1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 * 9 * This NAND controller driver handles two versions of the hardware, 10 * one is called NFCv1 and is available on PXA SoCs and the other is 11 * called NFCv2 and is available on Armada SoCs. 12 * 13 * The main visible difference is that NFCv1 only has Hamming ECC 14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA 15 * is not used with NFCv2. 16 * 17 * The ECC layouts are depicted in details in Marvell AN-379, but here 18 * is a brief description. 19 * 20 * When using Hamming, the data is split in 512B chunks (either 1, 2 21 * or 4) and each chunk will have its own ECC "digest" of 6B at the 22 * beginning of the OOB area and eventually the remaining free OOB 23 * bytes (also called "spare" bytes in the driver). This engine 24 * corrects up to 1 bit per chunk and detects reliably an error if 25 * there are at most 2 bitflips. Here is the page layout used by the 26 * controller when Hamming is chosen: 27 * 28 * +-------------------------------------------------------------+ 29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | 30 * +-------------------------------------------------------------+ 31 * 32 * When using the BCH engine, there are N identical (data + free OOB + 33 * ECC) sections and potentially an extra one to deal with 34 * configurations where the chosen (data + free OOB + ECC) sizes do 35 * not align with the page (data + OOB) size. ECC bytes are always 36 * 30B per ECC chunk. Here is the page layout used by the controller 37 * when BCH is chosen: 38 * 39 * +----------------------------------------- 40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ... 41 * +----------------------------------------- 42 * 43 * ------------------------------------------- 44 * ... | Data N | Free OOB bytes N | ECC N | 45 * ------------------------------------------- 46 * 47 * --------------------------------------------+ 48 * Last Data | Last Free OOB bytes | Last ECC | 49 * --------------------------------------------+ 50 * 51 * In both cases, the layout seen by the user is always: all data 52 * first, then all free OOB bytes and finally all ECC bytes. With BCH, 53 * ECC bytes are 30B long and are padded with 0xFF to align on 32 54 * bytes. 55 * 56 * The controller has certain limitations that are handled by the 57 * driver: 58 * - It can only read 2k at a time. To overcome this limitation, the 59 * driver issues data cycles on the bus, without issuing new 60 * CMD + ADDR cycles. The Marvell term is "naked" operations. 61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 62 * bits. What can be tuned is the ECC block size as long as it 63 * stays between 512B and 2kiB. It's usually chosen based on the 64 * chip ECC requirements. For instance, using 2kiB ECC chunks 65 * provides 4b/512B correctability. 66 * - The controller will always treat data bytes, free OOB bytes 67 * and ECC bytes in that order, no matter what the real layout is 68 * (which is usually all data then all OOB bytes). The 69 * marvell_nfc_layouts array below contains the currently 70 * supported layouts. 71 * - Because of these weird layouts, the Bad Block Markers can be 72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM 73 * option must be set to prevent scanning/writing bad block 74 * markers. 75 */ 76 77 #include <linux/module.h> 78 #include <linux/clk.h> 79 #include <linux/mtd/rawnand.h> 80 #include <linux/of_platform.h> 81 #include <linux/iopoll.h> 82 #include <linux/interrupt.h> 83 #include <linux/slab.h> 84 #include <linux/mfd/syscon.h> 85 #include <linux/regmap.h> 86 #include <asm/unaligned.h> 87 88 #include <linux/dmaengine.h> 89 #include <linux/dma-mapping.h> 90 #include <linux/dma/pxa-dma.h> 91 #include <linux/platform_data/mtd-nand-pxa3xx.h> 92 93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 94 #define FIFO_DEPTH 8 95 #define FIFO_REP(x) (x / sizeof(u32)) 96 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 97 /* NFC does not support transfers of larger chunks at a time */ 98 #define MAX_CHUNK_SIZE 2112 99 /* NFCv1 cannot read more that 7 bytes of ID */ 100 #define NFCV1_READID_LEN 7 101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 102 #define POLL_PERIOD 0 103 #define POLL_TIMEOUT 100000 104 /* Interrupt maximum wait period in ms */ 105 #define IRQ_TIMEOUT 1000 106 /* Latency in clock cycles between SoC pins and NFC logic */ 107 #define MIN_RD_DEL_CNT 3 108 /* Maximum number of contiguous address cycles */ 109 #define MAX_ADDRESS_CYC_NFCV1 5 110 #define MAX_ADDRESS_CYC_NFCV2 7 111 /* System control registers/bits to enable the NAND controller on some SoCs */ 112 #define GENCONF_SOC_DEVICE_MUX 0x208 113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 117 #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27) 118 #define GENCONF_CLK_GATING_CTRL 0x220 119 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 120 #define GENCONF_ND_CLK_CTRL 0x700 121 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 122 123 /* NAND controller data flash control register */ 124 #define NDCR 0x00 125 #define NDCR_ALL_INT GENMASK(11, 0) 126 #define NDCR_CS1_CMDDM BIT(7) 127 #define NDCR_CS0_CMDDM BIT(8) 128 #define NDCR_RDYM BIT(11) 129 #define NDCR_ND_ARB_EN BIT(12) 130 #define NDCR_RA_START BIT(15) 131 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 132 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 133 #define NDCR_DWIDTH_M BIT(26) 134 #define NDCR_DWIDTH_C BIT(27) 135 #define NDCR_ND_RUN BIT(28) 136 #define NDCR_DMA_EN BIT(29) 137 #define NDCR_ECC_EN BIT(30) 138 #define NDCR_SPARE_EN BIT(31) 139 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 140 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 141 142 /* NAND interface timing parameter 0 register */ 143 #define NDTR0 0x04 144 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 145 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 146 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 147 #define NDTR0_SEL_NRE_EDGE BIT(7) 148 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 149 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 150 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 151 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 152 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 153 #define NDTR0_SELCNTR BIT(26) 154 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 155 156 /* NAND interface timing parameter 1 register */ 157 #define NDTR1 0x0C 158 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 159 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 160 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 161 #define NDTR1_PRESCALE BIT(14) 162 #define NDTR1_WAIT_MODE BIT(15) 163 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 164 165 /* NAND controller status register */ 166 #define NDSR 0x14 167 #define NDSR_WRCMDREQ BIT(0) 168 #define NDSR_RDDREQ BIT(1) 169 #define NDSR_WRDREQ BIT(2) 170 #define NDSR_CORERR BIT(3) 171 #define NDSR_UNCERR BIT(4) 172 #define NDSR_CMDD(cs) BIT(8 - cs) 173 #define NDSR_RDY(rb) BIT(11 + rb) 174 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 175 176 /* NAND ECC control register */ 177 #define NDECCCTRL 0x28 178 #define NDECCCTRL_BCH_EN BIT(0) 179 180 /* NAND controller data buffer register */ 181 #define NDDB 0x40 182 183 /* NAND controller command buffer 0 register */ 184 #define NDCB0 0x48 185 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 186 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 187 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 188 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 189 #define NDCB0_DBC BIT(19) 190 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 191 #define NDCB0_CSEL BIT(24) 192 #define NDCB0_RDY_BYP BIT(27) 193 #define NDCB0_LEN_OVRD BIT(28) 194 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 195 196 /* NAND controller command buffer 1 register */ 197 #define NDCB1 0x4C 198 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 199 #define NDCB1_ADDRS_PAGE(x) (x << 16) 200 201 /* NAND controller command buffer 2 register */ 202 #define NDCB2 0x50 203 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 204 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 205 206 /* NAND controller command buffer 3 register */ 207 #define NDCB3 0x54 208 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 209 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 210 211 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 212 #define TYPE_READ 0 213 #define TYPE_WRITE 1 214 #define TYPE_ERASE 2 215 #define TYPE_READ_ID 3 216 #define TYPE_STATUS 4 217 #define TYPE_RESET 5 218 #define TYPE_NAKED_CMD 6 219 #define TYPE_NAKED_ADDR 7 220 #define TYPE_MASK 7 221 #define XTYPE_MONOLITHIC_RW 0 222 #define XTYPE_LAST_NAKED_RW 1 223 #define XTYPE_FINAL_COMMAND 3 224 #define XTYPE_READ 4 225 #define XTYPE_WRITE_DISPATCH 4 226 #define XTYPE_NAKED_RW 5 227 #define XTYPE_COMMAND_DISPATCH 6 228 #define XTYPE_MASK 7 229 230 /** 231 * struct marvell_hw_ecc_layout - layout of Marvell ECC 232 * 233 * Marvell ECC engine works differently than the others, in order to limit the 234 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 235 * per subpage, and depending on a the desired strength needed by the NAND chip, 236 * a particular layout mixing data/spare/ecc is defined, with a possible last 237 * chunk smaller that the others. 238 * 239 * @writesize: Full page size on which the layout applies 240 * @chunk: Desired ECC chunk size on which the layout applies 241 * @strength: Desired ECC strength (per chunk size bytes) on which the 242 * layout applies 243 * @nchunks: Total number of chunks 244 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 245 * repetitions of the pattern: 246 * (data_bytes + spare_bytes + ecc_bytes). 247 * @data_bytes: Number of data bytes per chunk 248 * @spare_bytes: Number of spare bytes per chunk 249 * @ecc_bytes: Number of ecc bytes per chunk 250 * @last_data_bytes: Number of data bytes in the last chunk 251 * @last_spare_bytes: Number of spare bytes in the last chunk 252 * @last_ecc_bytes: Number of ecc bytes in the last chunk 253 */ 254 struct marvell_hw_ecc_layout { 255 /* Constraints */ 256 int writesize; 257 int chunk; 258 int strength; 259 /* Corresponding layout */ 260 int nchunks; 261 int full_chunk_cnt; 262 int data_bytes; 263 int spare_bytes; 264 int ecc_bytes; 265 int last_data_bytes; 266 int last_spare_bytes; 267 int last_ecc_bytes; 268 }; 269 270 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 271 { \ 272 .writesize = ws, \ 273 .chunk = dc, \ 274 .strength = ds, \ 275 .nchunks = nc, \ 276 .full_chunk_cnt = fcc, \ 277 .data_bytes = db, \ 278 .spare_bytes = sb, \ 279 .ecc_bytes = eb, \ 280 .last_data_bytes = ldb, \ 281 .last_spare_bytes = lsb, \ 282 .last_ecc_bytes = leb, \ 283 } 284 285 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 286 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 287 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 288 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 289 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 290 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), 291 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,64, 30), 292 MARVELL_LAYOUT( 2048, 512, 12, 3, 2, 704, 0, 30,640, 0, 30), 293 MARVELL_LAYOUT( 2048, 512, 16, 5, 4, 512, 0, 30, 0, 32, 30), 294 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 295 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 296 MARVELL_LAYOUT( 4096, 512, 12, 6, 5, 704, 0, 30,576, 32, 30), 297 MARVELL_LAYOUT( 4096, 512, 16, 9, 8, 512, 0, 30, 0, 32, 30), 298 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), 299 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), 300 MARVELL_LAYOUT( 8192, 512, 12, 12, 11, 704, 0, 30,448, 64, 30), 301 MARVELL_LAYOUT( 8192, 512, 16, 17, 16, 512, 0, 30, 0, 32, 30), 302 }; 303 304 /** 305 * struct marvell_nand_chip_sel - CS line description 306 * 307 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 308 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 309 * The datasheet describes the logic with an error: ADDR5 field is once 310 * declared at the beginning of NDCB2, and another time at its end. Because the 311 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 312 * to use the last bit of this field instead of the first ones. 313 * 314 * @cs: Wanted CE lane. 315 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 316 * selecting the wanted CE lane. This is set once when 317 * the Device Tree is probed. 