1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Ingenic JZ47xx NAND driver 4 * 5 * Copyright (c) 2015 Imagination Technologies 6 * Author: Alex Smith <alex.smith@imgtec.com> 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/init.h> 11 #include <linux/io.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/of_address.h> 16 #include <linux/of_device.h> 17 #include <linux/gpio/consumer.h> 18 #include <linux/platform_device.h> 19 #include <linux/slab.h> 20 #include <linux/mtd/mtd.h> 21 #include <linux/mtd/rawnand.h> 22 #include <linux/mtd/partitions.h> 23 24 #include <linux/jz4780-nemc.h> 25 26 #include "ingenic_ecc.h" 27 28 #define DRV_NAME "ingenic-nand" 29 30 struct jz_soc_info { 31 unsigned long data_offset; 32 unsigned long addr_offset; 33 unsigned long cmd_offset; 34 const struct mtd_ooblayout_ops *oob_layout; 35 }; 36 37 struct ingenic_nand_cs { 38 unsigned int bank; 39 void __iomem *base; 40 }; 41 42 struct ingenic_nfc { 43 struct device *dev; 44 struct ingenic_ecc *ecc; 45 const struct jz_soc_info *soc_info; 46 struct nand_controller controller; 47 unsigned int num_banks; 48 struct list_head chips; 49 struct ingenic_nand_cs cs[]; 50 }; 51 52 struct ingenic_nand { 53 struct nand_chip chip; 54 struct list_head chip_list; 55 56 struct gpio_desc *busy_gpio; 57 struct gpio_desc *wp_gpio; 58 unsigned int reading: 1; 59 }; 60 61 static inline struct ingenic_nand *to_ingenic_nand(struct mtd_info *mtd) 62 { 63 return container_of(mtd_to_nand(mtd), struct ingenic_nand, chip); 64 } 65 66 static inline struct ingenic_nfc *to_ingenic_nfc(struct nand_controller *ctrl) 67 { 68 return container_of(ctrl, struct ingenic_nfc, controller); 69 } 70 71 static int qi_lb60_ooblayout_ecc(struct mtd_info *mtd, int section, 72 struct mtd_oob_region *oobregion) 73 { 74 struct nand_chip *chip = mtd_to_nand(mtd); 75 struct nand_ecc_ctrl *ecc = &chip->ecc; 76 77 if (section || !ecc->total) 78 return -ERANGE; 79 80 oobregion->length = ecc->total; 81 oobregion->offset = 12; 82 83 return 0; 84 } 85 86 static int qi_lb60_ooblayout_free(struct mtd_info *mtd, int section, 87 struct mtd_oob_region *oobregion) 88 { 89 struct nand_chip *chip = mtd_to_nand(mtd); 90 struct nand_ecc_ctrl *ecc = &chip->ecc; 91 92 if (section) 93 return -ERANGE; 94 95 oobregion->length = mtd->oobsize - ecc->total - 12; 96 oobregion->offset = 12 + ecc->total; 97 98 return 0; 99 } 100 101 static const struct mtd_ooblayout_ops qi_lb60_ooblayout_ops = { 102 .ecc = qi_lb60_ooblayout_ecc, 103 .free = qi_lb60_ooblayout_free, 104 }; 105 106 static int jz4725b_ooblayout_ecc(struct mtd_info *mtd, int section, 107 struct mtd_oob_region *oobregion) 108 { 109 struct nand_chip *chip = mtd_to_nand(mtd); 110 struct nand_ecc_ctrl *ecc = &chip->ecc; 111 112 if (section || !ecc->total) 113 return -ERANGE; 114 115 oobregion->length = ecc->total; 116 oobregion->offset = 3; 117 118 return 0; 119 } 120 121 static int jz4725b_ooblayout_free(struct mtd_info *mtd, int section, 122 struct mtd_oob_region *oobregion) 123 { 124 struct nand_chip *chip = mtd_to_nand(mtd); 125 struct nand_ecc_ctrl *ecc = &chip->ecc; 126 127 if (section) 128 return -ERANGE; 129 130 oobregion->length = mtd->oobsize - ecc->total - 3; 131 oobregion->offset = 3 + ecc->total; 132 133 return 0; 134 } 135 136 static const struct mtd_ooblayout_ops jz4725b_ooblayout_ops = { 137 .ecc = jz4725b_ooblayout_ecc, 138 .free = jz4725b_ooblayout_free, 139 }; 140 141 static void ingenic_nand_ecc_hwctl(struct nand_chip *chip, int mode) 142 { 143 struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); 144 145 nand->reading = (mode == NAND_ECC_READ); 146 } 147 148 static int ingenic_nand_ecc_calculate(struct nand_chip *chip, const u8 *dat, 149 u8 *ecc_code) 150 { 151 struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); 152 struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller); 153 struct ingenic_ecc_params params; 154 155 /* 156 * Don't need to generate the ECC when reading, the ECC engine does it 157 * for us as part of decoding/correction. 158 */ 159 if (nand->reading) 160 return 0; 161 162 params.size = nand->chip.ecc.size; 163 params.bytes = nand->chip.ecc.bytes; 164 params.strength = nand->chip.ecc.strength; 165 166 return ingenic_ecc_calculate(nfc->ecc, ¶ms, dat, ecc_code); 167 } 168 169 static int ingenic_nand_ecc_correct(struct nand_chip *chip, u8 *dat, 170 u8 *read_ecc, u8 *calc_ecc) 171 { 172 struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); 173 struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller); 174 struct ingenic_ecc_params params; 175 176 params.size = nand->chip.ecc.size; 177 params.bytes = nand->chip.ecc.bytes; 178 params.strength = nand->chip.ecc.strength; 179 180 return ingenic_ecc_correct(nfc->ecc, ¶ms, dat, read_ecc); 181 } 182 183 static int ingenic_nand_attach_chip(struct nand_chip *chip) 184 { 185 struct mtd_info *mtd = nand_to_mtd(chip); 186 struct ingenic_nfc *nfc = to_ingenic_nfc(chip->controller); 187 int eccbytes; 188 189 if (chip->ecc.strength == 4) { 190 /* JZ4740 uses 9 bytes of ECC to correct maximum 4 errors */ 191 chip->ecc.bytes = 9; 192 } else { 193 chip->ecc.bytes = fls((1 + 8) * chip->ecc.size) * 194 (chip->ecc.strength / 8); 195 } 196 197 switch (chip->ecc.mode) { 198 case NAND_ECC_HW: 199 if (!nfc->ecc) { 200 dev_err(nfc->dev, "HW ECC selected, but ECC controller not found\n"); 201 return -ENODEV; 202 } 203 204 chip->ecc.hwctl = ingenic_nand_ecc_hwctl; 205 chip->ecc.calculate = ingenic_nand_ecc_calculate; 206 chip->ecc.correct = ingenic_nand_ecc_correct; 207 fallthrough; 208 case NAND_ECC_SOFT: 209 dev_info(nfc->dev, "using %s (strength %d, size %d, bytes %d)\n", 210 (nfc->ecc) ? "hardware ECC" : "software ECC", 211 chip->ecc.strength, chip->ecc.size, chip->ecc.bytes); 212 break; 213 case NAND_ECC_NONE: 214 dev_info(nfc->dev, "not using ECC\n"); 215 break; 216 default: 217 dev_err(nfc->dev, "ECC mode %d not supported\n", 218 chip->ecc.mode); 219 return -EINVAL; 220 } 221 222 /* The NAND core will generate the ECC layout for SW ECC */ 223 if (chip->ecc.mode != NAND_ECC_HW) 224 return 0; 225 226 /* Generate ECC layout. ECC codes are right aligned in the OOB area. */ 227 eccbytes = mtd->writesize / chip->ecc.size * chip->ecc.bytes; 228 229 if (eccbytes > mtd->oobsize - 2) { 230 dev_err(nfc->dev, 231 "invalid ECC config: required %d ECC bytes, but only %d are available", 