1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 * 9 * This NAND controller driver handles two versions of the hardware, 10 * one is called NFCv1 and is available on PXA SoCs and the other is 11 * called NFCv2 and is available on Armada SoCs. 12 * 13 * The main visible difference is that NFCv1 only has Hamming ECC 14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA 15 * is not used with NFCv2. 16 * 17 * The ECC layouts are depicted in details in Marvell AN-379, but here 18 * is a brief description. 19 * 20 * When using Hamming, the data is split in 512B chunks (either 1, 2 21 * or 4) and each chunk will have its own ECC "digest" of 6B at the 22 * beginning of the OOB area and eventually the remaining free OOB 23 * bytes (also called "spare" bytes in the driver). This engine 24 * corrects up to 1 bit per chunk and detects reliably an error if 25 * there are at most 2 bitflips. Here is the page layout used by the 26 * controller when Hamming is chosen: 27 * 28 * +-------------------------------------------------------------+ 29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | 30 * +-------------------------------------------------------------+ 31 * 32 * When using the BCH engine, there are N identical (data + free OOB + 33 * ECC) sections and potentially an extra one to deal with 34 * configurations where the chosen (data + free OOB + ECC) sizes do 35 * not align with the page (data + OOB) size. ECC bytes are always 36 * 30B per ECC chunk. Here is the page layout used by the controller 37 * when BCH is chosen: 38 * 39 * +----------------------------------------- 40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ... 41 * +----------------------------------------- 42 * 43 * ------------------------------------------- 44 * ... | Data N | Free OOB bytes N | ECC N | 45 * ------------------------------------------- 46 * 47 * --------------------------------------------+ 48 * Last Data | Last Free OOB bytes | Last ECC | 49 * --------------------------------------------+ 50 * 51 * In both cases, the layout seen by the user is always: all data 52 * first, then all free OOB bytes and finally all ECC bytes. With BCH, 53 * ECC bytes are 30B long and are padded with 0xFF to align on 32 54 * bytes. 55 * 56 * The controller has certain limitations that are handled by the 57 * driver: 58 * - It can only read 2k at a time. To overcome this limitation, the 59 * driver issues data cycles on the bus, without issuing new 60 * CMD + ADDR cycles. The Marvell term is "naked" operations. 61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 62 * bits. What can be tuned is the ECC block size as long as it 63 * stays between 512B and 2kiB. It's usually chosen based on the 64 * chip ECC requirements. For instance, using 2kiB ECC chunks 65 * provides 4b/512B correctability. 66 * - The controller will always treat data bytes, free OOB bytes 67 * and ECC bytes in that order, no matter what the real layout is 68 * (which is usually all data then all OOB bytes). The 69 * marvell_nfc_layouts array below contains the currently 70 * supported layouts. 71 * - Because of these weird layouts, the Bad Block Markers can be 72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM 73 * option must be set to prevent scanning/writing bad block 74 * markers. 75 */ 76 77 #include <linux/module.h> 78 #include <linux/clk.h> 79 #include <linux/mtd/rawnand.h> 80 #include <linux/of.h> 81 #include <linux/iopoll.h> 82 #include <linux/interrupt.h> 83 #include <linux/platform_device.h> 84 #include <linux/slab.h> 85 #include <linux/mfd/syscon.h> 86 #include <linux/regmap.h> 87 #include <asm/unaligned.h> 88 89 #include <linux/dmaengine.h> 90 #include <linux/dma-mapping.h> 91 #include <linux/dma/pxa-dma.h> 92 #include <linux/platform_data/mtd-nand-pxa3xx.h> 93 94 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 95 #define FIFO_DEPTH 8 96 #define FIFO_REP(x) (x / sizeof(u32)) 97 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 98 /* NFC does not support transfers of larger chunks at a time */ 99 #define MAX_CHUNK_SIZE 2112 100 /* NFCv1 cannot read more that 7 bytes of ID */ 101 #define NFCV1_READID_LEN 7 102 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 103 #define POLL_PERIOD 0 104 #define POLL_TIMEOUT 100000 105 /* Interrupt maximum wait period in ms */ 106 #define IRQ_TIMEOUT 1000 107 /* Latency in clock cycles between SoC pins and NFC logic */ 108 #define MIN_RD_DEL_CNT 3 109 /* Maximum number of contiguous address cycles */ 110 #define MAX_ADDRESS_CYC_NFCV1 5 111 #define MAX_ADDRESS_CYC_NFCV2 7 112 /* System control registers/bits to enable the NAND controller on some SoCs */ 113 #define GENCONF_SOC_DEVICE_MUX 0x208 114 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 115 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 116 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 117 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 118 #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27) 119 #define GENCONF_CLK_GATING_CTRL 0x220 120 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 121 #define GENCONF_ND_CLK_CTRL 0x700 122 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 123 124 /* NAND controller data flash control register */ 125 #define NDCR 0x00 126 #define NDCR_ALL_INT GENMASK(11, 0) 127 #define NDCR_CS1_CMDDM BIT(7) 128 #define NDCR_CS0_CMDDM BIT(8) 129 #define NDCR_RDYM BIT(11) 130 #define NDCR_ND_ARB_EN BIT(12) 131 #define NDCR_RA_START BIT(15) 132 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 133 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 134 #define NDCR_DWIDTH_M BIT(26) 135 #define NDCR_DWIDTH_C BIT(27) 136 #define NDCR_ND_RUN BIT(28) 137 #define NDCR_DMA_EN BIT(29) 138 #define NDCR_ECC_EN BIT(30) 139 #define NDCR_SPARE_EN BIT(31) 140 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 141 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 142 143 /* NAND interface timing parameter 0 register */ 144 #define NDTR0 0x04 145 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 146 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 147 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 148 #define NDTR0_SEL_NRE_EDGE BIT(7) 149 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 150 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 151 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 152 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 153 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 154 #define NDTR0_SELCNTR BIT(26) 155 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 156 157 /* NAND interface timing parameter 1 register */ 158 #define NDTR1 0x0C 159 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 160 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 161 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 162 #define NDTR1_PRESCALE BIT(14) 163 #define NDTR1_WAIT_MODE BIT(15) 164 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 165 166 /* NAND controller status register */ 167 #define NDSR 0x14 168 #define NDSR_WRCMDREQ BIT(0) 169 #define NDSR_RDDREQ BIT(1) 170 #define NDSR_WRDREQ BIT(2) 171 #define NDSR_CORERR BIT(3) 172 #define NDSR_UNCERR BIT(4) 173 #define NDSR_CMDD(cs) BIT(8 - cs) 174 #define NDSR_RDY(rb) BIT(11 + rb) 175 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 176 177 /* NAND ECC control register */ 178 #define NDECCCTRL 0x28 179 #define NDECCCTRL_BCH_EN BIT(0) 180 181 /* NAND controller data buffer register */ 182 #define NDDB 0x40 183 184 /* NAND controller command buffer 0 register */ 185 #define NDCB0 0x48 186 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 187 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 188 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 189 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 190 #define NDCB0_DBC BIT(19) 191 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 192 #define NDCB0_CSEL BIT(24) 193 #define NDCB0_RDY_BYP BIT(27) 194 #define NDCB0_LEN_OVRD BIT(28) 195 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 196 197 /* NAND controller command buffer 1 register */ 198 #define NDCB1 0x4C 199 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 200 #define NDCB1_ADDRS_PAGE(x) (x << 16) 201 202 /* NAND controller command buffer 2 register */ 203 #define NDCB2 0x50 204 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 205 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 206 207 /* NAND controller command buffer 3 register */ 208 #define NDCB3 0x54 209 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 210 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 211 212 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 213 #define TYPE_READ 0 214 #define TYPE_WRITE 1 215 #define TYPE_ERASE 2 216 #define TYPE_READ_ID 3 217 #define TYPE_STATUS 4 218 #define TYPE_RESET 5 219 #define TYPE_NAKED_CMD 6 220 #define TYPE_NAKED_ADDR 7 221 #define TYPE_MASK 7 222 #define XTYPE_MONOLITHIC_RW 0 223 #define XTYPE_LAST_NAKED_RW 1 224 #define XTYPE_FINAL_COMMAND 3 225 #define XTYPE_READ 4 226 #define XTYPE_WRITE_DISPATCH 4 227 #define XTYPE_NAKED_RW 5 228 #define XTYPE_COMMAND_DISPATCH 6 229 #define XTYPE_MASK 7 230 231 /** 232 * struct marvell_hw_ecc_layout - layout of Marvell ECC 233 * 234 * Marvell ECC engine works differently than the others, in order to limit the 235 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 236 * per subpage, and depending on a the desired strength needed by the NAND chip, 237 * a particular layout mixing data/spare/ecc is defined, with a possible last 238 * chunk smaller that the others. 239 * 240 * @writesize: Full page size on which the layout applies 241 * @chunk: Desired ECC chunk size on which the layout applies 242 * @strength: Desired ECC strength (per chunk size bytes) on which the 243 * layout applies 244 * @nchunks: Total number of chunks 245 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 246 * repetitions of the pattern: 247 * (data_bytes + spare_bytes + ecc_bytes). 248 * @data_bytes: Number of data bytes per chunk 249 * @spare_bytes: Number of spare bytes per chunk 250 * @ecc_bytes: Number of ecc bytes per chunk 251 * @last_data_bytes: Number of data bytes in the last chunk 252 * @last_spare_bytes: Number of spare bytes in the last chunk 253 * @last_ecc_bytes: Number of ecc bytes in the last chunk 254 */ 255 struct marvell_hw_ecc_layout { 256 /* Constraints */ 257 int writesize; 258 int chunk; 259 int strength; 260 /* Corresponding layout */ 261 int nchunks; 262 int full_chunk_cnt; 263 int data_bytes; 264 int spare_bytes; 265 int ecc_bytes; 266 int last_data_bytes; 267 int last_spare_bytes; 268 int last_ecc_bytes; 269 }; 270 271 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 272 { \ 273 .writesize = ws, \ 274 .chunk = dc, \ 275 .strength = ds, \ 276 .nchunks = nc, \ 277 .full_chunk_cnt = fcc, \ 278 .data_bytes = db, \ 279 .spare_bytes = sb, \ 280 .ecc_bytes = eb, \ 281 .last_data_bytes = ldb, \ 282 .last_spare_bytes = lsb, \ 283 .last_ecc_bytes = leb, \ 284 } 285 286 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 287 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 288 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 289 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 290 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 291 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), 292 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,64, 30), 293 MARVELL_LAYOUT( 2048, 512, 12, 3, 2, 704, 0, 30,640, 0, 30), 294 MARVELL_LAYOUT( 2048, 512, 16, 5, 4, 512, 0, 30, 0, 32, 30), 295 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 296 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 297 MARVELL_LAYOUT( 4096, 512, 12, 6, 5, 704, 0, 30,576, 32, 30), 298 MARVELL_LAYOUT( 4096, 512, 16, 9, 8, 512, 0, 30, 0, 32, 30), 299 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), 300 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), 301 MARVELL_LAYOUT( 8192, 512, 12, 12, 11, 704, 0, 30,448, 64, 30), 302 MARVELL_LAYOUT( 8192, 512, 16, 17, 16, 512, 0, 30, 0, 32, 30), 303 }; 304 305 /** 306 * struct marvell_nand_chip_sel - CS line description 307 * 308 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 309 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 310 * The datasheet describes the logic with an error: ADDR5 field is once 311 * declared at the beginning of NDCB2, and another time at its end. Because the 312 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 313 * to use the last bit of this field instead of the first ones. 314 * 315 * @cs: Wanted CE lane. 316 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 317 * selecting the wanted CE lane. This is set once when 318 * the Device Tree is probed. 