1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 * 9 * This NAND controller driver handles two versions of the hardware, 10 * one is called NFCv1 and is available on PXA SoCs and the other is 11 * called NFCv2 and is available on Armada SoCs. 12 * 13 * The main visible difference is that NFCv1 only has Hamming ECC 14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA 15 * is not used with NFCv2. 16 * 17 * The ECC layouts are depicted in details in Marvell AN-379, but here 18 * is a brief description. 19 * 20 * When using Hamming, the data is split in 512B chunks (either 1, 2 21 * or 4) and each chunk will have its own ECC "digest" of 6B at the 22 * beginning of the OOB area and eventually the remaining free OOB 23 * bytes (also called "spare" bytes in the driver). This engine 24 * corrects up to 1 bit per chunk and detects reliably an error if 25 * there are at most 2 bitflips. Here is the page layout used by the 26 * controller when Hamming is chosen: 27 * 28 * +-------------------------------------------------------------+ 29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | 30 * +-------------------------------------------------------------+ 31 * 32 * When using the BCH engine, there are N identical (data + free OOB + 33 * ECC) sections and potentially an extra one to deal with 34 * configurations where the chosen (data + free OOB + ECC) sizes do 35 * not align with the page (data + OOB) size. ECC bytes are always 36 * 30B per ECC chunk. Here is the page layout used by the controller 37 * when BCH is chosen: 38 * 39 * +----------------------------------------- 40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ... 41 * +----------------------------------------- 42 * 43 * ------------------------------------------- 44 * ... | Data N | Free OOB bytes N | ECC N | 45 * ------------------------------------------- 46 * 47 * --------------------------------------------+ 48 * Last Data | Last Free OOB bytes | Last ECC | 49 * --------------------------------------------+ 50 * 51 * In both cases, the layout seen by the user is always: all data 52 * first, then all free OOB bytes and finally all ECC bytes. With BCH, 53 * ECC bytes are 30B long and are padded with 0xFF to align on 32 54 * bytes. 55 * 56 * The controller has certain limitations that are handled by the 57 * driver: 58 * - It can only read 2k at a time. To overcome this limitation, the 59 * driver issues data cycles on the bus, without issuing new 60 * CMD + ADDR cycles. The Marvell term is "naked" operations. 61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 62 * bits. What can be tuned is the ECC block size as long as it 63 * stays between 512B and 2kiB. It's usually chosen based on the 64 * chip ECC requirements. For instance, using 2kiB ECC chunks 65 * provides 4b/512B correctability. 66 * - The controller will always treat data bytes, free OOB bytes 67 * and ECC bytes in that order, no matter what the real layout is 68 * (which is usually all data then all OOB bytes). The 69 * marvell_nfc_layouts array below contains the currently 70 * supported layouts. 71 * - Because of these weird layouts, the Bad Block Markers can be 72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM 73 * option must be set to prevent scanning/writing bad block 74 * markers. 75 */ 76 77 #include <linux/module.h> 78 #include <linux/clk.h> 79 #include <linux/mtd/rawnand.h> 80 #include <linux/of_platform.h> 81 #include <linux/iopoll.h> 82 #include <linux/interrupt.h> 83 #include <linux/slab.h> 84 #include <linux/mfd/syscon.h> 85 #include <linux/regmap.h> 86 #include <asm/unaligned.h> 87 88 #include <linux/dmaengine.h> 89 #include <linux/dma-mapping.h> 90 #include <linux/dma/pxa-dma.h> 91 #include <linux/platform_data/mtd-nand-pxa3xx.h> 92 93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 94 #define FIFO_DEPTH 8 95 #define FIFO_REP(x) (x / sizeof(u32)) 96 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 97 /* NFC does not support transfers of larger chunks at a time */ 98 #define MAX_CHUNK_SIZE 2112 99 /* NFCv1 cannot read more that 7 bytes of ID */ 100 #define NFCV1_READID_LEN 7 101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 102 #define POLL_PERIOD 0 103 #define POLL_TIMEOUT 100000 104 /* Interrupt maximum wait period in ms */ 105 #define IRQ_TIMEOUT 1000 106 /* Latency in clock cycles between SoC pins and NFC logic */ 107 #define MIN_RD_DEL_CNT 3 108 /* Maximum number of contiguous address cycles */ 109 #define MAX_ADDRESS_CYC_NFCV1 5 110 #define MAX_ADDRESS_CYC_NFCV2 7 111 /* System control registers/bits to enable the NAND controller on some SoCs */ 112 #define GENCONF_SOC_DEVICE_MUX 0x208 113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 117 #define GENCONF_CLK_GATING_CTRL 0x220 118 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 119 #define GENCONF_ND_CLK_CTRL 0x700 120 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 121 122 /* NAND controller data flash control register */ 123 #define NDCR 0x00 124 #define NDCR_ALL_INT GENMASK(11, 0) 125 #define NDCR_CS1_CMDDM BIT(7) 126 #define NDCR_CS0_CMDDM BIT(8) 127 #define NDCR_RDYM BIT(11) 128 #define NDCR_ND_ARB_EN BIT(12) 129 #define NDCR_RA_START BIT(15) 130 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 131 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 132 #define NDCR_DWIDTH_M BIT(26) 133 #define NDCR_DWIDTH_C BIT(27) 134 #define NDCR_ND_RUN BIT(28) 135 #define NDCR_DMA_EN BIT(29) 136 #define NDCR_ECC_EN BIT(30) 137 #define NDCR_SPARE_EN BIT(31) 138 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 139 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 140 141 /* NAND interface timing parameter 0 register */ 142 #define NDTR0 0x04 143 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 144 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 145 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 146 #define NDTR0_SEL_NRE_EDGE BIT(7) 147 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 148 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 149 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 150 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 151 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 152 #define NDTR0_SELCNTR BIT(26) 153 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 154 155 /* NAND interface timing parameter 1 register */ 156 #define NDTR1 0x0C 157 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 158 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 159 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 160 #define NDTR1_PRESCALE BIT(14) 161 #define NDTR1_WAIT_MODE BIT(15) 162 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 163 164 /* NAND controller status register */ 165 #define NDSR 0x14 166 #define NDSR_WRCMDREQ BIT(0) 167 #define NDSR_RDDREQ BIT(1) 168 #define NDSR_WRDREQ BIT(2) 169 #define NDSR_CORERR BIT(3) 170 #define NDSR_UNCERR BIT(4) 171 #define NDSR_CMDD(cs) BIT(8 - cs) 172 #define NDSR_RDY(rb) BIT(11 + rb) 173 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 174 175 /* NAND ECC control register */ 176 #define NDECCCTRL 0x28 177 #define NDECCCTRL_BCH_EN BIT(0) 178 179 /* NAND controller data buffer register */ 180 #define NDDB 0x40 181 182 /* NAND controller command buffer 0 register */ 183 #define NDCB0 0x48 184 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 185 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 186 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 187 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 188 #define NDCB0_DBC BIT(19) 189 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 190 #define NDCB0_CSEL BIT(24) 191 #define NDCB0_RDY_BYP BIT(27) 192 #define NDCB0_LEN_OVRD BIT(28) 193 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 194 195 /* NAND controller command buffer 1 register */ 196 #define NDCB1 0x4C 197 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 198 #define NDCB1_ADDRS_PAGE(x) (x << 16) 199 200 /* NAND controller command buffer 2 register */ 201 #define NDCB2 0x50 202 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 203 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 204 205 /* NAND controller command buffer 3 register */ 206 #define NDCB3 0x54 207 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 208 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 209 210 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 211 #define TYPE_READ 0 212 #define TYPE_WRITE 1 213 #define TYPE_ERASE 2 214 #define TYPE_READ_ID 3 215 #define TYPE_STATUS 4 216 #define TYPE_RESET 5 217 #define TYPE_NAKED_CMD 6 218 #define TYPE_NAKED_ADDR 7 219 #define TYPE_MASK 7 220 #define XTYPE_MONOLITHIC_RW 0 221 #define XTYPE_LAST_NAKED_RW 1 222 #define XTYPE_FINAL_COMMAND 3 223 #define XTYPE_READ 4 224 #define XTYPE_WRITE_DISPATCH 4 225 #define XTYPE_NAKED_RW 5 226 #define XTYPE_COMMAND_DISPATCH 6 227 #define XTYPE_MASK 7 228 229 /** 230 * struct marvell_hw_ecc_layout - layout of Marvell ECC 231 * 232 * Marvell ECC engine works differently than the others, in order to limit the 233 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 234 * per subpage, and depending on a the desired strength needed by the NAND chip, 235 * a particular layout mixing data/spare/ecc is defined, with a possible last 236 * chunk smaller that the others. 237 * 238 * @writesize: Full page size on which the layout applies 239 * @chunk: Desired ECC chunk size on which the layout applies 240 * @strength: Desired ECC strength (per chunk size bytes) on which the 241 * layout applies 242 * @nchunks: Total number of chunks 243 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 244 * repetitions of the pattern: 245 * (data_bytes + spare_bytes + ecc_bytes). 246 * @data_bytes: Number of data bytes per chunk 247 * @spare_bytes: Number of spare bytes per chunk 248 * @ecc_bytes: Number of ecc bytes per chunk 249 * @last_data_bytes: Number of data bytes in the last chunk 250 * @last_spare_bytes: Number of spare bytes in the last chunk 251 * @last_ecc_bytes: Number of ecc bytes in the last chunk 252 */ 253 struct marvell_hw_ecc_layout { 254 /* Constraints */ 255 int writesize; 256 int chunk; 257 int strength; 258 /* Corresponding layout */ 259 int nchunks; 260 int full_chunk_cnt; 261 int data_bytes; 262 int spare_bytes; 263 int ecc_bytes; 264 int last_data_bytes; 265 int last_spare_bytes; 266 int last_ecc_bytes; 267 }; 268 269 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 270 { \ 271 .writesize = ws, \ 272 .chunk = dc, \ 273 .strength = ds, \ 274 .nchunks = nc, \ 275 .full_chunk_cnt = fcc, \ 276 .data_bytes = db, \ 277 .spare_bytes = sb, \ 278 .ecc_bytes = eb, \ 279 .last_data_bytes = ldb, \ 280 .last_spare_bytes = lsb, \ 281 .last_ecc_bytes = leb, \ 282 } 283 284 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 285 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 286 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 287 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 288 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 289 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), 290 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 291 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 292 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), 293 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), 294 }; 295 296 /** 297 * struct marvell_nand_chip_sel - CS line description 298 * 299 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 300 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 301 * The datasheet describes the logic with an error: ADDR5 field is once 302 * declared at the beginning of NDCB2, and another time at its end. Because the 303 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 304 * to use the last bit of this field instead of the first ones. 305 * 306 * @cs: Wanted CE lane. 307 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 308 * selecting the wanted CE lane. This is set once when 309 * the Device Tree is probed. 