1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/slab.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include "gpmi-nand.h"
17 #include "bch-regs.h"
18 
19 /* Resource names for the GPMI NAND driver. */
20 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
21 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
22 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
23 
24 /* add our owner bbt descriptor */
25 static uint8_t scan_ff_pattern[] = { 0xff };
26 static struct nand_bbt_descr gpmi_bbt_descr = {
27 	.options	= 0,
28 	.offs		= 0,
29 	.len		= 1,
30 	.pattern	= scan_ff_pattern
31 };
32 
33 /*
34  * We may change the layout if we can get the ECC info from the datasheet,
35  * else we will use all the (page + OOB).
36  */
37 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
38 			      struct mtd_oob_region *oobregion)
39 {
40 	struct nand_chip *chip = mtd_to_nand(mtd);
41 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
42 	struct bch_geometry *geo = &this->bch_geometry;
43 
44 	if (section)
45 		return -ERANGE;
46 
47 	oobregion->offset = 0;
48 	oobregion->length = geo->page_size - mtd->writesize;
49 
50 	return 0;
51 }
52 
53 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
54 			       struct mtd_oob_region *oobregion)
55 {
56 	struct nand_chip *chip = mtd_to_nand(mtd);
57 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
58 	struct bch_geometry *geo = &this->bch_geometry;
59 
60 	if (section)
61 		return -ERANGE;
62 
63 	/* The available oob size we have. */
64 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
65 		oobregion->offset = geo->page_size - mtd->writesize;
66 		oobregion->length = mtd->oobsize - oobregion->offset;
67 	}
68 
69 	return 0;
70 }
71 
72 static const char * const gpmi_clks_for_mx2x[] = {
73 	"gpmi_io",
74 };
75 
76 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
77 	.ecc = gpmi_ooblayout_ecc,
78 	.free = gpmi_ooblayout_free,
79 };
80 
81 static const struct gpmi_devdata gpmi_devdata_imx23 = {
82 	.type = IS_MX23,
83 	.bch_max_ecc_strength = 20,
84 	.max_chain_delay = 16000,
85 	.clks = gpmi_clks_for_mx2x,
86 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
87 };
88 
89 static const struct gpmi_devdata gpmi_devdata_imx28 = {
90 	.type = IS_MX28,
91 	.bch_max_ecc_strength = 20,
92 	.max_chain_delay = 16000,
93 	.clks = gpmi_clks_for_mx2x,
94 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
95 };
96 
97 static const char * const gpmi_clks_for_mx6[] = {
98 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
99 };
100 
101 static const struct gpmi_devdata gpmi_devdata_imx6q = {
102 	.type = IS_MX6Q,
103 	.bch_max_ecc_strength = 40,
104 	.max_chain_delay = 12000,
105 	.clks = gpmi_clks_for_mx6,
106 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
107 };
108 
109 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
110 	.type = IS_MX6SX,
111 	.bch_max_ecc_strength = 62,
112 	.max_chain_delay = 12000,
113 	.clks = gpmi_clks_for_mx6,
114 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
115 };
116 
117 static const char * const gpmi_clks_for_mx7d[] = {
118 	"gpmi_io", "gpmi_bch_apb",
119 };
120 
121 static const struct gpmi_devdata gpmi_devdata_imx7d = {
122 	.type = IS_MX7D,
123 	.bch_max_ecc_strength = 62,
124 	.max_chain_delay = 12000,
125 	.clks = gpmi_clks_for_mx7d,
126 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
127 };
128 
129 static irqreturn_t bch_irq(int irq, void *cookie)
130 {
131 	struct gpmi_nand_data *this = cookie;
132 
133 	gpmi_clear_bch(this);
134 	complete(&this->bch_done);
135 	return IRQ_HANDLED;
136 }
137 
138 /*
139  *  Calculate the ECC strength by hand:
140  *	E : The ECC strength.
141  *	G : the length of Galois Field.
142  *	N : The chunk count of per page.
143  *	O : the oobsize of the NAND chip.
144  *	M : the metasize of per page.
145  *
146  *	The formula is :
147  *		E * G * N
148  *	      ------------ <= (O - M)
149  *                  8
150  *
151  *      So, we get E by:
152  *                    (O - M) * 8
153  *              E <= -------------
154  *                       G * N
155  */
156 static inline int get_ecc_strength(struct gpmi_nand_data *this)
157 {
158 	struct bch_geometry *geo = &this->bch_geometry;
159 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
160 	int ecc_strength;
161 
162 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
163 			/ (geo->gf_len * geo->ecc_chunk_count);
164 
165 	/* We need the minor even number. */
166 	return round_down(ecc_strength, 2);
167 }
168 
169 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
170 {
171 	struct bch_geometry *geo = &this->bch_geometry;
172 
173 	/* Do the sanity check. */
174 	if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
175 		/* The mx23/mx28 only support the GF13. */
176 		if (geo->gf_len == 14)
177 			return false;
178 	}
179 	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
180 }
181 
182 /*
183  * If we can get the ECC information from the nand chip, we do not
184  * need to calculate them ourselves.
185  *
186  * We may have available oob space in this case.
187  */
188 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
189 				    unsigned int ecc_strength,
190 				    unsigned int ecc_step)
191 {
192 	struct bch_geometry *geo = &this->bch_geometry;
193 	struct nand_chip *chip = &this->nand;
194 	struct mtd_info *mtd = nand_to_mtd(chip);
195 	unsigned int block_mark_bit_offset;
196 
197 	switch (ecc_step) {
198 	case SZ_512:
199 		geo->gf_len = 13;
200 		break;
201 	case SZ_1K:
202 		geo->gf_len = 14;
203 		break;
204 	default:
205 		dev_err(this->dev,
206 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
207 			chip->ecc_strength_ds, chip->ecc_step_ds);
208 		return -EINVAL;
209 	}
210 	geo->ecc_chunk_size = ecc_step;
211 	geo->ecc_strength = round_up(ecc_strength, 2);
212 	if (!gpmi_check_ecc(this))
213 		return -EINVAL;
214 
215 	/* Keep the C >= O */
216 	if (geo->ecc_chunk_size < mtd->oobsize) {
217 		dev_err(this->dev,
218 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
219 			ecc_step, mtd->oobsize);
220 		return -EINVAL;
221 	}
222 
223 	/* The default value, see comment in the legacy_set_geometry(). */
224 	geo->metadata_size = 10;
225 
226 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
227 
228 	/*
229 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
230 	 *
231 	 *    |                          P                            |
232 	 *    |<----------------------------------------------------->|
233 	 *    |                                                       |
234 	 *    |                                        (Block Mark)   |
235 	 *    |                      P'                      |      | |     |
236 	 *    |<-------------------------------------------->|  D   | |  O' |
237 	 *    |                                              |<---->| |<--->|
238 	 *    V                                              V      V V     V
239 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
240 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
241 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
242 	 *                                                   ^              ^
243 	 *                                                   |      O       |
244 	 *                                                   |<------------>|
245 	 *                                                   |              |
246 	 *
247 	 *	P : the page size for BCH module.
248 	 *	E : The ECC strength.
249 	 *	G : the length of Galois Field.
250 	 *	N : The chunk count of per page.
251 	 *	M : the metasize of per page.
252 	 *	C : the ecc chunk size, aka the "data" above.
253 	 *	P': the nand chip's page size.
254 	 *	O : the nand chip's oob size.
255 	 *	O': the free oob.
256 	 *
257 	 *	The formula for P is :
258 	 *
259 	 *	            E * G * N
260 	 *	       P = ------------ + P' + M
261 	 *                      8
262 	 *
263 	 * The position of block mark moves forward in the ECC-based view
264 	 * of page, and the delta is:
265 	 *
266 	 *                   E * G * (N - 1)
267 	 *             D = (---------------- + M)
268 	 *                          8
269 	 *
270 	 * Please see the comment in legacy_set_geometry().
271 	 * With the condition C >= O , we still can get same result.