318 * @rb: Ready/Busy pin for the flash chip 319 */ 320 struct marvell_nand_chip_sel { 321 unsigned int cs; 322 u32 ndcb0_csel; 323 unsigned int rb; 324 }; 325 326 /** 327 * struct marvell_nand_chip - stores NAND chip device related information 328 * 329 * @chip: Base NAND chip structure 330 * @node: Used to store NAND chips into a list 331 * @layout: NAND layout when using hardware ECC 332 * @ndcr: Controller register value for this NAND chip 333 * @ndtr0: Timing registers 0 value for this NAND chip 334 * @ndtr1: Timing registers 1 value for this NAND chip 335 * @addr_cyc: Amount of cycles needed to pass column address 336 * @selected_die: Current active CS 337 * @nsels: Number of CS lines required by the NAND chip 338 * @sels: Array of CS lines descriptions 339 */ 340 struct marvell_nand_chip { 341 struct nand_chip chip; 342 struct list_head node; 343 const struct marvell_hw_ecc_layout *layout; 344 u32 ndcr; 345 u32 ndtr0; 346 u32 ndtr1; 347 int addr_cyc; 348 int selected_die; 349 unsigned int nsels; 350 struct marvell_nand_chip_sel sels[]; 351 }; 352 353 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 354 { 355 return container_of(chip, struct marvell_nand_chip, chip); 356 } 357 358 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 359 *nand) 360 { 361 return &nand->sels[nand->selected_die]; 362 } 363 364 /** 365 * struct marvell_nfc_caps - NAND controller capabilities for distinction 366 * between compatible strings 367 * 368 * @max_cs_nb: Number of Chip Select lines available 369 * @max_rb_nb: Number of Ready/Busy lines available 370 * @need_system_controller: Indicates if the SoC needs to have access to the 371 * system controller (ie. to enable the NAND controller) 372 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 373 * fashion way 374 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 375 * BCH error detection and correction algorithm, 376 * NDCB3 register has been added 377 * @use_dma: Use dma for data transfers 378 */ 379 struct marvell_nfc_caps { 380 unsigned int max_cs_nb; 381 unsigned int max_rb_nb; 382 bool need_system_controller; 383 bool legacy_of_bindings; 384 bool is_nfcv2; 385 bool use_dma; 386 }; 387 388 /** 389 * struct marvell_nfc - stores Marvell NAND controller information 390 * 391 * @controller: Base controller structure 392 * @dev: Parent device (used to print error messages) 393 * @regs: NAND controller registers 394 * @core_clk: Core clock 395 * @reg_clk: Registers clock 396 * @complete: Completion object to wait for NAND controller events 397 * @assigned_cs: Bitmask describing already assigned CS lines 398 * @chips: List containing all the NAND chips attached to 399 * this NAND controller 400 * @selected_chip: Currently selected target chip 401 * @caps: NAND controller capabilities for each compatible string 402 * @use_dma: Whetner DMA is used 403 * @dma_chan: DMA channel (NFCv1 only) 404 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 405 */ 406 struct marvell_nfc { 407 struct nand_controller controller; 408 struct device *dev; 409 void __iomem *regs; 410 struct clk *core_clk; 411 struct clk *reg_clk; 412 struct completion complete; 413 unsigned long assigned_cs; 414 struct list_head chips; 415 struct nand_chip *selected_chip; 416 const struct marvell_nfc_caps *caps; 417 418 /* DMA (NFCv1 only) */ 419 bool use_dma; 420 struct dma_chan *dma_chan; 421 u8 *dma_buf; 422 }; 423 424 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 425 { 426 return container_of(ctrl, struct marvell_nfc, controller); 427 } 428 429 /** 430 * struct marvell_nfc_timings - NAND controller timings expressed in NAND 431 * Controller clock cycles 432 * 433 * @tRP: ND_nRE pulse width 434 * @tRH: ND_nRE high duration 435 * @tWP: ND_nWE pulse time 436 * @tWH: ND_nWE high duration 437 * @tCS: Enable signal setup time 438 * @tCH: Enable signal hold time 439 * @tADL: Address to write data delay 440 * @tAR: ND_ALE low to ND_nRE low delay 441 * @tWHR: ND_nWE high to ND_nRE low for status read 442 * @tRHW: ND_nRE high duration, read to write delay 443 * @tR: ND_nWE high to ND_nRE low for read 444 */ 445 struct marvell_nfc_timings { 446 /* NDTR0 fields */ 447 unsigned int tRP; 448 unsigned int tRH; 449 unsigned int tWP; 450 unsigned int tWH; 451 unsigned int tCS; 452 unsigned int tCH; 453 unsigned int tADL; 454 /* NDTR1 fields */ 455 unsigned int tAR; 456 unsigned int tWHR; 457 unsigned int tRHW; 458 unsigned int tR; 459 }; 460 461 /** 462 * TO_CYCLES() - Derives a duration in numbers of clock cycles. 463 * 464 * @ps: Duration in pico-seconds 465 * @period_ns: Clock period in nano-seconds 466 * 467 * Convert the duration in nano-seconds, then divide by the period and 468 * return the number of clock periods. 469 */ 470 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 471 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 472 period_ns)) 473 474 /** 475 * struct marvell_nfc_op - filled during the parsing of the ->exec_op() 476 * subop subset of instructions. 477 * 478 * @ndcb: Array of values written to NDCBx registers 479 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 480 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 481 * @rdy_delay_ns: Optional delay after waiting for the RB pin 482 * @data_delay_ns: Optional delay after the data xfer 483 * @data_instr_idx: Index of the data instruction in the subop 484 * @data_instr: Pointer to the data instruction in the subop 485 */ 486 struct marvell_nfc_op { 487 u32 ndcb[4]; 488 unsigned int cle_ale_delay_ns; 489 unsigned int rdy_timeout_ms; 490 unsigned int rdy_delay_ns; 491 unsigned int data_delay_ns; 492 unsigned int data_instr_idx; 493 const struct nand_op_instr *data_instr; 494 }; 495 496 /* 497 * Internal helper to conditionnally apply a delay (from the above structure, 498 * most of the time). 499 */ 500 static void cond_delay(unsigned int ns) 501 { 502 if (!ns) 503 return; 504 505 if (ns < 10000) 506 ndelay(ns); 507 else 508 udelay(DIV_ROUND_UP(ns, 1000)); 509 } 510 511 /* 512 * The controller has many flags that could generate interrupts, most of them 513 * are disabled and polling is used. For the very slow signals, using interrupts 514 * may relax the CPU charge. 515 */ 516 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 517 { 518 u32 reg; 519 520 /* Writing 1 disables the interrupt */ 521 reg = readl_relaxed(nfc->regs + NDCR); 522 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 523 } 524 525 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 526 { 527 u32 reg; 528 529 /* Writing 0 enables the interrupt */ 530 reg = readl_relaxed(nfc->regs + NDCR); 531 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 532 } 533 534 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 535 { 536 u32 reg; 537 538 reg = readl_relaxed(nfc->regs + NDSR); 539 writel_relaxed(int_mask, nfc->regs + NDSR); 540 541 return reg & int_mask; 542 } 543 544 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 545 bool force_8bit) 546 { 547 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 548 u32 ndcr; 549 550 /* 551 * Callers of this function do not verify if the NAND is using a 16-bit 552 * an 8-bit bus for normal operations, so we need to take care of that 553 * here by leaving the configuration unchanged if the NAND does not have 554 * the NAND_BUSWIDTH_16 flag set. 555 */ 556 if (!(chip->options & NAND_BUSWIDTH_16)) 557 return; 558 559 ndcr = readl_relaxed(nfc->regs + NDCR); 560 561 if (force_8bit) 562 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 563 else 564 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 565 566 writel_relaxed(ndcr, nfc->regs + NDCR); 567 } 568 569 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 570 { 571 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 572 u32 val; 573 int ret; 574 575 /* 576 * The command is being processed, wait for the ND_RUN bit to be 577 * cleared by the NFC. If not, we must clear it by hand. 578 */ 579 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 580 (val & NDCR_ND_RUN) == 0, 581 POLL_PERIOD, POLL_TIMEOUT); 582 if (ret) { 583 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 584 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 585 nfc->regs + NDCR); 586 return ret; 587 } 588 589 return 0; 590 } 591 592 /* 593 * Any time a command has to be sent to the controller, the following sequence 594 * has to be followed: 595 * - call marvell_nfc_prepare_cmd() 596 * -> activate the ND_RUN bit that will kind of 'start a job' 597 * -> wait the signal indicating the NFC is waiting for a command 598 * - send the command (cmd and address cycles) 599 * - enventually send or receive the data 600 * - call marvell_nfc_end_cmd() with the corresponding flag 601 * -> wait the flag to be triggered or cancel the job with a timeout 602 * 603 * The following helpers are here to factorize the code a bit so that 604 * specialized functions responsible for executing the actual NAND 605 * operations do not have to replicate the same code blocks. 606 */ 607 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 608 { 609 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 610 u32 ndcr, val; 611 int ret; 612 613 /* Poll ND_RUN and clear NDSR before issuing any command */ 614 ret = marvell_nfc_wait_ndrun(chip); 615 if (ret) { 616 dev_err(nfc->dev, "Last operation did not succeed\n"); 617 return ret; 618 } 619 620 ndcr = readl_relaxed(nfc->regs + NDCR); 621 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 622 623 /* Assert ND_RUN bit and wait the NFC to be ready */ 624 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 625 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 626 val & NDSR_WRCMDREQ, 627 POLL_PERIOD, POLL_TIMEOUT); 628 if (ret) { 629 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 630 return -ETIMEDOUT; 631 } 632 633 /* Command may be written, clear WRCMDREQ status bit */ 634 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 635 636 return 0; 637 } 638 639 static void marvell_nfc_send_cmd(struct nand_chip *chip, 640 struct marvell_nfc_op *nfc_op) 641 { 642 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 643 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 644 645 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 646 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 647 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 648 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 649 650 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 651 nfc->regs + NDCB0); 652 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 653 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 654 655 /* 656 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 657 * fields are used (only available on NFCv2). 658 */ 659 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 660 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 661 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 662 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 663 } 664 } 665 666 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 667 const char *label) 668 { 669 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 670 u32 val; 671 int ret; 672 673 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 674 val & flag, 675 POLL_PERIOD, POLL_TIMEOUT); 676 677 if (ret) { 678 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 679 label, val); 680 if (nfc->dma_chan) 681 dmaengine_terminate_all(nfc->dma_chan); 682 return ret; 683 } 684 685 /* 686 * DMA function uses this helper to poll on CMDD bits without wanting 687 * them to be cleared. 