310 * @rb: Ready/Busy pin for the flash chip 311 */ 312 struct marvell_nand_chip_sel { 313 unsigned int cs; 314 u32 ndcb0_csel; 315 unsigned int rb; 316 }; 317 318 /** 319 * struct marvell_nand_chip - stores NAND chip device related information 320 * 321 * @chip: Base NAND chip structure 322 * @node: Used to store NAND chips into a list 323 * @layout: NAND layout when using hardware ECC 324 * @ndcr: Controller register value for this NAND chip 325 * @ndtr0: Timing registers 0 value for this NAND chip 326 * @ndtr1: Timing registers 1 value for this NAND chip 327 * @addr_cyc: Amount of cycles needed to pass column address 328 * @selected_die: Current active CS 329 * @nsels: Number of CS lines required by the NAND chip 330 * @sels: Array of CS lines descriptions 331 */ 332 struct marvell_nand_chip { 333 struct nand_chip chip; 334 struct list_head node; 335 const struct marvell_hw_ecc_layout *layout; 336 u32 ndcr; 337 u32 ndtr0; 338 u32 ndtr1; 339 int addr_cyc; 340 int selected_die; 341 unsigned int nsels; 342 struct marvell_nand_chip_sel sels[]; 343 }; 344 345 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 346 { 347 return container_of(chip, struct marvell_nand_chip, chip); 348 } 349 350 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 351 *nand) 352 { 353 return &nand->sels[nand->selected_die]; 354 } 355 356 /** 357 * struct marvell_nfc_caps - NAND controller capabilities for distinction 358 * between compatible strings 359 * 360 * @max_cs_nb: Number of Chip Select lines available 361 * @max_rb_nb: Number of Ready/Busy lines available 362 * @need_system_controller: Indicates if the SoC needs to have access to the 363 * system controller (ie. to enable the NAND controller) 364 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 365 * fashion way 366 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 367 * BCH error detection and correction algorithm, 368 * NDCB3 register has been added 369 * @use_dma: Use dma for data transfers 370 */ 371 struct marvell_nfc_caps { 372 unsigned int max_cs_nb; 373 unsigned int max_rb_nb; 374 bool need_system_controller; 375 bool legacy_of_bindings; 376 bool is_nfcv2; 377 bool use_dma; 378 }; 379 380 /** 381 * struct marvell_nfc - stores Marvell NAND controller information 382 * 383 * @controller: Base controller structure 384 * @dev: Parent device (used to print error messages) 385 * @regs: NAND controller registers 386 * @core_clk: Core clock 387 * @reg_clk: Registers clock 388 * @complete: Completion object to wait for NAND controller events 389 * @assigned_cs: Bitmask describing already assigned CS lines 390 * @chips: List containing all the NAND chips attached to 391 * this NAND controller 392 * @selected_chip: Currently selected target chip 393 * @caps: NAND controller capabilities for each compatible string 394 * @use_dma: Whetner DMA is used 395 * @dma_chan: DMA channel (NFCv1 only) 396 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 397 */ 398 struct marvell_nfc { 399 struct nand_controller controller; 400 struct device *dev; 401 void __iomem *regs; 402 struct clk *core_clk; 403 struct clk *reg_clk; 404 struct completion complete; 405 unsigned long assigned_cs; 406 struct list_head chips; 407 struct nand_chip *selected_chip; 408 const struct marvell_nfc_caps *caps; 409 410 /* DMA (NFCv1 only) */ 411 bool use_dma; 412 struct dma_chan *dma_chan; 413 u8 *dma_buf; 414 }; 415 416 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 417 { 418 return container_of(ctrl, struct marvell_nfc, controller); 419 } 420 421 /** 422 * struct marvell_nfc_timings - NAND controller timings expressed in NAND 423 * Controller clock cycles 424 * 425 * @tRP: ND_nRE pulse width 426 * @tRH: ND_nRE high duration 427 * @tWP: ND_nWE pulse time 428 * @tWH: ND_nWE high duration 429 * @tCS: Enable signal setup time 430 * @tCH: Enable signal hold time 431 * @tADL: Address to write data delay 432 * @tAR: ND_ALE low to ND_nRE low delay 433 * @tWHR: ND_nWE high to ND_nRE low for status read 434 * @tRHW: ND_nRE high duration, read to write delay 435 * @tR: ND_nWE high to ND_nRE low for read 436 */ 437 struct marvell_nfc_timings { 438 /* NDTR0 fields */ 439 unsigned int tRP; 440 unsigned int tRH; 441 unsigned int tWP; 442 unsigned int tWH; 443 unsigned int tCS; 444 unsigned int tCH; 445 unsigned int tADL; 446 /* NDTR1 fields */ 447 unsigned int tAR; 448 unsigned int tWHR; 449 unsigned int tRHW; 450 unsigned int tR; 451 }; 452 453 /** 454 * TO_CYCLES() - Derives a duration in numbers of clock cycles. 455 * 456 * @ps: Duration in pico-seconds 457 * @period_ns: Clock period in nano-seconds 458 * 459 * Convert the duration in nano-seconds, then divide by the period and 460 * return the number of clock periods. 461 */ 462 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 463 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 464 period_ns)) 465 466 /** 467 * struct marvell_nfc_op - filled during the parsing of the ->exec_op() 468 * subop subset of instructions. 469 * 470 * @ndcb: Array of values written to NDCBx registers 471 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 472 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 473 * @rdy_delay_ns: Optional delay after waiting for the RB pin 474 * @data_delay_ns: Optional delay after the data xfer 475 * @data_instr_idx: Index of the data instruction in the subop 476 * @data_instr: Pointer to the data instruction in the subop 477 */ 478 struct marvell_nfc_op { 479 u32 ndcb[4]; 480 unsigned int cle_ale_delay_ns; 481 unsigned int rdy_timeout_ms; 482 unsigned int rdy_delay_ns; 483 unsigned int data_delay_ns; 484 unsigned int data_instr_idx; 485 const struct nand_op_instr *data_instr; 486 }; 487 488 /* 489 * Internal helper to conditionnally apply a delay (from the above structure, 490 * most of the time). 491 */ 492 static void cond_delay(unsigned int ns) 493 { 494 if (!ns) 495 return; 496 497 if (ns < 10000) 498 ndelay(ns); 499 else 500 udelay(DIV_ROUND_UP(ns, 1000)); 501 } 502 503 /* 504 * The controller has many flags that could generate interrupts, most of them 505 * are disabled and polling is used. For the very slow signals, using interrupts 506 * may relax the CPU charge. 507 */ 508 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 509 { 510 u32 reg; 511 512 /* Writing 1 disables the interrupt */ 513 reg = readl_relaxed(nfc->regs + NDCR); 514 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 515 } 516 517 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 518 { 519 u32 reg; 520 521 /* Writing 0 enables the interrupt */ 522 reg = readl_relaxed(nfc->regs + NDCR); 523 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 524 } 525 526 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 527 { 528 u32 reg; 529 530 reg = readl_relaxed(nfc->regs + NDSR); 531 writel_relaxed(int_mask, nfc->regs + NDSR); 532 533 return reg & int_mask; 534 } 535 536 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 537 bool force_8bit) 538 { 539 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 540 u32 ndcr; 541 542 /* 543 * Callers of this function do not verify if the NAND is using a 16-bit 544 * an 8-bit bus for normal operations, so we need to take care of that 545 * here by leaving the configuration unchanged if the NAND does not have 546 * the NAND_BUSWIDTH_16 flag set. 547 */ 548 if (!(chip->options & NAND_BUSWIDTH_16)) 549 return; 550 551 ndcr = readl_relaxed(nfc->regs + NDCR); 552 553 if (force_8bit) 554 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 555 else 556 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 557 558 writel_relaxed(ndcr, nfc->regs + NDCR); 559 } 560 561 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 562 { 563 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 564 u32 val; 565 int ret; 566 567 /* 568 * The command is being processed, wait for the ND_RUN bit to be 569 * cleared by the NFC. If not, we must clear it by hand. 570 */ 571 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 572 (val & NDCR_ND_RUN) == 0, 573 POLL_PERIOD, POLL_TIMEOUT); 574 if (ret) { 575 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 576 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 577 nfc->regs + NDCR); 578 return ret; 579 } 580 581 return 0; 582 } 583 584 /* 585 * Any time a command has to be sent to the controller, the following sequence 586 * has to be followed: 587 * - call marvell_nfc_prepare_cmd() 588 * -> activate the ND_RUN bit that will kind of 'start a job' 589 * -> wait the signal indicating the NFC is waiting for a command 590 * - send the command (cmd and address cycles) 591 * - enventually send or receive the data 592 * - call marvell_nfc_end_cmd() with the corresponding flag 593 * -> wait the flag to be triggered or cancel the job with a timeout 594 * 595 * The following helpers are here to factorize the code a bit so that 596 * specialized functions responsible for executing the actual NAND 597 * operations do not have to replicate the same code blocks. 598 */ 599 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 600 { 601 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 602 u32 ndcr, val; 603 int ret; 604 605 /* Poll ND_RUN and clear NDSR before issuing any command */ 606 ret = marvell_nfc_wait_ndrun(chip); 607 if (ret) { 608 dev_err(nfc->dev, "Last operation did not succeed\n"); 609 return ret; 610 } 611 612 ndcr = readl_relaxed(nfc->regs + NDCR); 613 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 614 615 /* Assert ND_RUN bit and wait the NFC to be ready */ 616 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 617 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 618 val & NDSR_WRCMDREQ, 619 POLL_PERIOD, POLL_TIMEOUT); 620 if (ret) { 621 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 622 return -ETIMEDOUT; 623 } 624 625 /* Command may be written, clear WRCMDREQ status bit */ 626 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 627 628 return 0; 629 } 630 631 static void marvell_nfc_send_cmd(struct nand_chip *chip, 632 struct marvell_nfc_op *nfc_op) 633 { 634 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 635 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 636 637 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 638 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 639 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 640 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 641 642 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 643 nfc->regs + NDCB0); 644 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 645 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 646 647 /* 648 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 649 * fields are used (only available on NFCv2). 650 */ 651 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 652 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 653 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 654 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 655 } 656 } 657 658 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 659 const char *label) 660 { 661 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 662 u32 val; 663 int ret; 664 665 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 666 val & flag, 667 POLL_PERIOD, POLL_TIMEOUT); 668 669 if (ret) { 670 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 671 label, val); 672 if (nfc->dma_chan) 673 dmaengine_terminate_all(nfc->dma_chan); 674 return ret; 675 } 676 677 /* 678 * DMA function uses this helper to poll on CMDD bits without wanting 679 * them to be cleared. 680 */ 681 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 682 return 0; 683 684 writel_relaxed(flag, nfc->regs + NDSR); 685 686 return 0; 687 } 688 689 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 690 { 691 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 692 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 693 694 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 695 } 696 697 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, 698 u32 expected_val, unsigned long timeout_ms) 699 { 700 unsigned long limit; 701 u32 st; 702 703 limit = jiffies + msecs_to_jiffies(timeout_ms); 704 do { 705 st = readl_relaxed(nfc->regs + NDSR); 706 if (st & NDSR_RDY(1)) 707 st |= NDSR_RDY(0); 708 709 if ((st & mask) == expected_val) 710 return 0; 711 712 cpu_relax(); 713 } while (time_after(limit, jiffies)); 714 715 return -ETIMEDOUT; 716 } 717 718 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 719 { 720 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 721 struct mtd_info *mtd = nand_to_mtd(chip); 722 u32 pending; 723 int ret; 724 725 /* Timeout is expressed in ms */ 726 if (!timeout_ms) 727 timeout_ms = IRQ_TIMEOUT; 728 729 if (mtd->oops_panic_write) { 730 ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), 731 NDSR_RDY(0), 732 timeout_ms); 733 } else { 734 init_completion(&nfc->complete); 735 736 marvell_nfc_enable_int(nfc, NDCR_RDYM); 737 ret = wait_for_completion_timeout(&nfc->complete, 738 msecs_to_jiffies(timeout_ms)); 739 marvell_nfc_disable_int(nfc, NDCR_RDYM); 740 } 741 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 742 743 /* 744 * In case the interrupt was not served in the required time frame, 745 * check if the ISR was not served or if something went actually wrong. 