319 * @rb: Ready/Busy pin for the flash chip 320 */ 321 struct marvell_nand_chip_sel { 322 unsigned int cs; 323 u32 ndcb0_csel; 324 unsigned int rb; 325 }; 326 327 /** 328 * struct marvell_nand_chip - stores NAND chip device related information 329 * 330 * @chip: Base NAND chip structure 331 * @node: Used to store NAND chips into a list 332 * @layout: NAND layout when using hardware ECC 333 * @ndcr: Controller register value for this NAND chip 334 * @ndtr0: Timing registers 0 value for this NAND chip 335 * @ndtr1: Timing registers 1 value for this NAND chip 336 * @addr_cyc: Amount of cycles needed to pass column address 337 * @selected_die: Current active CS 338 * @nsels: Number of CS lines required by the NAND chip 339 * @sels: Array of CS lines descriptions 340 */ 341 struct marvell_nand_chip { 342 struct nand_chip chip; 343 struct list_head node; 344 const struct marvell_hw_ecc_layout *layout; 345 u32 ndcr; 346 u32 ndtr0; 347 u32 ndtr1; 348 int addr_cyc; 349 int selected_die; 350 unsigned int nsels; 351 struct marvell_nand_chip_sel sels[]; 352 }; 353 354 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 355 { 356 return container_of(chip, struct marvell_nand_chip, chip); 357 } 358 359 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 360 *nand) 361 { 362 return &nand->sels[nand->selected_die]; 363 } 364 365 /** 366 * struct marvell_nfc_caps - NAND controller capabilities for distinction 367 * between compatible strings 368 * 369 * @max_cs_nb: Number of Chip Select lines available 370 * @max_rb_nb: Number of Ready/Busy lines available 371 * @need_system_controller: Indicates if the SoC needs to have access to the 372 * system controller (ie. to enable the NAND controller) 373 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 374 * fashion way 375 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 376 * BCH error detection and correction algorithm, 377 * NDCB3 register has been added 378 * @use_dma: Use dma for data transfers 379 * @max_mode_number: Maximum timing mode supported by the controller 380 */ 381 struct marvell_nfc_caps { 382 unsigned int max_cs_nb; 383 unsigned int max_rb_nb; 384 bool need_system_controller; 385 bool legacy_of_bindings; 386 bool is_nfcv2; 387 bool use_dma; 388 unsigned int max_mode_number; 389 }; 390 391 /** 392 * struct marvell_nfc - stores Marvell NAND controller information 393 * 394 * @controller: Base controller structure 395 * @dev: Parent device (used to print error messages) 396 * @regs: NAND controller registers 397 * @core_clk: Core clock 398 * @reg_clk: Registers clock 399 * @complete: Completion object to wait for NAND controller events 400 * @assigned_cs: Bitmask describing already assigned CS lines 401 * @chips: List containing all the NAND chips attached to 402 * this NAND controller 403 * @selected_chip: Currently selected target chip 404 * @caps: NAND controller capabilities for each compatible string 405 * @use_dma: Whetner DMA is used 406 * @dma_chan: DMA channel (NFCv1 only) 407 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 408 */ 409 struct marvell_nfc { 410 struct nand_controller controller; 411 struct device *dev; 412 void __iomem *regs; 413 struct clk *core_clk; 414 struct clk *reg_clk; 415 struct completion complete; 416 unsigned long assigned_cs; 417 struct list_head chips; 418 struct nand_chip *selected_chip; 419 const struct marvell_nfc_caps *caps; 420 421 /* DMA (NFCv1 only) */ 422 bool use_dma; 423 struct dma_chan *dma_chan; 424 u8 *dma_buf; 425 }; 426 427 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 428 { 429 return container_of(ctrl, struct marvell_nfc, controller); 430 } 431 432 /** 433 * struct marvell_nfc_timings - NAND controller timings expressed in NAND 434 * Controller clock cycles 435 * 436 * @tRP: ND_nRE pulse width 437 * @tRH: ND_nRE high duration 438 * @tWP: ND_nWE pulse time 439 * @tWH: ND_nWE high duration 440 * @tCS: Enable signal setup time 441 * @tCH: Enable signal hold time 442 * @tADL: Address to write data delay 443 * @tAR: ND_ALE low to ND_nRE low delay 444 * @tWHR: ND_nWE high to ND_nRE low for status read 445 * @tRHW: ND_nRE high duration, read to write delay 446 * @tR: ND_nWE high to ND_nRE low for read 447 */ 448 struct marvell_nfc_timings { 449 /* NDTR0 fields */ 450 unsigned int tRP; 451 unsigned int tRH; 452 unsigned int tWP; 453 unsigned int tWH; 454 unsigned int tCS; 455 unsigned int tCH; 456 unsigned int tADL; 457 /* NDTR1 fields */ 458 unsigned int tAR; 459 unsigned int tWHR; 460 unsigned int tRHW; 461 unsigned int tR; 462 }; 463 464 /** 465 * TO_CYCLES() - Derives a duration in numbers of clock cycles. 466 * 467 * @ps: Duration in pico-seconds 468 * @period_ns: Clock period in nano-seconds 469 * 470 * Convert the duration in nano-seconds, then divide by the period and 471 * return the number of clock periods. 472 */ 473 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 474 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 475 period_ns)) 476 477 /** 478 * struct marvell_nfc_op - filled during the parsing of the ->exec_op() 479 * subop subset of instructions. 480 * 481 * @ndcb: Array of values written to NDCBx registers 482 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 483 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 484 * @rdy_delay_ns: Optional delay after waiting for the RB pin 485 * @data_delay_ns: Optional delay after the data xfer 486 * @data_instr_idx: Index of the data instruction in the subop 487 * @data_instr: Pointer to the data instruction in the subop 488 */ 489 struct marvell_nfc_op { 490 u32 ndcb[4]; 491 unsigned int cle_ale_delay_ns; 492 unsigned int rdy_timeout_ms; 493 unsigned int rdy_delay_ns; 494 unsigned int data_delay_ns; 495 unsigned int data_instr_idx; 496 const struct nand_op_instr *data_instr; 497 }; 498 499 /* 500 * Internal helper to conditionnally apply a delay (from the above structure, 501 * most of the time). 502 */ 503 static void cond_delay(unsigned int ns) 504 { 505 if (!ns) 506 return; 507 508 if (ns < 10000) 509 ndelay(ns); 510 else 511 udelay(DIV_ROUND_UP(ns, 1000)); 512 } 513 514 /* 515 * The controller has many flags that could generate interrupts, most of them 516 * are disabled and polling is used. For the very slow signals, using interrupts 517 * may relax the CPU charge. 518 */ 519 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 520 { 521 u32 reg; 522 523 /* Writing 1 disables the interrupt */ 524 reg = readl_relaxed(nfc->regs + NDCR); 525 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 526 } 527 528 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 529 { 530 u32 reg; 531 532 /* Writing 0 enables the interrupt */ 533 reg = readl_relaxed(nfc->regs + NDCR); 534 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 535 } 536 537 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 538 { 539 u32 reg; 540 541 reg = readl_relaxed(nfc->regs + NDSR); 542 writel_relaxed(int_mask, nfc->regs + NDSR); 543 544 return reg & int_mask; 545 } 546 547 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 548 bool force_8bit) 549 { 550 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 551 u32 ndcr; 552 553 /* 554 * Callers of this function do not verify if the NAND is using a 16-bit 555 * an 8-bit bus for normal operations, so we need to take care of that 556 * here by leaving the configuration unchanged if the NAND does not have 557 * the NAND_BUSWIDTH_16 flag set. 558 */ 559 if (!(chip->options & NAND_BUSWIDTH_16)) 560 return; 561 562 ndcr = readl_relaxed(nfc->regs + NDCR); 563 564 if (force_8bit) 565 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 566 else 567 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 568 569 writel_relaxed(ndcr, nfc->regs + NDCR); 570 } 571 572 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 573 { 574 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 575 u32 val; 576 int ret; 577 578 /* 579 * The command is being processed, wait for the ND_RUN bit to be 580 * cleared by the NFC. If not, we must clear it by hand. 581 */ 582 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 583 (val & NDCR_ND_RUN) == 0, 584 POLL_PERIOD, POLL_TIMEOUT); 585 if (ret) { 586 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 587 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 588 nfc->regs + NDCR); 589 return ret; 590 } 591 592 return 0; 593 } 594 595 /* 596 * Any time a command has to be sent to the controller, the following sequence 597 * has to be followed: 598 * - call marvell_nfc_prepare_cmd() 599 * -> activate the ND_RUN bit that will kind of 'start a job' 600 * -> wait the signal indicating the NFC is waiting for a command 601 * - send the command (cmd and address cycles) 602 * - enventually send or receive the data 603 * - call marvell_nfc_end_cmd() with the corresponding flag 604 * -> wait the flag to be triggered or cancel the job with a timeout 605 * 606 * The following helpers are here to factorize the code a bit so that 607 * specialized functions responsible for executing the actual NAND 608 * operations do not have to replicate the same code blocks. 609 */ 610 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 611 { 612 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 613 u32 ndcr, val; 614 int ret; 615 616 /* Poll ND_RUN and clear NDSR before issuing any command */ 617 ret = marvell_nfc_wait_ndrun(chip); 618 if (ret) { 619 dev_err(nfc->dev, "Last operation did not succeed\n"); 620 return ret; 621 } 622 623 ndcr = readl_relaxed(nfc->regs + NDCR); 624 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 625 626 /* Assert ND_RUN bit and wait the NFC to be ready */ 627 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 628 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 629 val & NDSR_WRCMDREQ, 630 POLL_PERIOD, POLL_TIMEOUT); 631 if (ret) { 632 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 633 return -ETIMEDOUT; 634 } 635 636 /* Command may be written, clear WRCMDREQ status bit */ 637 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 638 639 return 0; 640 } 641 642 static void marvell_nfc_send_cmd(struct nand_chip *chip, 643 struct marvell_nfc_op *nfc_op) 644 { 645 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 646 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 647 648 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 649 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 650 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 651 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 652 653 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 654 nfc->regs + NDCB0); 655 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 656 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 657 658 /* 659 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 660 * fields are used (only available on NFCv2). 661 */ 662 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 663 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 664 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 665 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 666 } 667 } 668 669 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 670 const char *label) 671 { 672 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 673 u32 val; 674 int ret; 675 676 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 677 val & flag, 678 POLL_PERIOD, POLL_TIMEOUT); 679 680 if (ret) { 681 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 682 label, val); 683 if (nfc->dma_chan) 684 dmaengine_terminate_all(nfc->dma_chan); 685 return ret; 686 } 687 688 /* 689 * DMA function uses this helper to poll on CMDD bits without wanting 690 * them to be cleared. 