1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 */ 9 10 #include <linux/module.h> 11 #include <linux/clk.h> 12 #include <linux/mtd/rawnand.h> 13 #include <linux/of_platform.h> 14 #include <linux/iopoll.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mfd/syscon.h> 18 #include <linux/regmap.h> 19 #include <asm/unaligned.h> 20 21 #include <linux/dmaengine.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dma/pxa-dma.h> 24 #include <linux/platform_data/mtd-nand-pxa3xx.h> 25 26 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 27 #define FIFO_DEPTH 8 28 #define FIFO_REP(x) (x / sizeof(u32)) 29 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 30 /* NFC does not support transfers of larger chunks at a time */ 31 #define MAX_CHUNK_SIZE 2112 32 /* NFCv1 cannot read more that 7 bytes of ID */ 33 #define NFCV1_READID_LEN 7 34 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 35 #define POLL_PERIOD 0 36 #define POLL_TIMEOUT 100000 37 /* Interrupt maximum wait period in ms */ 38 #define IRQ_TIMEOUT 1000 39 /* Latency in clock cycles between SoC pins and NFC logic */ 40 #define MIN_RD_DEL_CNT 3 41 /* Maximum number of contiguous address cycles */ 42 #define MAX_ADDRESS_CYC_NFCV1 5 43 #define MAX_ADDRESS_CYC_NFCV2 7 44 /* System control registers/bits to enable the NAND controller on some SoCs */ 45 #define GENCONF_SOC_DEVICE_MUX 0x208 46 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 47 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 48 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 49 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 50 #define GENCONF_CLK_GATING_CTRL 0x220 51 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 52 #define GENCONF_ND_CLK_CTRL 0x700 53 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 54 55 /* NAND controller data flash control register */ 56 #define NDCR 0x00 57 #define NDCR_ALL_INT GENMASK(11, 0) 58 #define NDCR_CS1_CMDDM BIT(7) 59 #define NDCR_CS0_CMDDM BIT(8) 60 #define NDCR_RDYM BIT(11) 61 #define NDCR_ND_ARB_EN BIT(12) 62 #define NDCR_RA_START BIT(15) 63 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 64 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 65 #define NDCR_DWIDTH_M BIT(26) 66 #define NDCR_DWIDTH_C BIT(27) 67 #define NDCR_ND_RUN BIT(28) 68 #define NDCR_DMA_EN BIT(29) 69 #define NDCR_ECC_EN BIT(30) 70 #define NDCR_SPARE_EN BIT(31) 71 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 72 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 73 74 /* NAND interface timing parameter 0 register */ 75 #define NDTR0 0x04 76 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 77 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 78 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 79 #define NDTR0_SEL_NRE_EDGE BIT(7) 80 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 81 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 82 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 83 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 84 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 85 #define NDTR0_SELCNTR BIT(26) 86 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 87 88 /* NAND interface timing parameter 1 register */ 89 #define NDTR1 0x0C 90 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 91 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 92 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 93 #define NDTR1_PRESCALE BIT(14) 94 #define NDTR1_WAIT_MODE BIT(15) 95 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 96 97 /* NAND controller status register */ 98 #define NDSR 0x14 99 #define NDSR_WRCMDREQ BIT(0) 100 #define NDSR_RDDREQ BIT(1) 101 #define NDSR_WRDREQ BIT(2) 102 #define NDSR_CORERR BIT(3) 103 #define NDSR_UNCERR BIT(4) 104 #define NDSR_CMDD(cs) BIT(8 - cs) 105 #define NDSR_RDY(rb) BIT(11 + rb) 106 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 107 108 /* NAND ECC control register */ 109 #define NDECCCTRL 0x28 110 #define NDECCCTRL_BCH_EN BIT(0) 111 112 /* NAND controller data buffer register */ 113 #define NDDB 0x40 114 115 /* NAND controller command buffer 0 register */ 116 #define NDCB0 0x48 117 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 118 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 119 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 120 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 121 #define NDCB0_DBC BIT(19) 122 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 123 #define NDCB0_CSEL BIT(24) 124 #define NDCB0_RDY_BYP BIT(27) 125 #define NDCB0_LEN_OVRD BIT(28) 126 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 127 128 /* NAND controller command buffer 1 register */ 129 #define NDCB1 0x4C 130 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 131 #define NDCB1_ADDRS_PAGE(x) (x << 16) 132 133 /* NAND controller command buffer 2 register */ 134 #define NDCB2 0x50 135 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 136 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 137 138 /* NAND controller command buffer 3 register */ 139 #define NDCB3 0x54 140 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 141 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 142 143 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 144 #define TYPE_READ 0 145 #define TYPE_WRITE 1 146 #define TYPE_ERASE 2 147 #define TYPE_READ_ID 3 148 #define TYPE_STATUS 4 149 #define TYPE_RESET 5 150 #define TYPE_NAKED_CMD 6 151 #define TYPE_NAKED_ADDR 7 152 #define TYPE_MASK 7 153 #define XTYPE_MONOLITHIC_RW 0 154 #define XTYPE_LAST_NAKED_RW 1 155 #define XTYPE_FINAL_COMMAND 3 156 #define XTYPE_READ 4 157 #define XTYPE_WRITE_DISPATCH 4 158 #define XTYPE_NAKED_RW 5 159 #define XTYPE_COMMAND_DISPATCH 6 160 #define XTYPE_MASK 7 161 162 /** 163 * Marvell ECC engine works differently than the others, in order to limit the 164 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 165 * per subpage, and depending on a the desired strength needed by the NAND chip, 166 * a particular layout mixing data/spare/ecc is defined, with a possible last 167 * chunk smaller that the others. 168 * 169 * @writesize: Full page size on which the layout applies 170 * @chunk: Desired ECC chunk size on which the layout applies 171 * @strength: Desired ECC strength (per chunk size bytes) on which the 172 * layout applies 173 * @nchunks: Total number of chunks 174 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 175 * repetitions of the pattern: 176 * (data_bytes + spare_bytes + ecc_bytes). 177 * @data_bytes: Number of data bytes per chunk 178 * @spare_bytes: Number of spare bytes per chunk 179 * @ecc_bytes: Number of ecc bytes per chunk 180 * @last_data_bytes: Number of data bytes in the last chunk 181 * @last_spare_bytes: Number of spare bytes in the last chunk 182 * @last_ecc_bytes: Number of ecc bytes in the last chunk 183 */ 184 struct marvell_hw_ecc_layout { 185 /* Constraints */ 186 int writesize; 187 int chunk; 188 int strength; 189 /* Corresponding layout */ 190 int nchunks; 191 int full_chunk_cnt; 192 int data_bytes; 193 int spare_bytes; 194 int ecc_bytes; 195 int last_data_bytes; 196 int last_spare_bytes; 197 int last_ecc_bytes; 198 }; 199 200 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 201 { \ 202 .writesize = ws, \ 203 .chunk = dc, \ 204 .strength = ds, \ 205 .nchunks = nc, \ 206 .full_chunk_cnt = fcc, \ 207 .data_bytes = db, \ 208 .spare_bytes = sb, \ 209 .ecc_bytes = eb, \ 210 .last_data_bytes = ldb, \ 211 .last_spare_bytes = lsb, \ 212 .last_ecc_bytes = leb, \ 213 } 214 215 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 216 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 217 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 218 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 219 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 220 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 221 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 222 }; 223 224 /** 225 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 226 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 227 * The datasheet describes the logic with an error: ADDR5 field is once 228 * declared at the beginning of NDCB2, and another time at its end. Because the 229 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 230 * to use the last bit of this field instead of the first ones. 231 * 232 * @cs: Wanted CE lane. 233 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 234 * selecting the wanted CE lane. This is set once when 235 * the Device Tree is probed. 236 * @rb: Ready/Busy pin for the flash chip 237 */ 238 struct marvell_nand_chip_sel { 239 unsigned int cs; 240 u32 ndcb0_csel; 241 unsigned int rb; 242 }; 243 244 /** 245 * NAND chip structure: stores NAND chip device related information 246 * 247 * @chip: Base NAND chip structure 248 * @node: Used to store NAND chips into a list 249 * @layout NAND layout when using hardware ECC 250 * @ndcr: Controller register value for this NAND chip 251 * @ndtr0: Timing registers 0 value for this NAND chip 252 * @ndtr1: Timing registers 1 value for this NAND chip 253 * @selected_die: Current active CS 254 * @nsels: Number of CS lines required by the NAND chip 255 * @sels: Array of CS lines descriptions 256 */ 257 struct marvell_nand_chip { 258 struct nand_chip chip; 259 struct list_head node; 260 const struct marvell_hw_ecc_layout *layout; 261 u32 ndcr; 262 u32 ndtr0; 263 u32 ndtr1; 264 int addr_cyc; 265 int selected_die; 266 unsigned int nsels; 267 struct marvell_nand_chip_sel sels[0]; 268 }; 269 270 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 271 { 272 return container_of(chip, struct marvell_nand_chip, chip); 273 } 274 275 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 276 *nand) 277 { 278 return &nand->sels[nand->selected_die]; 279 } 280 281 /** 282 * NAND controller capabilities for distinction between compatible strings 283 * 284 * @max_cs_nb: Number of Chip Select lines available 285 * @max_rb_nb: Number of Ready/Busy lines available 286 * @need_system_controller: Indicates if the SoC needs to have access to the 287 * system controller (ie. to enable the NAND controller) 288 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 289 * fashion way 290 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 291 * BCH error detection and correction algorithm, 292 * NDCB3 register has been added 293 * @use_dma: Use dma for data transfers 294 */ 295 struct marvell_nfc_caps { 296 unsigned int max_cs_nb; 297 unsigned int max_rb_nb; 298 bool need_system_controller; 299 bool legacy_of_bindings; 300 bool is_nfcv2; 301 bool use_dma; 302 }; 303 304 /** 305 * NAND controller structure: stores Marvell NAND controller information 306 * 307 * @controller: Base controller structure 308 * @dev: Parent device (used to print error messages) 309 * @regs: NAND controller registers 310 * @core_clk: Core clock 311 * @reg_clk: Regiters clock 312 * @complete: Completion object to wait for NAND controller events 313 * @assigned_cs: Bitmask describing already assigned CS lines 314 * @chips: List containing all the NAND chips attached to 315 * this NAND controller 316 * @caps: NAND controller capabilities for each compatible string 317 * @dma_chan: DMA channel (NFCv1 only) 318 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 319 */ 320 struct marvell_nfc { 321 struct nand_controller controller; 322 struct device *dev; 323 void __iomem *regs; 324 struct clk *core_clk; 325 struct clk *reg_clk; 326 struct completion complete; 327 unsigned long assigned_cs; 328 struct list_head chips; 329 struct nand_chip *selected_chip; 330 const struct marvell_nfc_caps *caps; 331 332 /* DMA (NFCv1 only) */ 333 bool use_dma; 334 struct dma_chan *dma_chan; 335 u8 *dma_buf; 336 }; 337 338 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 339 { 340 return container_of(ctrl, struct marvell_nfc, controller); 341 } 342 343 /** 344 * NAND controller timings expressed in NAND Controller clock cycles 345 * 346 * @tRP: ND_nRE pulse width 347 * @tRH: ND_nRE high duration 348 * @tWP: ND_nWE pulse time 349 * @tWH: ND_nWE high duration 350 * @tCS: Enable signal setup time 351 * @tCH: Enable signal hold time 352 * @tADL: Address to write data delay 353 * @tAR: ND_ALE low to ND_nRE low delay 354 * @tWHR: ND_nWE high to ND_nRE low for status read 355 * @tRHW: ND_nRE high duration, read to write delay 356 * @tR: ND_nWE high to ND_nRE low for read 357 */ 358 struct marvell_nfc_timings { 359 /* NDTR0 fields */ 360 unsigned int tRP; 361 unsigned int tRH; 362 unsigned int tWP; 363 unsigned int tWH; 364 unsigned int tCS; 365 unsigned int tCH; 366 unsigned int tADL; 367 /* NDTR1 fields */ 368 unsigned int tAR; 369 unsigned int tWHR; 370 unsigned int tRHW; 371 unsigned int tR; 372 }; 373 374 /** 375 * Derives a duration in numbers of clock cycles. 