746 */ 747 if (!ret && !pending) { 748 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 749 return -ETIMEDOUT; 750 } 751 752 return 0; 753 } 754 755 static void marvell_nfc_select_target(struct nand_chip *chip, 756 unsigned int die_nr) 757 { 758 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 759 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 760 u32 ndcr_generic; 761 762 /* 763 * Reset the NDCR register to a clean state for this particular chip, 764 * also clear ND_RUN bit. 765 */ 766 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 767 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 768 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 769 770 /* Also reset the interrupt status register */ 771 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 772 773 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 774 return; 775 776 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 777 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 778 779 nfc->selected_chip = chip; 780 marvell_nand->selected_die = die_nr; 781 } 782 783 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 784 { 785 struct marvell_nfc *nfc = dev_id; 786 u32 st = readl_relaxed(nfc->regs + NDSR); 787 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 788 789 /* 790 * RDY interrupt mask is one bit in NDCR while there are two status 791 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 792 */ 793 if (st & NDSR_RDY(1)) 794 st |= NDSR_RDY(0); 795 796 if (!(st & ien)) 797 return IRQ_NONE; 798 799 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 800 801 if (st & (NDSR_RDY(0) | NDSR_RDY(1))) 802 complete(&nfc->complete); 803 804 return IRQ_HANDLED; 805 } 806 807 /* HW ECC related functions */ 808 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 809 { 810 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 811 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 812 813 if (!(ndcr & NDCR_ECC_EN)) { 814 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 815 816 /* 817 * When enabling BCH, set threshold to 0 to always know the 818 * number of corrected bitflips. 819 */ 820 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 821 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 822 } 823 } 824 825 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 826 { 827 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 828 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 829 830 if (ndcr & NDCR_ECC_EN) { 831 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 832 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 833 writel_relaxed(0, nfc->regs + NDECCCTRL); 834 } 835 } 836 837 /* DMA related helpers */ 838 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 839 { 840 u32 reg; 841 842 reg = readl_relaxed(nfc->regs + NDCR); 843 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 844 } 845 846 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 847 { 848 u32 reg; 849 850 reg = readl_relaxed(nfc->regs + NDCR); 851 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 852 } 853 854 /* Read/write PIO/DMA accessors */ 855 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 856 enum dma_data_direction direction, 857 unsigned int len) 858 { 859 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 860 struct dma_async_tx_descriptor *tx; 861 struct scatterlist sg; 862 dma_cookie_t cookie; 863 int ret; 864 865 marvell_nfc_enable_dma(nfc); 866 /* Prepare the DMA transfer */ 867 sg_init_one(&sg, nfc->dma_buf, dma_len); 868 ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 869 if (!ret) { 870 dev_err(nfc->dev, "Could not map DMA S/G list\n"); 871 return -ENXIO; 872 } 873 874 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 875 direction == DMA_FROM_DEVICE ? 876 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 877 DMA_PREP_INTERRUPT); 878 if (!tx) { 879 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 880 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 881 return -ENXIO; 882 } 883 884 /* Do the task and wait for it to finish */ 885 cookie = dmaengine_submit(tx); 886 ret = dma_submit_error(cookie); 887 if (ret) 888 return -EIO; 889 890 dma_async_issue_pending(nfc->dma_chan); 891 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 892 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 893 marvell_nfc_disable_dma(nfc); 894 if (ret) { 895 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 896 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 897 dmaengine_terminate_all(nfc->dma_chan); 898 return -ETIMEDOUT; 899 } 900 901 return 0; 902 } 903 904 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 905 unsigned int len) 906 { 907 unsigned int last_len = len % FIFO_DEPTH; 908 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 909 int i; 910 911 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 912 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 913 914 if (last_len) { 915 u8 tmp_buf[FIFO_DEPTH]; 916 917 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 918 memcpy(in + last_full_offset, tmp_buf, last_len); 919 } 920 921 return 0; 922 } 923 924 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 925 unsigned int len) 926 { 927 unsigned int last_len = len % FIFO_DEPTH; 928 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 929 int i; 930 931 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 932 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 933 934 if (last_len) { 935 u8 tmp_buf[FIFO_DEPTH]; 936 937 memcpy(tmp_buf, out + last_full_offset, last_len); 938 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 939 } 940 941 return 0; 942 } 943 944 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 945 u8 *data, int data_len, 946 u8 *spare, int spare_len, 947 u8 *ecc, int ecc_len, 948 unsigned int *max_bitflips) 949 { 950 struct mtd_info *mtd = nand_to_mtd(chip); 951 int bf; 952 953 /* 954 * Blank pages (all 0xFF) that have not been written may be recognized 955 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 956 * check if the entire page (with ECC bytes) is actually blank or not. 957 */ 958 if (!data) 959 data_len = 0; 960 if (!spare) 961 spare_len = 0; 962 if (!ecc) 963 ecc_len = 0; 964 965 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 966 spare, spare_len, chip->ecc.strength); 967 if (bf < 0) { 968 mtd->ecc_stats.failed++; 969 return; 970 } 971 972 /* Update the stats and max_bitflips */ 973 mtd->ecc_stats.corrected += bf; 974 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 975 } 976 977 /* 978 * Check if a chunk is correct or not according to the hardware ECC engine. 979 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 980 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 981 * value indicating that a check on the emptyness of the subpage must be 982 * performed before actually declaring the subpage as "corrupted". 983 */ 984 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, 985 unsigned int *max_bitflips) 986 { 987 struct mtd_info *mtd = nand_to_mtd(chip); 988 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 989 int bf = 0; 990 u32 ndsr; 991 992 ndsr = readl_relaxed(nfc->regs + NDSR); 993 994 /* Check uncorrectable error flag */ 995 if (ndsr & NDSR_UNCERR) { 996 writel_relaxed(ndsr, nfc->regs + NDSR); 997 998 /* 999 * Do not increment ->ecc_stats.failed now, instead, return a 1000 * non-zero value to indicate that this chunk was apparently 1001 * bad, and it should be check to see if it empty or not. If 1002 * the chunk (with ECC bytes) is not declared empty, the calling 1003 * function must increment the failure count. 1004 */ 1005 return -EBADMSG; 1006 } 1007 1008 /* Check correctable error flag */ 1009 if (ndsr & NDSR_CORERR) { 1010 writel_relaxed(ndsr, nfc->regs + NDSR); 1011 1012 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 1013 bf = NDSR_ERRCNT(ndsr); 1014 else 1015 bf = 1; 1016 } 1017 1018 /* Update the stats and max_bitflips */ 1019 mtd->ecc_stats.corrected += bf; 1020 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 1021 1022 return 0; 1023 } 1024 1025 /* Hamming read helpers */ 1026 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 1027 u8 *data_buf, u8 *oob_buf, 1028 bool raw, int page) 1029 { 1030 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1031 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1032 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1033 struct marvell_nfc_op nfc_op = { 1034 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1035 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1036 NDCB0_DBC | 1037 NDCB0_CMD1(NAND_CMD_READ0) | 1038 NDCB0_CMD2(NAND_CMD_READSTART), 1039 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1040 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1041 }; 1042 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1043 int ret; 1044 1045 /* NFCv2 needs more information about the operation being executed */ 1046 if (nfc->caps->is_nfcv2) 1047 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1048 1049 ret = marvell_nfc_prepare_cmd(chip); 1050 if (ret) 1051 return ret; 1052 1053 marvell_nfc_send_cmd(chip, &nfc_op); 1054 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1055 "RDDREQ while draining FIFO (data/oob)"); 1056 if (ret) 1057 return ret; 1058 1059 /* 1060 * Read the page then the OOB area. Unlike what is shown in current 1061 * documentation, spare bytes are protected by the ECC engine, and must 1062 * be at the beginning of the OOB area or running this driver on legacy 1063 * systems will prevent the discovery of the BBM/BBT. 1064 */ 1065 if (nfc->use_dma) { 1066 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 1067 lt->data_bytes + oob_bytes); 1068 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 1069 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 1070 } else { 1071 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 1072 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 1073 } 1074 1075 ret = marvell_nfc_wait_cmdd(chip); 1076 return ret; 1077 } 1078 1079 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, 1080 int oob_required, int page) 1081 { 1082 marvell_nfc_select_target(chip, chip->cur_cs); 1083 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1084 true, page); 1085 } 1086 1087 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, 1088 int oob_required, int page) 1089 { 1090 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1091 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1092 int max_bitflips = 0, ret; 1093 u8 *raw_buf; 1094 1095 marvell_nfc_select_target(chip, chip->cur_cs); 1096 marvell_nfc_enable_hw_ecc(chip); 1097 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 1098 page); 1099 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1100 marvell_nfc_disable_hw_ecc(chip); 1101 1102 if (!ret) 1103 return max_bitflips; 1104 1105 /* 1106 * When ECC failures are detected, check if the full page has been 1107 * written or not. Ignore the failure if it is actually empty. 1108 */ 1109 raw_buf = kmalloc(full_sz, GFP_KERNEL); 1110 if (!raw_buf) 1111 return -ENOMEM; 1112 1113 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1114 lt->data_bytes, true, page); 1115 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1116 &max_bitflips); 1117 kfree(raw_buf); 1118 1119 return max_bitflips; 1120 } 1121 1122 /* 1123 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1124 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1125 * also stands for ->read_oob(). 