1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Marvell NAND flash controller driver
4  *
5  * Copyright (C) 2017 Marvell
6  * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7  *
8  *
9  * This NAND controller driver handles two versions of the hardware,
10  * one is called NFCv1 and is available on PXA SoCs and the other is
11  * called NFCv2 and is available on Armada SoCs.
12  *
13  * The main visible difference is that NFCv1 only has Hamming ECC
14  * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15  * is not used with NFCv2.
16  *
17  * The ECC layouts are depicted in details in Marvell AN-379, but here
18  * is a brief description.
19  *
20  * When using Hamming, the data is split in 512B chunks (either 1, 2
21  * or 4) and each chunk will have its own ECC "digest" of 6B at the
22  * beginning of the OOB area and eventually the remaining free OOB
23  * bytes (also called "spare" bytes in the driver). This engine
24  * corrects up to 1 bit per chunk and detects reliably an error if
25  * there are at most 2 bitflips. Here is the page layout used by the
26  * controller when Hamming is chosen:
27  *
28  * +-------------------------------------------------------------+
29  * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30  * +-------------------------------------------------------------+
31  *
32  * When using the BCH engine, there are N identical (data + free OOB +
33  * ECC) sections and potentially an extra one to deal with
34  * configurations where the chosen (data + free OOB + ECC) sizes do
35  * not align with the page (data + OOB) size. ECC bytes are always
36  * 30B per ECC chunk. Here is the page layout used by the controller
37  * when BCH is chosen:
38  *
39  * +-----------------------------------------
40  * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41  * +-----------------------------------------
42  *
43  *      -------------------------------------------
44  *       ... | Data N | Free OOB bytes N | ECC N |
45  *      -------------------------------------------
46  *
47  *           --------------------------------------------+
48  *            Last Data | Last Free OOB bytes | Last ECC |
49  *           --------------------------------------------+
50  *
51  * In both cases, the layout seen by the user is always: all data
52  * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53  * ECC bytes are 30B long and are padded with 0xFF to align on 32
54  * bytes.
55  *
56  * The controller has certain limitations that are handled by the
57  * driver:
58  *   - It can only read 2k at a time. To overcome this limitation, the
59  *     driver issues data cycles on the bus, without issuing new
60  *     CMD + ADDR cycles. The Marvell term is "naked" operations.
61  *   - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62  *     bits. What can be tuned is the ECC block size as long as it
63  *     stays between 512B and 2kiB. It's usually chosen based on the
64  *     chip ECC requirements. For instance, using 2kiB ECC chunks
65  *     provides 4b/512B correctability.
66  *   - The controller will always treat data bytes, free OOB bytes
67  *     and ECC bytes in that order, no matter what the real layout is
68  *     (which is usually all data then all OOB bytes). The
69  *     marvell_nfc_layouts array below contains the currently
70  *     supported layouts.
71  *   - Because of these weird layouts, the Bad Block Markers can be
72  *     located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73  *     option must be set to prevent scanning/writing bad block
74  *     markers.
75  */
76 
77 #include <linux/module.h>
78 #include <linux/clk.h>
79 #include <linux/mtd/rawnand.h>
80 #include <linux/of.h>
81 #include <linux/iopoll.h>
82 #include <linux/interrupt.h>
83 #include <linux/platform_device.h>
84 #include <linux/slab.h>
85 #include <linux/mfd/syscon.h>
86 #include <linux/regmap.h>
87 #include <asm/unaligned.h>
88 
89 #include <linux/dmaengine.h>
90 #include <linux/dma-mapping.h>
91 #include <linux/dma/pxa-dma.h>
92 #include <linux/platform_data/mtd-nand-pxa3xx.h>
93 
94 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
95 #define FIFO_DEPTH		8
96 #define FIFO_REP(x)		(x / sizeof(u32))
97 #define BCH_SEQ_READS		(32 / FIFO_DEPTH)
98 /* NFC does not support transfers of larger chunks at a time */
99 #define MAX_CHUNK_SIZE		2112
100 /* NFCv1 cannot read more that 7 bytes of ID */
101 #define NFCV1_READID_LEN	7
102 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
103 #define POLL_PERIOD		0
104 #define POLL_TIMEOUT		100000
105 /* Interrupt maximum wait period in ms */
106 #define IRQ_TIMEOUT		1000
107 /* Latency in clock cycles between SoC pins and NFC logic */
108 #define MIN_RD_DEL_CNT		3
109 /* Maximum number of contiguous address cycles */
110 #define MAX_ADDRESS_CYC_NFCV1	5
111 #define MAX_ADDRESS_CYC_NFCV2	7
112 /* System control registers/bits to enable the NAND controller on some SoCs */
113 #define GENCONF_SOC_DEVICE_MUX	0x208
114 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
115 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
116 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
117 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
118 #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27)
119 #define GENCONF_CLK_GATING_CTRL	0x220
120 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
121 #define GENCONF_ND_CLK_CTRL	0x700
122 #define GENCONF_ND_CLK_CTRL_EN	BIT(0)
123 
124 /* NAND controller data flash control register */
125 #define NDCR			0x00
126 #define NDCR_ALL_INT		GENMASK(11, 0)
127 #define NDCR_CS1_CMDDM		BIT(7)
128 #define NDCR_CS0_CMDDM		BIT(8)
129 #define NDCR_RDYM		BIT(11)
130 #define NDCR_ND_ARB_EN		BIT(12)
131 #define NDCR_RA_START		BIT(15)
132 #define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16)
133 #define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0)
134 #define NDCR_DWIDTH_M		BIT(26)
135 #define NDCR_DWIDTH_C		BIT(27)
136 #define NDCR_ND_RUN		BIT(28)
137 #define NDCR_DMA_EN		BIT(29)
138 #define NDCR_ECC_EN		BIT(30)
139 #define NDCR_SPARE_EN		BIT(31)
140 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
141 				    NDCR_DWIDTH_M | NDCR_DWIDTH_C))
142 
143 /* NAND interface timing parameter 0 register */
144 #define NDTR0			0x04
145 #define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0)
146 #define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3)
147 #define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3)
148 #define NDTR0_SEL_NRE_EDGE	BIT(7)
149 #define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8)
150 #define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11)
151 #define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16)
152 #define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19)
153 #define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22)
154 #define NDTR0_SELCNTR		BIT(26)
155 #define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27)
156 
157 /* NAND interface timing parameter 1 register */
158 #define NDTR1			0x0C
159 #define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0)
160 #define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4)
161 #define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8)
162 #define NDTR1_PRESCALE		BIT(14)
163 #define NDTR1_WAIT_MODE		BIT(15)
164 #define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16)
165 
166 /* NAND controller status register */
167 #define NDSR			0x14
168 #define NDSR_WRCMDREQ		BIT(0)
169 #define NDSR_RDDREQ		BIT(1)
170 #define NDSR_WRDREQ		BIT(2)
171 #define NDSR_CORERR		BIT(3)
172 #define NDSR_UNCERR		BIT(4)
173 #define NDSR_CMDD(cs)		BIT(8 - cs)
174 #define NDSR_RDY(rb)		BIT(11 + rb)
175 #define NDSR_ERRCNT(x)		((x >> 16) & 0x1F)
176 
177 /* NAND ECC control register */
178 #define NDECCCTRL		0x28
179 #define NDECCCTRL_BCH_EN	BIT(0)
180 
181 /* NAND controller data buffer register */
182 #define NDDB			0x40
183 
184 /* NAND controller command buffer 0 register */
185 #define NDCB0			0x48
186 #define NDCB0_CMD1(x)		((x & 0xFF) << 0)
187 #define NDCB0_CMD2(x)		((x & 0xFF) << 8)
188 #define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16)
189 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
190 #define NDCB0_DBC		BIT(19)
191 #define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21)
192 #define NDCB0_CSEL		BIT(24)
193 #define NDCB0_RDY_BYP		BIT(27)
194 #define NDCB0_LEN_OVRD		BIT(28)
195 #define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29)
196 
197 /* NAND controller command buffer 1 register */
198 #define NDCB1			0x4C
199 #define NDCB1_COLS(x)		((x & 0xFFFF) << 0)
200 #define NDCB1_ADDRS_PAGE(x)	(x << 16)
201 
202 /* NAND controller command buffer 2 register */
203 #define NDCB2			0x50
204 #define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0)
205 #define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0)
206 
207 /* NAND controller command buffer 3 register */
208 #define NDCB3			0x54
209 #define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16)
210 #define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24)
211 
212 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
213 #define TYPE_READ		0
214 #define TYPE_WRITE		1
215 #define TYPE_ERASE		2
216 #define TYPE_READ_ID		3
217 #define TYPE_STATUS		4
218 #define TYPE_RESET		5
219 #define TYPE_NAKED_CMD		6
220 #define TYPE_NAKED_ADDR		7
221 #define TYPE_MASK		7
222 #define XTYPE_MONOLITHIC_RW	0
223 #define XTYPE_LAST_NAKED_RW	1
224 #define XTYPE_FINAL_COMMAND	3
225 #define XTYPE_READ		4
226 #define XTYPE_WRITE_DISPATCH	4
227 #define XTYPE_NAKED_RW		5
228 #define XTYPE_COMMAND_DISPATCH	6
229 #define XTYPE_MASK		7
230 
231 /**
232  * struct marvell_hw_ecc_layout - layout of Marvell ECC
233  *
234  * Marvell ECC engine works differently than the others, in order to limit the
235  * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
236  * per subpage, and depending on a the desired strength needed by the NAND chip,
237  * a particular layout mixing data/spare/ecc is defined, with a possible last
238  * chunk smaller that the others.
239  *
240  * @writesize:		Full page size on which the layout applies
241  * @chunk:		Desired ECC chunk size on which the layout applies
242  * @strength:		Desired ECC strength (per chunk size bytes) on which the
243  *			layout applies
244  * @nchunks:		Total number of chunks
245  * @full_chunk_cnt:	Number of full-sized chunks, which is the number of
246  *			repetitions of the pattern:
247  *			(data_bytes + spare_bytes + ecc_bytes).
248  * @data_bytes:		Number of data bytes per chunk
249  * @spare_bytes:	Number of spare bytes per chunk
250  * @ecc_bytes:		Number of ecc bytes per chunk
251  * @last_data_bytes:	Number of data bytes in the last chunk
252  * @last_spare_bytes:	Number of spare bytes in the last chunk
253  * @last_ecc_bytes:	Number of ecc bytes in the last chunk
254  */
255 struct marvell_hw_ecc_layout {
256 	/* Constraints */
257 	int writesize;
258 	int chunk;
259 	int strength;
260 	/* Corresponding layout */
261 	int nchunks;
262 	int full_chunk_cnt;
263 	int data_bytes;
264 	int spare_bytes;
265 	int ecc_bytes;
266 	int last_data_bytes;
267 	int last_spare_bytes;
268 	int last_ecc_bytes;
269 };
270 
271 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\
272 	{								\
273 		.writesize = ws,					\
274 		.chunk = dc,						\
275 		.strength = ds,						\
276 		.nchunks = nc,						\
277 		.full_chunk_cnt = fcc,					\
278 		.data_bytes = db,					\
279 		.spare_bytes = sb,					\
280 		.ecc_bytes = eb,					\
281 		.last_data_bytes = ldb,					\
282 		.last_spare_bytes = lsb,				\
283 		.last_ecc_bytes = leb,					\
284 	}
285 
286 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
287 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
288 	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
289 	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
290 	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
291 	MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,32, 30),
292 	MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,64, 30),
293 	MARVELL_LAYOUT( 2048,   512,  12, 3,  2, 704,   0, 30,640,  0, 30),
294 	MARVELL_LAYOUT( 2048,   512,  16, 5,  4, 512,   0, 30,  0, 32, 30),
295 	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
296 	MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
297 	MARVELL_LAYOUT( 4096,   512,  12, 6,  5, 704,   0, 30,576, 32, 30),
298 	MARVELL_LAYOUT( 4096,   512,  16, 9,  8, 512,   0, 30,  0, 32, 30),
299 	MARVELL_LAYOUT( 8192,   512,  4,  4,  4, 2048,  0, 30,  0,  0,  0),
300 	MARVELL_LAYOUT( 8192,   512,  8,  9,  8, 1024,  0, 30,  0, 160, 30),
301 	MARVELL_LAYOUT( 8192,   512,  12, 12, 11, 704,  0, 30,448,  64, 30),
302 	MARVELL_LAYOUT( 8192,   512,  16, 17, 16, 512,  0, 30,  0,  32, 30),
303 };
304 
305 /**
306  * struct marvell_nand_chip_sel - CS line description
307  *
308  * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
309  * is made by a field in NDCB0 register, and in another field in NDCB2 register.
