1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Marvell NAND flash controller driver 4 * 5 * Copyright (C) 2017 Marvell 6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> 7 * 8 * 9 * This NAND controller driver handles two versions of the hardware, 10 * one is called NFCv1 and is available on PXA SoCs and the other is 11 * called NFCv2 and is available on Armada SoCs. 12 * 13 * The main visible difference is that NFCv1 only has Hamming ECC 14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA 15 * is not used with NFCv2. 16 * 17 * The ECC layouts are depicted in details in Marvell AN-379, but here 18 * is a brief description. 19 * 20 * When using Hamming, the data is split in 512B chunks (either 1, 2 21 * or 4) and each chunk will have its own ECC "digest" of 6B at the 22 * beginning of the OOB area and eventually the remaining free OOB 23 * bytes (also called "spare" bytes in the driver). This engine 24 * corrects up to 1 bit per chunk and detects reliably an error if 25 * there are at most 2 bitflips. Here is the page layout used by the 26 * controller when Hamming is chosen: 27 * 28 * +-------------------------------------------------------------+ 29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | 30 * +-------------------------------------------------------------+ 31 * 32 * When using the BCH engine, there are N identical (data + free OOB + 33 * ECC) sections and potentially an extra one to deal with 34 * configurations where the chosen (data + free OOB + ECC) sizes do 35 * not align with the page (data + OOB) size. ECC bytes are always 36 * 30B per ECC chunk. Here is the page layout used by the controller 37 * when BCH is chosen: 38 * 39 * +----------------------------------------- 40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ... 41 * +----------------------------------------- 42 * 43 * ------------------------------------------- 44 * ... | Data N | Free OOB bytes N | ECC N | 45 * ------------------------------------------- 46 * 47 * --------------------------------------------+ 48 * Last Data | Last Free OOB bytes | Last ECC | 49 * --------------------------------------------+ 50 * 51 * In both cases, the layout seen by the user is always: all data 52 * first, then all free OOB bytes and finally all ECC bytes. With BCH, 53 * ECC bytes are 30B long and are padded with 0xFF to align on 32 54 * bytes. 55 * 56 * The controller has certain limitations that are handled by the 57 * driver: 58 * - It can only read 2k at a time. To overcome this limitation, the 59 * driver issues data cycles on the bus, without issuing new 60 * CMD + ADDR cycles. The Marvell term is "naked" operations. 61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 62 * bits. What can be tuned is the ECC block size as long as it 63 * stays between 512B and 2kiB. It's usually chosen based on the 64 * chip ECC requirements. For instance, using 2kiB ECC chunks 65 * provides 4b/512B correctability. 66 * - The controller will always treat data bytes, free OOB bytes 67 * and ECC bytes in that order, no matter what the real layout is 68 * (which is usually all data then all OOB bytes). The 69 * marvell_nfc_layouts array below contains the currently 70 * supported layouts. 71 * - Because of these weird layouts, the Bad Block Markers can be 72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM 73 * option must be set to prevent scanning/writing bad block 74 * markers. 75 */ 76 77 #include <linux/module.h> 78 #include <linux/clk.h> 79 #include <linux/mtd/rawnand.h> 80 #include <linux/of.h> 81 #include <linux/iopoll.h> 82 #include <linux/interrupt.h> 83 #include <linux/platform_device.h> 84 #include <linux/slab.h> 85 #include <linux/mfd/syscon.h> 86 #include <linux/regmap.h> 87 #include <asm/unaligned.h> 88 89 #include <linux/dmaengine.h> 90 #include <linux/dma-mapping.h> 91 #include <linux/dma/pxa-dma.h> 92 #include <linux/platform_data/mtd-nand-pxa3xx.h> 93 94 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ 95 #define FIFO_DEPTH 8 96 #define FIFO_REP(x) (x / sizeof(u32)) 97 #define BCH_SEQ_READS (32 / FIFO_DEPTH) 98 /* NFC does not support transfers of larger chunks at a time */ 99 #define MAX_CHUNK_SIZE 2112 100 /* NFCv1 cannot read more that 7 bytes of ID */ 101 #define NFCV1_READID_LEN 7 102 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ 103 #define POLL_PERIOD 0 104 #define POLL_TIMEOUT 100000 105 /* Interrupt maximum wait period in ms */ 106 #define IRQ_TIMEOUT 1000 107 /* Latency in clock cycles between SoC pins and NFC logic */ 108 #define MIN_RD_DEL_CNT 3 109 /* Maximum number of contiguous address cycles */ 110 #define MAX_ADDRESS_CYC_NFCV1 5 111 #define MAX_ADDRESS_CYC_NFCV2 7 112 /* System control registers/bits to enable the NAND controller on some SoCs */ 113 #define GENCONF_SOC_DEVICE_MUX 0x208 114 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) 115 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) 116 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) 117 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) 118 #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27) 119 #define GENCONF_CLK_GATING_CTRL 0x220 120 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) 121 #define GENCONF_ND_CLK_CTRL 0x700 122 #define GENCONF_ND_CLK_CTRL_EN BIT(0) 123 124 /* NAND controller data flash control register */ 125 #define NDCR 0x00 126 #define NDCR_ALL_INT GENMASK(11, 0) 127 #define NDCR_CS1_CMDDM BIT(7) 128 #define NDCR_CS0_CMDDM BIT(8) 129 #define NDCR_RDYM BIT(11) 130 #define NDCR_ND_ARB_EN BIT(12) 131 #define NDCR_RA_START BIT(15) 132 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) 133 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) 134 #define NDCR_DWIDTH_M BIT(26) 135 #define NDCR_DWIDTH_C BIT(27) 136 #define NDCR_ND_RUN BIT(28) 137 #define NDCR_DMA_EN BIT(29) 138 #define NDCR_ECC_EN BIT(30) 139 #define NDCR_SPARE_EN BIT(31) 140 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ 141 NDCR_DWIDTH_M | NDCR_DWIDTH_C)) 142 143 /* NAND interface timing parameter 0 register */ 144 #define NDTR0 0x04 145 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) 146 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) 147 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) 148 #define NDTR0_SEL_NRE_EDGE BIT(7) 149 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) 150 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) 151 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) 152 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) 153 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) 154 #define NDTR0_SELCNTR BIT(26) 155 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) 156 157 /* NAND interface timing parameter 1 register */ 158 #define NDTR1 0x0C 159 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) 160 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) 161 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) 162 #define NDTR1_PRESCALE BIT(14) 163 #define NDTR1_WAIT_MODE BIT(15) 164 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) 165 166 /* NAND controller status register */ 167 #define NDSR 0x14 168 #define NDSR_WRCMDREQ BIT(0) 169 #define NDSR_RDDREQ BIT(1) 170 #define NDSR_WRDREQ BIT(2) 171 #define NDSR_CORERR BIT(3) 172 #define NDSR_UNCERR BIT(4) 173 #define NDSR_CMDD(cs) BIT(8 - cs) 174 #define NDSR_RDY(rb) BIT(11 + rb) 175 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) 176 177 /* NAND ECC control register */ 178 #define NDECCCTRL 0x28 179 #define NDECCCTRL_BCH_EN BIT(0) 180 181 /* NAND controller data buffer register */ 182 #define NDDB 0x40 183 184 /* NAND controller command buffer 0 register */ 185 #define NDCB0 0x48 186 #define NDCB0_CMD1(x) ((x & 0xFF) << 0) 187 #define NDCB0_CMD2(x) ((x & 0xFF) << 8) 188 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) 189 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) 190 #define NDCB0_DBC BIT(19) 191 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) 192 #define NDCB0_CSEL BIT(24) 193 #define NDCB0_RDY_BYP BIT(27) 194 #define NDCB0_LEN_OVRD BIT(28) 195 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) 196 197 /* NAND controller command buffer 1 register */ 198 #define NDCB1 0x4C 199 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0) 200 #define NDCB1_ADDRS_PAGE(x) (x << 16) 201 202 /* NAND controller command buffer 2 register */ 203 #define NDCB2 0x50 204 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) 205 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) 206 207 /* NAND controller command buffer 3 register */ 208 #define NDCB3 0x54 209 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) 210 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) 211 212 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */ 213 #define TYPE_READ 0 214 #define TYPE_WRITE 1 215 #define TYPE_ERASE 2 216 #define TYPE_READ_ID 3 217 #define TYPE_STATUS 4 218 #define TYPE_RESET 5 219 #define TYPE_NAKED_CMD 6 220 #define TYPE_NAKED_ADDR 7 221 #define TYPE_MASK 7 222 #define XTYPE_MONOLITHIC_RW 0 223 #define XTYPE_LAST_NAKED_RW 1 224 #define XTYPE_FINAL_COMMAND 3 225 #define XTYPE_READ 4 226 #define XTYPE_WRITE_DISPATCH 4 227 #define XTYPE_NAKED_RW 5 228 #define XTYPE_COMMAND_DISPATCH 6 229 #define XTYPE_MASK 7 230 231 /** 232 * struct marvell_hw_ecc_layout - layout of Marvell ECC 233 * 234 * Marvell ECC engine works differently than the others, in order to limit the 235 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits 236 * per subpage, and depending on a the desired strength needed by the NAND chip, 237 * a particular layout mixing data/spare/ecc is defined, with a possible last 238 * chunk smaller that the others. 239 * 240 * @writesize: Full page size on which the layout applies 241 * @chunk: Desired ECC chunk size on which the layout applies 242 * @strength: Desired ECC strength (per chunk size bytes) on which the 243 * layout applies 244 * @nchunks: Total number of chunks 245 * @full_chunk_cnt: Number of full-sized chunks, which is the number of 246 * repetitions of the pattern: 247 * (data_bytes + spare_bytes + ecc_bytes). 248 * @data_bytes: Number of data bytes per chunk 249 * @spare_bytes: Number of spare bytes per chunk 250 * @ecc_bytes: Number of ecc bytes per chunk 251 * @last_data_bytes: Number of data bytes in the last chunk 252 * @last_spare_bytes: Number of spare bytes in the last chunk 253 * @last_ecc_bytes: Number of ecc bytes in the last chunk 254 */ 255 struct marvell_hw_ecc_layout { 256 /* Constraints */ 257 int writesize; 258 int chunk; 259 int strength; 260 /* Corresponding layout */ 261 int nchunks; 262 int full_chunk_cnt; 263 int data_bytes; 264 int spare_bytes; 265 int ecc_bytes; 266 int last_data_bytes; 267 int last_spare_bytes; 268 int last_ecc_bytes; 269 }; 270 271 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ 272 { \ 273 .writesize = ws, \ 274 .chunk = dc, \ 275 .strength = ds, \ 276 .nchunks = nc, \ 277 .full_chunk_cnt = fcc, \ 278 .data_bytes = db, \ 279 .spare_bytes = sb, \ 280 .ecc_bytes = eb, \ 281 .last_data_bytes = ldb, \ 282 .last_spare_bytes = lsb, \ 283 .last_ecc_bytes = leb, \ 284 } 285 286 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ 287 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { 288 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), 289 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), 290 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), 291 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), 292 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,64, 30), 293 MARVELL_LAYOUT( 2048, 512, 12, 3, 2, 704, 0, 30,640, 0, 30), 294 MARVELL_LAYOUT( 2048, 512, 16, 5, 4, 512, 0, 30, 0, 32, 30), 295 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), 296 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), 297 MARVELL_LAYOUT( 4096, 512, 12, 6, 5, 704, 0, 30,576, 32, 30), 298 MARVELL_LAYOUT( 4096, 512, 16, 9, 8, 512, 0, 30, 0, 32, 30), 299 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), 300 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), 301 MARVELL_LAYOUT( 8192, 512, 12, 12, 11, 704, 0, 30,448, 64, 30), 302 MARVELL_LAYOUT( 8192, 512, 16, 17, 16, 512, 0, 30, 0, 32, 30), 303 }; 304 305 /** 306 * struct marvell_nand_chip_sel - CS line description 307 * 308 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection 309 * is made by a field in NDCB0 register, and in another field in NDCB2 register. 