376 * 377 * @ps: Duration in pico-seconds 378 * @period_ns: Clock period in nano-seconds 379 * 380 * Convert the duration in nano-seconds, then divide by the period and 381 * return the number of clock periods. 382 */ 383 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 384 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 385 period_ns)) 386 387 /** 388 * NAND driver structure filled during the parsing of the ->exec_op() subop 389 * subset of instructions. 390 * 391 * @ndcb: Array of values written to NDCBx registers 392 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 393 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 394 * @rdy_delay_ns: Optional delay after waiting for the RB pin 395 * @data_delay_ns: Optional delay after the data xfer 396 * @data_instr_idx: Index of the data instruction in the subop 397 * @data_instr: Pointer to the data instruction in the subop 398 */ 399 struct marvell_nfc_op { 400 u32 ndcb[4]; 401 unsigned int cle_ale_delay_ns; 402 unsigned int rdy_timeout_ms; 403 unsigned int rdy_delay_ns; 404 unsigned int data_delay_ns; 405 unsigned int data_instr_idx; 406 const struct nand_op_instr *data_instr; 407 }; 408 409 /* 410 * Internal helper to conditionnally apply a delay (from the above structure, 411 * most of the time). 412 */ 413 static void cond_delay(unsigned int ns) 414 { 415 if (!ns) 416 return; 417 418 if (ns < 10000) 419 ndelay(ns); 420 else 421 udelay(DIV_ROUND_UP(ns, 1000)); 422 } 423 424 /* 425 * The controller has many flags that could generate interrupts, most of them 426 * are disabled and polling is used. For the very slow signals, using interrupts 427 * may relax the CPU charge. 428 */ 429 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 430 { 431 u32 reg; 432 433 /* Writing 1 disables the interrupt */ 434 reg = readl_relaxed(nfc->regs + NDCR); 435 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 436 } 437 438 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 439 { 440 u32 reg; 441 442 /* Writing 0 enables the interrupt */ 443 reg = readl_relaxed(nfc->regs + NDCR); 444 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 445 } 446 447 static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 448 { 449 writel_relaxed(int_mask, nfc->regs + NDSR); 450 } 451 452 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 453 bool force_8bit) 454 { 455 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 456 u32 ndcr; 457 458 /* 459 * Callers of this function do not verify if the NAND is using a 16-bit 460 * an 8-bit bus for normal operations, so we need to take care of that 461 * here by leaving the configuration unchanged if the NAND does not have 462 * the NAND_BUSWIDTH_16 flag set. 463 */ 464 if (!(chip->options & NAND_BUSWIDTH_16)) 465 return; 466 467 ndcr = readl_relaxed(nfc->regs + NDCR); 468 469 if (force_8bit) 470 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 471 else 472 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 473 474 writel_relaxed(ndcr, nfc->regs + NDCR); 475 } 476 477 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 478 { 479 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 480 u32 val; 481 int ret; 482 483 /* 484 * The command is being processed, wait for the ND_RUN bit to be 485 * cleared by the NFC. If not, we must clear it by hand. 486 */ 487 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 488 (val & NDCR_ND_RUN) == 0, 489 POLL_PERIOD, POLL_TIMEOUT); 490 if (ret) { 491 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 492 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 493 nfc->regs + NDCR); 494 return ret; 495 } 496 497 return 0; 498 } 499 500 /* 501 * Any time a command has to be sent to the controller, the following sequence 502 * has to be followed: 503 * - call marvell_nfc_prepare_cmd() 504 * -> activate the ND_RUN bit that will kind of 'start a job' 505 * -> wait the signal indicating the NFC is waiting for a command 506 * - send the command (cmd and address cycles) 507 * - enventually send or receive the data 508 * - call marvell_nfc_end_cmd() with the corresponding flag 509 * -> wait the flag to be triggered or cancel the job with a timeout 510 * 511 * The following helpers are here to factorize the code a bit so that 512 * specialized functions responsible for executing the actual NAND 513 * operations do not have to replicate the same code blocks. 514 */ 515 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 516 { 517 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 518 u32 ndcr, val; 519 int ret; 520 521 /* Poll ND_RUN and clear NDSR before issuing any command */ 522 ret = marvell_nfc_wait_ndrun(chip); 523 if (ret) { 524 dev_err(nfc->dev, "Last operation did not succeed\n"); 525 return ret; 526 } 527 528 ndcr = readl_relaxed(nfc->regs + NDCR); 529 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 530 531 /* Assert ND_RUN bit and wait the NFC to be ready */ 532 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 533 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 534 val & NDSR_WRCMDREQ, 535 POLL_PERIOD, POLL_TIMEOUT); 536 if (ret) { 537 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 538 return -ETIMEDOUT; 539 } 540 541 /* Command may be written, clear WRCMDREQ status bit */ 542 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 543 544 return 0; 545 } 546 547 static void marvell_nfc_send_cmd(struct nand_chip *chip, 548 struct marvell_nfc_op *nfc_op) 549 { 550 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 551 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 552 553 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 554 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 555 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 556 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 557 558 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 559 nfc->regs + NDCB0); 560 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 561 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 562 563 /* 564 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 565 * fields are used (only available on NFCv2). 566 */ 567 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 568 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 569 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 570 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 571 } 572 } 573 574 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 575 const char *label) 576 { 577 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 578 u32 val; 579 int ret; 580 581 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 582 val & flag, 583 POLL_PERIOD, POLL_TIMEOUT); 584 585 if (ret) { 586 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 587 label, val); 588 if (nfc->dma_chan) 589 dmaengine_terminate_all(nfc->dma_chan); 590 return ret; 591 } 592 593 /* 594 * DMA function uses this helper to poll on CMDD bits without wanting 595 * them to be cleared. 596 */ 597 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 598 return 0; 599 600 writel_relaxed(flag, nfc->regs + NDSR); 601 602 return 0; 603 } 604 605 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 606 { 607 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 608 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 609 610 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 611 } 612 613 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 614 { 615 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 616 int ret; 617 618 /* Timeout is expressed in ms */ 619 if (!timeout_ms) 620 timeout_ms = IRQ_TIMEOUT; 621 622 init_completion(&nfc->complete); 623 624 marvell_nfc_enable_int(nfc, NDCR_RDYM); 625 ret = wait_for_completion_timeout(&nfc->complete, 626 msecs_to_jiffies(timeout_ms)); 627 marvell_nfc_disable_int(nfc, NDCR_RDYM); 628 marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 629 if (!ret) { 630 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 631 return -ETIMEDOUT; 632 } 633 634 return 0; 635 } 636 637 static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr) 638 { 639 struct nand_chip *chip = mtd_to_nand(mtd); 640 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 641 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 642 u32 ndcr_generic; 643 644 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 645 return; 646 647 if (die_nr < 0 || die_nr >= marvell_nand->nsels) { 648 nfc->selected_chip = NULL; 649 marvell_nand->selected_die = -1; 650 return; 651 } 652 653 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 654 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 655 656 /* 657 * Reset the NDCR register to a clean state for this particular chip, 658 * also clear ND_RUN bit. 659 */ 660 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 661 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 662 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 663 664 /* Also reset the interrupt status register */ 665 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 666 667 nfc->selected_chip = chip; 668 marvell_nand->selected_die = die_nr; 669 } 670 671 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 672 { 673 struct marvell_nfc *nfc = dev_id; 674 u32 st = readl_relaxed(nfc->regs + NDSR); 675 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 676 677 /* 678 * RDY interrupt mask is one bit in NDCR while there are two status 679 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 680 */ 681 if (st & NDSR_RDY(1)) 682 st |= NDSR_RDY(0); 683 684 if (!(st & ien)) 685 return IRQ_NONE; 686 687 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 688 689 if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ))) 690 complete(&nfc->complete); 691 692 return IRQ_HANDLED; 693 } 694 695 /* HW ECC related functions */ 696 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 697 { 698 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 699 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 700 701 if (!(ndcr & NDCR_ECC_EN)) { 702 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 703 704 /* 705 * When enabling BCH, set threshold to 0 to always know the 706 * number of corrected bitflips. 