688 */ 689 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 690 return 0; 691 692 writel_relaxed(flag, nfc->regs + NDSR); 693 694 return 0; 695 } 696 697 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 698 { 699 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 700 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 701 702 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 703 } 704 705 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, 706 u32 expected_val, unsigned long timeout_ms) 707 { 708 unsigned long limit; 709 u32 st; 710 711 limit = jiffies + msecs_to_jiffies(timeout_ms); 712 do { 713 st = readl_relaxed(nfc->regs + NDSR); 714 if (st & NDSR_RDY(1)) 715 st |= NDSR_RDY(0); 716 717 if ((st & mask) == expected_val) 718 return 0; 719 720 cpu_relax(); 721 } while (time_after(limit, jiffies)); 722 723 return -ETIMEDOUT; 724 } 725 726 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 727 { 728 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 729 struct mtd_info *mtd = nand_to_mtd(chip); 730 u32 pending; 731 int ret; 732 733 /* Timeout is expressed in ms */ 734 if (!timeout_ms) 735 timeout_ms = IRQ_TIMEOUT; 736 737 if (mtd->oops_panic_write) { 738 ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), 739 NDSR_RDY(0), 740 timeout_ms); 741 } else { 742 init_completion(&nfc->complete); 743 744 marvell_nfc_enable_int(nfc, NDCR_RDYM); 745 ret = wait_for_completion_timeout(&nfc->complete, 746 msecs_to_jiffies(timeout_ms)); 747 marvell_nfc_disable_int(nfc, NDCR_RDYM); 748 } 749 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 750 751 /* 752 * In case the interrupt was not served in the required time frame, 753 * check if the ISR was not served or if something went actually wrong. 754 */ 755 if (!ret && !pending) { 756 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 757 return -ETIMEDOUT; 758 } 759 760 return 0; 761 } 762 763 static void marvell_nfc_select_target(struct nand_chip *chip, 764 unsigned int die_nr) 765 { 766 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 767 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 768 u32 ndcr_generic; 769 770 /* 771 * Reset the NDCR register to a clean state for this particular chip, 772 * also clear ND_RUN bit. 773 */ 774 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 775 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 776 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 777 778 /* Also reset the interrupt status register */ 779 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 780 781 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 782 return; 783 784 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 785 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 786 787 nfc->selected_chip = chip; 788 marvell_nand->selected_die = die_nr; 789 } 790 791 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 792 { 793 struct marvell_nfc *nfc = dev_id; 794 u32 st = readl_relaxed(nfc->regs + NDSR); 795 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 796 797 /* 798 * RDY interrupt mask is one bit in NDCR while there are two status 799 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 800 */ 801 if (st & NDSR_RDY(1)) 802 st |= NDSR_RDY(0); 803 804 if (!(st & ien)) 805 return IRQ_NONE; 806 807 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 808 809 if (st & (NDSR_RDY(0) | NDSR_RDY(1))) 810 complete(&nfc->complete); 811 812 return IRQ_HANDLED; 813 } 814 815 /* HW ECC related functions */ 816 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 817 { 818 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 819 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 820 821 if (!(ndcr & NDCR_ECC_EN)) { 822 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 823 824 /* 825 * When enabling BCH, set threshold to 0 to always know the 826 * number of corrected bitflips. 827 */ 828 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 829 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 830 } 831 } 832 833 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 834 { 835 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 836 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 837 838 if (ndcr & NDCR_ECC_EN) { 839 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 840 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 841 writel_relaxed(0, nfc->regs + NDECCCTRL); 842 } 843 } 844 845 /* DMA related helpers */ 846 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 847 { 848 u32 reg; 849 850 reg = readl_relaxed(nfc->regs + NDCR); 851 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 852 } 853 854 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 855 { 856 u32 reg; 857 858 reg = readl_relaxed(nfc->regs + NDCR); 859 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 860 } 861 862 /* Read/write PIO/DMA accessors */ 863 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 864 enum dma_data_direction direction, 865 unsigned int len) 866 { 867 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 868 struct dma_async_tx_descriptor *tx; 869 struct scatterlist sg; 870 dma_cookie_t cookie; 871 int ret; 872 873 marvell_nfc_enable_dma(nfc); 874 /* Prepare the DMA transfer */ 875 sg_init_one(&sg, nfc->dma_buf, dma_len); 876 ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 877 if (!ret) { 878 dev_err(nfc->dev, "Could not map DMA S/G list\n"); 879 return -ENXIO; 880 } 881 882 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 883 direction == DMA_FROM_DEVICE ? 884 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 885 DMA_PREP_INTERRUPT); 886 if (!tx) { 887 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 888 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 889 return -ENXIO; 890 } 891 892 /* Do the task and wait for it to finish */ 893 cookie = dmaengine_submit(tx); 894 ret = dma_submit_error(cookie); 895 if (ret) 896 return -EIO; 897 898 dma_async_issue_pending(nfc->dma_chan); 899 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 900 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 901 marvell_nfc_disable_dma(nfc); 902 if (ret) { 903 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 904 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 905 dmaengine_terminate_all(nfc->dma_chan); 906 return -ETIMEDOUT; 907 } 908 909 return 0; 910 } 911 912 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 913 unsigned int len) 914 { 915 unsigned int last_len = len % FIFO_DEPTH; 916 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 917 int i; 918 919 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 920 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 921 922 if (last_len) { 923 u8 tmp_buf[FIFO_DEPTH]; 924 925 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 926 memcpy(in + last_full_offset, tmp_buf, last_len); 927 } 928 929 return 0; 930 } 931 932 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 933 unsigned int len) 934 { 935 unsigned int last_len = len % FIFO_DEPTH; 936 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 937 int i; 938 939 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 940 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 941 942 if (last_len) { 943 u8 tmp_buf[FIFO_DEPTH]; 944 945 memcpy(tmp_buf, out + last_full_offset, last_len); 946 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 947 } 948 949 return 0; 950 } 951 952 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 953 u8 *data, int data_len, 954 u8 *spare, int spare_len, 955 u8 *ecc, int ecc_len, 956 unsigned int *max_bitflips) 957 { 958 struct mtd_info *mtd = nand_to_mtd(chip); 959 int bf; 960 961 /* 962 * Blank pages (all 0xFF) that have not been written may be recognized 963 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 964 * check if the entire page (with ECC bytes) is actually blank or not. 965 */ 966 if (!data) 967 data_len = 0; 968 if (!spare) 969 spare_len = 0; 970 if (!ecc) 971 ecc_len = 0; 972 973 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 974 spare, spare_len, chip->ecc.strength); 975 if (bf < 0) { 976 mtd->ecc_stats.failed++; 977 return; 978 } 979 980 /* Update the stats and max_bitflips */ 981 mtd->ecc_stats.corrected += bf; 982 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 983 } 984 985 /* 986 * Check if a chunk is correct or not according to the hardware ECC engine. 987 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 988 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 989 * value indicating that a check on the emptyness of the subpage must be 990 * performed before actually declaring the subpage as "corrupted". 991 */ 992 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, 993 unsigned int *max_bitflips) 994 { 995 struct mtd_info *mtd = nand_to_mtd(chip); 996 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 997 int bf = 0; 998 u32 ndsr; 999 1000 ndsr = readl_relaxed(nfc->regs + NDSR); 1001 1002 /* Check uncorrectable error flag */ 1003 if (ndsr & NDSR_UNCERR) { 1004 writel_relaxed(ndsr, nfc->regs + NDSR); 1005 1006 /* 1007 * Do not increment ->ecc_stats.failed now, instead, return a 1008 * non-zero value to indicate that this chunk was apparently 1009 * bad, and it should be check to see if it empty or not. If 1010 * the chunk (with ECC bytes) is not declared empty, the calling 1011 * function must increment the failure count. 1012 */ 1013 return -EBADMSG; 1014 } 1015 1016 /* Check correctable error flag */ 1017 if (ndsr & NDSR_CORERR) { 1018 writel_relaxed(ndsr, nfc->regs + NDSR); 1019 1020 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 1021 bf = NDSR_ERRCNT(ndsr); 1022 else 1023 bf = 1; 1024 } 1025 1026 /* Update the stats and max_bitflips */ 1027 mtd->ecc_stats.corrected += bf; 1028 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 1029 1030 return 0; 1031 } 1032 1033 /* Hamming read helpers */ 1034 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 1035 u8 *data_buf, u8 *oob_buf, 1036 bool raw, int page) 1037 { 1038 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1039 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1040 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1041 struct marvell_nfc_op nfc_op = { 1042 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1043 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1044 NDCB0_DBC | 1045 NDCB0_CMD1(NAND_CMD_READ0) | 1046 NDCB0_CMD2(NAND_CMD_READSTART), 1047 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1048 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1049 }; 1050 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1051 int ret; 1052 1053 /* NFCv2 needs more information about the operation being executed */ 1054 if (nfc->caps->is_nfcv2) 1055 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1056 1057 ret = marvell_nfc_prepare_cmd(chip); 1058 if (ret) 1059 return ret; 1060 1061 marvell_nfc_send_cmd(chip, &nfc_op); 1062 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1063 "RDDREQ while draining FIFO (data/oob)"); 1064 if (ret) 1065 return ret; 1066 1067 /* 1068 * Read the page then the OOB area. Unlike what is shown in current 1069 * documentation, spare bytes are protected by the ECC engine, and must 1070 * be at the beginning of the OOB area or running this driver on legacy 1071 * systems will prevent the discovery of the BBM/BBT. 1072 */ 1073 if (nfc->use_dma) { 1074 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 1075 lt->data_bytes + oob_bytes); 1076 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 1077 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 1078 } else { 1079 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 1080 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 1081 } 1082 1083 ret = marvell_nfc_wait_cmdd(chip); 1084 return ret; 1085 } 1086 1087 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, 1088 int oob_required, int page) 1089 { 1090 marvell_nfc_select_target(chip, chip->cur_cs); 1091 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1092 true, page); 1093 } 1094 1095 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, 1096 int oob_required, int page) 1097 { 1098 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1099 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1100 int max_bitflips = 0, ret; 1101 u8 *raw_buf; 1102 1103 marvell_nfc_select_target(chip, chip->cur_cs); 1104 marvell_nfc_enable_hw_ecc(chip); 1105 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 1106 page); 1107 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1108 marvell_nfc_disable_hw_ecc(chip); 1109 1110 if (!ret) 1111 return max_bitflips; 1112 1113 /* 1114 * When ECC failures are detected, check if the full page has been 1115 * written or not. Ignore the failure if it is actually empty. 1116 */ 1117 raw_buf = kmalloc(full_sz, GFP_KERNEL); 1118 if (!raw_buf) 1119 return -ENOMEM; 1120 1121 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1122 lt->data_bytes, true, page); 1123 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1124 &max_bitflips); 1125 kfree(raw_buf); 1126 1127 return max_bitflips; 1128 } 1129 1130 /* 1131 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1132 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1133 * also stands for ->read_oob(). 