310  * The datasheet describes the logic with an error: ADDR5 field is once
311  * declared at the beginning of NDCB2, and another time at its end. Because the
312  * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
313  * to use the last bit of this field instead of the first ones.
314  *
315  * @cs:			Wanted CE lane.
316  * @ndcb0_csel:		Value of the NDCB0 register with or without the flag
317  *			selecting the wanted CE lane. This is set once when
318  *			the Device Tree is probed.
319  * @rb:			Ready/Busy pin for the flash chip
320  */
321 struct marvell_nand_chip_sel {
322 	unsigned int cs;
323 	u32 ndcb0_csel;
324 	unsigned int rb;
325 };
326 
327 /**
328  * struct marvell_nand_chip - stores NAND chip device related information
329  *
330  * @chip:		Base NAND chip structure
331  * @node:		Used to store NAND chips into a list
332  * @layout:		NAND layout when using hardware ECC
333  * @ndcr:		Controller register value for this NAND chip
334  * @ndtr0:		Timing registers 0 value for this NAND chip
335  * @ndtr1:		Timing registers 1 value for this NAND chip
336  * @addr_cyc:		Amount of cycles needed to pass column address
337  * @selected_die:	Current active CS
338  * @nsels:		Number of CS lines required by the NAND chip
339  * @sels:		Array of CS lines descriptions
340  */
341 struct marvell_nand_chip {
342 	struct nand_chip chip;
343 	struct list_head node;
344 	const struct marvell_hw_ecc_layout *layout;
345 	u32 ndcr;
346 	u32 ndtr0;
347 	u32 ndtr1;
348 	int addr_cyc;
349 	int selected_die;
350 	unsigned int nsels;
351 	struct marvell_nand_chip_sel sels[];
352 };
353 
354 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
355 {
356 	return container_of(chip, struct marvell_nand_chip, chip);
357 }
358 
359 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
360 							*nand)
361 {
362 	return &nand->sels[nand->selected_die];
363 }
364 
365 /**
366  * struct marvell_nfc_caps - NAND controller capabilities for distinction
367  *                           between compatible strings
368  *
369  * @max_cs_nb:		Number of Chip Select lines available
370  * @max_rb_nb:		Number of Ready/Busy lines available
371  * @need_system_controller: Indicates if the SoC needs to have access to the
372  *                      system controller (ie. to enable the NAND controller)
373  * @legacy_of_bindings:	Indicates if DT parsing must be done using the old
374  *			fashion way
375  * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie.
376  *			BCH error detection and correction algorithm,
377  *			NDCB3 register has been added
378  * @use_dma:		Use dma for data transfers
379  * @max_mode_number:	Maximum timing mode supported by the controller
380  */
381 struct marvell_nfc_caps {
382 	unsigned int max_cs_nb;
383 	unsigned int max_rb_nb;
384 	bool need_system_controller;
385 	bool legacy_of_bindings;
386 	bool is_nfcv2;
387 	bool use_dma;
388 	unsigned int max_mode_number;
389 };
390 
391 /**
392  * struct marvell_nfc - stores Marvell NAND controller information
393  *
394  * @controller:		Base controller structure
395  * @dev:		Parent device (used to print error messages)
396  * @regs:		NAND controller registers
397  * @core_clk:		Core clock
398  * @reg_clk:		Registers clock
399  * @complete:		Completion object to wait for NAND controller events
400  * @assigned_cs:	Bitmask describing already assigned CS lines
401  * @chips:		List containing all the NAND chips attached to
402  *			this NAND controller
403  * @selected_chip:	Currently selected target chip
404  * @caps:		NAND controller capabilities for each compatible string
405  * @use_dma:		Whetner DMA is used
406  * @dma_chan:		DMA channel (NFCv1 only)
407  * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only)
408  */
409 struct marvell_nfc {
410 	struct nand_controller controller;
411 	struct device *dev;
412 	void __iomem *regs;
413 	struct clk *core_clk;
414 	struct clk *reg_clk;
415 	struct completion complete;
416 	unsigned long assigned_cs;
417 	struct list_head chips;
418 	struct nand_chip *selected_chip;
419 	const struct marvell_nfc_caps *caps;
420 
421 	/* DMA (NFCv1 only) */
422 	bool use_dma;
423 	struct dma_chan *dma_chan;
424 	u8 *dma_buf;
425 };
426 
427 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
428 {
429 	return container_of(ctrl, struct marvell_nfc, controller);
430 }
431 
432 /**
433  * struct marvell_nfc_timings - NAND controller timings expressed in NAND
434  *                              Controller clock cycles
435  *
436  * @tRP:		ND_nRE pulse width
437  * @tRH:		ND_nRE high duration
438  * @tWP:		ND_nWE pulse time
439  * @tWH:		ND_nWE high duration
440  * @tCS:		Enable signal setup time
441  * @tCH:		Enable signal hold time
442  * @tADL:		Address to write data delay
443  * @tAR:		ND_ALE low to ND_nRE low delay
444  * @tWHR:		ND_nWE high to ND_nRE low for status read
445  * @tRHW:		ND_nRE high duration, read to write delay
446  * @tR:			ND_nWE high to ND_nRE low for read
447  */
448 struct marvell_nfc_timings {
449 	/* NDTR0 fields */
450 	unsigned int tRP;
451 	unsigned int tRH;
452 	unsigned int tWP;
453 	unsigned int tWH;
454 	unsigned int tCS;
455 	unsigned int tCH;
456 	unsigned int tADL;
457 	/* NDTR1 fields */
458 	unsigned int tAR;
459 	unsigned int tWHR;
460 	unsigned int tRHW;
461 	unsigned int tR;
462 };
463 
464 /**
465  * TO_CYCLES() - Derives a duration in numbers of clock cycles.
466  *
467  * @ps: Duration in pico-seconds
468  * @period_ns:  Clock period in nano-seconds
469  *
470  * Convert the duration in nano-seconds, then divide by the period and
471  * return the number of clock periods.
472  */
473 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
474 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
475 						     period_ns))
476 
477 /**
478  * struct marvell_nfc_op - filled during the parsing of the ->exec_op()
479  *                         subop subset of instructions.
480  *
481  * @ndcb:		Array of values written to NDCBx registers
482  * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle
483  * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin
484  * @rdy_delay_ns:	Optional delay after waiting for the RB pin
485  * @data_delay_ns:	Optional delay after the data xfer
486  * @data_instr_idx:	Index of the data instruction in the subop
487  * @data_instr:		Pointer to the data instruction in the subop
488  */
489 struct marvell_nfc_op {
490 	u32 ndcb[4];
491 	unsigned int cle_ale_delay_ns;
492 	unsigned int rdy_timeout_ms;
493 	unsigned int rdy_delay_ns;
494 	unsigned int data_delay_ns;
495 	unsigned int data_instr_idx;
496 	const struct nand_op_instr *data_instr;
497 };
498 
499 /*
500  * Internal helper to conditionnally apply a delay (from the above structure,
501  * most of the time).
502  */
503 static void cond_delay(unsigned int ns)
504 {
505 	if (!ns)
506 		return;
507 
508 	if (ns < 10000)
509 		ndelay(ns);
510 	else
511 		udelay(DIV_ROUND_UP(ns, 1000));
512 }
513 
514 /*
515  * The controller has many flags that could generate interrupts, most of them
516  * are disabled and polling is used. For the very slow signals, using interrupts
517  * may relax the CPU charge.
518  */
519 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
520 {
521 	u32 reg;
522 
523 	/* Writing 1 disables the interrupt */
524 	reg = readl_relaxed(nfc->regs + NDCR);
525 	writel_relaxed(reg | int_mask, nfc->regs + NDCR);
526 }
527 
528 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
529 {
530 	u32 reg;
531 
532 	/* Writing 0 enables the interrupt */
533 	reg = readl_relaxed(nfc->regs + NDCR);
534 	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
535 }
536 
537 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
538 {
539 	u32 reg;
540 
541 	reg = readl_relaxed(nfc->regs + NDSR);
542 	writel_relaxed(int_mask, nfc->regs + NDSR);
543 
544 	return reg & int_mask;
545 }
546 
547 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
548 					  bool force_8bit)
549 {
550 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
551 	u32 ndcr;
552 
553 	/*
554 	 * Callers of this function do not verify if the NAND is using a 16-bit
555 	 * an 8-bit bus for normal operations, so we need to take care of that
556 	 * here by leaving the configuration unchanged if the NAND does not have
557 	 * the NAND_BUSWIDTH_16 flag set.
558 	 */
559 	if (!(chip->options & NAND_BUSWIDTH_16))
560 		return;
561 
562 	ndcr = readl_relaxed(nfc->regs + NDCR);
563 
564 	if (force_8bit)
565 		ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
566 	else
567 		ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
568 
569 	writel_relaxed(ndcr, nfc->regs + NDCR);
570 }
571 
572 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
573 {
574 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
575 	u32 val;
576 	int ret;
577 
578 	/*
579 	 * The command is being processed, wait for the ND_RUN bit to be
580 	 * cleared by the NFC. If not, we must clear it by hand.
581 	 */
582 	ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
583 					 (val & NDCR_ND_RUN) == 0,
584 					 POLL_PERIOD, POLL_TIMEOUT);
585 	if (ret) {
586 		dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
587 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
588 			       nfc->regs + NDCR);
589 		return ret;
590 	}
591 
592 	return 0;
593 }
594 
595 /*
596  * Any time a command has to be sent to the controller, the following sequence
597  * has to be followed:
598  * - call marvell_nfc_prepare_cmd()
599  *      -> activate the ND_RUN bit that will kind of 'start a job'
600  *      -> wait the signal indicating the NFC is waiting for a command
601  * - send the command (cmd and address cycles)
602  * - enventually send or receive the data
603  * - call marvell_nfc_end_cmd() with the corresponding flag
604  *      -> wait the flag to be triggered or cancel the job with a timeout
605  *
606  * The following helpers are here to factorize the code a bit so that
607  * specialized functions responsible for executing the actual NAND
608  * operations do not have to replicate the same code blocks.
609  */
610 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
611 {
612 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
613 	u32 ndcr, val;
614 	int ret;
615 
616 	/* Poll ND_RUN and clear NDSR before issuing any command */
617 	ret = marvell_nfc_wait_ndrun(chip);
618 	if (ret) {
619 		dev_err(nfc->dev, "Last operation did not succeed\n");
620 		return ret;
621 	}
622 
623 	ndcr = readl_relaxed(nfc->regs + NDCR);
624 	writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
625 
626 	/* Assert ND_RUN bit and wait the NFC to be ready */
627 	writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
628 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
629 					 val & NDSR_WRCMDREQ,
630 					 POLL_PERIOD, POLL_TIMEOUT);
631 	if (ret) {
632 		dev_err(nfc->dev, "Timeout on WRCMDRE\n");
633 		return -ETIMEDOUT;
634 	}
635 
636 	/* Command may be written, clear WRCMDREQ status bit */
637 	writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
638 
639 	return 0;
640 }
641 
642 static void marvell_nfc_send_cmd(struct nand_chip *chip,
643 				 struct marvell_nfc_op *nfc_op)
644 {
645 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
646 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
647 
648 	dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
649 		"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
650 		(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
651 		nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
652 
653 	writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
654 		       nfc->regs + NDCB0);
655 	writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
656 	writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
657 
658 	/*
659 	 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
660 	 * fields are used (only available on NFCv2).
661 	 */
662 	if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
663 	    NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
664 		if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
665 			writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
666 	}
667 }
668 
669 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
670 			       const char *label)
671 {
672 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
673 	u32 val;
674 	int ret;
675 
676 	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
677 					 val & flag,
678 					 POLL_PERIOD, POLL_TIMEOUT);
679 
680 	if (ret) {
681 		dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
682 			label, val);
683 		if (nfc->dma_chan)
684 			dmaengine_terminate_all(nfc->dma_chan);
685 		return ret;
686 	}
687 
688 	/*
689 	 * DMA function uses this helper to poll on CMDD bits without wanting
690 	 * them to be cleared.