707 */ 708 if (chip->ecc.algo == NAND_ECC_BCH) 709 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 710 } 711 } 712 713 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 714 { 715 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 716 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 717 718 if (ndcr & NDCR_ECC_EN) { 719 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 720 if (chip->ecc.algo == NAND_ECC_BCH) 721 writel_relaxed(0, nfc->regs + NDECCCTRL); 722 } 723 } 724 725 /* DMA related helpers */ 726 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 727 { 728 u32 reg; 729 730 reg = readl_relaxed(nfc->regs + NDCR); 731 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 732 } 733 734 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 735 { 736 u32 reg; 737 738 reg = readl_relaxed(nfc->regs + NDCR); 739 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 740 } 741 742 /* Read/write PIO/DMA accessors */ 743 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 744 enum dma_data_direction direction, 745 unsigned int len) 746 { 747 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 748 struct dma_async_tx_descriptor *tx; 749 struct scatterlist sg; 750 dma_cookie_t cookie; 751 int ret; 752 753 marvell_nfc_enable_dma(nfc); 754 /* Prepare the DMA transfer */ 755 sg_init_one(&sg, nfc->dma_buf, dma_len); 756 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 757 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 758 direction == DMA_FROM_DEVICE ? 759 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 760 DMA_PREP_INTERRUPT); 761 if (!tx) { 762 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 763 return -ENXIO; 764 } 765 766 /* Do the task and wait for it to finish */ 767 cookie = dmaengine_submit(tx); 768 ret = dma_submit_error(cookie); 769 if (ret) 770 return -EIO; 771 772 dma_async_issue_pending(nfc->dma_chan); 773 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 774 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 775 marvell_nfc_disable_dma(nfc); 776 if (ret) { 777 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 778 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 779 dmaengine_terminate_all(nfc->dma_chan); 780 return -ETIMEDOUT; 781 } 782 783 return 0; 784 } 785 786 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 787 unsigned int len) 788 { 789 unsigned int last_len = len % FIFO_DEPTH; 790 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 791 int i; 792 793 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 794 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 795 796 if (last_len) { 797 u8 tmp_buf[FIFO_DEPTH]; 798 799 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 800 memcpy(in + last_full_offset, tmp_buf, last_len); 801 } 802 803 return 0; 804 } 805 806 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 807 unsigned int len) 808 { 809 unsigned int last_len = len % FIFO_DEPTH; 810 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 811 int i; 812 813 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 814 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 815 816 if (last_len) { 817 u8 tmp_buf[FIFO_DEPTH]; 818 819 memcpy(tmp_buf, out + last_full_offset, last_len); 820 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 821 } 822 823 return 0; 824 } 825 826 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 827 u8 *data, int data_len, 828 u8 *spare, int spare_len, 829 u8 *ecc, int ecc_len, 830 unsigned int *max_bitflips) 831 { 832 struct mtd_info *mtd = nand_to_mtd(chip); 833 int bf; 834 835 /* 836 * Blank pages (all 0xFF) that have not been written may be recognized 837 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 838 * check if the entire page (with ECC bytes) is actually blank or not. 839 */ 840 if (!data) 841 data_len = 0; 842 if (!spare) 843 spare_len = 0; 844 if (!ecc) 845 ecc_len = 0; 846 847 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 848 spare, spare_len, chip->ecc.strength); 849 if (bf < 0) { 850 mtd->ecc_stats.failed++; 851 return; 852 } 853 854 /* Update the stats and max_bitflips */ 855 mtd->ecc_stats.corrected += bf; 856 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 857 } 858 859 /* 860 * Check a chunk is correct or not according to hardware ECC engine. 861 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 862 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 863 * value indicating that a check on the emptyness of the subpage must be 864 * performed before declaring the subpage corrupted. 865 */ 866 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip, 867 unsigned int *max_bitflips) 868 { 869 struct mtd_info *mtd = nand_to_mtd(chip); 870 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 871 int bf = 0; 872 u32 ndsr; 873 874 ndsr = readl_relaxed(nfc->regs + NDSR); 875 876 /* Check uncorrectable error flag */ 877 if (ndsr & NDSR_UNCERR) { 878 writel_relaxed(ndsr, nfc->regs + NDSR); 879 880 /* 881 * Do not increment ->ecc_stats.failed now, instead, return a 882 * non-zero value to indicate that this chunk was apparently 883 * bad, and it should be check to see if it empty or not. If 884 * the chunk (with ECC bytes) is not declared empty, the calling 885 * function must increment the failure count. 886 */ 887 return -EBADMSG; 888 } 889 890 /* Check correctable error flag */ 891 if (ndsr & NDSR_CORERR) { 892 writel_relaxed(ndsr, nfc->regs + NDSR); 893 894 if (chip->ecc.algo == NAND_ECC_BCH) 895 bf = NDSR_ERRCNT(ndsr); 896 else 897 bf = 1; 898 } 899 900 /* Update the stats and max_bitflips */ 901 mtd->ecc_stats.corrected += bf; 902 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 903 904 return 0; 905 } 906 907 /* Hamming read helpers */ 908 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 909 u8 *data_buf, u8 *oob_buf, 910 bool raw, int page) 911 { 912 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 913 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 914 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 915 struct marvell_nfc_op nfc_op = { 916 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 917 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 918 NDCB0_DBC | 919 NDCB0_CMD1(NAND_CMD_READ0) | 920 NDCB0_CMD2(NAND_CMD_READSTART), 921 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 922 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 923 }; 924 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 925 int ret; 926 927 /* NFCv2 needs more information about the operation being executed */ 928 if (nfc->caps->is_nfcv2) 929 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 930 931 ret = marvell_nfc_prepare_cmd(chip); 932 if (ret) 933 return ret; 934 935 marvell_nfc_send_cmd(chip, &nfc_op); 936 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 937 "RDDREQ while draining FIFO (data/oob)"); 938 if (ret) 939 return ret; 940 941 /* 942 * Read the page then the OOB area. Unlike what is shown in current 943 * documentation, spare bytes are protected by the ECC engine, and must 944 * be at the beginning of the OOB area or running this driver on legacy 945 * systems will prevent the discovery of the BBM/BBT. 946 */ 947 if (nfc->use_dma) { 948 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 949 lt->data_bytes + oob_bytes); 950 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 951 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 952 } else { 953 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 954 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 955 } 956 957 ret = marvell_nfc_wait_cmdd(chip); 958 959 return ret; 960 } 961 962 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd, 963 struct nand_chip *chip, u8 *buf, 964 int oob_required, int page) 965 { 966 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 967 true, page); 968 } 969 970 static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd, 971 struct nand_chip *chip, 972 u8 *buf, int oob_required, 973 int page) 974 { 975 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 976 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 977 int max_bitflips = 0, ret; 978 u8 *raw_buf; 979 980 marvell_nfc_enable_hw_ecc(chip); 981 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 982 page); 983 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 984 marvell_nfc_disable_hw_ecc(chip); 985 986 if (!ret) 987 return max_bitflips; 988 989 /* 990 * When ECC failures are detected, check if the full page has been 991 * written or not. Ignore the failure if it is actually empty. 992 */ 993 raw_buf = kmalloc(full_sz, GFP_KERNEL); 994 if (!raw_buf) 995 return -ENOMEM; 996 997 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 998 lt->data_bytes, true, page); 999 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1000 &max_bitflips); 1001 kfree(raw_buf); 1002 1003 return max_bitflips; 1004 } 1005 1006 /* 1007 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1008 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1009 * also stands for ->read_oob(). 1010 */ 1011 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd, 1012 struct nand_chip *chip, int page) 1013 { 1014 /* Invalidate page cache */ 1015 chip->pagebuf = -1; 1016 1017 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf, 1018 chip->oob_poi, true, page); 1019 } 1020 1021 /* Hamming write helpers */ 1022 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1023 const u8 *data_buf, 1024 const u8 *oob_buf, bool raw, 1025 int page) 1026 { 1027 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1028 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1029 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1030 struct marvell_nfc_op nfc_op = { 1031 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1032 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1033 NDCB0_CMD1(NAND_CMD_SEQIN) | 1034 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1035 NDCB0_DBC, 1036 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1037 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1038 }; 1039 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1040 int ret; 1041 1042 /* NFCv2 needs more information about the operation being executed */ 1043 if (nfc->caps->is_nfcv2) 1044 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1045 1046 ret = marvell_nfc_prepare_cmd(chip); 1047 if (ret) 1048 return ret; 1049 1050 marvell_nfc_send_cmd(chip, &nfc_op); 1051 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1052 "WRDREQ while loading FIFO (data)"); 1053 if (ret) 1054 return ret; 1055 1056 /* Write the page then the OOB area */ 1057 if (nfc->use_dma) { 1058 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1059 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1060 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1061 lt->ecc_bytes + lt->spare_bytes); 1062 } else { 1063 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1064 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1065 } 1066 1067 ret = marvell_nfc_wait_cmdd(chip); 1068 if (ret) 1069 return ret; 1070 1071 ret = marvell_nfc_wait_op(chip, 1072 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); 1073 return ret; 1074 } 1075 1076 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd, 1077 struct nand_chip *chip, 1078 const u8 *buf, 1079 int oob_required, int page) 1080 { 1081 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1082 true, page); 1083 } 1084 1085 static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd, 1086 struct nand_chip *chip, 1087 const u8 *buf, 1088 int oob_required, int page) 1089 { 1090 int ret; 1091 1092 marvell_nfc_enable_hw_ecc(chip); 1093 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1094 false, page); 1095 marvell_nfc_disable_hw_ecc(chip); 1096 1097 return ret; 1098 } 1099 1100 /* 1101 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1102 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1103 * also stands for ->write_oob(). 