272 	 * So the bit position of the physical block mark within the ECC-based
273 	 * view of the page is :
274 	 *             (P' - D) * 8
275 	 */
276 	geo->page_size = mtd->writesize + geo->metadata_size +
277 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
278 
279 	geo->payload_size = mtd->writesize;
280 
281 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
282 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
283 				+ ALIGN(geo->ecc_chunk_count, 4);
284 
285 	if (!this->swap_block_mark)
286 		return 0;
287 
288 	/* For bit swap. */
289 	block_mark_bit_offset = mtd->writesize * 8 -
290 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
291 				+ geo->metadata_size * 8);
292 
293 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
294 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
295 	return 0;
296 }
297 
298 static int legacy_set_geometry(struct gpmi_nand_data *this)
299 {
300 	struct bch_geometry *geo = &this->bch_geometry;
301 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
302 	unsigned int metadata_size;
303 	unsigned int status_size;
304 	unsigned int block_mark_bit_offset;
305 
306 	/*
307 	 * The size of the metadata can be changed, though we set it to 10
308 	 * bytes now. But it can't be too large, because we have to save
309 	 * enough space for BCH.
310 	 */
311 	geo->metadata_size = 10;
312 
313 	/* The default for the length of Galois Field. */
314 	geo->gf_len = 13;
315 
316 	/* The default for chunk size. */
317 	geo->ecc_chunk_size = 512;
318 	while (geo->ecc_chunk_size < mtd->oobsize) {
319 		geo->ecc_chunk_size *= 2; /* keep C >= O */
320 		geo->gf_len = 14;
321 	}
322 
323 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
324 
325 	/* We use the same ECC strength for all chunks. */
326 	geo->ecc_strength = get_ecc_strength(this);
327 	if (!gpmi_check_ecc(this)) {
328 		dev_err(this->dev,
329 			"ecc strength: %d cannot be supported by the controller (%d)\n"
330 			"try to use minimum ecc strength that NAND chip required\n",
331 			geo->ecc_strength,
332 			this->devdata->bch_max_ecc_strength);
333 		return -EINVAL;
334 	}
335 
336 	geo->page_size = mtd->writesize + geo->metadata_size +
337 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
338 	geo->payload_size = mtd->writesize;
339 
340 	/*
341 	 * The auxiliary buffer contains the metadata and the ECC status. The
342 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
343 	 * contains one byte for every ECC chunk, and is also padded to the
344 	 * nearest 32-bit boundary.
345 	 */
346 	metadata_size = ALIGN(geo->metadata_size, 4);
347 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
348 
349 	geo->auxiliary_size = metadata_size + status_size;
350 	geo->auxiliary_status_offset = metadata_size;
351 
352 	if (!this->swap_block_mark)
353 		return 0;
354 
355 	/*
356 	 * We need to compute the byte and bit offsets of
357 	 * the physical block mark within the ECC-based view of the page.
358 	 *
359 	 * NAND chip with 2K page shows below:
360 	 *                                             (Block Mark)
361 	 *                                                   |      |
362 	 *                                                   |  D   |
363 	 *                                                   |<---->|
364 	 *                                                   V      V
365 	 *    +---+----------+-+----------+-+----------+-+----------+-+
366 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
367 	 *    +---+----------+-+----------+-+----------+-+----------+-+
368 	 *
369 	 * The position of block mark moves forward in the ECC-based view
370 	 * of page, and the delta is:
371 	 *
372 	 *                   E * G * (N - 1)
373 	 *             D = (---------------- + M)
374 	 *                          8
375 	 *
376 	 * With the formula to compute the ECC strength, and the condition
377 	 *       : C >= O         (C is the ecc chunk size)
378 	 *
379 	 * It's easy to deduce to the following result:
380 	 *
381 	 *         E * G       (O - M)      C - M         C - M
382 	 *      ----------- <= ------- <=  --------  <  ---------
383 	 *           8            N           N          (N - 1)
384 	 *
385 	 *  So, we get:
386 	 *
387 	 *                   E * G * (N - 1)
388 	 *             D = (---------------- + M) < C
389 	 *                          8
390 	 *
391 	 *  The above inequality means the position of block mark
392 	 *  within the ECC-based view of the page is still in the data chunk,
393 	 *  and it's NOT in the ECC bits of the chunk.
394 	 *
395 	 *  Use the following to compute the bit position of the
396 	 *  physical block mark within the ECC-based view of the page:
397 	 *          (page_size - D) * 8
398 	 *
399 	 *  --Huang Shijie
400 	 */
401 	block_mark_bit_offset = mtd->writesize * 8 -
402 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
403 				+ geo->metadata_size * 8);
404 
405 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
406 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
407 	return 0;
408 }
409 
410 int common_nfc_set_geometry(struct gpmi_nand_data *this)
411 {
412 	struct nand_chip *chip = &this->nand;
413 
414 	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
415 		return set_geometry_by_ecc_info(this, chip->ecc.strength,
416 						chip->ecc.size);
417 
418 	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
419 				|| legacy_set_geometry(this)) {
420 		if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
421 			return -EINVAL;
422 
423 		return set_geometry_by_ecc_info(this, chip->ecc_strength_ds,
424 						chip->ecc_step_ds);
425 	}
426 
427 	return 0;
428 }
429 
430 struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
431 {
432 	/* We use the DMA channel 0 to access all the nand chips. */
433 	return this->dma_chans[0];
434 }
435 
436 /* Can we use the upper's buffer directly for DMA? */
437 bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len,
438 		      enum dma_data_direction dr)
439 {
440 	struct scatterlist *sgl = &this->data_sgl;
441 	int ret;
442 
443 	/* first try to map the upper buffer directly */
444 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
445 		sg_init_one(sgl, buf, len);
446 		ret = dma_map_sg(this->dev, sgl, 1, dr);
447 		if (ret == 0)
448 			goto map_fail;
449 
450 		return true;
451 	}
452 
453 map_fail:
454 	/* We have to use our own DMA buffer. */
455 	sg_init_one(sgl, this->data_buffer_dma, len);
456 
457 	if (dr == DMA_TO_DEVICE)
458 		memcpy(this->data_buffer_dma, buf, len);
459 
460 	dma_map_sg(this->dev, sgl, 1, dr);
461 
462 	return false;
463 }
464 
465 /* This will be called after the DMA operation is finished. */
466 static void dma_irq_callback(void *param)
467 {
468 	struct gpmi_nand_data *this = param;
469 	struct completion *dma_c = &this->dma_done;
470 
471 	complete(dma_c);
472 }
473 
474 int start_dma_without_bch_irq(struct gpmi_nand_data *this,
475 				struct dma_async_tx_descriptor *desc)
476 {
477 	struct completion *dma_c = &this->dma_done;
478 	unsigned long timeout;
479 
480 	init_completion(dma_c);
481 
482 	desc->callback		= dma_irq_callback;
483 	desc->callback_param	= this;
484 	dmaengine_submit(desc);
485 	dma_async_issue_pending(get_dma_chan(this));
486 
487 	/* Wait for the interrupt from the DMA block. */
488 	timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
489 	if (!timeout) {
490 		dev_err(this->dev, "DMA timeout, last DMA\n");
491 		gpmi_dump_info(this);
492 		return -ETIMEDOUT;
493 	}
494 	return 0;
495 }
496 
497 /*
498  * This function is used in BCH reading or BCH writing pages.
499  * It will wait for the BCH interrupt as long as ONE second.
500  * Actually, we must wait for two interrupts :
501  *	[1] firstly the DMA interrupt and
502  *	[2] secondly the BCH interrupt.