310 * The datasheet describes the logic with an error: ADDR5 field is once 311 * declared at the beginning of NDCB2, and another time at its end. Because the 312 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical 313 * to use the last bit of this field instead of the first ones. 314 * 315 * @cs: Wanted CE lane. 316 * @ndcb0_csel: Value of the NDCB0 register with or without the flag 317 * selecting the wanted CE lane. This is set once when 318 * the Device Tree is probed. 319 * @rb: Ready/Busy pin for the flash chip 320 */ 321 struct marvell_nand_chip_sel { 322 unsigned int cs; 323 u32 ndcb0_csel; 324 unsigned int rb; 325 }; 326 327 /** 328 * struct marvell_nand_chip - stores NAND chip device related information 329 * 330 * @chip: Base NAND chip structure 331 * @node: Used to store NAND chips into a list 332 * @layout: NAND layout when using hardware ECC 333 * @ndcr: Controller register value for this NAND chip 334 * @ndtr0: Timing registers 0 value for this NAND chip 335 * @ndtr1: Timing registers 1 value for this NAND chip 336 * @addr_cyc: Amount of cycles needed to pass column address 337 * @selected_die: Current active CS 338 * @nsels: Number of CS lines required by the NAND chip 339 * @sels: Array of CS lines descriptions 340 */ 341 struct marvell_nand_chip { 342 struct nand_chip chip; 343 struct list_head node; 344 const struct marvell_hw_ecc_layout *layout; 345 u32 ndcr; 346 u32 ndtr0; 347 u32 ndtr1; 348 int addr_cyc; 349 int selected_die; 350 unsigned int nsels; 351 struct marvell_nand_chip_sel sels[]; 352 }; 353 354 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) 355 { 356 return container_of(chip, struct marvell_nand_chip, chip); 357 } 358 359 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip 360 *nand) 361 { 362 return &nand->sels[nand->selected_die]; 363 } 364 365 /** 366 * struct marvell_nfc_caps - NAND controller capabilities for distinction 367 * between compatible strings 368 * 369 * @max_cs_nb: Number of Chip Select lines available 370 * @max_rb_nb: Number of Ready/Busy lines available 371 * @need_system_controller: Indicates if the SoC needs to have access to the 372 * system controller (ie. to enable the NAND controller) 373 * @legacy_of_bindings: Indicates if DT parsing must be done using the old 374 * fashion way 375 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. 376 * BCH error detection and correction algorithm, 377 * NDCB3 register has been added 378 * @use_dma: Use dma for data transfers 379 * @max_mode_number: Maximum timing mode supported by the controller 380 */ 381 struct marvell_nfc_caps { 382 unsigned int max_cs_nb; 383 unsigned int max_rb_nb; 384 bool need_system_controller; 385 bool legacy_of_bindings; 386 bool is_nfcv2; 387 bool use_dma; 388 unsigned int max_mode_number; 389 }; 390 391 /** 392 * struct marvell_nfc - stores Marvell NAND controller information 393 * 394 * @controller: Base controller structure 395 * @dev: Parent device (used to print error messages) 396 * @regs: NAND controller registers 397 * @core_clk: Core clock 398 * @reg_clk: Registers clock 399 * @complete: Completion object to wait for NAND controller events 400 * @assigned_cs: Bitmask describing already assigned CS lines 401 * @chips: List containing all the NAND chips attached to 402 * this NAND controller 403 * @selected_chip: Currently selected target chip 404 * @caps: NAND controller capabilities for each compatible string 405 * @use_dma: Whetner DMA is used 406 * @dma_chan: DMA channel (NFCv1 only) 407 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) 408 */ 409 struct marvell_nfc { 410 struct nand_controller controller; 411 struct device *dev; 412 void __iomem *regs; 413 struct clk *core_clk; 414 struct clk *reg_clk; 415 struct completion complete; 416 unsigned long assigned_cs; 417 struct list_head chips; 418 struct nand_chip *selected_chip; 419 const struct marvell_nfc_caps *caps; 420 421 /* DMA (NFCv1 only) */ 422 bool use_dma; 423 struct dma_chan *dma_chan; 424 u8 *dma_buf; 425 }; 426 427 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) 428 { 429 return container_of(ctrl, struct marvell_nfc, controller); 430 } 431 432 /** 433 * struct marvell_nfc_timings - NAND controller timings expressed in NAND 434 * Controller clock cycles 435 * 436 * @tRP: ND_nRE pulse width 437 * @tRH: ND_nRE high duration 438 * @tWP: ND_nWE pulse time 439 * @tWH: ND_nWE high duration 440 * @tCS: Enable signal setup time 441 * @tCH: Enable signal hold time 442 * @tADL: Address to write data delay 443 * @tAR: ND_ALE low to ND_nRE low delay 444 * @tWHR: ND_nWE high to ND_nRE low for status read 445 * @tRHW: ND_nRE high duration, read to write delay 446 * @tR: ND_nWE high to ND_nRE low for read 447 */ 448 struct marvell_nfc_timings { 449 /* NDTR0 fields */ 450 unsigned int tRP; 451 unsigned int tRH; 452 unsigned int tWP; 453 unsigned int tWH; 454 unsigned int tCS; 455 unsigned int tCH; 456 unsigned int tADL; 457 /* NDTR1 fields */ 458 unsigned int tAR; 459 unsigned int tWHR; 460 unsigned int tRHW; 461 unsigned int tR; 462 }; 463 464 /** 465 * TO_CYCLES() - Derives a duration in numbers of clock cycles. 466 * 467 * @ps: Duration in pico-seconds 468 * @period_ns: Clock period in nano-seconds 469 * 470 * Convert the duration in nano-seconds, then divide by the period and 471 * return the number of clock periods. 472 */ 473 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) 474 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ 475 period_ns)) 476 477 /** 478 * struct marvell_nfc_op - filled during the parsing of the ->exec_op() 479 * subop subset of instructions. 480 * 481 * @ndcb: Array of values written to NDCBx registers 482 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle 483 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 484 * @rdy_delay_ns: Optional delay after waiting for the RB pin 485 * @data_delay_ns: Optional delay after the data xfer 486 * @data_instr_idx: Index of the data instruction in the subop 487 * @data_instr: Pointer to the data instruction in the subop 488 */ 489 struct marvell_nfc_op { 490 u32 ndcb[4]; 491 unsigned int cle_ale_delay_ns; 492 unsigned int rdy_timeout_ms; 493 unsigned int rdy_delay_ns; 494 unsigned int data_delay_ns; 495 unsigned int data_instr_idx; 496 const struct nand_op_instr *data_instr; 497 }; 498 499 /* 500 * Internal helper to conditionnally apply a delay (from the above structure, 501 * most of the time). 502 */ 503 static void cond_delay(unsigned int ns) 504 { 505 if (!ns) 506 return; 507 508 if (ns < 10000) 509 ndelay(ns); 510 else 511 udelay(DIV_ROUND_UP(ns, 1000)); 512 } 513 514 /* 515 * The controller has many flags that could generate interrupts, most of them 516 * are disabled and polling is used. For the very slow signals, using interrupts 517 * may relax the CPU charge. 518 */ 519 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) 520 { 521 u32 reg; 522 523 /* Writing 1 disables the interrupt */ 524 reg = readl_relaxed(nfc->regs + NDCR); 525 writel_relaxed(reg | int_mask, nfc->regs + NDCR); 526 } 527 528 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) 529 { 530 u32 reg; 531 532 /* Writing 0 enables the interrupt */ 533 reg = readl_relaxed(nfc->regs + NDCR); 534 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); 535 } 536 537 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) 538 { 539 u32 reg; 540 541 reg = readl_relaxed(nfc->regs + NDSR); 542 writel_relaxed(int_mask, nfc->regs + NDSR); 543 544 return reg & int_mask; 545 } 546 547 static void marvell_nfc_force_byte_access(struct nand_chip *chip, 548 bool force_8bit) 549 { 550 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 551 u32 ndcr; 552 553 /* 554 * Callers of this function do not verify if the NAND is using a 16-bit 555 * an 8-bit bus for normal operations, so we need to take care of that 556 * here by leaving the configuration unchanged if the NAND does not have 557 * the NAND_BUSWIDTH_16 flag set. 558 */ 559 if (!(chip->options & NAND_BUSWIDTH_16)) 560 return; 561 562 ndcr = readl_relaxed(nfc->regs + NDCR); 563 564 if (force_8bit) 565 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); 566 else 567 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 568 569 writel_relaxed(ndcr, nfc->regs + NDCR); 570 } 571 572 static int marvell_nfc_wait_ndrun(struct nand_chip *chip) 573 { 574 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 575 u32 val; 576 int ret; 577 578 /* 579 * The command is being processed, wait for the ND_RUN bit to be 580 * cleared by the NFC. If not, we must clear it by hand. 581 */ 582 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, 583 (val & NDCR_ND_RUN) == 0, 584 POLL_PERIOD, POLL_TIMEOUT); 585 if (ret) { 586 dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); 587 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 588 nfc->regs + NDCR); 589 return ret; 590 } 591 592 return 0; 593 } 594 595 /* 596 * Any time a command has to be sent to the controller, the following sequence 597 * has to be followed: 598 * - call marvell_nfc_prepare_cmd() 599 * -> activate the ND_RUN bit that will kind of 'start a job' 600 * -> wait the signal indicating the NFC is waiting for a command 601 * - send the command (cmd and address cycles) 602 * - enventually send or receive the data 603 * - call marvell_nfc_end_cmd() with the corresponding flag 604 * -> wait the flag to be triggered or cancel the job with a timeout 605 * 606 * The following helpers are here to factorize the code a bit so that 607 * specialized functions responsible for executing the actual NAND 608 * operations do not have to replicate the same code blocks. 609 */ 610 static int marvell_nfc_prepare_cmd(struct nand_chip *chip) 611 { 612 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 613 u32 ndcr, val; 614 int ret; 615 616 /* Poll ND_RUN and clear NDSR before issuing any command */ 617 ret = marvell_nfc_wait_ndrun(chip); 618 if (ret) { 619 dev_err(nfc->dev, "Last operation did not succeed\n"); 620 return ret; 621 } 622 623 ndcr = readl_relaxed(nfc->regs + NDCR); 624 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); 625 626 /* Assert ND_RUN bit and wait the NFC to be ready */ 627 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); 628 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 629 val & NDSR_WRCMDREQ, 630 POLL_PERIOD, POLL_TIMEOUT); 631 if (ret) { 632 dev_err(nfc->dev, "Timeout on WRCMDRE\n"); 633 return -ETIMEDOUT; 634 } 635 636 /* Command may be written, clear WRCMDREQ status bit */ 637 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); 638 639 return 0; 640 } 641 642 static void marvell_nfc_send_cmd(struct nand_chip *chip, 643 struct marvell_nfc_op *nfc_op) 644 { 645 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 646 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 647 648 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" 649 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", 650 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], 651 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); 652 653 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], 654 nfc->regs + NDCB0); 655 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); 656 writel(nfc_op->ndcb[2], nfc->regs + NDCB0); 657 658 /* 659 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 660 * fields are used (only available on NFCv2). 661 */ 662 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || 663 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { 664 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) 665 writel(nfc_op->ndcb[3], nfc->regs + NDCB0); 666 } 667 } 668 669 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, 670 const char *label) 671 { 672 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 673 u32 val; 674 int ret; 675 676 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, 677 val & flag, 678 POLL_PERIOD, POLL_TIMEOUT); 679 680 if (ret) { 681 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", 682 label, val); 683 if (nfc->dma_chan) 684 dmaengine_terminate_all(nfc->dma_chan); 685 return ret; 686 } 687 688 /* 689 * DMA function uses this helper to poll on CMDD bits without wanting 690 * them to be cleared. 