1134 */ 1135 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) 1136 { 1137 u8 *buf = nand_get_data_buf(chip); 1138 1139 marvell_nfc_select_target(chip, chip->cur_cs); 1140 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1141 true, page); 1142 } 1143 1144 /* Hamming write helpers */ 1145 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1146 const u8 *data_buf, 1147 const u8 *oob_buf, bool raw, 1148 int page) 1149 { 1150 const struct nand_sdr_timings *sdr = 1151 nand_get_sdr_timings(nand_get_interface_config(chip)); 1152 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1153 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1154 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1155 struct marvell_nfc_op nfc_op = { 1156 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1157 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1158 NDCB0_CMD1(NAND_CMD_SEQIN) | 1159 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1160 NDCB0_DBC, 1161 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1162 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1163 }; 1164 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1165 int ret; 1166 1167 /* NFCv2 needs more information about the operation being executed */ 1168 if (nfc->caps->is_nfcv2) 1169 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1170 1171 ret = marvell_nfc_prepare_cmd(chip); 1172 if (ret) 1173 return ret; 1174 1175 marvell_nfc_send_cmd(chip, &nfc_op); 1176 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1177 "WRDREQ while loading FIFO (data)"); 1178 if (ret) 1179 return ret; 1180 1181 /* Write the page then the OOB area */ 1182 if (nfc->use_dma) { 1183 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1184 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1185 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1186 lt->ecc_bytes + lt->spare_bytes); 1187 } else { 1188 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1189 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1190 } 1191 1192 ret = marvell_nfc_wait_cmdd(chip); 1193 if (ret) 1194 return ret; 1195 1196 ret = marvell_nfc_wait_op(chip, 1197 PSEC_TO_MSEC(sdr->tPROG_max)); 1198 return ret; 1199 } 1200 1201 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, 1202 const u8 *buf, 1203 int oob_required, int page) 1204 { 1205 marvell_nfc_select_target(chip, chip->cur_cs); 1206 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1207 true, page); 1208 } 1209 1210 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, 1211 const u8 *buf, 1212 int oob_required, int page) 1213 { 1214 int ret; 1215 1216 marvell_nfc_select_target(chip, chip->cur_cs); 1217 marvell_nfc_enable_hw_ecc(chip); 1218 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1219 false, page); 1220 marvell_nfc_disable_hw_ecc(chip); 1221 1222 return ret; 1223 } 1224 1225 /* 1226 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1227 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1228 * also stands for ->write_oob(). 1229 */ 1230 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, 1231 int page) 1232 { 1233 struct mtd_info *mtd = nand_to_mtd(chip); 1234 u8 *buf = nand_get_data_buf(chip); 1235 1236 memset(buf, 0xFF, mtd->writesize); 1237 1238 marvell_nfc_select_target(chip, chip->cur_cs); 1239 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1240 true, page); 1241 } 1242 1243 /* BCH read helpers */ 1244 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, 1245 int oob_required, int page) 1246 { 1247 struct mtd_info *mtd = nand_to_mtd(chip); 1248 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1249 u8 *oob = chip->oob_poi; 1250 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1251 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1252 lt->last_spare_bytes; 1253 int data_len = lt->data_bytes; 1254 int spare_len = lt->spare_bytes; 1255 int ecc_len = lt->ecc_bytes; 1256 int chunk; 1257 1258 marvell_nfc_select_target(chip, chip->cur_cs); 1259 1260 if (oob_required) 1261 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1262 1263 nand_read_page_op(chip, page, 0, NULL, 0); 1264 1265 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1266 /* Update last chunk length */ 1267 if (chunk >= lt->full_chunk_cnt) { 1268 data_len = lt->last_data_bytes; 1269 spare_len = lt->last_spare_bytes; 1270 ecc_len = lt->last_ecc_bytes; 1271 } 1272 1273 /* Read data bytes*/ 1274 nand_change_read_column_op(chip, chunk * chunk_size, 1275 buf + (lt->data_bytes * chunk), 1276 data_len, false); 1277 1278 /* Read spare bytes */ 1279 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1280 spare_len, false, false); 1281 1282 /* Read ECC bytes */ 1283 nand_read_data_op(chip, oob + ecc_offset + 1284 (ALIGN(lt->ecc_bytes, 32) * chunk), 1285 ecc_len, false, false); 1286 } 1287 1288 return 0; 1289 } 1290 1291 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1292 u8 *data, unsigned int data_len, 1293 u8 *spare, unsigned int spare_len, 1294 int page) 1295 { 1296 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1297 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1298 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1299 int i, ret; 1300 struct marvell_nfc_op nfc_op = { 1301 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1302 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1303 NDCB0_LEN_OVRD, 1304 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1305 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1306 .ndcb[3] = data_len + spare_len, 1307 }; 1308 1309 ret = marvell_nfc_prepare_cmd(chip); 1310 if (ret) 1311 return; 1312 1313 if (chunk == 0) 1314 nfc_op.ndcb[0] |= NDCB0_DBC | 1315 NDCB0_CMD1(NAND_CMD_READ0) | 1316 NDCB0_CMD2(NAND_CMD_READSTART); 1317 1318 /* 1319 * Trigger the monolithic read on the first chunk, then naked read on 1320 * intermediate chunks and finally a last naked read on the last chunk. 1321 */ 1322 if (chunk == 0) 1323 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1324 else if (chunk < lt->nchunks - 1) 1325 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1326 else 1327 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1328 1329 marvell_nfc_send_cmd(chip, &nfc_op); 1330 1331 /* 1332 * According to the datasheet, when reading from NDDB 1333 * with BCH enabled, after each 32 bytes reads, we 1334 * have to make sure that the NDSR.RDDREQ bit is set. 1335 * 1336 * Drain the FIFO, 8 32-bit reads at a time, and skip 1337 * the polling on the last read. 1338 * 1339 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1340 */ 1341 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1342 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1343 "RDDREQ while draining FIFO (data)"); 1344 marvell_nfc_xfer_data_in_pio(nfc, data, 1345 FIFO_DEPTH * BCH_SEQ_READS); 1346 data += FIFO_DEPTH * BCH_SEQ_READS; 1347 } 1348 1349 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1350 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1351 "RDDREQ while draining FIFO (OOB)"); 1352 marvell_nfc_xfer_data_in_pio(nfc, spare, 1353 FIFO_DEPTH * BCH_SEQ_READS); 1354 spare += FIFO_DEPTH * BCH_SEQ_READS; 1355 } 1356 } 1357 1358 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, 1359 u8 *buf, int oob_required, 1360 int page) 1361 { 1362 struct mtd_info *mtd = nand_to_mtd(chip); 1363 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1364 int data_len = lt->data_bytes, spare_len = lt->spare_bytes; 1365 u8 *data = buf, *spare = chip->oob_poi; 1366 int max_bitflips = 0; 1367 u32 failure_mask = 0; 1368 int chunk, ret; 1369 1370 marvell_nfc_select_target(chip, chip->cur_cs); 1371 1372 /* 1373 * With BCH, OOB is not fully used (and thus not read entirely), not 1374 * expected bytes could show up at the end of the OOB buffer if not 1375 * explicitly erased. 1376 */ 1377 if (oob_required) 1378 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1379 1380 marvell_nfc_enable_hw_ecc(chip); 1381 1382 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1383 /* Update length for the last chunk */ 1384 if (chunk >= lt->full_chunk_cnt) { 1385 data_len = lt->last_data_bytes; 1386 spare_len = lt->last_spare_bytes; 1387 } 1388 1389 /* Read the chunk and detect number of bitflips */ 1390 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1391 spare, spare_len, page); 1392 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1393 if (ret) 1394 failure_mask |= BIT(chunk); 1395 1396 data += data_len; 1397 spare += spare_len; 1398 } 1399 1400 marvell_nfc_disable_hw_ecc(chip); 1401 1402 if (!failure_mask) 1403 return max_bitflips; 1404 1405 /* 1406 * Please note that dumping the ECC bytes during a normal read with OOB 1407 * area would add a significant overhead as ECC bytes are "consumed" by 1408 * the controller in normal mode and must be re-read in raw mode. To 1409 * avoid dropping the performances, we prefer not to include them. The 1410 * user should re-read the page in raw mode if ECC bytes are required. 1411 */ 1412 1413 /* 1414 * In case there is any subpage read error, we usually re-read only ECC 1415 * bytes in raw mode and check if the whole page is empty. In this case, 1416 * it is normal that the ECC check failed and we just ignore the error. 1417 * 1418 * However, it has been empirically observed that for some layouts (e.g 1419 * 2k page, 8b strength per 512B chunk), the controller tries to correct 1420 * bits and may create itself bitflips in the erased area. To overcome 1421 * this strange behavior, the whole page is re-read in raw mode, not 1422 * only the ECC bytes. 1423 */ 1424 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1425 int data_off_in_page, spare_off_in_page, ecc_off_in_page; 1426 int data_off, spare_off, ecc_off; 1427 int data_len, spare_len, ecc_len; 1428 1429 /* No failure reported for this chunk, move to the next one */ 1430 if (!(failure_mask & BIT(chunk))) 1431 continue; 1432 1433 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + 1434 lt->ecc_bytes); 1435 spare_off_in_page = data_off_in_page + 1436 (chunk < lt->full_chunk_cnt ? lt->data_bytes : 1437 lt->last_data_bytes); 1438 ecc_off_in_page = spare_off_in_page + 1439 (chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1440 lt->last_spare_bytes); 1441 1442 data_off = chunk * lt->data_bytes; 1443 spare_off = chunk * lt->spare_bytes; 1444 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + 1445 lt->last_spare_bytes + 1446 (chunk * (lt->ecc_bytes + 2)); 1447 1448 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : 1449 lt->last_data_bytes; 1450 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1451 lt->last_spare_bytes; 1452 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : 1453 lt->last_ecc_bytes; 1454 1455 /* 1456 * Only re-read the ECC bytes, unless we are using the 2k/8b 1457 * layout which is buggy in the sense that the ECC engine will 1458 * try to correct data bytes anyway, creating bitflips. In this 1459 * case, re-read the entire page. 1460 */ 1461 if (lt->writesize == 2048 && lt->strength == 8) { 1462 nand_change_read_column_op(chip, data_off_in_page, 1463 buf + data_off, data_len, 1464 false); 1465 nand_change_read_column_op(chip, spare_off_in_page, 1466 chip->oob_poi + spare_off, spare_len, 1467 false); 1468 } 1469 1470 nand_change_read_column_op(chip, ecc_off_in_page, 1471 chip->oob_poi + ecc_off, ecc_len, 1472 false); 1473 1474 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1475 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, 1476 chip->oob_poi + spare_off, spare_len, 1477 chip->oob_poi + ecc_off, ecc_len, 1478 &max_bitflips); 1479 } 1480 1481 return max_bitflips; 1482 } 1483 1484 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) 1485 { 1486 u8 *buf = nand_get_data_buf(chip); 1487 1488 return chip->ecc.read_page_raw(chip, buf, true, page); 1489 } 1490 1491 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) 1492 { 1493 u8 *buf = nand_get_data_buf(chip); 1494 1495 return chip->ecc.read_page(chip, buf, true, page); 1496 } 1497 1498 /* BCH write helpers */ 1499 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, 1500 const u8 *buf, 1501 int oob_required, int page) 1502 { 1503 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1504 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1505 