1104 */ 1105 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd, 1106 struct nand_chip *chip, 1107 int page) 1108 { 1109 /* Invalidate page cache */ 1110 chip->pagebuf = -1; 1111 1112 memset(chip->data_buf, 0xFF, mtd->writesize); 1113 1114 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf, 1115 chip->oob_poi, true, page); 1116 } 1117 1118 /* BCH read helpers */ 1119 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd, 1120 struct nand_chip *chip, u8 *buf, 1121 int oob_required, int page) 1122 { 1123 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1124 u8 *oob = chip->oob_poi; 1125 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1126 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1127 lt->last_spare_bytes; 1128 int data_len = lt->data_bytes; 1129 int spare_len = lt->spare_bytes; 1130 int ecc_len = lt->ecc_bytes; 1131 int chunk; 1132 1133 if (oob_required) 1134 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1135 1136 nand_read_page_op(chip, page, 0, NULL, 0); 1137 1138 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1139 /* Update last chunk length */ 1140 if (chunk >= lt->full_chunk_cnt) { 1141 data_len = lt->last_data_bytes; 1142 spare_len = lt->last_spare_bytes; 1143 ecc_len = lt->last_ecc_bytes; 1144 } 1145 1146 /* Read data bytes*/ 1147 nand_change_read_column_op(chip, chunk * chunk_size, 1148 buf + (lt->data_bytes * chunk), 1149 data_len, false); 1150 1151 /* Read spare bytes */ 1152 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1153 spare_len, false); 1154 1155 /* Read ECC bytes */ 1156 nand_read_data_op(chip, oob + ecc_offset + 1157 (ALIGN(lt->ecc_bytes, 32) * chunk), 1158 ecc_len, false); 1159 } 1160 1161 return 0; 1162 } 1163 1164 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1165 u8 *data, unsigned int data_len, 1166 u8 *spare, unsigned int spare_len, 1167 int page) 1168 { 1169 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1170 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1171 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1172 int i, ret; 1173 struct marvell_nfc_op nfc_op = { 1174 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1175 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1176 NDCB0_LEN_OVRD, 1177 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1178 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1179 .ndcb[3] = data_len + spare_len, 1180 }; 1181 1182 ret = marvell_nfc_prepare_cmd(chip); 1183 if (ret) 1184 return; 1185 1186 if (chunk == 0) 1187 nfc_op.ndcb[0] |= NDCB0_DBC | 1188 NDCB0_CMD1(NAND_CMD_READ0) | 1189 NDCB0_CMD2(NAND_CMD_READSTART); 1190 1191 /* 1192 * Trigger the monolithic read on the first chunk, then naked read on 1193 * intermediate chunks and finally a last naked read on the last chunk. 1194 */ 1195 if (chunk == 0) 1196 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1197 else if (chunk < lt->nchunks - 1) 1198 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1199 else 1200 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1201 1202 marvell_nfc_send_cmd(chip, &nfc_op); 1203 1204 /* 1205 * According to the datasheet, when reading from NDDB 1206 * with BCH enabled, after each 32 bytes reads, we 1207 * have to make sure that the NDSR.RDDREQ bit is set. 1208 * 1209 * Drain the FIFO, 8 32-bit reads at a time, and skip 1210 * the polling on the last read. 1211 * 1212 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1213 */ 1214 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1215 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1216 "RDDREQ while draining FIFO (data)"); 1217 marvell_nfc_xfer_data_in_pio(nfc, data, 1218 FIFO_DEPTH * BCH_SEQ_READS); 1219 data += FIFO_DEPTH * BCH_SEQ_READS; 1220 } 1221 1222 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1223 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1224 "RDDREQ while draining FIFO (OOB)"); 1225 marvell_nfc_xfer_data_in_pio(nfc, spare, 1226 FIFO_DEPTH * BCH_SEQ_READS); 1227 spare += FIFO_DEPTH * BCH_SEQ_READS; 1228 } 1229 } 1230 1231 static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd, 1232 struct nand_chip *chip, 1233 u8 *buf, int oob_required, 1234 int page) 1235 { 1236 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1237 int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len; 1238 u8 *data = buf, *spare = chip->oob_poi, *ecc; 1239 int max_bitflips = 0; 1240 u32 failure_mask = 0; 1241 int chunk, ecc_offset_in_page, ret; 1242 1243 /* 1244 * With BCH, OOB is not fully used (and thus not read entirely), not 1245 * expected bytes could show up at the end of the OOB buffer if not 1246 * explicitly erased. 1247 */ 1248 if (oob_required) 1249 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1250 1251 marvell_nfc_enable_hw_ecc(chip); 1252 1253 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1254 /* Update length for the last chunk */ 1255 if (chunk >= lt->full_chunk_cnt) { 1256 data_len = lt->last_data_bytes; 1257 spare_len = lt->last_spare_bytes; 1258 } 1259 1260 /* Read the chunk and detect number of bitflips */ 1261 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1262 spare, spare_len, page); 1263 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); 1264 if (ret) 1265 failure_mask |= BIT(chunk); 1266 1267 data += data_len; 1268 spare += spare_len; 1269 } 1270 1271 marvell_nfc_disable_hw_ecc(chip); 1272 1273 if (!failure_mask) 1274 return max_bitflips; 1275 1276 /* 1277 * Please note that dumping the ECC bytes during a normal read with OOB 1278 * area would add a significant overhead as ECC bytes are "consumed" by 1279 * the controller in normal mode and must be re-read in raw mode. To 1280 * avoid dropping the performances, we prefer not to include them. The 1281 * user should re-read the page in raw mode if ECC bytes are required. 1282 * 1283 * However, for any subpage read error reported by ->correct(), the ECC 1284 * bytes must be read in raw mode and the full subpage must be checked 1285 * to see if it is entirely empty of if there was an actual error. 1286 */ 1287 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1288 /* No failure reported for this chunk, move to the next one */ 1289 if (!(failure_mask & BIT(chunk))) 1290 continue; 1291 1292 /* Derive ECC bytes positions (in page/buffer) and length */ 1293 ecc = chip->oob_poi + 1294 (lt->full_chunk_cnt * lt->spare_bytes) + 1295 lt->last_spare_bytes + 1296 (chunk * ALIGN(lt->ecc_bytes, 32)); 1297 ecc_offset_in_page = 1298 (chunk * (lt->data_bytes + lt->spare_bytes + 1299 lt->ecc_bytes)) + 1300 (chunk < lt->full_chunk_cnt ? 1301 lt->data_bytes + lt->spare_bytes : 1302 lt->last_data_bytes + lt->last_spare_bytes); 1303 ecc_len = chunk < lt->full_chunk_cnt ? 1304 lt->ecc_bytes : lt->last_ecc_bytes; 1305 1306 /* Do the actual raw read of the ECC bytes */ 1307 nand_change_read_column_op(chip, ecc_offset_in_page, 1308 ecc, ecc_len, false); 1309 1310 /* Derive data/spare bytes positions (in buffer) and length */ 1311 data = buf + (chunk * lt->data_bytes); 1312 data_len = chunk < lt->full_chunk_cnt ? 1313 lt->data_bytes : lt->last_data_bytes; 1314 spare = chip->oob_poi + (chunk * (lt->spare_bytes + 1315 lt->ecc_bytes)); 1316 spare_len = chunk < lt->full_chunk_cnt ? 1317 lt->spare_bytes : lt->last_spare_bytes; 1318 1319 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1320 marvell_nfc_check_empty_chunk(chip, data, data_len, spare, 1321 spare_len, ecc, ecc_len, 1322 &max_bitflips); 1323 } 1324 1325 return max_bitflips; 1326 } 1327 1328 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd, 1329 struct nand_chip *chip, int page) 1330 { 1331 /* Invalidate page cache */ 1332 chip->pagebuf = -1; 1333 1334 return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page); 1335 } 1336 1337 static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd, 1338 struct nand_chip *chip, int page) 1339 { 1340 /* Invalidate page cache */ 1341 chip->pagebuf = -1; 1342 1343 return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page); 1344 } 1345 1346 /* BCH write helpers */ 1347 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd, 1348 struct nand_chip *chip, 1349 const u8 *buf, 1350 int oob_required, int page) 1351 { 1352 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1353 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1354 int data_len = lt->data_bytes; 1355 int spare_len = lt->spare_bytes; 1356 int ecc_len = lt->ecc_bytes; 1357 int spare_offset = 0; 1358 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1359 lt->last_spare_bytes; 1360 int chunk; 1361 1362 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1363 1364 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1365 if (chunk >= lt->full_chunk_cnt) { 1366 data_len = lt->last_data_bytes; 1367 spare_len = lt->last_spare_bytes; 1368 ecc_len = lt->last_ecc_bytes; 1369 } 1370 1371 /* Point to the column of the next chunk */ 1372 nand_change_write_column_op(chip, chunk * full_chunk_size, 1373 NULL, 0, false); 1374 1375 /* Write the data */ 1376 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1377 data_len, false); 1378 1379 if (!oob_required) 1380 continue; 1381 1382 /* Write the spare bytes */ 1383 if (spare_len) 1384 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1385 spare_len, false); 1386 1387 /* Write the ECC bytes */ 1388 if (ecc_len) 1389 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1390 ecc_len, false); 1391 1392 spare_offset += spare_len; 1393 ecc_offset += ALIGN(ecc_len, 32); 1394 } 1395 1396 return nand_prog_page_end_op(chip); 1397 } 1398 1399 static int 1400 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1401 const u8 *data, unsigned int data_len, 1402 const u8 *spare, unsigned int spare_len, 1403 int page) 1404 { 1405 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1406 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1407 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1408 u32 xtype; 1409 int ret; 1410 struct marvell_nfc_op nfc_op = { 1411 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1412 .ndcb[3] = data_len + spare_len, 1413 }; 1414 1415 /* 1416 * First operation dispatches the CMD_SEQIN command, issue the address 1417 * cycles and asks for the first chunk of data. 1418 * All operations in the middle (if any) will issue a naked write and 1419 * also ask for data. 1420 * Last operation (if any) asks for the last chunk of data through a 1421 * last naked write. 