1126 */ 1127 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) 1128 { 1129 u8 *buf = nand_get_data_buf(chip); 1130 1131 marvell_nfc_select_target(chip, chip->cur_cs); 1132 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1133 true, page); 1134 } 1135 1136 /* Hamming write helpers */ 1137 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1138 const u8 *data_buf, 1139 const u8 *oob_buf, bool raw, 1140 int page) 1141 { 1142 const struct nand_sdr_timings *sdr = 1143 nand_get_sdr_timings(nand_get_interface_config(chip)); 1144 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1145 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1146 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1147 struct marvell_nfc_op nfc_op = { 1148 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1149 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1150 NDCB0_CMD1(NAND_CMD_SEQIN) | 1151 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1152 NDCB0_DBC, 1153 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1154 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1155 }; 1156 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1157 int ret; 1158 1159 /* NFCv2 needs more information about the operation being executed */ 1160 if (nfc->caps->is_nfcv2) 1161 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1162 1163 ret = marvell_nfc_prepare_cmd(chip); 1164 if (ret) 1165 return ret; 1166 1167 marvell_nfc_send_cmd(chip, &nfc_op); 1168 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1169 "WRDREQ while loading FIFO (data)"); 1170 if (ret) 1171 return ret; 1172 1173 /* Write the page then the OOB area */ 1174 if (nfc->use_dma) { 1175 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1176 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1177 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1178 lt->ecc_bytes + lt->spare_bytes); 1179 } else { 1180 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1181 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1182 } 1183 1184 ret = marvell_nfc_wait_cmdd(chip); 1185 if (ret) 1186 return ret; 1187 1188 ret = marvell_nfc_wait_op(chip, 1189 PSEC_TO_MSEC(sdr->tPROG_max)); 1190 return ret; 1191 } 1192 1193 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, 1194 const u8 *buf, 1195 int oob_required, int page) 1196 { 1197 marvell_nfc_select_target(chip, chip->cur_cs); 1198 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1199 true, page); 1200 } 1201 1202 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, 1203 const u8 *buf, 1204 int oob_required, int page) 1205 { 1206 int ret; 1207 1208 marvell_nfc_select_target(chip, chip->cur_cs); 1209 marvell_nfc_enable_hw_ecc(chip); 1210 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1211 false, page); 1212 marvell_nfc_disable_hw_ecc(chip); 1213 1214 return ret; 1215 } 1216 1217 /* 1218 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1219 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1220 * also stands for ->write_oob(). 1221 */ 1222 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, 1223 int page) 1224 { 1225 struct mtd_info *mtd = nand_to_mtd(chip); 1226 u8 *buf = nand_get_data_buf(chip); 1227 1228 memset(buf, 0xFF, mtd->writesize); 1229 1230 marvell_nfc_select_target(chip, chip->cur_cs); 1231 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1232 true, page); 1233 } 1234 1235 /* BCH read helpers */ 1236 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, 1237 int oob_required, int page) 1238 { 1239 struct mtd_info *mtd = nand_to_mtd(chip); 1240 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1241 u8 *oob = chip->oob_poi; 1242 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1243 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1244 lt->last_spare_bytes; 1245 int data_len = lt->data_bytes; 1246 int spare_len = lt->spare_bytes; 1247 int ecc_len = lt->ecc_bytes; 1248 int chunk; 1249 1250 marvell_nfc_select_target(chip, chip->cur_cs); 1251 1252 if (oob_required) 1253 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1254 1255 nand_read_page_op(chip, page, 0, NULL, 0); 1256 1257 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1258 /* Update last chunk length */ 1259 if (chunk >= lt->full_chunk_cnt) { 1260 data_len = lt->last_data_bytes; 1261 spare_len = lt->last_spare_bytes; 1262 ecc_len = lt->last_ecc_bytes; 1263 } 1264 1265 /* Read data bytes*/ 1266 nand_change_read_column_op(chip, chunk * chunk_size, 1267 buf + (lt->data_bytes * chunk), 1268 data_len, false); 1269 1270 /* Read spare bytes */ 1271 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1272 spare_len, false, false); 1273 1274 /* Read ECC bytes */ 1275 nand_read_data_op(chip, oob + ecc_offset + 1276 (ALIGN(lt->ecc_bytes, 32) * chunk), 1277 ecc_len, false, false); 1278 } 1279 1280 return 0; 1281 } 1282 1283 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1284 u8 *data, unsigned int data_len, 1285 u8 *spare, unsigned int spare_len, 1286 int page) 1287 { 1288 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1289 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1290 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1291 int i, ret; 1292 struct marvell_nfc_op nfc_op = { 1293 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1294 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1295 NDCB0_LEN_OVRD, 1296 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1297 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1298 .ndcb[3] = data_len + spare_len, 1299 }; 1300 1301 ret = marvell_nfc_prepare_cmd(chip); 1302 if (ret) 1303 return; 1304 1305 if (chunk == 0) 1306 nfc_op.ndcb[0] |= NDCB0_DBC | 1307 NDCB0_CMD1(NAND_CMD_READ0) | 1308 NDCB0_CMD2(NAND_CMD_READSTART); 1309 1310 /* 1311 * Trigger the monolithic read on the first chunk, then naked read on 1312 * intermediate chunks and finally a last naked read on the last chunk. 1313 */ 1314 if (chunk == 0) 1315 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1316 else if (chunk < lt->nchunks - 1) 1317 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1318 else 1319 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1320 1321 marvell_nfc_send_cmd(chip, &nfc_op); 1322 1323 /* 1324 * According to the datasheet, when reading from NDDB 1325 * with BCH enabled, after each 32 bytes reads, we 1326 * have to make sure that the NDSR.RDDREQ bit is set. 1327 * 1328 * Drain the FIFO, 8 32-bit reads at a time, and skip 1329 * the polling on the last read. 1330 * 1331 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1332 */ 1333 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1334 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1335 "RDDREQ while draining FIFO (data)"); 1336 marvell_nfc_xfer_data_in_pio(nfc, data, 1337 FIFO_DEPTH * BCH_SEQ_READS); 1338 data += FIFO_DEPTH * BCH_SEQ_READS; 1339 } 1340 1341 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1342 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1343 "RDDREQ while draining FIFO (OOB)"); 1344 marvell_nfc_xfer_data_in_pio(nfc, spare, 1345 FIFO_DEPTH * BCH_SEQ_READS); 1346 spare += FIFO_DEPTH * BCH_SEQ_READS; 1347 } 1348 } 1349 1350 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, 1351 u8 *buf, int oob_required, 1352 int page) 1353 { 1354 struct mtd_info *mtd = nand_to_mtd(chip); 1355 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1356 int data_len = lt->data_bytes, spare_len = lt->spare_bytes; 1357 u8 *data = buf, *spare = chip->oob_poi; 1358 int max_bitflips = 0; 1359 u32 failure_mask = 0; 1360 int chunk, ret; 1361 1362 marvell_nfc_select_target(chip, chip->cur_cs); 1363 1364 /* 1365 * With BCH, OOB is not fully used (and thus not read entirely), not 1366 * expected bytes could show up at the end of the OOB buffer if not 1367 * explicitly erased. 1368 */ 1369 if (oob_required) 1370 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1371 1372 marvell_nfc_enable_hw_ecc(chip); 1373 1374 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1375 /* Update length for the last chunk */ 1376 if (chunk >= lt->full_chunk_cnt) { 1377 data_len = lt->last_data_bytes; 1378 spare_len = lt->last_spare_bytes; 1379 } 1380 1381 /* Read the chunk and detect number of bitflips */ 1382 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1383 spare, spare_len, page); 1384 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1385 if (ret) 1386 failure_mask |= BIT(chunk); 1387 1388 data += data_len; 1389 spare += spare_len; 1390 } 1391 1392 marvell_nfc_disable_hw_ecc(chip); 1393 1394 if (!failure_mask) 1395 return max_bitflips; 1396 1397 /* 1398 * Please note that dumping the ECC bytes during a normal read with OOB 1399 * area would add a significant overhead as ECC bytes are "consumed" by 1400 * the controller in normal mode and must be re-read in raw mode. To 1401 * avoid dropping the performances, we prefer not to include them. The 1402 * user should re-read the page in raw mode if ECC bytes are required. 1403 */ 1404 1405 /* 1406 * In case there is any subpage read error, we usually re-read only ECC 1407 * bytes in raw mode and check if the whole page is empty. In this case, 1408 * it is normal that the ECC check failed and we just ignore the error. 1409 * 1410 * However, it has been empirically observed that for some layouts (e.g 1411 * 2k page, 8b strength per 512B chunk), the controller tries to correct 1412 * bits and may create itself bitflips in the erased area. To overcome 1413 * this strange behavior, the whole page is re-read in raw mode, not 1414 * only the ECC bytes. 1415 */ 1416 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1417 int data_off_in_page, spare_off_in_page, ecc_off_in_page; 1418 int data_off, spare_off, ecc_off; 1419 int data_len, spare_len, ecc_len; 1420 1421 /* No failure reported for this chunk, move to the next one */ 1422 if (!(failure_mask & BIT(chunk))) 1423 continue; 1424 1425 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + 1426 lt->ecc_bytes); 1427 spare_off_in_page = data_off_in_page + 1428 (chunk < lt->full_chunk_cnt ? lt->data_bytes : 1429 lt->last_data_bytes); 1430 ecc_off_in_page = spare_off_in_page + 1431 (chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1432 lt->last_spare_bytes); 1433 1434 data_off = chunk * lt->data_bytes; 1435 spare_off = chunk * lt->spare_bytes; 1436 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + 1437 lt->last_spare_bytes + 1438 (chunk * (lt->ecc_bytes + 2)); 1439 1440 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : 1441 lt->last_data_bytes; 1442 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1443 lt->last_spare_bytes; 1444 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : 1445 lt->last_ecc_bytes; 1446 1447 /* 1448 * Only re-read the ECC bytes, unless we are using the 2k/8b 1449 * layout which is buggy in the sense that the ECC engine will 1450 * try to correct data bytes anyway, creating bitflips. In this 1451 * case, re-read the entire page. 1452 */ 1453 if (lt->writesize == 2048 && lt->strength == 8) { 1454 nand_change_read_column_op(chip, data_off_in_page, 1455 buf + data_off, data_len, 1456 false); 1457 nand_change_read_column_op(chip, spare_off_in_page, 1458 chip->oob_poi + spare_off, spare_len, 1459 false); 1460 } 1461 1462 nand_change_read_column_op(chip, ecc_off_in_page, 1463 chip->oob_poi + ecc_off, ecc_len, 1464 false); 1465 1466 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1467 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, 1468 chip->oob_poi + spare_off, spare_len, 1469 chip->oob_poi + ecc_off, ecc_len, 1470 &max_bitflips); 1471 } 1472 1473 return max_bitflips; 1474 } 1475 1476 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) 1477 { 1478 u8 *buf = nand_get_data_buf(chip); 1479 1480 return chip->ecc.read_page_raw(chip, buf, true, page); 1481 } 1482 1483 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) 1484 { 1485 u8 *buf = nand_get_data_buf(chip); 1486 1487 return chip->ecc.read_page(chip, buf, true, page); 1488 } 1489 1490 /* BCH write helpers */ 1491 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, 1492 const u8 *buf, 1493 int oob_required, int page) 1494 { 1495 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1496 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1497 int data_len = lt->data_bytes; 1498 int spare_len = lt->spare_bytes; 1499 int ecc_len = lt->ecc_bytes; 1500 int spare_offset = 0; 1501 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1502 