1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NXP LPC32XX NAND SLC driver 4 * 5 * Authors: 6 * Kevin Wells <kevin.wells@nxp.com> 7 * Roland Stigge <stigge@antcom.de> 8 * 9 * Copyright © 2011 NXP Semiconductors 10 * Copyright © 2012 Roland Stigge 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/platform_device.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/mtd/rawnand.h> 18 #include <linux/mtd/partitions.h> 19 #include <linux/clk.h> 20 #include <linux/err.h> 21 #include <linux/delay.h> 22 #include <linux/io.h> 23 #include <linux/mm.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dmaengine.h> 26 #include <linux/gpio/consumer.h> 27 #include <linux/of.h> 28 #include <linux/mtd/lpc32xx_slc.h> 29 30 #define LPC32XX_MODNAME "lpc32xx-nand" 31 32 /********************************************************************** 33 * SLC NAND controller register offsets 34 **********************************************************************/ 35 36 #define SLC_DATA(x) (x + 0x000) 37 #define SLC_ADDR(x) (x + 0x004) 38 #define SLC_CMD(x) (x + 0x008) 39 #define SLC_STOP(x) (x + 0x00C) 40 #define SLC_CTRL(x) (x + 0x010) 41 #define SLC_CFG(x) (x + 0x014) 42 #define SLC_STAT(x) (x + 0x018) 43 #define SLC_INT_STAT(x) (x + 0x01C) 44 #define SLC_IEN(x) (x + 0x020) 45 #define SLC_ISR(x) (x + 0x024) 46 #define SLC_ICR(x) (x + 0x028) 47 #define SLC_TAC(x) (x + 0x02C) 48 #define SLC_TC(x) (x + 0x030) 49 #define SLC_ECC(x) (x + 0x034) 50 #define SLC_DMA_DATA(x) (x + 0x038) 51 52 /********************************************************************** 53 * slc_ctrl register definitions 54 **********************************************************************/ 55 #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */ 56 #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ 57 #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */ 58 59 /********************************************************************** 60 * slc_cfg register definitions 61 **********************************************************************/ 62 #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */ 63 #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ 64 #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */ 65 #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */ 66 #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ 67 #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */ 68 69 /********************************************************************** 70 * slc_stat register definitions 71 **********************************************************************/ 72 #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ 73 #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */ 74 #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */ 75 76 /********************************************************************** 77 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions 78 **********************************************************************/ 79 #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */ 80 #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */ 81 82 /********************************************************************** 83 * slc_tac register definitions 84 **********************************************************************/ 85 /* Computation of clock cycles on basis of controller and device clock rates */ 86 #define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s) 87 88 /* Clock setting for RDY write sample wait time in 2*n clocks */ 89 #define SLCTAC_WDR(n) (((n) & 0xF) << 28) 90 /* Write pulse width in clock cycles, 1 to 16 clocks */ 91 #define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24)) 92 /* Write hold time of control and data signals, 1 to 16 clocks */ 93 #define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20)) 94 /* Write setup time of control and data signals, 1 to 16 clocks */ 95 #define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16)) 96 /* Clock setting for RDY read sample wait time in 2*n clocks */ 97 #define SLCTAC_RDR(n) (((n) & 0xF) << 12) 98 /* Read pulse width in clock cycles, 1 to 16 clocks */ 99 #define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8)) 100 /* Read hold time of control and data signals, 1 to 16 clocks */ 101 #define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4)) 102 /* Read setup time of control and data signals, 1 to 16 clocks */ 103 #define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0)) 104 105 /********************************************************************** 106 * slc_ecc register definitions 107 **********************************************************************/ 108 /* ECC line party fetch macro */ 109 #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF) 110 #define SLCECC_TO_COLPAR(n) ((n) & 0x3F) 111 112 /* 113 * DMA requires storage space for the DMA local buffer and the hardware ECC 114 * storage area. The DMA local buffer is only used if DMA mapping fails 115 * during runtime. 