691 */ 692 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) 693 return 0; 694 695 writel_relaxed(flag, nfc->regs + NDSR); 696 697 return 0; 698 } 699 700 static int marvell_nfc_wait_cmdd(struct nand_chip *chip) 701 { 702 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 703 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); 704 705 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); 706 } 707 708 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, 709 u32 expected_val, unsigned long timeout_ms) 710 { 711 unsigned long limit; 712 u32 st; 713 714 limit = jiffies + msecs_to_jiffies(timeout_ms); 715 do { 716 st = readl_relaxed(nfc->regs + NDSR); 717 if (st & NDSR_RDY(1)) 718 st |= NDSR_RDY(0); 719 720 if ((st & mask) == expected_val) 721 return 0; 722 723 cpu_relax(); 724 } while (time_after(limit, jiffies)); 725 726 return -ETIMEDOUT; 727 } 728 729 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) 730 { 731 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 732 struct mtd_info *mtd = nand_to_mtd(chip); 733 u32 pending; 734 int ret; 735 736 /* Timeout is expressed in ms */ 737 if (!timeout_ms) 738 timeout_ms = IRQ_TIMEOUT; 739 740 if (mtd->oops_panic_write) { 741 ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), 742 NDSR_RDY(0), 743 timeout_ms); 744 } else { 745 init_completion(&nfc->complete); 746 747 marvell_nfc_enable_int(nfc, NDCR_RDYM); 748 ret = wait_for_completion_timeout(&nfc->complete, 749 msecs_to_jiffies(timeout_ms)); 750 marvell_nfc_disable_int(nfc, NDCR_RDYM); 751 } 752 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); 753 754 /* 755 * In case the interrupt was not served in the required time frame, 756 * check if the ISR was not served or if something went actually wrong. 757 */ 758 if (!ret && !pending) { 759 dev_err(nfc->dev, "Timeout waiting for RB signal\n"); 760 return -ETIMEDOUT; 761 } 762 763 return 0; 764 } 765 766 static void marvell_nfc_select_target(struct nand_chip *chip, 767 unsigned int die_nr) 768 { 769 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 770 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 771 u32 ndcr_generic; 772 773 /* 774 * Reset the NDCR register to a clean state for this particular chip, 775 * also clear ND_RUN bit. 776 */ 777 ndcr_generic = readl_relaxed(nfc->regs + NDCR) & 778 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; 779 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); 780 781 /* Also reset the interrupt status register */ 782 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 783 784 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) 785 return; 786 787 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); 788 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); 789 790 nfc->selected_chip = chip; 791 marvell_nand->selected_die = die_nr; 792 } 793 794 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) 795 { 796 struct marvell_nfc *nfc = dev_id; 797 u32 st = readl_relaxed(nfc->regs + NDSR); 798 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; 799 800 /* 801 * RDY interrupt mask is one bit in NDCR while there are two status 802 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). 803 */ 804 if (st & NDSR_RDY(1)) 805 st |= NDSR_RDY(0); 806 807 if (!(st & ien)) 808 return IRQ_NONE; 809 810 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); 811 812 if (st & (NDSR_RDY(0) | NDSR_RDY(1))) 813 complete(&nfc->complete); 814 815 return IRQ_HANDLED; 816 } 817 818 /* HW ECC related functions */ 819 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) 820 { 821 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 822 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 823 824 if (!(ndcr & NDCR_ECC_EN)) { 825 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); 826 827 /* 828 * When enabling BCH, set threshold to 0 to always know the 829 * number of corrected bitflips. 830 */ 831 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 832 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); 833 } 834 } 835 836 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) 837 { 838 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 839 u32 ndcr = readl_relaxed(nfc->regs + NDCR); 840 841 if (ndcr & NDCR_ECC_EN) { 842 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); 843 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 844 writel_relaxed(0, nfc->regs + NDECCCTRL); 845 } 846 } 847 848 /* DMA related helpers */ 849 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) 850 { 851 u32 reg; 852 853 reg = readl_relaxed(nfc->regs + NDCR); 854 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); 855 } 856 857 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) 858 { 859 u32 reg; 860 861 reg = readl_relaxed(nfc->regs + NDCR); 862 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); 863 } 864 865 /* Read/write PIO/DMA accessors */ 866 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, 867 enum dma_data_direction direction, 868 unsigned int len) 869 { 870 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); 871 struct dma_async_tx_descriptor *tx; 872 struct scatterlist sg; 873 dma_cookie_t cookie; 874 int ret; 875 876 marvell_nfc_enable_dma(nfc); 877 /* Prepare the DMA transfer */ 878 sg_init_one(&sg, nfc->dma_buf, dma_len); 879 ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 880 if (!ret) { 881 dev_err(nfc->dev, "Could not map DMA S/G list\n"); 882 return -ENXIO; 883 } 884 885 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, 886 direction == DMA_FROM_DEVICE ? 887 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, 888 DMA_PREP_INTERRUPT); 889 if (!tx) { 890 dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); 891 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 892 return -ENXIO; 893 } 894 895 /* Do the task and wait for it to finish */ 896 cookie = dmaengine_submit(tx); 897 ret = dma_submit_error(cookie); 898 if (ret) 899 return -EIO; 900 901 dma_async_issue_pending(nfc->dma_chan); 902 ret = marvell_nfc_wait_cmdd(nfc->selected_chip); 903 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); 904 marvell_nfc_disable_dma(nfc); 905 if (ret) { 906 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", 907 dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); 908 dmaengine_terminate_all(nfc->dma_chan); 909 return -ETIMEDOUT; 910 } 911 912 return 0; 913 } 914 915 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, 916 unsigned int len) 917 { 918 unsigned int last_len = len % FIFO_DEPTH; 919 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 920 int i; 921 922 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 923 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); 924 925 if (last_len) { 926 u8 tmp_buf[FIFO_DEPTH]; 927 928 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 929 memcpy(in + last_full_offset, tmp_buf, last_len); 930 } 931 932 return 0; 933 } 934 935 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, 936 unsigned int len) 937 { 938 unsigned int last_len = len % FIFO_DEPTH; 939 unsigned int last_full_offset = round_down(len, FIFO_DEPTH); 940 int i; 941 942 for (i = 0; i < last_full_offset; i += FIFO_DEPTH) 943 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); 944 945 if (last_len) { 946 u8 tmp_buf[FIFO_DEPTH]; 947 948 memcpy(tmp_buf, out + last_full_offset, last_len); 949 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); 950 } 951 952 return 0; 953 } 954 955 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, 956 u8 *data, int data_len, 957 u8 *spare, int spare_len, 958 u8 *ecc, int ecc_len, 959 unsigned int *max_bitflips) 960 { 961 struct mtd_info *mtd = nand_to_mtd(chip); 962 int bf; 963 964 /* 965 * Blank pages (all 0xFF) that have not been written may be recognized 966 * as bad if bitflips occur, so whenever an uncorrectable error occurs, 967 * check if the entire page (with ECC bytes) is actually blank or not. 968 */ 969 if (!data) 970 data_len = 0; 971 if (!spare) 972 spare_len = 0; 973 if (!ecc) 974 ecc_len = 0; 975 976 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, 977 spare, spare_len, chip->ecc.strength); 978 if (bf < 0) { 979 mtd->ecc_stats.failed++; 980 return; 981 } 982 983 /* Update the stats and max_bitflips */ 984 mtd->ecc_stats.corrected += bf; 985 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 986 } 987 988 /* 989 * Check if a chunk is correct or not according to the hardware ECC engine. 990 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however 991 * mtd->ecc_stats.failure is not, the function will instead return a non-zero 992 * value indicating that a check on the emptyness of the subpage must be 993 * performed before actually declaring the subpage as "corrupted". 994 */ 995 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, 996 unsigned int *max_bitflips) 997 { 998 struct mtd_info *mtd = nand_to_mtd(chip); 999 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1000 int bf = 0; 1001 u32 ndsr; 1002 1003 ndsr = readl_relaxed(nfc->regs + NDSR); 1004 1005 /* Check uncorrectable error flag */ 1006 if (ndsr & NDSR_UNCERR) { 1007 writel_relaxed(ndsr, nfc->regs + NDSR); 1008 1009 /* 1010 * Do not increment ->ecc_stats.failed now, instead, return a 1011 * non-zero value to indicate that this chunk was apparently 1012 * bad, and it should be check to see if it empty or not. If 1013 * the chunk (with ECC bytes) is not declared empty, the calling 1014 * function must increment the failure count. 1015 */ 1016 return -EBADMSG; 1017 } 1018 1019 /* Check correctable error flag */ 1020 if (ndsr & NDSR_CORERR) { 1021 writel_relaxed(ndsr, nfc->regs + NDSR); 1022 1023 if (chip->ecc.algo == NAND_ECC_ALGO_BCH) 1024 bf = NDSR_ERRCNT(ndsr); 1025 else 1026 bf = 1; 1027 } 1028 1029 /* Update the stats and max_bitflips */ 1030 mtd->ecc_stats.corrected += bf; 1031 *max_bitflips = max_t(unsigned int, *max_bitflips, bf); 1032 1033 return 0; 1034 } 1035 1036 /* Hamming read helpers */ 1037 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, 1038 u8 *data_buf, u8 *oob_buf, 1039 bool raw, int page) 1040 { 1041 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1042 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1043 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1044 struct marvell_nfc_op nfc_op = { 1045 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1046 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1047 NDCB0_DBC | 1048 NDCB0_CMD1(NAND_CMD_READ0) | 1049 NDCB0_CMD2(NAND_CMD_READSTART), 1050 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1051 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1052 }; 1053 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1054 int ret; 1055 1056 /* NFCv2 needs more information about the operation being executed */ 1057 if (nfc->caps->is_nfcv2) 1058 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1059 1060 ret = marvell_nfc_prepare_cmd(chip); 1061 if (ret) 1062 return ret; 1063 1064 marvell_nfc_send_cmd(chip, &nfc_op); 1065 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1066 "RDDREQ while draining FIFO (data/oob)"); 1067 if (ret) 1068 return ret; 1069 1070 /* 1071 * Read the page then the OOB area. Unlike what is shown in current 1072 * documentation, spare bytes are protected by the ECC engine, and must 1073 * be at the beginning of the OOB area or running this driver on legacy 1074 * systems will prevent the discovery of the BBM/BBT. 1075 */ 1076 if (nfc->use_dma) { 1077 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, 1078 lt->data_bytes + oob_bytes); 1079 memcpy(data_buf, nfc->dma_buf, lt->data_bytes); 1080 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); 1081 } else { 1082 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); 1083 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); 1084 } 1085 1086 ret = marvell_nfc_wait_cmdd(chip); 1087 return ret; 1088 } 1089 1090 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, 1091 int oob_required, int page) 1092 { 1093 marvell_nfc_select_target(chip, chip->cur_cs); 1094 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1095 true, page); 1096 } 1097 1098 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, 1099 int oob_required, int page) 1100 { 1101 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1102 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1103 int max_bitflips = 0, ret; 1104 u8 *raw_buf; 1105 1106 marvell_nfc_select_target(chip, chip->cur_cs); 1107 marvell_nfc_enable_hw_ecc(chip); 1108 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, 1109 page); 1110 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1111 marvell_nfc_disable_hw_ecc(chip); 1112 1113 if (!ret) 1114 return max_bitflips; 1115 1116 /* 1117 * When ECC failures are detected, check if the full page has been 1118 * written or not. Ignore the failure if it is actually empty. 