1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 * 9 * This NAND controller driver handles two versions of the hardware, 10 * one is called NFCv1 and is available on PXA SoCs and the other is 11 * called NFCv2 and is available on Armada SoCs. 12 * 13 * The main visible difference is that NFCv1 only has Hamming ECC 14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA 15 * is not used with NFCv2. 16 * 17 * The ECC layouts are depicted in details in Marvell AN-379, but here 18 * is a brief description. 19 * 20 * When using Hamming, the data is split in 512B chunks (either 1, 2 21 * or 4) and each chunk will have its own ECC "digest" of 6B at the 22 * beginning of the OOB area and eventually the remaining free OOB 23 * bytes (also called "spare" bytes in the driver). This engine 24 * corrects up to 1 bit per chunk and detects reliably an error if 25 * there are at most 2 bitflips. Here is the page layout used by the 26 * controller when Hamming is chosen: 27 * 28 * +-------------------------------------------------------------+ 29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | 30 * +-------------------------------------------------------------+ 31 * 32 * When using the BCH engine, there are N identical (data + free OOB + 33 * ECC) sections and potentially an extra one to deal with 34 * configurations where the chosen (data + free OOB + ECC) sizes do 35 * not align with the page (data + OOB) size. ECC bytes are always 36 * 30B per ECC chunk. Here is the page layout used by the controller 37 * when BCH is chosen: 38 * 39 * +----------------------------------------- 40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ... 41 * +----------------------------------------- 42 * 43 * ------------------------------------------- 44 * ... | Data N | Free OOB bytes N | ECC N | 45 * ------------------------------------------- 46 * 47 * --------------------------------------------+ 48 * Last Data | Last Free OOB bytes | Last ECC | 49 * --------------------------------------------+ 50 * 51 * In both cases, the layout seen by the user is always: all data 52 * first, then all free OOB bytes and finally all ECC bytes. With BCH, 53 * ECC bytes are 30B long and are padded with 0xFF to align on 32 54 * bytes. 55 * 56 * The controller has certain limitations that are handled by the 57 * driver: 58 * - It can only read 2k at a time. To overcome this limitation, the 59 * driver issues data cycles on the bus, without issuing new 60 * CMD + ADDR cycles. The Marvell term is "naked" operations. 61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 62 * bits. What can be tuned is the ECC block size as long as it 63 * stays between 512B and 2kiB. It's usually chosen based on the 64 * chip ECC requirements. For instance, using 2kiB ECC chunks 65 * provides 4b/512B correctability. 66 * - The controller will always treat data bytes, free OOB bytes 67 * and ECC bytes in that order, no matter what the real layout is 68 * (which is usually all data then all OOB bytes). The 69 * marvell_nfc_layouts array below contains the currently 70 * supported layouts. 71 * - Because of these weird layouts, the Bad Block Markers can be 72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM 73 * option must be set to prevent scanning/writing bad block 74 * markers. 75 */ 76 77 #include <linux/module.h> 78 #include <linux/clk.h> 79 #include <linux/mtd/rawnand.h> 80 #include <linux/of_platform.h> 81 #include <linux/iopoll.h> 82 #include <linux/interrupt.h> 83 #include <linux/slab.h> 84 #include <linux/mfd/syscon.h> 85 #include <linux/regmap.h> 86 #include <asm/unaligned.h> 87 88 #include <linux/dmaengine.h> 89 #include <linux/dma-mapping.h> 90 #include <linux/dma/pxa-dma.h> 91 #include <linux/platform_data/mtd-nand-pxa3xx.h> 92 93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 94 #define FIFO_DEPTH 8 95 #define FIFO_REP(x) (x / sizeof(u32)) 96 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 97 /* NFC does not support transfers of larger chunks at a time */ 98 #define MAX_CHUNK_SIZE 2112 99 /* NFCv1 cannot read more that 7 bytes of ID */ 100 #define NFCV1_READID_LEN 7 101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 102 #define POLL_PERIOD 0 103 #define POLL_TIMEOUT 100000 104 /* Interrupt maximum wait period in ms */ 105 #define IRQ_TIMEOUT 1000 106 /* Latency in clock cycles between SoC pins and NFC logic */ 107 #define MIN_RD_DEL_CNT 3 108 /* Maximum number of contiguous address cycles */ 109 #define MAX_ADDRESS_CYC_NFCV1 5 110 #define MAX_ADDRESS_CYC_NFCV2 7 111 /* System control registers/bits to enable the NAND controller on some SoCs */ 112 #define GENCONF_SOC_DEVICE_MUX 0x208 113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 117 #define GENCONF_CLK_GATING_CTRL 0x220 118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 119 #define GENCONF_ND_CLK_CTRL 0x700 120 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 121 122 /* NAND controller data flash control register */ 123 #define NDCR 0x00 124 #define NDCR_ALL_INT GENMASK(11, 0) 125 #define NDCR_CS1_CMDDM BIT(7) 126 #define NDCR_CS0_CMDDM BIT(8) 127 #define NDCR_RDYM BIT(11) 128 #define NDCR_ND_ARB_EN BIT(12) 129 #define NDCR_RA_START BIT(15) 130 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 131 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 132 #define NDCR_DWIDTH_M BIT(26) 133 #define NDCR_DWIDTH_C BIT(27) 134 #define NDCR_ND_RUN BIT(28) 135 #define NDCR_DMA_EN BIT(29) 136 #define NDCR_ECC_EN BIT(30) 137 #define NDCR_SPARE_EN BIT(31) 138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 139 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 140 141 /* NAND interface timing parameter 0 register */ 142 #define NDTR0 0x04 143 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 144 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 145 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 146 #define NDTR0_SEL_NRE_EDGE BIT(7) 147 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 148 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 149 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 150 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 151 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 152 #define NDTR0_SELCNTR BIT(26) 153 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 154 155 /* NAND interface timing parameter 1 register */ 156 #define NDTR1 0x0C 157 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 158 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 159 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 160 #define NDTR1_PRESCALE BIT(14) 161 #define NDTR1_WAIT_MODE BIT(15) 162 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 163 164 /* NAND controller status register */ 165 #define NDSR 0x14 166 #define NDSR_WRCMDREQ BIT(0) 167 #define NDSR_RDDREQ BIT(1) 168 #define NDSR_WRDREQ BIT(2) 169 #define NDSR_CORERR BIT(3) 170 #define NDSR_UNCERR BIT(4) 171 #define NDSR_CMDD(cs) BIT(8 - cs) 172 #define NDSR_RDY(rb) BIT(11 + rb) 173 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 174 175 /* NAND ECC control register */ 176 #define NDECCCTRL 0x28 177 #define NDECCCTRL_BCH_EN BIT(0) 178 179 /* NAND controller data buffer register */ 180 #define NDDB 0x40 181 182 /* NAND controller command buffer 0 register */ 183 #define NDCB0 0x48 184 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 185 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 186 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 188 #define NDCB0_DBC BIT(19) 189 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 190 #define NDCB0_CSEL BIT(24) 191 #define NDCB0_RDY_BYP BIT(27) 192 #define NDCB0_LEN_OVRD BIT(28) 193 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 194 195 /* NAND controller command buffer 1 register */ 196 #define NDCB1 0x4C 197 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 198 #define NDCB1_ADDRS_PAGE(x) (x << 16) 199 200 /* NAND controller command buffer 2 register */ 201 #define NDCB2 0x50 202 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 203 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 204 205 /* NAND controller command buffer 3 register */ 206 #define NDCB3 0x54 207 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 208 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 209 210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 211 #define TYPE_READ 0 212 #define TYPE_WRITE 1 213 #define TYPE_ERASE 2 214 #define TYPE_READ_ID 3 215 #define TYPE_STATUS 4 216 #define TYPE_RESET 5 217 #define TYPE_NAKED_CMD 6 218 #define TYPE_NAKED_ADDR 7 219 #define TYPE_MASK 7 220 #define XTYPE_MONOLITHIC_RW 0 221 #define XTYPE_LAST_NAKED_RW 1 222 #define XTYPE_FINAL_COMMAND 3 223 #define XTYPE_READ 4 224 #define XTYPE_WRITE_DISPATCH 4 225 #define XTYPE_NAKED_RW 5 226 #define XTYPE_COMMAND_DISPATCH 6 227 #define XTYPE_MASK 7 228 229 /** 230 * struct marvell_hw_ecc_layout - layout of Marvell ECC 231 * 232 * Marvell ECC engine works differently than the others, in order to limit the 233 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 234 * per subpage, and depending on a the desired strength needed by the NAND chip, 235 * a particular layout mixing data/spare/ecc is defined, with a possible last 236 * chunk smaller that the others. 237 * 238 * @writesize: Full page size on which the layout applies 239 * @chunk: Desired ECC chunk size on which the layout applies 240 * @strength: Desired ECC strength (per chunk size bytes) on which the 241 * layout applies 242 * @nchunks: Total number of chunks 243 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 244 * repetitions of the pattern: 245 * (data_bytes + spare_bytes + ecc_bytes). 246 * @data_bytes: Number of data bytes per chunk 247 * @spare_bytes: Number of spare bytes per chunk 248 * @ecc_bytes: Number of ecc bytes per chunk 249 * @last_data_bytes: Number of data bytes in the last chunk 250 * @last_spare_bytes: Number of spare bytes in the last chunk 251 * @last_ecc_bytes: Number of ecc bytes in the last chunk 252 */ 253 struct marvell_hw_ecc_layout { 254 /* Constraints */ 255 int writesize; 256 int chunk; 257 int strength; 258 /* Corresponding layout */ 259 int nchunks; 260 int full_chunk_cnt; 261 int data_bytes; 262 int spare_bytes; 263 int ecc_bytes; 264 int last_data_bytes; 265 int last_spare_bytes; 266 int last_ecc_bytes; 267 }; 268 269 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 270 { \ 271 .writesize = ws, \ 272 .chunk = dc, \ 273 .strength = ds, \ 274 .nchunks = nc, \ 275 .full_chunk_cnt = fcc, \ 276 .data_bytes = db, \ 277 .spare_bytes = sb, \ 278 .ecc_bytes = eb, \ 279 .last_data_bytes = ldb, \ 280 .last_spare_bytes = lsb, \ 281 .last_ecc_bytes = leb, \ 282 } 283 284 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 285 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 286 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 287 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 288 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 289 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), 290 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 291 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 292 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), 293 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), 294 }; 295 296 /** 297 * struct marvell_nand_chip_sel - CS line description 298 * 299 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 300 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 301 * The datasheet describes the logic with an error: ADDR5 field is once 302 * declared at the beginning of NDCB2, and another time at its end. Because the 303 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 304 * to use the last bit of this field instead of the first ones. 305 * 306 * @cs: Wanted CE lane. 307 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 308 * selecting the wanted CE lane. This is set once when 309 * the Device Tree is probed. 