691 */ 692 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 693 return 0; 694 695 writel_relaxed(flag, nfc->regs + NDSR); 696 697 return 0; 698 } 699 700 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 701 { 702 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 703 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 704 705 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 706 } 707 708 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, 709 u32 expected_val, unsigned long timeout_ms) 710 { 711 unsigned long limit; 712 u32 st; 713 714 limit = jiffies + msecs_to_jiffies(timeout_ms); 715 do { 716 st = readl_relaxed(nfc->regs + NDSR); 717 if (st & NDSR_RDY(1)) 718 st |= NDSR_RDY(0); 719 720 if ((st & mask) == expected_val) 721 return 0; 722 723 cpu_relax(); 724 } while (time_after(limit, jiffies)); 725 726 return -ETIMEDOUT; 727 } 728 729 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 730 { 731 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 732 struct mtd_info *mtd = nand_to_mtd(chip); 733 u32 pending; 734 int ret; 735 736 /* Timeout is expressed in ms */ 737 if (!timeout_ms) 738 timeout_ms = IRQ_TIMEOUT; 739 740 if (mtd->oops_panic_write) { 741 ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), 742 NDSR_RDY(0), 743 timeout_ms); 744 } else { 745 init_completion(&nfc->complete); 746 747 marvell_nfc_enable_int(nfc, NDCR_RDYM); 748 ret = wait_for_completion_timeout(&nfc->complete, 749 msecs_to_jiffies(timeout_ms)); 750 marvell_nfc_disable_int(nfc, NDCR_RDYM); 751 } 752 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 753 754 /* 755 * In case the interrupt was not served in the required time frame, 756 * check if the ISR was not served or if something went actually wrong. 757 */ 758 if (!ret && !pending) { 759 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 760 return -ETIMEDOUT; 761 } 762 763 return 0; 764 } 765 766 static void marvell_nfc_select_target(struct nand_chip *chip, 767 unsigned int die_nr) 768 { 769 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 770 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 771 u32 ndcr_generic; 772 773 /* 774 * Reset the NDCR register to a clean state for this particular chip, 775 * also clear ND_RUN bit. 776 */ 777 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 778 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 779 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 780 781 /* Also reset the interrupt status register */ 782 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 783 784 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 785 return; 786 787 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 788 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 789 790 nfc->selected_chip = chip; 791 marvell_nand->selected_die = die_nr; 792 } 793 794 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 795 { 796 struct marvell_nfc *nfc = dev_id; 797 u32 st = readl_relaxed(nfc->regs + NDSR); 798 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 799 800 /* 801 * RDY interrupt mask is one bit in NDCR while there are two status 802 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 803 */ 804 if (st & NDSR_RDY(1)) 805 st |= NDSR_RDY(0); 806 807 if (!(st & ien)) 808 return IRQ_NONE; 809 810 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 811 812 if (st & (NDSR_RDY(0) | NDSR_RDY(1))) 813 complete(&nfc->complete); 814 815 return IRQ_HANDLED; 816 } 817 818 /* HW ECC related functions */ 819 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 820 { 821 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 822 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 823 824 if (!(ndcr & NDCR_ECC_EN)) { 825 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 826 827 /* 828 * When enabling BCH, set threshold to 0 to always know the 829 * number of corrected bitflips. 830 */ 831 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 832 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 833 } 834 } 835 836 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 837 { 838 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 839 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 840 841 if (ndcr & NDCR_ECC_EN) { 842 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 843 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 844 writel_relaxed(0, nfc->regs + NDECCCTRL); 845 } 846 } 847 848 /* DMA related helpers */ 849 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 850 { 851 u32 reg; 852 853 reg = readl_relaxed(nfc->regs + NDCR); 854 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 855 } 856 857 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 858 { 859 u32 reg; 860 861 reg = readl_relaxed(nfc->regs + NDCR); 862 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 863 } 864 865 /* Read/write PIO/DMA accessors */ 866 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 867 enum dma_data_direction direction, 868 unsigned int len) 869 { 870 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 871 struct dma_async_tx_descriptor *tx; 872 struct scatterlist sg; 873 dma_cookie_t cookie; 874 int ret; 875 876 marvell_nfc_enable_dma(nfc); 877 /* Prepare the DMA transfer */ 878 sg_init_one(&sg, nfc->dma_buf, dma_len); 879 ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 880 if (!ret) { 881 dev_err(nfc->dev, "Could not map DMA S/G list\n"); 882 return -ENXIO; 883 } 884 885 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 886 direction == DMA_FROM_DEVICE ? 887 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 888 DMA_PREP_INTERRUPT); 889 if (!tx) { 890 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 891 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 892 return -ENXIO; 893 } 894 895 /* Do the task and wait for it to finish */ 896 cookie = dmaengine_submit(tx); 897 ret = dma_submit_error(cookie); 898 if (ret) 899 return -EIO; 900 901 dma_async_issue_pending(nfc->dma_chan); 902 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 903 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 904 marvell_nfc_disable_dma(nfc); 905 if (ret) { 906 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 907 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 908 dmaengine_terminate_all(nfc->dma_chan); 909 return -ETIMEDOUT; 910 } 911 912 return 0; 913 } 914 915 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 916 unsigned int len) 917 { 918 unsigned int last_len = len % FIFO_DEPTH; 919 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 920 int i; 921 922 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 923 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 924 925 if (last_len) { 926 u8 tmp_buf[FIFO_DEPTH]; 927 928 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 929 memcpy(in + last_full_offset, tmp_buf, last_len); 930 } 931 932 return 0; 933 } 934 935 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 936 unsigned int len) 937 { 938 unsigned int last_len = len % FIFO_DEPTH; 939 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 940 int i; 941 942 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 943 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 944 945 if (last_len) { 946 u8 tmp_buf[FIFO_DEPTH]; 947 948 memcpy(tmp_buf, out + last_full_offset, last_len); 949 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 950 } 951 952 return 0; 953 } 954 955 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 956 u8 *data, int data_len, 957 u8 *spare, int spare_len, 958 u8 *ecc, int ecc_len, 959 unsigned int *max_bitflips) 960 { 961 struct mtd_info *mtd = nand_to_mtd(chip); 962 int bf; 963 964 /* 965 * Blank pages (all 0xFF) that have not been written may be recognized 966 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 967 * check if the entire page (with ECC bytes) is actually blank or not. 968 */ 969 if (!data) 970 data_len = 0; 971 if (!spare) 972 spare_len = 0; 973 if (!ecc) 974 ecc_len = 0; 975 976 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 977 spare, spare_len, chip->ecc.strength); 978 if (bf < 0) { 979 mtd->ecc_stats.failed++; 980 return; 981 } 982 983 /* Update the stats and max_bitflips */ 984 mtd->ecc_stats.corrected += bf; 985 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 986 } 987 988 /* 989 * Check if a chunk is correct or not according to the hardware ECC engine. 990 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 991 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 992 * value indicating that a check on the emptyness of the subpage must be 993 * performed before actually declaring the subpage as "corrupted". 994 */ 995 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, 996 unsigned int *max_bitflips) 997 { 998 struct mtd_info *mtd = nand_to_mtd(chip); 999 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1000 int bf = 0; 1001 u32 ndsr; 1002 1003 ndsr = readl_relaxed(nfc->regs + NDSR); 1004 1005 /* Check uncorrectable error flag */ 1006 if (ndsr & NDSR_UNCERR) { 1007 writel_relaxed(ndsr, nfc->regs + NDSR); 1008 1009 /* 1010 * Do not increment ->ecc_stats.failed now, instead, return a 1011 * non-zero value to indicate that this chunk was apparently 1012 * bad, and it should be check to see if it empty or not. If 1013 * the chunk (with ECC bytes) is not declared empty, the calling 1014 * function must increment the failure count. 1015 */ 1016 return -EBADMSG; 1017 } 1018 1019 /* Check correctable error flag */ 1020 if (ndsr & NDSR_CORERR) { 1021 writel_relaxed(ndsr, nfc->regs + NDSR); 1022 1023 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 1024 bf = NDSR_ERRCNT(ndsr); 1025 else 1026 bf = 1; 1027 } 1028 1029 /* Update the stats and max_bitflips */ 1030 mtd->ecc_stats.corrected += bf; 1031 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 1032 1033 return 0; 1034 } 1035 1036 /* Hamming read helpers */ 1037 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 1038 u8 *data_buf, u8 *oob_buf, 1039 bool raw, int page) 1040 { 1041 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1042 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1043 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1044 struct marvell_nfc_op nfc_op = { 1045 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1046 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1047 NDCB0_DBC | 1048 NDCB0_CMD1(NAND_CMD_READ0) | 1049 NDCB0_CMD2(NAND_CMD_READSTART), 1050 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1051 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1052 }; 1053 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1054 int ret; 1055 1056 /* NFCv2 needs more information about the operation being executed */ 1057 if (nfc->caps->is_nfcv2) 1058 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1059 1060 ret = marvell_nfc_prepare_cmd(chip); 1061 if (ret) 1062 return ret; 1063 1064 marvell_nfc_send_cmd(chip, &nfc_op); 1065 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1066 "RDDREQ while draining FIFO (data/oob)"); 1067 if (ret) 1068 return ret; 1069 1070 /* 1071 * Read the page then the OOB area. Unlike what is shown in current 1072 * documentation, spare bytes are protected by the ECC engine, and must 1073 * be at the beginning of the OOB area or running this driver on legacy 1074 * systems will prevent the discovery of the BBM/BBT. 1075 */ 1076 if (nfc->use_dma) { 1077 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 1078 lt->data_bytes + oob_bytes); 1079 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 1080 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 1081 } else { 1082 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 1083 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 1084 } 1085 1086 ret = marvell_nfc_wait_cmdd(chip); 1087 return ret; 1088 } 1089 1090 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, 1091 int oob_required, int page) 1092 { 1093 marvell_nfc_select_target(chip, chip->cur_cs); 1094 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1095 true, page); 1096 } 1097 1098 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, 1099 int oob_required, int page) 1100 { 1101 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1102 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1103 int max_bitflips = 0, ret; 1104 u8 *raw_buf; 1105 1106 marvell_nfc_select_target(chip, chip->cur_cs); 1107 marvell_nfc_enable_hw_ecc(chip); 1108 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 1109 page); 1110 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1111 marvell_nfc_disable_hw_ecc(chip); 1112 1113 if (!ret) 1114 return max_bitflips; 1115 1116 /* 1117 * When ECC failures are detected, check if the full page has been 1118 * written or not. Ignore the failure if it is actually empty. 1119 */ 1120 raw_buf = kmalloc(full_sz, GFP_KERNEL); 1121 if (!raw_buf) 1122 return -ENOMEM; 1123 1124 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1125 lt->data_bytes, true, page); 1126 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1127 &max_bitflips); 1128 kfree(raw_buf); 1129 1130 return max_bitflips; 1131 } 1132 1133 /* 1134 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1135 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1136 * also stands for ->read_oob(). 