116 */ 117 #define LPC32XX_DMA_DATA_SIZE 4096 118 #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4) 119 120 /* Number of bytes used for ECC stored in NAND per 256 bytes */ 121 #define LPC32XX_SLC_DEV_ECC_BYTES 3 122 123 /* 124 * If the NAND base clock frequency can't be fetched, this frequency will be 125 * used instead as the base. This rate is used to setup the timing registers 126 * used for NAND accesses. 127 */ 128 #define LPC32XX_DEF_BUS_RATE 133250000 129 130 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */ 131 #define LPC32XX_DMA_TIMEOUT 100 132 133 /* 134 * NAND ECC Layout for small page NAND devices 135 * Note: For large and huge page devices, the default layouts are used 136 */ 137 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section, 138 struct mtd_oob_region *oobregion) 139 { 140 if (section) 141 return -ERANGE; 142 143 oobregion->length = 6; 144 oobregion->offset = 10; 145 146 return 0; 147 } 148 149 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section, 150 struct mtd_oob_region *oobregion) 151 { 152 if (section > 1) 153 return -ERANGE; 154 155 if (!section) { 156 oobregion->offset = 0; 157 oobregion->length = 4; 158 } else { 159 oobregion->offset = 6; 160 oobregion->length = 4; 161 } 162 163 return 0; 164 } 165 166 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = { 167 .ecc = lpc32xx_ooblayout_ecc, 168 .free = lpc32xx_ooblayout_free, 169 }; 170 171 static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; 172 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; 173 174 /* 175 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 176 * Note: Large page devices used the default layout 177 */ 178 static struct nand_bbt_descr bbt_smallpage_main_descr = { 179 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 180 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, 181 .offs = 0, 182 .len = 4, 183 .veroffs = 6, 184 .maxblocks = 4, 185 .pattern = bbt_pattern 186 }; 187 188 static struct nand_bbt_descr bbt_smallpage_mirror_descr = { 189 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 190 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, 191 .offs = 0, 192 .len = 4, 193 .veroffs = 6, 194 .maxblocks = 4, 195 .pattern = mirror_pattern 196 }; 197 198 /* 199 * NAND platform configuration structure 200 */ 201 struct lpc32xx_nand_cfg_slc { 202 uint32_t wdr_clks; 203 uint32_t wwidth; 204 uint32_t whold; 205 uint32_t wsetup; 206 uint32_t rdr_clks; 207 uint32_t rwidth; 208 uint32_t rhold; 209 uint32_t rsetup; 210 struct mtd_partition *parts; 211 unsigned num_parts; 212 }; 213 214 struct lpc32xx_nand_host { 215 struct nand_chip nand_chip; 216 struct lpc32xx_slc_platform_data *pdata; 217 struct clk *clk; 218 struct gpio_desc *wp_gpio; 219 void __iomem *io_base; 220 struct lpc32xx_nand_cfg_slc *ncfg; 221 222 struct completion comp; 223 struct dma_chan *dma_chan; 224 uint32_t dma_buf_len; 225 struct dma_slave_config dma_slave_config; 226 struct scatterlist sgl; 227 228 /* 229 * DMA and CPU addresses of ECC work area and data buffer 230 */ 231 uint32_t *ecc_buf; 232 uint8_t *data_buf; 233 dma_addr_t io_base_dma; 234 }; 235 236 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) 237 { 238 uint32_t clkrate, tmp; 239 240 /* Reset SLC controller */ 241 writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); 242 udelay(1000); 243 244 /* Basic setup */ 245 writel(0, SLC_CFG(host->io_base)); 246 writel(0, SLC_IEN(host->io_base)); 247 writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), 248 SLC_ICR(host->io_base)); 249 250 /* Get base clock for SLC block */ 251 clkrate = clk_get_rate(host->clk); 252 if (clkrate == 0) 253 clkrate = LPC32XX_DEF_BUS_RATE; 254 255 /* Compute clock setup values */ 256 tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | 257 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) | 258 SLCTAC_WHOLD(clkrate, host->ncfg->whold) | 259 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) | 260 SLCTAC_RDR(host->ncfg->rdr_clks) | 261 