
381  * return the number of clock periods.
382  */
383 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
384 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
385 						     period_ns))
386 
387 /**
388  * NAND driver structure filled during the parsing of the ->exec_op() subop
389  * subset of instructions.
390  *
391  * @ndcb:		Array of values written to NDCBx registers
392  * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle
393  * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin
394  * @rdy_delay_ns:	Optional delay after waiting for the RB pin
395  * @data_delay_ns:	Optional delay after the data xfer
396  * @data_instr_idx:	Index of the data instruction in the subop
397  * @data_instr:		Pointer to the data instruction in the subop
398  */
399 struct marvell_nfc_op {
400 	u32 ndcb[4];
401 	unsigned int cle_ale_delay_ns;
402 	unsigned int rdy_timeout_ms;
403 	unsigned int rdy_delay_ns;
404 	unsigned int data_delay_ns;
405 	unsigned int data_instr_idx;
406 	const struct nand_op_instr *data_instr;
407 };
408 
409 /*
410  * Internal helper to conditionnally apply a delay (from the above structure,
411  * most of the time).
412  */
413 static void cond_delay(unsigned int ns)
414 {
415 	if (!ns)
416 		return;
417 
418 	if (ns < 10000)
419 		ndelay(ns);
420 	else
421 		udelay(DIV_ROUND_UP(ns, 1000));
422 }
423 
424 /*
425  * The controller has many flags that could generate interrupts, most of them
426  * are disabled and polling is used. For the very slow signals, using interrupts
427  * may relax the CPU charge.
428  */
429 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
430 {
431 	u32 reg;
432 
433 	/* Writing 1 disables the interrupt */
434 	reg = readl_relaxed(nfc->regs + NDCR);
435 	writel_relaxed(reg | int_mask, nfc->regs + NDCR);
436 }
437 
438 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
439 {
440 	u32 reg;
441 
442 	/* Writing 0 enables the interrupt */
443 	reg = readl_relaxed(nfc->regs + NDCR);
444 	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
445 }
446 
447 static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
448 {
449 	writel_relaxed(int_mask, nfc->regs + NDSR);
450 }
451 
452 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
453 					  bool force_8bit)
454 {
455 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
456 	u32 ndcr;
457 
458 	/*
459 	 * Callers of this function do not verify if the NAND is using a 16-bit
460 	 * an 8-bit bus for normal operations, so we need to take care of that
461 	 * here by leaving the configuration unchanged if the NAND does not have
462 	 * the NAND_BUSWIDTH_16 flag set.
463 	 */
464 	if (!(chip->options & NAND_BUSWIDTH_16))
465 		return;
466 
467 	ndcr = readl_relaxed(nfc->regs + NDCR);
468 
469 	if (force_8bit)
470 		ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
471 	else
472 		ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
473 
474 	writel_relaxed(ndcr, nfc->regs + NDCR);
475 }
476 
477 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
478 {
479 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
480 	u32 val;
481 	int ret;
482 
483 	/*
484 	 * The command is being processed, wait for the ND_RUN bit to be
485 	 * cleared by the NFC. If not, we must clear it by hand.
486 	 */
487 	ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
488 					 (val & NDCR_ND_RUN) == 0,
489 					 POLL_PERIOD, POLL_TIMEOUT);
490 	if (ret) {
491 		dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
492 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
493 			       nfc->regs + NDCR);
494 		return ret;
495 	}
496 
497 	return 0;
498 }
499 
500 /*
501  * Any time a command has to be sent to the controller, the following sequence
502  * has to be followed:
503  * - call marvell_nfc_prepare_cmd()
504  *      -> activate the ND_RUN bit that will kind of 'start a job'
505  *      -> wait the signal indicating the NFC is waiting for a command
506  * - send the command (cmd and address cycles)
507  * - enventually send or receive the data
508  * - call marvell_nfc_end_cmd() with the corresponding flag
509  *      -> wait the flag to be triggered or cancel the job with a timeout
510  *
511  * The following helpers are here to factorize the code a bit so that
512  * specialized functions responsible for executing the actual NAND
513  * operations do not have to replicate the same code blocks.
514  */
515 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
516 {
517 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
518 	u32 ndcr, val;
519 	int ret;
520 
521 	/* Poll ND_RUN and clear NDSR before issuing any command */
522 	ret = marvell_nfc_wait_ndrun(chip);
523 	if (ret) {
524 		dev_err(nfc->dev, "Last operation did not succeed\n");
525 		return ret;
526 	}
527 
528 	ndcr = readl_relaxed(nfc->regs + NDCR);
529 	writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
530 
531 	/* Assert ND_RUN bit and wait the NFC to be ready */
532 	writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
533 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
534 					 val & NDSR_WRCMDREQ,
535 					 POLL_PERIOD, POLL_TIMEOUT);
536 	if (ret) {
537 		dev_err(nfc->dev, "Timeout on WRCMDRE\n");
538 		return -ETIMEDOUT;
539 	}
540 
541 	/* Command may be written, clear WRCMDREQ status bit */
542 	writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
543 
544 	return 0;
545 }
546 
547 static void marvell_nfc_send_cmd(struct nand_chip *chip,
548 				 struct marvell_nfc_op *nfc_op)
549 {
550 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
551 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
552 
553 	dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
554 		"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
555 		(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
556 		nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
557 
558 	writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
559 		       nfc->regs + NDCB0);
560 	writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
561 	writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
562 
563 	/*
564 	 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
565 	 * fields are used (only available on NFCv2).
566 	 */
567 	if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
568 	    NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
569 		if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
570 			writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
571 	}
572 }
573 
574 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
575 			       const char *label)
576 {
577 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
578 	u32 val;
579 	int ret;
580 
581 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
582 					 val & flag,
583 					 POLL_PERIOD, POLL_TIMEOUT);
584 
585 	if (ret) {
586 		dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
587 			label, val);
588 		if (nfc->dma_chan)
589 			dmaengine_terminate_all(nfc->dma_chan);
590 		return ret;
591 	}
592 
593 	/*
594 	 * DMA function uses this helper to poll on CMDD bits without wanting
595 	 * them to be cleared.
596 	 */
597 	if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
598 		return 0;
599 
600 	writel_relaxed(flag, nfc->regs + NDSR);
601 
602 	return 0;
603 }
604 
605 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
606 {
607 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
608 	int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
609 
610 	return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
611 }
612 
613 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
614 {
615 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
616 	int ret;
617 
618 	/* Timeout is expressed in ms */
619 	if (!timeout_ms)
620 		timeout_ms = IRQ_TIMEOUT;
621 
622 	init_completion(&nfc->complete);
623 
624 	marvell_nfc_enable_int(nfc, NDCR_RDYM);
625 	ret = wait_for_completion_timeout(&nfc->complete,
626 					  msecs_to_jiffies(timeout_ms));
627 	marvell_nfc_disable_int(nfc, NDCR_RDYM);
628 	marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
629 	if (!ret) {
630 		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
631 		return -ETIMEDOUT;
632 	}
633 
634 	return 0;
635 }
636 
637 static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
638 {
639 	struct nand_chip *chip = mtd_to_nand(mtd);
640 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
641 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
642 	u32 ndcr_generic;
643 
644 	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
645 		return;
646 
647 	if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
648 		nfc->selected_chip = NULL;
649 		marvell_nand->selected_die = -1;
650 		return;
651 	}
652 
653 	/*
654 	 * Do not change the timing registers when using the DT property
655 	 * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the
656 	 * marvell_nand structure are supposedly empty.
657 	 */
658 	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
659 	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
660 
661 	/*
662 	 * Reset the NDCR register to a clean state for this particular chip,
663 	 * also clear ND_RUN bit.
664 	 */
665 	ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
666 		       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
667 	writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
668 
669 	/* Also reset the interrupt status register */
670 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
671 
672 	nfc->selected_chip = chip;
673 	marvell_nand->selected_die = die_nr;
674 }
675 
676 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
677 {
678 	struct marvell_nfc *nfc = dev_id;
679 	u32 st = readl_relaxed(nfc->regs + NDSR);
680 	u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
681 
682 	/*
683 	 * RDY interrupt mask is one bit in NDCR while there are two status
684 	 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
685 	 */
686 	if (st & NDSR_RDY(1))
687 		st |= NDSR_RDY(0);
688 
689 	if (!(st & ien))
690 		return IRQ_NONE;
691 
692 	marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
693 
694 	if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ)))
695 		complete(&nfc->complete);
696 
697 	return IRQ_HANDLED;
698 }
699 
700 /* HW ECC related functions */
701 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
702 {
703 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
704 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
705 
706 	if (!(ndcr & NDCR_ECC_EN)) {
707 		writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
708 
709 		/*
710 		 * When enabling BCH, set threshold to 0 to always know the
711 		 * number of corrected bitflips.
712 		 */
713 		if (chip->ecc.algo == NAND_ECC_BCH)
714 			writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
715 	}
716 }
717 
718 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
719 {
720 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
721 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
722 
723 	if (ndcr & NDCR_ECC_EN) {
724 		writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
725 		if (chip->ecc.algo == NAND_ECC_BCH)
726 			writel_relaxed(0, nfc->regs + NDECCCTRL);
727 	}
728 }
729 
730 /* DMA related helpers */
731 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
732 {
733 	u32 reg;
734 
735 	reg = readl_relaxed(nfc->regs + NDCR);
736 	writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
737 }
738 
739 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
740 {
741 	u32 reg;
742 
743 	reg = readl_relaxed(nfc->regs + NDCR);
744 	writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
745 }
746 
747 /* Read/write PIO/DMA accessors */
748 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
749 				     enum dma_data_direction direction,
750 				     unsigned int len)
751 {
752 	unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
753 	struct dma_async_tx_descriptor *tx;
754 	struct scatterlist sg;
755 	dma_cookie_t cookie;
756 	int ret;
757 
758 	marvell_nfc_enable_dma(nfc);
759 	/* Prepare the DMA transfer */
760 	sg_init_one(&sg, nfc->dma_buf, dma_len);
761 	dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
762 	tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
763 				     direction == DMA_FROM_DEVICE ?