503  */
504 int start_dma_with_bch_irq(struct gpmi_nand_data *this,
505 			struct dma_async_tx_descriptor *desc)
506 {
507 	struct completion *bch_c = &this->bch_done;
508 	unsigned long timeout;
509 
510 	/* Prepare to receive an interrupt from the BCH block. */
511 	init_completion(bch_c);
512 
513 	/* start the DMA */
514 	start_dma_without_bch_irq(this, desc);
515 
516 	/* Wait for the interrupt from the BCH block. */
517 	timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
518 	if (!timeout) {
519 		dev_err(this->dev, "BCH timeout\n");
520 		gpmi_dump_info(this);
521 		return -ETIMEDOUT;
522 	}
523 	return 0;
524 }
525 
526 static int acquire_register_block(struct gpmi_nand_data *this,
527 				  const char *res_name)
528 {
529 	struct platform_device *pdev = this->pdev;
530 	struct resources *res = &this->resources;
531 	struct resource *r;
532 	void __iomem *p;
533 
534 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
535 	p = devm_ioremap_resource(&pdev->dev, r);
536 	if (IS_ERR(p))
537 		return PTR_ERR(p);
538 
539 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
540 		res->gpmi_regs = p;
541 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
542 		res->bch_regs = p;
543 	else
544 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
545 
546 	return 0;
547 }
548 
549 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
550 {
551 	struct platform_device *pdev = this->pdev;
552 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
553 	struct resource *r;
554 	int err;
555 
556 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
557 	if (!r) {
558 		dev_err(this->dev, "Can't get resource for %s\n", res_name);
559 		return -ENODEV;
560 	}
561 
562 	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
563 	if (err)
564 		dev_err(this->dev, "error requesting BCH IRQ\n");
565 
566 	return err;
567 }
568 
569 static void release_dma_channels(struct gpmi_nand_data *this)
570 {
571 	unsigned int i;
572 	for (i = 0; i < DMA_CHANS; i++)
573 		if (this->dma_chans[i]) {
574 			dma_release_channel(this->dma_chans[i]);
575 			this->dma_chans[i] = NULL;
576 		}
577 }
578 
579 static int acquire_dma_channels(struct gpmi_nand_data *this)
580 {
581 	struct platform_device *pdev = this->pdev;
582 	struct dma_chan *dma_chan;
583 
584 	/* request dma channel */
585 	dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
586 	if (!dma_chan) {
587 		dev_err(this->dev, "Failed to request DMA channel.\n");
588 		goto acquire_err;
589 	}
590 
591 	this->dma_chans[0] = dma_chan;
592 	return 0;
593 
594 acquire_err:
595 	release_dma_channels(this);
596 	return -EINVAL;
597 }
598 
599 static int gpmi_get_clks(struct gpmi_nand_data *this)
600 {
601 	struct resources *r = &this->resources;
602 	struct clk *clk;
603 	int err, i;
604 
605 	for (i = 0; i < this->devdata->clks_count; i++) {
606 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
607 		if (IS_ERR(clk)) {
608 			err = PTR_ERR(clk);
609 			goto err_clock;
610 		}
611 
612 		r->clock[i] = clk;
613 	}
614 
615 	if (GPMI_IS_MX6(this))
616 		/*
617 		 * Set the default value for the gpmi clock.
618 		 *
619 		 * If you want to use the ONFI nand which is in the
620 		 * Synchronous Mode, you should change the clock as you need.
621 		 */
622 		clk_set_rate(r->clock[0], 22000000);
623 
624 	return 0;
625 
626 err_clock:
627 	dev_dbg(this->dev, "failed in finding the clocks.\n");
628 	return err;
629 }
630 
631 static int acquire_resources(struct gpmi_nand_data *this)
632 {
633 	int ret;
634 
635 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
636 	if (ret)
637 		goto exit_regs;
638 
639 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
640 	if (ret)
641 		goto exit_regs;
642 
643 	ret = acquire_bch_irq(this, bch_irq);
644 	if (ret)
645 		goto exit_regs;
646 
647 	ret = acquire_dma_channels(this);
648 	if (ret)
649 		goto exit_regs;
650 
651 	ret = gpmi_get_clks(this);
652 	if (ret)
653 		goto exit_clock;
654 	return 0;
655 
656 exit_clock:
657 	release_dma_channels(this);
658 exit_regs:
659 	return ret;
660 }
661 
662 static void release_resources(struct gpmi_nand_data *this)
663 {
664 	release_dma_channels(this);
665 }
666 
667 static int send_page_prepare(struct gpmi_nand_data *this,
668 			const void *source, unsigned length,
669 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
670 			const void **use_virt, dma_addr_t *use_phys)
671 {
672 	struct device *dev = this->dev;
673 
674 	if (virt_addr_valid(source)) {
675 		dma_addr_t source_phys;
676 
677 		source_phys = dma_map_single(dev, (void *)source, length,
678 						DMA_TO_DEVICE);
679 		if (dma_mapping_error(dev, source_phys)) {
680 			if (alt_size < length) {
681 				dev_err(dev, "Alternate buffer is too small\n");
682 				return -ENOMEM;
683 			}
684 			goto map_failed;
685 		}
686 		*use_virt = source;
687 		*use_phys = source_phys;
688 		return 0;
689 	}
690 map_failed:
691 	/*
692 	 * Copy the content of the source buffer into the alternate
693 	 * buffer and set up the return values accordingly.
694 	 */
695 	memcpy(alt_virt, source, length);
696 
697 	*use_virt = alt_virt;
698 	*use_phys = alt_phys;
699 	return 0;
700 }
701 
702 static void send_page_end(struct gpmi_nand_data *this,
703 			const void *source, unsigned length,
704 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
705 			const void *used_virt, dma_addr_t used_phys)
706 {
707 	struct device *dev = this->dev;
708 	if (used_virt == source)
709 		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
710 }
711 
712 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
713 {
714 	struct device *dev = this->dev;
715 
716 	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
717 		dma_free_coherent(dev, this->page_buffer_size,
718 					this->page_buffer_virt,
719 					this->page_buffer_phys);
720 	kfree(this->cmd_buffer);
721 	kfree(this->data_buffer_dma);
722 	kfree(this->raw_buffer);
723 
724 	this->cmd_buffer	= NULL;
725 	this->data_buffer_dma	= NULL;
726 	this->raw_buffer	= NULL;
727 	this->page_buffer_virt	= NULL;
728 	this->page_buffer_size	=  0;
729 }
730 
731 /* Allocate the DMA buffers */
732 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
733 {
734 	struct bch_geometry *geo = &this->bch_geometry;
735 	struct device *dev = this->dev;
736 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
737 
738 	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
739 	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
740 	if (this->cmd_buffer == NULL)
741 		goto error_alloc;
742 
743 	/*
744 	 * [2] Allocate a read/write data buffer.
745 	 *     The gpmi_alloc_dma_buffer can be called twice.
746 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
747 	 *     is called before the NAND identification; and we allocate a
748 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
749 	 *     is called after.
750 	 */
751 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
752 					GFP_DMA | GFP_KERNEL);
753 	if (this->data_buffer_dma == NULL)
754 		goto error_alloc;
755 
756 	/*
757 	 * [3] Allocate the page buffer.
758 	 *
759 	 * Both the payload buffer and the auxiliary buffer must appear on
760 	 * 32-bit boundaries. We presume the size of the payload buffer is a
761 	 * power of two and is much larger than four, which guarantees the
762 	 * auxiliary buffer will appear on a 32-bit boundary.
763 	 */
764 	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
765 	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
766 					&this->page_buffer_phys, GFP_DMA);
767 	if (!this->page_buffer_virt)
768 		goto error_alloc;
769 
770 	this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
771 	if (!this->raw_buffer)
772 		goto error_alloc;
773 
774 	/* Slice up the page buffer. */
775 	this->payload_virt = this->page_buffer_virt;
776 	this->payload_phys = this->page_buffer_phys;
777 	this->auxiliary_virt = this->payload_virt + geo->payload_size;
778 	this->auxiliary_phys = this->payload_phys + geo->payload_size;
779 	return 0;
780 
781 error_alloc:
782 	gpmi_free_dma_buffer(this);
783 	return -ENOMEM;
784 }
785 
786 static void gpmi_cmd_ctrl(struct nand_chip *chip, int data, unsigned int ctrl)
787 {
788 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
789 	int ret;
790 
791 	/*
792 	 * Every operation begins with a command byte and a series of zero or
793 	 * more address bytes. These are distinguished by either the Address
794 	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
795 	 * asserted. When MTD is ready to execute the command, it will deassert
796 	 * both latch enables.