691 	 */
692 	if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
693 		return 0;
694 
695 	writel_relaxed(flag, nfc->regs + NDSR);
696 
697 	return 0;
698 }
699 
700 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
701 {
702 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
703 	int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
704 
705 	return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
706 }
707 
708 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
709 				   u32 expected_val, unsigned long timeout_ms)
710 {
711 	unsigned long limit;
712 	u32 st;
713 
714 	limit = jiffies + msecs_to_jiffies(timeout_ms);
715 	do {
716 		st = readl_relaxed(nfc->regs + NDSR);
717 		if (st & NDSR_RDY(1))
718 			st |= NDSR_RDY(0);
719 
720 		if ((st & mask) == expected_val)
721 			return 0;
722 
723 		cpu_relax();
724 	} while (time_after(limit, jiffies));
725 
726 	return -ETIMEDOUT;
727 }
728 
729 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
730 {
731 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
732 	struct mtd_info *mtd = nand_to_mtd(chip);
733 	u32 pending;
734 	int ret;
735 
736 	/* Timeout is expressed in ms */
737 	if (!timeout_ms)
738 		timeout_ms = IRQ_TIMEOUT;
739 
740 	if (mtd->oops_panic_write) {
741 		ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
742 					      NDSR_RDY(0),
743 					      timeout_ms);
744 	} else {
745 		init_completion(&nfc->complete);
746 
747 		marvell_nfc_enable_int(nfc, NDCR_RDYM);
748 		ret = wait_for_completion_timeout(&nfc->complete,
749 						  msecs_to_jiffies(timeout_ms));
750 		marvell_nfc_disable_int(nfc, NDCR_RDYM);
751 	}
752 	pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
753 
754 	/*
755 	 * In case the interrupt was not served in the required time frame,
756 	 * check if the ISR was not served or if something went actually wrong.
757 	 */
758 	if (!ret && !pending) {
759 		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
760 		return -ETIMEDOUT;
761 	}
762 
763 	return 0;
764 }
765 
766 static void marvell_nfc_select_target(struct nand_chip *chip,
767 				      unsigned int die_nr)
768 {
769 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
770 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
771 	u32 ndcr_generic;
772 
773 	/*
774 	 * Reset the NDCR register to a clean state for this particular chip,
775 	 * also clear ND_RUN bit.
776 	 */
777 	ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
778 		       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
779 	writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
780 
781 	/* Also reset the interrupt status register */
782 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
783 
784 	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
785 		return;
786 
787 	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
788 	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
789 
790 	nfc->selected_chip = chip;
791 	marvell_nand->selected_die = die_nr;
792 }
793 
794 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
795 {
796 	struct marvell_nfc *nfc = dev_id;
797 	u32 st = readl_relaxed(nfc->regs + NDSR);
798 	u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
799 
800 	/*
801 	 * RDY interrupt mask is one bit in NDCR while there are two status
802 	 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
803 	 */
804 	if (st & NDSR_RDY(1))
805 		st |= NDSR_RDY(0);
806 
807 	if (!(st & ien))
808 		return IRQ_NONE;
809 
810 	marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
811 
812 	if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
813 		complete(&nfc->complete);
814 
815 	return IRQ_HANDLED;
816 }
817 
818 /* HW ECC related functions */
819 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
820 {
821 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
822 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
823 
824 	if (!(ndcr & NDCR_ECC_EN)) {
825 		writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
826 
827 		/*
828 		 * When enabling BCH, set threshold to 0 to always know the
829 		 * number of corrected bitflips.
830 		 */
831 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
832 			writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
833 	}
834 }
835 
836 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
837 {
838 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
839 	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
840 
841 	if (ndcr & NDCR_ECC_EN) {
842 		writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
843 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
844 			writel_relaxed(0, nfc->regs + NDECCCTRL);
845 	}
846 }
847 
848 /* DMA related helpers */
849 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
850 {
851 	u32 reg;
852 
853 	reg = readl_relaxed(nfc->regs + NDCR);
854 	writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
855 }
856 
857 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
858 {
859 	u32 reg;
860 
861 	reg = readl_relaxed(nfc->regs + NDCR);
862 	writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
863 }
864 
865 /* Read/write PIO/DMA accessors */
866 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
867 				     enum dma_data_direction direction,
868 				     unsigned int len)
869 {
870 	unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
871 	struct dma_async_tx_descriptor *tx;
872 	struct scatterlist sg;
873 	dma_cookie_t cookie;
874 	int ret;
875 
876 	marvell_nfc_enable_dma(nfc);
877 	/* Prepare the DMA transfer */
878 	sg_init_one(&sg, nfc->dma_buf, dma_len);
879 	ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
880 	if (!ret) {
881 		dev_err(nfc->dev, "Could not map DMA S/G list\n");
882 		return -ENXIO;
883 	}
884 
885 	tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
886 				     direction == DMA_FROM_DEVICE ?
887 				     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
888 				     DMA_PREP_INTERRUPT);
889 	if (!tx) {
890 		dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
891 		dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
892 		return -ENXIO;
893 	}
894 
895 	/* Do the task and wait for it to finish */
896 	cookie = dmaengine_submit(tx);
897 	ret = dma_submit_error(cookie);
898 	if (ret)
899 		return -EIO;
900 
901 	dma_async_issue_pending(nfc->dma_chan);
902 	ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
903 	dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
904 	marvell_nfc_disable_dma(nfc);
905 	if (ret) {
906 		dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
907 			dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
908 		dmaengine_terminate_all(nfc->dma_chan);
909 		return -ETIMEDOUT;
910 	}
911 
912 	return 0;
913 }
914 
915 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
916 					unsigned int len)
917 {
918 	unsigned int last_len = len % FIFO_DEPTH;
919 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
920 	int i;
921 
922 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
923 		ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
924 
925 	if (last_len) {
926 		u8 tmp_buf[FIFO_DEPTH];
927 
928 		ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
929 		memcpy(in + last_full_offset, tmp_buf, last_len);
930 	}
931 
932 	return 0;
933 }
934 
935 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
936 					 unsigned int len)
937 {
938 	unsigned int last_len = len % FIFO_DEPTH;
939 	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
940 	int i;
941 
942 	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
943 		iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
944 
945 	if (last_len) {
946 		u8 tmp_buf[FIFO_DEPTH];
947 
948 		memcpy(tmp_buf, out + last_full_offset, last_len);
949 		iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
950 	}
951 
952 	return 0;
953 }
954 
955 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
956 					  u8 *data, int data_len,
957 					  u8 *spare, int spare_len,
958 					  u8 *ecc, int ecc_len,
959 					  unsigned int *max_bitflips)
960 {
961 	struct mtd_info *mtd = nand_to_mtd(chip);
962 	int bf;
963 
964 	/*
965 	 * Blank pages (all 0xFF) that have not been written may be recognized
966 	 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
967 	 * check if the entire page (with ECC bytes) is actually blank or not.
968 	 */
969 	if (!data)
970 		data_len = 0;
971 	if (!spare)
972 		spare_len = 0;
973 	if (!ecc)
974 		ecc_len = 0;
975 
976 	bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
977 					 spare, spare_len, chip->ecc.strength);
978 	if (bf < 0) {
979 		mtd->ecc_stats.failed++;
980 		return;
981 	}
982 
983 	/* Update the stats and max_bitflips */
984 	mtd->ecc_stats.corrected += bf;
985 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
986 }
987 
988 /*
989  * Check if a chunk is correct or not according to the hardware ECC engine.
990  * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
991  * mtd->ecc_stats.failure is not, the function will instead return a non-zero
992  * value indicating that a check on the emptyness of the subpage must be
993  * performed before actually declaring the subpage as "corrupted".
994  */
995 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
996 					     unsigned int *max_bitflips)
997 {
998 	struct mtd_info *mtd = nand_to_mtd(chip);
999 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1000 	int bf = 0;
1001 	u32 ndsr;
1002 
1003 	ndsr = readl_relaxed(nfc->regs + NDSR);
1004 
1005 	/* Check uncorrectable error flag */
1006 	if (ndsr & NDSR_UNCERR) {
1007 		writel_relaxed(ndsr, nfc->regs + NDSR);
1008 
1009 		/*
1010 		 * Do not increment ->ecc_stats.failed now, instead, return a
1011 		 * non-zero value to indicate that this chunk was apparently
1012 		 * bad, and it should be check to see if it empty or not. If
1013 		 * the chunk (with ECC bytes) is not declared empty, the calling
1014 		 * function must increment the failure count.
1015 		 */
1016 		return -EBADMSG;
1017 	}
1018 
1019 	/* Check correctable error flag */
1020 	if (ndsr & NDSR_CORERR) {
1021 		writel_relaxed(ndsr, nfc->regs + NDSR);
1022 
1023 		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
1024 			bf = NDSR_ERRCNT(ndsr);
1025 		else
1026 			bf = 1;
1027 	}
1028 
1029 	/* Update the stats and max_bitflips */
1030 	mtd->ecc_stats.corrected += bf;
1031 	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
1032 
1033 	return 0;
1034 }
1035 
1036 /* Hamming read helpers */
1037 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
1038 					       u8 *data_buf, u8 *oob_buf,
1039 					       bool raw, int page)
1040 {
1041 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1042 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1043 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1044 	struct marvell_nfc_op nfc_op = {
1045 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1046 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1047 			   NDCB0_DBC |
1048 			   NDCB0_CMD1(NAND_CMD_READ0) |
1049 			   NDCB0_CMD2(NAND_CMD_READSTART),
1050 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1051 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1052 	};
1053 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1054 	int ret;
1055 
1056 	/* NFCv2 needs more information about the operation being executed */
1057 	if (nfc->caps->is_nfcv2)
1058 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1059 
1060 	ret = marvell_nfc_prepare_cmd(chip);
1061 	if (ret)
1062 		return ret;
1063 
1064 	marvell_nfc_send_cmd(chip, &nfc_op);
1065 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1066 				  "RDDREQ while draining FIFO (data/oob)");
1067 	if (ret)
1068 		return ret;
1069 
1070 	/*
1071 	 * Read the page then the OOB area. Unlike what is shown in current
1072 	 * documentation, spare bytes are protected by the ECC engine, and must
1073 	 * be at the beginning of the OOB area or running this driver on legacy
1074 	 * systems will prevent the discovery of the BBM/BBT.
1075 	 */
1076 	if (nfc->use_dma) {
1077 		marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1078 					  lt->data_bytes + oob_bytes);
1079 		memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1080 		memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1081 	} else {
1082 		marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1083 		marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1084 	}
1085 
1086 	ret = marvell_nfc_wait_cmdd(chip);
1087 	return ret;
1088 }
1089 
1090 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1091 						int oob_required, int page)
1092 {
1093 	marvell_nfc_select_target(chip, chip->cur_cs);
1094 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1095 						   true, page);
1096 }
1097 
1098 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1099 					    int oob_required, int page)
1100 {
1101 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1102 	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1103 	int max_bitflips = 0, ret;
1104 	u8 *raw_buf;
1105 
1106 	marvell_nfc_select_target(chip, chip->cur_cs);
1107 	marvell_nfc_enable_hw_ecc(chip);
1108 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1109 					    page);
1110 	ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1111 	marvell_nfc_disable_hw_ecc(chip);
1112 
1113 	if (!ret)
1114 		return max_bitflips;
1115 
1116 	/*
1117 	 * When ECC failures are detected, check if the full page has been
1118 	 * written or not. Ignore the failure if it is actually empty.
1119 	 */
1120 	raw_buf = kmalloc(full_sz, GFP_KERNEL);
1121 	if (!raw_buf)
1122 		return -ENOMEM;
1123 
1124 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1125 					    lt->data_bytes, true, page);
1126 	marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1127 				      &max_bitflips);
1128 	kfree(raw_buf);
1129 
1130 	return max_bitflips;
1131 }
1132 
1133 /*
1134  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1135  * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1136  * also stands for ->read_oob().