764 				     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
765 				     DMA_PREP_INTERRUPT);
766 	if (!tx) {
767 		dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
768 		return -ENXIO;
769 	}
770 
771 	/* Do the task and wait for it to finish */
772 	cookie = dmaengine_submit(tx);
773 	ret = dma_submit_error(cookie);
774 	if (ret)
775 		return -EIO;
776 
777 	dma_async_issue_pending(nfc->dma_chan);
778 	ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
779 	dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
780 	marvell_nfc_disable_dma(nfc);
781 	if (ret) {
782 		dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
783 			dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
784 		dmaengine_terminate_all(nfc->dma_chan);
785 		return -ETIMEDOUT;
786 	}
787 
788 	return 0;
789 }
790 
791 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
792 					unsigned int len)
793 {
794 	unsigned int last_len = len % FIFO_DEPTH;
795 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
796 	int i;
797 
798 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
799 		ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
800 
801 	if (last_len) {
802 		u8 tmp_buf[FIFO_DEPTH];
803 
804 		ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
805 		memcpy(in + last_full_offset, tmp_buf, last_len);
806 	}
807 
808 	return 0;
809 }
810 
811 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
812 					 unsigned int len)
813 {
814 	unsigned int last_len = len % FIFO_DEPTH;
815 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
816 	int i;
817 
818 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
819 		iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
820 
821 	if (last_len) {
822 		u8 tmp_buf[FIFO_DEPTH];
823 
824 		memcpy(tmp_buf, out + last_full_offset, last_len);
825 		iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
826 	}
827 
828 	return 0;
829 }
830 
831 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
832 					  u8 *data, int data_len,
833 					  u8 *spare, int spare_len,
834 					  u8 *ecc, int ecc_len,
835 					  unsigned int *max_bitflips)
836 {
837 	struct mtd_info *mtd = nand_to_mtd(chip);
838 	int bf;
839 
840 	/*
841 	 * Blank pages (all 0xFF) that have not been written may be recognized
842 	 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
843 	 * check if the entire page (with ECC bytes) is actually blank or not.
844 	 */
845 	if (!data)
846 		data_len = 0;
847 	if (!spare)
848 		spare_len = 0;
849 	if (!ecc)
850 		ecc_len = 0;
851 
852 	bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
853 					 spare, spare_len, chip->ecc.strength);
854 	if (bf < 0) {
855 		mtd->ecc_stats.failed++;
856 		return;
857 	}
858 
859 	/* Update the stats and max_bitflips */
860 	mtd->ecc_stats.corrected += bf;
861 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
862 }
863 
864 /*
865  * Check a chunk is correct or not according to hardware ECC engine.
866  * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
867  * mtd->ecc_stats.failure is not, the function will instead return a non-zero
868  * value indicating that a check on the emptyness of the subpage must be
869  * performed before declaring the subpage corrupted.
870  */
871 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
872 				      unsigned int *max_bitflips)
873 {
874 	struct mtd_info *mtd = nand_to_mtd(chip);
875 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
876 	int bf = 0;
877 	u32 ndsr;
878 
879 	ndsr = readl_relaxed(nfc->regs + NDSR);
880 
881 	/* Check uncorrectable error flag */
882 	if (ndsr & NDSR_UNCERR) {
883 		writel_relaxed(ndsr, nfc->regs + NDSR);
884 
885 		/*
886 		 * Do not increment ->ecc_stats.failed now, instead, return a
887 		 * non-zero value to indicate that this chunk was apparently
888 		 * bad, and it should be check to see if it empty or not. If
889 		 * the chunk (with ECC bytes) is not declared empty, the calling
890 		 * function must increment the failure count.
891 		 */
892 		return -EBADMSG;
893 	}
894 
895 	/* Check correctable error flag */
896 	if (ndsr & NDSR_CORERR) {
897 		writel_relaxed(ndsr, nfc->regs + NDSR);
898 
899 		if (chip->ecc.algo == NAND_ECC_BCH)
900 			bf = NDSR_ERRCNT(ndsr);
901 		else
902 			bf = 1;
903 	}
904 
905 	/* Update the stats and max_bitflips */
906 	mtd->ecc_stats.corrected += bf;
907 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
908 
909 	return 0;
910 }
911 
912 /* Hamming read helpers */
913 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
914 					       u8 *data_buf, u8 *oob_buf,
915 					       bool raw, int page)
916 {
917 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
918 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
919 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
920 	struct marvell_nfc_op nfc_op = {
921 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
922 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
923 			   NDCB0_DBC |
924 			   NDCB0_CMD1(NAND_CMD_READ0) |
925 			   NDCB0_CMD2(NAND_CMD_READSTART),
926 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
927 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
928 	};
929 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
930 	int ret;
931 
932 	/* NFCv2 needs more information about the operation being executed */
933 	if (nfc->caps->is_nfcv2)
934 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
935 
936 	ret = marvell_nfc_prepare_cmd(chip);
937 	if (ret)
938 		return ret;
939 
940 	marvell_nfc_send_cmd(chip, &nfc_op);
941 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
942 				  "RDDREQ while draining FIFO (data/oob)");
943 	if (ret)
944 		return ret;
945 
946 	/*
947 	 * Read the page then the OOB area. Unlike what is shown in current
948 	 * documentation, spare bytes are protected by the ECC engine, and must
949 	 * be at the beginning of the OOB area or running this driver on legacy
950 	 * systems will prevent the discovery of the BBM/BBT.
951 	 */
952 	if (nfc->use_dma) {
953 		marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
954 					  lt->data_bytes + oob_bytes);
955 		memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
956 		memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
957 	} else {
958 		marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
959 		marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
960 	}
961 
962 	ret = marvell_nfc_wait_cmdd(chip);
963 
964 	return ret;
965 }
966 
967 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
968 						struct nand_chip *chip, u8 *buf,
969 						int oob_required, int page)
970 {
971 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
972 						   true, page);
973 }
974 
975 static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
976 					    struct nand_chip *chip,
977 					    u8 *buf, int oob_required,
978 					    int page)
979 {
980 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
981 	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
982 	int max_bitflips = 0, ret;
983 	u8 *raw_buf;
984 
985 	marvell_nfc_enable_hw_ecc(chip);
986 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
987 					    page);
988 	ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
989 	marvell_nfc_disable_hw_ecc(chip);
990 
991 	if (!ret)
992 		return max_bitflips;
993 
994 	/*
995 	 * When ECC failures are detected, check if the full page has been
996 	 * written or not. Ignore the failure if it is actually empty.
997 	 */
998 	raw_buf = kmalloc(full_sz, GFP_KERNEL);
999 	if (!raw_buf)
1000 		return -ENOMEM;
1001 
1002 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1003 					    lt->data_bytes, true, page);
1004 	marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1005 				      &max_bitflips);
1006 	kfree(raw_buf);
1007 
1008 	return max_bitflips;
1009 }
1010 
1011 /*
1012  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1013  * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1014  * also stands for ->read_oob().
1015  */
1016 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
1017 					       struct nand_chip *chip, int page)
1018 {
1019 	/* Invalidate page cache */
1020 	chip->pagebuf = -1;
1021 
1022 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1023 						   chip->oob_poi, true, page);
1024 }
1025 
1026 /* Hamming write helpers */
1027 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1028 						const u8 *data_buf,
1029 						const u8 *oob_buf, bool raw,
1030 						int page)
1031 {
1032 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1033 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1034 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1035 	struct marvell_nfc_op nfc_op = {
1036 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1037 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1038 			   NDCB0_CMD1(NAND_CMD_SEQIN) |
1039 			   NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1040 			   NDCB0_DBC,
1041 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1042 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1043 	};
1044 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1045 	int ret;
1046 
1047 	/* NFCv2 needs more information about the operation being executed */
1048 	if (nfc->caps->is_nfcv2)
1049 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1050 
1051 	ret = marvell_nfc_prepare_cmd(chip);
1052 	if (ret)
1053 		return ret;
1054 
1055 	marvell_nfc_send_cmd(chip, &nfc_op);
1056 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1057 				  "WRDREQ while loading FIFO (data)");
1058 	if (ret)
1059 		return ret;
1060 
1061 	/* Write the page then the OOB area */
1062 	if (nfc->use_dma) {
1063 		memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1064 		memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1065 		marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1066 					  lt->ecc_bytes + lt->spare_bytes);
1067 	} else {
1068 		marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1069 		marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1070 	}
1071 
1072 	ret = marvell_nfc_wait_cmdd(chip);
1073 	if (ret)
1074 		return ret;
1075 
1076 	ret = marvell_nfc_wait_op(chip,
1077 				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1078 	return ret;
1079 }
1080 
1081 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
1082 						 struct nand_chip *chip,
1083 						 const u8 *buf,
1084 						 int oob_required, int page)
1085 {
1086 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1087 						    true, page);
1088 }
1089 
1090 static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
1091 					     struct nand_chip *chip,
1092 					     const u8 *buf,
1093 					     int oob_required, int page)
1094 {
1095 	int ret;
1096 
1097 	marvell_nfc_enable_hw_ecc(chip);
1098 	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1099 						   false, page);
1100 	marvell_nfc_disable_hw_ecc(chip);
1101 
1102 	return ret;
1103 }
1104 
1105 /*
1106  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1107  * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1108  * also stands for ->write_oob().