lt->last_spare_bytes; 1503 int chunk; 1504 1505 marvell_nfc_select_target(chip, chip->cur_cs); 1506 1507 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1508 1509 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1510 if (chunk >= lt->full_chunk_cnt) { 1511 data_len = lt->last_data_bytes; 1512 spare_len = lt->last_spare_bytes; 1513 ecc_len = lt->last_ecc_bytes; 1514 } 1515 1516 /* Point to the column of the next chunk */ 1517 nand_change_write_column_op(chip, chunk * full_chunk_size, 1518 NULL, 0, false); 1519 1520 /* Write the data */ 1521 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1522 data_len, false); 1523 1524 if (!oob_required) 1525 continue; 1526 1527 /* Write the spare bytes */ 1528 if (spare_len) 1529 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1530 spare_len, false); 1531 1532 /* Write the ECC bytes */ 1533 if (ecc_len) 1534 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1535 ecc_len, false); 1536 1537 spare_offset += spare_len; 1538 ecc_offset += ALIGN(ecc_len, 32); 1539 } 1540 1541 return nand_prog_page_end_op(chip); 1542 } 1543 1544 static int 1545 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1546 const u8 *data, unsigned int data_len, 1547 const u8 *spare, unsigned int spare_len, 1548 int page) 1549 { 1550 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1551 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1552 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1553 u32 xtype; 1554 int ret; 1555 struct marvell_nfc_op nfc_op = { 1556 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1557 .ndcb[3] = data_len + spare_len, 1558 }; 1559 1560 /* 1561 * First operation dispatches the CMD_SEQIN command, issue the address 1562 * cycles and asks for the first chunk of data. 1563 * All operations in the middle (if any) will issue a naked write and 1564 * also ask for data. 1565 * Last operation (if any) asks for the last chunk of data through a 1566 * last naked write. 1567 */ 1568 if (chunk == 0) { 1569 if (lt->nchunks == 1) 1570 xtype = XTYPE_MONOLITHIC_RW; 1571 else 1572 xtype = XTYPE_WRITE_DISPATCH; 1573 1574 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1575 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1576 NDCB0_CMD1(NAND_CMD_SEQIN); 1577 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1578 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1579 } else if (chunk < lt->nchunks - 1) { 1580 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1581 } else { 1582 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1583 } 1584 1585 /* Always dispatch the PAGEPROG command on the last chunk */ 1586 if (chunk == lt->nchunks - 1) 1587 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1588 1589 ret = marvell_nfc_prepare_cmd(chip); 1590 if (ret) 1591 return ret; 1592 1593 marvell_nfc_send_cmd(chip, &nfc_op); 1594 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1595 "WRDREQ while loading FIFO (data)"); 1596 if (ret) 1597 return ret; 1598 1599 /* Transfer the contents */ 1600 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1601 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1602 1603 return 0; 1604 } 1605 1606 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, 1607 const u8 *buf, 1608 int oob_required, int page) 1609 { 1610 const struct nand_sdr_timings *sdr = 1611 nand_get_sdr_timings(nand_get_interface_config(chip)); 1612 struct mtd_info *mtd = nand_to_mtd(chip); 1613 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1614 const u8 *data = buf; 1615 const u8 *spare = chip->oob_poi; 1616 int data_len = lt->data_bytes; 1617 int spare_len = lt->spare_bytes; 1618 int chunk, ret; 1619 1620 marvell_nfc_select_target(chip, chip->cur_cs); 1621 1622 /* Spare data will be written anyway, so clear it to avoid garbage */ 1623 if (!oob_required) 1624 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1625 1626 marvell_nfc_enable_hw_ecc(chip); 1627 1628 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1629 if (chunk >= lt->full_chunk_cnt) { 1630 data_len = lt->last_data_bytes; 1631 spare_len = lt->last_spare_bytes; 1632 } 1633 1634 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1635 spare, spare_len, page); 1636 data += data_len; 1637 spare += spare_len; 1638 1639 /* 1640 * Waiting only for CMDD or PAGED is not enough, ECC are 1641 * partially written. No flag is set once the operation is 1642 * really finished but the ND_RUN bit is cleared, so wait for it 1643 * before stepping into the next command. 1644 */ 1645 marvell_nfc_wait_ndrun(chip); 1646 } 1647 1648 ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); 1649 1650 marvell_nfc_disable_hw_ecc(chip); 1651 1652 if (ret) 1653 return ret; 1654 1655 return 0; 1656 } 1657 1658 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, 1659 int page) 1660 { 1661 struct mtd_info *mtd = nand_to_mtd(chip); 1662 u8 *buf = nand_get_data_buf(chip); 1663 1664 memset(buf, 0xFF, mtd->writesize); 1665 1666 return chip->ecc.write_page_raw(chip, buf, true, page); 1667 } 1668 1669 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) 1670 { 1671 struct mtd_info *mtd = nand_to_mtd(chip); 1672 u8 *buf = nand_get_data_buf(chip); 1673 1674 memset(buf, 0xFF, mtd->writesize); 1675 1676 return chip->ecc.write_page(chip, buf, true, page); 1677 } 1678 1679 /* NAND framework ->exec_op() hooks and related helpers */ 1680 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1681 const struct nand_subop *subop, 1682 struct marvell_nfc_op *nfc_op) 1683 { 1684 const struct nand_op_instr *instr = NULL; 1685 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1686 bool first_cmd = true; 1687 unsigned int op_id; 1688 int i; 1689 1690 /* Reset the input structure as most of its fields will be OR'ed */ 1691 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1692 1693 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1694 unsigned int offset, naddrs; 1695 const u8 *addrs; 1696 int len; 1697 1698 instr = &subop->instrs[op_id]; 1699 1700 switch (instr->type) { 1701 case NAND_OP_CMD_INSTR: 1702 if (first_cmd) 1703 nfc_op->ndcb[0] |= 1704 NDCB0_CMD1(instr->ctx.cmd.opcode); 1705 else 1706 nfc_op->ndcb[0] |= 1707 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1708 NDCB0_DBC; 1709 1710 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1711 first_cmd = false; 1712 break; 1713 1714 case NAND_OP_ADDR_INSTR: 1715 offset = nand_subop_get_addr_start_off(subop, op_id); 1716 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1717 addrs = &instr->ctx.addr.addrs[offset]; 1718 1719 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1720 1721 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1722 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1723 1724 if (naddrs >= 5) 1725 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1726 if (naddrs >= 6) 1727 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1728 if (naddrs == 7) 1729 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1730 1731 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1732 break; 1733 1734 case NAND_OP_DATA_IN_INSTR: 1735 nfc_op->data_instr = instr; 1736 nfc_op->data_instr_idx = op_id; 1737 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1738 if (nfc->caps->is_nfcv2) { 1739 nfc_op->ndcb[0] |= 1740 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1741 NDCB0_LEN_OVRD; 1742 len = nand_subop_get_data_len(subop, op_id); 1743 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1744 } 1745 nfc_op->data_delay_ns = instr->delay_ns; 1746 break; 1747 1748 case NAND_OP_DATA_OUT_INSTR: 1749 nfc_op->data_instr = instr; 1750 nfc_op->data_instr_idx = op_id; 1751 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1752 if (nfc->caps->is_nfcv2) { 1753 nfc_op->ndcb[0] |= 1754 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1755 NDCB0_LEN_OVRD; 1756 len = nand_subop_get_data_len(subop, op_id); 1757 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1758 } 1759 nfc_op->data_delay_ns = instr->delay_ns; 1760 break; 1761 1762 case NAND_OP_WAITRDY_INSTR: 1763 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1764 nfc_op->rdy_delay_ns = instr->delay_ns; 1765 break; 1766 } 1767 } 1768 } 1769 1770 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1771 const struct nand_subop *subop, 1772 struct marvell_nfc_op *nfc_op) 1773 { 1774 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1775 const struct nand_op_instr *instr = nfc_op->data_instr; 1776 unsigned int op_id = nfc_op->data_instr_idx; 1777 unsigned int len = nand_subop_get_data_len(subop, op_id); 1778 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1779 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1780 int ret; 1781 1782 if (instr->ctx.data.force_8bit) 1783 marvell_nfc_force_byte_access(chip, true); 1784 1785 if (reading) { 1786 u8 *in = instr->ctx.data.buf.in + offset; 1787 1788 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1789 } else { 1790 const u8 *out = instr->ctx.data.buf.out + offset; 1791 1792 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1793 } 1794 1795 if (instr->ctx.data.force_8bit) 1796 marvell_nfc_force_byte_access(chip, false); 1797 1798 return ret; 1799 } 1800 1801 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1802 const struct nand_subop *subop) 1803 { 1804 struct marvell_nfc_op nfc_op; 1805 bool reading; 1806 int ret; 1807 1808 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1809 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1810 1811 ret = marvell_nfc_prepare_cmd(chip); 1812 if (ret) 1813 return ret; 1814 1815 marvell_nfc_send_cmd(chip, &nfc_op); 1816 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1817 "RDDREQ/WRDREQ while draining raw data"); 1818 if (ret) 1819 return ret; 1820 1821 cond_delay(nfc_op.cle_ale_delay_ns); 1822 1823 if (reading) { 1824 if (nfc_op.rdy_timeout_ms) { 1825 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1826 if (ret) 1827 return ret; 1828 } 1829 1830 cond_delay(nfc_op.rdy_delay_ns); 1831 } 1832 1833 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1834 ret = marvell_nfc_wait_cmdd(chip); 1835 if (ret) 1836 return ret; 1837 1838 cond_delay(nfc_op.data_delay_ns); 1839 1840 if (!reading) { 1841 if (nfc_op.rdy_timeout_ms) { 1842 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1843 if (ret) 1844 return ret; 1845 } 1846 1847 cond_delay(nfc_op.rdy_delay_ns); 1848 } 1849 1850 /* 1851 * NDCR ND_RUN bit should be cleared automatically at the end of each 1852 * operation but experience shows that the behavior is buggy when it 1853 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1854 */ 1855 if (!reading) { 1856 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1857 1858 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1859 nfc->regs + NDCR); 1860 } 1861 1862 return 0; 1863 } 1864 1865 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1866 const struct nand_subop *subop) 1867 { 1868 struct marvell_nfc_op nfc_op; 1869 int ret; 1870 1871 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1872 1873 /* 1874 * Naked access are different in that they need to be flagged as naked 1875 * by the controller. Reset the controller registers fields that inform 1876 * on the type and refill them according to the ongoing operation. 