797 	 *
798 	 * Rather than run a separate DMA operation for every single byte, we
799 	 * queue them up and run a single DMA operation for the entire series
800 	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
801 	 */
802 	if ((ctrl & (NAND_ALE | NAND_CLE))) {
803 		if (data != NAND_CMD_NONE)
804 			this->cmd_buffer[this->command_length++] = data;
805 		return;
806 	}
807 
808 	if (!this->command_length)
809 		return;
810 
811 	ret = gpmi_send_command(this);
812 	if (ret)
813 		dev_err(this->dev, "Chip: %u, Error %d\n",
814 			this->current_chip, ret);
815 
816 	this->command_length = 0;
817 }
818 
819 static int gpmi_dev_ready(struct nand_chip *chip)
820 {
821 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
822 
823 	return gpmi_is_ready(this, this->current_chip);
824 }
825 
826 static void gpmi_select_chip(struct nand_chip *chip, int chipnr)
827 {
828 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
829 	int ret;
830 
831 	/*
832 	 * For power consumption matters, disable/enable the clock each time a
833 	 * die is selected/unselected.
834 	 */
835 	if (this->current_chip < 0 && chipnr >= 0) {
836 		ret = gpmi_enable_clk(this);
837 		if (ret)
838 			dev_err(this->dev, "Failed to enable the clock\n");
839 	} else if (this->current_chip >= 0 && chipnr < 0) {
840 		ret = gpmi_disable_clk(this);
841 		if (ret)
842 			dev_err(this->dev, "Failed to disable the clock\n");
843 	}
844 
845 	/*
846 	 * This driver currently supports only one NAND chip. Plus, dies share
847 	 * the same configuration. So once timings have been applied on the
848 	 * controller side, they will not change anymore. When the time will
849 	 * come, the check on must_apply_timings will have to be dropped.
850 	 */
851 	if (chipnr >= 0 && this->hw.must_apply_timings) {
852 		this->hw.must_apply_timings = false;
853 		gpmi_nfc_apply_timings(this);
854 	}
855 
856 	this->current_chip = chipnr;
857 }
858 
859 static void gpmi_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
860 {
861 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
862 
863 	dev_dbg(this->dev, "len is %d\n", len);
864 
865 	gpmi_read_data(this, buf, len);
866 }
867 
868 static void gpmi_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
869 {
870 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
871 
872 	dev_dbg(this->dev, "len is %d\n", len);
873 
874 	gpmi_send_data(this, buf, len);
875 }
876 
877 static uint8_t gpmi_read_byte(struct nand_chip *chip)
878 {
879 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
880 	uint8_t *buf = this->data_buffer_dma;
881 
882 	gpmi_read_buf(chip, buf, 1);
883 	return buf[0];
884 }
885 
886 /*
887  * Handles block mark swapping.
888  * It can be called in swapping the block mark, or swapping it back,
889  * because the the operations are the same.
890  */
891 static void block_mark_swapping(struct gpmi_nand_data *this,
892 				void *payload, void *auxiliary)
893 {
894 	struct bch_geometry *nfc_geo = &this->bch_geometry;
895 	unsigned char *p;
896 	unsigned char *a;
897 	unsigned int  bit;
898 	unsigned char mask;
899 	unsigned char from_data;
900 	unsigned char from_oob;
901 
902 	if (!this->swap_block_mark)
903 		return;
904 
905 	/*
906 	 * If control arrives here, we're swapping. Make some convenience
907 	 * variables.
908 	 */
909 	bit = nfc_geo->block_mark_bit_offset;
910 	p   = payload + nfc_geo->block_mark_byte_offset;
911 	a   = auxiliary;
912 
913 	/*
914 	 * Get the byte from the data area that overlays the block mark. Since
915 	 * the ECC engine applies its own view to the bits in the page, the
916 	 * physical block mark won't (in general) appear on a byte boundary in
917 	 * the data.
918 	 */
919 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
920 
921 	/* Get the byte from the OOB. */
922 	from_oob = a[0];
923 
924 	/* Swap them. */
925 	a[0] = from_data;
926 
927 	mask = (0x1 << bit) - 1;
928 	p[0] = (p[0] & mask) | (from_oob << bit);
929 
930 	mask = ~0 << bit;
931 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
932 }
933 
934 static int gpmi_ecc_read_page_data(struct nand_chip *chip,
935 				   uint8_t *buf, int oob_required,
936 				   int page)
937 {
938 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
939 	struct bch_geometry *nfc_geo = &this->bch_geometry;
940 	struct mtd_info *mtd = nand_to_mtd(chip);
941 	dma_addr_t    payload_phys;
942 	unsigned int  i;
943 	unsigned char *status;
944 	unsigned int  max_bitflips = 0;
945 	int           ret;
946 	bool          direct = false;
947 
948 	dev_dbg(this->dev, "page number is : %d\n", page);
949 
950 	payload_phys = this->payload_phys;
951 
952 	if (virt_addr_valid(buf)) {
953 		dma_addr_t dest_phys;
954 
955 		dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size,
956 					   DMA_FROM_DEVICE);
957 		if (!dma_mapping_error(this->dev, dest_phys)) {
958 			payload_phys = dest_phys;
959 			direct = true;
960 		}
961 	}
962 
963 	/* go! */
964 	ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys);
965 
966 	if (direct)
967 		dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size,
968 				 DMA_FROM_DEVICE);
969 
970 	if (ret) {
971 		dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
972 		return ret;
973 	}
974 
975 	/* Loop over status bytes, accumulating ECC status. */
976 	status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset;
977 
978 	if (!direct)
979 		memcpy(buf, this->payload_virt, nfc_geo->payload_size);
980 
981 	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
982 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
983 			continue;
984 
985 		if (*status == STATUS_UNCORRECTABLE) {
986 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
987 			u8 *eccbuf = this->raw_buffer;
988 			int offset, bitoffset;
989 			int eccbytes;
990 			int flips;
991 
992 			/* Read ECC bytes into our internal raw_buffer */
993 			offset = nfc_geo->metadata_size * 8;
994 			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
995 			offset -= eccbits;
996 			bitoffset = offset % 8;
997 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
998 			offset /= 8;
999 			eccbytes -= offset;
1000 			nand_change_read_column_op(chip, offset, eccbuf,
1001 						   eccbytes, false);
1002 
1003 			/*
1004 			 * ECC data are not byte aligned and we may have
1005 			 * in-band data in the first and last byte of
1006 			 * eccbuf. Set non-eccbits to one so that
1007 			 * nand_check_erased_ecc_chunk() does not count them
1008 			 * as bitflips.
1009 			 */
1010 			if (bitoffset)
1011 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1012 
1013 			bitoffset = (bitoffset + eccbits) % 8;
1014 			if (bitoffset)
1015 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1016 
1017 			/*
1018 			 * The ECC hardware has an uncorrectable ECC status
1019 			 * code in case we have bitflips in an erased page. As
1020 			 * nothing was written into this subpage the ECC is
1021 			 * obviously wrong and we can not trust it. We assume
1022 			 * at this point that we are reading an erased page and
1023 			 * try to correct the bitflips in buffer up to
1024 			 * ecc_strength bitflips. If this is a page with random
1025 			 * data, we exceed this number of bitflips and have a
1026 			 * ECC failure. Otherwise we use the corrected buffer.