1119 */ 1120 raw_buf = kmalloc(full_sz, GFP_KERNEL); 1121 if (!raw_buf) 1122 return -ENOMEM; 1123 1124 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + 1125 lt->data_bytes, true, page); 1126 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, 1127 &max_bitflips); 1128 kfree(raw_buf); 1129 1130 return max_bitflips; 1131 } 1132 1133 /* 1134 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1135 * it appears before the ECC bytes when reading), the ->read_oob_raw() function 1136 * also stands for ->read_oob(). 1137 */ 1138 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) 1139 { 1140 u8 *buf = nand_get_data_buf(chip); 1141 1142 marvell_nfc_select_target(chip, chip->cur_cs); 1143 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, 1144 true, page); 1145 } 1146 1147 /* Hamming write helpers */ 1148 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, 1149 const u8 *data_buf, 1150 const u8 *oob_buf, bool raw, 1151 int page) 1152 { 1153 const struct nand_sdr_timings *sdr = 1154 nand_get_sdr_timings(nand_get_interface_config(chip)); 1155 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1156 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1157 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1158 struct marvell_nfc_op nfc_op = { 1159 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | 1160 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1161 NDCB0_CMD1(NAND_CMD_SEQIN) | 1162 NDCB0_CMD2(NAND_CMD_PAGEPROG) | 1163 NDCB0_DBC, 1164 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1165 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1166 }; 1167 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); 1168 int ret; 1169 1170 /* NFCv2 needs more information about the operation being executed */ 1171 if (nfc->caps->is_nfcv2) 1172 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1173 1174 ret = marvell_nfc_prepare_cmd(chip); 1175 if (ret) 1176 return ret; 1177 1178 marvell_nfc_send_cmd(chip, &nfc_op); 1179 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1180 "WRDREQ while loading FIFO (data)"); 1181 if (ret) 1182 return ret; 1183 1184 /* Write the page then the OOB area */ 1185 if (nfc->use_dma) { 1186 memcpy(nfc->dma_buf, data_buf, lt->data_bytes); 1187 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); 1188 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + 1189 lt->ecc_bytes + lt->spare_bytes); 1190 } else { 1191 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); 1192 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); 1193 } 1194 1195 ret = marvell_nfc_wait_cmdd(chip); 1196 if (ret) 1197 return ret; 1198 1199 ret = marvell_nfc_wait_op(chip, 1200 PSEC_TO_MSEC(sdr->tPROG_max)); 1201 return ret; 1202 } 1203 1204 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, 1205 const u8 *buf, 1206 int oob_required, int page) 1207 { 1208 marvell_nfc_select_target(chip, chip->cur_cs); 1209 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1210 true, page); 1211 } 1212 1213 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, 1214 const u8 *buf, 1215 int oob_required, int page) 1216 { 1217 int ret; 1218 1219 marvell_nfc_select_target(chip, chip->cur_cs); 1220 marvell_nfc_enable_hw_ecc(chip); 1221 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1222 false, page); 1223 marvell_nfc_disable_hw_ecc(chip); 1224 1225 return ret; 1226 } 1227 1228 /* 1229 * Spare area in Hamming layouts is not protected by the ECC engine (even if 1230 * it appears before the ECC bytes when reading), the ->write_oob_raw() function 1231 * also stands for ->write_oob(). 1232 */ 1233 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, 1234 int page) 1235 { 1236 struct mtd_info *mtd = nand_to_mtd(chip); 1237 u8 *buf = nand_get_data_buf(chip); 1238 1239 memset(buf, 0xFF, mtd->writesize); 1240 1241 marvell_nfc_select_target(chip, chip->cur_cs); 1242 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, 1243 true, page); 1244 } 1245 1246 /* BCH read helpers */ 1247 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, 1248 int oob_required, int page) 1249 { 1250 struct mtd_info *mtd = nand_to_mtd(chip); 1251 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1252 u8 *oob = chip->oob_poi; 1253 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1254 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1255 lt->last_spare_bytes; 1256 int data_len = lt->data_bytes; 1257 int spare_len = lt->spare_bytes; 1258 int ecc_len = lt->ecc_bytes; 1259 int chunk; 1260 1261 marvell_nfc_select_target(chip, chip->cur_cs); 1262 1263 if (oob_required) 1264 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1265 1266 nand_read_page_op(chip, page, 0, NULL, 0); 1267 1268 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1269 /* Update last chunk length */ 1270 if (chunk >= lt->full_chunk_cnt) { 1271 data_len = lt->last_data_bytes; 1272 spare_len = lt->last_spare_bytes; 1273 ecc_len = lt->last_ecc_bytes; 1274 } 1275 1276 /* Read data bytes*/ 1277 nand_change_read_column_op(chip, chunk * chunk_size, 1278 buf + (lt->data_bytes * chunk), 1279 data_len, false); 1280 1281 /* Read spare bytes */ 1282 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), 1283 spare_len, false, false); 1284 1285 /* Read ECC bytes */ 1286 nand_read_data_op(chip, oob + ecc_offset + 1287 (ALIGN(lt->ecc_bytes, 32) * chunk), 1288 ecc_len, false, false); 1289 } 1290 1291 return 0; 1292 } 1293 1294 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, 1295 u8 *data, unsigned int data_len, 1296 u8 *spare, unsigned int spare_len, 1297 int page) 1298 { 1299 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1300 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1301 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1302 int i, ret; 1303 struct marvell_nfc_op nfc_op = { 1304 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | 1305 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1306 NDCB0_LEN_OVRD, 1307 .ndcb[1] = NDCB1_ADDRS_PAGE(page), 1308 .ndcb[2] = NDCB2_ADDR5_PAGE(page), 1309 .ndcb[3] = data_len + spare_len, 1310 }; 1311 1312 ret = marvell_nfc_prepare_cmd(chip); 1313 if (ret) 1314 return; 1315 1316 if (chunk == 0) 1317 nfc_op.ndcb[0] |= NDCB0_DBC | 1318 NDCB0_CMD1(NAND_CMD_READ0) | 1319 NDCB0_CMD2(NAND_CMD_READSTART); 1320 1321 /* 1322 * Trigger the monolithic read on the first chunk, then naked read on 1323 * intermediate chunks and finally a last naked read on the last chunk. 1324 */ 1325 if (chunk == 0) 1326 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); 1327 else if (chunk < lt->nchunks - 1) 1328 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1329 else 1330 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1331 1332 marvell_nfc_send_cmd(chip, &nfc_op); 1333 1334 /* 1335 * According to the datasheet, when reading from NDDB 1336 * with BCH enabled, after each 32 bytes reads, we 1337 * have to make sure that the NDSR.RDDREQ bit is set. 1338 * 1339 * Drain the FIFO, 8 32-bit reads at a time, and skip 1340 * the polling on the last read. 1341 * 1342 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. 1343 */ 1344 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1345 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1346 "RDDREQ while draining FIFO (data)"); 1347 marvell_nfc_xfer_data_in_pio(nfc, data, 1348 FIFO_DEPTH * BCH_SEQ_READS); 1349 data += FIFO_DEPTH * BCH_SEQ_READS; 1350 } 1351 1352 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { 1353 marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1354 "RDDREQ while draining FIFO (OOB)"); 1355 marvell_nfc_xfer_data_in_pio(nfc, spare, 1356 FIFO_DEPTH * BCH_SEQ_READS); 1357 spare += FIFO_DEPTH * BCH_SEQ_READS; 1358 } 1359 } 1360 1361 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, 1362 u8 *buf, int oob_required, 1363 int page) 1364 { 1365 struct mtd_info *mtd = nand_to_mtd(chip); 1366 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1367 int data_len = lt->data_bytes, spare_len = lt->spare_bytes; 1368 u8 *data = buf, *spare = chip->oob_poi; 1369 int max_bitflips = 0; 1370 u32 failure_mask = 0; 1371 int chunk, ret; 1372 1373 marvell_nfc_select_target(chip, chip->cur_cs); 1374 1375 /* 1376 * With BCH, OOB is not fully used (and thus not read entirely), not 1377 * expected bytes could show up at the end of the OOB buffer if not 1378 * explicitly erased. 1379 */ 1380 if (oob_required) 1381 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1382 1383 marvell_nfc_enable_hw_ecc(chip); 1384 1385 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1386 /* Update length for the last chunk */ 1387 if (chunk >= lt->full_chunk_cnt) { 1388 data_len = lt->last_data_bytes; 1389 spare_len = lt->last_spare_bytes; 1390 } 1391 1392 /* Read the chunk and detect number of bitflips */ 1393 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, 1394 spare, spare_len, page); 1395 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); 1396 if (ret) 1397 failure_mask |= BIT(chunk); 1398 1399 data += data_len; 1400 spare += spare_len; 1401 } 1402 1403 marvell_nfc_disable_hw_ecc(chip); 1404 1405 if (!failure_mask) 1406 return max_bitflips; 1407 1408 /* 1409 * Please note that dumping the ECC bytes during a normal read with OOB 1410 * area would add a significant overhead as ECC bytes are "consumed" by 1411 * the controller in normal mode and must be re-read in raw mode. To 1412 * avoid dropping the performances, we prefer not to include them. The 1413 * user should re-read the page in raw mode if ECC bytes are required. 1414 */ 1415 1416 /* 1417 * In case there is any subpage read error, we usually re-read only ECC 1418 * bytes in raw mode and check if the whole page is empty. In this case, 1419 * it is normal that the ECC check failed and we just ignore the error. 1420 * 1421 * However, it has been empirically observed that for some layouts (e.g 1422 * 2k page, 8b strength per 512B chunk), the controller tries to correct 1423 * bits and may create itself bitflips in the erased area. To overcome 1424 * this strange behavior, the whole page is re-read in raw mode, not 1425 * only the ECC bytes. 1426 */ 1427 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1428 int data_off_in_page, spare_off_in_page, ecc_off_in_page; 1429 int data_off, spare_off, ecc_off; 1430 int data_len, spare_len, ecc_len; 1431 1432 /* No failure reported for this chunk, move to the next one */ 1433 if (!(failure_mask & BIT(chunk))) 1434 continue; 1435 1436 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + 1437 lt->ecc_bytes); 1438 spare_off_in_page = data_off_in_page + 1439 (chunk < lt->full_chunk_cnt ? lt->data_bytes : 1440 lt->last_data_bytes); 1441 ecc_off_in_page = spare_off_in_page + 1442 (chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1443 lt->last_spare_bytes); 1444 1445 data_off = chunk * lt->data_bytes; 1446 spare_off = chunk * lt->spare_bytes; 1447 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + 1448 lt->last_spare_bytes + 1449 (chunk * (lt->ecc_bytes + 2)); 1450 1451 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : 1452 lt->last_data_bytes; 1453 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : 1454 lt->last_spare_bytes; 1455 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : 1456 lt->last_ecc_bytes; 1457 1458 /* 1459 * Only re-read the ECC bytes, unless we are using the 2k/8b 1460 * layout which is buggy in the sense that the ECC engine will 1461 * try to correct data bytes anyway, creating bitflips. In this 1462 * case, re-read the entire page. 1463 */ 1464 if (lt->writesize == 2048 && lt->strength == 8) { 1465 nand_change_read_column_op(chip, data_off_in_page, 1466 buf + data_off, data_len, 1467 false); 1468 nand_change_read_column_op(chip, spare_off_in_page, 1469 chip->oob_poi + spare_off, spare_len, 1470 false); 1471 } 1472 1473 nand_change_read_column_op(chip, ecc_off_in_page, 1474 chip->oob_poi + ecc_off, ecc_len, 1475 false); 1476 1477 /* Check the entire chunk (data + spare + ecc) for emptyness */ 1478 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, 1479 chip->oob_poi + spare_off, spare_len, 1480 chip->oob_poi + ecc_off, ecc_len, 1481 &max_bitflips); 1482 } 1483 1484 return max_bitflips; 1485 } 1486 1487 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) 1488 { 1489 u8 *buf = nand_get_data_buf(chip); 1490 1491 return chip->ecc.read_page_raw(chip, buf, true, page); 1492 } 1493 1494 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) 1495 { 1496 u8 *buf = nand_get_data_buf(chip); 1497 1498 return chip->ecc.read_page(chip, buf, true, page); 1499 } 1500 1501 /* BCH write helpers */ 1502 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, 1503 const u8 *buf, 1504 int oob_required, int page) 1505 { 1506 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1507 