1877 */ 1878 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1879 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1880 switch (subop->instrs[0].type) { 1881 case NAND_OP_CMD_INSTR: 1882 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1883 break; 1884 case NAND_OP_ADDR_INSTR: 1885 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1886 break; 1887 case NAND_OP_DATA_IN_INSTR: 1888 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1889 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1890 break; 1891 case NAND_OP_DATA_OUT_INSTR: 1892 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1893 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1894 break; 1895 default: 1896 /* This should never happen */ 1897 break; 1898 } 1899 1900 ret = marvell_nfc_prepare_cmd(chip); 1901 if (ret) 1902 return ret; 1903 1904 marvell_nfc_send_cmd(chip, &nfc_op); 1905 1906 if (!nfc_op.data_instr) { 1907 ret = marvell_nfc_wait_cmdd(chip); 1908 cond_delay(nfc_op.cle_ale_delay_ns); 1909 return ret; 1910 } 1911 1912 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1913 "RDDREQ/WRDREQ while draining raw data"); 1914 if (ret) 1915 return ret; 1916 1917 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1918 ret = marvell_nfc_wait_cmdd(chip); 1919 if (ret) 1920 return ret; 1921 1922 /* 1923 * NDCR ND_RUN bit should be cleared automatically at the end of each 1924 * operation but experience shows that the behavior is buggy when it 1925 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1926 */ 1927 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1928 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1929 1930 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1931 nfc->regs + NDCR); 1932 } 1933 1934 return 0; 1935 } 1936 1937 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1938 const struct nand_subop *subop) 1939 { 1940 struct marvell_nfc_op nfc_op; 1941 int ret; 1942 1943 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1944 1945 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1946 cond_delay(nfc_op.rdy_delay_ns); 1947 1948 return ret; 1949 } 1950 1951 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1952 const struct nand_subop *subop) 1953 { 1954 struct marvell_nfc_op nfc_op; 1955 int ret; 1956 1957 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1958 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1959 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1960 1961 ret = marvell_nfc_prepare_cmd(chip); 1962 if (ret) 1963 return ret; 1964 1965 marvell_nfc_send_cmd(chip, &nfc_op); 1966 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1967 "RDDREQ while reading ID"); 1968 if (ret) 1969 return ret; 1970 1971 cond_delay(nfc_op.cle_ale_delay_ns); 1972 1973 if (nfc_op.rdy_timeout_ms) { 1974 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1975 if (ret) 1976 return ret; 1977 } 1978 1979 cond_delay(nfc_op.rdy_delay_ns); 1980 1981 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1982 ret = marvell_nfc_wait_cmdd(chip); 1983 if (ret) 1984 return ret; 1985 1986 cond_delay(nfc_op.data_delay_ns); 1987 1988 return 0; 1989 } 1990 1991 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 1992 const struct nand_subop *subop) 1993 { 1994 struct marvell_nfc_op nfc_op; 1995 int ret; 1996 1997 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1998 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1999 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 2000 2001 ret = marvell_nfc_prepare_cmd(chip); 2002 if (ret) 2003 return ret; 2004 2005 marvell_nfc_send_cmd(chip, &nfc_op); 2006 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 2007 "RDDREQ while reading status"); 2008 if (ret) 2009 return ret; 2010 2011 cond_delay(nfc_op.cle_ale_delay_ns); 2012 2013 if (nfc_op.rdy_timeout_ms) { 2014 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2015 if (ret) 2016 return ret; 2017 } 2018 2019 cond_delay(nfc_op.rdy_delay_ns); 2020 2021 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 2022 ret = marvell_nfc_wait_cmdd(chip); 2023 if (ret) 2024 return ret; 2025 2026 cond_delay(nfc_op.data_delay_ns); 2027 2028 return 0; 2029 } 2030 2031 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 2032 const struct nand_subop *subop) 2033 { 2034 struct marvell_nfc_op nfc_op; 2035 int ret; 2036 2037 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2038 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 2039 2040 ret = marvell_nfc_prepare_cmd(chip); 2041 if (ret) 2042 return ret; 2043 2044 marvell_nfc_send_cmd(chip, &nfc_op); 2045 ret = marvell_nfc_wait_cmdd(chip); 2046 if (ret) 2047 return ret; 2048 2049 cond_delay(nfc_op.cle_ale_delay_ns); 2050 2051 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2052 if (ret) 2053 return ret; 2054 2055 cond_delay(nfc_op.rdy_delay_ns); 2056 2057 return 0; 2058 } 2059 2060 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 2061 const struct nand_subop *subop) 2062 { 2063 struct marvell_nfc_op nfc_op; 2064 int ret; 2065 2066 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2067 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 2068 2069 ret = marvell_nfc_prepare_cmd(chip); 2070 if (ret) 2071 return ret; 2072 2073 marvell_nfc_send_cmd(chip, &nfc_op); 2074 ret = marvell_nfc_wait_cmdd(chip); 2075 if (ret) 2076 return ret; 2077 2078 cond_delay(nfc_op.cle_ale_delay_ns); 2079 2080 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2081 if (ret) 2082 return ret; 2083 2084 cond_delay(nfc_op.rdy_delay_ns); 2085 2086 return 0; 2087 } 2088 2089 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 2090 /* Monolithic reads/writes */ 2091 NAND_OP_PARSER_PATTERN( 2092 marvell_nfc_monolithic_access_exec, 2093 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2094 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 2095 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2096 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 2097 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2098 NAND_OP_PARSER_PATTERN( 2099 marvell_nfc_monolithic_access_exec, 2100 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2101 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 2102 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 2103 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2104 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 2105 /* Naked commands */ 2106 NAND_OP_PARSER_PATTERN( 2107 marvell_nfc_naked_access_exec, 2108 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2109 NAND_OP_PARSER_PATTERN( 2110 marvell_nfc_naked_access_exec, 2111 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 2112 NAND_OP_PARSER_PATTERN( 2113 marvell_nfc_naked_access_exec, 2114 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2115 NAND_OP_PARSER_PATTERN( 2116 marvell_nfc_naked_access_exec, 2117 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 2118 NAND_OP_PARSER_PATTERN( 2119 marvell_nfc_naked_waitrdy_exec, 2120 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2121 ); 2122 2123 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 2124 /* Naked commands not supported, use a function for each pattern */ 2125 NAND_OP_PARSER_PATTERN( 2126 marvell_nfc_read_id_type_exec, 2127 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2128 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2129 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 2130 NAND_OP_PARSER_PATTERN( 2131 marvell_nfc_erase_cmd_type_exec, 2132 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2133 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2134 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2135 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2136 NAND_OP_PARSER_PATTERN( 2137 marvell_nfc_read_status_exec, 2138 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2139 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 2140 NAND_OP_PARSER_PATTERN( 2141 marvell_nfc_reset_cmd_type_exec, 2142 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2143 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2144 NAND_OP_PARSER_PATTERN( 2145 marvell_nfc_naked_waitrdy_exec, 2146 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2147 ); 2148 2149 static int marvell_nfc_exec_op(struct nand_chip *chip, 2150 const struct nand_operation *op, 2151 bool check_only) 2152 { 2153 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2154 2155 if (!check_only) 2156 marvell_nfc_select_target(chip, op->cs); 2157 2158 if (nfc->caps->is_nfcv2) 2159 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2160 op, check_only); 2161 else 2162 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2163 op, check_only); 2164 } 2165 2166 /* 2167 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2168 * usable. 2169 */ 2170 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2171 struct mtd_oob_region *oobregion) 2172 { 2173 struct nand_chip *chip = mtd_to_nand(mtd); 2174 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2175 2176 if (section) 2177 return -ERANGE; 2178 2179 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2180 lt->last_ecc_bytes; 2181 oobregion->offset = mtd->oobsize - oobregion->length; 2182 2183 return 0; 2184 } 2185 2186 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2187 struct mtd_oob_region *oobregion) 2188 { 2189 struct nand_chip *chip = mtd_to_nand(mtd); 2190 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2191 2192 if (section) 2193 return -ERANGE; 2194 2195 /* 2196 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2197 * 4KB page / 4bit BCH combination. 2198 */ 2199 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2200 oobregion->offset = 6; 2201 else 2202 oobregion->offset = 2; 2203 2204 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2205 lt->last_spare_bytes - oobregion->offset; 2206 2207 return 0; 2208 } 2209 2210 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2211 .ecc = marvell_nand_ooblayout_ecc, 2212 .free = marvell_nand_ooblayout_free, 2213 }; 2214 2215 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, 2216 struct nand_ecc_ctrl *ecc) 2217 { 2218 struct nand_chip *chip = mtd_to_nand(mtd); 2219 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2220 const struct marvell_hw_ecc_layout *l; 2221 int i; 2222 2223 if (!nfc->caps->is_nfcv2 && 2224 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2225 dev_err(nfc->dev, 2226 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2227 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2228 return -ENOTSUPP; 2229 } 2230 2231 to_marvell_nand(chip)->layout = NULL; 2232 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2233 l = &marvell_nfc_layouts[i]; 2234 if (mtd->writesize == l->writesize && 2235 ecc->size == l->chunk && ecc->strength == l->strength) { 2236 to_marvell_nand(chip)->layout = l; 2237 break; 2238 } 2239 } 2240 2241 if (!to_marvell_nand(chip)->layout || 2242 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2243 dev_err(nfc->dev, 2244 "ECC strength %d at page size %d is not supported\n", 2245 ecc->strength, mtd->writesize); 2246 return -ENOTSUPP; 2247 } 2248 2249 /* Special care for the layout 2k/8-bit/512B */ 2250 if (l->writesize == 2048 && l->strength == 8) { 2251 if (mtd->oobsize < 128) { 2252 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); 2253 return -ENOTSUPP; 2254 } else { 2255 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2256 } 2257 } 2258 2259 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2260 ecc->steps = l->nchunks; 2261 ecc->size = l->data_bytes; 2262 2263 if (ecc->strength == 1) { 2264 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 2265 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2266 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2267 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2268 ecc->read_oob = ecc->read_oob_raw; 2269 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2270 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2271 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2272 ecc->write_oob = ecc->write_oob_raw; 2273 } else { 2274 chip->ecc.algo = NAND_ECC_ALGO_BCH; 2275 ecc->strength = 16; 2276 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2277 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2278 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2279 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2280 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2281 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2282 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2283 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2284 } 2285 2286 return 0; 2287 } 2288 2289 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2290 struct nand_ecc_ctrl *ecc) 2291 { 2292 struct nand_chip *chip = mtd_to_nand(mtd); 2293 const struct nand_ecc_props *requirements = 2294 nanddev_get_ecc_requirements(&chip->base); 2295 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2296 int ret; 2297 2298 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && 2299 (!ecc->size || !ecc->strength)) { 2300 if (requirements->step_size && requirements->strength) { 2301 ecc->size = requirements->step_size; 2302 ecc->strength = requirements->strength; 2303 } else { 2304 dev_info(nfc->dev, 2305 "No minimum ECC strength, using 1b/512B\n"); 2306 ecc->size = 512; 2307 ecc->strength = 1; 2308 } 2309 } 2310 2311 switch (ecc->engine_type) { 2312 case