1027 			 */
1028 			if (i == 0) {
1029 				/* The first block includes metadata */
1030 				flips = nand_check_erased_ecc_chunk(
1031 						buf + i * nfc_geo->ecc_chunk_size,
1032 						nfc_geo->ecc_chunk_size,
1033 						eccbuf, eccbytes,
1034 						this->auxiliary_virt,
1035 						nfc_geo->metadata_size,
1036 						nfc_geo->ecc_strength);
1037 			} else {
1038 				flips = nand_check_erased_ecc_chunk(
1039 						buf + i * nfc_geo->ecc_chunk_size,
1040 						nfc_geo->ecc_chunk_size,
1041 						eccbuf, eccbytes,
1042 						NULL, 0,
1043 						nfc_geo->ecc_strength);
1044 			}
1045 
1046 			if (flips > 0) {
1047 				max_bitflips = max_t(unsigned int, max_bitflips,
1048 						     flips);
1049 				mtd->ecc_stats.corrected += flips;
1050 				continue;
1051 			}
1052 
1053 			mtd->ecc_stats.failed++;
1054 			continue;
1055 		}
1056 
1057 		mtd->ecc_stats.corrected += *status;
1058 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1059 	}
1060 
1061 	/* handle the block mark swapping */
1062 	block_mark_swapping(this, buf, this->auxiliary_virt);
1063 
1064 	if (oob_required) {
1065 		/*
1066 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1067 		 * for details about our policy for delivering the OOB.
1068 		 *
1069 		 * We fill the caller's buffer with set bits, and then copy the
1070 		 * block mark to th caller's buffer. Note that, if block mark
1071 		 * swapping was necessary, it has already been done, so we can
1072 		 * rely on the first byte of the auxiliary buffer to contain
1073 		 * the block mark.
1074 		 */
1075 		memset(chip->oob_poi, ~0, mtd->oobsize);
1076 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1077 	}
1078 
1079 	return max_bitflips;
1080 }
1081 
1082 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1083 			      int oob_required, int page)
1084 {
1085 	nand_read_page_op(chip, page, 0, NULL, 0);
1086 
1087 	return gpmi_ecc_read_page_data(chip, buf, oob_required, page);
1088 }
1089 
1090 /* Fake a virtual small page for the subpage read */
1091 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1092 				 uint32_t len, uint8_t *buf, int page)
1093 {
1094 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1095 	void __iomem *bch_regs = this->resources.bch_regs;
1096 	struct bch_geometry old_geo = this->bch_geometry;
1097 	struct bch_geometry *geo = &this->bch_geometry;
1098 	int size = chip->ecc.size; /* ECC chunk size */
1099 	int meta, n, page_size;
1100 	u32 r1_old, r2_old, r1_new, r2_new;
1101 	unsigned int max_bitflips;
1102 	int first, last, marker_pos;
1103 	int ecc_parity_size;
1104 	int col = 0;
1105 	int old_swap_block_mark = this->swap_block_mark;
1106 
1107 	/* The size of ECC parity */
1108 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1109 
1110 	/* Align it with the chunk size */
1111 	first = offs / size;
1112 	last = (offs + len - 1) / size;
1113 
1114 	if (this->swap_block_mark) {
1115 		/*
1116 		 * Find the chunk which contains the Block Marker.
1117 		 * If this chunk is in the range of [first, last],
1118 		 * we have to read out the whole page.
1119 		 * Why? since we had swapped the data at the position of Block
1120 		 * Marker to the metadata which is bound with the chunk 0.
1121 		 */
1122 		marker_pos = geo->block_mark_byte_offset / size;
1123 		if (last >= marker_pos && first <= marker_pos) {
1124 			dev_dbg(this->dev,
1125 				"page:%d, first:%d, last:%d, marker at:%d\n",
1126 				page, first, last, marker_pos);
1127 			return gpmi_ecc_read_page(chip, buf, 0, page);
1128 		}
1129 	}
1130 
1131 	meta = geo->metadata_size;
1132 	if (first) {
1133 		col = meta + (size + ecc_parity_size) * first;
1134 		meta = 0;
1135 		buf = buf + first * size;
1136 	}
1137 
1138 	nand_read_page_op(chip, page, col, NULL, 0);
1139 
1140 	/* Save the old environment */
1141 	r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
1142 	r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
1143 
1144 	/* change the BCH registers and bch_geometry{} */
1145 	n = last - first + 1;
1146 	page_size = meta + (size + ecc_parity_size) * n;
1147 
1148 	r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
1149 			BM_BCH_FLASH0LAYOUT0_META_SIZE);
1150 	r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
1151 			| BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
1152 	writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
1153 
1154 	r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
1155 	r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
1156 	writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
1157 
1158 	geo->ecc_chunk_count = n;
1159 	geo->payload_size = n * size;
1160 	geo->page_size = page_size;
1161 	geo->auxiliary_status_offset = ALIGN(meta, 4);
1162 
1163 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1164 		page, offs, len, col, first, n, page_size);
1165 
1166 	/* Read the subpage now */
1167 	this->swap_block_mark = false;
1168 	max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page);
1169 
1170 	/* Restore */
1171 	writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
1172 	writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
1173 	this->bch_geometry = old_geo;
1174 	this->swap_block_mark = old_swap_block_mark;
1175 
1176 	return max_bitflips;
1177 }
1178 
1179 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1180 			       int oob_required, int page)
1181 {
1182 	struct mtd_info *mtd = nand_to_mtd(chip);
1183 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1184 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1185 	const void *payload_virt;
1186 	dma_addr_t payload_phys;
1187 	const void *auxiliary_virt;
1188 	dma_addr_t auxiliary_phys;
1189 	int        ret;
1190 
1191 	dev_dbg(this->dev, "ecc write page.\n");
1192 
1193 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1194 
1195 	if (this->swap_block_mark) {
1196 		/*
1197 		 * If control arrives here, we're doing block mark swapping.
1198 		 * Since we can't modify the caller's buffers, we must copy them
1199 		 * into our own.
1200 		 */
1201 		memcpy(this->payload_virt, buf, mtd->writesize);
1202 		payload_virt = this->payload_virt;
1203 		payload_phys = this->payload_phys;
1204 
1205 		memcpy(this->auxiliary_virt, chip->oob_poi,
1206 				nfc_geo->auxiliary_size);
1207 		auxiliary_virt = this->auxiliary_virt;
1208 		auxiliary_phys = this->auxiliary_phys;
1209 
1210 		/* Handle block mark swapping. */
1211 		block_mark_swapping(this,
1212 				(void *)payload_virt, (void *)auxiliary_virt);
1213 	} else {
1214 		/*
1215 		 * If control arrives here, we're not doing block mark swapping,
1216 		 * so we can to try and use the caller's buffers.
1217 		 */
1218 		ret = send_page_prepare(this,
1219 				buf, mtd->writesize,
1220 				this->payload_virt, this->payload_phys,
1221 				nfc_geo->payload_size,
1222 				&payload_virt, &payload_phys);
1223 		if (ret) {
1224 			dev_err(this->dev, "Inadequate payload DMA buffer\n");
1225 			return 0;
1226 		}
1227 
1228 		ret = send_page_prepare(this,
1229 				chip->oob_poi, mtd->oobsize,
1230 				this->auxiliary_virt, this->auxiliary_phys,
1231 				nfc_geo->auxiliary_size,
1232 				&auxiliary_virt, &auxiliary_phys);
1233 		if (ret) {
1234 			dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
1235 			goto exit_auxiliary;
1236 		}
1237 	}
1238 
1239 	/* Ask the NFC. */
1240 	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1241 	if (ret)
1242 		dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
1243 
1244 	if (!this->swap_block_mark) {
1245 		send_page_end(this, chip->oob_poi, mtd->oobsize,
1246 				this->auxiliary_virt, this->auxiliary_phys,
1247 				nfc_geo->auxiliary_size,
1248 				auxiliary_virt, auxiliary_phys);
1249 exit_auxiliary:
1250 		send_page_end(this, buf, mtd->writesize,
1251 				this->payload_virt, this->payload_phys,
1252 				nfc_geo->payload_size,
1253 				payload_virt, payload_phys);
1254 	}
1255 
1256 	if (ret)
1257 		return ret;
1258 
1259 	return nand_prog_page_end_op(chip);
1260 }
1261 
1262 /*
1263  * There are several places in this driver where we have to handle the OOB and
1264  * block marks. This is the function where things are the most complicated, so
1265  * this is where we try to explain it all. All the other places refer back to
1266  * here.