1109  */
1110 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
1111 						struct nand_chip *chip,
1112 						int page)
1113 {
1114 	/* Invalidate page cache */
1115 	chip->pagebuf = -1;
1116 
1117 	memset(chip->data_buf, 0xFF, mtd->writesize);
1118 
1119 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1120 						    chip->oob_poi, true, page);
1121 }
1122 
1123 /* BCH read helpers */
1124 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
1125 						struct nand_chip *chip, u8 *buf,
1126 						int oob_required, int page)
1127 {
1128 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1129 	u8 *oob = chip->oob_poi;
1130 	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1131 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1132 		lt->last_spare_bytes;
1133 	int data_len = lt->data_bytes;
1134 	int spare_len = lt->spare_bytes;
1135 	int ecc_len = lt->ecc_bytes;
1136 	int chunk;
1137 
1138 	if (oob_required)
1139 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1140 
1141 	nand_read_page_op(chip, page, 0, NULL, 0);
1142 
1143 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1144 		/* Update last chunk length */
1145 		if (chunk >= lt->full_chunk_cnt) {
1146 			data_len = lt->last_data_bytes;
1147 			spare_len = lt->last_spare_bytes;
1148 			ecc_len = lt->last_ecc_bytes;
1149 		}
1150 
1151 		/* Read data bytes*/
1152 		nand_change_read_column_op(chip, chunk * chunk_size,
1153 					   buf + (lt->data_bytes * chunk),
1154 					   data_len, false);
1155 
1156 		/* Read spare bytes */
1157 		nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1158 				  spare_len, false);
1159 
1160 		/* Read ECC bytes */
1161 		nand_read_data_op(chip, oob + ecc_offset +
1162 				  (ALIGN(lt->ecc_bytes, 32) * chunk),
1163 				  ecc_len, false);
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1170 					      u8 *data, unsigned int data_len,
1171 					      u8 *spare, unsigned int spare_len,
1172 					      int page)
1173 {
1174 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1175 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1176 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1177 	int i, ret;
1178 	struct marvell_nfc_op nfc_op = {
1179 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1180 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1181 			   NDCB0_LEN_OVRD,
1182 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1183 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1184 		.ndcb[3] = data_len + spare_len,
1185 	};
1186 
1187 	ret = marvell_nfc_prepare_cmd(chip);
1188 	if (ret)
1189 		return;
1190 
1191 	if (chunk == 0)
1192 		nfc_op.ndcb[0] |= NDCB0_DBC |
1193 				  NDCB0_CMD1(NAND_CMD_READ0) |
1194 				  NDCB0_CMD2(NAND_CMD_READSTART);
1195 
1196 	/*
1197 	 * Trigger the monolithic read on the first chunk, then naked read on
1198 	 * intermediate chunks and finally a last naked read on the last chunk.
1199 	 */
1200 	if (chunk == 0)
1201 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1202 	else if (chunk < lt->nchunks - 1)
1203 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1204 	else
1205 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1206 
1207 	marvell_nfc_send_cmd(chip, &nfc_op);
1208 
1209 	/*
1210 	 * According to the datasheet, when reading from NDDB
1211 	 * with BCH enabled, after each 32 bytes reads, we
1212 	 * have to make sure that the NDSR.RDDREQ bit is set.
1213 	 *
1214 	 * Drain the FIFO, 8 32-bit reads at a time, and skip
1215 	 * the polling on the last read.
1216 	 *
1217 	 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1218 	 */
1219 	for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1220 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1221 				    "RDDREQ while draining FIFO (data)");
1222 		marvell_nfc_xfer_data_in_pio(nfc, data,
1223 					     FIFO_DEPTH * BCH_SEQ_READS);
1224 		data += FIFO_DEPTH * BCH_SEQ_READS;
1225 	}
1226 
1227 	for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1228 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1229 				    "RDDREQ while draining FIFO (OOB)");
1230 		marvell_nfc_xfer_data_in_pio(nfc, spare,
1231 					     FIFO_DEPTH * BCH_SEQ_READS);
1232 		spare += FIFO_DEPTH * BCH_SEQ_READS;
1233 	}
1234 }
1235 
1236 static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
1237 					    struct nand_chip *chip,
1238 					    u8 *buf, int oob_required,
1239 					    int page)
1240 {
1241 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1242 	int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
1243 	u8 *data = buf, *spare = chip->oob_poi, *ecc;
1244 	int max_bitflips = 0;
1245 	u32 failure_mask = 0;
1246 	int chunk, ecc_offset_in_page, ret;
1247 
1248 	/*
1249 	 * With BCH, OOB is not fully used (and thus not read entirely), not
1250 	 * expected bytes could show up at the end of the OOB buffer if not
1251 	 * explicitly erased.
1252 	 */
1253 	if (oob_required)
1254 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1255 
1256 	marvell_nfc_enable_hw_ecc(chip);
1257 
1258 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1259 		/* Update length for the last chunk */
1260 		if (chunk >= lt->full_chunk_cnt) {
1261 			data_len = lt->last_data_bytes;
1262 			spare_len = lt->last_spare_bytes;
1263 		}
1264 
1265 		/* Read the chunk and detect number of bitflips */
1266 		marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1267 						  spare, spare_len, page);
1268 		ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1269 		if (ret)
1270 			failure_mask |= BIT(chunk);
1271 
1272 		data += data_len;
1273 		spare += spare_len;
1274 	}
1275 
1276 	marvell_nfc_disable_hw_ecc(chip);
1277 
1278 	if (!failure_mask)
1279 		return max_bitflips;
1280 
1281 	/*
1282 	 * Please note that dumping the ECC bytes during a normal read with OOB
1283 	 * area would add a significant overhead as ECC bytes are "consumed" by
1284 	 * the controller in normal mode and must be re-read in raw mode. To
1285 	 * avoid dropping the performances, we prefer not to include them. The
1286 	 * user should re-read the page in raw mode if ECC bytes are required.
1287 	 *
1288 	 * However, for any subpage read error reported by ->correct(), the ECC
1289 	 * bytes must be read in raw mode and the full subpage must be checked
1290 	 * to see if it is entirely empty of if there was an actual error.
1291 	 */
1292 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1293 		/* No failure reported for this chunk, move to the next one */
1294 		if (!(failure_mask & BIT(chunk)))
1295 			continue;
1296 
1297 		/* Derive ECC bytes positions (in page/buffer) and length */
1298 		ecc = chip->oob_poi +
1299 			(lt->full_chunk_cnt * lt->spare_bytes) +
1300 			lt->last_spare_bytes +
1301 			(chunk * ALIGN(lt->ecc_bytes, 32));
1302 		ecc_offset_in_page =
1303 			(chunk * (lt->data_bytes + lt->spare_bytes +
1304 				  lt->ecc_bytes)) +
1305 			(chunk < lt->full_chunk_cnt ?
1306 			 lt->data_bytes + lt->spare_bytes :
1307 			 lt->last_data_bytes + lt->last_spare_bytes);
1308 		ecc_len = chunk < lt->full_chunk_cnt ?
1309 			lt->ecc_bytes : lt->last_ecc_bytes;
1310 
1311 		/* Do the actual raw read of the ECC bytes */
1312 		nand_change_read_column_op(chip, ecc_offset_in_page,
1313 					   ecc, ecc_len, false);
1314 
1315 		/* Derive data/spare bytes positions (in buffer) and length */
1316 		data = buf + (chunk * lt->data_bytes);
1317 		data_len = chunk < lt->full_chunk_cnt ?
1318 			lt->data_bytes : lt->last_data_bytes;
1319 		spare = chip->oob_poi + (chunk * (lt->spare_bytes +
1320 						  lt->ecc_bytes));
1321 		spare_len = chunk < lt->full_chunk_cnt ?
1322 			lt->spare_bytes : lt->last_spare_bytes;
1323 
1324 		/* Check the entire chunk (data + spare + ecc) for emptyness */
1325 		marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
1326 					      spare_len, ecc, ecc_len,
1327 					      &max_bitflips);
1328 	}
1329 
1330 	return max_bitflips;
1331 }
1332 
1333 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
1334 					       struct nand_chip *chip, int page)
1335 {
1336 	/* Invalidate page cache */
1337 	chip->pagebuf = -1;
1338 
1339 	return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
1340 }
1341 
1342 static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
1343 					   struct nand_chip *chip, int page)
1344 {
1345 	/* Invalidate page cache */
1346 	chip->pagebuf = -1;
1347 
1348 	return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
1349 }
1350 
1351 /* BCH write helpers */
1352 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
1353 						 struct nand_chip *chip,
1354 						 const u8 *buf,
1355 						 int oob_required, int page)
1356 {
1357 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1358 	int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1359 	int data_len = lt->data_bytes;
1360 	int spare_len = lt->spare_bytes;
1361 	int ecc_len = lt->ecc_bytes;
1362 	int spare_offset = 0;
1363 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1364 		lt->last_spare_bytes;
1365 	int chunk;
1366 
1367 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1368 
1369 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1370 		if (chunk >= lt->full_chunk_cnt) {
1371 			data_len = lt->last_data_bytes;
1372 			spare_len = lt->last_spare_bytes;
1373 			ecc_len = lt->last_ecc_bytes;
1374 		}
1375 
1376 		/* Point to the column of the next chunk */
1377 		nand_change_write_column_op(chip, chunk * full_chunk_size,
1378 					    NULL, 0, false);
1379 
1380 		/* Write the data */
1381 		nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1382 				   data_len, false);
1383 
1384 		if (!oob_required)
1385 			continue;
1386 
1387 		/* Write the spare bytes */
1388 		if (spare_len)
1389 			nand_write_data_op(chip, chip->oob_poi + spare_offset,
1390 					   spare_len, false);
1391 
1392 		/* Write the ECC bytes */
1393 		if (ecc_len)
1394 			nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1395 					   ecc_len, false);
1396 
1397 		spare_offset += spare_len;
1398 		ecc_offset += ALIGN(ecc_len, 32);
1399 	}
1400 
1401 	return nand_prog_page_end_op(chip);
1402 }
1403 
1404 static int
1405 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1406 				   const u8 *data, unsigned int data_len,
1407 				   const u8 *spare, unsigned int spare_len,
1408 				   int page)
1409 {
1410 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1411 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1412 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1413 	u32 xtype;
1414 	int ret;
1415 	struct marvell_nfc_op nfc_op = {
1416 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1417 		.ndcb[3] = data_len + spare_len,
1418 	};
1419 
1420 	/*
1421 	 * First operation dispatches the CMD_SEQIN command, issue the address
1422 	 * cycles and asks for the first chunk of data.