310 * @rb: Ready/Busy pin for the flash chip 311 */ 312 struct marvell_nand_chip_sel { 313 unsigned int cs; 314 u32 ndcb0_csel; 315 unsigned int rb; 316 }; 317 318 /** 319 * struct marvell_nand_chip - stores NAND chip device related information 320 * 321 * @chip: Base NAND chip structure 322 * @node: Used to store NAND chips into a list 323 * @layout: NAND layout when using hardware ECC 324 * @ndcr: Controller register value for this NAND chip 325 * @ndtr0: Timing registers 0 value for this NAND chip 326 * @ndtr1: Timing registers 1 value for this NAND chip 327 * @addr_cyc: Amount of cycles needed to pass column address 328 * @selected_die: Current active CS 329 * @nsels: Number of CS lines required by the NAND chip 330 * @sels: Array of CS lines descriptions 331 */ 332 struct marvell_nand_chip { 333 struct nand_chip chip; 334 struct list_head node; 335 const struct marvell_hw_ecc_layout *layout; 336 u32 ndcr; 337 u32 ndtr0; 338 u32 ndtr1; 339 int addr_cyc; 340 int selected_die; 341 unsigned int nsels; 342 struct marvell_nand_chip_sel sels[]; 343 }; 344 345 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 346 { 347 return container_of(chip, struct marvell_nand_chip, chip); 348 } 349 350 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 351 *nand) 352 { 353 return &nand->sels[nand->selected_die]; 354 } 355 356 /** 357 * struct marvell_nfc_caps - NAND controller capabilities for distinction 358 * between compatible strings 359 * 360 * @max_cs_nb: Number of Chip Select lines available 361 * @max_rb_nb: Number of Ready/Busy lines available 362 * @need_system_controller: Indicates if the SoC needs to have access to the 363 * system controller (ie. to enable the NAND controller) 364 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 365 * fashion way 366 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 367 * BCH error detection and correction algorithm, 368 * NDCB3 register has been added 369 * @use_dma: Use dma for data transfers 370 */ 371 struct marvell_nfc_caps { 372 unsigned int max_cs_nb; 373 unsigned int max_rb_nb; 374 bool need_system_controller; 375 bool legacy_of_bindings; 376 bool is_nfcv2; 377 bool use_dma; 378 }; 379 380 /** 381 * struct marvell_nfc - stores Marvell NAND controller information 382 * 383 * @controller: Base controller structure 384 * @dev: Parent device (used to print error messages) 385 * @regs: NAND controller registers 386 * @core_clk: Core clock 387 * @reg_clk: Registers clock 388 * @complete: Completion object to wait for NAND controller events 389 * @assigned_cs: Bitmask describing already assigned CS lines 390 * @chips: List containing all the NAND chips attached to 391 * this NAND controller 392 * @selected_chip: Currently selected target chip 393 * @caps: NAND controller capabilities for each compatible string 394 * @use_dma: Whetner DMA is used 395 * @dma_chan: DMA channel (NFCv1 only) 396 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 397 */ 398 struct marvell_nfc { 399 struct nand_controller controller; 400 struct device *dev; 401 void __iomem *regs; 402 struct clk *core_clk; 403 struct clk *reg_clk; 404 struct completion complete; 405 unsigned long assigned_cs; 406 struct list_head chips; 407 struct nand_chip *selected_chip; 408 const struct marvell_nfc_caps *caps; 409 410 /* DMA (NFCv1 only) */ 411 bool use_dma; 412 struct dma_chan *dma_chan; 413 u8 *dma_buf; 414 }; 415 416 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 417 { 418 return container_of(ctrl, struct marvell_nfc, controller); 419 } 420 421 /** 422 * struct marvell_nfc_timings - NAND controller timings expressed in NAND 423 * Controller clock cycles 424 * 425 * @tRP: ND_nRE pulse width 426 * @tRH: ND_nRE high duration 427 * @tWP: ND_nWE pulse time 428 * @tWH: ND_nWE high duration 429 * @tCS: Enable signal setup time 430 * @tCH: Enable signal hold time 431 * @tADL: Address to write data delay 432 * @tAR: ND_ALE low to ND_nRE low delay 433 * @tWHR: ND_nWE high to ND_nRE low for status read 434 * @tRHW: ND_nRE high duration, read to write delay 435 * @tR: ND_nWE high to ND_nRE low for read 436 */ 437 struct marvell_nfc_timings { 438 /* NDTR0 fields */ 439 unsigned int tRP; 440 unsigned int tRH; 441 unsigned int tWP; 442 unsigned int tWH; 443 unsigned int tCS; 444 unsigned int tCH; 445 unsigned int tADL; 446 /* NDTR1 fields */ 447 unsigned int tAR; 448 unsigned int tWHR; 449 unsigned int tRHW; 450 unsigned int tR; 451 }; 452 453 /** 454 * TO_CYCLES() - Derives a duration in numbers of clock cycles. 455 * 456 * @ps: Duration in pico-seconds 457 * @period_ns: Clock period in nano-seconds 458 * 459 * Convert the duration in nano-seconds, then divide by the period and 460 * return the number of clock periods. 461 */ 462 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 463 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 464 period_ns)) 465 466 /** 467 * struct marvell_nfc_op - filled during the parsing of the ->exec_op() 468 * subop subset of instructions. 469 * 470 * @ndcb: Array of values written to NDCBx registers 471 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 472 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 473 * @rdy_delay_ns: Optional delay after waiting for the RB pin 474 * @data_delay_ns: Optional delay after the data xfer 475 * @data_instr_idx: Index of the data instruction in the subop 476 * @data_instr: Pointer to the data instruction in the subop 477 */ 478 struct marvell_nfc_op { 479 u32 ndcb[4]; 480 unsigned int cle_ale_delay_ns; 481 unsigned int rdy_timeout_ms; 482 unsigned int rdy_delay_ns; 483 unsigned int data_delay_ns; 484 unsigned int data_instr_idx; 485 const struct nand_op_instr *data_instr; 486 }; 487 488 /* 489 * Internal helper to conditionnally apply a delay (from the above structure, 490 * most of the time). 491 */ 492 static void cond_delay(unsigned int ns) 493 { 494 if (!ns) 495 return; 496 497 if (ns < 10000) 498 ndelay(ns); 499 else 500 udelay(DIV_ROUND_UP(ns, 1000)); 501 } 502 503 /* 504 * The controller has many flags that could generate interrupts, most of them 505 * are disabled and polling is used. For the very slow signals, using interrupts 506 * may relax the CPU charge. 507 */ 508 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 509 { 510 u32 reg; 511 512 /* Writing 1 disables the interrupt */ 513 reg = readl_relaxed(nfc->regs + NDCR); 514 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 515 } 516 517 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 518 { 519 u32 reg; 520 521 /* Writing 0 enables the interrupt */ 522 reg = readl_relaxed(nfc->regs + NDCR); 523 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 524 } 525 526 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 527 { 528 u32 reg; 529 530 reg = readl_relaxed(nfc->regs + NDSR); 531 writel_relaxed(int_mask, nfc->regs + NDSR); 532 533 return reg & int_mask; 534 } 535 536 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 537 bool force_8bit) 538 { 539 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 540 u32 ndcr; 541 542 /* 543 * Callers of this function do not verify if the NAND is using a 16-bit 544 * an 8-bit bus for normal operations, so we need to take care of that 545 * here by leaving the configuration unchanged if the NAND does not have 546 * the NAND_BUSWIDTH_16 flag set. 547 */ 548 if (!(chip->options & NAND_BUSWIDTH_16)) 549 return; 550 551 ndcr = readl_relaxed(nfc->regs + NDCR); 552 553 if (force_8bit) 554 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 555 else 556 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 557 558 writel_relaxed(ndcr, nfc->regs + NDCR); 559 } 560 561 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 562 { 563 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 564 u32 val; 565 int ret; 566 567 /* 568 * The command is being processed, wait for the ND_RUN bit to be 569 * cleared by the NFC. If not, we must clear it by hand. 570 */ 571 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 572 (val & NDCR_ND_RUN) == 0, 573 POLL_PERIOD, POLL_TIMEOUT); 574 if (ret) { 575 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 576 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 577 nfc->regs + NDCR); 578 return ret; 579 } 580 581 return 0; 582 } 583 584 /* 585 * Any time a command has to be sent to the controller, the following sequence 586 * has to be followed: 587 * - call marvell_nfc_prepare_cmd() 588 * -> activate the ND_RUN bit that will kind of 'start a job' 589 * -> wait the signal indicating the NFC is waiting for a command 590 * - send the command (cmd and address cycles) 591 * - enventually send or receive the data 592 * - call marvell_nfc_end_cmd() with the corresponding flag 593 * -> wait the flag to be triggered or cancel the job with a timeout 594 * 595 * The following helpers are here to factorize the code a bit so that 596 * specialized functions responsible for executing the actual NAND 597 * operations do not have to replicate the same code blocks. 598 */ 599 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 600 { 601 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 602 u32 ndcr, val; 603 int ret; 604 605 /* Poll ND_RUN and clear NDSR before issuing any command */ 606 ret = marvell_nfc_wait_ndrun(chip); 607 if (ret) { 608 dev_err(nfc->dev, "Last operation did not succeed\n"); 609 return ret; 610 } 611 612 ndcr = readl_relaxed(nfc->regs + NDCR); 613 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 614 615 /* Assert ND_RUN bit and wait the NFC to be ready */ 616 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 617 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 618 val & NDSR_WRCMDREQ, 619 POLL_PERIOD, POLL_TIMEOUT); 620 if (ret) { 621 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 622 return -ETIMEDOUT; 623 } 624 625 /* Command may be written, clear WRCMDREQ status bit */ 626 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 627 628 return 0; 629 } 630 631 static void marvell_nfc_send_cmd(struct nand_chip *chip, 632 struct marvell_nfc_op *nfc_op) 633 { 634 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 635 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 636 637 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 638 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 639 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 640 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 641 642 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 643 nfc->regs + NDCB0); 644 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 645 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 646 647 /* 648 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 649 * fields are used (only available on NFCv2). 650 */ 651 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 652 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 653 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 654 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 655 } 656 } 657 658 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 659 const char *label) 660 { 661 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 662 u32 val; 663 int ret; 664 665 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 666 val & flag, 667 POLL_PERIOD, POLL_TIMEOUT); 668 669 if (ret) { 670 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 671 label, val); 672 if (nfc->dma_chan) 673 dmaengine_terminate_all(nfc->dma_chan); 674 return ret; 675 } 676 677 /* 678 * DMA function uses this helper to poll on CMDD bits without wanting 679 * them to be cleared. 680 */ 681 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 682 return 0; 683 684 writel_relaxed(flag, nfc->regs + NDSR); 685 686 return 0; 687 } 688 689 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 690 { 691 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 692 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 693 694 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 695 } 696 697 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, 698 u32 expected_val, unsigned long timeout_ms) 699 { 700 unsigned long limit; 701 u32 st; 702 703 limit = jiffies + msecs_to_jiffies(timeout_ms); 704 do { 705 st = readl_relaxed(nfc->regs + NDSR); 706 if (st & NDSR_RDY(1)) 707 st |= NDSR_RDY(0); 708 709 if ((st & mask) == expected_val) 710 return 0; 711 712 cpu_relax(); 713 } while (time_after(limit, jiffies)); 714 715 return -ETIMEDOUT; 716 } 717 718 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 719 { 720 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 721 struct mtd_info *mtd = nand_to_mtd(chip); 722 u32 pending; 723 int ret; 724 725 /* Timeout is expressed in ms */ 726 if (!timeout_ms) 727 timeout_ms = IRQ_TIMEOUT; 728 729 if (mtd->oops_panic_write) { 730 ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), 731 NDSR_RDY(0), 732 timeout_ms); 733 } else { 734 init_completion(&nfc->complete); 735 736 marvell_nfc_enable_int(nfc, NDCR_RDYM); 737 ret = wait_for_completion_timeout(&nfc->complete, 738 msecs_to_jiffies(timeout_ms)); 739 marvell_nfc_disable_int(nfc, NDCR_RDYM); 740 } 741 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 742 743 /* 744 * In case the interrupt was not served in the required time frame, 745 * check if the ISR was not served or if something went actually wrong. 