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) | 262 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) | 263 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup); 264 writel(tmp, SLC_TAC(host->io_base)); 265 } 266 267 /* 268 * Hardware specific access to control lines 269 */ 270 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd, 271 unsigned int ctrl) 272 { 273 uint32_t tmp; 274 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 275 276 /* Does CE state need to be changed? */ 277 tmp = readl(SLC_CFG(host->io_base)); 278 if (ctrl & NAND_NCE) 279 tmp |= SLCCFG_CE_LOW; 280 else 281 tmp &= ~SLCCFG_CE_LOW; 282 writel(tmp, SLC_CFG(host->io_base)); 283 284 if (cmd != NAND_CMD_NONE) { 285 if (ctrl & NAND_CLE) 286 writel(cmd, SLC_CMD(host->io_base)); 287 else 288 writel(cmd, SLC_ADDR(host->io_base)); 289 } 290 } 291 292 /* 293 * Read the Device Ready pin 294 */ 295 static int lpc32xx_nand_device_ready(struct nand_chip *chip) 296 { 297 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 298 int rdy = 0; 299 300 if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) 301 rdy = 1; 302 303 return rdy; 304 } 305 306 /* 307 * Enable NAND write protect 308 */ 309 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) 310 { 311 if (host->wp_gpio) 312 gpiod_set_value_cansleep(host->wp_gpio, 1); 313 } 314 315 /* 316 * Disable NAND write protect 317 */ 318 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) 319 { 320 if (host->wp_gpio) 321 gpiod_set_value_cansleep(host->wp_gpio, 0); 322 } 323 324 /* 325 * Prepares SLC for transfers with H/W ECC enabled 326 */ 327 static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode) 328 { 329 /* Hardware ECC is enabled automatically in hardware as needed */ 330 } 331 332 /* 333 * Calculates the ECC for the data 334 */ 335 static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip, 336 const unsigned char *buf, 337 unsigned char *code) 338 { 339 /* 340 * ECC is calculated automatically in hardware during syndrome read 341 * and write operations, so it doesn't need to be calculated here. 342 */ 343 return 0; 344 } 345 346 /* 347 * Read a single byte from NAND device 348 */ 349 static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip) 350 { 351 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 352 353 return (uint8_t)readl(SLC_DATA(host->io_base)); 354 } 355 356 /* 357 * Simple device read without ECC 358 */ 359 static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len) 360 { 361 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 362 363 /* Direct device read with no ECC */ 364 while (len-- > 0) 365 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); 366 } 367 368 /* 369 * Simple device write without ECC 370 */ 371 static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf, 372 int len) 373 { 374 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 375 376 /* Direct device write with no ECC */ 377 while (len-- > 0) 378 writel((uint32_t)*buf++, SLC_DATA(host->io_base)); 379 } 380 381 /* 382 * Read the OOB data from the device without ECC using FIFO method 383 */ 384 static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page) 385 { 386 struct mtd_info *mtd = nand_to_mtd(chip); 387 388 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 389 } 390 391 /* 392 * Write the OOB data to the device without ECC using FIFO method 393 */ 394 static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page) 395 { 396 struct mtd_info *mtd = nand_to_mtd(chip); 397 398 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, 399 mtd->oobsize); 400 } 401 402 /* 403 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC 404 */ 405 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) 406 { 407 int i; 408 409 for (i = 0; i < (count * 3); i += 3) { 410 uint32_t ce = ecc[i / 3]; 411 ce = ~(ce << 2) & 0xFFFFFF; 412 spare[i + 2] = (uint8_t)(ce & 0xFF); 413 ce >>= 8; 414 spare[i + 1] = (uint8_t)(ce & 0xFF); 415 ce >>= 8; 416 spare[i] = (uint8_t)(ce & 0xFF); 417 } 418 } 419 420 static void lpc32xx_dma_complete_func(void *completion) 421 { 422 complete(completion); 423 } 424 425 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, 426 void *mem, int len, enum dma_transfer_direction dir) 427 { 428 struct nand_chip *chip = mtd_to_nand(mtd); 429 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 430 struct dma_async_tx_descriptor *desc; 431 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; 432 int res; 433 434 host->dma_slave_config.direction = dir; 435 