NAND_ECC_ENGINE_TYPE_ON_HOST: 2313 ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); 2314 if (ret) 2315 return ret; 2316 break; 2317 case NAND_ECC_ENGINE_TYPE_NONE: 2318 case NAND_ECC_ENGINE_TYPE_SOFT: 2319 case NAND_ECC_ENGINE_TYPE_ON_DIE: 2320 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2321 mtd->writesize != SZ_2K) { 2322 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2323 mtd->writesize); 2324 return -EINVAL; 2325 } 2326 break; 2327 default: 2328 return -EINVAL; 2329 } 2330 2331 return 0; 2332 } 2333 2334 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2335 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2336 2337 static struct nand_bbt_descr bbt_main_descr = { 2338 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2339 NAND_BBT_2BIT | NAND_BBT_VERSION, 2340 .offs = 8, 2341 .len = 6, 2342 .veroffs = 14, 2343 .maxblocks = 8, /* Last 8 blocks in each chip */ 2344 .pattern = bbt_pattern 2345 }; 2346 2347 static struct nand_bbt_descr bbt_mirror_descr = { 2348 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2349 NAND_BBT_2BIT | NAND_BBT_VERSION, 2350 .offs = 8, 2351 .len = 6, 2352 .veroffs = 14, 2353 .maxblocks = 8, /* Last 8 blocks in each chip */ 2354 .pattern = bbt_mirror_pattern 2355 }; 2356 2357 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, 2358 const struct nand_interface_config *conf) 2359 { 2360 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2361 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2362 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2363 const struct nand_sdr_timings *sdr; 2364 struct marvell_nfc_timings nfc_tmg; 2365 int read_delay; 2366 2367 sdr = nand_get_sdr_timings(conf); 2368 if (IS_ERR(sdr)) 2369 return PTR_ERR(sdr); 2370 2371 /* 2372 * SDR timings are given in pico-seconds while NFC timings must be 2373 * expressed in NAND controller clock cycles, which is half of the 2374 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2375 * This is not written anywhere in the datasheet but was observed 2376 * with an oscilloscope. 2377 * 2378 * NFC datasheet gives equations from which thoses calculations 2379 * are derived, they tend to be slightly more restrictives than the 2380 * given core timings and may improve the overall speed. 2381 */ 2382 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2383 nfc_tmg.tRH = nfc_tmg.tRP; 2384 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2385 nfc_tmg.tWH = nfc_tmg.tWP; 2386 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2387 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2388 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2389 /* 2390 * Read delay is the time of propagation from SoC pins to NFC internal 2391 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2392 * EDO mode, an additional delay of tRH must be taken into account so 2393 * the data is sampled on the falling edge instead of the rising edge. 2394 */ 2395 read_delay = sdr->tRC_min >= 30000 ? 2396 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2397 2398 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2399 /* 2400 * tWHR and tRHW are supposed to be read to write delays (and vice 2401 * versa) but in some cases, ie. when doing a change column, they must 2402 * be greater than that to be sure tCCS delay is respected. 2403 */ 2404 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2405 period_ns) - 2; 2406 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2407 period_ns); 2408 2409 /* 2410 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2411 * NFCv1: No WAIT_MODE, tR must be maximal. 2412 */ 2413 if (nfc->caps->is_nfcv2) { 2414 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2415 } else { 2416 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2417 period_ns); 2418 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2419 nfc_tmg.tR = nfc_tmg.tCH - 3; 2420 else 2421 nfc_tmg.tR = 0; 2422 } 2423 2424 if (chipnr < 0) 2425 return 0; 2426 2427 marvell_nand->ndtr0 = 2428 NDTR0_TRP(nfc_tmg.tRP) | 2429 NDTR0_TRH(nfc_tmg.tRH) | 2430 NDTR0_ETRP(nfc_tmg.tRP) | 2431 NDTR0_TWP(nfc_tmg.tWP) | 2432 NDTR0_TWH(nfc_tmg.tWH) | 2433 NDTR0_TCS(nfc_tmg.tCS) | 2434 NDTR0_TCH(nfc_tmg.tCH); 2435 2436 marvell_nand->ndtr1 = 2437 NDTR1_TAR(nfc_tmg.tAR) | 2438 NDTR1_TWHR(nfc_tmg.tWHR) | 2439 NDTR1_TR(nfc_tmg.tR); 2440 2441 if (nfc->caps->is_nfcv2) { 2442 marvell_nand->ndtr0 |= 2443 NDTR0_RD_CNT_DEL(read_delay) | 2444 NDTR0_SELCNTR | 2445 NDTR0_TADL(nfc_tmg.tADL); 2446 2447 marvell_nand->ndtr1 |= 2448 NDTR1_TRHW(nfc_tmg.tRHW) | 2449 NDTR1_WAIT_MODE; 2450 } 2451 2452 return 0; 2453 } 2454 2455 static int marvell_nand_attach_chip(struct nand_chip *chip) 2456 { 2457 struct mtd_info *mtd = nand_to_mtd(chip); 2458 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2459 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2460 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2461 int ret; 2462 2463 if (pdata && pdata->flash_bbt) 2464 chip->bbt_options |= NAND_BBT_USE_FLASH; 2465 2466 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2467 /* 2468 * We'll use a bad block table stored in-flash and don't 2469 * allow writing the bad block marker to the flash. 2470 */ 2471 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2472 chip->bbt_td = &bbt_main_descr; 2473 chip->bbt_md = &bbt_mirror_descr; 2474 } 2475 2476 /* Save the chip-specific fields of NDCR */ 2477 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2478 if (chip->options & NAND_BUSWIDTH_16) 2479 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2480 2481 /* 2482 * On small page NANDs, only one cycle is needed to pass the 2483 * column address. 2484 */ 2485 if (mtd->writesize <= 512) { 2486 marvell_nand->addr_cyc = 1; 2487 } else { 2488 marvell_nand->addr_cyc = 2; 2489 marvell_nand->ndcr |= NDCR_RA_START; 2490 } 2491 2492 /* 2493 * Now add the number of cycles needed to pass the row 2494 * address. 2495 * 2496 * Addressing a chip using CS 2 or 3 should also need the third row 2497 * cycle but due to inconsistance in the documentation and lack of 2498 * hardware to test this situation, this case is not supported. 2499 */ 2500 if (chip->options & NAND_ROW_ADDR_3) 2501 marvell_nand->addr_cyc += 3; 2502 else 2503 marvell_nand->addr_cyc += 2; 2504 2505 if (pdata) { 2506 chip->ecc.size = pdata->ecc_step_size; 2507 chip->ecc.strength = pdata->ecc_strength; 2508 } 2509 2510 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2511 if (ret) { 2512 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2513 return ret; 2514 } 2515 2516 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { 2517 /* 2518 * Subpage write not available with hardware ECC, prohibit also 2519 * subpage read as in userspace subpage access would still be 2520 * allowed and subpage write, if used, would lead to numerous 2521 * uncorrectable ECC errors. 2522 */ 2523 chip->options |= NAND_NO_SUBPAGE_WRITE; 2524 } 2525 2526 if (pdata || nfc->caps->legacy_of_bindings) { 2527 /* 2528 * We keep the MTD name unchanged to avoid breaking platforms 2529 * where the MTD cmdline parser is used and the bootloader 2530 * has not been updated to use the new naming scheme. 2531 */ 2532 mtd->name = "pxa3xx_nand-0"; 2533 } else if (!mtd->name) { 2534 /* 2535 * If the new bindings are used and the bootloader has not been 2536 * updated to pass a new mtdparts parameter on the cmdline, you 2537 * should define the following property in your NAND node, ie: 2538 * 2539 * label = "main-storage"; 2540 * 2541 * This way, mtd->name will be set by the core when 2542 * nand_set_flash_node() is called. 2543 */ 2544 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2545 "%s:nand.%d", dev_name(nfc->dev), 2546 marvell_nand->sels[0].cs); 2547 if (!mtd->name) { 2548 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2549 return -ENOMEM; 2550 } 2551 } 2552 2553 return 0; 2554 } 2555 2556 static const struct nand_controller_ops marvell_nand_controller_ops = { 2557 .attach_chip = marvell_nand_attach_chip, 2558 .exec_op = marvell_nfc_exec_op, 2559 .setup_interface = marvell_nfc_setup_interface, 2560 }; 2561 2562 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2563 struct device_node *np) 2564 { 2565 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2566 struct marvell_nand_chip *marvell_nand; 2567 struct mtd_info *mtd; 2568 struct nand_chip *chip; 2569 int nsels, ret, i; 2570 u32 cs, rb; 2571 2572 /* 2573 * The legacy "num-cs" property indicates the number of CS on the only 2574 * chip connected to the controller (legacy bindings does not support 2575 * more than one chip). The CS and RB pins are always the #0. 2576 * 2577 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2578 * properties must be filled. For each chip, expressed as a subnode, 2579 * "reg" points to the CS lines and "nand-rb" to the RB line. 2580 */ 2581 if (pdata || nfc->caps->legacy_of_bindings) { 2582 nsels = 1; 2583 } else { 2584 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2585 if (nsels <= 0) { 2586 dev_err(dev, "missing/invalid reg property\n"); 2587 return -EINVAL; 2588 } 2589 } 2590 2591 /* Alloc the nand chip structure */ 2592 marvell_nand = devm_kzalloc(dev, 2593 struct_size(marvell_nand, sels, nsels), 2594 GFP_KERNEL); 2595 if (!marvell_nand) { 2596 dev_err(dev, "could not allocate chip structure\n"); 2597 return -ENOMEM; 2598 } 2599 2600 marvell_nand->nsels = nsels; 2601 marvell_nand->selected_die = -1; 2602 2603 for (i = 0; i < nsels; i++) { 2604 if (pdata || nfc->caps->legacy_of_bindings) { 2605 /* 2606 * Legacy bindings use the CS lines in natural 2607 * order (0, 1, ...) 2608 */ 2609 cs = i; 2610 } else { 2611 /* Retrieve CS id */ 2612 ret = of_property_read_u32_index(np, "reg", i, &cs); 2613 if (ret) { 2614 dev_err(dev, "could not retrieve reg property: %d\n", 2615 ret); 2616 return ret; 2617 } 2618 } 2619 2620 if (cs >= nfc->caps->max_cs_nb) { 2621 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2622 cs, nfc->caps->max_cs_nb); 2623 return -EINVAL; 2624 } 2625 2626 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2627 dev_err(dev, "CS %d already assigned\n", cs); 2628 return -EINVAL; 2629 } 2630 2631 /* 2632 * The cs variable represents the chip select id, which must be 2633 * converted in bit fields for NDCB0 and NDCB2 to select the 2634 * right chip. Unfortunately, due to a lack of information on 2635 * the subject and incoherent documentation, the user should not 2636 * use CS1 and CS3 at all as asserting them is not supported in 2637 * a reliable way (due to multiplexing inside ADDR5 field). 2638 */ 2639 marvell_nand->sels[i].cs = cs; 2640 switch (cs) { 2641 case 0: 2642 case 2: 2643 marvell_nand->sels[i].ndcb0_csel = 0; 2644 break; 2645 case 1: 2646 case 3: 2647 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2648 break; 2649 default: 2650 return -EINVAL; 2651 } 2652 2653 /* Retrieve RB id */ 2654 if (pdata || nfc->caps->legacy_of_bindings) { 2655 /* Legacy bindings always use RB #0 */ 2656 rb = 0; 2657 } else { 2658 ret = of_property_read_u32_index(np, "nand-rb", i, 2659 &rb); 2660 if (ret) { 2661 dev_err(dev, 2662 "could not retrieve RB property: %d\n", 2663 ret); 2664 return ret; 2665 } 2666 } 2667 2668 if (rb >= nfc->caps->max_rb_nb) { 2669 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2670 rb, nfc->caps->max_rb_nb); 2671 return -EINVAL; 2672 } 2673 2674 marvell_nand->sels[i].rb = rb; 2675 } 2676 2677 chip = &marvell_nand->chip; 2678 chip->controller = &nfc->controller; 2679 nand_set_flash_node(chip, np); 2680 2681 if (of_property_read_bool(np, "marvell,nand-keep-config")) 2682 chip->options |= NAND_KEEP_TIMINGS; 2683 2684 mtd = nand_to_mtd(chip); 2685 mtd->dev.parent = dev; 2686 2687 /* 2688 * Save a reference value for timing registers before 2689 * ->setup_interface() is called. 