1423 	 * All operations in the middle (if any) will issue a naked write and
1424 	 * also ask for data.
1425 	 * Last operation (if any) asks for the last chunk of data through a
1426 	 * last naked write.
1427 	 */
1428 	if (chunk == 0) {
1429 		if (lt->nchunks == 1)
1430 			xtype = XTYPE_MONOLITHIC_RW;
1431 		else
1432 			xtype = XTYPE_WRITE_DISPATCH;
1433 
1434 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1435 				  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1436 				  NDCB0_CMD1(NAND_CMD_SEQIN);
1437 		nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1438 		nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1439 	} else if (chunk < lt->nchunks - 1) {
1440 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1441 	} else {
1442 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1443 	}
1444 
1445 	/* Always dispatch the PAGEPROG command on the last chunk */
1446 	if (chunk == lt->nchunks - 1)
1447 		nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1448 
1449 	ret = marvell_nfc_prepare_cmd(chip);
1450 	if (ret)
1451 		return ret;
1452 
1453 	marvell_nfc_send_cmd(chip, &nfc_op);
1454 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1455 				  "WRDREQ while loading FIFO (data)");
1456 	if (ret)
1457 		return ret;
1458 
1459 	/* Transfer the contents */
1460 	iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1461 	iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1462 
1463 	return 0;
1464 }
1465 
1466 static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
1467 					     struct nand_chip *chip,
1468 					     const u8 *buf,
1469 					     int oob_required, int page)
1470 {
1471 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1472 	const u8 *data = buf;
1473 	const u8 *spare = chip->oob_poi;
1474 	int data_len = lt->data_bytes;
1475 	int spare_len = lt->spare_bytes;
1476 	int chunk, ret;
1477 
1478 	/* Spare data will be written anyway, so clear it to avoid garbage */
1479 	if (!oob_required)
1480 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1481 
1482 	marvell_nfc_enable_hw_ecc(chip);
1483 
1484 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1485 		if (chunk >= lt->full_chunk_cnt) {
1486 			data_len = lt->last_data_bytes;
1487 			spare_len = lt->last_spare_bytes;
1488 		}
1489 
1490 		marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1491 						   spare, spare_len, page);
1492 		data += data_len;
1493 		spare += spare_len;
1494 
1495 		/*
1496 		 * Waiting only for CMDD or PAGED is not enough, ECC are
1497 		 * partially written. No flag is set once the operation is
1498 		 * really finished but the ND_RUN bit is cleared, so wait for it
1499 		 * before stepping into the next command.
1500 		 */
1501 		marvell_nfc_wait_ndrun(chip);
1502 	}
1503 
1504 	ret = marvell_nfc_wait_op(chip,
1505 				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1506 
1507 	marvell_nfc_disable_hw_ecc(chip);
1508 
1509 	if (ret)
1510 		return ret;
1511 
1512 	return 0;
1513 }
1514 
1515 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
1516 						struct nand_chip *chip,
1517 						int page)
1518 {
1519 	/* Invalidate page cache */
1520 	chip->pagebuf = -1;
1521 
1522 	memset(chip->data_buf, 0xFF, mtd->writesize);
1523 
1524 	return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
1525 }
1526 
1527 static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
1528 					    struct nand_chip *chip, int page)
1529 {
1530 	/* Invalidate page cache */
1531 	chip->pagebuf = -1;
1532 
1533 	memset(chip->data_buf, 0xFF, mtd->writesize);
1534 
1535 	return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
1536 }
1537 
1538 /* NAND framework ->exec_op() hooks and related helpers */
1539 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1540 					   const struct nand_subop *subop,
1541 					   struct marvell_nfc_op *nfc_op)
1542 {
1543 	const struct nand_op_instr *instr = NULL;
1544 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1545 	bool first_cmd = true;
1546 	unsigned int op_id;
1547 	int i;
1548 
1549 	/* Reset the input structure as most of its fields will be OR'ed */
1550 	memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1551 
1552 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1553 		unsigned int offset, naddrs;
1554 		const u8 *addrs;
1555 		int len = nand_subop_get_data_len(subop, op_id);
1556 
1557 		instr = &subop->instrs[op_id];
1558 
1559 		switch (instr->type) {
1560 		case NAND_OP_CMD_INSTR:
1561 			if (first_cmd)
1562 				nfc_op->ndcb[0] |=
1563 					NDCB0_CMD1(instr->ctx.cmd.opcode);
1564 			else
1565 				nfc_op->ndcb[0] |=
1566 					NDCB0_CMD2(instr->ctx.cmd.opcode) |
1567 					NDCB0_DBC;
1568 
1569 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1570 			first_cmd = false;
1571 			break;
1572 
1573 		case NAND_OP_ADDR_INSTR:
1574 			offset = nand_subop_get_addr_start_off(subop, op_id);
1575 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1576 			addrs = &instr->ctx.addr.addrs[offset];
1577 
1578 			nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1579 
1580 			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1581 				nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1582 
1583 			if (naddrs >= 5)
1584 				nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1585 			if (naddrs >= 6)
1586 				nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1587 			if (naddrs == 7)
1588 				nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1589 
1590 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1591 			break;
1592 
1593 		case NAND_OP_DATA_IN_INSTR:
1594 			nfc_op->data_instr = instr;
1595 			nfc_op->data_instr_idx = op_id;
1596 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1597 			if (nfc->caps->is_nfcv2) {
1598 				nfc_op->ndcb[0] |=
1599 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1600 					NDCB0_LEN_OVRD;
1601 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1602 			}
1603 			nfc_op->data_delay_ns = instr->delay_ns;
1604 			break;
1605 
1606 		case NAND_OP_DATA_OUT_INSTR:
1607 			nfc_op->data_instr = instr;
1608 			nfc_op->data_instr_idx = op_id;
1609 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1610 			if (nfc->caps->is_nfcv2) {
1611 				nfc_op->ndcb[0] |=
1612 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1613 					NDCB0_LEN_OVRD;
1614 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1615 			}
1616 			nfc_op->data_delay_ns = instr->delay_ns;
1617 			break;
1618 
1619 		case NAND_OP_WAITRDY_INSTR:
1620 			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1621 			nfc_op->rdy_delay_ns = instr->delay_ns;
1622 			break;
1623 		}
1624 	}
1625 }
1626 
1627 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1628 				     const struct nand_subop *subop,
1629 				     struct marvell_nfc_op *nfc_op)
1630 {
1631 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1632 	const struct nand_op_instr *instr = nfc_op->data_instr;
1633 	unsigned int op_id = nfc_op->data_instr_idx;
1634 	unsigned int len = nand_subop_get_data_len(subop, op_id);
1635 	unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1636 	bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1637 	int ret;
1638 
1639 	if (instr->ctx.data.force_8bit)
1640 		marvell_nfc_force_byte_access(chip, true);
1641 
1642 	if (reading) {
1643 		u8 *in = instr->ctx.data.buf.in + offset;
1644 
1645 		ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1646 	} else {
1647 		const u8 *out = instr->ctx.data.buf.out + offset;
1648 
1649 		ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1650 	}
1651 
1652 	if (instr->ctx.data.force_8bit)
1653 		marvell_nfc_force_byte_access(chip, false);
1654 
1655 	return ret;
1656 }
1657 
1658 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1659 					      const struct nand_subop *subop)
1660 {
1661 	struct marvell_nfc_op nfc_op;
1662 	bool reading;
1663 	int ret;
1664 
1665 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1666 	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1667 
1668 	ret = marvell_nfc_prepare_cmd(chip);
1669 	if (ret)
1670 		return ret;
1671 
1672 	marvell_nfc_send_cmd(chip, &nfc_op);
1673 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1674 				  "RDDREQ/WRDREQ while draining raw data");
1675 	if (ret)
1676 		return ret;
1677 
1678 	cond_delay(nfc_op.cle_ale_delay_ns);
1679 
1680 	if (reading) {
1681 		if (nfc_op.rdy_timeout_ms) {
1682 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1683 			if (ret)
1684 				return ret;
1685 		}
1686 
1687 		cond_delay(nfc_op.rdy_delay_ns);
1688 	}
1689 
1690 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1691 	ret = marvell_nfc_wait_cmdd(chip);
1692 	if (ret)
1693 		return ret;
1694 
1695 	cond_delay(nfc_op.data_delay_ns);
1696 
1697 	if (!reading) {
1698 		if (nfc_op.rdy_timeout_ms) {
1699 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1700 			if (ret)
1701 				return ret;
1702 		}
1703 
1704 		cond_delay(nfc_op.rdy_delay_ns);
1705 	}
1706 
1707 	/*
1708 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1709 	 * operation but experience shows that the behavior is buggy when it
1710 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1711 	 */
1712 	if (!reading) {
1713 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1714 
1715 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1716 			       nfc->regs + NDCR);
1717 	}
1718 
1719 	return 0;
1720 }
1721 
1722 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1723 					 const struct nand_subop *subop)
1724 {
1725 	struct marvell_nfc_op nfc_op;
1726 	int ret;
1727 
1728 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1729 
1730 	/*
1731 	 * Naked access are different in that they need to be flagged as naked
1732 	 * by the controller. Reset the controller registers fields that inform
1733 	 * on the type and refill them according to the ongoing operation.