1137  */
1138 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1139 {
1140 	u8 *buf = nand_get_data_buf(chip);
1141 
1142 	marvell_nfc_select_target(chip, chip->cur_cs);
1143 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1144 						   true, page);
1145 }
1146 
1147 /* Hamming write helpers */
1148 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1149 						const u8 *data_buf,
1150 						const u8 *oob_buf, bool raw,
1151 						int page)
1152 {
1153 	const struct nand_sdr_timings *sdr =
1154 		nand_get_sdr_timings(nand_get_interface_config(chip));
1155 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1156 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1157 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1158 	struct marvell_nfc_op nfc_op = {
1159 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1160 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1161 			   NDCB0_CMD1(NAND_CMD_SEQIN) |
1162 			   NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1163 			   NDCB0_DBC,
1164 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1165 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1166 	};
1167 	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1168 	int ret;
1169 
1170 	/* NFCv2 needs more information about the operation being executed */
1171 	if (nfc->caps->is_nfcv2)
1172 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1173 
1174 	ret = marvell_nfc_prepare_cmd(chip);
1175 	if (ret)
1176 		return ret;
1177 
1178 	marvell_nfc_send_cmd(chip, &nfc_op);
1179 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1180 				  "WRDREQ while loading FIFO (data)");
1181 	if (ret)
1182 		return ret;
1183 
1184 	/* Write the page then the OOB area */
1185 	if (nfc->use_dma) {
1186 		memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1187 		memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1188 		marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1189 					  lt->ecc_bytes + lt->spare_bytes);
1190 	} else {
1191 		marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1192 		marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1193 	}
1194 
1195 	ret = marvell_nfc_wait_cmdd(chip);
1196 	if (ret)
1197 		return ret;
1198 
1199 	ret = marvell_nfc_wait_op(chip,
1200 				  PSEC_TO_MSEC(sdr->tPROG_max));
1201 	return ret;
1202 }
1203 
1204 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1205 						 const u8 *buf,
1206 						 int oob_required, int page)
1207 {
1208 	marvell_nfc_select_target(chip, chip->cur_cs);
1209 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1210 						    true, page);
1211 }
1212 
1213 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1214 					     const u8 *buf,
1215 					     int oob_required, int page)
1216 {
1217 	int ret;
1218 
1219 	marvell_nfc_select_target(chip, chip->cur_cs);
1220 	marvell_nfc_enable_hw_ecc(chip);
1221 	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1222 						   false, page);
1223 	marvell_nfc_disable_hw_ecc(chip);
1224 
1225 	return ret;
1226 }
1227 
1228 /*
1229  * Spare area in Hamming layouts is not protected by the ECC engine (even if
1230  * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1231  * also stands for ->write_oob().
1232  */
1233 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1234 						int page)
1235 {
1236 	struct mtd_info *mtd = nand_to_mtd(chip);
1237 	u8 *buf = nand_get_data_buf(chip);
1238 
1239 	memset(buf, 0xFF, mtd->writesize);
1240 
1241 	marvell_nfc_select_target(chip, chip->cur_cs);
1242 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1243 						    true, page);
1244 }
1245 
1246 /* BCH read helpers */
1247 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1248 						int oob_required, int page)
1249 {
1250 	struct mtd_info *mtd = nand_to_mtd(chip);
1251 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1252 	u8 *oob = chip->oob_poi;
1253 	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1254 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1255 		lt->last_spare_bytes;
1256 	int data_len = lt->data_bytes;
1257 	int spare_len = lt->spare_bytes;
1258 	int ecc_len = lt->ecc_bytes;
1259 	int chunk;
1260 
1261 	marvell_nfc_select_target(chip, chip->cur_cs);
1262 
1263 	if (oob_required)
1264 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1265 
1266 	nand_read_page_op(chip, page, 0, NULL, 0);
1267 
1268 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1269 		/* Update last chunk length */
1270 		if (chunk >= lt->full_chunk_cnt) {
1271 			data_len = lt->last_data_bytes;
1272 			spare_len = lt->last_spare_bytes;
1273 			ecc_len = lt->last_ecc_bytes;
1274 		}
1275 
1276 		/* Read data bytes*/
1277 		nand_change_read_column_op(chip, chunk * chunk_size,
1278 					   buf + (lt->data_bytes * chunk),
1279 					   data_len, false);
1280 
1281 		/* Read spare bytes */
1282 		nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1283 				  spare_len, false, false);
1284 
1285 		/* Read ECC bytes */
1286 		nand_read_data_op(chip, oob + ecc_offset +
1287 				  (ALIGN(lt->ecc_bytes, 32) * chunk),
1288 				  ecc_len, false, false);
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1295 					      u8 *data, unsigned int data_len,
1296 					      u8 *spare, unsigned int spare_len,
1297 					      int page)
1298 {
1299 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1300 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1301 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1302 	int i, ret;
1303 	struct marvell_nfc_op nfc_op = {
1304 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1305 			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1306 			   NDCB0_LEN_OVRD,
1307 		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1308 		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1309 		.ndcb[3] = data_len + spare_len,
1310 	};
1311 
1312 	ret = marvell_nfc_prepare_cmd(chip);
1313 	if (ret)
1314 		return;
1315 
1316 	if (chunk == 0)
1317 		nfc_op.ndcb[0] |= NDCB0_DBC |
1318 				  NDCB0_CMD1(NAND_CMD_READ0) |
1319 				  NDCB0_CMD2(NAND_CMD_READSTART);
1320 
1321 	/*
1322 	 * Trigger the monolithic read on the first chunk, then naked read on
1323 	 * intermediate chunks and finally a last naked read on the last chunk.
1324 	 */
1325 	if (chunk == 0)
1326 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1327 	else if (chunk < lt->nchunks - 1)
1328 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1329 	else
1330 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1331 
1332 	marvell_nfc_send_cmd(chip, &nfc_op);
1333 
1334 	/*
1335 	 * According to the datasheet, when reading from NDDB
1336 	 * with BCH enabled, after each 32 bytes reads, we
1337 	 * have to make sure that the NDSR.RDDREQ bit is set.
1338 	 *
1339 	 * Drain the FIFO, 8 32-bit reads at a time, and skip
1340 	 * the polling on the last read.
1341 	 *
1342 	 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1343 	 */
1344 	for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1345 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1346 				    "RDDREQ while draining FIFO (data)");
1347 		marvell_nfc_xfer_data_in_pio(nfc, data,
1348 					     FIFO_DEPTH * BCH_SEQ_READS);
1349 		data += FIFO_DEPTH * BCH_SEQ_READS;
1350 	}
1351 
1352 	for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1353 		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1354 				    "RDDREQ while draining FIFO (OOB)");
1355 		marvell_nfc_xfer_data_in_pio(nfc, spare,
1356 					     FIFO_DEPTH * BCH_SEQ_READS);
1357 		spare += FIFO_DEPTH * BCH_SEQ_READS;
1358 	}
1359 }
1360 
1361 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1362 					    u8 *buf, int oob_required,
1363 					    int page)
1364 {
1365 	struct mtd_info *mtd = nand_to_mtd(chip);
1366 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1367 	int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1368 	u8 *data = buf, *spare = chip->oob_poi;
1369 	int max_bitflips = 0;
1370 	u32 failure_mask = 0;
1371 	int chunk, ret;
1372 
1373 	marvell_nfc_select_target(chip, chip->cur_cs);
1374 
1375 	/*
1376 	 * With BCH, OOB is not fully used (and thus not read entirely), not
1377 	 * expected bytes could show up at the end of the OOB buffer if not
1378 	 * explicitly erased.
1379 	 */
1380 	if (oob_required)
1381 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1382 
1383 	marvell_nfc_enable_hw_ecc(chip);
1384 
1385 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1386 		/* Update length for the last chunk */
1387 		if (chunk >= lt->full_chunk_cnt) {
1388 			data_len = lt->last_data_bytes;
1389 			spare_len = lt->last_spare_bytes;
1390 		}
1391 
1392 		/* Read the chunk and detect number of bitflips */
1393 		marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1394 						  spare, spare_len, page);
1395 		ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1396 		if (ret)
1397 			failure_mask |= BIT(chunk);
1398 
1399 		data += data_len;
1400 		spare += spare_len;
1401 	}
1402 
1403 	marvell_nfc_disable_hw_ecc(chip);
1404 
1405 	if (!failure_mask)
1406 		return max_bitflips;
1407 
1408 	/*
1409 	 * Please note that dumping the ECC bytes during a normal read with OOB
1410 	 * area would add a significant overhead as ECC bytes are "consumed" by
1411 	 * the controller in normal mode and must be re-read in raw mode. To
1412 	 * avoid dropping the performances, we prefer not to include them. The
1413 	 * user should re-read the page in raw mode if ECC bytes are required.
1414 	 */
1415 
1416 	/*
1417 	 * In case there is any subpage read error, we usually re-read only ECC
1418 	 * bytes in raw mode and check if the whole page is empty. In this case,
1419 	 * it is normal that the ECC check failed and we just ignore the error.
1420 	 *
1421 	 * However, it has been empirically observed that for some layouts (e.g
1422 	 * 2k page, 8b strength per 512B chunk), the controller tries to correct
1423 	 * bits and may create itself bitflips in the erased area. To overcome
1424 	 * this strange behavior, the whole page is re-read in raw mode, not
1425 	 * only the ECC bytes.
1426 	 */
1427 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1428 		int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1429 		int data_off, spare_off, ecc_off;
1430 		int data_len, spare_len, ecc_len;
1431 
1432 		/* No failure reported for this chunk, move to the next one */
1433 		if (!(failure_mask & BIT(chunk)))
1434 			continue;
1435 
1436 		data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1437 					    lt->ecc_bytes);
1438 		spare_off_in_page = data_off_in_page +
1439 			(chunk < lt->full_chunk_cnt ? lt->data_bytes :
1440 						      lt->last_data_bytes);
1441 		ecc_off_in_page = spare_off_in_page +
1442 			(chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1443 						      lt->last_spare_bytes);
1444 
1445 		data_off = chunk * lt->data_bytes;
1446 		spare_off = chunk * lt->spare_bytes;
1447 		ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1448 			  lt->last_spare_bytes +
1449 			  (chunk * (lt->ecc_bytes + 2));
1450 
1451 		data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1452 							lt->last_data_bytes;
1453 		spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1454 							 lt->last_spare_bytes;
1455 		ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1456 						       lt->last_ecc_bytes;
1457 
1458 		/*
1459 		 * Only re-read the ECC bytes, unless we are using the 2k/8b
1460 		 * layout which is buggy in the sense that the ECC engine will
1461 		 * try to correct data bytes anyway, creating bitflips. In this
1462 		 * case, re-read the entire page.
1463 		 */
1464 		if (lt->writesize == 2048 && lt->strength == 8) {
1465 			nand_change_read_column_op(chip, data_off_in_page,
1466 						   buf + data_off, data_len,
1467 						   false);
1468 			nand_change_read_column_op(chip, spare_off_in_page,
1469 						   chip->oob_poi + spare_off, spare_len,
1470 						   false);
1471 		}
1472 
1473 		nand_change_read_column_op(chip, ecc_off_in_page,
1474 					   chip->oob_poi + ecc_off, ecc_len,
1475 					   false);
1476 
1477 		/* Check the entire chunk (data + spare + ecc) for emptyness */
1478 		marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1479 					      chip->oob_poi + spare_off, spare_len,
1480 					      chip->oob_poi + ecc_off, ecc_len,
1481 					      &max_bitflips);
1482 	}
1483 
1484 	return max_bitflips;
1485 }
1486 
1487 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1488 {
1489 	u8 *buf = nand_get_data_buf(chip);
1490 
1491 	return chip->ecc.read_page_raw(chip, buf, true, page);
1492 }
1493 
1494 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1495 {
1496 	u8 *buf = nand_get_data_buf(chip);
1497 
1498 	return chip->ecc.read_page(chip, buf, true, page);
1499 }
1500 
1501 /* BCH write helpers */
1502 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1503 						 const u8 *buf,
1504 						 int oob_required, int page)
1505 {
1506 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1507 	int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1508 	int data_len = lt->data_bytes;
1509 	int spare_len = lt->spare_bytes;
1510 	int ecc_len = lt->ecc_bytes;
1511 	int spare_offset = 0;
1512 	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1513 		lt->last_spare_bytes;
1514 	int chunk;
1515 
1516 	marvell_nfc_select_target(chip, chip->cur_cs);
1517 
1518 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1519 
1520 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1521 		if (chunk >= lt->full_chunk_cnt) {
1522 			data_len = lt->last_data_bytes;
1523 			spare_len = lt->last_spare_bytes;
1524 			ecc_len = lt->last_ecc_bytes;
1525 		}
1526 
1527 		/* Point to the column of the next chunk */
1528 		nand_change_write_column_op(chip, chunk * full_chunk_size,
1529 					    NULL, 0, false);
1530 
1531 		/* Write the data */
1532 		nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1533 				   data_len, false);
1534 
1535 		if (!oob_required)
1536 			continue;
1537 
1538 		/* Write the spare bytes */
1539 		if (spare_len)
1540 			nand_write_data_op(chip, chip->oob_poi + spare_offset,
1541 					   spare_len, false);
1542 
1543 		/* Write the ECC bytes */
1544 		if (ecc_len)
1545 			nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1546 					   ecc_len, false);
1547 
1548 		spare_offset += spare_len;
1549 		ecc_offset += ALIGN(ecc_len, 32);
1550 	}
1551 
1552 	return nand_prog_page_end_op(chip);
1553 }
1554 
1555 static int
1556 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1557 				   const u8 *data, unsigned int data_len,
1558 				   const u8 *spare, unsigned int spare_len,
1559 				   int page)
1560 {
1561 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1562 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1563 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1564 	u32 xtype;
1565 	int ret;
1566 	struct marvell_nfc_op nfc_op = {
1567 		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1568 		.ndcb[3] = data_len + spare_len,
1569 	};
1570 
1571 	/*
1572 	 * First operation dispatches the CMD_SEQIN command, issue the address
1573 	 * cycles and asks for the first chunk of data.