1422 */ 1423 if (chunk == 0) { 1424 if (lt->nchunks == 1) 1425 xtype = XTYPE_MONOLITHIC_RW; 1426 else 1427 xtype = XTYPE_WRITE_DISPATCH; 1428 1429 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1430 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1431 NDCB0_CMD1(NAND_CMD_SEQIN); 1432 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1433 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1434 } else if (chunk < lt->nchunks - 1) { 1435 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1436 } else { 1437 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1438 } 1439 1440 /* Always dispatch the PAGEPROG command on the last chunk */ 1441 if (chunk == lt->nchunks - 1) 1442 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1443 1444 ret = marvell_nfc_prepare_cmd(chip); 1445 if (ret) 1446 return ret; 1447 1448 marvell_nfc_send_cmd(chip, &nfc_op); 1449 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1450 "WRDREQ while loading FIFO (data)"); 1451 if (ret) 1452 return ret; 1453 1454 /* Transfer the contents */ 1455 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1456 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1457 1458 return 0; 1459 } 1460 1461 static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd, 1462 struct nand_chip *chip, 1463 const u8 *buf, 1464 int oob_required, int page) 1465 { 1466 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1467 const u8 *data = buf; 1468 const u8 *spare = chip->oob_poi; 1469 int data_len = lt->data_bytes; 1470 int spare_len = lt->spare_bytes; 1471 int chunk, ret; 1472 1473 /* Spare data will be written anyway, so clear it to avoid garbage */ 1474 if (!oob_required) 1475 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1476 1477 marvell_nfc_enable_hw_ecc(chip); 1478 1479 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1480 if (chunk >= lt->full_chunk_cnt) { 1481 data_len = lt->last_data_bytes; 1482 spare_len = lt->last_spare_bytes; 1483 } 1484 1485 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1486 spare, spare_len, page); 1487 data += data_len; 1488 spare += spare_len; 1489 1490 /* 1491 * Waiting only for CMDD or PAGED is not enough, ECC are 1492 * partially written. No flag is set once the operation is 1493 * really finished but the ND_RUN bit is cleared, so wait for it 1494 * before stepping into the next command. 1495 */ 1496 marvell_nfc_wait_ndrun(chip); 1497 } 1498 1499 ret = marvell_nfc_wait_op(chip, 1500 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max)); 1501 1502 marvell_nfc_disable_hw_ecc(chip); 1503 1504 if (ret) 1505 return ret; 1506 1507 return 0; 1508 } 1509 1510 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd, 1511 struct nand_chip *chip, 1512 int page) 1513 { 1514 /* Invalidate page cache */ 1515 chip->pagebuf = -1; 1516 1517 memset(chip->data_buf, 0xFF, mtd->writesize); 1518 1519 return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page); 1520 } 1521 1522 static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd, 1523 struct nand_chip *chip, int page) 1524 { 1525 /* Invalidate page cache */ 1526 chip->pagebuf = -1; 1527 1528 memset(chip->data_buf, 0xFF, mtd->writesize); 1529 1530 return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page); 1531 } 1532 1533 /* NAND framework ->exec_op() hooks and related helpers */ 1534 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1535 const struct nand_subop *subop, 1536 struct marvell_nfc_op *nfc_op) 1537 { 1538 const struct nand_op_instr *instr = NULL; 1539 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1540 bool first_cmd = true; 1541 unsigned int op_id; 1542 int i; 1543 1544 /* Reset the input structure as most of its fields will be OR'ed */ 1545 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1546 1547 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1548 unsigned int offset, naddrs; 1549 const u8 *addrs; 1550 int len; 1551 1552 instr = &subop->instrs[op_id]; 1553 1554 switch (instr->type) { 1555 case NAND_OP_CMD_INSTR: 1556 if (first_cmd) 1557 nfc_op->ndcb[0] |= 1558 NDCB0_CMD1(instr->ctx.cmd.opcode); 1559 else 1560 nfc_op->ndcb[0] |= 1561 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1562 NDCB0_DBC; 1563 1564 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1565 first_cmd = false; 1566 break; 1567 1568 case NAND_OP_ADDR_INSTR: 1569 offset = nand_subop_get_addr_start_off(subop, op_id); 1570 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1571 addrs = &instr->ctx.addr.addrs[offset]; 1572 1573 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1574 1575 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1576 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1577 1578 if (naddrs >= 5) 1579 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1580 if (naddrs >= 6) 1581 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1582 if (naddrs == 7) 1583 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1584 1585 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1586 break; 1587 1588 case NAND_OP_DATA_IN_INSTR: 1589 nfc_op->data_instr = instr; 1590 nfc_op->data_instr_idx = op_id; 1591 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1592 if (nfc->caps->is_nfcv2) { 1593 nfc_op->ndcb[0] |= 1594 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1595 NDCB0_LEN_OVRD; 1596 len = nand_subop_get_data_len(subop, op_id); 1597 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1598 } 1599 nfc_op->data_delay_ns = instr->delay_ns; 1600 break; 1601 1602 case NAND_OP_DATA_OUT_INSTR: 1603 nfc_op->data_instr = instr; 1604 nfc_op->data_instr_idx = op_id; 1605 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1606 if (nfc->caps->is_nfcv2) { 1607 nfc_op->ndcb[0] |= 1608 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1609 NDCB0_LEN_OVRD; 1610 len = nand_subop_get_data_len(subop, op_id); 1611 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1612 } 1613 nfc_op->data_delay_ns = instr->delay_ns; 1614 break; 1615 1616 case NAND_OP_WAITRDY_INSTR: 1617 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1618 nfc_op->rdy_delay_ns = instr->delay_ns; 1619 break; 1620 } 1621 } 1622 } 1623 1624 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1625 const struct nand_subop *subop, 1626 struct marvell_nfc_op *nfc_op) 1627 { 1628 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1629 const struct nand_op_instr *instr = nfc_op->data_instr; 1630 unsigned int op_id = nfc_op->data_instr_idx; 1631 unsigned int len = nand_subop_get_data_len(subop, op_id); 1632 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1633 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1634 int ret; 1635 1636 if (instr->ctx.data.force_8bit) 1637 marvell_nfc_force_byte_access(chip, true); 1638 1639 if (reading) { 1640 u8 *in = instr->ctx.data.buf.in + offset; 1641 1642 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1643 } else { 1644 const u8 *out = instr->ctx.data.buf.out + offset; 1645 1646 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1647 } 1648 1649 if (instr->ctx.data.force_8bit) 1650 marvell_nfc_force_byte_access(chip, false); 1651 1652 return ret; 1653 } 1654 1655 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1656 const struct nand_subop *subop) 1657 { 1658 struct marvell_nfc_op nfc_op; 1659 bool reading; 1660 int ret; 1661 1662 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1663 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1664 1665 ret = marvell_nfc_prepare_cmd(chip); 1666 if (ret) 1667 return ret; 1668 1669 marvell_nfc_send_cmd(chip, &nfc_op); 1670 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1671 "RDDREQ/WRDREQ while draining raw data"); 1672 if (ret) 1673 return ret; 1674 1675 cond_delay(nfc_op.cle_ale_delay_ns); 1676 1677 if (reading) { 1678 if (nfc_op.rdy_timeout_ms) { 1679 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1680 if (ret) 1681 return ret; 1682 } 1683 1684 cond_delay(nfc_op.rdy_delay_ns); 1685 } 1686 1687 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1688 ret = marvell_nfc_wait_cmdd(chip); 1689 if (ret) 1690 return ret; 1691 1692 cond_delay(nfc_op.data_delay_ns); 1693 1694 if (!reading) { 1695 if (nfc_op.rdy_timeout_ms) { 1696 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1697 if (ret) 1698 return ret; 1699 } 1700 1701 cond_delay(nfc_op.rdy_delay_ns); 1702 } 1703 1704 /* 1705 * NDCR ND_RUN bit should be cleared automatically at the end of each 1706 * operation but experience shows that the behavior is buggy when it 1707 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1708 */ 1709 if (!reading) { 1710 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1711 1712 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1713 nfc->regs + NDCR); 1714 } 1715 1716 return 0; 1717 } 1718 1719 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1720 const struct nand_subop *subop) 1721 { 1722 struct marvell_nfc_op nfc_op; 1723 int ret; 1724 1725 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1726 1727 /* 1728 * Naked access are different in that they need to be flagged as naked 1729 * by the controller. Reset the controller registers fields that inform 1730 * on the type and refill them according to the ongoing operation. 1731 */ 1732 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1733 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1734 switch (subop->instrs[0].type) { 1735 case NAND_OP_CMD_INSTR: 1736 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1737 break; 1738 case NAND_OP_ADDR_INSTR: 1739 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1740 break; 1741 case NAND_OP_DATA_IN_INSTR: 1742 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1743 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1744 break; 1745 case NAND_OP_DATA_OUT_INSTR: 1746 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1747 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1748 break; 1749 default: 1750 /* This should never happen */ 1751 break; 1752 } 1753 1754 ret = marvell_nfc_prepare_cmd(chip); 1755 if (ret) 1756 return ret; 1757 1758 marvell_nfc_send_cmd(chip, &nfc_op); 1759 1760 if (!nfc_op.data_instr) { 1761 ret = marvell_nfc_wait_cmdd(chip); 1762 cond_delay(nfc_op.cle_ale_delay_ns); 1763 return ret; 1764 } 1765 1766 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1767 "RDDREQ/WRDREQ while draining raw data"); 1768 if (ret) 1769 return ret; 1770 1771 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1772 ret = marvell_nfc_wait_cmdd(chip); 1773 if (ret) 1774 return ret; 1775 1776 /* 1777 * NDCR ND_RUN bit should be cleared automatically at the end of each 1778 * operation but experience shows that the behavior is buggy when it 1779 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1780 */ 1781 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1782 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1783 1784 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1785 nfc->regs + NDCR); 1786 } 1787 1788 return 0; 1789 } 1790 1791 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1792 const struct nand_subop *subop) 1793 { 1794 struct marvell_nfc_op nfc_op; 1795 int ret; 1796 1797 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1798 1799 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1800 cond_delay(nfc_op.rdy_delay_ns); 1801 1802 return ret; 1803 } 1804 1805 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1806 const struct nand_subop *subop) 1807 { 1808 struct marvell_nfc_op nfc_op; 1809 int ret; 1810 1811 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1812 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1813 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1814 1815 ret = marvell_nfc_prepare_cmd(chip); 1816 if (ret) 1817 return ret; 1818 1819 marvell_nfc_send_cmd(chip, &nfc_op); 1820 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1821 "RDDREQ while reading ID"); 1822 if (ret) 1823 return ret; 1824 1825 cond_delay(nfc_op.cle_ale_delay_ns); 1826 1827 if (nfc_op.rdy_timeout_ms) { 1828 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1829 if (ret) 