1267  *
1268  * These are the rules, in order of decreasing importance:
1269  *
1270  * 1) Nothing the caller does can be allowed to imperil the block mark.
1271  *
1272  * 2) In read operations, the first byte of the OOB we return must reflect the
1273  *    true state of the block mark, no matter where that block mark appears in
1274  *    the physical page.
1275  *
1276  * 3) ECC-based read operations return an OOB full of set bits (since we never
1277  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1278  *    return).
1279  *
1280  * 4) "Raw" read operations return a direct view of the physical bytes in the
1281  *    page, using the conventional definition of which bytes are data and which
1282  *    are OOB. This gives the caller a way to see the actual, physical bytes
1283  *    in the page, without the distortions applied by our ECC engine.
1284  *
1285  *
1286  * What we do for this specific read operation depends on two questions:
1287  *
1288  * 1) Are we doing a "raw" read, or an ECC-based read?
1289  *
1290  * 2) Are we using block mark swapping or transcription?
1291  *
1292  * There are four cases, illustrated by the following Karnaugh map:
1293  *
1294  *                    |           Raw           |         ECC-based       |
1295  *       -------------+-------------------------+-------------------------+
1296  *                    | Read the conventional   |                         |
1297  *                    | OOB at the end of the   |                         |
1298  *       Swapping     | page and return it. It  |                         |
1299  *                    | contains exactly what   |                         |
1300  *                    | we want.                | Read the block mark and |
1301  *       -------------+-------------------------+ return it in a buffer   |
1302  *                    | Read the conventional   | full of set bits.       |
1303  *                    | OOB at the end of the   |                         |
1304  *                    | page and also the block |                         |
1305  *       Transcribing | mark in the metadata.   |                         |
1306  *                    | Copy the block mark     |                         |
1307  *                    | into the first byte of  |                         |
1308  *                    | the OOB.                |                         |
1309  *       -------------+-------------------------+-------------------------+
1310  *
1311  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1312  * giving an accurate view of the actual, physical bytes in the page (we're
1313  * overwriting the block mark). That's OK because it's more important to follow
1314  * rule #2.
1315  *
1316  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1317  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1318  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1319  * ECC-based or raw view of the page is implicit in which function it calls
1320  * (there is a similar pair of ECC-based/raw functions for writing).
1321  */
1322 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1323 {
1324 	struct mtd_info *mtd = nand_to_mtd(chip);
1325 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1326 
1327 	dev_dbg(this->dev, "page number is %d\n", page);
1328 	/* clear the OOB buffer */
1329 	memset(chip->oob_poi, ~0, mtd->oobsize);
1330 
1331 	/* Read out the conventional OOB. */
1332 	nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
1333 	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
1334 
1335 	/*
1336 	 * Now, we want to make sure the block mark is correct. In the
1337 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1338 	 * Otherwise, we need to explicitly read it.
1339 	 */
1340 	if (GPMI_IS_MX23(this)) {
1341 		/* Read the block mark into the first byte of the OOB buffer. */
1342 		nand_read_page_op(chip, page, 0, NULL, 0);
1343 		chip->oob_poi[0] = chip->legacy.read_byte(chip);
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1350 {
1351 	struct mtd_info *mtd = nand_to_mtd(chip);
1352 	struct mtd_oob_region of = { };
1353 
1354 	/* Do we have available oob area? */
1355 	mtd_ooblayout_free(mtd, 0, &of);
1356 	if (!of.length)
1357 		return -EPERM;
1358 
1359 	if (!nand_is_slc(chip))
1360 		return -EPERM;
1361 
1362 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1363 				 chip->oob_poi + of.offset, of.length);
1364 }
1365 
1366 /*
1367  * This function reads a NAND page without involving the ECC engine (no HW
1368  * ECC correction).
1369  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1370  * inline (interleaved with payload DATA), and do not align data chunk on
1371  * byte boundaries.
1372  * We thus need to take care moving the payload data and ECC bits stored in the
1373  * page into the provided buffers, which is why we're using gpmi_copy_bits.
1374  *
1375  * See set_geometry_by_ecc_info inline comments to have a full description
1376  * of the layout used by the GPMI controller.
1377  */
1378 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1379 				  int oob_required, int page)
1380 {
1381 	struct mtd_info *mtd = nand_to_mtd(chip);
1382 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1383 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1384 	int eccsize = nfc_geo->ecc_chunk_size;
1385 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1386 	u8 *tmp_buf = this->raw_buffer;
1387 	size_t src_bit_off;
1388 	size_t oob_bit_off;
1389 	size_t oob_byte_off;
1390 	uint8_t *oob = chip->oob_poi;
1391 	int step;
1392 
1393 	nand_read_page_op(chip, page, 0, tmp_buf,
1394 			  mtd->writesize + mtd->oobsize);
1395 
1396 	/*
1397 	 * If required, swap the bad block marker and the data stored in the
1398 	 * metadata section, so that we don't wrongly consider a block as bad.
1399 	 *
1400 	 * See the layout description for a detailed explanation on why this
1401 	 * is needed.
1402 	 */
1403 	if (this->swap_block_mark)
1404 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1405 
1406 	/*
1407 	 * Copy the metadata section into the oob buffer (this section is
1408 	 * guaranteed to be aligned on a byte boundary).
1409 	 */
1410 	if (oob_required)
1411 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1412 
1413 	oob_bit_off = nfc_geo->metadata_size * 8;
1414 	src_bit_off = oob_bit_off;
1415 
1416 	/* Extract interleaved payload data and ECC bits */
1417 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1418 		if (buf)
1419 			gpmi_copy_bits(buf, step * eccsize * 8,
1420 				       tmp_buf, src_bit_off,
1421 				       eccsize * 8);
1422 		src_bit_off += eccsize * 8;
1423 
1424 		/* Align last ECC block to align a byte boundary */
1425 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1426 		    (oob_bit_off + eccbits) % 8)
1427 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1428 
1429 		if (oob_required)
1430 			gpmi_copy_bits(oob, oob_bit_off,
1431 				       tmp_buf, src_bit_off,
1432 				       eccbits);
1433 
1434 		src_bit_off += eccbits;
1435 		oob_bit_off += eccbits;
1436 	}
1437 
1438 	if (oob_required) {
1439 		oob_byte_off = oob_bit_off / 8;
1440 
1441 		if (oob_byte_off < mtd->oobsize)
1442 			memcpy(oob + oob_byte_off,
1443 			       tmp_buf + mtd->writesize + oob_byte_off,
1444 			       mtd->oobsize - oob_byte_off);
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 /*
1451  * This function writes a NAND page without involving the ECC engine (no HW
1452  * ECC generation).
1453  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1454  * inline (interleaved with payload DATA), and do not align data chunk on
1455  * byte boundaries.
1456  * We thus need to take care moving the OOB area at the right place in the
1457  * final page, which is why we're using gpmi_copy_bits.
1458  *
1459  * See set_geometry_by_ecc_info inline comments to have a full description
1460  * of the layout used by the GPMI controller.
1461  */
1462 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1463 				   int oob_required, int page)
1464 {
1465 	struct mtd_info *mtd = nand_to_mtd(chip);
1466 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1467 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1468 	int eccsize = nfc_geo->ecc_chunk_size;
1469 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1470 	u8 *tmp_buf = this->raw_buffer;
1471 	uint8_t *oob = chip->oob_poi;
1472 	size_t dst_bit_off;
1473 	size_t oob_bit_off;
1474 	size_t oob_byte_off;
1475 	int step;
1476 
1477 	/*
1478 	 * Initialize all bits to 1 in case we don't have a buffer for the
1479 	 * payload or oob data in order to leave unspecified bits of data
1480 	 * to their initial state.