746 */ 747 if (!ret && !pending) { 748 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 749 return -ETIMEDOUT; 750 } 751 752 return 0; 753 } 754 755 static void marvell_nfc_select_target(struct nand_chip *chip, 756 unsigned int die_nr) 757 { 758 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 759 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 760 u32 ndcr_generic; 761 762 /* 763 * Reset the NDCR register to a clean state for this particular chip, 764 * also clear ND_RUN bit. 765 */ 766 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 767 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 768 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 769 770 /* Also reset the interrupt status register */ 771 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 772 773 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 774 return; 775 776 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 777 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 778 779 nfc->selected_chip = chip; 780 marvell_nand->selected_die = die_nr; 781 } 782 783 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 784 { 785 struct marvell_nfc *nfc = dev_id; 786 u32 st = readl_relaxed(nfc->regs + NDSR); 787 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 788 789 /* 790 * RDY interrupt mask is one bit in NDCR while there are two status 791 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 792 */ 793 if (st & NDSR_RDY(1)) 794 st |= NDSR_RDY(0); 795 796 if (!(st & ien)) 797 return IRQ_NONE; 798 799 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 800 801 if (st & (NDSR_RDY(0) | NDSR_RDY(1))) 802 complete(&nfc->complete); 803 804 return IRQ_HANDLED; 805 } 806 807 /* HW ECC related functions */ 808 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 809 { 810 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 811 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 812 813 if (!(ndcr & NDCR_ECC_EN)) { 814 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 815 816 /* 817 * When enabling BCH, set threshold to 0 to always know the 818 * number of corrected bitflips. 819 */ 820 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 821 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 822 } 823 } 824 825 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 826 { 827 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 828 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 829 830 if (ndcr & NDCR_ECC_EN) { 831 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 832 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 833 writel_relaxed(0, nfc->regs + NDECCCTRL); 834 } 835 } 836 837 /* DMA related helpers */ 838 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 839 { 840 u32 reg; 841 842 reg = readl_relaxed(nfc->regs + NDCR); 843 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 844 } 845 846 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 847 { 848 u32 reg; 849 850 reg = readl_relaxed(nfc->regs + NDCR); 851 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 852 } 853 854 /* Read/write PIO/DMA accessors */ 855 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 856 enum dma_data_direction direction, 857 unsigned int len) 858 { 859 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 860 struct dma_async_tx_descriptor *tx; 861 struct scatterlist sg; 862 dma_cookie_t cookie; 863 int ret; 864 865 marvell_nfc_enable_dma(nfc); 866 /* Prepare the DMA transfer */ 867 sg_init_one(&sg, nfc->dma_buf, dma_len); 868 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 869 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 870 direction == DMA_FROM_DEVICE ? 871 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 872 DMA_PREP_INTERRUPT); 873 if (!tx) { 874 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 875 return -ENXIO; 876 } 877 878 /* Do the task and wait for it to finish */ 879 cookie = dmaengine_submit(tx); 880 ret = dma_submit_error(cookie); 881 if (ret) 882 return -EIO; 883 884 dma_async_issue_pending(nfc->dma_chan); 885 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 886 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 887 marvell_nfc_disable_dma(nfc); 888 if (ret) { 889 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 890 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 891 dmaengine_terminate_all(nfc->dma_chan); 892 return -ETIMEDOUT; 893 } 894 895 return 0; 896 } 897 898 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 899 unsigned int len) 900 { 901 unsigned int last_len = len % FIFO_DEPTH; 902 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 903 int i; 904 905 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 906 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 907 908 if (last_len) { 909 u8 tmp_buf[FIFO_DEPTH]; 910 911 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 912 memcpy(in + last_full_offset, tmp_buf, last_len); 913 } 914 915 return 0; 916 } 917 918 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 919 unsigned int len) 920 { 921 unsigned int last_len = len % FIFO_DEPTH; 922 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 923 int i; 924 925 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 926 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 927 928 if (last_len) { 929 u8 tmp_buf[FIFO_DEPTH]; 930 931 memcpy(tmp_buf, out + last_full_offset, last_len); 932 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 933 } 934 935 return 0; 936 } 937 938 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 939 u8 *data, int data_len, 940 u8 *spare, int spare_len, 941 u8 *ecc, int ecc_len, 942 unsigned int *max_bitflips) 943 { 944 struct mtd_info *mtd = nand_to_mtd(chip); 945 int bf; 946 947 /* 948 * Blank pages (all 0xFF) that have not been written may be recognized 949 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 950 * check if the entire page (with ECC bytes) is actually blank or not. 951 */ 952 if (!data) 953 data_len = 0; 954 if (!spare) 955 spare_len = 0; 956 if (!ecc) 957 ecc_len = 0; 958 959 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 960 spare, spare_len, chip->ecc.strength); 961 if (bf < 0) { 962 mtd->ecc_stats.failed++; 963 return; 964 } 965 966 /* Update the stats and max_bitflips */ 967 mtd->ecc_stats.corrected += bf; 968 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 969 } 970 971 /* 972 * Check if a chunk is correct or not according to the hardware ECC engine. 973 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 974 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 975 * value indicating that a check on the emptyness of the subpage must be 976 * performed before actually declaring the subpage as "corrupted". 977 */ 978 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, 979 unsigned int *max_bitflips) 980 { 981 struct mtd_info *mtd = nand_to_mtd(chip); 982 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 983 int bf = 0; 984 u32 ndsr; 985 986 ndsr = readl_relaxed(nfc->regs + NDSR); 987 988 /* Check uncorrectable error flag */ 989 if (ndsr & NDSR_UNCERR) { 990 writel_relaxed(ndsr, nfc->regs + NDSR); 991 992 /* 993 * Do not increment ->ecc_stats.failed now, instead, return a 994 * non-zero value to indicate that this chunk was apparently 995 * bad, and it should be check to see if it empty or not. If 996 * the chunk (with ECC bytes) is not declared empty, the calling 997 * function must increment the failure count. 998 */ 999 return -EBADMSG; 1000 } 1001 1002 /* Check correctable error flag */ 1003 if (ndsr & NDSR_CORERR) { 1004 writel_relaxed(ndsr, nfc->regs + NDSR); 1005 1006 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 1007 bf = NDSR_ERRCNT(ndsr); 1008 else 1009 bf = 1; 1010 } 1011 1012 /* Update the stats and max_bitflips */ 1013 mtd->ecc_stats.corrected += bf; 1014 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 1015 1016 return 0; 1017 } 1018 1019 /* Hamming read helpers */ 1020 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 1021 u8 *data_buf, u8 *oob_buf, 1022 bool raw, int page) 1023 { 1024 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1025 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1026 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1027 struct marvell_nfc_op nfc_op = { 1028 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1029 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1030 NDCB0_DBC | 1031 NDCB0_CMD1(NAND_CMD_READ0) | 1032 NDCB0_CMD2(NAND_CMD_READSTART), 1033 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1034 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1035 }; 1036 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1037 int ret; 1038 1039 /* NFCv2 needs more information about the operation being executed */ 1040 if (nfc->caps->is_nfcv2) 1041 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1042 1043 ret = marvell_nfc_prepare_cmd(chip); 1044 if (ret) 1045 return ret; 1046 1047 marvell_nfc_send_cmd(chip, &nfc_op); 1048 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1049 "RDDREQ while draining FIFO (data/oob)"); 1050 if (ret) 1051 return ret; 1052 1053 /* 1054 * Read the page then the OOB area. Unlike what is shown in current 1055 * documentation, spare bytes are protected by the ECC engine, and must 1056 * be at the beginning of the OOB area or running this driver on legacy 1057 * systems will prevent the discovery of the BBM/BBT. 1058 */ 1059 if (nfc->use_dma) { 1060 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 1061 lt->data_bytes + oob_bytes); 1062 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 1063 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 1064 } else { 1065 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 1066 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 1067 } 1068 1069 ret = marvell_nfc_wait_cmdd(chip); 1070 return ret; 1071 } 1072 1073 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, 1074 int oob_required, int page) 1075 { 1076 marvell_nfc_select_target(chip, chip->cur_cs); 1077 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1078 true, page); 1079 } 1080 1081 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, 1082 int oob_required, int page) 1083 { 1084 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1085 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1086 int max_bitflips = 0, ret; 1087 u8 *raw_buf; 1088 1089 marvell_nfc_select_target(chip, chip->cur_cs); 1090 marvell_nfc_enable_hw_ecc(chip); 1091 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 1092 page); 1093 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1094 marvell_nfc_disable_hw_ecc(chip); 1095 1096 if (!ret) 1097 return max_bitflips; 1098 1099 /* 1100 * When ECC failures are detected, check if the full page has been 1101 * written or not. Ignore the failure if it is actually empty. 1102 */ 1103 raw_buf = kmalloc(full_sz, GFP_KERNEL); 1104 if (!raw_buf) 1105 return -ENOMEM; 1106 1107 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1108 lt->data_bytes, true, page); 1109 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1110 &max_bitflips); 1111 kfree(raw_buf); 1112 1113 return max_bitflips; 1114 } 1115 1116 /* 1117 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1118 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1119 * also stands for ->read_oob(). 