int data_len = lt->data_bytes; 1506 int spare_len = lt->spare_bytes; 1507 int ecc_len = lt->ecc_bytes; 1508 int spare_offset = 0; 1509 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1510 lt->last_spare_bytes; 1511 int chunk; 1512 1513 marvell_nfc_select_target(chip, chip->cur_cs); 1514 1515 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1516 1517 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1518 if (chunk >= lt->full_chunk_cnt) { 1519 data_len = lt->last_data_bytes; 1520 spare_len = lt->last_spare_bytes; 1521 ecc_len = lt->last_ecc_bytes; 1522 } 1523 1524 /* Point to the column of the next chunk */ 1525 nand_change_write_column_op(chip, chunk * full_chunk_size, 1526 NULL, 0, false); 1527 1528 /* Write the data */ 1529 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1530 data_len, false); 1531 1532 if (!oob_required) 1533 continue; 1534 1535 /* Write the spare bytes */ 1536 if (spare_len) 1537 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1538 spare_len, false); 1539 1540 /* Write the ECC bytes */ 1541 if (ecc_len) 1542 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1543 ecc_len, false); 1544 1545 spare_offset += spare_len; 1546 ecc_offset += ALIGN(ecc_len, 32); 1547 } 1548 1549 return nand_prog_page_end_op(chip); 1550 } 1551 1552 static int 1553 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1554 const u8 *data, unsigned int data_len, 1555 const u8 *spare, unsigned int spare_len, 1556 int page) 1557 { 1558 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1559 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1560 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1561 u32 xtype; 1562 int ret; 1563 struct marvell_nfc_op nfc_op = { 1564 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1565 .ndcb[3] = data_len + spare_len, 1566 }; 1567 1568 /* 1569 * First operation dispatches the CMD_SEQIN command, issue the address 1570 * cycles and asks for the first chunk of data. 1571 * All operations in the middle (if any) will issue a naked write and 1572 * also ask for data. 1573 * Last operation (if any) asks for the last chunk of data through a 1574 * last naked write. 1575 */ 1576 if (chunk == 0) { 1577 if (lt->nchunks == 1) 1578 xtype = XTYPE_MONOLITHIC_RW; 1579 else 1580 xtype = XTYPE_WRITE_DISPATCH; 1581 1582 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1583 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1584 NDCB0_CMD1(NAND_CMD_SEQIN); 1585 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1586 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1587 } else if (chunk < lt->nchunks - 1) { 1588 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1589 } else { 1590 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1591 } 1592 1593 /* Always dispatch the PAGEPROG command on the last chunk */ 1594 if (chunk == lt->nchunks - 1) 1595 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1596 1597 ret = marvell_nfc_prepare_cmd(chip); 1598 if (ret) 1599 return ret; 1600 1601 marvell_nfc_send_cmd(chip, &nfc_op); 1602 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1603 "WRDREQ while loading FIFO (data)"); 1604 if (ret) 1605 return ret; 1606 1607 /* Transfer the contents */ 1608 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1609 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1610 1611 return 0; 1612 } 1613 1614 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, 1615 const u8 *buf, 1616 int oob_required, int page) 1617 { 1618 const struct nand_sdr_timings *sdr = 1619 nand_get_sdr_timings(nand_get_interface_config(chip)); 1620 struct mtd_info *mtd = nand_to_mtd(chip); 1621 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1622 const u8 *data = buf; 1623 const u8 *spare = chip->oob_poi; 1624 int data_len = lt->data_bytes; 1625 int spare_len = lt->spare_bytes; 1626 int chunk, ret; 1627 1628 marvell_nfc_select_target(chip, chip->cur_cs); 1629 1630 /* Spare data will be written anyway, so clear it to avoid garbage */ 1631 if (!oob_required) 1632 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1633 1634 marvell_nfc_enable_hw_ecc(chip); 1635 1636 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1637 if (chunk >= lt->full_chunk_cnt) { 1638 data_len = lt->last_data_bytes; 1639 spare_len = lt->last_spare_bytes; 1640 } 1641 1642 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1643 spare, spare_len, page); 1644 data += data_len; 1645 spare += spare_len; 1646 1647 /* 1648 * Waiting only for CMDD or PAGED is not enough, ECC are 1649 * partially written. No flag is set once the operation is 1650 * really finished but the ND_RUN bit is cleared, so wait for it 1651 * before stepping into the next command. 1652 */ 1653 marvell_nfc_wait_ndrun(chip); 1654 } 1655 1656 ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); 1657 1658 marvell_nfc_disable_hw_ecc(chip); 1659 1660 if (ret) 1661 return ret; 1662 1663 return 0; 1664 } 1665 1666 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, 1667 int page) 1668 { 1669 struct mtd_info *mtd = nand_to_mtd(chip); 1670 u8 *buf = nand_get_data_buf(chip); 1671 1672 memset(buf, 0xFF, mtd->writesize); 1673 1674 return chip->ecc.write_page_raw(chip, buf, true, page); 1675 } 1676 1677 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) 1678 { 1679 struct mtd_info *mtd = nand_to_mtd(chip); 1680 u8 *buf = nand_get_data_buf(chip); 1681 1682 memset(buf, 0xFF, mtd->writesize); 1683 1684 return chip->ecc.write_page(chip, buf, true, page); 1685 } 1686 1687 /* NAND framework ->exec_op() hooks and related helpers */ 1688 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1689 const struct nand_subop *subop, 1690 struct marvell_nfc_op *nfc_op) 1691 { 1692 const struct nand_op_instr *instr = NULL; 1693 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1694 bool first_cmd = true; 1695 unsigned int op_id; 1696 int i; 1697 1698 /* Reset the input structure as most of its fields will be OR'ed */ 1699 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1700 1701 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1702 unsigned int offset, naddrs; 1703 const u8 *addrs; 1704 int len; 1705 1706 instr = &subop->instrs[op_id]; 1707 1708 switch (instr->type) { 1709 case NAND_OP_CMD_INSTR: 1710 if (first_cmd) 1711 nfc_op->ndcb[0] |= 1712 NDCB0_CMD1(instr->ctx.cmd.opcode); 1713 else 1714 nfc_op->ndcb[0] |= 1715 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1716 NDCB0_DBC; 1717 1718 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1719 first_cmd = false; 1720 break; 1721 1722 case NAND_OP_ADDR_INSTR: 1723 offset = nand_subop_get_addr_start_off(subop, op_id); 1724 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1725 addrs = &instr->ctx.addr.addrs[offset]; 1726 1727 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1728 1729 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1730 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1731 1732 if (naddrs >= 5) 1733 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1734 if (naddrs >= 6) 1735 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1736 if (naddrs == 7) 1737 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1738 1739 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1740 break; 1741 1742 case NAND_OP_DATA_IN_INSTR: 1743 nfc_op->data_instr = instr; 1744 nfc_op->data_instr_idx = op_id; 1745 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1746 if (nfc->caps->is_nfcv2) { 1747 nfc_op->ndcb[0] |= 1748 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1749 NDCB0_LEN_OVRD; 1750 len = nand_subop_get_data_len(subop, op_id); 1751 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1752 } 1753 nfc_op->data_delay_ns = instr->delay_ns; 1754 break; 1755 1756 case NAND_OP_DATA_OUT_INSTR: 1757 nfc_op->data_instr = instr; 1758 nfc_op->data_instr_idx = op_id; 1759 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1760 if (nfc->caps->is_nfcv2) { 1761 nfc_op->ndcb[0] |= 1762 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1763 NDCB0_LEN_OVRD; 1764 len = nand_subop_get_data_len(subop, op_id); 1765 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1766 } 1767 nfc_op->data_delay_ns = instr->delay_ns; 1768 break; 1769 1770 case NAND_OP_WAITRDY_INSTR: 1771 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1772 nfc_op->rdy_delay_ns = instr->delay_ns; 1773 break; 1774 } 1775 } 1776 } 1777 1778 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1779 const struct nand_subop *subop, 1780 struct marvell_nfc_op *nfc_op) 1781 { 1782 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1783 const struct nand_op_instr *instr = nfc_op->data_instr; 1784 unsigned int op_id = nfc_op->data_instr_idx; 1785 unsigned int len = nand_subop_get_data_len(subop, op_id); 1786 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1787 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1788 int ret; 1789 1790 if (instr->ctx.data.force_8bit) 1791 marvell_nfc_force_byte_access(chip, true); 1792 1793 if (reading) { 1794 u8 *in = instr->ctx.data.buf.in + offset; 1795 1796 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1797 } else { 1798 const u8 *out = instr->ctx.data.buf.out + offset; 1799 1800 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1801 } 1802 1803 if (instr->ctx.data.force_8bit) 1804 marvell_nfc_force_byte_access(chip, false); 1805 1806 return ret; 1807 } 1808 1809 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1810 const struct nand_subop *subop) 1811 { 1812 struct marvell_nfc_op nfc_op; 1813 bool reading; 1814 int ret; 1815 1816 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1817 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1818 1819 ret = marvell_nfc_prepare_cmd(chip); 1820 if (ret) 1821 return ret; 1822 1823 marvell_nfc_send_cmd(chip, &nfc_op); 1824 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1825 "RDDREQ/WRDREQ while draining raw data"); 1826 if (ret) 1827 return ret; 1828 1829 cond_delay(nfc_op.cle_ale_delay_ns); 1830 1831 if (reading) { 1832 if (nfc_op.rdy_timeout_ms) { 1833 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1834 if (ret) 1835 return ret; 1836 } 1837 1838 cond_delay(nfc_op.rdy_delay_ns); 1839 } 1840 1841 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1842 ret = marvell_nfc_wait_cmdd(chip); 1843 if (ret) 1844 return ret; 1845 1846 cond_delay(nfc_op.data_delay_ns); 1847 1848 if (!reading) { 1849 if (nfc_op.rdy_timeout_ms) { 1850 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1851 if (ret) 1852 return ret; 1853 } 1854 1855 cond_delay(nfc_op.rdy_delay_ns); 1856 } 1857 1858 /* 1859 * NDCR ND_RUN bit should be cleared automatically at the end of each 1860 * operation but experience shows that the behavior is buggy when it 1861 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1862 */ 1863 if (!reading) { 1864 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1865 1866 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1867 nfc->regs + NDCR); 1868 } 1869 1870 return 0; 1871 } 1872 1873 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1874 const struct nand_subop *subop) 1875 { 1876 struct marvell_nfc_op nfc_op; 1877 int ret; 1878 1879 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1880 1881 /* 1882 * Naked access are different in that they need to be flagged as naked 1883 * by the controller. Reset the controller registers fields that inform 1884 * on the type and refill them according to the ongoing operation. 