1574 	 * All operations in the middle (if any) will issue a naked write and
1575 	 * also ask for data.
1576 	 * Last operation (if any) asks for the last chunk of data through a
1577 	 * last naked write.
1578 	 */
1579 	if (chunk == 0) {
1580 		if (lt->nchunks == 1)
1581 			xtype = XTYPE_MONOLITHIC_RW;
1582 		else
1583 			xtype = XTYPE_WRITE_DISPATCH;
1584 
1585 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1586 				  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1587 				  NDCB0_CMD1(NAND_CMD_SEQIN);
1588 		nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1589 		nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1590 	} else if (chunk < lt->nchunks - 1) {
1591 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1592 	} else {
1593 		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1594 	}
1595 
1596 	/* Always dispatch the PAGEPROG command on the last chunk */
1597 	if (chunk == lt->nchunks - 1)
1598 		nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1599 
1600 	ret = marvell_nfc_prepare_cmd(chip);
1601 	if (ret)
1602 		return ret;
1603 
1604 	marvell_nfc_send_cmd(chip, &nfc_op);
1605 	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1606 				  "WRDREQ while loading FIFO (data)");
1607 	if (ret)
1608 		return ret;
1609 
1610 	/* Transfer the contents */
1611 	iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1612 	iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1613 
1614 	return 0;
1615 }
1616 
1617 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1618 					     const u8 *buf,
1619 					     int oob_required, int page)
1620 {
1621 	const struct nand_sdr_timings *sdr =
1622 		nand_get_sdr_timings(nand_get_interface_config(chip));
1623 	struct mtd_info *mtd = nand_to_mtd(chip);
1624 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1625 	const u8 *data = buf;
1626 	const u8 *spare = chip->oob_poi;
1627 	int data_len = lt->data_bytes;
1628 	int spare_len = lt->spare_bytes;
1629 	int chunk, ret;
1630 
1631 	marvell_nfc_select_target(chip, chip->cur_cs);
1632 
1633 	/* Spare data will be written anyway, so clear it to avoid garbage */
1634 	if (!oob_required)
1635 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1636 
1637 	marvell_nfc_enable_hw_ecc(chip);
1638 
1639 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1640 		if (chunk >= lt->full_chunk_cnt) {
1641 			data_len = lt->last_data_bytes;
1642 			spare_len = lt->last_spare_bytes;
1643 		}
1644 
1645 		marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1646 						   spare, spare_len, page);
1647 		data += data_len;
1648 		spare += spare_len;
1649 
1650 		/*
1651 		 * Waiting only for CMDD or PAGED is not enough, ECC are
1652 		 * partially written. No flag is set once the operation is
1653 		 * really finished but the ND_RUN bit is cleared, so wait for it
1654 		 * before stepping into the next command.
1655 		 */
1656 		marvell_nfc_wait_ndrun(chip);
1657 	}
1658 
1659 	ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
1660 
1661 	marvell_nfc_disable_hw_ecc(chip);
1662 
1663 	if (ret)
1664 		return ret;
1665 
1666 	return 0;
1667 }
1668 
1669 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1670 						int page)
1671 {
1672 	struct mtd_info *mtd = nand_to_mtd(chip);
1673 	u8 *buf = nand_get_data_buf(chip);
1674 
1675 	memset(buf, 0xFF, mtd->writesize);
1676 
1677 	return chip->ecc.write_page_raw(chip, buf, true, page);
1678 }
1679 
1680 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1681 {
1682 	struct mtd_info *mtd = nand_to_mtd(chip);
1683 	u8 *buf = nand_get_data_buf(chip);
1684 
1685 	memset(buf, 0xFF, mtd->writesize);
1686 
1687 	return chip->ecc.write_page(chip, buf, true, page);
1688 }
1689 
1690 /* NAND framework ->exec_op() hooks and related helpers */
1691 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1692 					   const struct nand_subop *subop,
1693 					   struct marvell_nfc_op *nfc_op)
1694 {
1695 	const struct nand_op_instr *instr = NULL;
1696 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1697 	bool first_cmd = true;
1698 	unsigned int op_id;
1699 	int i;
1700 
1701 	/* Reset the input structure as most of its fields will be OR'ed */
1702 	memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1703 
1704 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1705 		unsigned int offset, naddrs;
1706 		const u8 *addrs;
1707 		int len;
1708 
1709 		instr = &subop->instrs[op_id];
1710 
1711 		switch (instr->type) {
1712 		case NAND_OP_CMD_INSTR:
1713 			if (first_cmd)
1714 				nfc_op->ndcb[0] |=
1715 					NDCB0_CMD1(instr->ctx.cmd.opcode);
1716 			else
1717 				nfc_op->ndcb[0] |=
1718 					NDCB0_CMD2(instr->ctx.cmd.opcode) |
1719 					NDCB0_DBC;
1720 
1721 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1722 			first_cmd = false;
1723 			break;
1724 
1725 		case NAND_OP_ADDR_INSTR:
1726 			offset = nand_subop_get_addr_start_off(subop, op_id);
1727 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1728 			addrs = &instr->ctx.addr.addrs[offset];
1729 
1730 			nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1731 
1732 			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1733 				nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1734 
1735 			if (naddrs >= 5)
1736 				nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1737 			if (naddrs >= 6)
1738 				nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1739 			if (naddrs == 7)
1740 				nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1741 
1742 			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1743 			break;
1744 
1745 		case NAND_OP_DATA_IN_INSTR:
1746 			nfc_op->data_instr = instr;
1747 			nfc_op->data_instr_idx = op_id;
1748 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1749 			if (nfc->caps->is_nfcv2) {
1750 				nfc_op->ndcb[0] |=
1751 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1752 					NDCB0_LEN_OVRD;
1753 				len = nand_subop_get_data_len(subop, op_id);
1754 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1755 			}
1756 			nfc_op->data_delay_ns = instr->delay_ns;
1757 			break;
1758 
1759 		case NAND_OP_DATA_OUT_INSTR:
1760 			nfc_op->data_instr = instr;
1761 			nfc_op->data_instr_idx = op_id;
1762 			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1763 			if (nfc->caps->is_nfcv2) {
1764 				nfc_op->ndcb[0] |=
1765 					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1766 					NDCB0_LEN_OVRD;
1767 				len = nand_subop_get_data_len(subop, op_id);
1768 				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1769 			}
1770 			nfc_op->data_delay_ns = instr->delay_ns;
1771 			break;
1772 
1773 		case NAND_OP_WAITRDY_INSTR:
1774 			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1775 			nfc_op->rdy_delay_ns = instr->delay_ns;
1776 			break;
1777 		}
1778 	}
1779 }
1780 
1781 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1782 				     const struct nand_subop *subop,
1783 				     struct marvell_nfc_op *nfc_op)
1784 {
1785 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1786 	const struct nand_op_instr *instr = nfc_op->data_instr;
1787 	unsigned int op_id = nfc_op->data_instr_idx;
1788 	unsigned int len = nand_subop_get_data_len(subop, op_id);
1789 	unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1790 	bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1791 	int ret;
1792 
1793 	if (instr->ctx.data.force_8bit)
1794 		marvell_nfc_force_byte_access(chip, true);
1795 
1796 	if (reading) {
1797 		u8 *in = instr->ctx.data.buf.in + offset;
1798 
1799 		ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1800 	} else {
1801 		const u8 *out = instr->ctx.data.buf.out + offset;
1802 
1803 		ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1804 	}
1805 
1806 	if (instr->ctx.data.force_8bit)
1807 		marvell_nfc_force_byte_access(chip, false);
1808 
1809 	return ret;
1810 }
1811 
1812 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1813 					      const struct nand_subop *subop)
1814 {
1815 	struct marvell_nfc_op nfc_op;
1816 	bool reading;
1817 	int ret;
1818 
1819 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1820 	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1821 
1822 	ret = marvell_nfc_prepare_cmd(chip);
1823 	if (ret)
1824 		return ret;
1825 
1826 	marvell_nfc_send_cmd(chip, &nfc_op);
1827 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1828 				  "RDDREQ/WRDREQ while draining raw data");
1829 	if (ret)
1830 		return ret;
1831 
1832 	cond_delay(nfc_op.cle_ale_delay_ns);
1833 
1834 	if (reading) {
1835 		if (nfc_op.rdy_timeout_ms) {
1836 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1837 			if (ret)
1838 				return ret;
1839 		}
1840 
1841 		cond_delay(nfc_op.rdy_delay_ns);
1842 	}
1843 
1844 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1845 	ret = marvell_nfc_wait_cmdd(chip);
1846 	if (ret)
1847 		return ret;
1848 
1849 	cond_delay(nfc_op.data_delay_ns);
1850 
1851 	if (!reading) {
1852 		if (nfc_op.rdy_timeout_ms) {
1853 			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1854 			if (ret)
1855 				return ret;
1856 		}
1857 
1858 		cond_delay(nfc_op.rdy_delay_ns);
1859 	}
1860 
1861 	/*
1862 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1863 	 * operation but experience shows that the behavior is buggy when it
1864 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1865 	 */
1866 	if (!reading) {
1867 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1868 
1869 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1870 			       nfc->regs + NDCR);
1871 	}
1872 
1873 	return 0;
1874 }
1875 
1876 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1877 					 const struct nand_subop *subop)
1878 {
1879 	struct marvell_nfc_op nfc_op;
1880 	int ret;
1881 
1882 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1883 
1884 	/*
1885 	 * Naked access are different in that they need to be flagged as naked
1886 	 * by the controller. Reset the controller registers fields that inform
1887 	 * on the type and refill them according to the ongoing operation.