1120 */ 1121 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) 1122 { 1123 u8 *buf = nand_get_data_buf(chip); 1124 1125 marvell_nfc_select_target(chip, chip->cur_cs); 1126 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1127 true, page); 1128 } 1129 1130 /* Hamming write helpers */ 1131 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1132 const u8 *data_buf, 1133 const u8 *oob_buf, bool raw, 1134 int page) 1135 { 1136 const struct nand_sdr_timings *sdr = 1137 nand_get_sdr_timings(nand_get_interface_config(chip)); 1138 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1139 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1140 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1141 struct marvell_nfc_op nfc_op = { 1142 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1143 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1144 NDCB0_CMD1(NAND_CMD_SEQIN) | 1145 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1146 NDCB0_DBC, 1147 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1148 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1149 }; 1150 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1151 int ret; 1152 1153 /* NFCv2 needs more information about the operation being executed */ 1154 if (nfc->caps->is_nfcv2) 1155 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1156 1157 ret = marvell_nfc_prepare_cmd(chip); 1158 if (ret) 1159 return ret; 1160 1161 marvell_nfc_send_cmd(chip, &nfc_op); 1162 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1163 "WRDREQ while loading FIFO (data)"); 1164 if (ret) 1165 return ret; 1166 1167 /* Write the page then the OOB area */ 1168 if (nfc->use_dma) { 1169 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1170 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1171 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1172 lt->ecc_bytes + lt->spare_bytes); 1173 } else { 1174 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1175 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1176 } 1177 1178 ret = marvell_nfc_wait_cmdd(chip); 1179 if (ret) 1180 return ret; 1181 1182 ret = marvell_nfc_wait_op(chip, 1183 PSEC_TO_MSEC(sdr->tPROG_max)); 1184 return ret; 1185 } 1186 1187 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, 1188 const u8 *buf, 1189 int oob_required, int page) 1190 { 1191 marvell_nfc_select_target(chip, chip->cur_cs); 1192 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1193 true, page); 1194 } 1195 1196 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, 1197 const u8 *buf, 1198 int oob_required, int page) 1199 { 1200 int ret; 1201 1202 marvell_nfc_select_target(chip, chip->cur_cs); 1203 marvell_nfc_enable_hw_ecc(chip); 1204 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1205 false, page); 1206 marvell_nfc_disable_hw_ecc(chip); 1207 1208 return ret; 1209 } 1210 1211 /* 1212 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1213 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1214 * also stands for ->write_oob(). 1215 */ 1216 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, 1217 int page) 1218 { 1219 struct mtd_info *mtd = nand_to_mtd(chip); 1220 u8 *buf = nand_get_data_buf(chip); 1221 1222 memset(buf, 0xFF, mtd->writesize); 1223 1224 marvell_nfc_select_target(chip, chip->cur_cs); 1225 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1226 true, page); 1227 } 1228 1229 /* BCH read helpers */ 1230 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, 1231 int oob_required, int page) 1232 { 1233 struct mtd_info *mtd = nand_to_mtd(chip); 1234 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1235 u8 *oob = chip->oob_poi; 1236 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1237 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1238 lt->last_spare_bytes; 1239 int data_len = lt->data_bytes; 1240 int spare_len = lt->spare_bytes; 1241 int ecc_len = lt->ecc_bytes; 1242 int chunk; 1243 1244 marvell_nfc_select_target(chip, chip->cur_cs); 1245 1246 if (oob_required) 1247 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1248 1249 nand_read_page_op(chip, page, 0, NULL, 0); 1250 1251 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1252 /* Update last chunk length */ 1253 if (chunk >= lt->full_chunk_cnt) { 1254 data_len = lt->last_data_bytes; 1255 spare_len = lt->last_spare_bytes; 1256 ecc_len = lt->last_ecc_bytes; 1257 } 1258 1259 /* Read data bytes*/ 1260 nand_change_read_column_op(chip, chunk * chunk_size, 1261 buf + (lt->data_bytes * chunk), 1262 data_len, false); 1263 1264 /* Read spare bytes */ 1265 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1266 spare_len, false, false); 1267 1268 /* Read ECC bytes */ 1269 nand_read_data_op(chip, oob + ecc_offset + 1270 (ALIGN(lt->ecc_bytes, 32) * chunk), 1271 ecc_len, false, false); 1272 } 1273 1274 return 0; 1275 } 1276 1277 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1278 u8 *data, unsigned int data_len, 1279 u8 *spare, unsigned int spare_len, 1280 int page) 1281 { 1282 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1283 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1284 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1285 int i, ret; 1286 struct marvell_nfc_op nfc_op = { 1287 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1288 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1289 NDCB0_LEN_OVRD, 1290 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1291 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1292 .ndcb[3] = data_len + spare_len, 1293 }; 1294 1295 ret = marvell_nfc_prepare_cmd(chip); 1296 if (ret) 1297 return; 1298 1299 if (chunk == 0) 1300 nfc_op.ndcb[0] |= NDCB0_DBC | 1301 NDCB0_CMD1(NAND_CMD_READ0) | 1302 NDCB0_CMD2(NAND_CMD_READSTART); 1303 1304 /* 1305 * Trigger the monolithic read on the first chunk, then naked read on 1306 * intermediate chunks and finally a last naked read on the last chunk. 1307 */ 1308 if (chunk == 0) 1309 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1310 else if (chunk < lt->nchunks - 1) 1311 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1312 else 1313 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1314 1315 marvell_nfc_send_cmd(chip, &nfc_op); 1316 1317 /* 1318 * According to the datasheet, when reading from NDDB 1319 * with BCH enabled, after each 32 bytes reads, we 1320 * have to make sure that the NDSR.RDDREQ bit is set. 1321 * 1322 * Drain the FIFO, 8 32-bit reads at a time, and skip 1323 * the polling on the last read. 1324 * 1325 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1326 */ 1327 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1328 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1329 "RDDREQ while draining FIFO (data)"); 1330 marvell_nfc_xfer_data_in_pio(nfc, data, 1331 FIFO_DEPTH * BCH_SEQ_READS); 1332 data += FIFO_DEPTH * BCH_SEQ_READS; 1333 } 1334 1335 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1336 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1337 "RDDREQ while draining FIFO (OOB)"); 1338 marvell_nfc_xfer_data_in_pio(nfc, spare, 1339 FIFO_DEPTH * BCH_SEQ_READS); 1340 spare += FIFO_DEPTH * BCH_SEQ_READS; 1341 } 1342 } 1343 1344 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, 1345 u8 *buf, int oob_required, 1346 int page) 1347 { 1348 struct mtd_info *mtd = nand_to_mtd(chip); 1349 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1350 int data_len = lt->data_bytes, spare_len = lt->spare_bytes; 1351 u8 *data = buf, *spare = chip->oob_poi; 1352 int max_bitflips = 0; 1353 u32 failure_mask = 0; 1354 int chunk, ret; 1355 1356 marvell_nfc_select_target(chip, chip->cur_cs); 1357 1358 /* 1359 * With BCH, OOB is not fully used (and thus not read entirely), not 1360 * expected bytes could show up at the end of the OOB buffer if not 1361 * explicitly erased. 1362 */ 1363 if (oob_required) 1364 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1365 1366 marvell_nfc_enable_hw_ecc(chip); 1367 1368 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1369 /* Update length for the last chunk */ 1370 if (chunk >= lt->full_chunk_cnt) { 1371 data_len = lt->last_data_bytes; 1372 spare_len = lt->last_spare_bytes; 1373 } 1374 1375 /* Read the chunk and detect number of bitflips */ 1376 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1377 spare, spare_len, page); 1378 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1379 if (ret) 1380 failure_mask |= BIT(chunk); 1381 1382 data += data_len; 1383 spare += spare_len; 1384 } 1385 1386 marvell_nfc_disable_hw_ecc(chip); 1387 1388 if (!failure_mask) 1389 return max_bitflips; 1390 1391 /* 1392 * Please note that dumping the ECC bytes during a normal read with OOB 1393 * area would add a significant overhead as ECC bytes are "consumed" by 1394 * the controller in normal mode and must be re-read in raw mode. To 1395 * avoid dropping the performances, we prefer not to include them. The 1396 * user should re-read the page in raw mode if ECC bytes are required. 1397 */ 1398 1399 /* 1400 * In case there is any subpage read error, we usually re-read only ECC 1401 * bytes in raw mode and check if the whole page is empty. In this case, 1402 * it is normal that the ECC check failed and we just ignore the error. 1403 * 1404 * However, it has been empirically observed that for some layouts (e.g 1405 * 2k page, 8b strength per 512B chunk), the controller tries to correct 1406 * bits and may create itself bitflips in the erased area. To overcome 1407 * this strange behavior, the whole page is re-read in raw mode, not 1408 * only the ECC bytes. 1409 */ 1410 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1411 int data_off_in_page, spare_off_in_page, ecc_off_in_page; 1412 int data_off, spare_off, ecc_off; 1413 int data_len, spare_len, ecc_len; 1414 1415 /* No failure reported for this chunk, move to the next one */ 1416 if (!(failure_mask & BIT(chunk))) 1417 continue; 1418 1419 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + 1420 lt->ecc_bytes); 1421 spare_off_in_page = data_off_in_page + 1422 (chunk < lt->full_chunk_cnt ? lt->data_bytes : 1423 lt->last_data_bytes); 1424 ecc_off_in_page = spare_off_in_page + 1425 (chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1426 lt->last_spare_bytes); 1427 1428 data_off = chunk * lt->data_bytes; 1429 spare_off = chunk * lt->spare_bytes; 1430 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + 1431 lt->last_spare_bytes + 1432 (chunk * (lt->ecc_bytes + 2)); 1433 1434 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : 1435 lt->last_data_bytes; 1436 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1437 lt->last_spare_bytes; 1438 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : 1439 lt->last_ecc_bytes; 1440 1441 /* 1442 * Only re-read the ECC bytes, unless we are using the 2k/8b 1443 * layout which is buggy in the sense that the ECC engine will 1444 * try to correct data bytes anyway, creating bitflips. In this 1445 * case, re-read the entire page. 1446 */ 1447 if (lt->writesize == 2048 && lt->strength == 8) { 1448 nand_change_read_column_op(chip, data_off_in_page, 1449 buf + data_off, data_len, 1450 false); 1451 nand_change_read_column_op(chip, spare_off_in_page, 1452 chip->oob_poi + spare_off, spare_len, 1453 false); 1454 } 1455 1456 nand_change_read_column_op(chip, ecc_off_in_page, 1457 chip->oob_poi + ecc_off, ecc_len, 1458 false); 1459 1460 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1461 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, 1462 chip->oob_poi + spare_off, spare_len, 1463 chip->oob_poi + ecc_off, ecc_len, 1464 &max_bitflips); 1465 } 1466 1467 return max_bitflips; 1468 } 1469 1470 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) 1471 { 1472 u8 *buf = nand_get_data_buf(chip); 1473 1474 return chip->ecc.read_page_raw(chip, buf, true, page); 1475 } 1476 1477 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) 1478 { 1479 u8 *buf = nand_get_data_buf(chip); 1480 1481 return chip->ecc.read_page(chip, buf, true, page); 1482 } 1483 1484 /* BCH write helpers */ 1485 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, 1486 const u8 *buf, 1487 int oob_required, int page) 1488 { 1489 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1490 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1491 int data_len = lt->data_bytes; 1492 int spare_len = lt->spare_bytes; 1493 int ecc_len = lt->ecc_bytes; 1494 int spare_offset = 0; 1495 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1496 lt->last_spare_bytes; 1497 int chunk; 1498 1499 marvell_nfc_select_target(chip, chip->cur_cs); 1500 1501 