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; 1508 int data_len = lt->data_bytes; 1509 int spare_len = lt->spare_bytes; 1510 int ecc_len = lt->ecc_bytes; 1511 int spare_offset = 0; 1512 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + 1513 lt->last_spare_bytes; 1514 int chunk; 1515 1516 marvell_nfc_select_target(chip, chip->cur_cs); 1517 1518 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1519 1520 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1521 if (chunk >= lt->full_chunk_cnt) { 1522 data_len = lt->last_data_bytes; 1523 spare_len = lt->last_spare_bytes; 1524 ecc_len = lt->last_ecc_bytes; 1525 } 1526 1527 /* Point to the column of the next chunk */ 1528 nand_change_write_column_op(chip, chunk * full_chunk_size, 1529 NULL, 0, false); 1530 1531 /* Write the data */ 1532 nand_write_data_op(chip, buf + (chunk * lt->data_bytes), 1533 data_len, false); 1534 1535 if (!oob_required) 1536 continue; 1537 1538 /* Write the spare bytes */ 1539 if (spare_len) 1540 nand_write_data_op(chip, chip->oob_poi + spare_offset, 1541 spare_len, false); 1542 1543 /* Write the ECC bytes */ 1544 if (ecc_len) 1545 nand_write_data_op(chip, chip->oob_poi + ecc_offset, 1546 ecc_len, false); 1547 1548 spare_offset += spare_len; 1549 ecc_offset += ALIGN(ecc_len, 32); 1550 } 1551 1552 return nand_prog_page_end_op(chip); 1553 } 1554 1555 static int 1556 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, 1557 const u8 *data, unsigned int data_len, 1558 const u8 *spare, unsigned int spare_len, 1559 int page) 1560 { 1561 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 1562 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1563 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1564 u32 xtype; 1565 int ret; 1566 struct marvell_nfc_op nfc_op = { 1567 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, 1568 .ndcb[3] = data_len + spare_len, 1569 }; 1570 1571 /* 1572 * First operation dispatches the CMD_SEQIN command, issue the address 1573 * cycles and asks for the first chunk of data. 1574 * All operations in the middle (if any) will issue a naked write and 1575 * also ask for data. 1576 * Last operation (if any) asks for the last chunk of data through a 1577 * last naked write. 1578 */ 1579 if (chunk == 0) { 1580 if (lt->nchunks == 1) 1581 xtype = XTYPE_MONOLITHIC_RW; 1582 else 1583 xtype = XTYPE_WRITE_DISPATCH; 1584 1585 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | 1586 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | 1587 NDCB0_CMD1(NAND_CMD_SEQIN); 1588 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); 1589 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); 1590 } else if (chunk < lt->nchunks - 1) { 1591 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); 1592 } else { 1593 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1594 } 1595 1596 /* Always dispatch the PAGEPROG command on the last chunk */ 1597 if (chunk == lt->nchunks - 1) 1598 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; 1599 1600 ret = marvell_nfc_prepare_cmd(chip); 1601 if (ret) 1602 return ret; 1603 1604 marvell_nfc_send_cmd(chip, &nfc_op); 1605 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, 1606 "WRDREQ while loading FIFO (data)"); 1607 if (ret) 1608 return ret; 1609 1610 /* Transfer the contents */ 1611 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); 1612 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); 1613 1614 return 0; 1615 } 1616 1617 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, 1618 const u8 *buf, 1619 int oob_required, int page) 1620 { 1621 const struct nand_sdr_timings *sdr = 1622 nand_get_sdr_timings(nand_get_interface_config(chip)); 1623 struct mtd_info *mtd = nand_to_mtd(chip); 1624 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 1625 const u8 *data = buf; 1626 const u8 *spare = chip->oob_poi; 1627 int data_len = lt->data_bytes; 1628 int spare_len = lt->spare_bytes; 1629 int chunk, ret; 1630 1631 marvell_nfc_select_target(chip, chip->cur_cs); 1632 1633 /* Spare data will be written anyway, so clear it to avoid garbage */ 1634 if (!oob_required) 1635 memset(chip->oob_poi, 0xFF, mtd->oobsize); 1636 1637 marvell_nfc_enable_hw_ecc(chip); 1638 1639 for (chunk = 0; chunk < lt->nchunks; chunk++) { 1640 if (chunk >= lt->full_chunk_cnt) { 1641 data_len = lt->last_data_bytes; 1642 spare_len = lt->last_spare_bytes; 1643 } 1644 1645 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, 1646 spare, spare_len, page); 1647 data += data_len; 1648 spare += spare_len; 1649 1650 /* 1651 * Waiting only for CMDD or PAGED is not enough, ECC are 1652 * partially written. No flag is set once the operation is 1653 * really finished but the ND_RUN bit is cleared, so wait for it 1654 * before stepping into the next command. 1655 */ 1656 marvell_nfc_wait_ndrun(chip); 1657 } 1658 1659 ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); 1660 1661 marvell_nfc_disable_hw_ecc(chip); 1662 1663 if (ret) 1664 return ret; 1665 1666 return 0; 1667 } 1668 1669 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, 1670 int page) 1671 { 1672 struct mtd_info *mtd = nand_to_mtd(chip); 1673 u8 *buf = nand_get_data_buf(chip); 1674 1675 memset(buf, 0xFF, mtd->writesize); 1676 1677 return chip->ecc.write_page_raw(chip, buf, true, page); 1678 } 1679 1680 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) 1681 { 1682 struct mtd_info *mtd = nand_to_mtd(chip); 1683 u8 *buf = nand_get_data_buf(chip); 1684 1685 memset(buf, 0xFF, mtd->writesize); 1686 1687 return chip->ecc.write_page(chip, buf, true, page); 1688 } 1689 1690 /* NAND framework ->exec_op() hooks and related helpers */ 1691 static void marvell_nfc_parse_instructions(struct nand_chip *chip, 1692 const struct nand_subop *subop, 1693 struct marvell_nfc_op *nfc_op) 1694 { 1695 const struct nand_op_instr *instr = NULL; 1696 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1697 bool first_cmd = true; 1698 unsigned int op_id; 1699 int i; 1700 1701 /* Reset the input structure as most of its fields will be OR'ed */ 1702 memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); 1703 1704 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 1705 unsigned int offset, naddrs; 1706 const u8 *addrs; 1707 int len; 1708 1709 instr = &subop->instrs[op_id]; 1710 1711 switch (instr->type) { 1712 case NAND_OP_CMD_INSTR: 1713 if (first_cmd) 1714 nfc_op->ndcb[0] |= 1715 NDCB0_CMD1(instr->ctx.cmd.opcode); 1716 else 1717 nfc_op->ndcb[0] |= 1718 NDCB0_CMD2(instr->ctx.cmd.opcode) | 1719 NDCB0_DBC; 1720 1721 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1722 first_cmd = false; 1723 break; 1724 1725 case NAND_OP_ADDR_INSTR: 1726 offset = nand_subop_get_addr_start_off(subop, op_id); 1727 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 1728 addrs = &instr->ctx.addr.addrs[offset]; 1729 1730 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); 1731 1732 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) 1733 nfc_op->ndcb[1] |= addrs[i] << (8 * i); 1734 1735 if (naddrs >= 5) 1736 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); 1737 if (naddrs >= 6) 1738 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); 1739 if (naddrs == 7) 1740 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); 1741 1742 nfc_op->cle_ale_delay_ns = instr->delay_ns; 1743 break; 1744 1745 case NAND_OP_DATA_IN_INSTR: 1746 nfc_op->data_instr = instr; 1747 nfc_op->data_instr_idx = op_id; 1748 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); 1749 if (nfc->caps->is_nfcv2) { 1750 nfc_op->ndcb[0] |= 1751 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1752 NDCB0_LEN_OVRD; 1753 len = nand_subop_get_data_len(subop, op_id); 1754 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1755 } 1756 nfc_op->data_delay_ns = instr->delay_ns; 1757 break; 1758 1759 case NAND_OP_DATA_OUT_INSTR: 1760 nfc_op->data_instr = instr; 1761 nfc_op->data_instr_idx = op_id; 1762 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); 1763 if (nfc->caps->is_nfcv2) { 1764 nfc_op->ndcb[0] |= 1765 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | 1766 NDCB0_LEN_OVRD; 1767 len = nand_subop_get_data_len(subop, op_id); 1768 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); 1769 } 1770 nfc_op->data_delay_ns = instr->delay_ns; 1771 break; 1772 1773 case NAND_OP_WAITRDY_INSTR: 1774 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 1775 nfc_op->rdy_delay_ns = instr->delay_ns; 1776 break; 1777 } 1778 } 1779 } 1780 1781 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, 1782 const struct nand_subop *subop, 1783 struct marvell_nfc_op *nfc_op) 1784 { 1785 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1786 const struct nand_op_instr *instr = nfc_op->data_instr; 1787 unsigned int op_id = nfc_op->data_instr_idx; 1788 unsigned int len = nand_subop_get_data_len(subop, op_id); 1789 unsigned int offset = nand_subop_get_data_start_off(subop, op_id); 1790 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); 1791 int ret; 1792 1793 if (instr->ctx.data.force_8bit) 1794 marvell_nfc_force_byte_access(chip, true); 1795 1796 if (reading) { 1797 u8 *in = instr->ctx.data.buf.in + offset; 1798 1799 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); 1800 } else { 1801 const u8 *out = instr->ctx.data.buf.out + offset; 1802 1803 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); 1804 } 1805 1806 if (instr->ctx.data.force_8bit) 1807 marvell_nfc_force_byte_access(chip, false); 1808 1809 return ret; 1810 } 1811 1812 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, 1813 const struct nand_subop *subop) 1814 { 1815 struct marvell_nfc_op nfc_op; 1816 bool reading; 1817 int ret; 1818 1819 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1820 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); 1821 1822 ret = marvell_nfc_prepare_cmd(chip); 1823 if (ret) 1824 return ret; 1825 1826 marvell_nfc_send_cmd(chip, &nfc_op); 1827 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1828 "RDDREQ/WRDREQ while draining raw data"); 1829 if (ret) 1830 return ret; 1831 1832 cond_delay(nfc_op.cle_ale_delay_ns); 1833 1834 if (reading) { 1835 if (nfc_op.rdy_timeout_ms) { 1836 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1837 if (ret) 1838 return ret; 1839 } 1840 1841 cond_delay(nfc_op.rdy_delay_ns); 1842 } 1843 1844 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1845 ret = marvell_nfc_wait_cmdd(chip); 1846 if (ret) 1847 return ret; 1848 1849 cond_delay(nfc_op.data_delay_ns); 1850 1851 if (!reading) { 1852 if (nfc_op.rdy_timeout_ms) { 1853 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1854 if (ret) 1855 return ret; 1856 } 1857 1858 cond_delay(nfc_op.rdy_delay_ns); 1859 } 1860 1861 /* 1862 * NDCR ND_RUN bit should be cleared automatically at the end of each 1863 * operation but experience shows that the behavior is buggy when it 1864 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1865 */ 1866 if (!reading) { 1867 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1868 1869 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1870 nfc->regs + NDCR); 1871 } 1872 1873 return 0; 1874 } 1875 1876 static int marvell_nfc_naked_access_exec(struct nand_chip *chip, 1877 const struct nand_subop *subop) 1878 { 1879 struct marvell_nfc_op nfc_op; 1880 int ret; 1881 1882 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1883 1884 /* 1885 * Naked access are different in that they need to be flagged as naked 1886 * by the controller. Reset the controller registers fields that inform 1887 * on the type and refill them according to the ongoing operation. 