1885 */ 1886 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1887 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1888 switch (subop->instrs[0].type) { 1889 case NAND_OP_CMD_INSTR: 1890 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1891 break; 1892 case NAND_OP_ADDR_INSTR: 1893 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1894 break; 1895 case NAND_OP_DATA_IN_INSTR: 1896 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1897 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1898 break; 1899 case NAND_OP_DATA_OUT_INSTR: 1900 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1901 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1902 break; 1903 default: 1904 /* This should never happen */ 1905 break; 1906 } 1907 1908 ret = marvell_nfc_prepare_cmd(chip); 1909 if (ret) 1910 return ret; 1911 1912 marvell_nfc_send_cmd(chip, &nfc_op); 1913 1914 if (!nfc_op.data_instr) { 1915 ret = marvell_nfc_wait_cmdd(chip); 1916 cond_delay(nfc_op.cle_ale_delay_ns); 1917 return ret; 1918 } 1919 1920 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1921 "RDDREQ/WRDREQ while draining raw data"); 1922 if (ret) 1923 return ret; 1924 1925 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1926 ret = marvell_nfc_wait_cmdd(chip); 1927 if (ret) 1928 return ret; 1929 1930 /* 1931 * NDCR ND_RUN bit should be cleared automatically at the end of each 1932 * operation but experience shows that the behavior is buggy when it 1933 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1934 */ 1935 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1936 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1937 1938 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1939 nfc->regs + NDCR); 1940 } 1941 1942 return 0; 1943 } 1944 1945 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1946 const struct nand_subop *subop) 1947 { 1948 struct marvell_nfc_op nfc_op; 1949 int ret; 1950 1951 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1952 1953 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1954 cond_delay(nfc_op.rdy_delay_ns); 1955 1956 return ret; 1957 } 1958 1959 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1960 const struct nand_subop *subop) 1961 { 1962 struct marvell_nfc_op nfc_op; 1963 int ret; 1964 1965 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1966 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1967 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1968 1969 ret = marvell_nfc_prepare_cmd(chip); 1970 if (ret) 1971 return ret; 1972 1973 marvell_nfc_send_cmd(chip, &nfc_op); 1974 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1975 "RDDREQ while reading ID"); 1976 if (ret) 1977 return ret; 1978 1979 cond_delay(nfc_op.cle_ale_delay_ns); 1980 1981 if (nfc_op.rdy_timeout_ms) { 1982 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1983 if (ret) 1984 return ret; 1985 } 1986 1987 cond_delay(nfc_op.rdy_delay_ns); 1988 1989 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1990 ret = marvell_nfc_wait_cmdd(chip); 1991 if (ret) 1992 return ret; 1993 1994 cond_delay(nfc_op.data_delay_ns); 1995 1996 return 0; 1997 } 1998 1999 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 2000 const struct nand_subop *subop) 2001 { 2002 struct marvell_nfc_op nfc_op; 2003 int ret; 2004 2005 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2006 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 2007 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 2008 2009 ret = marvell_nfc_prepare_cmd(chip); 2010 if (ret) 2011 return ret; 2012 2013 marvell_nfc_send_cmd(chip, &nfc_op); 2014 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 2015 "RDDREQ while reading status"); 2016 if (ret) 2017 return ret; 2018 2019 cond_delay(nfc_op.cle_ale_delay_ns); 2020 2021 if (nfc_op.rdy_timeout_ms) { 2022 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2023 if (ret) 2024 return ret; 2025 } 2026 2027 cond_delay(nfc_op.rdy_delay_ns); 2028 2029 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 2030 ret = marvell_nfc_wait_cmdd(chip); 2031 if (ret) 2032 return ret; 2033 2034 cond_delay(nfc_op.data_delay_ns); 2035 2036 return 0; 2037 } 2038 2039 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 2040 const struct nand_subop *subop) 2041 { 2042 struct marvell_nfc_op nfc_op; 2043 int ret; 2044 2045 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2046 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 2047 2048 ret = marvell_nfc_prepare_cmd(chip); 2049 if (ret) 2050 return ret; 2051 2052 marvell_nfc_send_cmd(chip, &nfc_op); 2053 ret = marvell_nfc_wait_cmdd(chip); 2054 if (ret) 2055 return ret; 2056 2057 cond_delay(nfc_op.cle_ale_delay_ns); 2058 2059 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2060 if (ret) 2061 return ret; 2062 2063 cond_delay(nfc_op.rdy_delay_ns); 2064 2065 return 0; 2066 } 2067 2068 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 2069 const struct nand_subop *subop) 2070 { 2071 struct marvell_nfc_op nfc_op; 2072 int ret; 2073 2074 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2075 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 2076 2077 ret = marvell_nfc_prepare_cmd(chip); 2078 if (ret) 2079 return ret; 2080 2081 marvell_nfc_send_cmd(chip, &nfc_op); 2082 ret = marvell_nfc_wait_cmdd(chip); 2083 if (ret) 2084 return ret; 2085 2086 cond_delay(nfc_op.cle_ale_delay_ns); 2087 2088 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2089 if (ret) 2090 return ret; 2091 2092 cond_delay(nfc_op.rdy_delay_ns); 2093 2094 return 0; 2095 } 2096 2097 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 2098 /* Monolithic reads/writes */ 2099 NAND_OP_PARSER_PATTERN( 2100 marvell_nfc_monolithic_access_exec, 2101 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2102 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 2103 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2104 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 2105 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2106 NAND_OP_PARSER_PATTERN( 2107 marvell_nfc_monolithic_access_exec, 2108 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2109 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 2110 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 2111 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2112 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 2113 /* Naked commands */ 2114 NAND_OP_PARSER_PATTERN( 2115 marvell_nfc_naked_access_exec, 2116 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2117 NAND_OP_PARSER_PATTERN( 2118 marvell_nfc_naked_access_exec, 2119 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 2120 NAND_OP_PARSER_PATTERN( 2121 marvell_nfc_naked_access_exec, 2122 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2123 NAND_OP_PARSER_PATTERN( 2124 marvell_nfc_naked_access_exec, 2125 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 2126 NAND_OP_PARSER_PATTERN( 2127 marvell_nfc_naked_waitrdy_exec, 2128 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2129 ); 2130 2131 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 2132 /* Naked commands not supported, use a function for each pattern */ 2133 NAND_OP_PARSER_PATTERN( 2134 marvell_nfc_read_id_type_exec, 2135 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2136 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2137 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 2138 NAND_OP_PARSER_PATTERN( 2139 marvell_nfc_erase_cmd_type_exec, 2140 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2141 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2142 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2143 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2144 NAND_OP_PARSER_PATTERN( 2145 marvell_nfc_read_status_exec, 2146 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2147 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 2148 NAND_OP_PARSER_PATTERN( 2149 marvell_nfc_reset_cmd_type_exec, 2150 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2151 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2152 NAND_OP_PARSER_PATTERN( 2153 marvell_nfc_naked_waitrdy_exec, 2154 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2155 ); 2156 2157 static int marvell_nfc_exec_op(struct nand_chip *chip, 2158 const struct nand_operation *op, 2159 bool check_only) 2160 { 2161 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2162 2163 if (!check_only) 2164 marvell_nfc_select_target(chip, op->cs); 2165 2166 if (nfc->caps->is_nfcv2) 2167 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2168 op, check_only); 2169 else 2170 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2171 op, check_only); 2172 } 2173 2174 /* 2175 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2176 * usable. 2177 */ 2178 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2179 struct mtd_oob_region *oobregion) 2180 { 2181 struct nand_chip *chip = mtd_to_nand(mtd); 2182 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2183 2184 if (section) 2185 return -ERANGE; 2186 2187 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2188 lt->last_ecc_bytes; 2189 oobregion->offset = mtd->oobsize - oobregion->length; 2190 2191 return 0; 2192 } 2193 2194 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2195 struct mtd_oob_region *oobregion) 2196 { 2197 struct nand_chip *chip = mtd_to_nand(mtd); 2198 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2199 2200 if (section) 2201 return -ERANGE; 2202 2203 /* 2204 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2205 * 4KB page / 4bit BCH combination. 2206 */ 2207 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2208 oobregion->offset = 6; 2209 else 2210 oobregion->offset = 2; 2211 2212 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2213 lt->last_spare_bytes - oobregion->offset; 2214 2215 return 0; 2216 } 2217 2218 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2219 .ecc = marvell_nand_ooblayout_ecc, 2220 .free = marvell_nand_ooblayout_free, 2221 }; 2222 2223 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, 2224 struct nand_ecc_ctrl *ecc) 2225 { 2226 struct nand_chip *chip = mtd_to_nand(mtd); 2227 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2228 const struct marvell_hw_ecc_layout *l; 2229 int i; 2230 2231 if (!nfc->caps->is_nfcv2 && 2232 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2233 dev_err(nfc->dev, 2234 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2235 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2236 return -ENOTSUPP; 2237 } 2238 2239 to_marvell_nand(chip)->layout = NULL; 2240 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2241 l = &marvell_nfc_layouts[i]; 2242 if (mtd->writesize == l->writesize && 2243 ecc->size == l->chunk && ecc->strength == l->strength) { 2244 to_marvell_nand(chip)->layout = l; 2245 break; 2246 } 2247 } 2248 2249 if (!to_marvell_nand(chip)->layout || 2250 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2251 dev_err(nfc->dev, 2252 "ECC strength %d at page size %d is not supported\n", 2253 ecc->strength, mtd->writesize); 2254 return -ENOTSUPP; 2255 } 2256 2257 /* Special care for the layout 2k/8-bit/512B */ 2258 if (l->writesize == 2048 && l->strength == 8) { 2259 if (mtd->oobsize < 128) { 2260 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); 2261 return -ENOTSUPP; 2262 } else { 2263 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2264 } 2265 } 2266 2267 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2268 ecc->steps = l->nchunks; 2269 ecc->size = l->data_bytes; 2270 2271 if (ecc->strength == 1) { 2272 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 2273 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2274 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2275 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2276 ecc->read_oob = ecc->read_oob_raw; 2277 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2278 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2279 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2280 ecc->write_oob = ecc->write_oob_raw; 2281 } else { 2282 chip->ecc.algo = NAND_ECC_ALGO_BCH; 2283 ecc->strength = 16; 2284 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2285 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2286 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2287 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2288 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2289 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2290 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2291 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2292 } 2293 2294 return 0; 2295 } 2296 2297 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2298 struct nand_ecc_ctrl *ecc) 2299 { 2300 struct nand_chip *chip = mtd_to_nand(mtd); 2301 const struct nand_ecc_props *requirements = 2302 nanddev_get_ecc_requirements(&chip->base); 2303 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2304 int ret; 2305 2306 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && 2307 (!ecc->size || !ecc->strength)) { 2308 if (requirements->step_size && requirements->strength) { 2309 ecc->size = requirements->step_size; 2310 ecc->strength = requirements->strength; 2311 } else { 2312 dev_info(nfc->dev, 2313 "No minimum ECC strength, using 1b/512B\n"); 2314 ecc->size = 512; 2315 ecc->strength = 1; 2316 } 2317 } 