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1502 1503 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1504 if (chunk >= lt->full_chunk_cnt) { 1505 data_len = lt->last_data_bytes; 1506 spare_len = lt->last_spare_bytes; 1507 ecc_len = lt->last_ecc_bytes; 1508 } 1509 1510 /* Point to the column of the next chunk */ 1511 nand_change_write_column_op(chip, chunk * full_chunk_size, 1512 NULL, 0, false); 1513 1514 /* Write the data */ 1515 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1516 data_len, false); 1517 1518 if (!oob_required) 1519 continue; 1520 1521 /* Write the spare bytes */ 1522 if (spare_len) 1523 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1524 spare_len, false); 1525 1526 /* Write the ECC bytes */ 1527 if (ecc_len) 1528 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1529 ecc_len, false); 1530 1531 spare_offset += spare_len; 1532 ecc_offset += ALIGN(ecc_len, 32); 1533 } 1534 1535 return nand_prog_page_end_op(chip); 1536 } 1537 1538 static int 1539 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1540 const u8 *data, unsigned int data_len, 1541 const u8 *spare, unsigned int spare_len, 1542 int page) 1543 { 1544 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1545 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1546 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1547 u32 xtype; 1548 int ret; 1549 struct marvell_nfc_op nfc_op = { 1550 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1551 .ndcb[3] = data_len + spare_len, 1552 }; 1553 1554 /* 1555 * First operation dispatches the CMD_SEQIN command, issue the address 1556 * cycles and asks for the first chunk of data. 1557 * All operations in the middle (if any) will issue a naked write and 1558 * also ask for data. 1559 * Last operation (if any) asks for the last chunk of data through a 1560 * last naked write. 1561 */ 1562 if (chunk == 0) { 1563 if (lt->nchunks == 1) 1564 xtype = XTYPE_MONOLITHIC_RW; 1565 else 1566 xtype = XTYPE_WRITE_DISPATCH; 1567 1568 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1569 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1570 NDCB0_CMD1(NAND_CMD_SEQIN); 1571 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1572 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1573 } else if (chunk < lt->nchunks - 1) { 1574 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1575 } else { 1576 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1577 } 1578 1579 /* Always dispatch the PAGEPROG command on the last chunk */ 1580 if (chunk == lt->nchunks - 1) 1581 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1582 1583 ret = marvell_nfc_prepare_cmd(chip); 1584 if (ret) 1585 return ret; 1586 1587 marvell_nfc_send_cmd(chip, &nfc_op); 1588 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1589 "WRDREQ while loading FIFO (data)"); 1590 if (ret) 1591 return ret; 1592 1593 /* Transfer the contents */ 1594 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1595 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1596 1597 return 0; 1598 } 1599 1600 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, 1601 const u8 *buf, 1602 int oob_required, int page) 1603 { 1604 const struct nand_sdr_timings *sdr = 1605 nand_get_sdr_timings(nand_get_interface_config(chip)); 1606 struct mtd_info *mtd = nand_to_mtd(chip); 1607 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1608 const u8 *data = buf; 1609 const u8 *spare = chip->oob_poi; 1610 int data_len = lt->data_bytes; 1611 int spare_len = lt->spare_bytes; 1612 int chunk, ret; 1613 1614 marvell_nfc_select_target(chip, chip->cur_cs); 1615 1616 /* Spare data will be written anyway, so clear it to avoid garbage */ 1617 if (!oob_required) 1618 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1619 1620 marvell_nfc_enable_hw_ecc(chip); 1621 1622 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1623 if (chunk >= lt->full_chunk_cnt) { 1624 data_len = lt->last_data_bytes; 1625 spare_len = lt->last_spare_bytes; 1626 } 1627 1628 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1629 spare, spare_len, page); 1630 data += data_len; 1631 spare += spare_len; 1632 1633 /* 1634 * Waiting only for CMDD or PAGED is not enough, ECC are 1635 * partially written. No flag is set once the operation is 1636 * really finished but the ND_RUN bit is cleared, so wait for it 1637 * before stepping into the next command. 1638 */ 1639 marvell_nfc_wait_ndrun(chip); 1640 } 1641 1642 ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); 1643 1644 marvell_nfc_disable_hw_ecc(chip); 1645 1646 if (ret) 1647 return ret; 1648 1649 return 0; 1650 } 1651 1652 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, 1653 int page) 1654 { 1655 struct mtd_info *mtd = nand_to_mtd(chip); 1656 u8 *buf = nand_get_data_buf(chip); 1657 1658 memset(buf, 0xFF, mtd->writesize); 1659 1660 return chip->ecc.write_page_raw(chip, buf, true, page); 1661 } 1662 1663 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) 1664 { 1665 struct mtd_info *mtd = nand_to_mtd(chip); 1666 u8 *buf = nand_get_data_buf(chip); 1667 1668 memset(buf, 0xFF, mtd->writesize); 1669 1670 return chip->ecc.write_page(chip, buf, true, page); 1671 } 1672 1673 /* NAND framework ->exec_op() hooks and related helpers */ 1674 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1675 const struct nand_subop *subop, 1676 struct marvell_nfc_op *nfc_op) 1677 { 1678 const struct nand_op_instr *instr = NULL; 1679 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1680 bool first_cmd = true; 1681 unsigned int op_id; 1682 int i; 1683 1684 /* Reset the input structure as most of its fields will be OR'ed */ 1685 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1686 1687 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1688 unsigned int offset, naddrs; 1689 const u8 *addrs; 1690 int len; 1691 1692 instr = &subop->instrs[op_id]; 1693 1694 switch (instr->type) { 1695 case NAND_OP_CMD_INSTR: 1696 if (first_cmd) 1697 nfc_op->ndcb[0] |= 1698 NDCB0_CMD1(instr->ctx.cmd.opcode); 1699 else 1700 nfc_op->ndcb[0] |= 1701 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1702 NDCB0_DBC; 1703 1704 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1705 first_cmd = false; 1706 break; 1707 1708 case NAND_OP_ADDR_INSTR: 1709 offset = nand_subop_get_addr_start_off(subop, op_id); 1710 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1711 addrs = &instr->ctx.addr.addrs[offset]; 1712 1713 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1714 1715 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1716 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1717 1718 if (naddrs >= 5) 1719 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1720 if (naddrs >= 6) 1721 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1722 if (naddrs == 7) 1723 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1724 1725 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1726 break; 1727 1728 case NAND_OP_DATA_IN_INSTR: 1729 nfc_op->data_instr = instr; 1730 nfc_op->data_instr_idx = op_id; 1731 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1732 if (nfc->caps->is_nfcv2) { 1733 nfc_op->ndcb[0] |= 1734 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1735 NDCB0_LEN_OVRD; 1736 len = nand_subop_get_data_len(subop, op_id); 1737 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1738 } 1739 nfc_op->data_delay_ns = instr->delay_ns; 1740 break; 1741 1742 case NAND_OP_DATA_OUT_INSTR: 1743 nfc_op->data_instr = instr; 1744 nfc_op->data_instr_idx = op_id; 1745 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1746 if (nfc->caps->is_nfcv2) { 1747 nfc_op->ndcb[0] |= 1748 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1749 NDCB0_LEN_OVRD; 1750 len = nand_subop_get_data_len(subop, op_id); 1751 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1752 } 1753 nfc_op->data_delay_ns = instr->delay_ns; 1754 break; 1755 1756 case NAND_OP_WAITRDY_INSTR: 1757 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1758 nfc_op->rdy_delay_ns = instr->delay_ns; 1759 break; 1760 } 1761 } 1762 } 1763 1764 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1765 const struct nand_subop *subop, 1766 struct marvell_nfc_op *nfc_op) 1767 { 1768 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1769 const struct nand_op_instr *instr = nfc_op->data_instr; 1770 unsigned int op_id = nfc_op->data_instr_idx; 1771 unsigned int len = nand_subop_get_data_len(subop, op_id); 1772 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1773 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1774 int ret; 1775 1776 if (instr->ctx.data.force_8bit) 1777 marvell_nfc_force_byte_access(chip, true); 1778 1779 if (reading) { 1780 u8 *in = instr->ctx.data.buf.in + offset; 1781 1782 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1783 } else { 1784 const u8 *out = instr->ctx.data.buf.out + offset; 1785 1786 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1787 } 1788 1789 if (instr->ctx.data.force_8bit) 1790 marvell_nfc_force_byte_access(chip, false); 1791 1792 return ret; 1793 } 1794 1795 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1796 const struct nand_subop *subop) 1797 { 1798 struct marvell_nfc_op nfc_op; 1799 bool reading; 1800 int ret; 1801 1802 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1803 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1804 1805 ret = marvell_nfc_prepare_cmd(chip); 1806 if (ret) 1807 return ret; 1808 1809 marvell_nfc_send_cmd(chip, &nfc_op); 1810 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1811 "RDDREQ/WRDREQ while draining raw data"); 1812 if (ret) 1813 return ret; 1814 1815 cond_delay(nfc_op.cle_ale_delay_ns); 1816 1817 if (reading) { 1818 if (nfc_op.rdy_timeout_ms) { 1819 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1820 if (ret) 1821 return ret; 1822 } 1823 1824 cond_delay(nfc_op.rdy_delay_ns); 1825 } 1826 1827 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1828 ret = marvell_nfc_wait_cmdd(chip); 1829 if (ret) 1830 return ret; 1831 1832 cond_delay(nfc_op.data_delay_ns); 1833 1834 if (!reading) { 1835 if (nfc_op.rdy_timeout_ms) { 1836 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1837 if (ret) 1838 return ret; 1839 } 1840 1841 cond_delay(nfc_op.rdy_delay_ns); 1842 } 1843 1844 /* 1845 * NDCR ND_RUN bit should be cleared automatically at the end of each 1846 * operation but experience shows that the behavior is buggy when it 1847 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1848 */ 1849 if (!reading) { 1850 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1851 1852 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1853 nfc->regs + NDCR); 1854 } 1855 1856 return 0; 1857 } 1858 1859 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1860 const struct nand_subop *subop) 1861 { 1862 struct marvell_nfc_op nfc_op; 1863 int ret; 1864 1865 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1866 1867 /* 1868 * Naked access are different in that they need to be flagged as naked 1869 * by the controller. Reset the controller registers fields that inform 1870 * on the type and refill them according to the ongoing operation. 