1137 */ 1138 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) 1139 { 1140 u8 *buf = nand_get_data_buf(chip); 1141 1142 marvell_nfc_select_target(chip, chip->cur_cs); 1143 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1144 true, page); 1145 } 1146 1147 /* Hamming write helpers */ 1148 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1149 const u8 *data_buf, 1150 const u8 *oob_buf, bool raw, 1151 int page) 1152 { 1153 const struct nand_sdr_timings *sdr = 1154 nand_get_sdr_timings(nand_get_interface_config(chip)); 1155 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1156 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1157 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1158 struct marvell_nfc_op nfc_op = { 1159 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1160 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1161 NDCB0_CMD1(NAND_CMD_SEQIN) | 1162 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1163 NDCB0_DBC, 1164 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1165 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1166 }; 1167 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1168 u8 status; 1169 int ret; 1170 1171 /* NFCv2 needs more information about the operation being executed */ 1172 if (nfc->caps->is_nfcv2) 1173 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1174 1175 ret = marvell_nfc_prepare_cmd(chip); 1176 if (ret) 1177 return ret; 1178 1179 marvell_nfc_send_cmd(chip, &nfc_op); 1180 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1181 "WRDREQ while loading FIFO (data)"); 1182 if (ret) 1183 return ret; 1184 1185 /* Write the page then the OOB area */ 1186 if (nfc->use_dma) { 1187 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1188 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1189 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1190 lt->ecc_bytes + lt->spare_bytes); 1191 } else { 1192 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1193 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1194 } 1195 1196 ret = marvell_nfc_wait_cmdd(chip); 1197 if (ret) 1198 return ret; 1199 1200 ret = marvell_nfc_wait_op(chip, 1201 PSEC_TO_MSEC(sdr->tPROG_max)); 1202 if (ret) 1203 return ret; 1204 1205 /* Check write status on the chip side */ 1206 ret = nand_status_op(chip, &status); 1207 if (ret) 1208 return ret; 1209 1210 if (status & NAND_STATUS_FAIL) 1211 return -EIO; 1212 1213 return 0; 1214 } 1215 1216 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, 1217 const u8 *buf, 1218 int oob_required, int page) 1219 { 1220 marvell_nfc_select_target(chip, chip->cur_cs); 1221 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1222 true, page); 1223 } 1224 1225 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, 1226 const u8 *buf, 1227 int oob_required, int page) 1228 { 1229 int ret; 1230 1231 marvell_nfc_select_target(chip, chip->cur_cs); 1232 marvell_nfc_enable_hw_ecc(chip); 1233 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1234 false, page); 1235 marvell_nfc_disable_hw_ecc(chip); 1236 1237 return ret; 1238 } 1239 1240 /* 1241 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1242 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1243 * also stands for ->write_oob(). 1244 */ 1245 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, 1246 int page) 1247 { 1248 struct mtd_info *mtd = nand_to_mtd(chip); 1249 u8 *buf = nand_get_data_buf(chip); 1250 1251 memset(buf, 0xFF, mtd->writesize); 1252 1253 marvell_nfc_select_target(chip, chip->cur_cs); 1254 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1255 true, page); 1256 } 1257 1258 /* BCH read helpers */ 1259 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, 1260 int oob_required, int page) 1261 { 1262 struct mtd_info *mtd = nand_to_mtd(chip); 1263 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1264 u8 *oob = chip->oob_poi; 1265 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1266 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1267 lt->last_spare_bytes; 1268 int data_len = lt->data_bytes; 1269 int spare_len = lt->spare_bytes; 1270 int ecc_len = lt->ecc_bytes; 1271 int chunk; 1272 1273 marvell_nfc_select_target(chip, chip->cur_cs); 1274 1275 if (oob_required) 1276 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1277 1278 nand_read_page_op(chip, page, 0, NULL, 0); 1279 1280 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1281 /* Update last chunk length */ 1282 if (chunk >= lt->full_chunk_cnt) { 1283 data_len = lt->last_data_bytes; 1284 spare_len = lt->last_spare_bytes; 1285 ecc_len = lt->last_ecc_bytes; 1286 } 1287 1288 /* Read data bytes*/ 1289 nand_change_read_column_op(chip, chunk * chunk_size, 1290 buf + (lt->data_bytes * chunk), 1291 data_len, false); 1292 1293 /* Read spare bytes */ 1294 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1295 spare_len, false, false); 1296 1297 /* Read ECC bytes */ 1298 nand_read_data_op(chip, oob + ecc_offset + 1299 (ALIGN(lt->ecc_bytes, 32) * chunk), 1300 ecc_len, false, false); 1301 } 1302 1303 return 0; 1304 } 1305 1306 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1307 u8 *data, unsigned int data_len, 1308 u8 *spare, unsigned int spare_len, 1309 int page) 1310 { 1311 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1312 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1313 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1314 int i, ret; 1315 struct marvell_nfc_op nfc_op = { 1316 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1317 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1318 NDCB0_LEN_OVRD, 1319 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1320 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1321 .ndcb[3] = data_len + spare_len, 1322 }; 1323 1324 ret = marvell_nfc_prepare_cmd(chip); 1325 if (ret) 1326 return; 1327 1328 if (chunk == 0) 1329 nfc_op.ndcb[0] |= NDCB0_DBC | 1330 NDCB0_CMD1(NAND_CMD_READ0) | 1331 NDCB0_CMD2(NAND_CMD_READSTART); 1332 1333 /* 1334 * Trigger the monolithic read on the first chunk, then naked read on 1335 * intermediate chunks and finally a last naked read on the last chunk. 1336 */ 1337 if (chunk == 0) 1338 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1339 else if (chunk < lt->nchunks - 1) 1340 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1341 else 1342 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1343 1344 marvell_nfc_send_cmd(chip, &nfc_op); 1345 1346 /* 1347 * According to the datasheet, when reading from NDDB 1348 * with BCH enabled, after each 32 bytes reads, we 1349 * have to make sure that the NDSR.RDDREQ bit is set. 1350 * 1351 * Drain the FIFO, 8 32-bit reads at a time, and skip 1352 * the polling on the last read. 1353 * 1354 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1355 */ 1356 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1357 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1358 "RDDREQ while draining FIFO (data)"); 1359 marvell_nfc_xfer_data_in_pio(nfc, data, 1360 FIFO_DEPTH * BCH_SEQ_READS); 1361 data += FIFO_DEPTH * BCH_SEQ_READS; 1362 } 1363 1364 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1365 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1366 "RDDREQ while draining FIFO (OOB)"); 1367 marvell_nfc_xfer_data_in_pio(nfc, spare, 1368 FIFO_DEPTH * BCH_SEQ_READS); 1369 spare += FIFO_DEPTH * BCH_SEQ_READS; 1370 } 1371 } 1372 1373 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, 1374 u8 *buf, int oob_required, 1375 int page) 1376 { 1377 struct mtd_info *mtd = nand_to_mtd(chip); 1378 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1379 int data_len = lt->data_bytes, spare_len = lt->spare_bytes; 1380 u8 *data = buf, *spare = chip->oob_poi; 1381 int max_bitflips = 0; 1382 u32 failure_mask = 0; 1383 int chunk, ret; 1384 1385 marvell_nfc_select_target(chip, chip->cur_cs); 1386 1387 /* 1388 * With BCH, OOB is not fully used (and thus not read entirely), not 1389 * expected bytes could show up at the end of the OOB buffer if not 1390 * explicitly erased. 1391 */ 1392 if (oob_required) 1393 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1394 1395 marvell_nfc_enable_hw_ecc(chip); 1396 1397 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1398 /* Update length for the last chunk */ 1399 if (chunk >= lt->full_chunk_cnt) { 1400 data_len = lt->last_data_bytes; 1401 spare_len = lt->last_spare_bytes; 1402 } 1403 1404 /* Read the chunk and detect number of bitflips */ 1405 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1406 spare, spare_len, page); 1407 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1408 if (ret) 1409 failure_mask |= BIT(chunk); 1410 1411 data += data_len; 1412 spare += spare_len; 1413 } 1414 1415 marvell_nfc_disable_hw_ecc(chip); 1416 1417 if (!failure_mask) 1418 return max_bitflips; 1419 1420 /* 1421 * Please note that dumping the ECC bytes during a normal read with OOB 1422 * area would add a significant overhead as ECC bytes are "consumed" by 1423 * the controller in normal mode and must be re-read in raw mode. To 1424 * avoid dropping the performances, we prefer not to include them. The 1425 * user should re-read the page in raw mode if ECC bytes are required. 1426 */ 1427 1428 /* 1429 * In case there is any subpage read error, we usually re-read only ECC 1430 * bytes in raw mode and check if the whole page is empty. In this case, 1431 * it is normal that the ECC check failed and we just ignore the error. 1432 * 1433 * However, it has been empirically observed that for some layouts (e.g 1434 * 2k page, 8b strength per 512B chunk), the controller tries to correct 1435 * bits and may create itself bitflips in the erased area. To overcome 1436 * this strange behavior, the whole page is re-read in raw mode, not 1437 * only the ECC bytes. 1438 */ 1439 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1440 int data_off_in_page, spare_off_in_page, ecc_off_in_page; 1441 int data_off, spare_off, ecc_off; 1442 int data_len, spare_len, ecc_len; 1443 1444 /* No failure reported for this chunk, move to the next one */ 1445 if (!(failure_mask & BIT(chunk))) 1446 continue; 1447 1448 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + 1449 lt->ecc_bytes); 1450 spare_off_in_page = data_off_in_page + 1451 (chunk < lt->full_chunk_cnt ? lt->data_bytes : 1452 lt->last_data_bytes); 1453 ecc_off_in_page = spare_off_in_page + 1454 (chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1455 lt->last_spare_bytes); 1456 1457 data_off = chunk * lt->data_bytes; 1458 spare_off = chunk * lt->spare_bytes; 1459 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + 1460 lt->last_spare_bytes + 1461 (chunk * (lt->ecc_bytes + 2)); 1462 1463 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : 1464 lt->last_data_bytes; 1465 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1466 lt->last_spare_bytes; 1467 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : 1468 lt->last_ecc_bytes; 1469 1470 /* 1471 * Only re-read the ECC bytes, unless we are using the 2k/8b 1472 * layout which is buggy in the sense that the ECC engine will 1473 * try to correct data bytes anyway, creating bitflips. In this 1474 * case, re-read the entire page. 1475 */ 1476 if (lt->writesize == 2048 && lt->strength == 8) { 1477 nand_change_read_column_op(chip, data_off_in_page, 1478 buf + data_off, data_len, 1479 false); 1480 nand_change_read_column_op(chip, spare_off_in_page, 1481 chip->oob_poi + spare_off, spare_len, 1482 false); 1483 } 1484 1485 nand_change_read_column_op(chip, ecc_off_in_page, 1486 chip->oob_poi + ecc_off, ecc_len, 1487 false); 1488 1489 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1490 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, 1491 chip->oob_poi + spare_off, spare_len, 1492 chip->oob_poi + ecc_off, ecc_len, 1493 &max_bitflips); 1494 } 1495 1496 return max_bitflips; 1497 } 1498 1499 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) 1500 { 1501 u8 *buf = nand_get_data_buf(chip); 1502 1503 return chip->ecc.read_page_raw(chip, buf, true, page); 1504 } 1505 1506 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) 1507 { 1508 u8 *buf = nand_get_data_buf(chip); 1509 1510 return chip->ecc.read_page(chip, buf, true, page); 1511 } 1512 1513 /* BCH write helpers */ 1514 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, 1515 const u8 *buf, 1516 int oob_required, int page) 1517 { 1518 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1519 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1520 