1481 	 */
1482 	if (!buf || !oob_required)
1483 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1484 
1485 	/*
1486 	 * First copy the metadata section (stored in oob buffer) at the
1487 	 * beginning of the page, as imposed by the GPMI layout.
1488 	 */
1489 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1490 	oob_bit_off = nfc_geo->metadata_size * 8;
1491 	dst_bit_off = oob_bit_off;
1492 
1493 	/* Interleave payload data and ECC bits */
1494 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1495 		if (buf)
1496 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1497 				       buf, step * eccsize * 8, eccsize * 8);
1498 		dst_bit_off += eccsize * 8;
1499 
1500 		/* Align last ECC block to align a byte boundary */
1501 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1502 		    (oob_bit_off + eccbits) % 8)
1503 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1504 
1505 		if (oob_required)
1506 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1507 				       oob, oob_bit_off, eccbits);
1508 
1509 		dst_bit_off += eccbits;
1510 		oob_bit_off += eccbits;
1511 	}
1512 
1513 	oob_byte_off = oob_bit_off / 8;
1514 
1515 	if (oob_required && oob_byte_off < mtd->oobsize)
1516 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1517 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1518 
1519 	/*
1520 	 * If required, swap the bad block marker and the first byte of the
1521 	 * metadata section, so that we don't modify the bad block marker.
1522 	 *
1523 	 * See the layout description for a detailed explanation on why this
1524 	 * is needed.
1525 	 */
1526 	if (this->swap_block_mark)
1527 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1528 
1529 	return nand_prog_page_op(chip, page, 0, tmp_buf,
1530 				 mtd->writesize + mtd->oobsize);
1531 }
1532 
1533 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1534 {
1535 	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1536 }
1537 
1538 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1539 {
1540 	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1541 }
1542 
1543 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1544 {
1545 	struct mtd_info *mtd = nand_to_mtd(chip);
1546 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1547 	int ret = 0;
1548 	uint8_t *block_mark;
1549 	int column, page, chipnr;
1550 
1551 	chipnr = (int)(ofs >> chip->chip_shift);
1552 	chip->select_chip(chip, chipnr);
1553 
1554 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1555 
1556 	/* Write the block mark. */
1557 	block_mark = this->data_buffer_dma;
1558 	block_mark[0] = 0; /* bad block marker */
1559 
1560 	/* Shift to get page */
1561 	page = (int)(ofs >> chip->page_shift);
1562 
1563 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1564 
1565 	chip->select_chip(chip, -1);
1566 
1567 	return ret;
1568 }
1569 
1570 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1571 {
1572 	struct boot_rom_geometry *geometry = &this->rom_geometry;
1573 
1574 	/*
1575 	 * Set the boot block stride size.
1576 	 *
1577 	 * In principle, we should be reading this from the OTP bits, since
1578 	 * that's where the ROM is going to get it. In fact, we don't have any
1579 	 * way to read the OTP bits, so we go with the default and hope for the
1580 	 * best.
1581 	 */
1582 	geometry->stride_size_in_pages = 64;
1583 
1584 	/*
1585 	 * Set the search area stride exponent.
1586 	 *
1587 	 * In principle, we should be reading this from the OTP bits, since
1588 	 * that's where the ROM is going to get it. In fact, we don't have any
1589 	 * way to read the OTP bits, so we go with the default and hope for the
1590 	 * best.
1591 	 */
1592 	geometry->search_area_stride_exponent = 2;
1593 	return 0;
1594 }
1595 
1596 static const char  *fingerprint = "STMP";
1597 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1598 {
1599 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1600 	struct device *dev = this->dev;
1601 	struct nand_chip *chip = &this->nand;
1602 	unsigned int search_area_size_in_strides;
1603 	unsigned int stride;
1604 	unsigned int page;
1605 	uint8_t *buffer = chip->data_buf;
1606 	int saved_chip_number;
1607 	int found_an_ncb_fingerprint = false;
1608 
1609 	/* Compute the number of strides in a search area. */
1610 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1611 
1612 	saved_chip_number = this->current_chip;
1613 	chip->select_chip(chip, 0);
1614 
1615 	/*
1616 	 * Loop through the first search area, looking for the NCB fingerprint.
1617 	 */
1618 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1619 
1620 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1621 		/* Compute the page addresses. */
1622 		page = stride * rom_geo->stride_size_in_pages;
1623 
1624 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1625 
1626 		/*
1627 		 * Read the NCB fingerprint. The fingerprint is four bytes long
1628 		 * and starts in the 12th byte of the page.
1629 		 */
1630 		nand_read_page_op(chip, page, 12, NULL, 0);
1631 		chip->legacy.read_buf(chip, buffer, strlen(fingerprint));
1632 
1633 		/* Look for the fingerprint. */
1634 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1635 			found_an_ncb_fingerprint = true;
1636 			break;
1637 		}
1638 
1639 	}
1640 
1641 	chip->select_chip(chip, saved_chip_number);
1642 
1643 	if (found_an_ncb_fingerprint)
1644 		dev_dbg(dev, "\tFound a fingerprint\n");
1645 	else
1646 		dev_dbg(dev, "\tNo fingerprint found\n");
1647 	return found_an_ncb_fingerprint;
1648 }
1649 
1650 /* Writes a transcription stamp. */
1651 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1652 {
1653 	struct device *dev = this->dev;
1654 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1655 	struct nand_chip *chip = &this->nand;
1656 	struct mtd_info *mtd = nand_to_mtd(chip);
1657 	unsigned int block_size_in_pages;
1658 	unsigned int search_area_size_in_strides;
1659 	unsigned int search_area_size_in_pages;
1660 	unsigned int search_area_size_in_blocks;
1661 	unsigned int block;
1662 	unsigned int stride;
1663 	unsigned int page;
1664 	uint8_t      *buffer = chip->data_buf;
1665 	int saved_chip_number;
1666 	int status;
1667 
1668 	/* Compute the search area geometry. */
1669 	block_size_in_pages = mtd->erasesize / mtd->writesize;
1670 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1671 	search_area_size_in_pages = search_area_size_in_strides *
1672 					rom_geo->stride_size_in_pages;
1673 	search_area_size_in_blocks =
1674 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
1675 				    block_size_in_pages;
1676 
1677 	dev_dbg(dev, "Search Area Geometry :\n");
1678 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1679 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1680 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1681 
1682 	/* Select chip 0. */
1683 	saved_chip_number = this->current_chip;
1684 	chip->select_chip(chip, 0);
1685 
1686 	/* Loop over blocks in the first search area, erasing them. */
1687 	dev_dbg(dev, "Erasing the search area...\n");
1688 
1689 	for (block = 0; block < search_area_size_in_blocks; block++) {
1690 		/* Erase this block. */
1691 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
1692 		status = nand_erase_op(chip, block);
1693 		if (status)
1694 			dev_err(dev, "[%s] Erase failed.\n", __func__);
1695 	}
1696 
1697 	/* Write the NCB fingerprint into the page buffer. */
1698 	memset(buffer, ~0, mtd->writesize);
1699 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1700 
1701 	/* Loop through the first search area, writing NCB fingerprints. */
1702 	dev_dbg(dev, "Writing NCB fingerprints...\n");
1703 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1704 		/* Compute the page addresses. */
1705 		page = stride * rom_geo->stride_size_in_pages;
1706 
1707 		/* Write the first page of the current stride. */
1708 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1709 
1710 		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
1711 		if (status)
1712 			dev_err(dev, "[%s] Write failed.\n", __func__);
1713 	}
1714 
1715 	/* Deselect chip 0. */
1716 	chip->select_chip(chip, saved_chip_number);
1717 	return 0;
1718 }
1719 
1720 static int mx23_boot_init(struct gpmi_nand_data  *this)
1721 {
1722 	struct device *dev = this->dev;
1723 	struct nand_chip *chip = &this->nand;
1724 	struct mtd_info *mtd = nand_to_mtd(chip);
1725 	unsigned int block_count;
1726 	unsigned int block;
1727 	int     chipnr;
1728 	int     page;
1729 	loff_t  byte;
1730 	uint8_t block_mark;
1731 	int     ret = 0;
1732 
1733 	/*
1734 	 * If control arrives here, we can't use block mark swapping, which
1735 	 * means we're forced to use transcription. First, scan for the
1736 	 * transcription stamp. If we find it, then we don't have to do
1737 	 * anything -- the block marks are already transcribed.