2318 2319 switch (ecc->engine_type) { 2320 case NAND_ECC_ENGINE_TYPE_ON_HOST: 2321 ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); 2322 if (ret) 2323 return ret; 2324 break; 2325 case NAND_ECC_ENGINE_TYPE_NONE: 2326 case NAND_ECC_ENGINE_TYPE_SOFT: 2327 case NAND_ECC_ENGINE_TYPE_ON_DIE: 2328 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2329 mtd->writesize != SZ_2K) { 2330 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2331 mtd->writesize); 2332 return -EINVAL; 2333 } 2334 break; 2335 default: 2336 return -EINVAL; 2337 } 2338 2339 return 0; 2340 } 2341 2342 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2343 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2344 2345 static struct nand_bbt_descr bbt_main_descr = { 2346 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2347 NAND_BBT_2BIT | NAND_BBT_VERSION, 2348 .offs = 8, 2349 .len = 6, 2350 .veroffs = 14, 2351 .maxblocks = 8, /* Last 8 blocks in each chip */ 2352 .pattern = bbt_pattern 2353 }; 2354 2355 static struct nand_bbt_descr bbt_mirror_descr = { 2356 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2357 NAND_BBT_2BIT | NAND_BBT_VERSION, 2358 .offs = 8, 2359 .len = 6, 2360 .veroffs = 14, 2361 .maxblocks = 8, /* Last 8 blocks in each chip */ 2362 .pattern = bbt_mirror_pattern 2363 }; 2364 2365 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, 2366 const struct nand_interface_config *conf) 2367 { 2368 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2369 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2370 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2371 const struct nand_sdr_timings *sdr; 2372 struct marvell_nfc_timings nfc_tmg; 2373 int read_delay; 2374 2375 sdr = nand_get_sdr_timings(conf); 2376 if (IS_ERR(sdr)) 2377 return PTR_ERR(sdr); 2378 2379 /* 2380 * SDR timings are given in pico-seconds while NFC timings must be 2381 * expressed in NAND controller clock cycles, which is half of the 2382 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2383 * This is not written anywhere in the datasheet but was observed 2384 * with an oscilloscope. 2385 * 2386 * NFC datasheet gives equations from which thoses calculations 2387 * are derived, they tend to be slightly more restrictives than the 2388 * given core timings and may improve the overall speed. 2389 */ 2390 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2391 nfc_tmg.tRH = nfc_tmg.tRP; 2392 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2393 nfc_tmg.tWH = nfc_tmg.tWP; 2394 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2395 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2396 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2397 /* 2398 * Read delay is the time of propagation from SoC pins to NFC internal 2399 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2400 * EDO mode, an additional delay of tRH must be taken into account so 2401 * the data is sampled on the falling edge instead of the rising edge. 2402 */ 2403 read_delay = sdr->tRC_min >= 30000 ? 2404 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2405 2406 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2407 /* 2408 * tWHR and tRHW are supposed to be read to write delays (and vice 2409 * versa) but in some cases, ie. when doing a change column, they must 2410 * be greater than that to be sure tCCS delay is respected. 2411 */ 2412 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2413 period_ns) - 2; 2414 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2415 period_ns); 2416 2417 /* 2418 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2419 * NFCv1: No WAIT_MODE, tR must be maximal. 2420 */ 2421 if (nfc->caps->is_nfcv2) { 2422 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2423 } else { 2424 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2425 period_ns); 2426 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2427 nfc_tmg.tR = nfc_tmg.tCH - 3; 2428 else 2429 nfc_tmg.tR = 0; 2430 } 2431 2432 if (chipnr < 0) 2433 return 0; 2434 2435 marvell_nand->ndtr0 = 2436 NDTR0_TRP(nfc_tmg.tRP) | 2437 NDTR0_TRH(nfc_tmg.tRH) | 2438 NDTR0_ETRP(nfc_tmg.tRP) | 2439 NDTR0_TWP(nfc_tmg.tWP) | 2440 NDTR0_TWH(nfc_tmg.tWH) | 2441 NDTR0_TCS(nfc_tmg.tCS) | 2442 NDTR0_TCH(nfc_tmg.tCH); 2443 2444 marvell_nand->ndtr1 = 2445 NDTR1_TAR(nfc_tmg.tAR) | 2446 NDTR1_TWHR(nfc_tmg.tWHR) | 2447 NDTR1_TR(nfc_tmg.tR); 2448 2449 if (nfc->caps->is_nfcv2) { 2450 marvell_nand->ndtr0 |= 2451 NDTR0_RD_CNT_DEL(read_delay) | 2452 NDTR0_SELCNTR | 2453 NDTR0_TADL(nfc_tmg.tADL); 2454 2455 marvell_nand->ndtr1 |= 2456 NDTR1_TRHW(nfc_tmg.tRHW) | 2457 NDTR1_WAIT_MODE; 2458 } 2459 2460 /* 2461 * Reset nfc->selected_chip so the next command will cause the timing 2462 * registers to be updated in marvell_nfc_select_target(). 2463 */ 2464 nfc->selected_chip = NULL; 2465 2466 return 0; 2467 } 2468 2469 static int marvell_nand_attach_chip(struct nand_chip *chip) 2470 { 2471 struct mtd_info *mtd = nand_to_mtd(chip); 2472 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2473 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2474 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2475 int ret; 2476 2477 if (pdata && pdata->flash_bbt) 2478 chip->bbt_options |= NAND_BBT_USE_FLASH; 2479 2480 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2481 /* 2482 * We'll use a bad block table stored in-flash and don't 2483 * allow writing the bad block marker to the flash. 2484 */ 2485 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2486 chip->bbt_td = &bbt_main_descr; 2487 chip->bbt_md = &bbt_mirror_descr; 2488 } 2489 2490 /* Save the chip-specific fields of NDCR */ 2491 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2492 if (chip->options & NAND_BUSWIDTH_16) 2493 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2494 2495 /* 2496 * On small page NANDs, only one cycle is needed to pass the 2497 * column address. 2498 */ 2499 if (mtd->writesize <= 512) { 2500 marvell_nand->addr_cyc = 1; 2501 } else { 2502 marvell_nand->addr_cyc = 2; 2503 marvell_nand->ndcr |= NDCR_RA_START; 2504 } 2505 2506 /* 2507 * Now add the number of cycles needed to pass the row 2508 * address. 2509 * 2510 * Addressing a chip using CS 2 or 3 should also need the third row 2511 * cycle but due to inconsistance in the documentation and lack of 2512 * hardware to test this situation, this case is not supported. 2513 */ 2514 if (chip->options & NAND_ROW_ADDR_3) 2515 marvell_nand->addr_cyc += 3; 2516 else 2517 marvell_nand->addr_cyc += 2; 2518 2519 if (pdata) { 2520 chip->ecc.size = pdata->ecc_step_size; 2521 chip->ecc.strength = pdata->ecc_strength; 2522 } 2523 2524 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2525 if (ret) { 2526 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2527 return ret; 2528 } 2529 2530 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { 2531 /* 2532 * Subpage write not available with hardware ECC, prohibit also 2533 * subpage read as in userspace subpage access would still be 2534 * allowed and subpage write, if used, would lead to numerous 2535 * uncorrectable ECC errors. 2536 */ 2537 chip->options |= NAND_NO_SUBPAGE_WRITE; 2538 } 2539 2540 if (pdata || nfc->caps->legacy_of_bindings) { 2541 /* 2542 * We keep the MTD name unchanged to avoid breaking platforms 2543 * where the MTD cmdline parser is used and the bootloader 2544 * has not been updated to use the new naming scheme. 2545 */ 2546 mtd->name = "pxa3xx_nand-0"; 2547 } else if (!mtd->name) { 2548 /* 2549 * If the new bindings are used and the bootloader has not been 2550 * updated to pass a new mtdparts parameter on the cmdline, you 2551 * should define the following property in your NAND node, ie: 2552 * 2553 * label = "main-storage"; 2554 * 2555 * This way, mtd->name will be set by the core when 2556 * nand_set_flash_node() is called. 2557 */ 2558 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2559 "%s:nand.%d", dev_name(nfc->dev), 2560 marvell_nand->sels[0].cs); 2561 if (!mtd->name) { 2562 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2563 return -ENOMEM; 2564 } 2565 } 2566 2567 return 0; 2568 } 2569 2570 static const struct nand_controller_ops marvell_nand_controller_ops = { 2571 .attach_chip = marvell_nand_attach_chip, 2572 .exec_op = marvell_nfc_exec_op, 2573 .setup_interface = marvell_nfc_setup_interface, 2574 }; 2575 2576 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2577 struct device_node *np) 2578 { 2579 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2580 struct marvell_nand_chip *marvell_nand; 2581 struct mtd_info *mtd; 2582 struct nand_chip *chip; 2583 int nsels, ret, i; 2584 u32 cs, rb; 2585 2586 /* 2587 * The legacy "num-cs" property indicates the number of CS on the only 2588 * chip connected to the controller (legacy bindings does not support 2589 * more than one chip). The CS and RB pins are always the #0. 2590 * 2591 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2592 * properties must be filled. For each chip, expressed as a subnode, 2593 * "reg" points to the CS lines and "nand-rb" to the RB line. 2594 */ 2595 if (pdata || nfc->caps->legacy_of_bindings) { 2596 nsels = 1; 2597 } else { 2598 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2599 if (nsels <= 0) { 2600 dev_err(dev, "missing/invalid reg property\n"); 2601 return -EINVAL; 2602 } 2603 } 2604 2605 /* Alloc the nand chip structure */ 2606 marvell_nand = devm_kzalloc(dev, 2607 struct_size(marvell_nand, sels, nsels), 2608 GFP_KERNEL); 2609 if (!marvell_nand) { 2610 dev_err(dev, "could not allocate chip structure\n"); 2611 return -ENOMEM; 2612 } 2613 2614 marvell_nand->nsels = nsels; 2615 marvell_nand->selected_die = -1; 2616 2617 for (i = 0; i < nsels; i++) { 2618 if (pdata || nfc->caps->legacy_of_bindings) { 2619 /* 2620 * Legacy bindings use the CS lines in natural 2621 * order (0, 1, ...) 2622 */ 2623 cs = i; 2624 } else { 2625 /* Retrieve CS id */ 2626 ret = of_property_read_u32_index(np, "reg", i, &cs); 2627 if (ret) { 2628 dev_err(dev, "could not retrieve reg property: %d\n", 2629 ret); 2630 return ret; 2631 } 2632 } 2633 2634 if (cs >= nfc->caps->max_cs_nb) { 2635 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2636 cs, nfc->caps->max_cs_nb); 2637 return -EINVAL; 2638 } 2639 2640 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2641 dev_err(dev, "CS %d already assigned\n", cs); 2642 return -EINVAL; 2643 } 2644 2645 /* 2646 * The cs variable represents the chip select id, which must be 2647 * converted in bit fields for NDCB0 and NDCB2 to select the 2648 * right chip. Unfortunately, due to a lack of information on 2649 * the subject and incoherent documentation, the user should not 2650 * use CS1 and CS3 at all as asserting them is not supported in 2651 * a reliable way (due to multiplexing inside ADDR5 field). 2652 */ 2653 marvell_nand->sels[i].cs = cs; 2654 switch (cs) { 2655 case 0: 2656 case 2: 2657 marvell_nand->sels[i].ndcb0_csel = 0; 2658 break; 2659 case 1: 2660 case 3: 2661 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2662 break; 2663 default: 2664 return -EINVAL; 2665 } 2666 2667 /* Retrieve RB id */ 2668 if (pdata || nfc->caps->legacy_of_bindings) { 2669 /* Legacy bindings always use RB #0 */ 2670 rb = 0; 2671 } else { 2672 ret = of_property_read_u32_index(np, "nand-rb", i, 2673 &rb); 2674 if (ret) { 2675 dev_err(dev, 2676 "could not retrieve RB property: %d\n", 2677 ret); 2678 return ret; 2679 } 2680 } 2681 2682 if (rb >= nfc->caps->max_rb_nb) { 2683 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2684 rb, nfc->caps->max_rb_nb); 2685 return -EINVAL; 2686 } 2687 2688 marvell_nand->sels[i].rb = rb; 2689 } 2690 2691 chip = &marvell_nand->chip; 2692 chip->controller = &nfc->controller; 2693 nand_set_flash_node(chip, np); 2694 2695 if (of_property_read_bool(np, "marvell,nand-keep-config")) 2696 chip->options |= NAND_KEEP_TIMINGS; 2697 2698 mtd = nand_to_mtd(chip); 2699 mtd->dev.parent = dev; 2700 2701 /* 2702 * Save a reference value for timing registers before 2703 * ->setup_interface() is called. 