1830 return ret; 1831 } 1832 1833 cond_delay(nfc_op.rdy_delay_ns); 1834 1835 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1836 ret = marvell_nfc_wait_cmdd(chip); 1837 if (ret) 1838 return ret; 1839 1840 cond_delay(nfc_op.data_delay_ns); 1841 1842 return 0; 1843 } 1844 1845 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 1846 const struct nand_subop *subop) 1847 { 1848 struct marvell_nfc_op nfc_op; 1849 int ret; 1850 1851 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1852 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1853 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 1854 1855 ret = marvell_nfc_prepare_cmd(chip); 1856 if (ret) 1857 return ret; 1858 1859 marvell_nfc_send_cmd(chip, &nfc_op); 1860 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1861 "RDDREQ while reading status"); 1862 if (ret) 1863 return ret; 1864 1865 cond_delay(nfc_op.cle_ale_delay_ns); 1866 1867 if (nfc_op.rdy_timeout_ms) { 1868 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1869 if (ret) 1870 return ret; 1871 } 1872 1873 cond_delay(nfc_op.rdy_delay_ns); 1874 1875 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1876 ret = marvell_nfc_wait_cmdd(chip); 1877 if (ret) 1878 return ret; 1879 1880 cond_delay(nfc_op.data_delay_ns); 1881 1882 return 0; 1883 } 1884 1885 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 1886 const struct nand_subop *subop) 1887 { 1888 struct marvell_nfc_op nfc_op; 1889 int ret; 1890 1891 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1892 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 1893 1894 ret = marvell_nfc_prepare_cmd(chip); 1895 if (ret) 1896 return ret; 1897 1898 marvell_nfc_send_cmd(chip, &nfc_op); 1899 ret = marvell_nfc_wait_cmdd(chip); 1900 if (ret) 1901 return ret; 1902 1903 cond_delay(nfc_op.cle_ale_delay_ns); 1904 1905 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1906 if (ret) 1907 return ret; 1908 1909 cond_delay(nfc_op.rdy_delay_ns); 1910 1911 return 0; 1912 } 1913 1914 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 1915 const struct nand_subop *subop) 1916 { 1917 struct marvell_nfc_op nfc_op; 1918 int ret; 1919 1920 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1921 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 1922 1923 ret = marvell_nfc_prepare_cmd(chip); 1924 if (ret) 1925 return ret; 1926 1927 marvell_nfc_send_cmd(chip, &nfc_op); 1928 ret = marvell_nfc_wait_cmdd(chip); 1929 if (ret) 1930 return ret; 1931 1932 cond_delay(nfc_op.cle_ale_delay_ns); 1933 1934 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1935 if (ret) 1936 return ret; 1937 1938 cond_delay(nfc_op.rdy_delay_ns); 1939 1940 return 0; 1941 } 1942 1943 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 1944 /* Monolithic reads/writes */ 1945 NAND_OP_PARSER_PATTERN( 1946 marvell_nfc_monolithic_access_exec, 1947 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1948 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 1949 NAND_OP_PARSER_PAT_CMD_ELEM(true), 1950 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 1951 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 1952 NAND_OP_PARSER_PATTERN( 1953 marvell_nfc_monolithic_access_exec, 1954 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1955 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 1956 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 1957 NAND_OP_PARSER_PAT_CMD_ELEM(true), 1958 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 1959 /* Naked commands */ 1960 NAND_OP_PARSER_PATTERN( 1961 marvell_nfc_naked_access_exec, 1962 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 1963 NAND_OP_PARSER_PATTERN( 1964 marvell_nfc_naked_access_exec, 1965 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 1966 NAND_OP_PARSER_PATTERN( 1967 marvell_nfc_naked_access_exec, 1968 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 1969 NAND_OP_PARSER_PATTERN( 1970 marvell_nfc_naked_access_exec, 1971 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 1972 NAND_OP_PARSER_PATTERN( 1973 marvell_nfc_naked_waitrdy_exec, 1974 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 1975 ); 1976 1977 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 1978 /* Naked commands not supported, use a function for each pattern */ 1979 NAND_OP_PARSER_PATTERN( 1980 marvell_nfc_read_id_type_exec, 1981 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1982 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 1983 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 1984 NAND_OP_PARSER_PATTERN( 1985 marvell_nfc_erase_cmd_type_exec, 1986 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1987 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 1988 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1989 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 1990 NAND_OP_PARSER_PATTERN( 1991 marvell_nfc_read_status_exec, 1992 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1993 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 1994 NAND_OP_PARSER_PATTERN( 1995 marvell_nfc_reset_cmd_type_exec, 1996 NAND_OP_PARSER_PAT_CMD_ELEM(false), 1997 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 1998 NAND_OP_PARSER_PATTERN( 1999 marvell_nfc_naked_waitrdy_exec, 2000 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2001 ); 2002 2003 static int marvell_nfc_exec_op(struct nand_chip *chip, 2004 const struct nand_operation *op, 2005 bool check_only) 2006 { 2007 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2008 2009 if (nfc->caps->is_nfcv2) 2010 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2011 op, check_only); 2012 else 2013 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2014 op, check_only); 2015 } 2016 2017 /* 2018 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2019 * usable. 2020 */ 2021 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2022 struct mtd_oob_region *oobregion) 2023 { 2024 struct nand_chip *chip = mtd_to_nand(mtd); 2025 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2026 2027 if (section) 2028 return -ERANGE; 2029 2030 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2031 lt->last_ecc_bytes; 2032 oobregion->offset = mtd->oobsize - oobregion->length; 2033 2034 return 0; 2035 } 2036 2037 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2038 struct mtd_oob_region *oobregion) 2039 { 2040 struct nand_chip *chip = mtd_to_nand(mtd); 2041 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2042 2043 if (section) 2044 return -ERANGE; 2045 2046 /* 2047 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2048 * 4KB page / 4bit BCH combination. 2049 */ 2050 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2051 oobregion->offset = 6; 2052 else 2053 oobregion->offset = 2; 2054 2055 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2056 lt->last_spare_bytes - oobregion->offset; 2057 2058 return 0; 2059 } 2060 2061 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2062 .ecc = marvell_nand_ooblayout_ecc, 2063 .free = marvell_nand_ooblayout_free, 2064 }; 2065 2066 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, 2067 struct nand_ecc_ctrl *ecc) 2068 { 2069 struct nand_chip *chip = mtd_to_nand(mtd); 2070 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2071 const struct marvell_hw_ecc_layout *l; 2072 int i; 2073 2074 if (!nfc->caps->is_nfcv2 && 2075 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2076 dev_err(nfc->dev, 2077 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2078 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2079 return -ENOTSUPP; 2080 } 2081 2082 to_marvell_nand(chip)->layout = NULL; 2083 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2084 l = &marvell_nfc_layouts[i]; 2085 if (mtd->writesize == l->writesize && 2086 ecc->size == l->chunk && ecc->strength == l->strength) { 2087 to_marvell_nand(chip)->layout = l; 2088 break; 2089 } 2090 } 2091 2092 if (!to_marvell_nand(chip)->layout || 2093 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2094 dev_err(nfc->dev, 2095 "ECC strength %d at page size %d is not supported\n", 2096 ecc->strength, mtd->writesize); 2097 return -ENOTSUPP; 2098 } 2099 2100 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2101 ecc->steps = l->nchunks; 2102 ecc->size = l->data_bytes; 2103 2104 if (ecc->strength == 1) { 2105 chip->ecc.algo = NAND_ECC_HAMMING; 2106 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2107 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2108 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2109 ecc->read_oob = ecc->read_oob_raw; 2110 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2111 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2112 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2113 ecc->write_oob = ecc->write_oob_raw; 2114 } else { 2115 chip->ecc.algo = NAND_ECC_BCH; 2116 ecc->strength = 16; 2117 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2118 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2119 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2120 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2121 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2122 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2123 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2124 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2125 } 2126 2127 return 0; 2128 } 2129 2130 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2131 struct nand_ecc_ctrl *ecc) 2132 { 2133 struct nand_chip *chip = mtd_to_nand(mtd); 2134 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2135 int ret; 2136 2137 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) { 2138 if (chip->ecc_step_ds && chip->ecc_strength_ds) { 2139 ecc->size = chip->ecc_step_ds; 2140 ecc->strength = chip->ecc_strength_ds; 2141 } else { 2142 dev_info(nfc->dev, 2143 "No minimum ECC strength, using 1b/512B\n"); 2144 ecc->size = 512; 2145 ecc->strength = 1; 2146 } 2147 } 2148 2149 switch (ecc->mode) { 2150 case NAND_ECC_HW: 2151 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc); 2152 if (ret) 2153 return ret; 2154 break; 2155 case NAND_ECC_NONE: 2156 case NAND_ECC_SOFT: 2157 case NAND_ECC_ON_DIE: 2158 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2159 mtd->writesize != SZ_2K) { 2160 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2161 mtd->writesize); 2162 return -EINVAL; 2163 } 2164 break; 2165 default: 2166 return -EINVAL; 2167 } 2168 2169 return 0; 2170 } 2171 2172 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2173 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2174 2175 static struct nand_bbt_descr bbt_main_descr = { 2176 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2177 NAND_BBT_2BIT | NAND_BBT_VERSION, 2178 .offs = 8, 2179 .len = 6, 2180 .veroffs = 14, 2181 .maxblocks = 8, /* Last 8 blocks in each chip */ 2182 .pattern = bbt_pattern 2183 }; 2184 2185 static struct nand_bbt_descr bbt_mirror_descr = { 2186 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2187 NAND_BBT_2BIT | NAND_BBT_VERSION, 2188 .offs = 8, 2189 .len = 6, 2190 .veroffs = 14, 2191 .maxblocks = 8, /* Last 8 blocks in each chip */ 2192 .pattern = bbt_mirror_pattern 2193 }; 2194 2195 static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr, 2196 const struct nand_data_interface 2197 *conf) 2198 { 2199 struct nand_chip *chip = mtd_to_nand(mtd); 2200 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2201 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2202 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2203 const struct nand_sdr_timings *sdr; 2204 struct marvell_nfc_timings nfc_tmg; 2205 int read_delay; 2206 2207 sdr = nand_get_sdr_timings(conf); 2208 if (IS_ERR(sdr)) 2209 return PTR_ERR(sdr); 2210 2211 /* 2212 * SDR timings are given in pico-seconds while NFC timings must be 2213 * expressed in NAND controller clock cycles, which is half of the 2214 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2215 * This is not written anywhere in the datasheet but was observed 2216 * with an oscilloscope. 