1888 	 */
1889 	nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1890 			    NDCB0_CMD_XTYPE(XTYPE_MASK));
1891 	switch (subop->instrs[0].type) {
1892 	case NAND_OP_CMD_INSTR:
1893 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1894 		break;
1895 	case NAND_OP_ADDR_INSTR:
1896 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1897 		break;
1898 	case NAND_OP_DATA_IN_INSTR:
1899 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1900 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1901 		break;
1902 	case NAND_OP_DATA_OUT_INSTR:
1903 		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1904 				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1905 		break;
1906 	default:
1907 		/* This should never happen */
1908 		break;
1909 	}
1910 
1911 	ret = marvell_nfc_prepare_cmd(chip);
1912 	if (ret)
1913 		return ret;
1914 
1915 	marvell_nfc_send_cmd(chip, &nfc_op);
1916 
1917 	if (!nfc_op.data_instr) {
1918 		ret = marvell_nfc_wait_cmdd(chip);
1919 		cond_delay(nfc_op.cle_ale_delay_ns);
1920 		return ret;
1921 	}
1922 
1923 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1924 				  "RDDREQ/WRDREQ while draining raw data");
1925 	if (ret)
1926 		return ret;
1927 
1928 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1929 	ret = marvell_nfc_wait_cmdd(chip);
1930 	if (ret)
1931 		return ret;
1932 
1933 	/*
1934 	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1935 	 * operation but experience shows that the behavior is buggy when it
1936 	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1937 	 */
1938 	if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1939 		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1940 
1941 		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1942 			       nfc->regs + NDCR);
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1949 					  const struct nand_subop *subop)
1950 {
1951 	struct marvell_nfc_op nfc_op;
1952 	int ret;
1953 
1954 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1955 
1956 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1957 	cond_delay(nfc_op.rdy_delay_ns);
1958 
1959 	return ret;
1960 }
1961 
1962 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1963 					 const struct nand_subop *subop)
1964 {
1965 	struct marvell_nfc_op nfc_op;
1966 	int ret;
1967 
1968 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1969 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1970 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1971 
1972 	ret = marvell_nfc_prepare_cmd(chip);
1973 	if (ret)
1974 		return ret;
1975 
1976 	marvell_nfc_send_cmd(chip, &nfc_op);
1977 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1978 				  "RDDREQ while reading ID");
1979 	if (ret)
1980 		return ret;
1981 
1982 	cond_delay(nfc_op.cle_ale_delay_ns);
1983 
1984 	if (nfc_op.rdy_timeout_ms) {
1985 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1986 		if (ret)
1987 			return ret;
1988 	}
1989 
1990 	cond_delay(nfc_op.rdy_delay_ns);
1991 
1992 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1993 	ret = marvell_nfc_wait_cmdd(chip);
1994 	if (ret)
1995 		return ret;
1996 
1997 	cond_delay(nfc_op.data_delay_ns);
1998 
1999 	return 0;
2000 }
2001 
2002 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
2003 					const struct nand_subop *subop)
2004 {
2005 	struct marvell_nfc_op nfc_op;
2006 	int ret;
2007 
2008 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2009 	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
2010 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
2011 
2012 	ret = marvell_nfc_prepare_cmd(chip);
2013 	if (ret)
2014 		return ret;
2015 
2016 	marvell_nfc_send_cmd(chip, &nfc_op);
2017 	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
2018 				  "RDDREQ while reading status");
2019 	if (ret)
2020 		return ret;
2021 
2022 	cond_delay(nfc_op.cle_ale_delay_ns);
2023 
2024 	if (nfc_op.rdy_timeout_ms) {
2025 		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2026 		if (ret)
2027 			return ret;
2028 	}
2029 
2030 	cond_delay(nfc_op.rdy_delay_ns);
2031 
2032 	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2033 	ret = marvell_nfc_wait_cmdd(chip);
2034 	if (ret)
2035 		return ret;
2036 
2037 	cond_delay(nfc_op.data_delay_ns);
2038 
2039 	return 0;
2040 }
2041 
2042 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
2043 					   const struct nand_subop *subop)
2044 {
2045 	struct marvell_nfc_op nfc_op;
2046 	int ret;
2047 
2048 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2049 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
2050 
2051 	ret = marvell_nfc_prepare_cmd(chip);
2052 	if (ret)
2053 		return ret;
2054 
2055 	marvell_nfc_send_cmd(chip, &nfc_op);
2056 	ret = marvell_nfc_wait_cmdd(chip);
2057 	if (ret)
2058 		return ret;
2059 
2060 	cond_delay(nfc_op.cle_ale_delay_ns);
2061 
2062 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2063 	if (ret)
2064 		return ret;
2065 
2066 	cond_delay(nfc_op.rdy_delay_ns);
2067 
2068 	return 0;
2069 }
2070 
2071 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2072 					   const struct nand_subop *subop)
2073 {
2074 	struct marvell_nfc_op nfc_op;
2075 	int ret;
2076 
2077 	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2078 	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2079 
2080 	ret = marvell_nfc_prepare_cmd(chip);
2081 	if (ret)
2082 		return ret;
2083 
2084 	marvell_nfc_send_cmd(chip, &nfc_op);
2085 	ret = marvell_nfc_wait_cmdd(chip);
2086 	if (ret)
2087 		return ret;
2088 
2089 	cond_delay(nfc_op.cle_ale_delay_ns);
2090 
2091 	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2092 	if (ret)
2093 		return ret;
2094 
2095 	cond_delay(nfc_op.rdy_delay_ns);
2096 
2097 	return 0;
2098 }
2099 
2100 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2101 	/* Monolithic reads/writes */
2102 	NAND_OP_PARSER_PATTERN(
2103 		marvell_nfc_monolithic_access_exec,
2104 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2105 		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2106 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
2107 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2108 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2109 	NAND_OP_PARSER_PATTERN(
2110 		marvell_nfc_monolithic_access_exec,
2111 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2112 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2113 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2114 		NAND_OP_PARSER_PAT_CMD_ELEM(true),
2115 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2116 	/* Naked commands */
2117 	NAND_OP_PARSER_PATTERN(
2118 		marvell_nfc_naked_access_exec,
2119 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2120 	NAND_OP_PARSER_PATTERN(
2121 		marvell_nfc_naked_access_exec,
2122 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2123 	NAND_OP_PARSER_PATTERN(
2124 		marvell_nfc_naked_access_exec,
2125 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2126 	NAND_OP_PARSER_PATTERN(
2127 		marvell_nfc_naked_access_exec,
2128 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2129 	NAND_OP_PARSER_PATTERN(
2130 		marvell_nfc_naked_waitrdy_exec,
2131 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2132 	);
2133 
2134 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2135 	/* Naked commands not supported, use a function for each pattern */
2136 	NAND_OP_PARSER_PATTERN(
2137 		marvell_nfc_read_id_type_exec,
2138 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2139 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2140 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2141 	NAND_OP_PARSER_PATTERN(
2142 		marvell_nfc_erase_cmd_type_exec,
2143 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2144 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2145 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2146 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2147 	NAND_OP_PARSER_PATTERN(
2148 		marvell_nfc_read_status_exec,
2149 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2150 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2151 	NAND_OP_PARSER_PATTERN(
2152 		marvell_nfc_reset_cmd_type_exec,
2153 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2154 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2155 	NAND_OP_PARSER_PATTERN(
2156 		marvell_nfc_naked_waitrdy_exec,
2157 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2158 	);
2159 
2160 static int marvell_nfc_exec_op(struct nand_chip *chip,
2161 			       const struct nand_operation *op,
2162 			       bool check_only)
2163 {
2164 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2165 
2166 	if (!check_only)
2167 		marvell_nfc_select_target(chip, op->cs);
2168 
2169 	if (nfc->caps->is_nfcv2)
2170 		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2171 					      op, check_only);
2172 	else
2173 		return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2174 					      op, check_only);
2175 }
2176 
2177 /*
2178  * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2179  * usable.
2180  */
2181 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2182 				      struct mtd_oob_region *oobregion)
2183 {
2184 	struct nand_chip *chip = mtd_to_nand(mtd);
2185 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2186 
2187 	if (section)
2188 		return -ERANGE;
2189 
2190 	oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2191 			    lt->last_ecc_bytes;
2192 	oobregion->offset = mtd->oobsize - oobregion->length;
2193 
2194 	return 0;
2195 }
2196 
2197 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2198 				       struct mtd_oob_region *oobregion)
2199 {
2200 	struct nand_chip *chip = mtd_to_nand(mtd);
2201 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2202 
2203 	if (section)
2204 		return -ERANGE;
2205 
2206 	/*
2207 	 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2208 	 * 4KB page / 4bit BCH combination.
2209 	 */
2210 	if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2211 		oobregion->offset = 6;
2212 	else
2213 		oobregion->offset = 2;
2214 
2215 	oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2216 			    lt->last_spare_bytes - oobregion->offset;
2217 
2218 	return 0;
2219 }
2220 
2221 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2222 	.ecc = marvell_nand_ooblayout_ecc,
2223 	.free = marvell_nand_ooblayout_free,
2224 };
2225 
2226 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
2227 					       struct nand_ecc_ctrl *ecc)
2228 {
2229 	struct nand_chip *chip = mtd_to_nand(mtd);
2230 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2231 	const struct marvell_hw_ecc_layout *l;
2232 	int i;
2233 
2234 	if (!nfc->caps->is_nfcv2 &&
2235 	    (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2236 		dev_err(nfc->dev,
2237 			"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2238 			mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2239 		return -ENOTSUPP;
2240 	}
2241 
2242 	to_marvell_nand(chip)->layout = NULL;
2243 	for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2244 		l = &marvell_nfc_layouts[i];
2245 		if (mtd->writesize == l->writesize &&
2246 		    ecc->size == l->chunk && ecc->strength == l->strength) {
2247 			to_marvell_nand(chip)->layout = l;
2248 			break;
2249 		}
2250 	}
2251 
2252 	if (!to_marvell_nand(chip)->layout ||
2253 	    (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2254 		dev_err(nfc->dev,
2255 			"ECC strength %d at page size %d is not supported\n",
2256 			ecc->strength, mtd->writesize);
2257 		return -ENOTSUPP;
2258 	}
2259 
2260 	/* Special care for the layout 2k/8-bit/512B  */
2261 	if (l->writesize == 2048 && l->strength == 8) {
2262 		if (mtd->oobsize < 128) {
2263 			dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2264 			return -ENOTSUPP;
2265 		} else {
2266 			chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2267 		}
2268 	}
2269 
2270 	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2271 	ecc->steps = l->nchunks;
2272 	ecc->size = l->data_bytes;
2273 
2274 	if (ecc->strength == 1) {
2275 		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2276 		ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2277 		ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2278 		ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2279 		ecc->read_oob = ecc->read_oob_raw;
2280 		ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2281 		ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2282 		ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2283 		ecc->write_oob = ecc->write_oob_raw;
2284 	} else {
2285 		chip->ecc.algo = NAND_ECC_ALGO_BCH;
2286 		ecc->strength = 16;
2287 		ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2288 		ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2289 		ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2290 		ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2291 		ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2292 		ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2293 		ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2294 		ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2301 				 struct nand_ecc_ctrl *ecc)
2302 {
2303 	struct nand_chip *chip = mtd_to_nand(mtd);
2304 	const struct nand_ecc_props *requirements =
2305 		nanddev_get_ecc_requirements(&chip->base);
2306 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2307 	int ret;
2308 
2309 	if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2310 	    (!ecc->size || !ecc->strength)) {
2311 		if (requirements->step_size && requirements->strength) {
2312 			ecc->size = requirements->step_size;
2313 			ecc->strength = requirements->strength;
2314 		} else {
2315 			dev_info(nfc->dev,
2316 				 "No minimum ECC strength, using 1b/512B\n");
2317 			ecc->size = 512;
2318 			ecc->strength = 1;
2319 		}
2320 	}
2321 
2322 	switch (ecc->engine_type) {
2323 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
2324 		ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
2325 		if (ret)
2326 			return ret;
2327 		break;
2328 	case NAND_ECC_ENGINE_TYPE_NONE:
2329 	case NAND_ECC_ENGINE_TYPE_SOFT:
2330 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
2331 		if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2332 		    mtd->writesize != SZ_2K) {
2333 			dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2334 				mtd->writesize);
2335 			return -EINVAL;
2336 		}
2337 		break;
2338 	default:
2339 		return -EINVAL;
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2346 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2347 
2348 static struct nand_bbt_descr bbt_main_descr = {
2349 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2350 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2351 	.offs =	8,
2352 	.len = 6,
2353 	.veroffs = 14,
2354 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2355 	.pattern = bbt_pattern
2356 };
2357 
2358 static struct nand_bbt_descr bbt_mirror_descr = {
2359 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2360 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2361 	.offs =	8,
2362 	.len = 6,
2363 	.veroffs = 14,
2364 	.maxblocks = 8,	/* Last 8 blocks in each chip */
2365 	.pattern = bbt_mirror_pattern
2366 };
2367 
2368 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
2369 				       const struct nand_interface_config *conf)
2370 {
2371 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2372 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2373 	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2374 	const struct nand_sdr_timings *sdr;
2375 	struct marvell_nfc_timings nfc_tmg;
2376 	int read_delay;
2377 
2378 	sdr = nand_get_sdr_timings(conf);
2379 	if (IS_ERR(sdr))
2380 		return PTR_ERR(sdr);
2381 
2382 	if (nfc->caps->max_mode_number && nfc->caps->max_mode_number < conf->timings.mode)
2383 		return -EOPNOTSUPP;
2384 
2385 	/*
2386 	 * SDR timings are given in pico-seconds while NFC timings must be
2387 	 * expressed in NAND controller clock cycles, which is half of the
2388 	 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2389 	 * This is not written anywhere in the datasheet but was observed
2390 	 * with an oscilloscope.
2391 	 *
2392 	 * NFC datasheet gives equations from which thoses calculations
2393 	 * are derived, they tend to be slightly more restrictives than the
2394 	 * given core timings and may improve the overall speed.
2395 	 */
2396 	nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2397 	nfc_tmg.tRH = nfc_tmg.tRP;
2398 	nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2399 	nfc_tmg.tWH = nfc_tmg.tWP;
2400 	nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2401 	nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2402 	nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2403 	/*
2404 	 * Read delay is the time of propagation from SoC pins to NFC internal
2405 	 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2406 	 * EDO mode, an additional delay of tRH must be taken into account so
2407 	 * the data is sampled on the falling edge instead of the rising edge.
2408 	 */
2409 	read_delay = sdr->tRC_min >= 30000 ?
2410 		MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2411 
2412 	nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2413 	/*
2414 	 * tWHR and tRHW are supposed to be read to write delays (and vice
2415 	 * versa) but in some cases, ie. when doing a change column, they must
2416 	 * be greater than that to be sure tCCS delay is respected.
2417 	 */
2418 	nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2419 				 period_ns) - 2;
2420 	nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2421 				 period_ns);
2422 
2423 	/*
2424 	 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2425 	 * NFCv1: No WAIT_MODE, tR must be maximal.