1888 */ 1889 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | 1890 NDCB0_CMD_XTYPE(XTYPE_MASK)); 1891 switch (subop->instrs[0].type) { 1892 case NAND_OP_CMD_INSTR: 1893 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); 1894 break; 1895 case NAND_OP_ADDR_INSTR: 1896 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); 1897 break; 1898 case NAND_OP_DATA_IN_INSTR: 1899 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | 1900 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1901 break; 1902 case NAND_OP_DATA_OUT_INSTR: 1903 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | 1904 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); 1905 break; 1906 default: 1907 /* This should never happen */ 1908 break; 1909 } 1910 1911 ret = marvell_nfc_prepare_cmd(chip); 1912 if (ret) 1913 return ret; 1914 1915 marvell_nfc_send_cmd(chip, &nfc_op); 1916 1917 if (!nfc_op.data_instr) { 1918 ret = marvell_nfc_wait_cmdd(chip); 1919 cond_delay(nfc_op.cle_ale_delay_ns); 1920 return ret; 1921 } 1922 1923 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, 1924 "RDDREQ/WRDREQ while draining raw data"); 1925 if (ret) 1926 return ret; 1927 1928 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1929 ret = marvell_nfc_wait_cmdd(chip); 1930 if (ret) 1931 return ret; 1932 1933 /* 1934 * NDCR ND_RUN bit should be cleared automatically at the end of each 1935 * operation but experience shows that the behavior is buggy when it 1936 * comes to writes (with LEN_OVRD). Clear it by hand in this case. 1937 */ 1938 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { 1939 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 1940 1941 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, 1942 nfc->regs + NDCR); 1943 } 1944 1945 return 0; 1946 } 1947 1948 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, 1949 const struct nand_subop *subop) 1950 { 1951 struct marvell_nfc_op nfc_op; 1952 int ret; 1953 1954 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1955 1956 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1957 cond_delay(nfc_op.rdy_delay_ns); 1958 1959 return ret; 1960 } 1961 1962 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, 1963 const struct nand_subop *subop) 1964 { 1965 struct marvell_nfc_op nfc_op; 1966 int ret; 1967 1968 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 1969 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 1970 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); 1971 1972 ret = marvell_nfc_prepare_cmd(chip); 1973 if (ret) 1974 return ret; 1975 1976 marvell_nfc_send_cmd(chip, &nfc_op); 1977 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 1978 "RDDREQ while reading ID"); 1979 if (ret) 1980 return ret; 1981 1982 cond_delay(nfc_op.cle_ale_delay_ns); 1983 1984 if (nfc_op.rdy_timeout_ms) { 1985 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 1986 if (ret) 1987 return ret; 1988 } 1989 1990 cond_delay(nfc_op.rdy_delay_ns); 1991 1992 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 1993 ret = marvell_nfc_wait_cmdd(chip); 1994 if (ret) 1995 return ret; 1996 1997 cond_delay(nfc_op.data_delay_ns); 1998 1999 return 0; 2000 } 2001 2002 static int marvell_nfc_read_status_exec(struct nand_chip *chip, 2003 const struct nand_subop *subop) 2004 { 2005 struct marvell_nfc_op nfc_op; 2006 int ret; 2007 2008 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2009 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); 2010 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); 2011 2012 ret = marvell_nfc_prepare_cmd(chip); 2013 if (ret) 2014 return ret; 2015 2016 marvell_nfc_send_cmd(chip, &nfc_op); 2017 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, 2018 "RDDREQ while reading status"); 2019 if (ret) 2020 return ret; 2021 2022 cond_delay(nfc_op.cle_ale_delay_ns); 2023 2024 if (nfc_op.rdy_timeout_ms) { 2025 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2026 if (ret) 2027 return ret; 2028 } 2029 2030 cond_delay(nfc_op.rdy_delay_ns); 2031 2032 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); 2033 ret = marvell_nfc_wait_cmdd(chip); 2034 if (ret) 2035 return ret; 2036 2037 cond_delay(nfc_op.data_delay_ns); 2038 2039 return 0; 2040 } 2041 2042 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, 2043 const struct nand_subop *subop) 2044 { 2045 struct marvell_nfc_op nfc_op; 2046 int ret; 2047 2048 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2049 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); 2050 2051 ret = marvell_nfc_prepare_cmd(chip); 2052 if (ret) 2053 return ret; 2054 2055 marvell_nfc_send_cmd(chip, &nfc_op); 2056 ret = marvell_nfc_wait_cmdd(chip); 2057 if (ret) 2058 return ret; 2059 2060 cond_delay(nfc_op.cle_ale_delay_ns); 2061 2062 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2063 if (ret) 2064 return ret; 2065 2066 cond_delay(nfc_op.rdy_delay_ns); 2067 2068 return 0; 2069 } 2070 2071 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, 2072 const struct nand_subop *subop) 2073 { 2074 struct marvell_nfc_op nfc_op; 2075 int ret; 2076 2077 marvell_nfc_parse_instructions(chip, subop, &nfc_op); 2078 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); 2079 2080 ret = marvell_nfc_prepare_cmd(chip); 2081 if (ret) 2082 return ret; 2083 2084 marvell_nfc_send_cmd(chip, &nfc_op); 2085 ret = marvell_nfc_wait_cmdd(chip); 2086 if (ret) 2087 return ret; 2088 2089 cond_delay(nfc_op.cle_ale_delay_ns); 2090 2091 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); 2092 if (ret) 2093 return ret; 2094 2095 cond_delay(nfc_op.rdy_delay_ns); 2096 2097 return 0; 2098 } 2099 2100 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( 2101 /* Monolithic reads/writes */ 2102 NAND_OP_PARSER_PATTERN( 2103 marvell_nfc_monolithic_access_exec, 2104 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2105 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), 2106 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2107 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 2108 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2109 NAND_OP_PARSER_PATTERN( 2110 marvell_nfc_monolithic_access_exec, 2111 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2112 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), 2113 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), 2114 NAND_OP_PARSER_PAT_CMD_ELEM(true), 2115 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), 2116 /* Naked commands */ 2117 NAND_OP_PARSER_PATTERN( 2118 marvell_nfc_naked_access_exec, 2119 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2120 NAND_OP_PARSER_PATTERN( 2121 marvell_nfc_naked_access_exec, 2122 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), 2123 NAND_OP_PARSER_PATTERN( 2124 marvell_nfc_naked_access_exec, 2125 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), 2126 NAND_OP_PARSER_PATTERN( 2127 marvell_nfc_naked_access_exec, 2128 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), 2129 NAND_OP_PARSER_PATTERN( 2130 marvell_nfc_naked_waitrdy_exec, 2131 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2132 ); 2133 2134 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( 2135 /* Naked commands not supported, use a function for each pattern */ 2136 NAND_OP_PARSER_PATTERN( 2137 marvell_nfc_read_id_type_exec, 2138 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2139 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2140 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), 2141 NAND_OP_PARSER_PATTERN( 2142 marvell_nfc_erase_cmd_type_exec, 2143 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2144 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), 2145 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2146 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2147 NAND_OP_PARSER_PATTERN( 2148 marvell_nfc_read_status_exec, 2149 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2150 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), 2151 NAND_OP_PARSER_PATTERN( 2152 marvell_nfc_reset_cmd_type_exec, 2153 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2154 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2155 NAND_OP_PARSER_PATTERN( 2156 marvell_nfc_naked_waitrdy_exec, 2157 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2158 ); 2159 2160 static int marvell_nfc_exec_op(struct nand_chip *chip, 2161 const struct nand_operation *op, 2162 bool check_only) 2163 { 2164 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2165 2166 if (!check_only) 2167 marvell_nfc_select_target(chip, op->cs); 2168 2169 if (nfc->caps->is_nfcv2) 2170 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, 2171 op, check_only); 2172 else 2173 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, 2174 op, check_only); 2175 } 2176 2177 /* 2178 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be 2179 * usable. 2180 */ 2181 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2182 struct mtd_oob_region *oobregion) 2183 { 2184 struct nand_chip *chip = mtd_to_nand(mtd); 2185 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2186 2187 if (section) 2188 return -ERANGE; 2189 2190 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + 2191 lt->last_ecc_bytes; 2192 oobregion->offset = mtd->oobsize - oobregion->length; 2193 2194 return 0; 2195 } 2196 2197 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, 2198 struct mtd_oob_region *oobregion) 2199 { 2200 struct nand_chip *chip = mtd_to_nand(mtd); 2201 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; 2202 2203 if (section) 2204 return -ERANGE; 2205 2206 /* 2207 * Bootrom looks in bytes 0 & 5 for bad blocks for the 2208 * 4KB page / 4bit BCH combination. 2209 */ 2210 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) 2211 oobregion->offset = 6; 2212 else 2213 oobregion->offset = 2; 2214 2215 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + 2216 lt->last_spare_bytes - oobregion->offset; 2217 2218 return 0; 2219 } 2220 2221 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { 2222 .ecc = marvell_nand_ooblayout_ecc, 2223 .free = marvell_nand_ooblayout_free, 2224 }; 2225 2226 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, 2227 struct nand_ecc_ctrl *ecc) 2228 { 2229 struct nand_chip *chip = mtd_to_nand(mtd); 2230 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2231 const struct marvell_hw_ecc_layout *l; 2232 int i; 2233 2234 if (!nfc->caps->is_nfcv2 && 2235 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { 2236 dev_err(nfc->dev, 2237 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", 2238 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); 2239 return -ENOTSUPP; 2240 } 2241 2242 to_marvell_nand(chip)->layout = NULL; 2243 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { 2244 l = &marvell_nfc_layouts[i]; 2245 if (mtd->writesize == l->writesize && 2246 ecc->size == l->chunk && ecc->strength == l->strength) { 2247 to_marvell_nand(chip)->layout = l; 2248 break; 2249 } 2250 } 2251 2252 if (!to_marvell_nand(chip)->layout || 2253 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { 2254 dev_err(nfc->dev, 2255 "ECC strength %d at page size %d is not supported\n", 2256 ecc->strength, mtd->writesize); 2257 return -ENOTSUPP; 2258 } 2259 2260 /* Special care for the layout 2k/8-bit/512B */ 2261 if (l->writesize == 2048 && l->strength == 8) { 2262 if (mtd->oobsize < 128) { 2263 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); 2264 return -ENOTSUPP; 2265 } else { 2266 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2267 } 2268 } 2269 2270 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); 2271 ecc->steps = l->nchunks; 2272 ecc->size = l->data_bytes; 2273 2274 if (ecc->strength == 1) { 2275 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 2276 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; 2277 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; 2278 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; 2279 ecc->read_oob = ecc->read_oob_raw; 2280 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; 2281 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; 2282 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; 2283 ecc->write_oob = ecc->write_oob_raw; 2284 } else { 2285 chip->ecc.algo = NAND_ECC_ALGO_BCH; 2286 ecc->strength = 16; 2287 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; 2288 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; 2289 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; 2290 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; 2291 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; 2292 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; 2293 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; 2294 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; 2295 } 2296 2297 return 0; 2298 } 2299 2300 static int marvell_nand_ecc_init(struct mtd_info *mtd, 2301 struct nand_ecc_ctrl *ecc) 2302 { 2303 struct nand_chip *chip = mtd_to_nand(mtd); 2304 const struct nand_ecc_props *requirements = 2305 nanddev_get_ecc_requirements(&chip->base); 2306 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2307 int ret; 2308 2309 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && 2310 (!ecc->size || !ecc->strength)) { 2311 if (requirements->step_size && requirements->strength) { 2312 ecc->size = requirements->step_size; 2313 ecc->strength = requirements->strength; 2314 } else { 2315 dev_info(nfc->dev, 2316 "No minimum ECC strength, using 1b/512B\n"); 2317 ecc->size = 512; 2318 ecc->strength = 1; 2319 } 2320 } 2321 2322 switch (ecc->engine_type) { 2323 case NAND_ECC_ENGINE_TYPE_ON_HOST: 2324 ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); 