1734 	 */
1735 	nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1736 			    NDCB0_CMD_XTYPE(XTYPE_MASK));
1737 	switch (subop->instrs[0].type) {
1738 	case NAND_OP_CMD_INSTR:
1739 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1740 		break;
1741 	case NAND_OP_ADDR_INSTR:
1742 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1743 		break;
1744 	case NAND_OP_DATA_IN_INSTR:
1745 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1746 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1747 		break;
1748 	case NAND_OP_DATA_OUT_INSTR:
1749 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1750 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1751 		break;
1752 	default:
1753 		/* This should never happen */
1754 		break;
1755 	}
1756 
1757 	ret = marvell_nfc_prepare_cmd(chip);
1758 	if (ret)
1759 		return ret;
1760 
1761 	marvell_nfc_send_cmd(chip, &nfc_op);
1762 
1763 	if (!nfc_op.data_instr) {
1764 		ret = marvell_nfc_wait_cmdd(chip);
1765 		cond_delay(nfc_op.cle_ale_delay_ns);
1766 		return ret;
1767 	}
1768 
1769 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1770 				  "RDDREQ/WRDREQ while draining raw data");
1771 	if (ret)
1772 		return ret;
1773 
1774 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1775 	ret = marvell_nfc_wait_cmdd(chip);
1776 	if (ret)
1777 		return ret;
1778 
1779 	/*
1780 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1781 	 * operation but experience shows that the behavior is buggy when it
1782 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1783 	 */
1784 	if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1785 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1786 
1787 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1788 			       nfc->regs + NDCR);
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1795 					  const struct nand_subop *subop)
1796 {
1797 	struct marvell_nfc_op nfc_op;
1798 	int ret;
1799 
1800 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1801 
1802 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1803 	cond_delay(nfc_op.rdy_delay_ns);
1804 
1805 	return ret;
1806 }
1807 
1808 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1809 					 const struct nand_subop *subop)
1810 {
1811 	struct marvell_nfc_op nfc_op;
1812 	int ret;
1813 
1814 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1815 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1816 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1817 
1818 	ret = marvell_nfc_prepare_cmd(chip);
1819 	if (ret)
1820 		return ret;
1821 
1822 	marvell_nfc_send_cmd(chip, &nfc_op);
1823 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1824 				  "RDDREQ while reading ID");
1825 	if (ret)
1826 		return ret;
1827 
1828 	cond_delay(nfc_op.cle_ale_delay_ns);
1829 
1830 	if (nfc_op.rdy_timeout_ms) {
1831 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1832 		if (ret)
1833 			return ret;
1834 	}
1835 
1836 	cond_delay(nfc_op.rdy_delay_ns);
1837 
1838 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1839 	ret = marvell_nfc_wait_cmdd(chip);
1840 	if (ret)
1841 		return ret;
1842 
1843 	cond_delay(nfc_op.data_delay_ns);
1844 
1845 	return 0;
1846 }
1847 
1848 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1849 					const struct nand_subop *subop)
1850 {
1851 	struct marvell_nfc_op nfc_op;
1852 	int ret;
1853 
1854 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1855 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1856 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1857 
1858 	ret = marvell_nfc_prepare_cmd(chip);
1859 	if (ret)
1860 		return ret;
1861 
1862 	marvell_nfc_send_cmd(chip, &nfc_op);
1863 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1864 				  "RDDREQ while reading status");
1865 	if (ret)
1866 		return ret;
1867 
1868 	cond_delay(nfc_op.cle_ale_delay_ns);
1869 
1870 	if (nfc_op.rdy_timeout_ms) {
1871 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1872 		if (ret)
1873 			return ret;
1874 	}
1875 
1876 	cond_delay(nfc_op.rdy_delay_ns);
1877 
1878 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1879 	ret = marvell_nfc_wait_cmdd(chip);
1880 	if (ret)
1881 		return ret;
1882 
1883 	cond_delay(nfc_op.data_delay_ns);
1884 
1885 	return 0;
1886 }
1887 
1888 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1889 					   const struct nand_subop *subop)
1890 {
1891 	struct marvell_nfc_op nfc_op;
1892 	int ret;
1893 
1894 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1895 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1896 
1897 	ret = marvell_nfc_prepare_cmd(chip);
1898 	if (ret)
1899 		return ret;
1900 
1901 	marvell_nfc_send_cmd(chip, &nfc_op);
1902 	ret = marvell_nfc_wait_cmdd(chip);
1903 	if (ret)
1904 		return ret;
1905 
1906 	cond_delay(nfc_op.cle_ale_delay_ns);
1907 
1908 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1909 	if (ret)
1910 		return ret;
1911 
1912 	cond_delay(nfc_op.rdy_delay_ns);
1913 
1914 	return 0;
1915 }
1916 
1917 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
1918 					   const struct nand_subop *subop)
1919 {
1920 	struct marvell_nfc_op nfc_op;
1921 	int ret;
1922 
1923 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1924 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
1925 
1926 	ret = marvell_nfc_prepare_cmd(chip);
1927 	if (ret)
1928 		return ret;
1929 
1930 	marvell_nfc_send_cmd(chip, &nfc_op);
1931 	ret = marvell_nfc_wait_cmdd(chip);
1932 	if (ret)
1933 		return ret;
1934 
1935 	cond_delay(nfc_op.cle_ale_delay_ns);
1936 
1937 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1938 	if (ret)
1939 		return ret;
1940 
1941 	cond_delay(nfc_op.rdy_delay_ns);
1942 
1943 	return 0;
1944 }
1945 
1946 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
1947 	/* Monolithic reads/writes */
1948 	NAND_OP_PARSER_PATTERN(
1949 		marvell_nfc_monolithic_access_exec,
1950 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1951 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
1952 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
1953 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1954 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1955 	NAND_OP_PARSER_PATTERN(
1956 		marvell_nfc_monolithic_access_exec,
1957 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1958 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
1959 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
1960 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
1961 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1962 	/* Naked commands */
1963 	NAND_OP_PARSER_PATTERN(
1964 		marvell_nfc_naked_access_exec,
1965 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
1966 	NAND_OP_PARSER_PATTERN(
1967 		marvell_nfc_naked_access_exec,
1968 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
1969 	NAND_OP_PARSER_PATTERN(
1970 		marvell_nfc_naked_access_exec,
1971 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1972 	NAND_OP_PARSER_PATTERN(
1973 		marvell_nfc_naked_access_exec,
1974 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
1975 	NAND_OP_PARSER_PATTERN(
1976 		marvell_nfc_naked_waitrdy_exec,
1977 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1978 	);
1979 
1980 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
1981 	/* Naked commands not supported, use a function for each pattern */
1982 	NAND_OP_PARSER_PATTERN(
1983 		marvell_nfc_read_id_type_exec,
1984 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1985 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1986 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1987 	NAND_OP_PARSER_PATTERN(
1988 		marvell_nfc_erase_cmd_type_exec,
1989 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1990 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1991 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1992 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1993 	NAND_OP_PARSER_PATTERN(
1994 		marvell_nfc_read_status_exec,
1995 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
1996 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
1997 	NAND_OP_PARSER_PATTERN(
1998 		marvell_nfc_reset_cmd_type_exec,
1999 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2000 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2001 	NAND_OP_PARSER_PATTERN(
2002 		marvell_nfc_naked_waitrdy_exec,
2003 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2004 	);
2005 
2006 static int marvell_nfc_exec_op(struct nand_chip *chip,
2007 			       const struct nand_operation *op,
2008 			       bool check_only)
2009 {
2010 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2011 
2012 	if (nfc->caps->is_nfcv2)
2013 		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2014 					      op, check_only);
2015 	else
2016 		return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2017 					      op, check_only);
2018 }
2019 
2020 /*
2021  * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2022  * usable.
2023  */
2024 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2025 				      struct mtd_oob_region *oobregion)
2026 {
2027 	struct nand_chip *chip = mtd_to_nand(mtd);
2028 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2029 
2030 	if (section)
2031 		return -ERANGE;
2032 
2033 	oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2034 			    lt->last_ecc_bytes;
2035 	oobregion->offset = mtd->oobsize - oobregion->length;
2036 
2037 	return 0;
2038 }
2039 
2040 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2041 				       struct mtd_oob_region *oobregion)
2042 {
2043 	struct nand_chip *chip = mtd_to_nand(mtd);
2044 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2045 
2046 	if (section)
2047 		return -ERANGE;
2048 
2049 	/*
2050 	 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2051 	 * 4KB page / 4bit BCH combination.