2426 	 */
2427 	if (nfc->caps->is_nfcv2) {
2428 		nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2429 	} else {
2430 		nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2431 					 period_ns);
2432 		if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2433 			nfc_tmg.tR = nfc_tmg.tCH - 3;
2434 		else
2435 			nfc_tmg.tR = 0;
2436 	}
2437 
2438 	if (chipnr < 0)
2439 		return 0;
2440 
2441 	marvell_nand->ndtr0 =
2442 		NDTR0_TRP(nfc_tmg.tRP) |
2443 		NDTR0_TRH(nfc_tmg.tRH) |
2444 		NDTR0_ETRP(nfc_tmg.tRP) |
2445 		NDTR0_TWP(nfc_tmg.tWP) |
2446 		NDTR0_TWH(nfc_tmg.tWH) |
2447 		NDTR0_TCS(nfc_tmg.tCS) |
2448 		NDTR0_TCH(nfc_tmg.tCH);
2449 
2450 	marvell_nand->ndtr1 =
2451 		NDTR1_TAR(nfc_tmg.tAR) |
2452 		NDTR1_TWHR(nfc_tmg.tWHR) |
2453 		NDTR1_TR(nfc_tmg.tR);
2454 
2455 	if (nfc->caps->is_nfcv2) {
2456 		marvell_nand->ndtr0 |=
2457 			NDTR0_RD_CNT_DEL(read_delay) |
2458 			NDTR0_SELCNTR |
2459 			NDTR0_TADL(nfc_tmg.tADL);
2460 
2461 		marvell_nand->ndtr1 |=
2462 			NDTR1_TRHW(nfc_tmg.tRHW) |
2463 			NDTR1_WAIT_MODE;
2464 	}
2465 
2466 	/*
2467 	 * Reset nfc->selected_chip so the next command will cause the timing
2468 	 * registers to be updated in marvell_nfc_select_target().
2469 	 */
2470 	nfc->selected_chip = NULL;
2471 
2472 	return 0;
2473 }
2474 
2475 static int marvell_nand_attach_chip(struct nand_chip *chip)
2476 {
2477 	struct mtd_info *mtd = nand_to_mtd(chip);
2478 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2479 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2480 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2481 	int ret;
2482 
2483 	if (pdata && pdata->flash_bbt)
2484 		chip->bbt_options |= NAND_BBT_USE_FLASH;
2485 
2486 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2487 		/*
2488 		 * We'll use a bad block table stored in-flash and don't
2489 		 * allow writing the bad block marker to the flash.
2490 		 */
2491 		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2492 		chip->bbt_td = &bbt_main_descr;
2493 		chip->bbt_md = &bbt_mirror_descr;
2494 	}
2495 
2496 	/* Save the chip-specific fields of NDCR */
2497 	marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2498 	if (chip->options & NAND_BUSWIDTH_16)
2499 		marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2500 
2501 	/*
2502 	 * On small page NANDs, only one cycle is needed to pass the
2503 	 * column address.
2504 	 */
2505 	if (mtd->writesize <= 512) {
2506 		marvell_nand->addr_cyc = 1;
2507 	} else {
2508 		marvell_nand->addr_cyc = 2;
2509 		marvell_nand->ndcr |= NDCR_RA_START;
2510 	}
2511 
2512 	/*
2513 	 * Now add the number of cycles needed to pass the row
2514 	 * address.
2515 	 *
2516 	 * Addressing a chip using CS 2 or 3 should also need the third row
2517 	 * cycle but due to inconsistance in the documentation and lack of
2518 	 * hardware to test this situation, this case is not supported.
2519 	 */
2520 	if (chip->options & NAND_ROW_ADDR_3)
2521 		marvell_nand->addr_cyc += 3;
2522 	else
2523 		marvell_nand->addr_cyc += 2;
2524 
2525 	if (pdata) {
2526 		chip->ecc.size = pdata->ecc_step_size;
2527 		chip->ecc.strength = pdata->ecc_strength;
2528 	}
2529 
2530 	ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2531 	if (ret) {
2532 		dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2533 		return ret;
2534 	}
2535 
2536 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
2537 		/*
2538 		 * Subpage write not available with hardware ECC, prohibit also
2539 		 * subpage read as in userspace subpage access would still be
2540 		 * allowed and subpage write, if used, would lead to numerous
2541 		 * uncorrectable ECC errors.
2542 		 */
2543 		chip->options |= NAND_NO_SUBPAGE_WRITE;
2544 	}
2545 
2546 	if (pdata || nfc->caps->legacy_of_bindings) {
2547 		/*
2548 		 * We keep the MTD name unchanged to avoid breaking platforms
2549 		 * where the MTD cmdline parser is used and the bootloader
2550 		 * has not been updated to use the new naming scheme.
2551 		 */
2552 		mtd->name = "pxa3xx_nand-0";
2553 	} else if (!mtd->name) {
2554 		/*
2555 		 * If the new bindings are used and the bootloader has not been
2556 		 * updated to pass a new mtdparts parameter on the cmdline, you
2557 		 * should define the following property in your NAND node, ie:
2558 		 *
2559 		 *	label = "main-storage";
2560 		 *
2561 		 * This way, mtd->name will be set by the core when
2562 		 * nand_set_flash_node() is called.
2563 		 */
2564 		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2565 					   "%s:nand.%d", dev_name(nfc->dev),
2566 					   marvell_nand->sels[0].cs);
2567 		if (!mtd->name) {
2568 			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2569 			return -ENOMEM;
2570 		}
2571 	}
2572 
2573 	return 0;
2574 }
2575 
2576 static const struct nand_controller_ops marvell_nand_controller_ops = {
2577 	.attach_chip = marvell_nand_attach_chip,
2578 	.exec_op = marvell_nfc_exec_op,
2579 	.setup_interface = marvell_nfc_setup_interface,
2580 };
2581 
2582 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2583 				  struct device_node *np)
2584 {
2585 	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2586 	struct marvell_nand_chip *marvell_nand;
2587 	struct mtd_info *mtd;
2588 	struct nand_chip *chip;
2589 	int nsels, ret, i;
2590 	u32 cs, rb;
2591 
2592 	/*
2593 	 * The legacy "num-cs" property indicates the number of CS on the only
2594 	 * chip connected to the controller (legacy bindings does not support
2595 	 * more than one chip). The CS and RB pins are always the #0.
2596 	 *
2597 	 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2598 	 * properties must be filled. For each chip, expressed as a subnode,
2599 	 * "reg" points to the CS lines and "nand-rb" to the RB line.
2600 	 */
2601 	if (pdata || nfc->caps->legacy_of_bindings) {
2602 		nsels = 1;
2603 	} else {
2604 		nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2605 		if (nsels <= 0) {
2606 			dev_err(dev, "missing/invalid reg property\n");
2607 			return -EINVAL;
2608 		}
2609 	}
2610 
2611 	/* Alloc the nand chip structure */
2612 	marvell_nand = devm_kzalloc(dev,
2613 				    struct_size(marvell_nand, sels, nsels),
2614 				    GFP_KERNEL);
2615 	if (!marvell_nand) {
2616 		dev_err(dev, "could not allocate chip structure\n");
2617 		return -ENOMEM;
2618 	}
2619 
2620 	marvell_nand->nsels = nsels;
2621 	marvell_nand->selected_die = -1;
2622 
2623 	for (i = 0; i < nsels; i++) {
2624 		if (pdata || nfc->caps->legacy_of_bindings) {
2625 			/*
2626 			 * Legacy bindings use the CS lines in natural
2627 			 * order (0, 1, ...)
2628 			 */
2629 			cs = i;
2630 		} else {
2631 			/* Retrieve CS id */
2632 			ret = of_property_read_u32_index(np, "reg", i, &cs);
2633 			if (ret) {
2634 				dev_err(dev, "could not retrieve reg property: %d\n",
2635 					ret);
2636 				return ret;
2637 			}
2638 		}
2639 
2640 		if (cs >= nfc->caps->max_cs_nb) {
2641 			dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2642 				cs, nfc->caps->max_cs_nb);
2643 			return -EINVAL;
2644 		}
2645 
2646 		if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2647 			dev_err(dev, "CS %d already assigned\n", cs);
2648 			return -EINVAL;
2649 		}
2650 
2651 		/*
2652 		 * The cs variable represents the chip select id, which must be
2653 		 * converted in bit fields for NDCB0 and NDCB2 to select the
2654 		 * right chip. Unfortunately, due to a lack of information on
2655 		 * the subject and incoherent documentation, the user should not
2656 		 * use CS1 and CS3 at all as asserting them is not supported in
2657 		 * a reliable way (due to multiplexing inside ADDR5 field).
2658 		 */
2659 		marvell_nand->sels[i].cs = cs;
2660 		switch (cs) {
2661 		case 0:
2662 		case 2:
2663 			marvell_nand->sels[i].ndcb0_csel = 0;
2664 			break;
2665 		case 1:
2666 		case 3:
2667 			marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2668 			break;
2669 		default:
2670 			return -EINVAL;
2671 		}
2672 
2673 		/* Retrieve RB id */
2674 		if (pdata || nfc->caps->legacy_of_bindings) {
2675 			/* Legacy bindings always use RB #0 */
2676 			rb = 0;
2677 		} else {
2678 			ret = of_property_read_u32_index(np, "nand-rb", i,
2679 							 &rb);
2680 			if (ret) {
2681 				dev_err(dev,
2682 					"could not retrieve RB property: %d\n",
2683 					ret);
2684 				return ret;
2685 			}
2686 		}
2687 
2688 		if (rb >= nfc->caps->max_rb_nb) {
2689 			dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2690 				rb, nfc->caps->max_rb_nb);
2691 			return -EINVAL;
2692 		}
2693 
2694 		marvell_nand->sels[i].rb = rb;
2695 	}
2696 
2697 	chip = &marvell_nand->chip;
2698 	chip->controller = &nfc->controller;
2699 	nand_set_flash_node(chip, np);
2700 
2701 	if (of_property_read_bool(np, "marvell,nand-keep-config"))
2702 		chip->options |= NAND_KEEP_TIMINGS;
2703 
2704 	mtd = nand_to_mtd(chip);
2705 	mtd->dev.parent = dev;
2706 
2707 	/*
2708 	 * Save a reference value for timing registers before
2709 	 * ->setup_interface() is called.
2710 	 */
2711 	marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2712 	marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2713 
2714 	chip->options |= NAND_BUSWIDTH_AUTO;
2715 
2716 	ret = nand_scan(chip, marvell_nand->nsels);
2717 	if (ret) {
2718 		dev_err(dev, "could not scan the nand chip\n");
2719 		return ret;
2720 	}
2721 
2722 	if (pdata)
2723 		/* Legacy bindings support only one chip */
2724 		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2725 	else
2726 		ret = mtd_device_register(mtd, NULL, 0);
2727 	if (ret) {
2728 		dev_err(dev, "failed to register mtd device: %d\n", ret);
2729 		nand_cleanup(chip);
2730 		return ret;
2731 	}
2732 
2733 	list_add_tail(&marvell_nand->node, &nfc->chips);
2734 
2735 	return 0;
2736 }
2737 
2738 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2739 {
2740 	struct marvell_nand_chip *entry, *temp;
2741 	struct nand_chip *chip;
2742 	int ret;
2743 
2744 	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2745 		chip = &entry->chip;
2746 		ret = mtd_device_unregister(nand_to_mtd(chip));
2747 		WARN_ON(ret);
2748 		nand_cleanup(chip);
2749 		list_del(&entry->node);
2750 	}
2751 }
2752 
2753 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2754 {
2755 	struct device_node *np = dev->of_node;
2756 	struct device_node *nand_np;
2757 	int max_cs = nfc->caps->max_cs_nb;
2758 	int nchips;
2759 	int ret;
2760 
2761 	if (!np)
2762 		nchips = 1;
2763 	else
2764 		nchips = of_get_child_count(np);
2765 
2766 	if (nchips > max_cs) {
2767 		dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2768 			max_cs);
2769 		return -EINVAL;
2770 	}
2771 
2772 	/*
2773 	 * Legacy bindings do not use child nodes to exhibit NAND chip
2774 	 * properties and layout. Instead, NAND properties are mixed with the
2775 	 * controller ones, and partitions are defined as direct subnodes of the
2776 	 * NAND controller node.