2325 if (ret) 2326 return ret; 2327 break; 2328 case NAND_ECC_ENGINE_TYPE_NONE: 2329 case NAND_ECC_ENGINE_TYPE_SOFT: 2330 case NAND_ECC_ENGINE_TYPE_ON_DIE: 2331 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && 2332 mtd->writesize != SZ_2K) { 2333 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", 2334 mtd->writesize); 2335 return -EINVAL; 2336 } 2337 break; 2338 default: 2339 return -EINVAL; 2340 } 2341 2342 return 0; 2343 } 2344 2345 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; 2346 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; 2347 2348 static struct nand_bbt_descr bbt_main_descr = { 2349 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2350 NAND_BBT_2BIT | NAND_BBT_VERSION, 2351 .offs = 8, 2352 .len = 6, 2353 .veroffs = 14, 2354 .maxblocks = 8, /* Last 8 blocks in each chip */ 2355 .pattern = bbt_pattern 2356 }; 2357 2358 static struct nand_bbt_descr bbt_mirror_descr = { 2359 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 2360 NAND_BBT_2BIT | NAND_BBT_VERSION, 2361 .offs = 8, 2362 .len = 6, 2363 .veroffs = 14, 2364 .maxblocks = 8, /* Last 8 blocks in each chip */ 2365 .pattern = bbt_mirror_pattern 2366 }; 2367 2368 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, 2369 const struct nand_interface_config *conf) 2370 { 2371 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2372 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2373 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; 2374 const struct nand_sdr_timings *sdr; 2375 struct marvell_nfc_timings nfc_tmg; 2376 int read_delay; 2377 2378 sdr = nand_get_sdr_timings(conf); 2379 if (IS_ERR(sdr)) 2380 return PTR_ERR(sdr); 2381 2382 if (nfc->caps->max_mode_number && nfc->caps->max_mode_number < conf->timings.mode) 2383 return -EOPNOTSUPP; 2384 2385 /* 2386 * SDR timings are given in pico-seconds while NFC timings must be 2387 * expressed in NAND controller clock cycles, which is half of the 2388 * frequency of the accessible ECC clock retrieved by clk_get_rate(). 2389 * This is not written anywhere in the datasheet but was observed 2390 * with an oscilloscope. 2391 * 2392 * NFC datasheet gives equations from which thoses calculations 2393 * are derived, they tend to be slightly more restrictives than the 2394 * given core timings and may improve the overall speed. 2395 */ 2396 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; 2397 nfc_tmg.tRH = nfc_tmg.tRP; 2398 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; 2399 nfc_tmg.tWH = nfc_tmg.tWP; 2400 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); 2401 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; 2402 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); 2403 /* 2404 * Read delay is the time of propagation from SoC pins to NFC internal 2405 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In 2406 * EDO mode, an additional delay of tRH must be taken into account so 2407 * the data is sampled on the falling edge instead of the rising edge. 2408 */ 2409 read_delay = sdr->tRC_min >= 30000 ? 2410 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; 2411 2412 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); 2413 /* 2414 * tWHR and tRHW are supposed to be read to write delays (and vice 2415 * versa) but in some cases, ie. when doing a change column, they must 2416 * be greater than that to be sure tCCS delay is respected. 2417 */ 2418 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), 2419 period_ns) - 2; 2420 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), 2421 period_ns); 2422 2423 /* 2424 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. 2425 * NFCv1: No WAIT_MODE, tR must be maximal. 2426 */ 2427 if (nfc->caps->is_nfcv2) { 2428 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); 2429 } else { 2430 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, 2431 period_ns); 2432 if (nfc_tmg.tR + 3 > nfc_tmg.tCH) 2433 nfc_tmg.tR = nfc_tmg.tCH - 3; 2434 else 2435 nfc_tmg.tR = 0; 2436 } 2437 2438 if (chipnr < 0) 2439 return 0; 2440 2441 marvell_nand->ndtr0 = 2442 NDTR0_TRP(nfc_tmg.tRP) | 2443 NDTR0_TRH(nfc_tmg.tRH) | 2444 NDTR0_ETRP(nfc_tmg.tRP) | 2445 NDTR0_TWP(nfc_tmg.tWP) | 2446 NDTR0_TWH(nfc_tmg.tWH) | 2447 NDTR0_TCS(nfc_tmg.tCS) | 2448 NDTR0_TCH(nfc_tmg.tCH); 2449 2450 marvell_nand->ndtr1 = 2451 NDTR1_TAR(nfc_tmg.tAR) | 2452 NDTR1_TWHR(nfc_tmg.tWHR) | 2453 NDTR1_TR(nfc_tmg.tR); 2454 2455 if (nfc->caps->is_nfcv2) { 2456 marvell_nand->ndtr0 |= 2457 NDTR0_RD_CNT_DEL(read_delay) | 2458 NDTR0_SELCNTR | 2459 NDTR0_TADL(nfc_tmg.tADL); 2460 2461 marvell_nand->ndtr1 |= 2462 NDTR1_TRHW(nfc_tmg.tRHW) | 2463 NDTR1_WAIT_MODE; 2464 } 2465 2466 /* 2467 * Reset nfc->selected_chip so the next command will cause the timing 2468 * registers to be updated in marvell_nfc_select_target(). 2469 */ 2470 nfc->selected_chip = NULL; 2471 2472 return 0; 2473 } 2474 2475 static int marvell_nand_attach_chip(struct nand_chip *chip) 2476 { 2477 struct mtd_info *mtd = nand_to_mtd(chip); 2478 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); 2479 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); 2480 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); 2481 int ret; 2482 2483 if (pdata && pdata->flash_bbt) 2484 chip->bbt_options |= NAND_BBT_USE_FLASH; 2485 2486 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2487 /* 2488 * We'll use a bad block table stored in-flash and don't 2489 * allow writing the bad block marker to the flash. 2490 */ 2491 chip->bbt_options |= NAND_BBT_NO_OOB_BBM; 2492 chip->bbt_td = &bbt_main_descr; 2493 chip->bbt_md = &bbt_mirror_descr; 2494 } 2495 2496 /* Save the chip-specific fields of NDCR */ 2497 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); 2498 if (chip->options & NAND_BUSWIDTH_16) 2499 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; 2500 2501 /* 2502 * On small page NANDs, only one cycle is needed to pass the 2503 * column address. 2504 */ 2505 if (mtd->writesize <= 512) { 2506 marvell_nand->addr_cyc = 1; 2507 } else { 2508 marvell_nand->addr_cyc = 2; 2509 marvell_nand->ndcr |= NDCR_RA_START; 2510 } 2511 2512 /* 2513 * Now add the number of cycles needed to pass the row 2514 * address. 2515 * 2516 * Addressing a chip using CS 2 or 3 should also need the third row 2517 * cycle but due to inconsistance in the documentation and lack of 2518 * hardware to test this situation, this case is not supported. 2519 */ 2520 if (chip->options & NAND_ROW_ADDR_3) 2521 marvell_nand->addr_cyc += 3; 2522 else 2523 marvell_nand->addr_cyc += 2; 2524 2525 if (pdata) { 2526 chip->ecc.size = pdata->ecc_step_size; 2527 chip->ecc.strength = pdata->ecc_strength; 2528 } 2529 2530 ret = marvell_nand_ecc_init(mtd, &chip->ecc); 2531 if (ret) { 2532 dev_err(nfc->dev, "ECC init failed: %d\n", ret); 2533 return ret; 2534 } 2535 2536 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { 2537 /* 2538 * Subpage write not available with hardware ECC, prohibit also 2539 * subpage read as in userspace subpage access would still be 2540 * allowed and subpage write, if used, would lead to numerous 2541 * uncorrectable ECC errors. 2542 */ 2543 chip->options |= NAND_NO_SUBPAGE_WRITE; 2544 } 2545 2546 if (pdata || nfc->caps->legacy_of_bindings) { 2547 /* 2548 * We keep the MTD name unchanged to avoid breaking platforms 2549 * where the MTD cmdline parser is used and the bootloader 2550 * has not been updated to use the new naming scheme. 2551 */ 2552 mtd->name = "pxa3xx_nand-0"; 2553 } else if (!mtd->name) { 2554 /* 2555 * If the new bindings are used and the bootloader has not been 2556 * updated to pass a new mtdparts parameter on the cmdline, you 2557 * should define the following property in your NAND node, ie: 2558 * 2559 * label = "main-storage"; 2560 * 2561 * This way, mtd->name will be set by the core when 2562 * nand_set_flash_node() is called. 2563 */ 2564 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, 2565 "%s:nand.%d", dev_name(nfc->dev), 2566 marvell_nand->sels[0].cs); 2567 if (!mtd->name) { 2568 dev_err(nfc->dev, "Failed to allocate mtd->name\n"); 2569 return -ENOMEM; 2570 } 2571 } 2572 2573 return 0; 2574 } 2575 2576 static const struct nand_controller_ops marvell_nand_controller_ops = { 2577 .attach_chip = marvell_nand_attach_chip, 2578 .exec_op = marvell_nfc_exec_op, 2579 .setup_interface = marvell_nfc_setup_interface, 2580 }; 2581 2582 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, 2583 struct device_node *np) 2584 { 2585 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); 2586 struct marvell_nand_chip *marvell_nand; 2587 struct mtd_info *mtd; 2588 struct nand_chip *chip; 2589 int nsels, ret, i; 2590 u32 cs, rb; 2591 2592 /* 2593 * The legacy "num-cs" property indicates the number of CS on the only 2594 * chip connected to the controller (legacy bindings does not support 2595 * more than one chip). The CS and RB pins are always the #0. 2596 * 2597 * When not using legacy bindings, a couple of "reg" and "nand-rb" 2598 * properties must be filled. For each chip, expressed as a subnode, 2599 * "reg" points to the CS lines and "nand-rb" to the RB line. 2600 */ 2601 if (pdata || nfc->caps->legacy_of_bindings) { 2602 nsels = 1; 2603 } else { 2604 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2605 if (nsels <= 0) { 2606 dev_err(dev, "missing/invalid reg property\n"); 2607 return -EINVAL; 2608 } 2609 } 2610 2611 /* Alloc the nand chip structure */ 2612 marvell_nand = devm_kzalloc(dev, 2613 struct_size(marvell_nand, sels, nsels), 2614 GFP_KERNEL); 2615 if (!marvell_nand) { 2616 dev_err(dev, "could not allocate chip structure\n"); 2617 return -ENOMEM; 2618 } 2619 2620 marvell_nand->nsels = nsels; 2621 marvell_nand->selected_die = -1; 2622 2623 for (i = 0; i < nsels; i++) { 2624 if (pdata || nfc->caps->legacy_of_bindings) { 2625 /* 2626 * Legacy bindings use the CS lines in natural 2627 * order (0, 1, ...) 2628 */ 2629 cs = i; 2630 } else { 2631 /* Retrieve CS id */ 2632 ret = of_property_read_u32_index(np, "reg", i, &cs); 2633 if (ret) { 2634 dev_err(dev, "could not retrieve reg property: %d\n", 2635 ret); 2636 return ret; 2637 } 2638 } 2639 2640 if (cs >= nfc->caps->max_cs_nb) { 2641 dev_err(dev, "invalid reg value: %u (max CS = %d)\n", 2642 cs, nfc->caps->max_cs_nb); 2643 return -EINVAL; 2644 } 2645 2646 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 2647 dev_err(dev, "CS %d already assigned\n", cs); 2648 return -EINVAL; 2649 } 2650 2651 /* 2652 * The cs variable represents the chip select id, which must be 2653 * converted in bit fields for NDCB0 and NDCB2 to select the 2654 * right chip. Unfortunately, due to a lack of information on 2655 * the subject and incoherent documentation, the user should not 2656 * use CS1 and CS3 at all as asserting them is not supported in 2657 * a reliable way (due to multiplexing inside ADDR5 field). 2658 */ 2659 marvell_nand->sels[i].cs = cs; 2660 switch (cs) { 2661 case 0: 2662 case 2: 2663 marvell_nand->sels[i].ndcb0_csel = 0; 2664 break; 2665 case 1: 2666 case 3: 2667 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; 2668 break; 2669 default: 2670 return -EINVAL; 2671 } 2672 2673 /* Retrieve RB id */ 2674 if (pdata || nfc->caps->legacy_of_bindings) { 2675 /* Legacy bindings always use RB #0 */ 2676 rb = 0; 2677 } else { 2678 ret = of_property_read_u32_index(np, "nand-rb", i, 2679 &rb); 2680 if (ret) { 2681 dev_err(dev, 2682 "could not retrieve RB property: %d\n", 2683 ret); 2684 return ret; 2685 } 2686 } 2687 2688 if (rb >= nfc->caps->max_rb_nb) { 2689 dev_err(dev, "invalid reg value: %u (max RB = %d)\n", 2690 rb, nfc->caps->max_rb_nb); 2691 return -EINVAL; 2692 } 2693 2694 marvell_nand->sels[i].rb = rb; 2695 } 2696 2697 chip = &marvell_nand->chip; 2698 chip->controller = &nfc->controller; 2699 nand_set_flash_node(chip, np); 2700 2701 if (of_property_read_bool(np, "marvell,nand-keep-config")) 2702 chip->options |= NAND_KEEP_TIMINGS; 2703 2704 mtd = nand_to_mtd(chip); 2705 mtd->dev.parent = dev; 2706 2707 /* 2708 * Save a reference value for timing registers before 2709 * ->setup_interface() is called. 