2052 	 */
2053 	if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2054 		oobregion->offset = 6;
2055 	else
2056 		oobregion->offset = 2;
2057 
2058 	oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2059 			    lt->last_spare_bytes - oobregion->offset;
2060 
2061 	return 0;
2062 }
2063 
2064 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2065 	.ecc = marvell_nand_ooblayout_ecc,
2066 	.free = marvell_nand_ooblayout_free,
2067 };
2068 
2069 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2070 					 struct nand_ecc_ctrl *ecc)
2071 {
2072 	struct nand_chip *chip = mtd_to_nand(mtd);
2073 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2074 	const struct marvell_hw_ecc_layout *l;
2075 	int i;
2076 
2077 	if (!nfc->caps->is_nfcv2 &&
2078 	    (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2079 		dev_err(nfc->dev,
2080 			"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2081 			mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2082 		return -ENOTSUPP;
2083 	}
2084 
2085 	to_marvell_nand(chip)->layout = NULL;
2086 	for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2087 		l = &marvell_nfc_layouts[i];
2088 		if (mtd->writesize == l->writesize &&
2089 		    ecc->size == l->chunk && ecc->strength == l->strength) {
2090 			to_marvell_nand(chip)->layout = l;
2091 			break;
2092 		}
2093 	}
2094 
2095 	if (!to_marvell_nand(chip)->layout ||
2096 	    (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2097 		dev_err(nfc->dev,
2098 			"ECC strength %d at page size %d is not supported\n",
2099 			ecc->strength, mtd->writesize);
2100 		return -ENOTSUPP;
2101 	}
2102 
2103 	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2104 	ecc->steps = l->nchunks;
2105 	ecc->size = l->data_bytes;
2106 
2107 	if (ecc->strength == 1) {
2108 		chip->ecc.algo = NAND_ECC_HAMMING;
2109 		ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2110 		ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2111 		ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2112 		ecc->read_oob = ecc->read_oob_raw;
2113 		ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2114 		ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2115 		ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2116 		ecc->write_oob = ecc->write_oob_raw;
2117 	} else {
2118 		chip->ecc.algo = NAND_ECC_BCH;
2119 		ecc->strength = 16;
2120 		ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2121 		ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2122 		ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2123 		ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2124 		ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2125 		ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2126 		ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2127 		ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2128 	}
2129 
2130 	return 0;
2131 }
2132 
2133 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2134 				 struct nand_ecc_ctrl *ecc)
2135 {
2136 	struct nand_chip *chip = mtd_to_nand(mtd);
2137 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2138 	int ret;
2139 
2140 	if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2141 		if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2142 			ecc->size = chip->ecc_step_ds;
2143 			ecc->strength = chip->ecc_strength_ds;
2144 		} else {
2145 			dev_info(nfc->dev,
2146 				 "No minimum ECC strength, using 1b/512B\n");
2147 			ecc->size = 512;
2148 			ecc->strength = 1;
2149 		}
2150 	}
2151 
2152 	switch (ecc->mode) {
2153 	case NAND_ECC_HW:
2154 		ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2155 		if (ret)
2156 			return ret;
2157 		break;
2158 	case NAND_ECC_NONE:
2159 	case NAND_ECC_SOFT:
2160 		if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2161 		    mtd->writesize != SZ_2K) {
2162 			dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2163 				mtd->writesize);
2164 			return -EINVAL;
2165 		}
2166 		break;
2167 	default:
2168 		return -EINVAL;
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2175 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2176 
2177 static struct nand_bbt_descr bbt_main_descr = {
2178 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2179 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2180 	.offs =	8,
2181 	.len = 6,
2182 	.veroffs = 14,
2183 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2184 	.pattern = bbt_pattern
2185 };
2186 
2187 static struct nand_bbt_descr bbt_mirror_descr = {
2188 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2189 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2190 	.offs =	8,
2191 	.len = 6,
2192 	.veroffs = 14,
2193 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2194 	.pattern = bbt_mirror_pattern
2195 };
2196 
2197 static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
2198 					    const struct nand_data_interface
2199 					    *conf)
2200 {
2201 	struct nand_chip *chip = mtd_to_nand(mtd);
2202 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2203 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2204 	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2205 	const struct nand_sdr_timings *sdr;
2206 	struct marvell_nfc_timings nfc_tmg;
2207 	int read_delay;
2208 
2209 	sdr = nand_get_sdr_timings(conf);
2210 	if (IS_ERR(sdr))
2211 		return PTR_ERR(sdr);
2212 
2213 	/*
2214 	 * SDR timings are given in pico-seconds while NFC timings must be
2215 	 * expressed in NAND controller clock cycles, which is half of the
2216 	 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2217 	 * This is not written anywhere in the datasheet but was observed
2218 	 * with an oscilloscope.
2219 	 *
2220 	 * NFC datasheet gives equations from which thoses calculations
2221 	 * are derived, they tend to be slightly more restrictives than the
2222 	 * given core timings and may improve the overall speed.
2223 	 */
2224 	nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2225 	nfc_tmg.tRH = nfc_tmg.tRP;
2226 	nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2227 	nfc_tmg.tWH = nfc_tmg.tWP;
2228 	nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2229 	nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2230 	nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2231 	/*
2232 	 * Read delay is the time of propagation from SoC pins to NFC internal
2233 	 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2234 	 * EDO mode, an additional delay of tRH must be taken into account so
2235 	 * the data is sampled on the falling edge instead of the rising edge.
2236 	 */
2237 	read_delay = sdr->tRC_min >= 30000 ?
2238 		MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2239 
2240 	nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2241 	/*
2242 	 * tWHR and tRHW are supposed to be read to write delays (and vice
2243 	 * versa) but in some cases, ie. when doing a change column, they must
2244 	 * be greater than that to be sure tCCS delay is respected.
2245 	 */
2246 	nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2247 				 period_ns) - 2,
2248 	nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2249 				 period_ns);
2250 
2251 	/*
2252 	 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2253 	 * NFCv1: No WAIT_MODE, tR must be maximal.
2254 	 */
2255 	if (nfc->caps->is_nfcv2) {
2256 		nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2257 	} else {
2258 		nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2259 					 period_ns);
2260 		if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2261 			nfc_tmg.tR = nfc_tmg.tCH - 3;
2262 		else
2263 			nfc_tmg.tR = 0;
2264 	}
2265 
2266 	if (chipnr < 0)
2267 		return 0;
2268 
2269 	marvell_nand->ndtr0 =
2270 		NDTR0_TRP(nfc_tmg.tRP) |
2271 		NDTR0_TRH(nfc_tmg.tRH) |
2272 		NDTR0_ETRP(nfc_tmg.tRP) |
2273 		NDTR0_TWP(nfc_tmg.tWP) |
2274 		NDTR0_TWH(nfc_tmg.tWH) |
2275 		NDTR0_TCS(nfc_tmg.tCS) |
2276 		NDTR0_TCH(nfc_tmg.tCH);
2277 
2278 	marvell_nand->ndtr1 =
2279 		NDTR1_TAR(nfc_tmg.tAR) |
2280 		NDTR1_TWHR(nfc_tmg.tWHR) |
2281 		NDTR1_TR(nfc_tmg.tR);
2282 
2283 	if (nfc->caps->is_nfcv2) {
2284 		marvell_nand->ndtr0 |=
2285 			NDTR0_RD_CNT_DEL(read_delay) |
2286 			NDTR0_SELCNTR |
2287 			NDTR0_TADL(nfc_tmg.tADL);
2288 
2289 		marvell_nand->ndtr1 |=
2290 			NDTR1_TRHW(nfc_tmg.tRHW) |
2291 			NDTR1_WAIT_MODE;
2292 	}
2293 
2294 	return 0;
2295 }
2296 
2297 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2298 				  struct device_node *np)
2299 {
2300 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2301 	struct marvell_nand_chip *marvell_nand;
2302 	struct mtd_info *mtd;
2303 	struct nand_chip *chip;
2304 	int nsels, ret, i;
2305 	u32 cs, rb;
2306 
2307 	/*
2308 	 * The legacy "num-cs" property indicates the number of CS on the only
2309 	 * chip connected to the controller (legacy bindings does not support
2310 	 * more than one chip). The CS and RB pins are always the #0.
2311 	 *
2312 	 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2313 	 * properties must be filled. For each chip, expressed as a subnode,
2314 	 * "reg" points to the CS lines and "nand-rb" to the RB line.
2315 	 */
2316 	if (pdata || nfc->caps->legacy_of_bindings) {
2317 		nsels = 1;
2318 	} else {
2319 		nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2320 		if (nsels <= 0) {
2321 			dev_err(dev, "missing/invalid reg property\n");
2322 			return -EINVAL;
2323 		}
2324 	}
2325 
2326 	/* Alloc the nand chip structure */
2327 	marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
2328 				    (nsels *
2329 				     sizeof(struct marvell_nand_chip_sel)),
2330 				    GFP_KERNEL);
2331 	if (!marvell_nand) {
2332 		dev_err(dev, "could not allocate chip structure\n");
2333 		return -ENOMEM;
2334 	}
2335 
2336 	marvell_nand->nsels = nsels;
2337 	marvell_nand->selected_die = -1;
2338 
2339 	for (i = 0; i < nsels; i++) {
2340 		if (pdata || nfc->caps->legacy_of_bindings) {
2341 			/*
2342 			 * Legacy bindings use the CS lines in natural
2343 			 * order (0, 1, ...)