int data_len = lt->data_bytes; 1521 int spare_len = lt->spare_bytes; 1522 int ecc_len = lt->ecc_bytes; 1523 int spare_offset = 0; 1524 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1525 lt->last_spare_bytes; 1526 int chunk; 1527 1528 marvell_nfc_select_target(chip, chip->cur_cs); 1529 1530 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1531 1532 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1533 if (chunk >= lt->full_chunk_cnt) { 1534 data_len = lt->last_data_bytes; 1535 spare_len = lt->last_spare_bytes; 1536 ecc_len = lt->last_ecc_bytes; 1537 } 1538 1539 /* Point to the column of the next chunk */ 1540 nand_change_write_column_op(chip, chunk * full_chunk_size, 1541 NULL, 0, false); 1542 1543 /* Write the data */ 1544 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1545 data_len, false); 1546 1547 if (!oob_required) 1548 continue; 1549 1550 /* Write the spare bytes */ 1551 if (spare_len) 1552 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1553 spare_len, false); 1554 1555 /* Write the ECC bytes */ 1556 if (ecc_len) 1557 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1558 ecc_len, false); 1559 1560 spare_offset += spare_len; 1561 ecc_offset += ALIGN(ecc_len, 32); 1562 } 1563 1564 return nand_prog_page_end_op(chip); 1565 } 1566 1567 static int 1568 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1569 const u8 *data, unsigned int data_len, 1570 const u8 *spare, unsigned int spare_len, 1571 int page) 1572 { 1573 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1574 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1575 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1576 u32 xtype; 1577 int ret; 1578 struct marvell_nfc_op nfc_op = { 1579 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1580 .ndcb[3] = data_len + spare_len, 1581 }; 1582 1583 /* 1584 * First operation dispatches the CMD_SEQIN command, issue the address 1585 * cycles and asks for the first chunk of data. 1586 * All operations in the middle (if any) will issue a naked write and 1587 * also ask for data. 1588 * Last operation (if any) asks for the last chunk of data through a 1589 * last naked write. 1590 */ 1591 if (chunk == 0) { 1592 if (lt->nchunks == 1) 1593 xtype = XTYPE_MONOLITHIC_RW; 1594 else 1595 xtype = XTYPE_WRITE_DISPATCH; 1596 1597 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1598 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1599 NDCB0_CMD1(NAND_CMD_SEQIN); 1600 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1601 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1602 } else if (chunk < lt->nchunks - 1) { 1603 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1604 } else { 1605 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1606 } 1607 1608 /* Always dispatch the PAGEPROG command on the last chunk */ 1609 if (chunk == lt->nchunks - 1) 1610 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1611 1612 ret = marvell_nfc_prepare_cmd(chip); 1613 if (ret) 1614 return ret; 1615 1616 marvell_nfc_send_cmd(chip, &nfc_op); 1617 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1618 "WRDREQ while loading FIFO (data)"); 1619 if (ret) 1620 return ret; 1621 1622 /* Transfer the contents */ 1623 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1624 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1625 1626 return 0; 1627 } 1628 1629 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, 1630 const u8 *buf, 1631 int oob_required, int page) 1632 { 1633 const struct nand_sdr_timings *sdr = 1634 nand_get_sdr_timings(nand_get_interface_config(chip)); 1635 struct mtd_info *mtd = nand_to_mtd(chip); 1636 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1637 const u8 *data = buf; 1638 const u8 *spare = chip->oob_poi; 1639 int data_len = lt->data_bytes; 1640 int spare_len = lt->spare_bytes; 1641 int chunk, ret; 1642 u8 status; 1643 1644 marvell_nfc_select_target(chip, chip->cur_cs); 1645 1646 /* Spare data will be written anyway, so clear it to avoid garbage */ 1647 if (!oob_required) 1648 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1649 1650 marvell_nfc_enable_hw_ecc(chip); 1651 1652 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1653 if (chunk >= lt->full_chunk_cnt) { 1654 data_len = lt->last_data_bytes; 1655 spare_len = lt->last_spare_bytes; 1656 } 1657 1658 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1659 spare, spare_len, page); 1660 data += data_len; 1661 spare += spare_len; 1662 1663 /* 1664 * Waiting only for CMDD or PAGED is not enough, ECC are 1665 * partially written. No flag is set once the operation is 1666 * really finished but the ND_RUN bit is cleared, so wait for it 1667 * before stepping into the next command. 1668 */ 1669 marvell_nfc_wait_ndrun(chip); 1670 } 1671 1672 ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); 1673 1674 marvell_nfc_disable_hw_ecc(chip); 1675 1676 if (ret) 1677 return ret; 1678 1679 /* Check write status on the chip side */ 1680 ret = nand_status_op(chip, &status); 1681 if (ret) 1682 return ret; 1683 1684 if (status & NAND_STATUS_FAIL) 1685 return -EIO; 1686 1687 return 0; 1688 } 1689 1690 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, 1691 int page) 1692 { 1693 struct mtd_info *mtd = nand_to_mtd(chip); 1694 u8 *buf = nand_get_data_buf(chip); 1695 1696 memset(buf, 0xFF, mtd->writesize); 1697 1698 return chip->ecc.write_page_raw(chip, buf, true, page); 1699 } 1700 1701 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) 1702 { 1703 struct mtd_info *mtd = nand_to_mtd(chip); 1704 u8 *buf = nand_get_data_buf(chip); 1705 1706 memset(buf, 0xFF, mtd->writesize); 1707 1708 return chip->ecc.write_page(chip, buf, true, page); 1709 } 1710 1711 /* NAND framework ->exec_op() hooks and related helpers */ 1712 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1713 const struct nand_subop *subop, 1714 struct marvell_nfc_op *nfc_op) 1715 { 1716 const struct nand_op_instr *instr = NULL; 1717 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1718 bool first_cmd = true; 1719 unsigned int op_id; 1720 int i; 1721 1722 /* Reset the input structure as most of its fields will be OR'ed */ 1723 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1724 1725 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1726 unsigned int offset, naddrs; 1727 const u8 *addrs; 1728 int len; 1729 1730 instr = &subop->instrs[op_id]; 1731 1732 switch (instr->type) { 1733 case NAND_OP_CMD_INSTR: 1734 if (first_cmd) 1735 nfc_op->ndcb[0] |= 1736 NDCB0_CMD1(instr->ctx.cmd.opcode); 1737 else 1738 nfc_op->ndcb[0] |= 1739 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1740 NDCB0_DBC; 1741 1742 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1743 first_cmd = false; 1744 break; 1745 1746 case NAND_OP_ADDR_INSTR: 1747 offset = nand_subop_get_addr_start_off(subop, op_id); 1748 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1749 addrs = &instr->ctx.addr.addrs[offset]; 1750 1751 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1752 1753 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1754 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1755 1756 if (naddrs >= 5) 1757 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1758 if (naddrs >= 6) 1759 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1760 if (naddrs == 7) 1761 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1762 1763 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1764 break; 1765 1766 case NAND_OP_DATA_IN_INSTR: 1767 nfc_op->data_instr = instr; 1768 nfc_op->data_instr_idx = op_id; 1769 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1770 if (nfc->caps->is_nfcv2) { 1771 nfc_op->ndcb[0] |= 1772 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1773 NDCB0_LEN_OVRD; 1774 len = nand_subop_get_data_len(subop, op_id); 1775 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1776 } 1777 nfc_op->data_delay_ns = instr->delay_ns; 1778 break; 1779 1780 case NAND_OP_DATA_OUT_INSTR: 1781 nfc_op->data_instr = instr; 1782 nfc_op->data_instr_idx = op_id; 1783 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1784 if (nfc->caps->is_nfcv2) { 1785 nfc_op->ndcb[0] |= 1786 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1787 NDCB0_LEN_OVRD; 1788 len = nand_subop_get_data_len(subop, op_id); 1789 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1790 } 1791 nfc_op->data_delay_ns = instr->delay_ns; 1792 break; 1793 1794 case NAND_OP_WAITRDY_INSTR: 1795 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1796 nfc_op->rdy_delay_ns = instr->delay_ns; 1797 break; 1798 } 1799 } 1800 } 1801 1802 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1803 const struct nand_subop *subop, 1804 struct marvell_nfc_op *nfc_op) 1805 { 1806 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1807 const struct nand_op_instr *instr = nfc_op->data_instr; 1808 unsigned int op_id = nfc_op->data_instr_idx; 1809 unsigned int len = nand_subop_get_data_len(subop, op_id); 1810 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1811 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1812 int ret; 1813 1814 if (instr->ctx.data.force_8bit) 1815 marvell_nfc_force_byte_access(chip, true); 1816 1817 if (reading) { 1818 u8 *in = instr->ctx.data.buf.in + offset; 1819 1820 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1821 } else { 1822 const u8 *out = instr->ctx.data.buf.out + offset; 1823 1824 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1825 } 1826 1827 if (instr->ctx.data.force_8bit) 1828 marvell_nfc_force_byte_access(chip, false); 1829 1830 return ret; 1831 } 1832 1833 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1834 const struct nand_subop *subop) 1835 { 1836 struct marvell_nfc_op nfc_op; 1837 bool reading; 1838 int ret; 1839 1840 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1841 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1842 1843 ret = marvell_nfc_prepare_cmd(chip); 1844 if (ret) 1845 return ret; 1846 1847 marvell_nfc_send_cmd(chip, &nfc_op); 1848 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1849 "RDDREQ/WRDREQ while draining raw data"); 1850 if (ret) 1851 return ret; 1852 1853 cond_delay(nfc_op.cle_ale_delay_ns); 1854 1855 if (reading) { 1856 if (nfc_op.rdy_timeout_ms) { 1857 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1858 if (ret) 1859 return ret; 1860 } 1861 1862 cond_delay(nfc_op.rdy_delay_ns); 1863 } 1864 1865 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1866 ret = marvell_nfc_wait_cmdd(chip); 1867 if (ret) 1868 return ret; 1869 1870 cond_delay(nfc_op.data_delay_ns); 1871 1872 if (!reading) { 1873 if (nfc_op.rdy_timeout_ms) { 1874 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1875 if (ret) 1876 return ret; 1877 } 1878 1879 cond_delay(nfc_op.rdy_delay_ns); 1880 } 1881 1882 /* 1883 * NDCR ND_RUN bit should be cleared automatically at the end of each 1884 * operation but experience shows that the behavior is buggy when it 1885 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1886 */ 1887 if (!reading) { 1888 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1889 1890 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1891 nfc->regs + NDCR); 1892 } 1893 1894 return 0; 1895 } 1896 1897 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1898 const struct nand_subop *subop) 1899 { 1900 struct marvell_nfc_op nfc_op; 1901 int ret; 1902 1903 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1904 1905 /* 1906 * Naked access are different in that they need to be flagged as naked 1907 * by the controller. Reset the controller registers fields that inform 1908 * on the type and refill them according to the ongoing operation. 