232 eccbytes, mtd->oobsize - 2); 233 return -EINVAL; 234 } 235 236 /* 237 * The generic layout for BBT markers will most likely overlap with our 238 * ECC bytes in the OOB, so move the BBT markers outside the OOB area. 239 */ 240 if (chip->bbt_options & NAND_BBT_USE_FLASH) 241 chip->bbt_options |= NAND_BBT_NO_OOB; 242 243 /* For legacy reasons we use a different layout on the qi,lb60 board. */ 244 if (of_machine_is_compatible("qi,lb60")) 245 mtd_set_ooblayout(mtd, &qi_lb60_ooblayout_ops); 246 else 247 mtd_set_ooblayout(mtd, nfc->soc_info->oob_layout); 248 249 return 0; 250 } 251 252 static int ingenic_nand_exec_instr(struct nand_chip *chip, 253 struct ingenic_nand_cs *cs, 254 const struct nand_op_instr *instr) 255 { 256 struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); 257 struct ingenic_nfc *nfc = to_ingenic_nfc(chip->controller); 258 unsigned int i; 259 260 switch (instr->type) { 261 case NAND_OP_CMD_INSTR: 262 writeb(instr->ctx.cmd.opcode, 263 cs->base + nfc->soc_info->cmd_offset); 264 return 0; 265 case NAND_OP_ADDR_INSTR: 266 for (i = 0; i < instr->ctx.addr.naddrs; i++) 267 writeb(instr->ctx.addr.addrs[i], 268 cs->base + nfc->soc_info->addr_offset); 269 return 0; 270 case NAND_OP_DATA_IN_INSTR: 271 if (instr->ctx.data.force_8bit || 272 !(chip->options & NAND_BUSWIDTH_16)) 273 ioread8_rep(cs->base + nfc->soc_info->data_offset, 274 instr->ctx.data.buf.in, 275 instr->ctx.data.len); 276 else 277 ioread16_rep(cs->base + nfc->soc_info->data_offset, 278 instr->ctx.data.buf.in, 279 instr->ctx.data.len); 280 return 0; 281 case NAND_OP_DATA_OUT_INSTR: 282 if (instr->ctx.data.force_8bit || 283 !(chip->options & NAND_BUSWIDTH_16)) 284 iowrite8_rep(cs->base + nfc->soc_info->data_offset, 285 instr->ctx.data.buf.out, 286 instr->ctx.data.len); 287 else 288 iowrite16_rep(cs->base + nfc->soc_info->data_offset, 289 instr->ctx.data.buf.out, 290 instr->ctx.data.len); 291 return 0; 292 case NAND_OP_WAITRDY_INSTR: 293 if (!nand->busy_gpio) 294 return nand_soft_waitrdy(chip, 295 instr->ctx.waitrdy.timeout_ms); 296 297 return nand_gpio_waitrdy(chip, nand->busy_gpio, 298 instr->ctx.waitrdy.timeout_ms); 299 default: 300 break; 301 } 302 303 return -EINVAL; 304 } 305 306 static int ingenic_nand_exec_op(struct nand_chip *chip, 307 const struct nand_operation *op, 308 bool check_only) 309 { 310 struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); 311 struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller); 312 struct ingenic_nand_cs *cs; 313 unsigned int i; 314 int ret = 0; 315 316 if (check_only) 317 return 0; 318 319 cs = &nfc->cs[op->cs]; 320 jz4780_nemc_assert(nfc->dev, cs->bank, true); 321 for (i = 0; i < op->ninstrs; i++) { 322 ret = ingenic_nand_exec_instr(chip, cs, &op->instrs[i]); 323 if (ret) 324 break; 325 326 if (op->instrs[i].delay_ns) 327 ndelay(op->instrs[i].delay_ns); 328 } 329 jz4780_nemc_assert(nfc->dev, cs->bank, false); 330 331 return ret; 332 } 333 334 static const struct nand_controller_ops ingenic_nand_controller_ops = { 335 .attach_chip = ingenic_nand_attach_chip, 336 .exec_op = ingenic_nand_exec_op, 337 }; 338 339 static int ingenic_nand_init_chip(struct platform_device *pdev, 340 struct ingenic_nfc *nfc, 341 struct device_node *np, 342 unsigned int chipnr) 343 { 344 struct device *dev = &pdev->dev; 345 struct ingenic_nand *nand; 346 struct ingenic_nand_cs *cs; 347 struct nand_chip *chip; 348 struct mtd_info *mtd; 349 const __be32 *reg; 350 int ret = 0; 351 352 cs = &nfc->cs[chipnr]; 353 354 reg = of_get_property(np, "reg", NULL); 355 if (!reg) 356 return -EINVAL; 357 358 cs->bank = be32_to_cpu(*reg); 359 360 jz4780_nemc_set_type(nfc->dev, cs->bank, JZ4780_NEMC_BANK_NAND); 361 362 cs->base = devm_platform_ioremap_resource(pdev, chipnr); 363 if (IS_ERR(cs->base)) 364 return PTR_ERR(cs->base); 365 366 nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); 367 if (!nand) 368 return -ENOMEM; 369 370 nand->busy_gpio = devm_gpiod_get_optional(dev, "rb", GPIOD_IN); 371 372 if (IS_ERR(nand->busy_gpio)) { 373 ret = PTR_ERR(nand->busy_gpio); 374 dev_err(dev, "failed to request busy GPIO: %d\n", ret); 375 return ret; 376 } 377 378 /* 379 * The rb-gpios semantics was undocumented and qi,lb60 (along with 380 * the ingenic driver) got it wrong. The active state encodes the 381 * NAND ready state, which is high level. Since there's no signal 382 * inverter on this board, it should be active-high. Let's fix that 383 * here for older DTs so we can re-use the generic nand_gpio_waitrdy() 384 * helper, and be consistent with what other drivers do. 385 */ 386 if (of_machine_is_compatible("qi,lb60") && 387 gpiod_is_active_low(nand->busy_gpio)) 388 gpiod_toggle_active_low(nand->busy_gpio); 389 390 nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); 391 392 if (IS_ERR(nand->wp_gpio)) { 393 ret = PTR_ERR(nand->wp_gpio); 394 dev_err(dev, "failed to request WP GPIO: %d\n", ret); 395 return ret; 396 } 397 398 chip = &nand->chip; 399 mtd = nand_to_mtd(chip); 400 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), 401 cs->bank); 402 if (!mtd->name) 403 return -ENOMEM; 404 mtd->dev.parent = dev; 405 406 chip->options = NAND_NO_SUBPAGE_WRITE; 407 chip->ecc.mode = NAND_ECC_HW; 408 chip->controller = &nfc->controller; 409 nand_set_flash_node(chip, np); 410 411 chip->controller->ops = &ingenic_nand_controller_ops; 412 ret = nand_scan(chip, 1); 413 if (ret) 414 return ret; 415 416 ret = mtd_device_register(mtd, NULL, 0); 417 if (ret) { 418 nand_cleanup(chip); 419 return ret; 420 } 421 422 list_add_tail(&nand->chip_list, &nfc->chips); 423 424 return 0; 425 } 426 427 static void ingenic_nand_cleanup_chips(struct ingenic_nfc *nfc) 428 { 429 struct ingenic_nand *ingenic_chip; 430 struct nand_chip *chip; 431 int ret; 432 433 while (!list_empty(&nfc->chips)) { 434 ingenic_chip = list_first_entry(&nfc->chips, 435 struct ingenic_nand, chip_list); 436 chip = &ingenic_chip->chip; 437 ret = mtd_device_unregister(nand_to_mtd(chip)); 438 WARN_ON(ret); 439 nand_cleanup(chip); 440 list_del(&ingenic_chip->chip_list); 441 } 442 } 443 444 static int ingenic_nand_init_chips(struct ingenic_nfc *nfc, 445 struct platform_device *pdev) 446 { 447 struct device *dev = &pdev->dev; 448 struct device_node *np; 449 int i = 0; 450 int ret; 451 int num_chips = of_get_child_count(dev->of_node); 452 453 if (num_chips > nfc->num_banks) { 454 dev_err(dev, "found %d