2344 			 */
2345 			cs = i;
2346 		} else {
2347 			/* Retrieve CS id */
2348 			ret = of_property_read_u32_index(np, "reg", i, &cs);
2349 			if (ret) {
2350 				dev_err(dev, "could not retrieve reg property: %d\n",
2351 					ret);
2352 				return ret;
2353 			}
2354 		}
2355 
2356 		if (cs >= nfc->caps->max_cs_nb) {
2357 			dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2358 				cs, nfc->caps->max_cs_nb);
2359 			return -EINVAL;
2360 		}
2361 
2362 		if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2363 			dev_err(dev, "CS %d already assigned\n", cs);
2364 			return -EINVAL;
2365 		}
2366 
2367 		/*
2368 		 * The cs variable represents the chip select id, which must be
2369 		 * converted in bit fields for NDCB0 and NDCB2 to select the
2370 		 * right chip. Unfortunately, due to a lack of information on
2371 		 * the subject and incoherent documentation, the user should not
2372 		 * use CS1 and CS3 at all as asserting them is not supported in
2373 		 * a reliable way (due to multiplexing inside ADDR5 field).
2374 		 */
2375 		marvell_nand->sels[i].cs = cs;
2376 		switch (cs) {
2377 		case 0:
2378 		case 2:
2379 			marvell_nand->sels[i].ndcb0_csel = 0;
2380 			break;
2381 		case 1:
2382 		case 3:
2383 			marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2384 			break;
2385 		default:
2386 			return -EINVAL;
2387 		}
2388 
2389 		/* Retrieve RB id */
2390 		if (pdata || nfc->caps->legacy_of_bindings) {
2391 			/* Legacy bindings always use RB #0 */
2392 			rb = 0;
2393 		} else {
2394 			ret = of_property_read_u32_index(np, "nand-rb", i,
2395 							 &rb);
2396 			if (ret) {
2397 				dev_err(dev,
2398 					"could not retrieve RB property: %d\n",
2399 					ret);
2400 				return ret;
2401 			}
2402 		}
2403 
2404 		if (rb >= nfc->caps->max_rb_nb) {
2405 			dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2406 				rb, nfc->caps->max_rb_nb);
2407 			return -EINVAL;
2408 		}
2409 
2410 		marvell_nand->sels[i].rb = rb;
2411 	}
2412 
2413 	chip = &marvell_nand->chip;
2414 	chip->controller = &nfc->controller;
2415 	nand_set_flash_node(chip, np);
2416 
2417 	chip->exec_op = marvell_nfc_exec_op;
2418 	chip->select_chip = marvell_nfc_select_chip;
2419 	if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2420 		chip->setup_data_interface = marvell_nfc_setup_data_interface;
2421 
2422 	mtd = nand_to_mtd(chip);
2423 	mtd->dev.parent = dev;
2424 
2425 	/*
2426 	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2427 	 * in the DT node, this entry will be overwritten in nand_scan_ident().
2428 	 */
2429 	chip->ecc.mode = NAND_ECC_HW;
2430 
2431 	/*
2432 	 * Save a reference value for timing registers before
2433 	 * ->setup_data_interface() is called.
2434 	 */
2435 	marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2436 	marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2437 
2438 	chip->options |= NAND_BUSWIDTH_AUTO;
2439 	ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL);
2440 	if (ret) {
2441 		dev_err(dev, "could not identify the nand chip\n");
2442 		return ret;
2443 	}
2444 
2445 	if (pdata && pdata->flash_bbt)
2446 		chip->bbt_options |= NAND_BBT_USE_FLASH;
2447 
2448 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2449 		/*
2450 		 * We'll use a bad block table stored in-flash and don't
2451 		 * allow writing the bad block marker to the flash.
2452 		 */
2453 		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2454 		chip->bbt_td = &bbt_main_descr;
2455 		chip->bbt_md = &bbt_mirror_descr;
2456 	}
2457 
2458 	/* Save the chip-specific fields of NDCR */
2459 	marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2460 	if (chip->options & NAND_BUSWIDTH_16)
2461 		marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2462 
2463 	/*
2464 	 * On small page NANDs, only one cycle is needed to pass the
2465 	 * column address.
2466 	 */
2467 	if (mtd->writesize <= 512) {
2468 		marvell_nand->addr_cyc = 1;
2469 	} else {
2470 		marvell_nand->addr_cyc = 2;
2471 		marvell_nand->ndcr |= NDCR_RA_START;
2472 	}
2473 
2474 	/*
2475 	 * Now add the number of cycles needed to pass the row
2476 	 * address.
2477 	 *
2478 	 * Addressing a chip using CS 2 or 3 should also need the third row
2479 	 * cycle but due to inconsistance in the documentation and lack of
2480 	 * hardware to test this situation, this case is not supported.
2481 	 */
2482 	if (chip->options & NAND_ROW_ADDR_3)
2483 		marvell_nand->addr_cyc += 3;
2484 	else
2485 		marvell_nand->addr_cyc += 2;
2486 
2487 	if (pdata) {
2488 		chip->ecc.size = pdata->ecc_step_size;
2489 		chip->ecc.strength = pdata->ecc_strength;
2490 	}
2491 
2492 	ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2493 	if (ret) {
2494 		dev_err(dev, "ECC init failed: %d\n", ret);
2495 		return ret;
2496 	}
2497 
2498 	if (chip->ecc.mode == NAND_ECC_HW) {
2499 		/*
2500 		 * Subpage write not available with hardware ECC, prohibit also
2501 		 * subpage read as in userspace subpage access would still be
2502 		 * allowed and subpage write, if used, would lead to numerous
2503 		 * uncorrectable ECC errors.
2504 		 */
2505 		chip->options |= NAND_NO_SUBPAGE_WRITE;
2506 	}
2507 
2508 	if (pdata || nfc->caps->legacy_of_bindings) {
2509 		/*
2510 		 * We keep the MTD name unchanged to avoid breaking platforms
2511 		 * where the MTD cmdline parser is used and the bootloader
2512 		 * has not been updated to use the new naming scheme.
2513 		 */
2514 		mtd->name = "pxa3xx_nand-0";
2515 	} else if (!mtd->name) {
2516 		/*
2517 		 * If the new bindings are used and the bootloader has not been
2518 		 * updated to pass a new mtdparts parameter on the cmdline, you
2519 		 * should define the following property in your NAND node, ie:
2520 		 *
2521 		 *	label = "main-storage";
2522 		 *
2523 		 * This way, mtd->name will be set by the core when
2524 		 * nand_set_flash_node() is called.
2525 		 */
2526 		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2527 					   "%s:nand.%d", dev_name(nfc->dev),
2528 					   marvell_nand->sels[0].cs);
2529 		if (!mtd->name) {
2530 			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2531 			return -ENOMEM;
2532 		}
2533 	}
2534 
2535 	ret = nand_scan_tail(mtd);
2536 	if (ret) {
2537 		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
2538 		return ret;
2539 	}
2540 
2541 	if (pdata)
2542 		/* Legacy bindings support only one chip */
2543 		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2544 	else
2545 		ret = mtd_device_register(mtd, NULL, 0);
2546 	if (ret) {
2547 		dev_err(dev, "failed to register mtd device: %d\n", ret);
2548 		nand_release(mtd);
2549 		return ret;
2550 	}
2551 
2552 	list_add_tail(&marvell_nand->node, &nfc->chips);
2553 
2554 	return 0;
2555 }
2556 
2557 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2558 {
2559 	struct device_node *np = dev->of_node;
2560 	struct device_node *nand_np;
2561 	int max_cs = nfc->caps->max_cs_nb;
2562 	int nchips;
2563 	int ret;
2564 
2565 	if (!np)
2566 		nchips = 1;
2567 	else
2568 		nchips = of_get_child_count(np);
2569 
2570 	if (nchips > max_cs) {
2571 		dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2572 			max_cs);
2573 		return -EINVAL;
2574 	}
2575 
2576 	/*
2577 	 * Legacy bindings do not use child nodes to exhibit NAND chip
2578 	 * properties and layout. Instead, NAND properties are mixed with the
2579 	 * controller ones, and partitions are defined as direct subnodes of the
2580 	 * NAND controller node.
2581 	 */
2582 	if (nfc->caps->legacy_of_bindings) {
2583 		ret = marvell_nand_chip_init(dev, nfc, np);
2584 		return ret;
2585 	}
2586 
2587 	for_each_child_of_node(np, nand_np) {
2588 		ret = marvell_nand_chip_init(dev, nfc, nand_np);
2589 		if (ret) {
2590 			of_node_put(nand_np);
2591 			return ret;
2592 		}
2593 	}
2594 
2595 	return 0;
2596 }
2597 
2598 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2599 {
2600 	struct marvell_nand_chip *entry, *temp;
2601 
2602 	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2603 		nand_release(nand_to_mtd(&entry->chip));
2604 		list_del(&entry->node);
2605 	}
2606 }
2607 
2608 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2609 {
2610 	struct platform_device *pdev = container_of(nfc->dev,
2611 						    struct platform_device,
2612 						    dev);
2613 	struct dma_slave_config config = {};
2614 	struct resource *r;
2615 	dma_cap_mask_t mask;
2616 	struct pxad_param param;
2617 	int ret;
2618 
2619 	if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2620 		dev_warn(nfc->dev,
2621 			 "DMA not enabled in configuration\n");
2622 		return -ENOTSUPP;
2623 	}
2624 
2625 	ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2626 	if (ret)
2627 		return ret;
2628 
2629 	r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
2630 	if (!r) {
2631 		dev_err(nfc->dev, "No resource defined for data DMA\n");
2632 		return -ENXIO;
2633 	}
2634 
2635 	param.drcmr = r->start;
2636 	param.prio = PXAD_PRIO_LOWEST;
2637 	dma_cap_zero(mask);
2638 	dma_cap_set(DMA_SLAVE, mask);
2639 	nfc->dma_chan =
2640 		dma_request_slave_channel_compat(mask, pxad_filter_fn,
2641 						 &param, nfc->dev,
2642 						 "data");
2643 	if (!nfc->dma_chan) {
2644 		dev_err(nfc->dev,
2645 			"Unable to request data DMA channel\n");
2646 		return -ENODEV;
2647 	}
2648 
2649 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2650 	if (!r)
2651 		return -ENXIO;
2652 
2653 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2654 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2655 	config.src_addr = r->start + NDDB;
2656 	config.dst_addr = r->start + NDDB;
2657 	config.src_maxburst = 32;
2658 	config.dst_maxburst = 32;
2659 	ret = dmaengine_slave_config(nfc->dma_chan, &config);
2660 	if (ret < 0) {
2661 		dev_err(nfc->dev, "Failed to configure DMA channel\n");
2662 		return ret;
2663 	}
2664 
2665 	/*
2666 	 * DMA must act on length multiple of 32 and this length may be
2667 	 * bigger than the destination buffer. Use this buffer instead
2668 	 * for DMA transfers and then copy the desired amount of data to
2669 	 * the provided buffer.