host->dma_slave_config.src_addr = dma; 436 host->dma_slave_config.dst_addr = dma; 437 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 438 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 439 host->dma_slave_config.src_maxburst = 4; 440 host->dma_slave_config.dst_maxburst = 4; 441 /* DMA controller does flow control: */ 442 host->dma_slave_config.device_fc = false; 443 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { 444 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); 445 return -ENXIO; 446 } 447 448 sg_init_one(&host->sgl, mem, len); 449 450 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, 451 DMA_BIDIRECTIONAL); 452 if (res != 1) { 453 dev_err(mtd->dev.parent, "Failed to map sg list\n"); 454 return -ENXIO; 455 } 456 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, 457 flags); 458 if (!desc) { 459 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); 460 goto out1; 461 } 462 463 init_completion(&host->comp); 464 desc->callback = lpc32xx_dma_complete_func; 465 desc->callback_param = &host->comp; 466 467 dmaengine_submit(desc); 468 dma_async_issue_pending(host->dma_chan); 469 470 wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); 471 472 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, 473 DMA_BIDIRECTIONAL); 474 475 return 0; 476 out1: 477 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, 478 DMA_BIDIRECTIONAL); 479 return -ENXIO; 480 } 481 482 /* 483 * DMA read/write transfers with ECC support 484 */ 485 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, 486 int read) 487 { 488 struct nand_chip *chip = mtd_to_nand(mtd); 489 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 490 int i, status = 0; 491 unsigned long timeout; 492 int res; 493 enum dma_transfer_direction dir = 494 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; 495 uint8_t *dma_buf; 496 bool dma_mapped; 497 498 if ((void *)buf <= high_memory) { 499 dma_buf = buf; 500 dma_mapped = true; 501 } else { 502 dma_buf = host->data_buf; 503 dma_mapped = false; 504 if (!read) 505 memcpy(host->data_buf, buf, mtd->writesize); 506 } 507 508 if (read) { 509 writel(readl(SLC_CFG(host->io_base)) | 510 SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | 511 SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); 512 } else { 513 writel((readl(SLC_CFG(host->io_base)) | 514 SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & 515 ~SLCCFG_DMA_DIR, 516 SLC_CFG(host->io_base)); 517 } 518 519 /* Clear initial ECC */ 520 writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); 521 522 /* Transfer size is data area only */ 523 writel(mtd->writesize, SLC_TC(host->io_base)); 524 525 /* Start transfer in the NAND controller */ 526 writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, 527 SLC_CTRL(host->io_base)); 528 529 for (i = 0; i < chip->ecc.steps; i++) { 530 /* Data */ 531 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), 532 dma_buf + i * chip->ecc.size, 533 mtd->writesize / chip->ecc.steps, dir); 534 if (res) 535 return res; 536 537 /* Always _read_ ECC */ 538 if (i == chip->ecc.steps - 1) 539 break; 540 if (!read) /* ECC availability delayed on write */ 541 udelay(10); 542 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), 543 &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); 544 if (res) 545 return res; 546 } 547 548 /* 549 * According to NXP, the DMA can be finished here, but the NAND 550 * controller may still have buffered data. After porting to using the 551 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) 552 * appears to be always true, according to tests. Keeping the check for 553 * safety reasons for now. 554 */ 555 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { 556 dev_warn(mtd->dev.parent, "FIFO not empty!\n"); 557 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); 558 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && 559 time_before(jiffies, timeout)) 560 cpu_relax(); 561 if (!time_before(jiffies, timeout)) { 562 dev_err(mtd->dev.parent, "FIFO held data too long\n"); 563 status = -EIO; 564 } 565 } 566 567 /* Read last calculated ECC value */ 568 if (!read) 569 udelay(10); 570 host->ecc_buf[chip->ecc.steps - 1] = 571 readl(SLC_ECC(host->io_base)); 572 573 /* Flush DMA */ 574 dmaengine_terminate_all(host->dma_chan); 575 576 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || 577 readl(SLC_TC(host->io_base))) { 578 /* Something is left in the FIFO, something is wrong */ 579 dev_err(mtd->dev.parent, "DMA FIFO failure\n"); 580 status = -EIO; 581 } 582 583 /* Stop DMA & HW ECC */ 584 writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, 585 SLC_CTRL(host->io_base)); 586 writel(readl(SLC_CFG(host->io_base)) & 587 ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | 588 SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); 589 590 if (!dma_mapped && read) 591 memcpy(buf, host->data_buf, mtd->writesize); 592 593 return status; 594 } 595 596 /* 597 * Read the data and OOB data from the device, use ECC correction with the 598 * data, disable ECC for the OOB data 599 */ 600 static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, 601 int oob_required, int page) 602 { 603 struct mtd_info *mtd = nand_to_mtd(chip); 604 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 605 struct mtd_oob_region oobregion = { }; 606 int stat, i, status, error; 607 uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; 608 609 /* Issue read command */ 610 nand_read_page_op(chip, page, 0, NULL, 0); 611 612 /* Read data and oob, calculate ECC */ 613 status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); 614 615 /* Get OOB data */ 616 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); 617 618 /* Convert to stored ECC format */ 619 lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); 620 621 /* Pointer to ECC data retrieved from NAND spare area */ 622 error = mtd_ooblayout_ecc(mtd, 0, &oobregion); 623 if (error) 624 return error; 625 626 oobecc = chip->oob_poi + oobregion.offset; 627 628 for (i = 0; i < chip->ecc.steps; i++) { 629 stat = chip->ecc.correct(chip, buf, oobecc, 630 &tmpecc[i * chip->ecc.bytes]); 631 if (stat < 0) 632 mtd->ecc_stats.failed++; 633 else 634 mtd->ecc_stats.corrected += stat; 635 636 buf += chip->ecc.size; 637 oobecc += chip->ecc.bytes; 638 } 639 640 return status; 641 } 642 643 /* 644 * Read the data and OOB data from the device, no ECC correction with the 645 * data or OOB data 646 */ 647 static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip, 648 uint8_t *buf, int oob_required, 649 int page) 650 { 651 struct mtd_info *mtd = nand_to_mtd(chip); 652 653 /* Issue read command */ 654 nand_read_page_op(chip, page, 0, NULL, 0); 655 656 /* Raw reads can just use the FIFO interface */ 657 chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps); 658 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); 659 660 return 0; 661 } 662 663 /* 664 * Write the data and OOB data to the device, use ECC with the data, 665 * disable ECC for the OOB data 666 */ 667 static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip, 668 const uint8_t *buf, 669 int oob_required, int page) 670 { 671 struct mtd_info *mtd = nand_to_mtd(chip); 672 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 673 struct mtd_oob_region oobregion = { }; 674 uint8_t *pb; 675 int error; 676 677 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 678 679 /* Write data, calculate ECC on outbound data */ 680 error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); 681 if (error) 682 return error; 683 684 /* 685 * The calculated ECC needs some manual work done to it before 686 * committing it to NAND. Process the calculated ECC and place 687 * the resultant values directly into the OOB buffer. */ 688 error = mtd_ooblayout_ecc(mtd, 0, &oobregion); 689 if (error) 690 return error; 691 692 pb = chip->oob_poi + oobregion.offset; 693 lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); 694 695 /* Write ECC data to device */ 696 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); 697 698 return nand_prog_page_end_op(chip); 699 } 700 701 /* 702 * Write the data and OOB data to the device, no ECC correction with the 703 * data or OOB data 704 */ 705 static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip, 706 const uint8_t *buf, 707 int oob_required, int page) 708 { 709 struct mtd_info *mtd = nand_to_mtd(chip); 710 711 /* Raw writes can just use the FIFO interface */ 712 nand_prog_page_begin_op(chip, page, 0, buf, 713 chip->ecc.size * chip->ecc.steps); 714 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); 715 716 return nand_prog_page_end_op(chip); 717 } 718 719 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) 720 { 721 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); 722 dma_cap_mask_t mask; 723 724 if (!host->pdata || !host->pdata->dma_filter) { 725 dev_err(mtd->dev.parent, "no DMA platform data\n"); 726 return -ENOENT; 727 } 728 729 dma_cap_zero(mask); 730 dma_cap_set(DMA_SLAVE, mask); 731 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, 