1871 */ 1872 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1873 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1874 switch (subop->instrs[0].type) { 1875 case NAND_OP_CMD_INSTR: 1876 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1877 break; 1878 case NAND_OP_ADDR_INSTR: 1879 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1880 break; 1881 case NAND_OP_DATA_IN_INSTR: 1882 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1883 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1884 break; 1885 case NAND_OP_DATA_OUT_INSTR: 1886 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1887 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1888 break; 1889 default: 1890 /* This should never happen */ 1891 break; 1892 } 1893 1894 ret = marvell_nfc_prepare_cmd(chip); 1895 if (ret) 1896 return ret; 1897 1898 marvell_nfc_send_cmd(chip, &nfc_op); 1899 1900 if (!nfc_op.data_instr) { 1901 ret = marvell_nfc_wait_cmdd(chip); 1902 cond_delay(nfc_op.cle_ale_delay_ns); 1903 return ret; 1904 } 1905 1906 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1907 "RDDREQ/WRDREQ while draining raw data"); 1908 if (ret) 1909 return ret; 1910 1911 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1912 ret = marvell_nfc_wait_cmdd(chip); 1913 if (ret) 1914 return ret; 1915 1916 /* 1917 * NDCR ND_RUN bit should be cleared automatically at the end of each 1918 * operation but experience shows that the behavior is buggy when it 1919 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1920 */ 1921 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1922 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1923 1924 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1925 nfc->regs + NDCR); 1926 } 1927 1928 return 0; 1929 } 1930 1931 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1932 const struct nand_subop *subop) 1933 { 1934 struct marvell_nfc_op nfc_op; 1935 int ret; 1936 1937 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1938 1939 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1940 cond_delay(nfc_op.rdy_delay_ns); 1941 1942 return ret; 1943 } 1944 1945 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1946 const struct nand_subop *subop) 1947 { 1948 struct marvell_nfc_op nfc_op; 1949 int ret; 1950 1951 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1952 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1953 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1954 1955 ret = marvell_nfc_prepare_cmd(chip); 1956 if (ret) 1957 return ret; 1958 1959 marvell_nfc_send_cmd(chip, &nfc_op); 1960 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1961 "RDDREQ while reading ID"); 1962 if (ret) 1963 return ret; 1964 1965 cond_delay(nfc_op.cle_ale_delay_ns); 1966 1967 if (nfc_op.rdy_timeout_ms) { 1968 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1969 if (ret) 1970 return ret; 1971 } 1972 1973 cond_delay(nfc_op.rdy_delay_ns); 1974 1975 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1976 ret = marvell_nfc_wait_cmdd(chip); 1977 if (ret) 1978 return ret; 1979 1980 cond_delay(nfc_op.data_delay_ns); 1981 1982 return 0; 1983 } 1984 1985 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 1986 const struct nand_subop *subop) 1987 { 1988 struct marvell_nfc_op nfc_op; 1989 int ret; 1990 1991 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1992 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1993 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 1994 1995 ret = marvell_nfc_prepare_cmd(chip); 1996 if (ret) 1997 return ret; 1998 1999 marvell_nfc_send_cmd(chip, &nfc_op); 2000 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 2001 "RDDREQ while reading status"); 2002 if (ret) 2003 return ret; 2004 2005 cond_delay(nfc_op.cle_ale_delay_ns); 2006 2007 if (nfc_op.rdy_timeout_ms) { 2008 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2009 if (ret) 2010 return ret; 2011 } 2012 2013 cond_delay(nfc_op.rdy_delay_ns); 2014 2015 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 2016 ret = marvell_nfc_wait_cmdd(chip); 2017 if (ret) 2018 return ret; 2019 2020 cond_delay(nfc_op.data_delay_ns); 2021 2022 return 0; 2023 } 2024 2025 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 2026 const struct nand_subop *subop) 2027 { 2028 struct marvell_nfc_op nfc_op; 2029 int ret; 2030 2031 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2032 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 2033 2034 ret = marvell_nfc_prepare_cmd(chip); 2035 if (ret) 2036 return ret; 2037 2038 marvell_nfc_send_cmd(chip, &nfc_op); 2039 ret = marvell_nfc_wait_cmdd(chip); 2040 if (ret) 2041 return ret; 2042 2043 cond_delay(nfc_op.cle_ale_delay_ns); 2044 2045 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2046 if (ret) 2047 return ret; 2048 2049 cond_delay(nfc_op.rdy_delay_ns); 2050 2051 return 0; 2052 } 2053 2054 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 2055 const struct nand_subop *subop) 2056 { 2057 struct marvell_nfc_op nfc_op; 2058 int ret; 2059 2060 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2061 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 2062 2063 ret = marvell_nfc_prepare_cmd(chip); 2064 if (ret) 2065 return ret; 2066 2067 marvell_nfc_send_cmd(chip, &nfc_op); 2068 ret = marvell_nfc_wait_cmdd(chip); 2069 if (ret) 2070 return ret; 2071 2072 cond_delay(nfc_op.cle_ale_delay_ns); 2073 2074 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2075 if (ret) 2076 return ret; 2077 2078 cond_delay(nfc_op.rdy_delay_ns); 2079 2080 return 0; 2081 } 2082 2083 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 2084 /* Monolithic reads/writes */ 2085 NAND_OP_PARSER_PATTERN( 2086 marvell_nfc_monolithic_access_exec, 2087 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2088 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 2089 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2090 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 2091 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2092 NAND_OP_PARSER_PATTERN( 2093 marvell_nfc_monolithic_access_exec, 2094 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2095 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 2096 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 2097 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2098 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 2099 /* Naked commands */ 2100 NAND_OP_PARSER_PATTERN( 2101 marvell_nfc_naked_access_exec, 2102 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2103 NAND_OP_PARSER_PATTERN( 2104 marvell_nfc_naked_access_exec, 2105 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 2106 NAND_OP_PARSER_PATTERN( 2107 marvell_nfc_naked_access_exec, 2108 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2109 NAND_OP_PARSER_PATTERN( 2110 marvell_nfc_naked_access_exec, 2111 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 2112 NAND_OP_PARSER_PATTERN( 2113 marvell_nfc_naked_waitrdy_exec, 2114 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2115 ); 2116 2117 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 2118 /* Naked commands not supported, use a function for each pattern */ 2119 NAND_OP_PARSER_PATTERN( 2120 marvell_nfc_read_id_type_exec, 2121 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2122 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2123 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 2124 NAND_OP_PARSER_PATTERN( 2125 marvell_nfc_erase_cmd_type_exec, 2126 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2127 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2128 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2129 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2130 NAND_OP_PARSER_PATTERN( 2131 marvell_nfc_read_status_exec, 2132 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2133 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 2134 NAND_OP_PARSER_PATTERN( 2135 marvell_nfc_reset_cmd_type_exec, 2136 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2137 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2138 NAND_OP_PARSER_PATTERN( 2139 marvell_nfc_naked_waitrdy_exec, 2140 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2141 ); 2142 2143 static int marvell_nfc_exec_op(struct nand_chip *chip, 2144 const struct nand_operation *op, 2145 bool check_only) 2146 { 2147 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2148 2149 if (!check_only) 2150 marvell_nfc_select_target(chip, op->cs); 2151 2152 if (nfc->caps->is_nfcv2) 2153 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2154 op, check_only); 2155 else 2156 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2157 op, check_only); 2158 } 2159 2160 /* 2161 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2162 * usable. 2163 */ 2164 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2165 struct mtd_oob_region *oobregion) 2166 { 2167 struct nand_chip *chip = mtd_to_nand(mtd); 2168 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2169 2170 if (section) 2171 return -ERANGE; 2172 2173 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2174 lt->last_ecc_bytes; 2175 oobregion->offset = mtd->oobsize - oobregion->length; 2176 2177 return 0; 2178 } 2179 2180 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2181 struct mtd_oob_region *oobregion) 2182 { 2183 struct nand_chip *chip = mtd_to_nand(mtd); 2184 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2185 2186 if (section) 2187 return -ERANGE; 2188 2189 /* 2190 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2191 * 4KB page / 4bit BCH combination. 2192 */ 2193 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2194 oobregion->offset = 6; 2195 else 2196 oobregion->offset = 2; 2197 2198 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2199 lt->last_spare_bytes - oobregion->offset; 2200 2201 return 0; 2202 } 2203 2204 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2205 .ecc = marvell_nand_ooblayout_ecc, 2206 .free = marvell_nand_ooblayout_free, 2207 }; 2208 2209 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, 2210 struct nand_ecc_ctrl *ecc) 2211 { 2212 struct nand_chip *chip = mtd_to_nand(mtd); 2213 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2214 const struct marvell_hw_ecc_layout *l; 2215 int i; 2216 2217 if (!nfc->caps->is_nfcv2 && 2218 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2219 dev_err(nfc->dev, 2220 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2221 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2222 return -ENOTSUPP; 2223 } 2224 2225 to_marvell_nand(chip)->layout = NULL; 2226 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2227 l = &marvell_nfc_layouts[i]; 2228 if (mtd->writesize == l->writesize && 2229 ecc->size == l->chunk && ecc->strength == l->strength) { 2230 to_marvell_nand(chip)->layout = l; 2231 break; 2232 } 2233 } 2234 2235 if (!to_marvell_nand(chip)->layout || 2236 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2237 dev_err(nfc->dev, 2238 "ECC strength %d at page size %d is not supported\n", 2239 ecc->strength, mtd->writesize); 2240 return -ENOTSUPP; 2241 } 2242 2243 /* Special care for the layout 2k/8-bit/512B */ 2244 if (l->writesize == 2048 && l->strength == 8) { 2245 if (mtd->oobsize < 128) { 2246 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); 2247 return -ENOTSUPP; 2248 } else { 2249 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2250 } 2251 } 2252 2253 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2254 ecc->steps = l->nchunks; 2255 ecc->size = l->data_bytes; 2256 2257 if (ecc->strength == 1) { 2258 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 2259 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2260 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2261 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2262 ecc->read_oob = ecc->read_oob_raw; 2263 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2264 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2265 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2266 ecc->write_oob = ecc->write_oob_raw; 2267 } else { 2268 chip->ecc.algo = NAND_ECC_ALGO_BCH; 2269 ecc->strength = 16; 2270 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2271 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2272 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2273 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2274 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2275 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2276 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2277 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2278 } 2279 2280 return 0; 2281 } 2282 2283 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2284 struct nand_ecc_ctrl *ecc) 2285 { 2286 struct nand_chip *chip = mtd_to_nand(mtd); 2287 const struct nand_ecc_props *requirements = 2288 nanddev_get_ecc_requirements(&chip->base); 2289 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2290 int ret; 2291 2292 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && 2293 (!ecc->size || !ecc->strength)) { 2294 if (requirements->step_size && requirements->strength) { 2295 ecc->size = requirements->step_size; 2296 ecc->strength = requirements->strength; 2297 } else { 2298 dev_info(nfc->dev, 2299 "No minimum ECC strength, using 1b/512B\n"); 2300 ecc->size = 512; 2301 ecc->strength = 1; 2302 } 2303 } 2304 2305 switch (ecc->engine_type) { 2306 case NAND_ECC_ENGINE_TYPE_ON_HOST: 2307 ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); 2308 if (ret) 2309 return ret; 2310 break; 2311 case NAND_ECC_ENGINE_TYPE_NONE: 2312 case NAND_ECC_ENGINE_TYPE_SOFT: 2313 case NAND_ECC_ENGINE_TYPE_ON_DIE: 2314 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2315 mtd->writesize != SZ_2K) { 2316 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2317 mtd->writesize); 2318 return -EINVAL; 2319 } 2320 break; 2321 default: 2322 return -EINVAL; 2323 } 2324 2325 return 0; 2326 } 2327 2328 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2329 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2330 2331 static struct nand_bbt_descr bbt_main_descr = { 2332 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2333 NAND_BBT_2BIT | NAND_BBT_VERSION, 2334 .offs = 8, 2335 .len = 6, 2336 .veroffs = 14, 2337 .maxblocks = 8, /* Last 8 blocks in each chip */ 2338 .pattern = bbt_pattern 2339 }; 2340 2341 static struct nand_bbt_descr bbt_mirror_descr = { 2342 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2343 NAND_BBT_2BIT | NAND_BBT_VERSION, 2344 .offs = 8, 2345 .len = 6, 2346 .veroffs = 14, 2347 .maxblocks = 8, /* Last 8 blocks in each chip */ 2348 .pattern = bbt_mirror_pattern 2349 }; 2350 2351 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, 2352 const struct nand_interface_config *conf) 2353 { 2354 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2355 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2356 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2357 const struct nand_sdr_timings *sdr; 2358 struct marvell_nfc_timings nfc_tmg; 2359 int read_delay; 2360 2361 sdr = nand_get_sdr_timings(conf); 2362 if (IS_ERR(sdr)) 2363 return PTR_ERR(sdr); 2364 2365 /* 2366 * SDR timings are given in pico-seconds while NFC timings must be 2367 * expressed in NAND controller clock cycles, which is half of the 2368 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2369 * This is not written anywhere in the datasheet but was observed 2370 * with an oscilloscope. 2371 * 2372 * NFC datasheet gives equations from which thoses calculations 2373 * are derived, they tend to be slightly more restrictives than the 2374 * given core timings and may improve the overall speed. 2375 */ 2376 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2377 nfc_tmg.tRH = nfc_tmg.tRP; 2378 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2379 nfc_tmg.tWH = nfc_tmg.tWP; 2380 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2381 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2382 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2383 /* 2384 * Read delay is the time of propagation from SoC pins to NFC internal 2385 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2386 * EDO mode, an additional delay of tRH must be taken into account so 2387 * the data is sampled on the falling edge instead of the rising edge. 2388 */ 2389 read_delay = sdr->tRC_min >= 30000 ? 2390 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2391 2392 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2393 /* 2394 * tWHR and tRHW are supposed to be read to write delays (and vice 2395 * versa) but in some cases, ie. when doing a change column, they must 2396 * be greater than that to be sure tCCS delay is respected. 2397 */ 2398 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2399 period_ns) - 2; 2400 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2401 period_ns); 2402 2403 /* 2404 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2405 * NFCv1: No WAIT_MODE, tR must be maximal. 2406 */ 2407 if (nfc->caps->is_nfcv2) { 2408 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2409 } else { 2410 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2411 period_ns); 2412 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2413 nfc_tmg.tR = nfc_tmg.tCH - 3; 2414 else 2415 nfc_tmg.tR = 0; 2416 } 2417 2418 if (chipnr < 0) 2419 return 0; 2420 2421 marvell_nand->ndtr0 = 2422 NDTR0_TRP(nfc_tmg.tRP) | 2423 NDTR0_TRH(nfc_tmg.tRH) | 2424 NDTR0_ETRP(nfc_tmg.tRP) | 2425 NDTR0_TWP(nfc_tmg.tWP) | 2426 NDTR0_TWH(nfc_tmg.tWH) | 2427 NDTR0_TCS(nfc_tmg.tCS) | 2428 NDTR0_TCH(nfc_tmg.tCH); 2429 2430 marvell_nand->ndtr1 = 2431 NDTR1_TAR(nfc_tmg.tAR) | 2432 NDTR1_TWHR(nfc_tmg.tWHR) | 2433 NDTR1_TR(nfc_tmg.tR); 2434 2435 if (nfc->caps->is_nfcv2) { 2436 marvell_nand->ndtr0 |= 2437 NDTR0_RD_CNT_DEL(read_delay) | 2438 NDTR0_SELCNTR | 2439 NDTR0_TADL(nfc_tmg.tADL); 2440 2441 marvell_nand->ndtr1 |= 2442 NDTR1_TRHW(nfc_tmg.tRHW) | 2443 NDTR1_WAIT_MODE; 2444 } 2445 2446 return 0; 2447 } 2448 2449 static int marvell_nand_attach_chip(struct nand_chip *chip) 2450 { 2451 struct mtd_info *mtd = nand_to_mtd(chip); 2452 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2453 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2454 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2455 int ret; 2456 2457 if (pdata && pdata->flash_bbt) 2458 chip->bbt_options |= NAND_BBT_USE_FLASH; 2459 2460 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2461 /* 2462 * We'll use a bad block table stored in-flash and don't 2463 * allow writing the bad block marker to the flash. 2464 */ 2465 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2466 chip->bbt_td = &bbt_main_descr; 2467 chip->bbt_md = &bbt_mirror_descr; 2468 } 2469 2470 /* Save the chip-specific fields of NDCR */ 2471 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2472 if (chip->options & NAND_BUSWIDTH_16) 2473 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2474 2475 /* 2476 * On small page NANDs, only one cycle is needed to pass the 2477 * column address. 2478 */ 2479 if (mtd->writesize <= 512) { 2480 marvell_nand->addr_cyc = 1; 2481 } else { 2482 marvell_nand->addr_cyc = 2; 2483 marvell_nand->ndcr |= NDCR_RA_START; 2484 } 2485 2486 /* 2487 * Now add the number of cycles needed to pass the row 2488 * address. 2489 * 2490 * Addressing a chip using CS 2 or 3 should also need the third row 2491 * cycle but due to inconsistance in the documentation and lack of 2492 * hardware to test this situation, this case is not supported. 2493 */ 2494 if (chip->options & NAND_ROW_ADDR_3) 2495 marvell_nand->addr_cyc += 3; 2496 else 2497 marvell_nand->addr_cyc += 2; 2498 2499 if (pdata) { 2500 chip->ecc.size = pdata->ecc_step_size; 2501 chip->ecc.strength = pdata->ecc_strength; 2502 } 2503 2504 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2505 if (ret) { 2506 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2507 return ret; 2508 } 2509 2510 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { 2511 /* 2512 * Subpage write not available with hardware ECC, prohibit also 2513 * subpage read as in userspace subpage access would still be 2514 * allowed and subpage write, if used, would lead to numerous 2515 * uncorrectable ECC errors. 2516 */ 2517 chip->options |= NAND_NO_SUBPAGE_WRITE; 2518 } 2519 2520 if (pdata || nfc->caps->legacy_of_bindings) { 2521 /* 2522 * We keep the MTD name unchanged to avoid breaking platforms 2523 * where the MTD cmdline parser is used and the bootloader 2524 * has not been updated to use the new naming scheme. 2525 */ 2526 mtd->name = "pxa3xx_nand-0"; 2527 } else if (!mtd->name) { 2528 /* 2529 * If the new bindings are used and the bootloader has not been 2530 * updated to pass a new mtdparts parameter on the cmdline, you 2531 * should define the following property in your NAND node, ie: 2532 * 2533 * label = "main-storage"; 2534 * 2535 * This way, mtd->name will be set by the core when 2536 * nand_set_flash_node() is called. 2537 */ 2538 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2539 "%s:nand.%d", dev_name(nfc->dev), 2540 marvell_nand->sels[0].cs); 2541 if (!mtd->name) { 2542 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2543 return -ENOMEM; 2544 } 2545 } 2546 2547 return 0; 2548 } 2549 2550 static const struct nand_controller_ops marvell_nand_controller_ops = { 2551 .attach_chip = marvell_nand_attach_chip, 2552 .exec_op = marvell_nfc_exec_op, 2553 .setup_interface = marvell_nfc_setup_interface, 2554 }; 2555 2556 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2557 struct device_node *np) 2558 { 2559 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2560 struct marvell_nand_chip *marvell_nand; 2561 struct mtd_info *mtd; 2562 struct nand_chip *chip; 2563 int nsels, ret, i; 2564 u32 cs, rb; 2565 2566 /* 2567 * The legacy "num-cs" property indicates the number of CS on the only 2568 * chip connected to the controller (legacy bindings does not support 2569 * more than one chip). The CS and RB pins are always the #0. 2570 * 2571 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2572 * properties must be filled. For each chip, expressed as a subnode, 2573 * "reg" points to the CS lines and "nand-rb" to the RB line. 2574 */ 2575 if (pdata || nfc->caps->legacy_of_bindings) { 2576 nsels = 1; 2577 } else { 2578 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2579 if (nsels <= 0) { 2580 dev_err(dev, "missing/invalid reg property\n"); 2581 return -EINVAL; 2582 } 2583 } 2584 2585 /* Alloc the nand chip structure */ 2586 marvell_nand = devm_kzalloc(dev, 2587 struct_size(marvell_nand, sels, nsels), 2588 GFP_KERNEL); 2589 if (!marvell_nand) { 2590 dev_err(dev, "could not allocate chip structure\n"); 2591 return -ENOMEM; 2592 } 2593 2594 marvell_nand->nsels = nsels; 2595 marvell_nand->selected_die = -1; 2596 2597 for (i = 0; i < nsels; i++) { 2598 if (pdata || nfc->caps->legacy_of_bindings) { 2599 /* 2600 * Legacy bindings use the CS lines in natural 2601 * order (0, 1, ...) 2602 */ 2603 cs = i; 2604 } else { 2605 /* Retrieve CS id */ 2606 ret = of_property_read_u32_index(np, "reg", i, &cs); 2607 if (ret) { 2608 dev_err(dev, "could not retrieve reg property: %d\n", 2609 ret); 2610 return ret; 2611 } 2612 } 2613 2614 if (cs >= nfc->caps->max_cs_nb) { 2615 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2616 cs, nfc->caps->max_cs_nb); 2617 return -EINVAL; 2618 } 2619 2620 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2621 dev_err(dev, "CS %d already assigned\n", cs); 2622 return -EINVAL; 2623 } 2624 2625 /* 2626 * The cs variable represents the chip select id, which must be 2627 * converted in bit fields for NDCB0 and NDCB2 to select the 2628 * right chip. Unfortunately, due to a lack of information on 2629 * the subject and incoherent documentation, the user should not 2630 * use CS1 and CS3 at all as asserting them is not supported in 2631 * a reliable way (due to multiplexing inside ADDR5 field). 2632 */ 2633 marvell_nand->sels[i].cs = cs; 2634 switch (cs) { 2635 case 0: 2636 case 2: 2637 marvell_nand->sels[i].ndcb0_csel = 0; 2638 break; 2639 case 1: 2640 case 3: 2641 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2642 break; 2643 default: 2644 return -EINVAL; 2645 } 2646 2647 /* Retrieve RB id */ 2648 if (pdata || nfc->caps->legacy_of_bindings) { 2649 /* Legacy bindings always use RB #0 */ 2650 rb = 0; 2651 } else { 2652 ret = of_property_read_u32_index(np, "nand-rb", i, 2653 &rb); 2654 if (ret) { 2655 dev_err(dev, 2656 "could not retrieve RB property: %d\n", 2657 ret); 2658 return ret; 2659 } 2660 } 2661 2662 if (rb >= nfc->caps->max_rb_nb) { 2663 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2664 rb, nfc->caps->max_rb_nb); 2665 return -EINVAL; 2666 } 2667 2668 marvell_nand->sels[i].rb = rb; 2669 } 2670 2671 chip = &marvell_nand->chip; 2672 chip->controller = &nfc->controller; 2673 nand_set_flash_node(chip, np); 2674 2675 if (!of_property_read_bool(np, "marvell,nand-keep-config")) 2676 chip->options |= NAND_KEEP_TIMINGS; 2677 2678 mtd = nand_to_mtd(chip); 2679 mtd->dev.parent = dev; 2680 2681 /* 2682 * Save a reference value for timing registers before 2683 * ->setup_interface() is called. 