2690 */ 2691 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2692 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2693 2694 chip->options |= NAND_BUSWIDTH_AUTO; 2695 2696 ret = nand_scan(chip, marvell_nand->nsels); 2697 if (ret) { 2698 dev_err(dev, "could not scan the nand chip\n"); 2699 return ret; 2700 } 2701 2702 if (pdata) 2703 /* Legacy bindings support only one chip */ 2704 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2705 else 2706 ret = mtd_device_register(mtd, NULL, 0); 2707 if (ret) { 2708 dev_err(dev, "failed to register mtd device: %d\n", ret); 2709 nand_cleanup(chip); 2710 return ret; 2711 } 2712 2713 list_add_tail(&marvell_nand->node, &nfc->chips); 2714 2715 return 0; 2716 } 2717 2718 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2719 { 2720 struct marvell_nand_chip *entry, *temp; 2721 struct nand_chip *chip; 2722 int ret; 2723 2724 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2725 chip = &entry->chip; 2726 ret = mtd_device_unregister(nand_to_mtd(chip)); 2727 WARN_ON(ret); 2728 nand_cleanup(chip); 2729 list_del(&entry->node); 2730 } 2731 } 2732 2733 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2734 { 2735 struct device_node *np = dev->of_node; 2736 struct device_node *nand_np; 2737 int max_cs = nfc->caps->max_cs_nb; 2738 int nchips; 2739 int ret; 2740 2741 if (!np) 2742 nchips = 1; 2743 else 2744 nchips = of_get_child_count(np); 2745 2746 if (nchips > max_cs) { 2747 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2748 max_cs); 2749 return -EINVAL; 2750 } 2751 2752 /* 2753 * Legacy bindings do not use child nodes to exhibit NAND chip 2754 * properties and layout. Instead, NAND properties are mixed with the 2755 * controller ones, and partitions are defined as direct subnodes of the 2756 * NAND controller node. 2757 */ 2758 if (nfc->caps->legacy_of_bindings) { 2759 ret = marvell_nand_chip_init(dev, nfc, np); 2760 return ret; 2761 } 2762 2763 for_each_child_of_node(np, nand_np) { 2764 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2765 if (ret) { 2766 of_node_put(nand_np); 2767 goto cleanup_chips; 2768 } 2769 } 2770 2771 return 0; 2772 2773 cleanup_chips: 2774 marvell_nand_chips_cleanup(nfc); 2775 2776 return ret; 2777 } 2778 2779 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2780 { 2781 struct platform_device *pdev = container_of(nfc->dev, 2782 struct platform_device, 2783 dev); 2784 struct dma_slave_config config = {}; 2785 struct resource *r; 2786 int ret; 2787 2788 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2789 dev_warn(nfc->dev, 2790 "DMA not enabled in configuration\n"); 2791 return -ENOTSUPP; 2792 } 2793 2794 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2795 if (ret) 2796 return ret; 2797 2798 nfc->dma_chan = dma_request_chan(nfc->dev, "data"); 2799 if (IS_ERR(nfc->dma_chan)) { 2800 ret = PTR_ERR(nfc->dma_chan); 2801 nfc->dma_chan = NULL; 2802 return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); 2803 } 2804 2805 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2806 if (!r) { 2807 ret = -ENXIO; 2808 goto release_channel; 2809 } 2810 2811 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2812 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2813 config.src_addr = r->start + NDDB; 2814 config.dst_addr = r->start + NDDB; 2815 config.src_maxburst = 32; 2816 config.dst_maxburst = 32; 2817 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2818 if (ret < 0) { 2819 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2820 goto release_channel; 2821 } 2822 2823 /* 2824 * DMA must act on length multiple of 32 and this length may be 2825 * bigger than the destination buffer. Use this buffer instead 2826 * for DMA transfers and then copy the desired amount of data to 2827 * the provided buffer. 2828 */ 2829 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2830 if (!nfc->dma_buf) { 2831 ret = -ENOMEM; 2832 goto release_channel; 2833 } 2834 2835 nfc->use_dma = true; 2836 2837 return 0; 2838 2839 release_channel: 2840 dma_release_channel(nfc->dma_chan); 2841 nfc->dma_chan = NULL; 2842 2843 return ret; 2844 } 2845 2846 static void marvell_nfc_reset(struct marvell_nfc *nfc) 2847 { 2848 /* 2849 * ECC operations and interruptions are only enabled when specifically 2850 * needed. ECC shall not be activated in the early stages (fails probe). 2851 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2852 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2853 * offset in the read page and this will fail the protection. 2854 */ 2855 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2856 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2857 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2858 writel_relaxed(0, nfc->regs + NDECCCTRL); 2859 } 2860 2861 static int marvell_nfc_init(struct marvell_nfc *nfc) 2862 { 2863 struct device_node *np = nfc->dev->of_node; 2864 2865 /* 2866 * Some SoCs like A7k/A8k need to enable manually the NAND 2867 * controller, gated clocks and reset bits to avoid being bootloader 2868 * dependent. This is done through the use of the System Functions 2869 * registers. 2870 */ 2871 if (nfc->caps->need_system_controller) { 2872 struct regmap *sysctrl_base = 2873 syscon_regmap_lookup_by_phandle(np, 2874 "marvell,system-controller"); 2875 2876 if (IS_ERR(sysctrl_base)) 2877 return PTR_ERR(sysctrl_base); 2878 2879 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, 2880 GENCONF_SOC_DEVICE_MUX_NFC_EN | 2881 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2882 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2883 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN); 2884 2885 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, 2886 GENCONF_CLK_GATING_CTRL_ND_GATE, 2887 GENCONF_CLK_GATING_CTRL_ND_GATE); 2888 2889 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL, 2890 GENCONF_ND_CLK_CTRL_EN, 2891 GENCONF_ND_CLK_CTRL_EN); 2892 } 2893 2894 /* Configure the DMA if appropriate */ 2895 if (!nfc->caps->is_nfcv2) 2896 marvell_nfc_init_dma(nfc); 2897 2898 marvell_nfc_reset(nfc); 2899 2900 return 0; 2901 } 2902 2903 static int marvell_nfc_probe(struct platform_device *pdev) 2904 { 2905 struct device *dev = &pdev->dev; 2906 struct marvell_nfc *nfc; 2907 int ret; 2908 int irq; 2909 2910 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2911 GFP_KERNEL); 2912 if (!nfc) 2913 return -ENOMEM; 2914 2915 nfc->dev = dev; 2916 nand_controller_init(&nfc->controller); 2917 nfc->controller.ops = &marvell_nand_controller_ops; 2918 INIT_LIST_HEAD(&nfc->chips); 2919 2920 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 2921 if (IS_ERR(nfc->regs)) 2922 return PTR_ERR(nfc->regs); 2923 2924 irq = platform_get_irq(pdev, 0); 2925 if (irq < 0) 2926 return irq; 2927 2928 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2929 2930 /* Managed the legacy case (when the first clock was not named) */ 2931 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2932 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2933 2934 if (IS_ERR(nfc->core_clk)) 2935 return PTR_ERR(nfc->core_clk); 2936 2937 ret = clk_prepare_enable(nfc->core_clk); 2938 if (ret) 2939 return ret; 2940 2941 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2942 if (IS_ERR(nfc->reg_clk)) { 2943 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2944 ret = PTR_ERR(nfc->reg_clk); 2945 goto unprepare_core_clk; 2946 } 2947 2948 nfc->reg_clk = NULL; 2949 } 2950 2951 ret = clk_prepare_enable(nfc->reg_clk); 2952 if (ret) 2953 goto unprepare_core_clk; 2954 2955 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2956 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2957 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2958 0, "marvell-nfc", nfc); 2959 if (ret) 2960 goto unprepare_reg_clk; 2961 2962 /* Get NAND controller capabilities */ 2963 if (pdev->id_entry) 2964 nfc->caps = (void *)pdev->id_entry->driver_data; 2965 else 2966 nfc->caps = of_device_get_match_data(&pdev->dev); 2967 2968 if (!nfc->caps) { 2969 dev_err(dev, "Could not retrieve NFC caps\n"); 2970 ret = -EINVAL; 2971 goto unprepare_reg_clk; 2972 } 2973 2974 /* Init the controller and then probe the chips */ 2975 ret = marvell_nfc_init(nfc); 2976 if (ret) 2977 goto unprepare_reg_clk; 2978 2979 platform_set_drvdata(pdev, nfc); 2980 2981 ret = marvell_nand_chips_init(dev, nfc); 2982 if (ret) 2983 goto release_dma; 2984 2985 return 0; 2986 2987 release_dma: 2988 if (nfc->use_dma) 2989 dma_release_channel(nfc->dma_chan); 2990 unprepare_reg_clk: 2991 clk_disable_unprepare(nfc->reg_clk); 2992 unprepare_core_clk: 2993 clk_disable_unprepare(nfc->core_clk); 2994 2995 return ret; 2996 } 2997 2998 static int marvell_nfc_remove(struct platform_device *pdev) 2999 { 3000 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 3001 3002 marvell_nand_chips_cleanup(nfc); 3003 3004 if (nfc->use_dma) { 3005 dmaengine_terminate_all(nfc->dma_chan); 3006 dma_release_channel(nfc->dma_chan); 3007 } 3008 3009 clk_disable_unprepare(nfc->reg_clk); 3010 clk_disable_unprepare(nfc->core_clk); 3011 3012 return 0; 3013 } 3014 3015 static int __maybe_unused marvell_nfc_suspend(struct device *dev) 3016 { 3017 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3018 struct marvell_nand_chip *chip; 3019 3020 list_for_each_entry(chip, &nfc->chips, node) 3021 marvell_nfc_wait_ndrun(&chip->chip); 3022 3023 clk_disable_unprepare(nfc->reg_clk); 3024 clk_disable_unprepare(nfc->core_clk); 3025 3026 return 0; 3027 } 3028 3029 static int __maybe_unused marvell_nfc_resume(struct device *dev) 3030 { 3031 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3032 int ret; 3033 3034 ret = clk_prepare_enable(nfc->core_clk); 3035 if (ret < 0) 3036 return ret; 3037 3038 ret = clk_prepare_enable(nfc->reg_clk); 3039 if (ret < 0) { 3040 clk_disable_unprepare(nfc->core_clk); 3041 return ret; 3042 } 3043 3044 /* 3045 * Reset nfc->selected_chip so the next command will cause the timing 3046 * registers to be restored in marvell_nfc_select_target(). 3047 */ 3048 nfc->selected_chip = NULL; 3049 3050 /* Reset registers that have lost their contents */ 3051 marvell_nfc_reset(nfc); 3052 3053 return 0; 3054 } 3055 3056 static const struct dev_pm_ops marvell_nfc_pm_ops = { 3057 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 3058 }; 3059 3060 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 3061 .max_cs_nb = 4, 3062 .max_rb_nb = 2, 3063 .need_system_controller = true, 3064 .is_nfcv2 = true, 3065 }; 3066 3067 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 3068 .max_cs_nb = 4, 3069 .max_rb_nb = 2, 3070 .is_nfcv2 = true, 3071 }; 3072 3073 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 3074 .max_cs_nb = 2, 3075 .max_rb_nb = 1, 3076 .use_dma = true, 3077 }; 3078 3079 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 3080 .max_cs_nb = 4, 3081 .max_rb_nb = 2, 3082 .need_system_controller = true, 3083 .legacy_of_bindings = true, 3084 .is_nfcv2 = true, 3085 }; 3086 3087 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 3088 .max_cs_nb = 4, 3089 .max_rb_nb = 2, 3090 .legacy_of_bindings = true, 3091 .is_nfcv2 = true, 3092 }; 3093 3094 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 3095 .max_cs_nb = 2, 3096 .max_rb_nb = 1, 3097 .legacy_of_bindings = true, 3098 .use_dma = true, 3099 }; 3100 3101 static const struct platform_device_id marvell_nfc_platform_ids[] = { 3102 { 3103 .name = "pxa3xx-nand", 3104 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 3105 }, 3106 { /* sentinel */ }, 3107 }; 3108 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 3109 3110 static const struct of_device_id marvell_nfc_of_ids[] = { 3111 { 3112 .compatible = "marvell,armada-8k-nand-controller", 3113 .data = &marvell_armada_8k_nfc_caps, 3114 }, 3115 { 3116 .compatible = "marvell,armada370-nand-controller", 3117 .data = &marvell_armada370_nfc_caps, 3118 }, 3119 { 3120 .compatible = "marvell,pxa3xx-nand-controller", 3121 .data = &marvell_pxa3xx_nfc_caps, 3122 }, 3123 /* Support for old/deprecated bindings: */ 3124 { 3125 .compatible = "marvell,armada-8k-nand", 3126 .data = &marvell_armada_8k_nfc_legacy_caps, 3127 }, 3128 { 3129 .compatible = "marvell,armada370-nand", 3130 .data = &marvell_armada370_nfc_legacy_caps, 3131 }, 3132 { 3133 .compatible = "marvell,pxa3xx-nand", 3134 .data = &marvell_pxa3xx_nfc_legacy_caps, 3135 }, 3136 { /* sentinel */ }, 3137 }; 3138 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 3139 3140 static struct platform_driver marvell_nfc_driver = { 3141 .driver = { 3142 .name = "marvell-nfc", 3143 .of_match_table = marvell_nfc_of_ids, 3144 .pm = &marvell_nfc_pm_ops, 3145 }, 3146 .id_table = marvell_nfc_platform_ids, 3147 .probe = marvell_nfc_probe, 3148 .remove = marvell_nfc_remove, 3149 }; 3150 module_platform_driver(marvell_nfc_driver); 3151 3152 MODULE_LICENSE("GPL"); 3153 MODULE_DESCRIPTION("Marvell NAND controller driver"); 3154