2704 */ 2705 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2706 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2707 2708 chip->options |= NAND_BUSWIDTH_AUTO; 2709 2710 ret = nand_scan(chip, marvell_nand->nsels); 2711 if (ret) { 2712 dev_err(dev, "could not scan the nand chip\n"); 2713 return ret; 2714 } 2715 2716 if (pdata) 2717 /* Legacy bindings support only one chip */ 2718 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2719 else 2720 ret = mtd_device_register(mtd, NULL, 0); 2721 if (ret) { 2722 dev_err(dev, "failed to register mtd device: %d\n", ret); 2723 nand_cleanup(chip); 2724 return ret; 2725 } 2726 2727 list_add_tail(&marvell_nand->node, &nfc->chips); 2728 2729 return 0; 2730 } 2731 2732 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2733 { 2734 struct marvell_nand_chip *entry, *temp; 2735 struct nand_chip *chip; 2736 int ret; 2737 2738 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2739 chip = &entry->chip; 2740 ret = mtd_device_unregister(nand_to_mtd(chip)); 2741 WARN_ON(ret); 2742 nand_cleanup(chip); 2743 list_del(&entry->node); 2744 } 2745 } 2746 2747 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2748 { 2749 struct device_node *np = dev->of_node; 2750 struct device_node *nand_np; 2751 int max_cs = nfc->caps->max_cs_nb; 2752 int nchips; 2753 int ret; 2754 2755 if (!np) 2756 nchips = 1; 2757 else 2758 nchips = of_get_child_count(np); 2759 2760 if (nchips > max_cs) { 2761 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2762 max_cs); 2763 return -EINVAL; 2764 } 2765 2766 /* 2767 * Legacy bindings do not use child nodes to exhibit NAND chip 2768 * properties and layout. Instead, NAND properties are mixed with the 2769 * controller ones, and partitions are defined as direct subnodes of the 2770 * NAND controller node. 2771 */ 2772 if (nfc->caps->legacy_of_bindings) { 2773 ret = marvell_nand_chip_init(dev, nfc, np); 2774 return ret; 2775 } 2776 2777 for_each_child_of_node(np, nand_np) { 2778 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2779 if (ret) { 2780 of_node_put(nand_np); 2781 goto cleanup_chips; 2782 } 2783 } 2784 2785 return 0; 2786 2787 cleanup_chips: 2788 marvell_nand_chips_cleanup(nfc); 2789 2790 return ret; 2791 } 2792 2793 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2794 { 2795 struct platform_device *pdev = container_of(nfc->dev, 2796 struct platform_device, 2797 dev); 2798 struct dma_slave_config config = {}; 2799 struct resource *r; 2800 int ret; 2801 2802 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2803 dev_warn(nfc->dev, 2804 "DMA not enabled in configuration\n"); 2805 return -ENOTSUPP; 2806 } 2807 2808 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2809 if (ret) 2810 return ret; 2811 2812 nfc->dma_chan = dma_request_chan(nfc->dev, "data"); 2813 if (IS_ERR(nfc->dma_chan)) { 2814 ret = PTR_ERR(nfc->dma_chan); 2815 nfc->dma_chan = NULL; 2816 return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); 2817 } 2818 2819 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2820 if (!r) { 2821 ret = -ENXIO; 2822 goto release_channel; 2823 } 2824 2825 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2826 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2827 config.src_addr = r->start + NDDB; 2828 config.dst_addr = r->start + NDDB; 2829 config.src_maxburst = 32; 2830 config.dst_maxburst = 32; 2831 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2832 if (ret < 0) { 2833 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2834 goto release_channel; 2835 } 2836 2837 /* 2838 * DMA must act on length multiple of 32 and this length may be 2839 * bigger than the destination buffer. Use this buffer instead 2840 * for DMA transfers and then copy the desired amount of data to 2841 * the provided buffer. 2842 */ 2843 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2844 if (!nfc->dma_buf) { 2845 ret = -ENOMEM; 2846 goto release_channel; 2847 } 2848 2849 nfc->use_dma = true; 2850 2851 return 0; 2852 2853 release_channel: 2854 dma_release_channel(nfc->dma_chan); 2855 nfc->dma_chan = NULL; 2856 2857 return ret; 2858 } 2859 2860 static void marvell_nfc_reset(struct marvell_nfc *nfc) 2861 { 2862 /* 2863 * ECC operations and interruptions are only enabled when specifically 2864 * needed. ECC shall not be activated in the early stages (fails probe). 2865 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2866 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2867 * offset in the read page and this will fail the protection. 2868 */ 2869 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2870 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2871 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2872 writel_relaxed(0, nfc->regs + NDECCCTRL); 2873 } 2874 2875 static int marvell_nfc_init(struct marvell_nfc *nfc) 2876 { 2877 struct device_node *np = nfc->dev->of_node; 2878 2879 /* 2880 * Some SoCs like A7k/A8k need to enable manually the NAND 2881 * controller, gated clocks and reset bits to avoid being bootloader 2882 * dependent. This is done through the use of the System Functions 2883 * registers. 2884 */ 2885 if (nfc->caps->need_system_controller) { 2886 struct regmap *sysctrl_base = 2887 syscon_regmap_lookup_by_phandle(np, 2888 "marvell,system-controller"); 2889 2890 if (IS_ERR(sysctrl_base)) 2891 return PTR_ERR(sysctrl_base); 2892 2893 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, 2894 GENCONF_SOC_DEVICE_MUX_NFC_EN | 2895 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2896 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2897 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN | 2898 GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN); 2899 2900 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, 2901 GENCONF_CLK_GATING_CTRL_ND_GATE, 2902 GENCONF_CLK_GATING_CTRL_ND_GATE); 2903 } 2904 2905 /* Configure the DMA if appropriate */ 2906 if (!nfc->caps->is_nfcv2) 2907 marvell_nfc_init_dma(nfc); 2908 2909 marvell_nfc_reset(nfc); 2910 2911 return 0; 2912 } 2913 2914 static int marvell_nfc_probe(struct platform_device *pdev) 2915 { 2916 struct device *dev = &pdev->dev; 2917 struct marvell_nfc *nfc; 2918 int ret; 2919 int irq; 2920 2921 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2922 GFP_KERNEL); 2923 if (!nfc) 2924 return -ENOMEM; 2925 2926 nfc->dev = dev; 2927 nand_controller_init(&nfc->controller); 2928 nfc->controller.ops = &marvell_nand_controller_ops; 2929 INIT_LIST_HEAD(&nfc->chips); 2930 2931 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 2932 if (IS_ERR(nfc->regs)) 2933 return PTR_ERR(nfc->regs); 2934 2935 irq = platform_get_irq(pdev, 0); 2936 if (irq < 0) 2937 return irq; 2938 2939 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2940 2941 /* Managed the legacy case (when the first clock was not named) */ 2942 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2943 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2944 2945 if (IS_ERR(nfc->core_clk)) 2946 return PTR_ERR(nfc->core_clk); 2947 2948 ret = clk_prepare_enable(nfc->core_clk); 2949 if (ret) 2950 return ret; 2951 2952 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2953 if (IS_ERR(nfc->reg_clk)) { 2954 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2955 ret = PTR_ERR(nfc->reg_clk); 2956 goto unprepare_core_clk; 2957 } 2958 2959 nfc->reg_clk = NULL; 2960 } 2961 2962 ret = clk_prepare_enable(nfc->reg_clk); 2963 if (ret) 2964 goto unprepare_core_clk; 2965 2966 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2967 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2968 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2969 0, "marvell-nfc", nfc); 2970 if (ret) 2971 goto unprepare_reg_clk; 2972 2973 /* Get NAND controller capabilities */ 2974 if (pdev->id_entry) 2975 nfc->caps = (void *)pdev->id_entry->driver_data; 2976 else 2977 nfc->caps = of_device_get_match_data(&pdev->dev); 2978 2979 if (!nfc->caps) { 2980 dev_err(dev, "Could not retrieve NFC caps\n"); 2981 ret = -EINVAL; 2982 goto unprepare_reg_clk; 2983 } 2984 2985 /* Init the controller and then probe the chips */ 2986 ret = marvell_nfc_init(nfc); 2987 if (ret) 2988 goto unprepare_reg_clk; 2989 2990 platform_set_drvdata(pdev, nfc); 2991 2992 ret = marvell_nand_chips_init(dev, nfc); 2993 if (ret) 2994 goto release_dma; 2995 2996 return 0; 2997 2998 release_dma: 2999 if (nfc->use_dma) 3000 dma_release_channel(nfc->dma_chan); 3001 unprepare_reg_clk: 3002 clk_disable_unprepare(nfc->reg_clk); 3003 unprepare_core_clk: 3004 clk_disable_unprepare(nfc->core_clk); 3005 3006 return ret; 3007 } 3008 3009 static void marvell_nfc_remove(struct platform_device *pdev) 3010 { 3011 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 3012 3013 marvell_nand_chips_cleanup(nfc); 3014 3015 if (nfc->use_dma) { 3016 dmaengine_terminate_all(nfc->dma_chan); 3017 dma_release_channel(nfc->dma_chan); 3018 } 3019 3020 clk_disable_unprepare(nfc->reg_clk); 3021 clk_disable_unprepare(nfc->core_clk); 3022 } 3023 3024 static int __maybe_unused marvell_nfc_suspend(struct device *dev) 3025 { 3026 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3027 struct marvell_nand_chip *chip; 3028 3029 list_for_each_entry(chip, &nfc->chips, node) 3030 marvell_nfc_wait_ndrun(&chip->chip); 3031 3032 clk_disable_unprepare(nfc->reg_clk); 3033 clk_disable_unprepare(nfc->core_clk); 3034 3035 return 0; 3036 } 3037 3038 static int __maybe_unused marvell_nfc_resume(struct device *dev) 3039 { 3040 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3041 int ret; 3042 3043 ret = clk_prepare_enable(nfc->core_clk); 3044 if (ret < 0) 3045 return ret; 3046 3047 ret = clk_prepare_enable(nfc->reg_clk); 3048 if (ret < 0) { 3049 clk_disable_unprepare(nfc->core_clk); 3050 return ret; 3051 } 3052 3053 /* 3054 * Reset nfc->selected_chip so the next command will cause the timing 3055 * registers to be restored in marvell_nfc_select_target(). 3056 */ 3057 nfc->selected_chip = NULL; 3058 3059 /* Reset registers that have lost their contents */ 3060 marvell_nfc_reset(nfc); 3061 3062 return 0; 3063 } 3064 3065 static const struct dev_pm_ops marvell_nfc_pm_ops = { 3066 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 3067 }; 3068 3069 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 3070 .max_cs_nb = 4, 3071 .max_rb_nb = 2, 3072 .need_system_controller = true, 3073 .is_nfcv2 = true, 3074 }; 3075 3076 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 3077 .max_cs_nb = 4, 3078 .max_rb_nb = 2, 3079 .is_nfcv2 = true, 3080 }; 3081 3082 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 3083 .max_cs_nb = 2, 3084 .max_rb_nb = 1, 3085 .use_dma = true, 3086 }; 3087 3088 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 3089 .max_cs_nb = 4, 3090 .max_rb_nb = 2, 3091 .need_system_controller = true, 3092 .legacy_of_bindings = true, 3093 .is_nfcv2 = true, 3094 }; 3095 3096 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 3097 .max_cs_nb = 4, 3098 .max_rb_nb = 2, 3099 .legacy_of_bindings = true, 3100 .is_nfcv2 = true, 3101 }; 3102 3103 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 3104 .max_cs_nb = 2, 3105 .max_rb_nb = 1, 3106 .legacy_of_bindings = true, 3107 .use_dma = true, 3108 }; 3109 3110 static const struct platform_device_id marvell_nfc_platform_ids[] = { 3111 { 3112 .name = "pxa3xx-nand", 3113 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 3114 }, 3115 { /* sentinel */ }, 3116 }; 3117 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 3118 3119 static const struct of_device_id marvell_nfc_of_ids[] = { 3120 { 3121 .compatible = "marvell,armada-8k-nand-controller", 3122 .data = &marvell_armada_8k_nfc_caps, 3123 }, 3124 { 3125 .compatible = "marvell,armada370-nand-controller", 3126 .data = &marvell_armada370_nfc_caps, 3127 }, 3128 { 3129 .compatible = "marvell,pxa3xx-nand-controller", 3130 .data = &marvell_pxa3xx_nfc_caps, 3131 }, 3132 /* Support for old/deprecated bindings: */ 3133 { 3134 .compatible = "marvell,armada-8k-nand", 3135 .data = &marvell_armada_8k_nfc_legacy_caps, 3136 }, 3137 { 3138 .compatible = "marvell,armada370-nand", 3139 .data = &marvell_armada370_nfc_legacy_caps, 3140 }, 3141 { 3142 .compatible = "marvell,pxa3xx-nand", 3143 .data = &marvell_pxa3xx_nfc_legacy_caps, 3144 }, 3145 { /* sentinel */ }, 3146 }; 3147 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 3148 3149 static struct platform_driver marvell_nfc_driver = { 3150 .driver = { 3151 .name = "marvell-nfc", 3152 .of_match_table = marvell_nfc_of_ids, 3153 .pm = &marvell_nfc_pm_ops, 3154 }, 3155 .id_table = marvell_nfc_platform_ids, 3156 .probe = marvell_nfc_probe, 3157 .remove_new = marvell_nfc_remove, 3158 }; 3159 module_platform_driver(marvell_nfc_driver); 3160 3161 MODULE_LICENSE("GPL"); 3162 MODULE_DESCRIPTION("Marvell NAND controller driver"); 3163