2684 */ 2685 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2686 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2687 2688 chip->options |= NAND_BUSWIDTH_AUTO; 2689 2690 ret = nand_scan(chip, marvell_nand->nsels); 2691 if (ret) { 2692 dev_err(dev, "could not scan the nand chip\n"); 2693 return ret; 2694 } 2695 2696 if (pdata) 2697 /* Legacy bindings support only one chip */ 2698 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2699 else 2700 ret = mtd_device_register(mtd, NULL, 0); 2701 if (ret) { 2702 dev_err(dev, "failed to register mtd device: %d\n", ret); 2703 nand_cleanup(chip); 2704 return ret; 2705 } 2706 2707 list_add_tail(&marvell_nand->node, &nfc->chips); 2708 2709 return 0; 2710 } 2711 2712 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2713 { 2714 struct marvell_nand_chip *entry, *temp; 2715 struct nand_chip *chip; 2716 int ret; 2717 2718 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2719 chip = &entry->chip; 2720 ret = mtd_device_unregister(nand_to_mtd(chip)); 2721 WARN_ON(ret); 2722 nand_cleanup(chip); 2723 list_del(&entry->node); 2724 } 2725 } 2726 2727 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2728 { 2729 struct device_node *np = dev->of_node; 2730 struct device_node *nand_np; 2731 int max_cs = nfc->caps->max_cs_nb; 2732 int nchips; 2733 int ret; 2734 2735 if (!np) 2736 nchips = 1; 2737 else 2738 nchips = of_get_child_count(np); 2739 2740 if (nchips > max_cs) { 2741 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2742 max_cs); 2743 return -EINVAL; 2744 } 2745 2746 /* 2747 * Legacy bindings do not use child nodes to exhibit NAND chip 2748 * properties and layout. Instead, NAND properties are mixed with the 2749 * controller ones, and partitions are defined as direct subnodes of the 2750 * NAND controller node. 2751 */ 2752 if (nfc->caps->legacy_of_bindings) { 2753 ret = marvell_nand_chip_init(dev, nfc, np); 2754 return ret; 2755 } 2756 2757 for_each_child_of_node(np, nand_np) { 2758 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2759 if (ret) { 2760 of_node_put(nand_np); 2761 goto cleanup_chips; 2762 } 2763 } 2764 2765 return 0; 2766 2767 cleanup_chips: 2768 marvell_nand_chips_cleanup(nfc); 2769 2770 return ret; 2771 } 2772 2773 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2774 { 2775 struct platform_device *pdev = container_of(nfc->dev, 2776 struct platform_device, 2777 dev); 2778 struct dma_slave_config config = {}; 2779 struct resource *r; 2780 int ret; 2781 2782 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2783 dev_warn(nfc->dev, 2784 "DMA not enabled in configuration\n"); 2785 return -ENOTSUPP; 2786 } 2787 2788 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2789 if (ret) 2790 return ret; 2791 2792 nfc->dma_chan = dma_request_chan(nfc->dev, "data"); 2793 if (IS_ERR(nfc->dma_chan)) { 2794 ret = PTR_ERR(nfc->dma_chan); 2795 nfc->dma_chan = NULL; 2796 return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); 2797 } 2798 2799 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2800 if (!r) { 2801 ret = -ENXIO; 2802 goto release_channel; 2803 } 2804 2805 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2806 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2807 config.src_addr = r->start + NDDB; 2808 config.dst_addr = r->start + NDDB; 2809 config.src_maxburst = 32; 2810 config.dst_maxburst = 32; 2811 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2812 if (ret < 0) { 2813 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2814 goto release_channel; 2815 } 2816 2817 /* 2818 * DMA must act on length multiple of 32 and this length may be 2819 * bigger than the destination buffer. Use this buffer instead 2820 * for DMA transfers and then copy the desired amount of data to 2821 * the provided buffer. 2822 */ 2823 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2824 if (!nfc->dma_buf) { 2825 ret = -ENOMEM; 2826 goto release_channel; 2827 } 2828 2829 nfc->use_dma = true; 2830 2831 return 0; 2832 2833 release_channel: 2834 dma_release_channel(nfc->dma_chan); 2835 nfc->dma_chan = NULL; 2836 2837 return ret; 2838 } 2839 2840 static void marvell_nfc_reset(struct marvell_nfc *nfc) 2841 { 2842 /* 2843 * ECC operations and interruptions are only enabled when specifically 2844 * needed. ECC shall not be activated in the early stages (fails probe). 2845 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2846 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2847 * offset in the read page and this will fail the protection. 2848 */ 2849 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2850 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2851 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2852 writel_relaxed(0, nfc->regs + NDECCCTRL); 2853 } 2854 2855 static int marvell_nfc_init(struct marvell_nfc *nfc) 2856 { 2857 struct device_node *np = nfc->dev->of_node; 2858 2859 /* 2860 * Some SoCs like A7k/A8k need to enable manually the NAND 2861 * controller, gated clocks and reset bits to avoid being bootloader 2862 * dependent. This is done through the use of the System Functions 2863 * registers. 2864 */ 2865 if (nfc->caps->need_system_controller) { 2866 struct regmap *sysctrl_base = 2867 syscon_regmap_lookup_by_phandle(np, 2868 "marvell,system-controller"); 2869 2870 if (IS_ERR(sysctrl_base)) 2871 return PTR_ERR(sysctrl_base); 2872 2873 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, 2874 GENCONF_SOC_DEVICE_MUX_NFC_EN | 2875 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2876 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2877 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN); 2878 2879 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, 2880 GENCONF_CLK_GATING_CTRL_ND_GATE, 2881 GENCONF_CLK_GATING_CTRL_ND_GATE); 2882 2883 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL, 2884 GENCONF_ND_CLK_CTRL_EN, 2885 GENCONF_ND_CLK_CTRL_EN); 2886 } 2887 2888 /* Configure the DMA if appropriate */ 2889 if (!nfc->caps->is_nfcv2) 2890 marvell_nfc_init_dma(nfc); 2891 2892 marvell_nfc_reset(nfc); 2893 2894 return 0; 2895 } 2896 2897 static int marvell_nfc_probe(struct platform_device *pdev) 2898 { 2899 struct device *dev = &pdev->dev; 2900 struct marvell_nfc *nfc; 2901 int ret; 2902 int irq; 2903 2904 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2905 GFP_KERNEL); 2906 if (!nfc) 2907 return -ENOMEM; 2908 2909 nfc->dev = dev; 2910 nand_controller_init(&nfc->controller); 2911 nfc->controller.ops = &marvell_nand_controller_ops; 2912 INIT_LIST_HEAD(&nfc->chips); 2913 2914 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 2915 if (IS_ERR(nfc->regs)) 2916 return PTR_ERR(nfc->regs); 2917 2918 irq = platform_get_irq(pdev, 0); 2919 if (irq < 0) 2920 return irq; 2921 2922 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2923 2924 /* Managed the legacy case (when the first clock was not named) */ 2925 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2926 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2927 2928 if (IS_ERR(nfc->core_clk)) 2929 return PTR_ERR(nfc->core_clk); 2930 2931 ret = clk_prepare_enable(nfc->core_clk); 2932 if (ret) 2933 return ret; 2934 2935 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2936 if (IS_ERR(nfc->reg_clk)) { 2937 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2938 ret = PTR_ERR(nfc->reg_clk); 2939 goto unprepare_core_clk; 2940 } 2941 2942 nfc->reg_clk = NULL; 2943 } 2944 2945 ret = clk_prepare_enable(nfc->reg_clk); 2946 if (ret) 2947 goto unprepare_core_clk; 2948 2949 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2950 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2951 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2952 0, "marvell-nfc", nfc); 2953 if (ret) 2954 goto unprepare_reg_clk; 2955 2956 /* Get NAND controller capabilities */ 2957 if (pdev->id_entry) 2958 nfc->caps = (void *)pdev->id_entry->driver_data; 2959 else 2960 nfc->caps = of_device_get_match_data(&pdev->dev); 2961 2962 if (!nfc->caps) { 2963 dev_err(dev, "Could not retrieve NFC caps\n"); 2964 ret = -EINVAL; 2965 goto unprepare_reg_clk; 2966 } 2967 2968 /* Init the controller and then probe the chips */ 2969 ret = marvell_nfc_init(nfc); 2970 if (ret) 2971 goto unprepare_reg_clk; 2972 2973 platform_set_drvdata(pdev, nfc); 2974 2975 ret = marvell_nand_chips_init(dev, nfc); 2976 if (ret) 2977 goto release_dma; 2978 2979 return 0; 2980 2981 release_dma: 2982 if (nfc->use_dma) 2983 dma_release_channel(nfc->dma_chan); 2984 unprepare_reg_clk: 2985 clk_disable_unprepare(nfc->reg_clk); 2986 unprepare_core_clk: 2987 clk_disable_unprepare(nfc->core_clk); 2988 2989 return ret; 2990 } 2991 2992 static int marvell_nfc_remove(struct platform_device *pdev) 2993 { 2994 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 2995 2996 marvell_nand_chips_cleanup(nfc); 2997 2998 if (nfc->use_dma) { 2999 dmaengine_terminate_all(nfc->dma_chan); 3000 dma_release_channel(nfc->dma_chan); 3001 } 3002 3003 clk_disable_unprepare(nfc->reg_clk); 3004 clk_disable_unprepare(nfc->core_clk); 3005 3006 return 0; 3007 } 3008 3009 static int __maybe_unused marvell_nfc_suspend(struct device *dev) 3010 { 3011 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3012 struct marvell_nand_chip *chip; 3013 3014 list_for_each_entry(chip, &nfc->chips, node) 3015 marvell_nfc_wait_ndrun(&chip->chip); 3016 3017 clk_disable_unprepare(nfc->reg_clk); 3018 clk_disable_unprepare(nfc->core_clk); 3019 3020 return 0; 3021 } 3022 3023 static int __maybe_unused marvell_nfc_resume(struct device *dev) 3024 { 3025 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3026 int ret; 3027 3028 ret = clk_prepare_enable(nfc->core_clk); 3029 if (ret < 0) 3030 return ret; 3031 3032 ret = clk_prepare_enable(nfc->reg_clk); 3033 if (ret < 0) { 3034 clk_disable_unprepare(nfc->core_clk); 3035 return ret; 3036 } 3037 3038 /* 3039 * Reset nfc->selected_chip so the next command will cause the timing 3040 * registers to be restored in marvell_nfc_select_target(). 3041 */ 3042 nfc->selected_chip = NULL; 3043 3044 /* Reset registers that have lost their contents */ 3045 marvell_nfc_reset(nfc); 3046 3047 return 0; 3048 } 3049 3050 static const struct dev_pm_ops marvell_nfc_pm_ops = { 3051 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 3052 }; 3053 3054 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 3055 .max_cs_nb = 4, 3056 .max_rb_nb = 2, 3057 .need_system_controller = true, 3058 .is_nfcv2 = true, 3059 }; 3060 3061 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 3062 .max_cs_nb = 4, 3063 .max_rb_nb = 2, 3064 .is_nfcv2 = true, 3065 }; 3066 3067 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 3068 .max_cs_nb = 2, 3069 .max_rb_nb = 1, 3070 .use_dma = true, 3071 }; 3072 3073 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 3074 .max_cs_nb = 4, 3075 .max_rb_nb = 2, 3076 .need_system_controller = true, 3077 .legacy_of_bindings = true, 3078 .is_nfcv2 = true, 3079 }; 3080 3081 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 3082 .max_cs_nb = 4, 3083 .max_rb_nb = 2, 3084 .legacy_of_bindings = true, 3085 .is_nfcv2 = true, 3086 }; 3087 3088 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 3089 .max_cs_nb = 2, 3090 .max_rb_nb = 1, 3091 .legacy_of_bindings = true, 3092 .use_dma = true, 3093 }; 3094 3095 static const struct platform_device_id marvell_nfc_platform_ids[] = { 3096 { 3097 .name = "pxa3xx-nand", 3098 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 3099 }, 3100 { /* sentinel */ }, 3101 }; 3102 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 3103 3104 static const struct of_device_id marvell_nfc_of_ids[] = { 3105 { 3106 .compatible = "marvell,armada-8k-nand-controller", 3107 .data = &marvell_armada_8k_nfc_caps, 3108 }, 3109 { 3110 .compatible = "marvell,armada370-nand-controller", 3111 .data = &marvell_armada370_nfc_caps, 3112 }, 3113 { 3114 .compatible = "marvell,pxa3xx-nand-controller", 3115 .data = &marvell_pxa3xx_nfc_caps, 3116 }, 3117 /* Support for old/deprecated bindings: */ 3118 { 3119 .compatible = "marvell,armada-8k-nand", 3120 .data = &marvell_armada_8k_nfc_legacy_caps, 3121 }, 3122 { 3123 .compatible = "marvell,armada370-nand", 3124 .data = &marvell_armada370_nfc_legacy_caps, 3125 }, 3126 { 3127 .compatible = "marvell,pxa3xx-nand", 3128 .data = &marvell_pxa3xx_nfc_legacy_caps, 3129 }, 3130 { /* sentinel */ }, 3131 }; 3132 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 3133 3134 static struct platform_driver marvell_nfc_driver = { 3135 .driver = { 3136 .name = "marvell-nfc", 3137 .of_match_table = marvell_nfc_of_ids, 3138 .pm = &marvell_nfc_pm_ops, 3139 }, 3140 .id_table = marvell_nfc_platform_ids, 3141 .probe = marvell_nfc_probe, 3142 .remove = marvell_nfc_remove, 3143 }; 3144 module_platform_driver(marvell_nfc_driver); 3145 3146 MODULE_LICENSE("GPL"); 3147 MODULE_DESCRIPTION("Marvell NAND controller driver"); 3148