2710 */ 2711 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); 2712 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); 2713 2714 chip->options |= NAND_BUSWIDTH_AUTO; 2715 2716 ret = nand_scan(chip, marvell_nand->nsels); 2717 if (ret) { 2718 dev_err(dev, "could not scan the nand chip\n"); 2719 return ret; 2720 } 2721 2722 if (pdata) 2723 /* Legacy bindings support only one chip */ 2724 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 2725 else 2726 ret = mtd_device_register(mtd, NULL, 0); 2727 if (ret) { 2728 dev_err(dev, "failed to register mtd device: %d\n", ret); 2729 nand_cleanup(chip); 2730 return ret; 2731 } 2732 2733 list_add_tail(&marvell_nand->node, &nfc->chips); 2734 2735 return 0; 2736 } 2737 2738 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) 2739 { 2740 struct marvell_nand_chip *entry, *temp; 2741 struct nand_chip *chip; 2742 int ret; 2743 2744 list_for_each_entry_safe(entry, temp, &nfc->chips, node) { 2745 chip = &entry->chip; 2746 ret = mtd_device_unregister(nand_to_mtd(chip)); 2747 WARN_ON(ret); 2748 nand_cleanup(chip); 2749 list_del(&entry->node); 2750 } 2751 } 2752 2753 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) 2754 { 2755 struct device_node *np = dev->of_node; 2756 struct device_node *nand_np; 2757 int max_cs = nfc->caps->max_cs_nb; 2758 int nchips; 2759 int ret; 2760 2761 if (!np) 2762 nchips = 1; 2763 else 2764 nchips = of_get_child_count(np); 2765 2766 if (nchips > max_cs) { 2767 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, 2768 max_cs); 2769 return -EINVAL; 2770 } 2771 2772 /* 2773 * Legacy bindings do not use child nodes to exhibit NAND chip 2774 * properties and layout. Instead, NAND properties are mixed with the 2775 * controller ones, and partitions are defined as direct subnodes of the 2776 * NAND controller node. 2777 */ 2778 if (nfc->caps->legacy_of_bindings) { 2779 ret = marvell_nand_chip_init(dev, nfc, np); 2780 return ret; 2781 } 2782 2783 for_each_child_of_node(np, nand_np) { 2784 ret = marvell_nand_chip_init(dev, nfc, nand_np); 2785 if (ret) { 2786 of_node_put(nand_np); 2787 goto cleanup_chips; 2788 } 2789 } 2790 2791 return 0; 2792 2793 cleanup_chips: 2794 marvell_nand_chips_cleanup(nfc); 2795 2796 return ret; 2797 } 2798 2799 static int marvell_nfc_init_dma(struct marvell_nfc *nfc) 2800 { 2801 struct platform_device *pdev = container_of(nfc->dev, 2802 struct platform_device, 2803 dev); 2804 struct dma_slave_config config = {}; 2805 struct resource *r; 2806 int ret; 2807 2808 if (!IS_ENABLED(CONFIG_PXA_DMA)) { 2809 dev_warn(nfc->dev, 2810 "DMA not enabled in configuration\n"); 2811 return -ENOTSUPP; 2812 } 2813 2814 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); 2815 if (ret) 2816 return ret; 2817 2818 nfc->dma_chan = dma_request_chan(nfc->dev, "data"); 2819 if (IS_ERR(nfc->dma_chan)) { 2820 ret = PTR_ERR(nfc->dma_chan); 2821 nfc->dma_chan = NULL; 2822 return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); 2823 } 2824 2825 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2826 if (!r) { 2827 ret = -ENXIO; 2828 goto release_channel; 2829 } 2830 2831 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2832 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 2833 config.src_addr = r->start + NDDB; 2834 config.dst_addr = r->start + NDDB; 2835 config.src_maxburst = 32; 2836 config.dst_maxburst = 32; 2837 ret = dmaengine_slave_config(nfc->dma_chan, &config); 2838 if (ret < 0) { 2839 dev_err(nfc->dev, "Failed to configure DMA channel\n"); 2840 goto release_channel; 2841 } 2842 2843 /* 2844 * DMA must act on length multiple of 32 and this length may be 2845 * bigger than the destination buffer. Use this buffer instead 2846 * for DMA transfers and then copy the desired amount of data to 2847 * the provided buffer. 2848 */ 2849 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); 2850 if (!nfc->dma_buf) { 2851 ret = -ENOMEM; 2852 goto release_channel; 2853 } 2854 2855 nfc->use_dma = true; 2856 2857 return 0; 2858 2859 release_channel: 2860 dma_release_channel(nfc->dma_chan); 2861 nfc->dma_chan = NULL; 2862 2863 return ret; 2864 } 2865 2866 static void marvell_nfc_reset(struct marvell_nfc *nfc) 2867 { 2868 /* 2869 * ECC operations and interruptions are only enabled when specifically 2870 * needed. ECC shall not be activated in the early stages (fails probe). 2871 * Arbiter flag, even if marked as "reserved", must be set (empirical). 2872 * SPARE_EN bit must always be set or ECC bytes will not be at the same 2873 * offset in the read page and this will fail the protection. 2874 */ 2875 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | 2876 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); 2877 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); 2878 writel_relaxed(0, nfc->regs + NDECCCTRL); 2879 } 2880 2881 static int marvell_nfc_init(struct marvell_nfc *nfc) 2882 { 2883 struct device_node *np = nfc->dev->of_node; 2884 2885 /* 2886 * Some SoCs like A7k/A8k need to enable manually the NAND 2887 * controller, gated clocks and reset bits to avoid being bootloader 2888 * dependent. This is done through the use of the System Functions 2889 * registers. 2890 */ 2891 if (nfc->caps->need_system_controller) { 2892 struct regmap *sysctrl_base = 2893 syscon_regmap_lookup_by_phandle(np, 2894 "marvell,system-controller"); 2895 2896 if (IS_ERR(sysctrl_base)) 2897 return PTR_ERR(sysctrl_base); 2898 2899 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, 2900 GENCONF_SOC_DEVICE_MUX_NFC_EN | 2901 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | 2902 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | 2903 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN | 2904 GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN); 2905 2906 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, 2907 GENCONF_CLK_GATING_CTRL_ND_GATE, 2908 GENCONF_CLK_GATING_CTRL_ND_GATE); 2909 } 2910 2911 /* Configure the DMA if appropriate */ 2912 if (!nfc->caps->is_nfcv2) 2913 marvell_nfc_init_dma(nfc); 2914 2915 marvell_nfc_reset(nfc); 2916 2917 return 0; 2918 } 2919 2920 static int marvell_nfc_probe(struct platform_device *pdev) 2921 { 2922 struct device *dev = &pdev->dev; 2923 struct marvell_nfc *nfc; 2924 int ret; 2925 int irq; 2926 2927 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), 2928 GFP_KERNEL); 2929 if (!nfc) 2930 return -ENOMEM; 2931 2932 nfc->dev = dev; 2933 nand_controller_init(&nfc->controller); 2934 nfc->controller.ops = &marvell_nand_controller_ops; 2935 INIT_LIST_HEAD(&nfc->chips); 2936 2937 nfc->regs = devm_platform_ioremap_resource(pdev, 0); 2938 if (IS_ERR(nfc->regs)) 2939 return PTR_ERR(nfc->regs); 2940 2941 irq = platform_get_irq(pdev, 0); 2942 if (irq < 0) 2943 return irq; 2944 2945 nfc->core_clk = devm_clk_get(&pdev->dev, "core"); 2946 2947 /* Managed the legacy case (when the first clock was not named) */ 2948 if (nfc->core_clk == ERR_PTR(-ENOENT)) 2949 nfc->core_clk = devm_clk_get(&pdev->dev, NULL); 2950 2951 if (IS_ERR(nfc->core_clk)) 2952 return PTR_ERR(nfc->core_clk); 2953 2954 ret = clk_prepare_enable(nfc->core_clk); 2955 if (ret) 2956 return ret; 2957 2958 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); 2959 if (IS_ERR(nfc->reg_clk)) { 2960 if (PTR_ERR(nfc->reg_clk) != -ENOENT) { 2961 ret = PTR_ERR(nfc->reg_clk); 2962 goto unprepare_core_clk; 2963 } 2964 2965 nfc->reg_clk = NULL; 2966 } 2967 2968 ret = clk_prepare_enable(nfc->reg_clk); 2969 if (ret) 2970 goto unprepare_core_clk; 2971 2972 marvell_nfc_disable_int(nfc, NDCR_ALL_INT); 2973 marvell_nfc_clear_int(nfc, NDCR_ALL_INT); 2974 ret = devm_request_irq(dev, irq, marvell_nfc_isr, 2975 0, "marvell-nfc", nfc); 2976 if (ret) 2977 goto unprepare_reg_clk; 2978 2979 /* Get NAND controller capabilities */ 2980 if (pdev->id_entry) 2981 nfc->caps = (void *)pdev->id_entry->driver_data; 2982 else 2983 nfc->caps = of_device_get_match_data(&pdev->dev); 2984 2985 if (!nfc->caps) { 2986 dev_err(dev, "Could not retrieve NFC caps\n"); 2987 ret = -EINVAL; 2988 goto unprepare_reg_clk; 2989 } 2990 2991 /* Init the controller and then probe the chips */ 2992 ret = marvell_nfc_init(nfc); 2993 if (ret) 2994 goto unprepare_reg_clk; 2995 2996 platform_set_drvdata(pdev, nfc); 2997 2998 ret = marvell_nand_chips_init(dev, nfc); 2999 if (ret) 3000 goto release_dma; 3001 3002 return 0; 3003 3004 release_dma: 3005 if (nfc->use_dma) 3006 dma_release_channel(nfc->dma_chan); 3007 unprepare_reg_clk: 3008 clk_disable_unprepare(nfc->reg_clk); 3009 unprepare_core_clk: 3010 clk_disable_unprepare(nfc->core_clk); 3011 3012 return ret; 3013 } 3014 3015 static void marvell_nfc_remove(struct platform_device *pdev) 3016 { 3017 struct marvell_nfc *nfc = platform_get_drvdata(pdev); 3018 3019 marvell_nand_chips_cleanup(nfc); 3020 3021 if (nfc->use_dma) { 3022 dmaengine_terminate_all(nfc->dma_chan); 3023 dma_release_channel(nfc->dma_chan); 3024 } 3025 3026 clk_disable_unprepare(nfc->reg_clk); 3027 clk_disable_unprepare(nfc->core_clk); 3028 } 3029 3030 static int __maybe_unused marvell_nfc_suspend(struct device *dev) 3031 { 3032 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3033 struct marvell_nand_chip *chip; 3034 3035 list_for_each_entry(chip, &nfc->chips, node) 3036 marvell_nfc_wait_ndrun(&chip->chip); 3037 3038 clk_disable_unprepare(nfc->reg_clk); 3039 clk_disable_unprepare(nfc->core_clk); 3040 3041 return 0; 3042 } 3043 3044 static int __maybe_unused marvell_nfc_resume(struct device *dev) 3045 { 3046 struct marvell_nfc *nfc = dev_get_drvdata(dev); 3047 int ret; 3048 3049 ret = clk_prepare_enable(nfc->core_clk); 3050 if (ret < 0) 3051 return ret; 3052 3053 ret = clk_prepare_enable(nfc->reg_clk); 3054 if (ret < 0) { 3055 clk_disable_unprepare(nfc->core_clk); 3056 return ret; 3057 } 3058 3059 /* 3060 * Reset nfc->selected_chip so the next command will cause the timing 3061 * registers to be restored in marvell_nfc_select_target(). 3062 */ 3063 nfc->selected_chip = NULL; 3064 3065 /* Reset registers that have lost their contents */ 3066 marvell_nfc_reset(nfc); 3067 3068 return 0; 3069 } 3070 3071 static const struct dev_pm_ops marvell_nfc_pm_ops = { 3072 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) 3073 }; 3074 3075 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { 3076 .max_cs_nb = 4, 3077 .max_rb_nb = 2, 3078 .need_system_controller = true, 3079 .is_nfcv2 = true, 3080 }; 3081 3082 static const struct marvell_nfc_caps marvell_ac5_caps = { 3083 .max_cs_nb = 2, 3084 .max_rb_nb = 1, 3085 .is_nfcv2 = true, 3086 .max_mode_number = 3, 3087 }; 3088 3089 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { 3090 .max_cs_nb = 4, 3091 .max_rb_nb = 2, 3092 .is_nfcv2 = true, 3093 }; 3094 3095 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { 3096 .max_cs_nb = 2, 3097 .max_rb_nb = 1, 3098 .use_dma = true, 3099 }; 3100 3101 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { 3102 .max_cs_nb = 4, 3103 .max_rb_nb = 2, 3104 .need_system_controller = true, 3105 .legacy_of_bindings = true, 3106 .is_nfcv2 = true, 3107 }; 3108 3109 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { 3110 .max_cs_nb = 4, 3111 .max_rb_nb = 2, 3112 .legacy_of_bindings = true, 3113 .is_nfcv2 = true, 3114 }; 3115 3116 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { 3117 .max_cs_nb = 2, 3118 .max_rb_nb = 1, 3119 .legacy_of_bindings = true, 3120 .use_dma = true, 3121 }; 3122 3123 static const struct platform_device_id marvell_nfc_platform_ids[] = { 3124 { 3125 .name = "pxa3xx-nand", 3126 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, 3127 }, 3128 { /* sentinel */ }, 3129 }; 3130 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); 3131 3132 static const struct of_device_id marvell_nfc_of_ids[] = { 3133 { 3134 .compatible = "marvell,armada-8k-nand-controller", 3135 .data = &marvell_armada_8k_nfc_caps, 3136 }, 3137 { 3138 .compatible = "marvell,ac5-nand-controller", 3139 .data = &marvell_ac5_caps, 3140 }, 3141 { 3142 .compatible = "marvell,armada370-nand-controller", 3143 .data = &marvell_armada370_nfc_caps, 3144 }, 3145 { 3146 .compatible = "marvell,pxa3xx-nand-controller", 3147 .data = &marvell_pxa3xx_nfc_caps, 3148 }, 3149 /* Support for old/deprecated bindings: */ 3150 { 3151 .compatible = "marvell,armada-8k-nand", 3152 .data = &marvell_armada_8k_nfc_legacy_caps, 3153 }, 3154 { 3155 .compatible = "marvell,armada370-nand", 3156 .data = &marvell_armada370_nfc_legacy_caps, 3157 }, 3158 { 3159 .compatible = "marvell,pxa3xx-nand", 3160 .data = &marvell_pxa3xx_nfc_legacy_caps, 3161 }, 3162 { /* sentinel */ }, 3163 }; 3164 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); 3165 3166 static struct platform_driver marvell_nfc_driver = { 3167 .driver = { 3168 .name = "marvell-nfc", 3169 .of_match_table = marvell_nfc_of_ids, 3170 .pm = &marvell_nfc_pm_ops, 3171 }, 3172 .id_table = marvell_nfc_platform_ids, 3173 .probe = marvell_nfc_probe, 3174 .remove_new = marvell_nfc_remove, 3175 }; 3176 module_platform_driver(marvell_nfc_driver); 3177 3178 MODULE_LICENSE("GPL"); 3179 MODULE_DESCRIPTION("Marvell NAND controller driver"); 3180