2777 	 */
2778 	if (nfc->caps->legacy_of_bindings) {
2779 		ret = marvell_nand_chip_init(dev, nfc, np);
2780 		return ret;
2781 	}
2782 
2783 	for_each_child_of_node(np, nand_np) {
2784 		ret = marvell_nand_chip_init(dev, nfc, nand_np);
2785 		if (ret) {
2786 			of_node_put(nand_np);
2787 			goto cleanup_chips;
2788 		}
2789 	}
2790 
2791 	return 0;
2792 
2793 cleanup_chips:
2794 	marvell_nand_chips_cleanup(nfc);
2795 
2796 	return ret;
2797 }
2798 
2799 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2800 {
2801 	struct platform_device *pdev = container_of(nfc->dev,
2802 						    struct platform_device,
2803 						    dev);
2804 	struct dma_slave_config config = {};
2805 	struct resource *r;
2806 	int ret;
2807 
2808 	if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2809 		dev_warn(nfc->dev,
2810 			 "DMA not enabled in configuration\n");
2811 		return -ENOTSUPP;
2812 	}
2813 
2814 	ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2815 	if (ret)
2816 		return ret;
2817 
2818 	nfc->dma_chan =	dma_request_chan(nfc->dev, "data");
2819 	if (IS_ERR(nfc->dma_chan)) {
2820 		ret = PTR_ERR(nfc->dma_chan);
2821 		nfc->dma_chan = NULL;
2822 		return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
2823 	}
2824 
2825 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2826 	if (!r) {
2827 		ret = -ENXIO;
2828 		goto release_channel;
2829 	}
2830 
2831 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2832 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2833 	config.src_addr = r->start + NDDB;
2834 	config.dst_addr = r->start + NDDB;
2835 	config.src_maxburst = 32;
2836 	config.dst_maxburst = 32;
2837 	ret = dmaengine_slave_config(nfc->dma_chan, &config);
2838 	if (ret < 0) {
2839 		dev_err(nfc->dev, "Failed to configure DMA channel\n");
2840 		goto release_channel;
2841 	}
2842 
2843 	/*
2844 	 * DMA must act on length multiple of 32 and this length may be
2845 	 * bigger than the destination buffer. Use this buffer instead
2846 	 * for DMA transfers and then copy the desired amount of data to
2847 	 * the provided buffer.
2848 	 */
2849 	nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2850 	if (!nfc->dma_buf) {
2851 		ret = -ENOMEM;
2852 		goto release_channel;
2853 	}
2854 
2855 	nfc->use_dma = true;
2856 
2857 	return 0;
2858 
2859 release_channel:
2860 	dma_release_channel(nfc->dma_chan);
2861 	nfc->dma_chan = NULL;
2862 
2863 	return ret;
2864 }
2865 
2866 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2867 {
2868 	/*
2869 	 * ECC operations and interruptions are only enabled when specifically
2870 	 * needed. ECC shall not be activated in the early stages (fails probe).
2871 	 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2872 	 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2873 	 * offset in the read page and this will fail the protection.
2874 	 */
2875 	writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2876 		       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2877 	writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2878 	writel_relaxed(0, nfc->regs + NDECCCTRL);
2879 }
2880 
2881 static int marvell_nfc_init(struct marvell_nfc *nfc)
2882 {
2883 	struct device_node *np = nfc->dev->of_node;
2884 
2885 	/*
2886 	 * Some SoCs like A7k/A8k need to enable manually the NAND
2887 	 * controller, gated clocks and reset bits to avoid being bootloader
2888 	 * dependent. This is done through the use of the System Functions
2889 	 * registers.
2890 	 */
2891 	if (nfc->caps->need_system_controller) {
2892 		struct regmap *sysctrl_base =
2893 			syscon_regmap_lookup_by_phandle(np,
2894 							"marvell,system-controller");
2895 
2896 		if (IS_ERR(sysctrl_base))
2897 			return PTR_ERR(sysctrl_base);
2898 
2899 		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2900 			     GENCONF_SOC_DEVICE_MUX_NFC_EN |
2901 			     GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2902 			     GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2903 			     GENCONF_SOC_DEVICE_MUX_NFC_INT_EN |
2904 			     GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN);
2905 
2906 		regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2907 				   GENCONF_CLK_GATING_CTRL_ND_GATE,
2908 				   GENCONF_CLK_GATING_CTRL_ND_GATE);
2909 	}
2910 
2911 	/* Configure the DMA if appropriate */
2912 	if (!nfc->caps->is_nfcv2)
2913 		marvell_nfc_init_dma(nfc);
2914 
2915 	marvell_nfc_reset(nfc);
2916 
2917 	return 0;
2918 }
2919 
2920 static int marvell_nfc_probe(struct platform_device *pdev)
2921 {
2922 	struct device *dev = &pdev->dev;
2923 	struct marvell_nfc *nfc;
2924 	int ret;
2925 	int irq;
2926 
2927 	nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2928 			   GFP_KERNEL);
2929 	if (!nfc)
2930 		return -ENOMEM;
2931 
2932 	nfc->dev = dev;
2933 	nand_controller_init(&nfc->controller);
2934 	nfc->controller.ops = &marvell_nand_controller_ops;
2935 	INIT_LIST_HEAD(&nfc->chips);
2936 
2937 	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
2938 	if (IS_ERR(nfc->regs))
2939 		return PTR_ERR(nfc->regs);
2940 
2941 	irq = platform_get_irq(pdev, 0);
2942 	if (irq < 0)
2943 		return irq;
2944 
2945 	nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2946 
2947 	/* Managed the legacy case (when the first clock was not named) */
2948 	if (nfc->core_clk == ERR_PTR(-ENOENT))
2949 		nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2950 
2951 	if (IS_ERR(nfc->core_clk))
2952 		return PTR_ERR(nfc->core_clk);
2953 
2954 	ret = clk_prepare_enable(nfc->core_clk);
2955 	if (ret)
2956 		return ret;
2957 
2958 	nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2959 	if (IS_ERR(nfc->reg_clk)) {
2960 		if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2961 			ret = PTR_ERR(nfc->reg_clk);
2962 			goto unprepare_core_clk;
2963 		}
2964 
2965 		nfc->reg_clk = NULL;
2966 	}
2967 
2968 	ret = clk_prepare_enable(nfc->reg_clk);
2969 	if (ret)
2970 		goto unprepare_core_clk;
2971 
2972 	marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2973 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2974 	ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2975 			       0, "marvell-nfc", nfc);
2976 	if (ret)
2977 		goto unprepare_reg_clk;
2978 
2979 	/* Get NAND controller capabilities */
2980 	if (pdev->id_entry)
2981 		nfc->caps = (void *)pdev->id_entry->driver_data;
2982 	else
2983 		nfc->caps = of_device_get_match_data(&pdev->dev);
2984 
2985 	if (!nfc->caps) {
2986 		dev_err(dev, "Could not retrieve NFC caps\n");
2987 		ret = -EINVAL;
2988 		goto unprepare_reg_clk;
2989 	}
2990 
2991 	/* Init the controller and then probe the chips */
2992 	ret = marvell_nfc_init(nfc);
2993 	if (ret)
2994 		goto unprepare_reg_clk;
2995 
2996 	platform_set_drvdata(pdev, nfc);
2997 
2998 	ret = marvell_nand_chips_init(dev, nfc);
2999 	if (ret)
3000 		goto release_dma;
3001 
3002 	return 0;
3003 
3004 release_dma:
3005 	if (nfc->use_dma)
3006 		dma_release_channel(nfc->dma_chan);
3007 unprepare_reg_clk:
3008 	clk_disable_unprepare(nfc->reg_clk);
3009 unprepare_core_clk:
3010 	clk_disable_unprepare(nfc->core_clk);
3011 
3012 	return ret;
3013 }
3014 
3015 static void marvell_nfc_remove(struct platform_device *pdev)
3016 {
3017 	struct marvell_nfc *nfc = platform_get_drvdata(pdev);
3018 
3019 	marvell_nand_chips_cleanup(nfc);
3020 
3021 	if (nfc->use_dma) {
3022 		dmaengine_terminate_all(nfc->dma_chan);
3023 		dma_release_channel(nfc->dma_chan);
3024 	}
3025 
3026 	clk_disable_unprepare(nfc->reg_clk);
3027 	clk_disable_unprepare(nfc->core_clk);
3028 }
3029 
3030 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
3031 {
3032 	struct marvell_nfc *nfc = dev_get_drvdata(dev);
3033 	struct marvell_nand_chip *chip;
3034 
3035 	list_for_each_entry(chip, &nfc->chips, node)
3036 		marvell_nfc_wait_ndrun(&chip->chip);
3037 
3038 	clk_disable_unprepare(nfc->reg_clk);
3039 	clk_disable_unprepare(nfc->core_clk);
3040 
3041 	return 0;
3042 }
3043 
3044 static int __maybe_unused marvell_nfc_resume(struct device *dev)
3045 {
3046 	struct marvell_nfc *nfc = dev_get_drvdata(dev);
3047 	int ret;
3048 
3049 	ret = clk_prepare_enable(nfc->core_clk);
3050 	if (ret < 0)
3051 		return ret;
3052 
3053 	ret = clk_prepare_enable(nfc->reg_clk);
3054 	if (ret < 0) {
3055 		clk_disable_unprepare(nfc->core_clk);
3056 		return ret;
3057 	}
3058 
3059 	/*
3060 	 * Reset nfc->selected_chip so the next command will cause the timing
3061 	 * registers to be restored in marvell_nfc_select_target().
3062 	 */
3063 	nfc->selected_chip = NULL;
3064 
3065 	/* Reset registers that have lost their contents */
3066 	marvell_nfc_reset(nfc);
3067 
3068 	return 0;
3069 }
3070 
3071 static const struct dev_pm_ops marvell_nfc_pm_ops = {
3072 	SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
3073 };
3074 
3075 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
3076 	.max_cs_nb = 4,
3077 	.max_rb_nb = 2,
3078 	.need_system_controller = true,
3079 	.is_nfcv2 = true,
3080 };
3081 
3082 static const struct marvell_nfc_caps marvell_ac5_caps = {
3083 	.max_cs_nb = 2,
3084 	.max_rb_nb = 1,
3085 	.is_nfcv2 = true,
3086 	.max_mode_number = 3,
3087 };
3088 
3089 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3090 	.max_cs_nb = 4,
3091 	.max_rb_nb = 2,
3092 	.is_nfcv2 = true,
3093 };
3094 
3095 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3096 	.max_cs_nb = 2,
3097 	.max_rb_nb = 1,
3098 	.use_dma = true,
3099 };
3100 
3101 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3102 	.max_cs_nb = 4,
3103 	.max_rb_nb = 2,
3104 	.need_system_controller = true,
3105 	.legacy_of_bindings = true,
3106 	.is_nfcv2 = true,
3107 };
3108 
3109 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3110 	.max_cs_nb = 4,
3111 	.max_rb_nb = 2,
3112 	.legacy_of_bindings = true,
3113 	.is_nfcv2 = true,
3114 };
3115 
3116 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3117 	.max_cs_nb = 2,
3118 	.max_rb_nb = 1,
3119 	.legacy_of_bindings = true,
3120 	.use_dma = true,
3121 };
3122 
3123 static const struct platform_device_id marvell_nfc_platform_ids[] = {
3124 	{
3125 		.name = "pxa3xx-nand",
3126 		.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3127 	},
3128 	{ /* sentinel */ },
3129 };
3130 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3131 
3132 static const struct of_device_id marvell_nfc_of_ids[] = {
3133 	{
3134 		.compatible = "marvell,armada-8k-nand-controller",
3135 		.data = &marvell_armada_8k_nfc_caps,
3136 	},
3137 	{
3138 		.compatible = "marvell,ac5-nand-controller",
3139 		.data = &marvell_ac5_caps,
3140 	},
3141 	{
3142 		.compatible = "marvell,armada370-nand-controller",
3143 		.data = &marvell_armada370_nfc_caps,
3144 	},
3145 	{
3146 		.compatible = "marvell,pxa3xx-nand-controller",
3147 		.data = &marvell_pxa3xx_nfc_caps,
3148 	},
3149 	/* Support for old/deprecated bindings: */
3150 	{
3151 		.compatible = "marvell,armada-8k-nand",
3152 		.data = &marvell_armada_8k_nfc_legacy_caps,
3153 	},
3154 	{
3155 		.compatible = "marvell,armada370-nand",
3156 		.data = &marvell_armada370_nfc_legacy_caps,
3157 	},
3158 	{
3159 		.compatible = "marvell,pxa3xx-nand",
3160 		.data = &marvell_pxa3xx_nfc_legacy_caps,
3161 	},
3162 	{ /* sentinel */ },
3163 };
3164 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3165 
3166 static struct platform_driver marvell_nfc_driver = {
3167 	.driver	= {
3168 		.name		= "marvell-nfc",
3169 		.of_match_table = marvell_nfc_of_ids,
3170 		.pm		= &marvell_nfc_pm_ops,
3171 	},
3172 	.id_table = marvell_nfc_platform_ids,
3173 	.probe = marvell_nfc_probe,
3174 	.remove_new = marvell_nfc_remove,
3175 };
3176 module_platform_driver(marvell_nfc_driver);
3177 
3178 MODULE_LICENSE("GPL");
3179 MODULE_DESCRIPTION("Marvell NAND controller driver");
3180