1909 */ 1910 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1911 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1912 switch (subop->instrs[0].type) { 1913 case NAND_OP_CMD_INSTR: 1914 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1915 break; 1916 case NAND_OP_ADDR_INSTR: 1917 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1918 break; 1919 case NAND_OP_DATA_IN_INSTR: 1920 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1921 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1922 break; 1923 case NAND_OP_DATA_OUT_INSTR: 1924 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1925 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1926 break; 1927 default: 1928 /* This should never happen */ 1929 break; 1930 } 1931 1932 ret = marvell_nfc_prepare_cmd(chip); 1933 if (ret) 1934 return ret; 1935 1936 marvell_nfc_send_cmd(chip, &nfc_op); 1937 1938 if (!nfc_op.data_instr) { 1939 ret = marvell_nfc_wait_cmdd(chip); 1940 cond_delay(nfc_op.cle_ale_delay_ns); 1941 return ret; 1942 } 1943 1944 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1945 "RDDREQ/WRDREQ while draining raw data"); 1946 if (ret) 1947 return ret; 1948 1949 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1950 ret = marvell_nfc_wait_cmdd(chip); 1951 if (ret) 1952 return ret; 1953 1954 /* 1955 * NDCR ND_RUN bit should be cleared automatically at the end of each 1956 * operation but experience shows that the behavior is buggy when it 1957 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1958 */ 1959 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1960 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1961 1962 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1963 nfc->regs + NDCR); 1964 } 1965 1966 return 0; 1967 } 1968 1969 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1970 const struct nand_subop *subop) 1971 { 1972 struct marvell_nfc_op nfc_op; 1973 int ret; 1974 1975 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1976 1977 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1978 cond_delay(nfc_op.rdy_delay_ns); 1979 1980 return ret; 1981 } 1982 1983 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1984 const struct nand_subop *subop) 1985 { 1986 struct marvell_nfc_op nfc_op; 1987 int ret; 1988 1989 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1990 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1991 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1992 1993 ret = marvell_nfc_prepare_cmd(chip); 1994 if (ret) 1995 return ret; 1996 1997 marvell_nfc_send_cmd(chip, &nfc_op); 1998 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1999 "RDDREQ while reading ID"); 2000 if (ret) 2001 return ret; 2002 2003 cond_delay(nfc_op.cle_ale_delay_ns); 2004 2005 if (nfc_op.rdy_timeout_ms) { 2006 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2007 if (ret) 2008 return ret; 2009 } 2010 2011 cond_delay(nfc_op.rdy_delay_ns); 2012 2013 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 2014 ret = marvell_nfc_wait_cmdd(chip); 2015 if (ret) 2016 return ret; 2017 2018 cond_delay(nfc_op.data_delay_ns); 2019 2020 return 0; 2021 } 2022 2023 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 2024 const struct nand_subop *subop) 2025 { 2026 struct marvell_nfc_op nfc_op; 2027 int ret; 2028 2029 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2030 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 2031 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 2032 2033 ret = marvell_nfc_prepare_cmd(chip); 2034 if (ret) 2035 return ret; 2036 2037 marvell_nfc_send_cmd(chip, &nfc_op); 2038 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 2039 "RDDREQ while reading status"); 2040 if (ret) 2041 return ret; 2042 2043 cond_delay(nfc_op.cle_ale_delay_ns); 2044 2045 if (nfc_op.rdy_timeout_ms) { 2046 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2047 if (ret) 2048 return ret; 2049 } 2050 2051 cond_delay(nfc_op.rdy_delay_ns); 2052 2053 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 2054 ret = marvell_nfc_wait_cmdd(chip); 2055 if (ret) 2056 return ret; 2057 2058 cond_delay(nfc_op.data_delay_ns); 2059 2060 return 0; 2061 } 2062 2063 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 2064 const struct nand_subop *subop) 2065 { 2066 struct marvell_nfc_op nfc_op; 2067 int ret; 2068 2069 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2070 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 2071 2072 ret = marvell_nfc_prepare_cmd(chip); 2073 if (ret) 2074 return ret; 2075 2076 marvell_nfc_send_cmd(chip, &nfc_op); 2077 ret = marvell_nfc_wait_cmdd(chip); 2078 if (ret) 2079 return ret; 2080 2081 cond_delay(nfc_op.cle_ale_delay_ns); 2082 2083 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2084 if (ret) 2085 return ret; 2086 2087 cond_delay(nfc_op.rdy_delay_ns); 2088 2089 return 0; 2090 } 2091 2092 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 2093 const struct nand_subop *subop) 2094 { 2095 struct marvell_nfc_op nfc_op; 2096 int ret; 2097 2098 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2099 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 2100 2101 ret = marvell_nfc_prepare_cmd(chip); 2102 if (ret) 2103 return ret; 2104 2105 marvell_nfc_send_cmd(chip, &nfc_op); 2106 ret = marvell_nfc_wait_cmdd(chip); 2107 if (ret) 2108 return ret; 2109 2110 cond_delay(nfc_op.cle_ale_delay_ns); 2111 2112 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2113 if (ret) 2114 return ret; 2115 2116 cond_delay(nfc_op.rdy_delay_ns); 2117 2118 return 0; 2119 } 2120 2121 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 2122 /* Monolithic reads/writes */ 2123 NAND_OP_PARSER_PATTERN( 2124 marvell_nfc_monolithic_access_exec, 2125 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2126 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 2127 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2128 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 2129 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2130 NAND_OP_PARSER_PATTERN( 2131 marvell_nfc_monolithic_access_exec, 2132 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2133 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 2134 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 2135 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2136 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 2137 /* Naked commands */ 2138 NAND_OP_PARSER_PATTERN( 2139 marvell_nfc_naked_access_exec, 2140 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2141 NAND_OP_PARSER_PATTERN( 2142 marvell_nfc_naked_access_exec, 2143 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 2144 NAND_OP_PARSER_PATTERN( 2145 marvell_nfc_naked_access_exec, 2146 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2147 NAND_OP_PARSER_PATTERN( 2148 marvell_nfc_naked_access_exec, 2149 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 2150 NAND_OP_PARSER_PATTERN( 2151 marvell_nfc_naked_waitrdy_exec, 2152 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2153 ); 2154 2155 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 2156 /* Naked commands not supported, use a function for each pattern */ 2157 NAND_OP_PARSER_PATTERN( 2158 marvell_nfc_read_id_type_exec, 2159 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2160 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2161 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 2162 NAND_OP_PARSER_PATTERN( 2163 marvell_nfc_erase_cmd_type_exec, 2164 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2165 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2166 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2167 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2168 NAND_OP_PARSER_PATTERN( 2169 marvell_nfc_read_status_exec, 2170 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2171 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 2172 NAND_OP_PARSER_PATTERN( 2173 marvell_nfc_reset_cmd_type_exec, 2174 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2175 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2176 NAND_OP_PARSER_PATTERN( 2177 marvell_nfc_naked_waitrdy_exec, 2178 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2179 ); 2180 2181 static int marvell_nfc_exec_op(struct nand_chip *chip, 2182 const struct nand_operation *op, 2183 bool check_only) 2184 { 2185 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2186 2187 if (!check_only) 2188 marvell_nfc_select_target(chip, op->cs); 2189 2190 if (nfc->caps->is_nfcv2) 2191 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2192 op, check_only); 2193 else 2194 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2195 op, check_only); 2196 } 2197 2198 /* 2199 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2200 * usable. 2201 */ 2202 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2203 struct mtd_oob_region *oobregion) 2204 { 2205 struct nand_chip *chip = mtd_to_nand(mtd); 2206 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2207 2208 if (section) 2209 return -ERANGE; 2210 2211 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2212 lt->last_ecc_bytes; 2213 oobregion->offset = mtd->oobsize - oobregion->length; 2214 2215 return 0; 2216 } 2217 2218 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2219 struct mtd_oob_region *oobregion) 2220 { 2221 struct nand_chip *chip = mtd_to_nand(mtd); 2222 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2223 2224 if (section) 2225 return -ERANGE; 2226 2227 /* 2228 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2229 * 4KB page / 4bit BCH combination. 2230 */ 2231 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2232 oobregion->offset = 6; 2233 else 2234 oobregion->offset = 2; 2235 2236 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2237 lt->last_spare_bytes - oobregion->offset; 2238 2239 return 0; 2240 } 2241 2242 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2243 .ecc = marvell_nand_ooblayout_ecc, 2244 .free = marvell_nand_ooblayout_free, 2245 }; 2246 2247 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, 2248 struct nand_ecc_ctrl *ecc) 2249 { 2250 struct nand_chip *chip = mtd_to_nand(mtd); 2251 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2252 const struct marvell_hw_ecc_layout *l; 2253 int i; 2254 2255 if (!nfc->caps->is_nfcv2 && 2256 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2257 dev_err(nfc->dev, 2258 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2259 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2260 return -ENOTSUPP; 2261 } 2262 2263 to_marvell_nand(chip)->layout = NULL; 2264 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2265 l = &marvell_nfc_layouts[i]; 2266 if (mtd->writesize == l->writesize && 2267 ecc->size == l->chunk && ecc->strength == l->strength) { 2268 to_marvell_nand(chip)->layout = l; 2269 break; 2270 } 2271 } 2272 2273 if (!to_marvell_nand(chip)->layout || 2274 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2275 dev_err(nfc->dev, 2276 "ECC strength %d at page size %d is not supported\n", 2277 ecc->strength, mtd->writesize); 2278 return -ENOTSUPP; 2279 } 2280 2281 /* Special care for the layout 2k/8-bit/512B */ 2282 if (l->writesize == 2048 && l->strength == 8) { 2283 if (mtd->oobsize < 128) { 2284 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); 2285 return -ENOTSUPP; 2286 } else { 2287 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2288 } 2289 } 2290 2291 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2292 ecc->steps = l->nchunks; 2293 ecc->size = l->data_bytes; 2294 2295 if (ecc->strength == 1) { 2296 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 2297 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2298 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2299 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2300 ecc->read_oob = ecc->read_oob_raw; 2301 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2302 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2303 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2304 ecc->write_oob = ecc->write_oob_raw; 2305 } else { 2306 chip->ecc.algo = NAND_ECC_ALGO_BCH; 2307 ecc->strength = 16; 2308 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2309 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2310 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2311 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2312 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2313 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2314 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2315 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2316 } 2317 2318 return 0; 2319 } 2320 2321 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2322 struct nand_ecc_ctrl *ecc) 2323 { 2324 struct nand_chip *chip = mtd_to_nand(mtd); 2325 const struct nand_ecc_props *requirements = 2326 nanddev_get_ecc_requirements(&chip->base); 2327 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2328 int ret; 2329 2330 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && 2331 (!ecc->size || !ecc->strength)) { 2332 if (requirements->step_size && requirements->strength) { 2333 ecc->size = requirements->step_size; 2334 ecc->strength = requirements->strength; 2335 } else { 2336 dev_info(nfc->dev, 2337 "No minimum ECC strength, using 1b/512B\n"); 2338 ecc->size = 512; 2339 ecc->strength = 1; 2340 } 2341 } 2342 2343 switch (ecc->engine_type) { 2344 case NAND_ECC_ENGINE_TYPE_ON_HOST: 2345 ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); 2346 if (ret) 2347 return ret; 2348 break; 2349 case NAND_ECC_ENGINE_TYPE_NONE: 2350 case NAND_ECC_ENGINE_TYPE_SOFT: 2351 case NAND_ECC_ENGINE_TYPE_ON_DIE: 2352 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2353 mtd->writesize != SZ_2K) { 2354 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2355 mtd->writesize); 2356 return -EINVAL; 2357 } 2358 break; 2359 default: 2360 return -EINVAL; 2361 } 2362 2363 return 0; 2364 } 2365 2366 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2367 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2368 2369 static struct nand_bbt_descr bbt_main_descr = { 2370 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2371 NAND_BBT_2BIT | NAND_BBT_VERSION, 2372 .offs = 8, 2373 .len = 6, 2374 .veroffs = 14, 2375 .maxblocks = 8, /* Last 8 blocks in each chip */ 2376 .pattern = bbt_pattern 2377 }; 2378 2379 static struct nand_bbt_descr bbt_mirror_descr = { 2380 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2381 NAND_BBT_2BIT | NAND_BBT_VERSION, 2382 .offs = 8, 2383 .len = 6, 2384 .veroffs = 14, 2385 .maxblocks = 8, /* Last 8 blocks in each chip */ 2386 .pattern = bbt_mirror_pattern 2387 }; 2388 2389 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, 2390 const struct nand_interface_config *conf) 2391 { 2392 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2393 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2394 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2395 const struct nand_sdr_timings *sdr; 2396 struct marvell_nfc_timings nfc_tmg; 2397 int read_delay; 2398 2399 sdr = nand_get_sdr_timings(conf); 2400 if (IS_ERR(sdr)) 2401 return PTR_ERR(sdr); 2402 2403 if (nfc->caps->max_mode_number && nfc->caps->max_mode_number < conf->timings.mode) 2404 return -EOPNOTSUPP; 2405 2406 /* 2407 * SDR timings are given in pico-seconds while NFC timings must be 2408 * expressed in NAND controller clock cycles, which is half of the 2409 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2410 * This is not written anywhere in the datasheet but was observed 2411 * with an oscilloscope. 2412 * 2413 * NFC datasheet gives equations from which thoses calculations 2414 * are derived, they tend to be slightly more restrictives than the 2415 * given core timings and may improve the overall speed. 2416 */ 2417 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2418 nfc_tmg.tRH = nfc_tmg.tRP; 2419 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2420 nfc_tmg.tWH = nfc_tmg.tWP; 2421 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2422 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2423 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2424 /* 2425 * Read delay is the time of propagation from SoC pins to NFC internal 2426 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2427 * EDO mode, an additional delay of tRH must be taken into account so 2428 * the data is sampled on the falling edge instead of the rising edge. 2429 */ 2430 read_delay = sdr->tRC_min >= 30000 ? 2431 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2432 2433 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2434 /* 2435 * tWHR and tRHW are supposed to be read to write delays (and vice 2436 * versa) but in some cases, ie. when doing a change column, they must 2437 * be greater than that to be sure tCCS delay is respected. 2438 */ 2439 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2440 period_ns) - 2; 2441 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2442 period_ns); 2443 2444 /* 2445 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2446 * NFCv1: No WAIT_MODE, tR must be maximal. 2447 */ 2448 if (nfc->caps->is_nfcv2) { 2449 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2450 } else { 2451 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2452 period_ns); 2453 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2454 nfc_tmg.tR = nfc_tmg.tCH - 3; 2455 else 2456 nfc_tmg.tR = 0; 2457 } 2458 2459 if (chipnr < 0) 2460 return 0; 2461 2462 marvell_nand->ndtr0 = 2463 NDTR0_TRP(nfc_tmg.tRP) | 2464 NDTR0_TRH(nfc_tmg.tRH) | 2465 NDTR0_ETRP(nfc_tmg.tRP) | 2466 NDTR0_TWP(nfc_tmg.tWP) | 2467 NDTR0_TWH(nfc_tmg.tWH) | 2468 NDTR0_TCS(nfc_tmg.tCS) | 2469 NDTR0_TCH(nfc_tmg.tCH); 2470 2471 marvell_nand->ndtr1 = 2472 NDTR1_TAR(nfc_tmg.tAR) | 2473 NDTR1_TWHR(nfc_tmg.tWHR) | 2474 NDTR1_TR(nfc_tmg.tR); 2475 2476 if (nfc->caps->is_nfcv2) { 2477 marvell_nand->ndtr0 |= 2478 NDTR0_RD_CNT_DEL(read_delay) | 2479 NDTR0_SELCNTR | 2480 NDTR0_TADL(nfc_tmg.tADL); 2481 2482 marvell_nand->ndtr1 |= 2483 NDTR1_TRHW(nfc_tmg.tRHW) | 2484 NDTR1_WAIT_MODE; 2485 } 2486 2487 /* 2488 * Reset nfc->selected_chip so the next command will cause the timing 2489 * registers to be updated in marvell_nfc_select_target(). 2490 */ 2491 nfc->selected_chip = NULL; 2492 2493 return 0; 2494 } 2495 2496 static int marvell_nand_attach_chip(struct nand_chip *chip) 2497 { 2498 struct mtd_info *mtd = nand_to_mtd(chip); 2499 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2500 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2501 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2502 int ret; 2503 2504 if (pdata && pdata->flash_bbt) 2505 chip->bbt_options |= NAND_BBT_USE_FLASH; 2506 2507 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2508 /* 2509 * We'll use a bad block table stored in-flash and don't 2510 * allow writing the bad block marker to the flash. 2511 */ 2512 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2513 chip->bbt_td = &bbt_main_descr; 2514 chip->bbt_md = &bbt_mirror_descr; 2515 } 2516 2517 /* Save the chip-specific fields of NDCR */ 2518 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2519 if (chip->options & NAND_BUSWIDTH_16) 2520 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2521 2522 /* 2523 * On small page NANDs, only one cycle is needed to pass the 2524 * column address. 2525 */ 2526 if (mtd->writesize <= 512) { 2527 marvell_nand->addr_cyc = 1; 2528 } else { 2529 marvell_nand->addr_cyc = 2; 2530 marvell_nand->ndcr |= NDCR_RA_START; 2531 } 2532 2533 /* 2534 * Now add the number of cycles needed to pass the row 2535 * address. 2536 * 2537 * Addressing a chip using CS 2 or 3 should also need the third row 2538 * cycle but due to inconsistance in the documentation and lack of 2539 * hardware to test this situation, this case is not supported. 2540 */ 2541 if (chip->options & NAND_ROW_ADDR_3) 2542 marvell_nand->addr_cyc += 3; 2543 else 2544 marvell_nand->addr_cyc += 2; 2545 2546 if (pdata) { 2547 chip->ecc.size = pdata->ecc_step_size; 2548 chip->ecc.strength = pdata->ecc_strength; 2549 } 2550 2551 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2552 if (ret) { 2553 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2554 return ret; 2555 } 2556 2557 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { 2558 /* 2559 * Subpage write not available with hardware ECC, prohibit also 2560 * subpage read as in userspace subpage access would still be 2561 * allowed and subpage write, if used, would lead to numerous 2562 * uncorrectable ECC errors. 2563 */ 2564 chip->options |= NAND_NO_SUBPAGE_WRITE; 2565 } 2566 2567 if (pdata || nfc->caps->legacy_of_bindings) { 2568 /* 2569 * We keep the MTD name unchanged to avoid breaking platforms 2570 * where the MTD cmdline parser is used and the bootloader 2571 * has not been updated to use the new naming scheme. 2572 */ 2573 mtd->name = "pxa3xx_nand-0"; 2574 } else if (!mtd->name) { 2575 /* 2576 * If the new bindings are used and the bootloader has not been 2577 * updated to pass a new mtdparts parameter on the cmdline, you 2578 * should define the following property in your NAND node, ie: 2579 * 2580 * label = "main-storage"; 2581 * 2582 * This way, mtd->name will be set by the core when 2583 * nand_set_flash_node() is called. 2584 */ 2585 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2586 "%s:nand.%d", dev_name(nfc->dev), 2587 marvell_nand->sels[0].cs); 2588 if (!mtd->name) { 2589 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2590 return -ENOMEM; 2591 } 2592 } 2593 2594 return 0; 2595 } 2596 2597 static const struct nand_controller_ops marvell_nand_controller_ops = { 2598 .attach_chip = marvell_nand_attach_chip, 2599 .exec_op = marvell_nfc_exec_op, 2600 .setup_interface = marvell_nfc_setup_interface, 2601 }; 2602 2603 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2604 struct device_node *np) 2605 { 2606 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2607 struct marvell_nand_chip *marvell_nand; 2608 struct mtd_info *mtd; 2609 struct nand_chip *chip; 2610 int nsels, ret, i; 2611 u32 cs, rb; 2612 2613 /* 2614 * The legacy "num-cs" property indicates the number of CS on the only 2615 * chip connected to the controller (legacy bindings does not support 2616 * more than one chip). The CS and RB pins are always the #0. 2617 * 2618 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2619 * properties must be filled. For each chip, expressed as a subnode, 2620 * "reg" points to the CS lines and "nand-rb" to the RB line. 2621 */ 2622 if (pdata || nfc->caps->legacy_of_bindings) { 2623 nsels = 1; 2624 } else { 2625 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2626 if (nsels <= 0) { 2627 dev_err(dev, "missing/invalid reg property\n"); 2628 return -EINVAL; 2629 } 2630 } 2631 2632 /* Alloc the nand chip structure */ 2633 marvell_nand = devm_kzalloc(dev, 2634 struct_size(marvell_nand, sels, nsels), 2635 GFP_KERNEL); 2636 if (!marvell_nand) { 2637 dev_err(dev, "could not allocate chip structure\n"); 2638 return -ENOMEM; 2639 } 2640 2641 marvell_nand->nsels = nsels; 2642 marvell_nand->selected_die = -1; 2643 2644 for (i = 0; i < nsels; i++) { 2645 if (pdata || nfc->caps->legacy_of_bindings) { 2646 /* 2647 * Legacy bindings use the CS lines in natural 2648 * order (0, 1, ...) 2649 */ 2650 cs = i; 2651 } else { 2652 /* Retrieve CS id */ 2653 ret = of_property_read_u32_index(np, "reg", i, &cs); 2654 if (ret) { 2655 dev_err(dev, "could not retrieve reg property: %d\n", 2656 ret); 2657 return ret; 2658 } 2659 } 2660 2661 if (cs >= nfc->caps->max_cs_nb) { 2662 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2663 cs, nfc->caps->max_cs_nb); 2664 return -EINVAL; 2665 } 2666 2667 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2668 dev_err(dev, "CS %d already assigned\n", cs); 2669 return -EINVAL; 2670 } 2671 2672 /* 2673 * The cs variable represents the chip select id, which must be 2674 * converted in bit fields for NDCB0 and NDCB2 to select the 2675 * right chip. Unfortunately, due to a lack of information on 2676 * the subject and incoherent documentation, the user should not 2677 * use CS1 and CS3 at all as asserting them is not supported in 2678 * a reliable way (due to multiplexing inside ADDR5 field). 2679 */ 2680 marvell_nand->sels[i].cs = cs; 2681 switch (cs) { 2682 case 0: 2683 case 2: 2684 marvell_nand->sels[i].ndcb0_csel = 0; 2685 break; 2686 case 1: 2687 case 3: 2688 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2689 break; 2690 default: 2691 return -EINVAL; 2692 } 2693 2694 /* Retrieve RB id */ 2695 if (pdata || nfc->caps->legacy_of_bindings) { 2696 /* Legacy bindings always use RB #0 */ 2697 rb = 0; 2698 } else { 2699 ret = of_property_read_u32_index(np, "nand-rb", i, 2700 &rb); 2701 if (ret) { 2702 dev_err(dev, 2703 "could not retrieve RB property: %d\n", 2704 ret); 2705 return ret; 2706 } 2707 } 2708 2709 if (rb >= nfc->caps->max_rb_nb) { 2710 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2711 rb, nfc->caps->max_rb_nb); 2712 return -EINVAL; 2713 } 2714 2715 marvell_nand->sels[i].rb = rb; 2716 } 2717 2718 chip = &marvell_nand->chip; 2719 chip->controller = &nfc->controller; 2720 nand_set_flash_node(chip, np); 2721 2722 if (of_property_read_bool(np, "marvell,nand-keep-config")) 2723 chip->options |= NAND_KEEP_TIMINGS; 2724 2725 mtd = nand_to_mtd(chip); 2726 mtd->dev.parent = dev; 2727 2728 /* 2729 * Save a reference value for timing registers before 2730 * ->setup_interface() is called. 