732 "nand-slc"); 733 if (!host->dma_chan) { 734 dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); 735 return -EBUSY; 736 } 737 738 return 0; 739 } 740 741 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) 742 { 743 struct lpc32xx_nand_cfg_slc *ncfg; 744 struct device_node *np = dev->of_node; 745 746 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); 747 if (!ncfg) 748 return NULL; 749 750 of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks); 751 of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth); 752 of_property_read_u32(np, "nxp,whold", &ncfg->whold); 753 of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup); 754 of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks); 755 of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth); 756 of_property_read_u32(np, "nxp,rhold", &ncfg->rhold); 757 of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup); 758 759 if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold || 760 !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth || 761 !ncfg->rhold || !ncfg->rsetup) { 762 dev_err(dev, "chip parameters not specified correctly\n"); 763 return NULL; 764 } 765 766 return ncfg; 767 } 768 769 static int lpc32xx_nand_attach_chip(struct nand_chip *chip) 770 { 771 struct mtd_info *mtd = nand_to_mtd(chip); 772 struct lpc32xx_nand_host *host = nand_get_controller_data(chip); 773 774 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) 775 return 0; 776 777 /* OOB and ECC CPU and DMA work areas */ 778 host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); 779 780 /* 781 * Small page FLASH has a unique OOB layout, but large and huge 782 * page FLASH use the standard layout. Small page FLASH uses a 783 * custom BBT marker layout. 784 */ 785 if (mtd->writesize <= 512) 786 mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops); 787 788 chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; 789 /* These sizes remain the same regardless of page size */ 790 chip->ecc.size = 256; 791 chip->ecc.strength = 1; 792 chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; 793 chip->ecc.prepad = 0; 794 chip->ecc.postpad = 0; 795 chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; 796 chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; 797 chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; 798 chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; 799 chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; 800 chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; 801 chip->ecc.calculate = lpc32xx_nand_ecc_calculate; 802 chip->ecc.correct = rawnand_sw_hamming_correct; 803 chip->ecc.hwctl = lpc32xx_nand_ecc_enable; 804 805 /* 806 * Use a custom BBT marker setup for small page FLASH that 807 * won't interfere with the ECC layout. Large and huge page 808 * FLASH use the standard layout. 809 */ 810 if ((chip->bbt_options & NAND_BBT_USE_FLASH) && 811 mtd->writesize <= 512) { 812 chip->bbt_td = &bbt_smallpage_main_descr; 813 chip->bbt_md = &bbt_smallpage_mirror_descr; 814 } 815 816 return 0; 817 } 818 819 static const struct nand_controller_ops lpc32xx_nand_controller_ops = { 820 .attach_chip = lpc32xx_nand_attach_chip, 821 }; 822 823 /* 824 * Probe for NAND controller 825 */ 826 static int lpc32xx_nand_probe(struct platform_device *pdev) 827 { 828 struct lpc32xx_nand_host *host; 829 struct mtd_info *mtd; 830 struct nand_chip *chip; 831 struct resource *rc; 832 int res; 833 834 /* Allocate memory for the device structure (and zero it) */ 835 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); 836 if (!host) 837 return -ENOMEM; 838 839 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); 840 host->io_base = devm_ioremap_resource(&pdev->dev, rc); 841 if (IS_ERR(host->io_base)) 842 return PTR_ERR(host->io_base); 843 844 host->io_base_dma = rc->start; 845 if (pdev->dev.of_node) 846 host->ncfg = lpc32xx_parse_dt(&pdev->dev); 847 if (!host->ncfg) { 848 dev_err(&pdev->dev, 849 "Missing or bad NAND config from device tree\n"); 850 return -ENOENT; 851 } 852 853 /* Start with WP disabled, if available */ 854 host->wp_gpio = gpiod_get_optional(&pdev->dev, NULL, GPIOD_OUT_LOW); 855 res = PTR_ERR_OR_ZERO(host->wp_gpio); 856 if (res) { 857 if (res != -EPROBE_DEFER) 858 dev_err(&pdev->dev, "WP GPIO is not available: %d\n", 859 res); 860 return res; 861 } 862 863 gpiod_set_consumer_name(host->wp_gpio, "NAND WP"); 864 865 host->pdata = dev_get_platdata(&pdev->dev); 866 867 chip = &host->nand_chip; 868 mtd = nand_to_mtd(chip); 869 nand_set_controller_data(chip, host); 870 nand_set_flash_node(chip, pdev->dev.of_node); 871 mtd->owner = THIS_MODULE; 872 mtd->dev.parent = &pdev->dev; 873 874 /* Get NAND clock */ 875 host->clk = devm_clk_get(&pdev->dev, NULL); 876 if (IS_ERR(host->clk)) { 877 dev_err(&pdev->dev, "Clock failure\n"); 878 res = -ENOENT; 879 goto enable_wp; 880 } 881 res = clk_prepare_enable(host->clk); 882 if (res) 883 goto enable_wp; 884 885 /* Set NAND IO addresses and command/ready functions */ 886 chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base); 887 chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base); 888 chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl; 889 chip->legacy.dev_ready = lpc32xx_nand_device_ready; 890 chip->legacy.chip_delay = 20; /* 20us command delay time */ 891 892 /* Init NAND controller */ 893 lpc32xx_nand_setup(host); 894 895 platform_set_drvdata(pdev, host); 896 897 /* NAND callbacks for LPC32xx SLC hardware */ 898 chip->legacy.read_byte = lpc32xx_nand_read_byte; 899 chip->legacy.read_buf = lpc32xx_nand_read_buf; 900 chip->legacy.write_buf = lpc32xx_nand_write_buf; 901 902 /* 903 * Allocate a large enough buffer for a single huge page plus 904 * extra space for the spare area and ECC storage area 905 */ 906 host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; 907 host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, 908 GFP_KERNEL); 909 if (host->data_buf == NULL) { 910 res = -ENOMEM; 911 goto unprepare_clk; 912 } 913 914 res = lpc32xx_nand_dma_setup(host); 915 if (res) { 916 res = -EIO; 917 goto unprepare_clk; 918 } 919 920 /* Find NAND device */ 921 chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops; 922 res = nand_scan(chip, 1); 923 if (res) 924 goto release_dma; 925 926 mtd->name = "nxp_lpc3220_slc"; 927 res = mtd_device_register(mtd, host->ncfg->parts, 928 host->ncfg->num_parts); 929 if (res) 930 goto cleanup_nand; 931 932 return 0; 933 934 cleanup_nand: 935 nand_cleanup(chip); 936 release_dma: 937 dma_release_channel(host->dma_chan); 938 unprepare_clk: 939 clk_disable_unprepare(host->clk); 940 enable_wp: 941 lpc32xx_wp_enable(host); 942 943 return res; 944 } 945 946 /* 947 * Remove NAND device. 948 */ 949 static int lpc32xx_nand_remove(struct platform_device *pdev) 950 { 951 uint32_t tmp; 952 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); 953 struct nand_chip *chip = &host->nand_chip; 954 int ret; 955 956 ret = mtd_device_unregister(nand_to_mtd(chip)); 957 WARN_ON(ret); 958 nand_cleanup(chip); 959 dma_release_channel(host->dma_chan); 960 961 /* Force CE high */ 962 tmp = readl(SLC_CTRL(host->io_base)); 963 tmp &= ~SLCCFG_CE_LOW; 964 writel(tmp, SLC_CTRL(host->io_base)); 965 966 clk_disable_unprepare(host->clk); 967 lpc32xx_wp_enable(host); 968 969 return 0; 970 } 971 972 static int lpc32xx_nand_resume(struct platform_device *pdev) 973 { 974 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); 975 int ret; 976 977 /* Re-enable NAND clock */ 978 ret = clk_prepare_enable(host->clk); 979 if (ret) 980 return ret; 981 982 /* Fresh init of NAND controller */ 983 lpc32xx_nand_setup(host); 984 985 /* Disable write protect */ 986 lpc32xx_wp_disable(host); 987 988 return 0; 989 } 990 991 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) 992 { 993 uint32_t tmp; 994 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); 995 996 /* Force CE high */ 997 tmp = readl(SLC_CTRL(host->io_base)); 998 tmp &= ~SLCCFG_CE_LOW; 999 writel(tmp, SLC_CTRL(host->io_base)); 1000 1001 /* Enable write protect for safety */ 1002 lpc32xx_wp_enable(host); 1003 1004 /* Disable clock */ 1005 clk_disable_unprepare(host->clk); 1006 1007 return 0; 1008 } 1009 1010 static const struct of_device_id lpc32xx_nand_match[] = { 1011 { .compatible = "nxp,lpc3220-slc" }, 1012 { /* sentinel */ }, 1013 }; 1014 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); 1015 1016 static struct platform_driver lpc32xx_nand_driver = { 1017 .probe = lpc32xx_nand_probe, 1018 .remove = lpc32xx_nand_remove, 1019 .resume = pm_ptr(lpc32xx_nand_resume), 1020 .suspend = pm_ptr(lpc32xx_nand_suspend), 1021 .driver = { 1022 .name = LPC32XX_MODNAME, 1023 .of_match_table = lpc32xx_nand_match, 1024 }, 1025 }; 1026 1027 module_platform_driver(lpc32xx_nand_driver); 1028 1029 MODULE_LICENSE("GPL"); 1030 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); 1031 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); 1032 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); 1033