2217 * 2218 * NFC datasheet gives equations from which thoses calculations 2219 * are derived, they tend to be slightly more restrictives than the 2220 * given core timings and may improve the overall speed. 2221 */ 2222 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2223 nfc_tmg.tRH = nfc_tmg.tRP; 2224 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2225 nfc_tmg.tWH = nfc_tmg.tWP; 2226 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2227 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2228 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2229 /* 2230 * Read delay is the time of propagation from SoC pins to NFC internal 2231 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2232 * EDO mode, an additional delay of tRH must be taken into account so 2233 * the data is sampled on the falling edge instead of the rising edge. 2234 */ 2235 read_delay = sdr->tRC_min >= 30000 ? 2236 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2237 2238 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2239 /* 2240 * tWHR and tRHW are supposed to be read to write delays (and vice 2241 * versa) but in some cases, ie. when doing a change column, they must 2242 * be greater than that to be sure tCCS delay is respected. 2243 */ 2244 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2245 period_ns) - 2, 2246 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2247 period_ns); 2248 2249 /* 2250 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2251 * NFCv1: No WAIT_MODE, tR must be maximal. 2252 */ 2253 if (nfc->caps->is_nfcv2) { 2254 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2255 } else { 2256 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2257 period_ns); 2258 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2259 nfc_tmg.tR = nfc_tmg.tCH - 3; 2260 else 2261 nfc_tmg.tR = 0; 2262 } 2263 2264 if (chipnr < 0) 2265 return 0; 2266 2267 marvell_nand->ndtr0 = 2268 NDTR0_TRP(nfc_tmg.tRP) | 2269 NDTR0_TRH(nfc_tmg.tRH) | 2270 NDTR0_ETRP(nfc_tmg.tRP) | 2271 NDTR0_TWP(nfc_tmg.tWP) | 2272 NDTR0_TWH(nfc_tmg.tWH) | 2273 NDTR0_TCS(nfc_tmg.tCS) | 2274 NDTR0_TCH(nfc_tmg.tCH); 2275 2276 marvell_nand->ndtr1 = 2277 NDTR1_TAR(nfc_tmg.tAR) | 2278 NDTR1_TWHR(nfc_tmg.tWHR) | 2279 NDTR1_TR(nfc_tmg.tR); 2280 2281 if (nfc->caps->is_nfcv2) { 2282 marvell_nand->ndtr0 |= 2283 NDTR0_RD_CNT_DEL(read_delay) | 2284 NDTR0_SELCNTR | 2285 NDTR0_TADL(nfc_tmg.tADL); 2286 2287 marvell_nand->ndtr1 |= 2288 NDTR1_TRHW(nfc_tmg.tRHW) | 2289 NDTR1_WAIT_MODE; 2290 } 2291 2292 return 0; 2293 } 2294 2295 static int marvell_nand_attach_chip(struct nand_chip *chip) 2296 { 2297 struct mtd_info *mtd = nand_to_mtd(chip); 2298 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2299 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2300 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2301 int ret; 2302 2303 if (pdata && pdata->flash_bbt) 2304 chip->bbt_options |= NAND_BBT_USE_FLASH; 2305 2306 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2307 /* 2308 * We'll use a bad block table stored in-flash and don't 2309 * allow writing the bad block marker to the flash. 2310 */ 2311 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2312 chip->bbt_td = &bbt_main_descr; 2313 chip->bbt_md = &bbt_mirror_descr; 2314 } 2315 2316 /* Save the chip-specific fields of NDCR */ 2317 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2318 if (chip->options & NAND_BUSWIDTH_16) 2319 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2320 2321 /* 2322 * On small page NANDs, only one cycle is needed to pass the 2323 * column address. 2324 */ 2325 if (mtd->writesize <= 512) { 2326 marvell_nand->addr_cyc = 1; 2327 } else { 2328 marvell_nand->addr_cyc = 2; 2329 marvell_nand->ndcr |= NDCR_RA_START; 2330 } 2331 2332 /* 2333 * Now add the number of cycles needed to pass the row 2334 * address. 2335 * 2336 * Addressing a chip using CS 2 or 3 should also need the third row 2337 * cycle but due to inconsistance in the documentation and lack of 2338 * hardware to test this situation, this case is not supported. 2339 */ 2340 if (chip->options & NAND_ROW_ADDR_3) 2341 marvell_nand->addr_cyc += 3; 2342 else 2343 marvell_nand->addr_cyc += 2; 2344 2345 if (pdata) { 2346 chip->ecc.size = pdata->ecc_step_size; 2347 chip->ecc.strength = pdata->ecc_strength; 2348 } 2349 2350 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2351 if (ret) { 2352 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2353 return ret; 2354 } 2355 2356 if (chip->ecc.mode == NAND_ECC_HW) { 2357 /* 2358 * Subpage write not available with hardware ECC, prohibit also 2359 * subpage read as in userspace subpage access would still be 2360 * allowed and subpage write, if used, would lead to numerous 2361 * uncorrectable ECC errors. 2362 */ 2363 chip->options |= NAND_NO_SUBPAGE_WRITE; 2364 } 2365 2366 if (pdata || nfc->caps->legacy_of_bindings) { 2367 /* 2368 * We keep the MTD name unchanged to avoid breaking platforms 2369 * where the MTD cmdline parser is used and the bootloader 2370 * has not been updated to use the new naming scheme. 2371 */ 2372 mtd->name = "pxa3xx_nand-0"; 2373 } else if (!mtd->name) { 2374 /* 2375 * If the new bindings are used and the bootloader has not been 2376 * updated to pass a new mtdparts parameter on the cmdline, you 2377 * should define the following property in your NAND node, ie: 2378 * 2379 * label = "main-storage"; 2380 * 2381 * This way, mtd->name will be set by the core when 2382 * nand_set_flash_node() is called. 2383 */ 2384 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2385 "%s:nand.%d", dev_name(nfc->dev), 2386 marvell_nand->sels[0].cs); 2387 if (!mtd->name) { 2388 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2389 return -ENOMEM; 2390 } 2391 } 2392 2393 return 0; 2394 } 2395 2396 static const struct nand_controller_ops marvell_nand_controller_ops = { 2397 .attach_chip = marvell_nand_attach_chip, 2398 }; 2399 2400 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2401 struct device_node *np) 2402 { 2403 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2404 struct marvell_nand_chip *marvell_nand; 2405 struct mtd_info *mtd; 2406 struct nand_chip *chip; 2407 int nsels, ret, i; 2408 u32 cs, rb; 2409 2410 /* 2411 * The legacy "num-cs" property indicates the number of CS on the only 2412 * chip connected to the controller (legacy bindings does not support 2413 * more than one chip). The CS and RB pins are always the #0. 2414 * 2415 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2416 * properties must be filled. For each chip, expressed as a subnode, 2417 * "reg" points to the CS lines and "nand-rb" to the RB line. 2418 */ 2419 if (pdata || nfc->caps->legacy_of_bindings) { 2420 nsels = 1; 2421 } else { 2422 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2423 if (nsels <= 0) { 2424 dev_err(dev, "missing/invalid reg property\n"); 2425 return -EINVAL; 2426 } 2427 } 2428 2429 /* Alloc the nand chip structure */ 2430 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) + 2431 (nsels * 2432 sizeof(struct marvell_nand_chip_sel)), 2433 GFP_KERNEL); 2434 if (!marvell_nand) { 2435 dev_err(dev, "could not allocate chip structure\n"); 2436 return -ENOMEM; 2437 } 2438 2439 marvell_nand->nsels = nsels; 2440 marvell_nand->selected_die = -1; 2441 2442 for (i = 0; i < nsels; i++) { 2443 if (pdata || nfc->caps->legacy_of_bindings) { 2444 /* 2445 * Legacy bindings use the CS lines in natural 2446 * order (0, 1, ...) 2447 */ 2448 cs = i; 2449 } else { 2450 /* Retrieve CS id */ 2451 ret = of_property_read_u32_index(np, "reg", i, &cs); 2452 if (ret) { 2453 dev_err(dev, "could not retrieve reg property: %d\n", 2454 ret); 2455 return ret; 2456 } 2457 } 2458 2459 if (cs >= nfc->caps->max_cs_nb) { 2460 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2461 cs, nfc->caps->max_cs_nb); 2462 return -EINVAL; 2463 } 2464 2465 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2466 dev_err(dev, "CS %d already assigned\n", cs); 2467 return -EINVAL; 2468 } 2469 2470 /* 2471 * The cs variable represents the chip select id, which must be 2472 * converted in bit fields for NDCB0 and NDCB2 to select the 2473 * right chip. Unfortunately, due to a lack of information on 2474 * the subject and incoherent documentation, the user should not 2475 * use CS1 and CS3 at all as asserting them is not supported in 2476 * a reliable way (due to multiplexing inside ADDR5 field). 2477 */ 2478 marvell_nand->sels[i].cs = cs; 2479 switch (cs) { 2480 case 0: 2481 case 2: 2482 marvell_nand->sels[i].ndcb0_csel = 0; 2483 break; 2484 case 1: 2485 case 3: 2486 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2487 break; 2488 default: 2489 return -EINVAL; 2490 } 2491 2492 /* Retrieve RB id */ 2493 if (pdata || nfc->caps->legacy_of_bindings) { 2494 /* Legacy bindings always use RB #0 */ 2495 rb = 0; 2496 } else { 2497 ret = of_property_read_u32_index(np, "nand-rb", i, 2498 &rb); 2499 if (ret) { 2500 dev_err(dev, 2501 "could not retrieve RB property: %d\n", 2502 ret); 2503 return ret; 2504 } 2505 } 2506 2507 if (rb >= nfc->caps->max_rb_nb) { 2508 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2509 rb, nfc->caps->max_rb_nb); 2510 return -EINVAL; 2511 } 2512 2513 marvell_nand->sels[i].rb = rb; 2514 } 2515 2516 chip = &marvell_nand->chip; 2517 chip->controller = &nfc->controller; 2518 nand_set_flash_node(chip, np); 2519 2520 chip->exec_op = marvell_nfc_exec_op; 2521 chip->select_chip = marvell_nfc_select_chip; 2522 if (!of_property_read_bool(np, "marvell,nand-keep-config")) 2523 chip->setup_data_interface = marvell_nfc_setup_data_interface; 2524 2525 mtd = nand_to_mtd(chip); 2526 mtd->dev.parent = dev; 2527 2528 /* 2529 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2530 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2531 */ 2532 chip->ecc.mode = NAND_ECC_HW; 2533 2534 /* 2535 * Save a reference value for timing registers before 2536 * ->setup_data_interface() is called. 