2731 */ 2732 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2733 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2734 2735 chip->options |= NAND_BUSWIDTH_AUTO; 2736 2737 ret = nand_scan(chip, marvell_nand->nsels); 2738 if (ret) { 2739 dev_err(dev, "could not scan the nand chip\n"); 2740 return ret; 2741 } 2742 2743 if (pdata) 2744 /* Legacy bindings support only one chip */ 2745 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2746 else 2747 ret = mtd_device_register(mtd, NULL, 0); 2748 if (ret) { 2749 dev_err(dev, "failed to register mtd device: %d\n", ret); 2750 nand_cleanup(chip); 2751 return ret; 2752 } 2753 2754 list_add_tail(&marvell_nand->node, &nfc->chips); 2755 2756 return 0; 2757 } 2758 2759 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2760 { 2761 struct marvell_nand_chip *entry, *temp; 2762 struct nand_chip *chip; 2763 int ret; 2764 2765 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2766 chip = &entry->chip; 2767 ret = mtd_device_unregister(nand_to_mtd(chip)); 2768 WARN_ON(ret); 2769 nand_cleanup(chip); 2770 list_del(&entry->node); 2771 } 2772 } 2773 2774 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2775 { 2776 struct device_node *np = dev->of_node; 2777 struct device_node *nand_np; 2778 int max_cs = nfc->caps->max_cs_nb; 2779 int nchips; 2780 int ret; 2781 2782 if (!np) 2783 nchips = 1; 2784 else 2785 nchips = of_get_child_count(np); 2786 2787 if (nchips > max_cs) { 2788 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2789 max_cs); 2790 return -EINVAL; 2791 } 2792 2793 /* 2794 * Legacy bindings do not use child nodes to exhibit NAND chip 2795 * properties and layout. Instead, NAND properties are mixed with the 2796 * controller ones, and partitions are defined as direct subnodes of the 2797 * NAND controller node. 2798 */ 2799 if (nfc->caps->legacy_of_bindings) { 2800 ret = marvell_nand_chip_init(dev, nfc, np); 2801 return ret; 2802 } 2803 2804 for_each_child_of_node(np, nand_np) { 2805 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2806 if (ret) { 2807 of_node_put(nand_np); 2808 goto cleanup_chips; 2809 } 2810 } 2811 2812 return 0; 2813 2814 cleanup_chips: 2815 marvell_nand_chips_cleanup(nfc); 2816 2817 return ret; 2818 } 2819 2820 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2821 { 2822 struct platform_device *pdev = container_of(nfc->dev, 2823 struct platform_device, 2824 dev); 2825 struct dma_slave_config config = {}; 2826 struct resource *r; 2827 int ret; 2828 2829 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2830 dev_warn(nfc->dev, 2831 "DMA not enabled in configuration\n"); 2832 return -ENOTSUPP; 2833 } 2834 2835 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2836 if (ret) 2837 return ret; 2838 2839 nfc->dma_chan = dma_request_chan(nfc->dev, "data"); 2840 if (IS_ERR(nfc->dma_chan)) { 2841 ret = PTR_ERR(nfc->dma_chan); 2842 nfc->dma_chan = NULL; 2843 return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); 2844 } 2845 2846 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2847 if (!r) { 2848 ret = -ENXIO; 2849 goto release_channel; 2850 } 2851 2852 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2853 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2854 config.src_addr = r->start + NDDB; 2855 config.dst_addr = r->start + NDDB; 2856 config.src_maxburst = 32; 2857 config.dst_maxburst = 32; 2858 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2859 if (ret < 0) { 2860 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2861 goto release_channel; 2862 } 2863 2864 /* 2865 * DMA must act on length multiple of 32 and this length may be 2866 * bigger than the destination buffer. Use this buffer instead 2867 * for DMA transfers and then copy the desired amount of data to 2868 * the provided buffer. 2869 */ 2870 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2871 if (!nfc->dma_buf) { 2872 ret = -ENOMEM; 2873 goto release_channel; 2874 } 2875 2876 nfc->use_dma = true; 2877 2878 return 0; 2879 2880 release_channel: 2881 dma_release_channel(nfc->dma_chan); 2882 nfc->dma_chan = NULL; 2883 2884 return ret; 2885 } 2886 2887 static void marvell_nfc_reset(struct marvell_nfc *nfc) 2888 { 2889 /* 2890 * ECC operations and interruptions are only enabled when specifically 2891 * needed. ECC shall not be activated in the early stages (fails probe). 2892 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2893 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2894 * offset in the read page and this will fail the protection. 2895 */ 2896 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2897 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2898 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2899 writel_relaxed(0, nfc->regs + NDECCCTRL); 2900 } 2901 2902 static int marvell_nfc_init(struct marvell_nfc *nfc) 2903 { 2904 struct device_node *np = nfc->dev->of_node; 2905 2906 /* 2907 * Some SoCs like A7k/A8k need to enable manually the NAND 2908 * controller, gated clocks and reset bits to avoid being bootloader 2909 * dependent. This is done through the use of the System Functions 2910 * registers. 2911 */ 2912 if (nfc->caps->need_system_controller) { 2913 struct regmap *sysctrl_base = 2914 syscon_regmap_lookup_by_phandle(np, 2915 "marvell,system-controller"); 2916 2917 if (IS_ERR(sysctrl_base)) 2918 return PTR_ERR(sysctrl_base); 2919 2920 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, 2921 GENCONF_SOC_DEVICE_MUX_NFC_EN | 2922 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2923 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2924 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN | 2925 GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN); 2926 2927 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, 2928 GENCONF_CLK_GATING_CTRL_ND_GATE, 2929 GENCONF_CLK_GATING_CTRL_ND_GATE); 2930 } 2931 2932 /* Configure the DMA if appropriate */ 2933 if (!nfc->caps->is_nfcv2) 2934 marvell_nfc_init_dma(nfc); 2935 2936 marvell_nfc_reset(nfc); 2937 2938 return 0; 2939 } 2940 2941 static int marvell_nfc_probe(struct platform_device *pdev) 2942 { 2943 struct device *dev = &pdev->dev; 2944 struct marvell_nfc *nfc; 2945 int ret; 2946 int irq; 2947 2948 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2949 GFP_KERNEL); 2950 if (!nfc) 2951 return -ENOMEM; 2952 2953 nfc->dev = dev; 2954 nand_controller_init(&nfc->controller); 2955 nfc->controller.ops = &marvell_nand_controller_ops; 2956 INIT_LIST_HEAD(&nfc->chips); 2957 2958 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 2959 if (IS_ERR(nfc->regs)) 2960 return PTR_ERR(nfc->regs); 2961 2962 irq = platform_get_irq(pdev, 0); 2963 if (irq < 0) 2964 return irq; 2965 2966 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2967 2968 /* Managed the legacy case (when the first clock was not named) */ 2969 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2970 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2971 2972 if (IS_ERR(nfc->core_clk)) 2973 return PTR_ERR(nfc->core_clk); 2974 2975 ret = clk_prepare_enable(nfc->core_clk); 2976 if (ret) 2977 return ret; 2978 2979 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2980 if (IS_ERR(nfc->reg_clk)) { 2981 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2982 ret = PTR_ERR(nfc->reg_clk); 2983 goto unprepare_core_clk; 2984 } 2985 2986 nfc->reg_clk = NULL; 2987 } 2988 2989 ret = clk_prepare_enable(nfc->reg_clk); 2990 if (ret) 2991 goto unprepare_core_clk; 2992 2993 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2994 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2995 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2996 0, "marvell-nfc", nfc); 2997 if (ret) 2998 goto unprepare_reg_clk; 2999 3000 /* Get NAND controller capabilities */ 3001 if (pdev->id_entry) 3002 nfc->caps = (void *)pdev->id_entry->driver_data; 3003 else 3004 nfc->caps = of_device_get_match_data(&pdev->dev); 3005 3006 if (!nfc->caps) { 3007 dev_err(dev, "Could not retrieve NFC caps\n"); 3008 ret = -EINVAL; 3009 goto unprepare_reg_clk; 3010 } 3011 3012 /* Init the controller and then probe the chips */ 3013 ret = marvell_nfc_init(nfc); 3014 if (ret) 3015 goto unprepare_reg_clk; 3016 3017 platform_set_drvdata(pdev, nfc); 3018 3019 ret = marvell_nand_chips_init(dev, nfc); 3020 if (ret) 3021 goto release_dma; 3022 3023 return 0; 3024 3025 release_dma: 3026 if (nfc->use_dma) 3027 dma_release_channel(nfc->dma_chan); 3028 unprepare_reg_clk: 3029 clk_disable_unprepare(nfc->reg_clk); 3030 unprepare_core_clk: 3031 clk_disable_unprepare(nfc->core_clk); 3032 3033 return ret; 3034 } 3035 3036 static void marvell_nfc_remove(struct platform_device *pdev) 3037 { 3038 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 3039 3040 marvell_nand_chips_cleanup(nfc); 3041 3042 if (nfc->use_dma) { 3043 dmaengine_terminate_all(nfc->dma_chan); 3044 dma_release_channel(nfc->dma_chan); 3045 } 3046 3047 clk_disable_unprepare(nfc->reg_clk); 3048 clk_disable_unprepare(nfc->core_clk); 3049 } 3050 3051 static int __maybe_unused marvell_nfc_suspend(struct device *dev) 3052 { 3053 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3054 struct marvell_nand_chip *chip; 3055 3056 list_for_each_entry(chip, &nfc->chips, node) 3057 marvell_nfc_wait_ndrun(&chip->chip); 3058 3059 clk_disable_unprepare(nfc->reg_clk); 3060 clk_disable_unprepare(nfc->core_clk); 3061 3062 return 0; 3063 } 3064 3065 static int __maybe_unused marvell_nfc_resume(struct device *dev) 3066 { 3067 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3068 int ret; 3069 3070 ret = clk_prepare_enable(nfc->core_clk); 3071 if (ret < 0) 3072 return ret; 3073 3074 ret = clk_prepare_enable(nfc->reg_clk); 3075 if (ret < 0) { 3076 clk_disable_unprepare(nfc->core_clk); 3077 return ret; 3078 } 3079 3080 /* 3081 * Reset nfc->selected_chip so the next command will cause the timing 3082 * registers to be restored in marvell_nfc_select_target(). 3083 */ 3084 nfc->selected_chip = NULL; 3085 3086 /* Reset registers that have lost their contents */ 3087 marvell_nfc_reset(nfc); 3088 3089 return 0; 3090 } 3091 3092 static const struct dev_pm_ops marvell_nfc_pm_ops = { 3093 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 3094 }; 3095 3096 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 3097 .max_cs_nb = 4, 3098 .max_rb_nb = 2, 3099 .need_system_controller = true, 3100 .is_nfcv2 = true, 3101 }; 3102 3103 static const struct marvell_nfc_caps marvell_ac5_caps = { 3104 .max_cs_nb = 2, 3105 .max_rb_nb = 1, 3106 .is_nfcv2 = true, 3107 .max_mode_number = 3, 3108 }; 3109 3110 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 3111 .max_cs_nb = 4, 3112 .max_rb_nb = 2, 3113 .is_nfcv2 = true, 3114 }; 3115 3116 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 3117 .max_cs_nb = 2, 3118 .max_rb_nb = 1, 3119 .use_dma = true, 3120 }; 3121 3122 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 3123 .max_cs_nb = 4, 3124 .max_rb_nb = 2, 3125 .need_system_controller = true, 3126 .legacy_of_bindings = true, 3127 .is_nfcv2 = true, 3128 }; 3129 3130 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 3131 .max_cs_nb = 4, 3132 .max_rb_nb = 2, 3133 .legacy_of_bindings = true, 3134 .is_nfcv2 = true, 3135 }; 3136 3137 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 3138 .max_cs_nb = 2, 3139 .max_rb_nb = 1, 3140 .legacy_of_bindings = true, 3141 .use_dma = true, 3142 }; 3143 3144 static const struct platform_device_id marvell_nfc_platform_ids[] = { 3145 { 3146 .name = "pxa3xx-nand", 3147 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 3148 }, 3149 { /* sentinel */ }, 3150 }; 3151 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 3152 3153 static const struct of_device_id marvell_nfc_of_ids[] = { 3154 { 3155 .compatible = "marvell,armada-8k-nand-controller", 3156 .data = &marvell_armada_8k_nfc_caps, 3157 }, 3158 { 3159 .compatible = "marvell,ac5-nand-controller", 3160 .data = &marvell_ac5_caps, 3161 }, 3162 { 3163 .compatible = "marvell,armada370-nand-controller", 3164 .data = &marvell_armada370_nfc_caps, 3165 }, 3166 { 3167 .compatible = "marvell,pxa3xx-nand-controller", 3168 .data = &marvell_pxa3xx_nfc_caps, 3169 }, 3170 /* Support for old/deprecated bindings: */ 3171 { 3172 .compatible = "marvell,armada-8k-nand", 3173 .data = &marvell_armada_8k_nfc_legacy_caps, 3174 }, 3175 { 3176 .compatible = "marvell,armada370-nand", 3177 .data = &marvell_armada370_nfc_legacy_caps, 3178 }, 3179 { 3180 .compatible = "marvell,pxa3xx-nand", 3181 .data = &marvell_pxa3xx_nfc_legacy_caps, 3182 }, 3183 { /* sentinel */ }, 3184 }; 3185 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 3186 3187 static struct platform_driver marvell_nfc_driver = { 3188 .driver = { 3189 .name = "marvell-nfc", 3190 .of_match_table = marvell_nfc_of_ids, 3191 .pm = &marvell_nfc_pm_ops, 3192 }, 3193 .id_table = marvell_nfc_platform_ids, 3194 .probe = marvell_nfc_probe, 3195 .remove_new = marvell_nfc_remove, 3196 }; 3197 module_platform_driver(marvell_nfc_driver); 3198 3199 MODULE_LICENSE("GPL"); 3200 MODULE_DESCRIPTION("Marvell NAND controller driver"); 3201