2670 	 */
2671 	nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2672 	if (!nfc->dma_buf)
2673 		return -ENOMEM;
2674 
2675 	nfc->use_dma = true;
2676 
2677 	return 0;
2678 }
2679 
2680 static int marvell_nfc_init(struct marvell_nfc *nfc)
2681 {
2682 	struct device_node *np = nfc->dev->of_node;
2683 
2684 	/*
2685 	 * Some SoCs like A7k/A8k need to enable manually the NAND
2686 	 * controller, gated clocks and reset bits to avoid being bootloader
2687 	 * dependent. This is done through the use of the System Functions
2688 	 * registers.
2689 	 */
2690 	if (nfc->caps->need_system_controller) {
2691 		struct regmap *sysctrl_base =
2692 			syscon_regmap_lookup_by_phandle(np,
2693 							"marvell,system-controller");
2694 		u32 reg;
2695 
2696 		if (IS_ERR(sysctrl_base))
2697 			return PTR_ERR(sysctrl_base);
2698 
2699 		reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
2700 		      GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2701 		      GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2702 		      GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
2703 		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
2704 
2705 		regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, &reg);
2706 		reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
2707 		regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
2708 
2709 		regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, &reg);
2710 		reg |= GENCONF_ND_CLK_CTRL_EN;
2711 		regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
2712 	}
2713 
2714 	/* Configure the DMA if appropriate */
2715 	if (!nfc->caps->is_nfcv2)
2716 		marvell_nfc_init_dma(nfc);
2717 
2718 	/*
2719 	 * ECC operations and interruptions are only enabled when specifically
2720 	 * needed. ECC shall not be activated in the early stages (fails probe).
2721 	 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2722 	 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2723 	 * offset in the read page and this will fail the protection.
2724 	 */
2725 	writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2726 		       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2727 	writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2728 	writel_relaxed(0, nfc->regs + NDECCCTRL);
2729 
2730 	return 0;
2731 }
2732 
2733 static int marvell_nfc_probe(struct platform_device *pdev)
2734 {
2735 	struct device *dev = &pdev->dev;
2736 	struct resource *r;
2737 	struct marvell_nfc *nfc;
2738 	int ret;
2739 	int irq;
2740 
2741 	nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2742 			   GFP_KERNEL);
2743 	if (!nfc)
2744 		return -ENOMEM;
2745 
2746 	nfc->dev = dev;
2747 	nand_hw_control_init(&nfc->controller);
2748 	INIT_LIST_HEAD(&nfc->chips);
2749 
2750 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2751 	nfc->regs = devm_ioremap_resource(dev, r);
2752 	if (IS_ERR(nfc->regs))
2753 		return PTR_ERR(nfc->regs);
2754 
2755 	irq = platform_get_irq(pdev, 0);
2756 	if (irq < 0) {
2757 		dev_err(dev, "failed to retrieve irq\n");
2758 		return irq;
2759 	}
2760 
2761 	nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2762 
2763 	/* Managed the legacy case (when the first clock was not named) */
2764 	if (nfc->core_clk == ERR_PTR(-ENOENT))
2765 		nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2766 
2767 	if (IS_ERR(nfc->core_clk))
2768 		return PTR_ERR(nfc->core_clk);
2769 
2770 	ret = clk_prepare_enable(nfc->core_clk);
2771 	if (ret)
2772 		return ret;
2773 
2774 	nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2775 	if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2776 		if (!IS_ERR(nfc->reg_clk)) {
2777 			ret = clk_prepare_enable(nfc->reg_clk);
2778 			if (ret)
2779 				goto unprepare_core_clk;
2780 		} else {
2781 			ret = PTR_ERR(nfc->reg_clk);
2782 			goto unprepare_core_clk;
2783 		}
2784 	}
2785 
2786 	marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2787 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2788 	ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2789 			       0, "marvell-nfc", nfc);
2790 	if (ret)
2791 		goto unprepare_reg_clk;
2792 
2793 	/* Get NAND controller capabilities */
2794 	if (pdev->id_entry)
2795 		nfc->caps = (void *)pdev->id_entry->driver_data;
2796 	else
2797 		nfc->caps = of_device_get_match_data(&pdev->dev);
2798 
2799 	if (!nfc->caps) {
2800 		dev_err(dev, "Could not retrieve NFC caps\n");
2801 		ret = -EINVAL;
2802 		goto unprepare_reg_clk;
2803 	}
2804 
2805 	/* Init the controller and then probe the chips */
2806 	ret = marvell_nfc_init(nfc);
2807 	if (ret)
2808 		goto unprepare_reg_clk;
2809 
2810 	platform_set_drvdata(pdev, nfc);
2811 
2812 	ret = marvell_nand_chips_init(dev, nfc);
2813 	if (ret)
2814 		goto unprepare_reg_clk;
2815 
2816 	return 0;
2817 
2818 unprepare_reg_clk:
2819 	clk_disable_unprepare(nfc->reg_clk);
2820 unprepare_core_clk:
2821 	clk_disable_unprepare(nfc->core_clk);
2822 
2823 	return ret;
2824 }
2825 
2826 static int marvell_nfc_remove(struct platform_device *pdev)
2827 {
2828 	struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2829 
2830 	marvell_nand_chips_cleanup(nfc);
2831 
2832 	if (nfc->use_dma) {
2833 		dmaengine_terminate_all(nfc->dma_chan);
2834 		dma_release_channel(nfc->dma_chan);
2835 	}
2836 
2837 	clk_disable_unprepare(nfc->reg_clk);
2838 	clk_disable_unprepare(nfc->core_clk);
2839 
2840 	return 0;
2841 }
2842 
2843 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2844 	.max_cs_nb = 4,
2845 	.max_rb_nb = 2,
2846 	.need_system_controller = true,
2847 	.is_nfcv2 = true,
2848 };
2849 
2850 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
2851 	.max_cs_nb = 4,
2852 	.max_rb_nb = 2,
2853 	.is_nfcv2 = true,
2854 };
2855 
2856 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
2857 	.max_cs_nb = 2,
2858 	.max_rb_nb = 1,
2859 	.use_dma = true,
2860 };
2861 
2862 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
2863 	.max_cs_nb = 4,
2864 	.max_rb_nb = 2,
2865 	.need_system_controller = true,
2866 	.legacy_of_bindings = true,
2867 	.is_nfcv2 = true,
2868 };
2869 
2870 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
2871 	.max_cs_nb = 4,
2872 	.max_rb_nb = 2,
2873 	.legacy_of_bindings = true,
2874 	.is_nfcv2 = true,
2875 };
2876 
2877 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
2878 	.max_cs_nb = 2,
2879 	.max_rb_nb = 1,
2880 	.legacy_of_bindings = true,
2881 	.use_dma = true,
2882 };
2883 
2884 static const struct platform_device_id marvell_nfc_platform_ids[] = {
2885 	{
2886 		.name = "pxa3xx-nand",
2887 		.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
2888 	},
2889 	{ /* sentinel */ },
2890 };
2891 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
2892 
2893 static const struct of_device_id marvell_nfc_of_ids[] = {
2894 	{
2895 		.compatible = "marvell,armada-8k-nand-controller",
2896 		.data = &marvell_armada_8k_nfc_caps,
2897 	},
2898 	{
2899 		.compatible = "marvell,armada370-nand-controller",
2900 		.data = &marvell_armada370_nfc_caps,
2901 	},
2902 	{
2903 		.compatible = "marvell,pxa3xx-nand-controller",
2904 		.data = &marvell_pxa3xx_nfc_caps,
2905 	},
2906 	/* Support for old/deprecated bindings: */
2907 	{
2908 		.compatible = "marvell,armada-8k-nand",
2909 		.data = &marvell_armada_8k_nfc_legacy_caps,
2910 	},
2911 	{
2912 		.compatible = "marvell,armada370-nand",
2913 		.data = &marvell_armada370_nfc_legacy_caps,
2914 	},
2915 	{
2916 		.compatible = "marvell,pxa3xx-nand",
2917 		.data = &marvell_pxa3xx_nfc_legacy_caps,
2918 	},
2919 	{ /* sentinel */ },
2920 };
2921 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
2922 
2923 static struct platform_driver marvell_nfc_driver = {
2924 	.driver	= {
2925 		.name		= "marvell-nfc",
2926 		.of_match_table = marvell_nfc_of_ids,
2927 	},
2928 	.id_table = marvell_nfc_platform_ids,
2929 	.probe = marvell_nfc_probe,
2930 	.remove	= marvell_nfc_remove,
2931 };
2932 module_platform_driver(marvell_nfc_driver);
2933 
2934 MODULE_LICENSE("GPL");
2935 MODULE_DESCRIPTION("Marvell NAND controller driver");
2936