chips but only %d banks\n", 455 num_chips, nfc->num_banks); 456 return -EINVAL; 457 } 458 459 for_each_child_of_node(dev->of_node, np) { 460 ret = ingenic_nand_init_chip(pdev, nfc, np, i); 461 if (ret) { 462 ingenic_nand_cleanup_chips(nfc); 463 of_node_put(np); 464 return ret; 465 } 466 467 i++; 468 } 469 470 return 0; 471 } 472 473 static int ingenic_nand_probe(struct platform_device *pdev) 474 { 475 struct device *dev = &pdev->dev; 476 unsigned int num_banks; 477 struct ingenic_nfc *nfc; 478 int ret; 479 480 num_banks = jz4780_nemc_num_banks(dev); 481 if (num_banks == 0) { 482 dev_err(dev, "no banks found\n"); 483 return -ENODEV; 484 } 485 486 nfc = devm_kzalloc(dev, struct_size(nfc, cs, num_banks), GFP_KERNEL); 487 if (!nfc) 488 return -ENOMEM; 489 490 nfc->soc_info = device_get_match_data(dev); 491 if (!nfc->soc_info) 492 return -EINVAL; 493 494 /* 495 * Check for ECC HW before we call nand_scan_ident, to prevent us from 496 * having to call it again if the ECC driver returns -EPROBE_DEFER. 497 */ 498 nfc->ecc = of_ingenic_ecc_get(dev->of_node); 499 if (IS_ERR(nfc->ecc)) 500 return PTR_ERR(nfc->ecc); 501 502 nfc->dev = dev; 503 nfc->num_banks = num_banks; 504 505 nand_controller_init(&nfc->controller); 506 INIT_LIST_HEAD(&nfc->chips); 507 508 ret = ingenic_nand_init_chips(nfc, pdev); 509 if (ret) { 510 if (nfc->ecc) 511 ingenic_ecc_release(nfc->ecc); 512 return ret; 513 } 514 515 platform_set_drvdata(pdev, nfc); 516 return 0; 517 } 518 519 static int ingenic_nand_remove(struct platform_device *pdev) 520 { 521 struct ingenic_nfc *nfc = platform_get_drvdata(pdev); 522 523 if (nfc->ecc) 524 ingenic_ecc_release(nfc->ecc); 525 526 ingenic_nand_cleanup_chips(nfc); 527 528 return 0; 529 } 530 531 static const struct jz_soc_info jz4740_soc_info = { 532 .data_offset = 0x00000000, 533 .cmd_offset = 0x00008000, 534 .addr_offset = 0x00010000, 535 .oob_layout = &nand_ooblayout_lp_ops, 536 }; 537 538 static const struct jz_soc_info jz4725b_soc_info = { 539 .data_offset = 0x00000000, 540 .cmd_offset = 0x00008000, 541 .addr_offset = 0x00010000, 542 .oob_layout = &jz4725b_ooblayout_ops, 543 }; 544 545 static const struct jz_soc_info jz4780_soc_info = { 546 .data_offset = 0x00000000, 547 .cmd_offset = 0x00400000, 548 .addr_offset = 0x00800000, 549 .oob_layout = &nand_ooblayout_lp_ops, 550 }; 551 552 static const struct of_device_id ingenic_nand_dt_match[] = { 553 { .compatible = "ingenic,jz4740-nand", .data = &jz4740_soc_info }, 554 { .compatible = "ingenic,jz4725b-nand", .data = &jz4725b_soc_info }, 555 { .compatible = "ingenic,jz4780-nand", .data = &jz4780_soc_info }, 556 {}, 557 }; 558 MODULE_DEVICE_TABLE(of, ingenic_nand_dt_match); 559 560 static struct platform_driver ingenic_nand_driver = { 561 .probe = ingenic_nand_probe, 562 .remove = ingenic_nand_remove, 563 .driver = { 564 .name = DRV_NAME, 565 .of_match_table = of_match_ptr(ingenic_nand_dt_match), 566 }, 567 }; 568 module_platform_driver(ingenic_nand_driver); 569 570 MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>"); 571 MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>"); 572 MODULE_DESCRIPTION("Ingenic JZ47xx NAND driver"); 573 MODULE_LICENSE("GPL v2"); 574