2537 */ 2538 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2539 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2540 2541 chip->options |= NAND_BUSWIDTH_AUTO; 2542 2543 ret = nand_scan(mtd, marvell_nand->nsels); 2544 if (ret) { 2545 dev_err(dev, "could not scan the nand chip\n"); 2546 return ret; 2547 } 2548 2549 if (pdata) 2550 /* Legacy bindings support only one chip */ 2551 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2552 else 2553 ret = mtd_device_register(mtd, NULL, 0); 2554 if (ret) { 2555 dev_err(dev, "failed to register mtd device: %d\n", ret); 2556 nand_release(mtd); 2557 return ret; 2558 } 2559 2560 list_add_tail(&marvell_nand->node, &nfc->chips); 2561 2562 return 0; 2563 } 2564 2565 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2566 { 2567 struct device_node *np = dev->of_node; 2568 struct device_node *nand_np; 2569 int max_cs = nfc->caps->max_cs_nb; 2570 int nchips; 2571 int ret; 2572 2573 if (!np) 2574 nchips = 1; 2575 else 2576 nchips = of_get_child_count(np); 2577 2578 if (nchips > max_cs) { 2579 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2580 max_cs); 2581 return -EINVAL; 2582 } 2583 2584 /* 2585 * Legacy bindings do not use child nodes to exhibit NAND chip 2586 * properties and layout. Instead, NAND properties are mixed with the 2587 * controller ones, and partitions are defined as direct subnodes of the 2588 * NAND controller node. 2589 */ 2590 if (nfc->caps->legacy_of_bindings) { 2591 ret = marvell_nand_chip_init(dev, nfc, np); 2592 return ret; 2593 } 2594 2595 for_each_child_of_node(np, nand_np) { 2596 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2597 if (ret) { 2598 of_node_put(nand_np); 2599 return ret; 2600 } 2601 } 2602 2603 return 0; 2604 } 2605 2606 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2607 { 2608 struct marvell_nand_chip *entry, *temp; 2609 2610 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2611 nand_release(nand_to_mtd(&entry->chip)); 2612 list_del(&entry->node); 2613 } 2614 } 2615 2616 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2617 { 2618 struct platform_device *pdev = container_of(nfc->dev, 2619 struct platform_device, 2620 dev); 2621 struct dma_slave_config config = {}; 2622 struct resource *r; 2623 int ret; 2624 2625 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2626 dev_warn(nfc->dev, 2627 "DMA not enabled in configuration\n"); 2628 return -ENOTSUPP; 2629 } 2630 2631 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2632 if (ret) 2633 return ret; 2634 2635 nfc->dma_chan = dma_request_slave_channel(nfc->dev, "data"); 2636 if (!nfc->dma_chan) { 2637 dev_err(nfc->dev, 2638 "Unable to request data DMA channel\n"); 2639 return -ENODEV; 2640 } 2641 2642 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2643 if (!r) 2644 return -ENXIO; 2645 2646 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2647 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2648 config.src_addr = r->start + NDDB; 2649 config.dst_addr = r->start + NDDB; 2650 config.src_maxburst = 32; 2651 config.dst_maxburst = 32; 2652 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2653 if (ret < 0) { 2654 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2655 return ret; 2656 } 2657 2658 /* 2659 * DMA must act on length multiple of 32 and this length may be 2660 * bigger than the destination buffer. Use this buffer instead 2661 * for DMA transfers and then copy the desired amount of data to 2662 * the provided buffer. 2663 */ 2664 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2665 if (!nfc->dma_buf) 2666 return -ENOMEM; 2667 2668 nfc->use_dma = true; 2669 2670 return 0; 2671 } 2672 2673 static void marvell_nfc_reset(struct marvell_nfc *nfc) 2674 { 2675 /* 2676 * ECC operations and interruptions are only enabled when specifically 2677 * needed. ECC shall not be activated in the early stages (fails probe). 2678 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2679 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2680 * offset in the read page and this will fail the protection. 2681 */ 2682 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2683 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2684 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2685 writel_relaxed(0, nfc->regs + NDECCCTRL); 2686 } 2687 2688 static int marvell_nfc_init(struct marvell_nfc *nfc) 2689 { 2690 struct device_node *np = nfc->dev->of_node; 2691 2692 /* 2693 * Some SoCs like A7k/A8k need to enable manually the NAND 2694 * controller, gated clocks and reset bits to avoid being bootloader 2695 * dependent. This is done through the use of the System Functions 2696 * registers. 2697 */ 2698 if (nfc->caps->need_system_controller) { 2699 struct regmap *sysctrl_base = 2700 syscon_regmap_lookup_by_phandle(np, 2701 "marvell,system-controller"); 2702 u32 reg; 2703 2704 if (IS_ERR(sysctrl_base)) 2705 return PTR_ERR(sysctrl_base); 2706 2707 reg = GENCONF_SOC_DEVICE_MUX_NFC_EN | 2708 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2709 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2710 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN; 2711 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg); 2712 2713 regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, ®); 2714 reg |= GENCONF_CLK_GATING_CTRL_ND_GATE; 2715 regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg); 2716 2717 regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, ®); 2718 reg |= GENCONF_ND_CLK_CTRL_EN; 2719 regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg); 2720 } 2721 2722 /* Configure the DMA if appropriate */ 2723 if (!nfc->caps->is_nfcv2) 2724 marvell_nfc_init_dma(nfc); 2725 2726 marvell_nfc_reset(nfc); 2727 2728 return 0; 2729 } 2730 2731 static int marvell_nfc_probe(struct platform_device *pdev) 2732 { 2733 struct device *dev = &pdev->dev; 2734 struct resource *r; 2735 struct marvell_nfc *nfc; 2736 int ret; 2737 int irq; 2738 2739 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2740 GFP_KERNEL); 2741 if (!nfc) 2742 return -ENOMEM; 2743 2744 nfc->dev = dev; 2745 nand_controller_init(&nfc->controller); 2746 nfc->controller.ops = &marvell_nand_controller_ops; 2747 INIT_LIST_HEAD(&nfc->chips); 2748 2749 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2750 nfc->regs = devm_ioremap_resource(dev, r); 2751 if (IS_ERR(nfc->regs)) 2752 return PTR_ERR(nfc->regs); 2753 2754 irq = platform_get_irq(pdev, 0); 2755 if (irq < 0) { 2756 dev_err(dev, "failed to retrieve irq\n"); 2757 return irq; 2758 } 2759 2760 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2761 2762 /* Managed the legacy case (when the first clock was not named) */ 2763 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2764 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2765 2766 if (IS_ERR(nfc->core_clk)) 2767 return PTR_ERR(nfc->core_clk); 2768 2769 ret = clk_prepare_enable(nfc->core_clk); 2770 if (ret) 2771 return ret; 2772 2773 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2774 if (IS_ERR(nfc->reg_clk)) { 2775 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2776 ret = PTR_ERR(nfc->reg_clk); 2777 goto unprepare_core_clk; 2778 } 2779 2780 nfc->reg_clk = NULL; 2781 } 2782 2783 ret = clk_prepare_enable(nfc->reg_clk); 2784 if (ret) 2785 goto unprepare_core_clk; 2786 2787 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2788 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2789 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2790 0, "marvell-nfc", nfc); 2791 if (ret) 2792 goto unprepare_reg_clk; 2793 2794 /* Get NAND controller capabilities */ 2795 if (pdev->id_entry) 2796 nfc->caps = (void *)pdev->id_entry->driver_data; 2797 else 2798 nfc->caps = of_device_get_match_data(&pdev->dev); 2799 2800 if (!nfc->caps) { 2801 dev_err(dev, "Could not retrieve NFC caps\n"); 2802 ret = -EINVAL; 2803 goto unprepare_reg_clk; 2804 } 2805 2806 /* Init the controller and then probe the chips */ 2807 ret = marvell_nfc_init(nfc); 2808 if (ret) 2809 goto unprepare_reg_clk; 2810 2811 platform_set_drvdata(pdev, nfc); 2812 2813 ret = marvell_nand_chips_init(dev, nfc); 2814 if (ret) 2815 goto unprepare_reg_clk; 2816 2817 return 0; 2818 2819 unprepare_reg_clk: 2820 clk_disable_unprepare(nfc->reg_clk); 2821 unprepare_core_clk: 2822 clk_disable_unprepare(nfc->core_clk); 2823 2824 return ret; 2825 } 2826 2827 static int marvell_nfc_remove(struct platform_device *pdev) 2828 { 2829 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 2830 2831 marvell_nand_chips_cleanup(nfc); 2832 2833 if (nfc->use_dma) { 2834 dmaengine_terminate_all(nfc->dma_chan); 2835 dma_release_channel(nfc->dma_chan); 2836 } 2837 2838 clk_disable_unprepare(nfc->reg_clk); 2839 clk_disable_unprepare(nfc->core_clk); 2840 2841 return 0; 2842 } 2843 2844 static int __maybe_unused marvell_nfc_suspend(struct device *dev) 2845 { 2846 struct marvell_nfc *nfc = dev_get_drvdata(dev); 2847 struct marvell_nand_chip *chip; 2848 2849 list_for_each_entry(chip, &nfc->chips, node) 2850 marvell_nfc_wait_ndrun(&chip->chip); 2851 2852 clk_disable_unprepare(nfc->reg_clk); 2853 clk_disable_unprepare(nfc->core_clk); 2854 2855 return 0; 2856 } 2857 2858 static int __maybe_unused marvell_nfc_resume(struct device *dev) 2859 { 2860 struct marvell_nfc *nfc = dev_get_drvdata(dev); 2861 int ret; 2862 2863 ret = clk_prepare_enable(nfc->core_clk); 2864 if (ret < 0) 2865 return ret; 2866 2867 ret = clk_prepare_enable(nfc->reg_clk); 2868 if (ret < 0) 2869 return ret; 2870 2871 /* 2872 * Reset nfc->selected_chip so the next command will cause the timing 2873 * registers to be restored in marvell_nfc_select_chip(). 2874 */ 2875 nfc->selected_chip = NULL; 2876 2877 /* Reset registers that have lost their contents */ 2878 marvell_nfc_reset(nfc); 2879 2880 return 0; 2881 } 2882 2883 static const struct dev_pm_ops marvell_nfc_pm_ops = { 2884 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 2885 }; 2886 2887 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 2888 .max_cs_nb = 4, 2889 .max_rb_nb = 2, 2890 .need_system_controller = true, 2891 .is_nfcv2 = true, 2892 }; 2893 2894 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 2895 .max_cs_nb = 4, 2896 .max_rb_nb = 2, 2897 .is_nfcv2 = true, 2898 }; 2899 2900 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 2901 .max_cs_nb = 2, 2902 .max_rb_nb = 1, 2903 .use_dma = true, 2904 }; 2905 2906 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 2907 .max_cs_nb = 4, 2908 .max_rb_nb = 2, 2909 .need_system_controller = true, 2910 .legacy_of_bindings = true, 2911 .is_nfcv2 = true, 2912 }; 2913 2914 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 2915 .max_cs_nb = 4, 2916 .max_rb_nb = 2, 2917 .legacy_of_bindings = true, 2918 .is_nfcv2 = true, 2919 }; 2920 2921 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 2922 .max_cs_nb = 2, 2923 .max_rb_nb = 1, 2924 .legacy_of_bindings = true, 2925 .use_dma = true, 2926 }; 2927 2928 static const struct platform_device_id marvell_nfc_platform_ids[] = { 2929 { 2930 .name = "pxa3xx-nand", 2931 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 2932 }, 2933 { /* sentinel */ }, 2934 }; 2935 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 2936 2937 static const struct of_device_id marvell_nfc_of_ids[] = { 2938 { 2939 .compatible = "marvell,armada-8k-nand-controller", 2940 .data = &marvell_armada_8k_nfc_caps, 2941 }, 2942 { 2943 .compatible = "marvell,armada370-nand-controller", 2944 .data = &marvell_armada370_nfc_caps, 2945 }, 2946 { 2947 .compatible = "marvell,pxa3xx-nand-controller", 2948 .data = &marvell_pxa3xx_nfc_caps, 2949 }, 2950 /* Support for old/deprecated bindings: */ 2951 { 2952 .compatible = "marvell,armada-8k-nand", 2953 .data = &marvell_armada_8k_nfc_legacy_caps, 2954 }, 2955 { 2956 .compatible = "marvell,armada370-nand", 2957 .data = &marvell_armada370_nfc_legacy_caps, 2958 }, 2959 { 2960 .compatible = "marvell,pxa3xx-nand", 2961 .data = &marvell_pxa3xx_nfc_legacy_caps, 2962 }, 2963 { /* sentinel */ }, 2964 }; 2965 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 2966 2967 static struct platform_driver marvell_nfc_driver = { 2968 .driver = { 2969 .name = "marvell-nfc", 2970 .of_match_table = marvell_nfc_of_ids, 2971 .pm = &marvell_nfc_pm_ops, 2972 }, 2973 .id_table = marvell_nfc_platform_ids, 2974 .probe = marvell_nfc_probe, 2975 .remove = marvell_nfc_remove, 2976 }; 2977 module_platform_driver(marvell_nfc_driver); 2978 2979 MODULE_LICENSE("GPL"); 2980 MODULE_DESCRIPTION("Marvell NAND controller driver"); 2981