1738 	 */
1739 	if (mx23_check_transcription_stamp(this))
1740 		return 0;
1741 
1742 	/*
1743 	 * If control arrives here, we couldn't find a transcription stamp, so
1744 	 * so we presume the block marks are in the conventional location.
1745 	 */
1746 	dev_dbg(dev, "Transcribing bad block marks...\n");
1747 
1748 	/* Compute the number of blocks in the entire medium. */
1749 	block_count = chip->chipsize >> chip->phys_erase_shift;
1750 
1751 	/*
1752 	 * Loop over all the blocks in the medium, transcribing block marks as
1753 	 * we go.
1754 	 */
1755 	for (block = 0; block < block_count; block++) {
1756 		/*
1757 		 * Compute the chip, page and byte addresses for this block's
1758 		 * conventional mark.
1759 		 */
1760 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1761 		page = block << (chip->phys_erase_shift - chip->page_shift);
1762 		byte = block <<  chip->phys_erase_shift;
1763 
1764 		/* Send the command to read the conventional block mark. */
1765 		chip->select_chip(chip, chipnr);
1766 		nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
1767 		block_mark = chip->legacy.read_byte(chip);
1768 		chip->select_chip(chip, -1);
1769 
1770 		/*
1771 		 * Check if the block is marked bad. If so, we need to mark it
1772 		 * again, but this time the result will be a mark in the
1773 		 * location where we transcribe block marks.
1774 		 */
1775 		if (block_mark != 0xff) {
1776 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
1777 			ret = chip->legacy.block_markbad(chip, byte);
1778 			if (ret)
1779 				dev_err(dev,
1780 					"Failed to mark block bad with ret %d\n",
1781 					ret);
1782 		}
1783 	}
1784 
1785 	/* Write the stamp that indicates we've transcribed the block marks. */
1786 	mx23_write_transcription_stamp(this);
1787 	return 0;
1788 }
1789 
1790 static int nand_boot_init(struct gpmi_nand_data  *this)
1791 {
1792 	nand_boot_set_geometry(this);
1793 
1794 	/* This is ROM arch-specific initilization before the BBT scanning. */
1795 	if (GPMI_IS_MX23(this))
1796 		return mx23_boot_init(this);
1797 	return 0;
1798 }
1799 
1800 static int gpmi_set_geometry(struct gpmi_nand_data *this)
1801 {
1802 	int ret;
1803 
1804 	/* Free the temporary DMA memory for reading ID. */
1805 	gpmi_free_dma_buffer(this);
1806 
1807 	/* Set up the NFC geometry which is used by BCH. */
1808 	ret = bch_set_geometry(this);
1809 	if (ret) {
1810 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
1811 		return ret;
1812 	}
1813 
1814 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
1815 	return gpmi_alloc_dma_buffer(this);
1816 }
1817 
1818 static int gpmi_init_last(struct gpmi_nand_data *this)
1819 {
1820 	struct nand_chip *chip = &this->nand;
1821 	struct mtd_info *mtd = nand_to_mtd(chip);
1822 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1823 	struct bch_geometry *bch_geo = &this->bch_geometry;
1824 	int ret;
1825 
1826 	/* Set up the medium geometry */
1827 	ret = gpmi_set_geometry(this);
1828 	if (ret)
1829 		return ret;
1830 
1831 	/* Init the nand_ecc_ctrl{} */
1832 	ecc->read_page	= gpmi_ecc_read_page;
1833 	ecc->write_page	= gpmi_ecc_write_page;
1834 	ecc->read_oob	= gpmi_ecc_read_oob;
1835 	ecc->write_oob	= gpmi_ecc_write_oob;
1836 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
1837 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
1838 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
1839 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
1840 	ecc->mode	= NAND_ECC_HW;
1841 	ecc->size	= bch_geo->ecc_chunk_size;
1842 	ecc->strength	= bch_geo->ecc_strength;
1843 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
1844 
1845 	/*
1846 	 * We only enable the subpage read when:
1847 	 *  (1) the chip is imx6, and
1848 	 *  (2) the size of the ECC parity is byte aligned.
1849 	 */
1850 	if (GPMI_IS_MX6(this) &&
1851 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
1852 		ecc->read_subpage = gpmi_ecc_read_subpage;
1853 		chip->options |= NAND_SUBPAGE_READ;
1854 	}
1855 
1856 	return 0;
1857 }
1858 
1859 static int gpmi_nand_attach_chip(struct nand_chip *chip)
1860 {
1861 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1862 	int ret;
1863 
1864 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1865 		chip->bbt_options |= NAND_BBT_NO_OOB;
1866 
1867 		if (of_property_read_bool(this->dev->of_node,
1868 					  "fsl,no-blockmark-swap"))
1869 			this->swap_block_mark = false;
1870 	}
1871 	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
1872 		this->swap_block_mark ? "en" : "dis");
1873 
1874 	ret = gpmi_init_last(this);
1875 	if (ret)
1876 		return ret;
1877 
1878 	chip->options |= NAND_SKIP_BBTSCAN;
1879 
1880 	return 0;
1881 }
1882 
1883 static const struct nand_controller_ops gpmi_nand_controller_ops = {
1884 	.attach_chip = gpmi_nand_attach_chip,
1885 };
1886 
1887 static int gpmi_nand_init(struct gpmi_nand_data *this)
1888 {
1889 	struct nand_chip *chip = &this->nand;
1890 	struct mtd_info  *mtd = nand_to_mtd(chip);
1891 	int ret;
1892 
1893 	/* init current chip */
1894 	this->current_chip	= -1;
1895 
1896 	/* init the MTD data structures */
1897 	mtd->name		= "gpmi-nand";
1898 	mtd->dev.parent		= this->dev;
1899 
1900 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1901 	nand_set_controller_data(chip, this);
1902 	nand_set_flash_node(chip, this->pdev->dev.of_node);
1903 	chip->select_chip	= gpmi_select_chip;
1904 	chip->setup_data_interface = gpmi_setup_data_interface;
1905 	chip->legacy.cmd_ctrl	= gpmi_cmd_ctrl;
1906 	chip->legacy.dev_ready	= gpmi_dev_ready;
1907 	chip->legacy.read_byte	= gpmi_read_byte;
1908 	chip->legacy.read_buf	= gpmi_read_buf;
1909 	chip->legacy.write_buf	= gpmi_write_buf;
1910 	chip->badblock_pattern	= &gpmi_bbt_descr;
1911 	chip->legacy.block_markbad = gpmi_block_markbad;
1912 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
1913 
1914 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1915 	this->swap_block_mark = !GPMI_IS_MX23(this);
1916 
1917 	/*
1918 	 * Allocate a temporary DMA buffer for reading ID in the
1919 	 * nand_scan_ident().
1920 	 */
1921 	this->bch_geometry.payload_size = 1024;
1922 	this->bch_geometry.auxiliary_size = 128;
1923 	ret = gpmi_alloc_dma_buffer(this);
1924 	if (ret)
1925 		goto err_out;
1926 
1927 	chip->dummy_controller.ops = &gpmi_nand_controller_ops;
1928 	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
1929 	if (ret)
1930 		goto err_out;
1931 
1932 	ret = nand_boot_init(this);
1933 	if (ret)
1934 		goto err_nand_cleanup;
1935 	ret = nand_create_bbt(chip);
1936 	if (ret)
1937 		goto err_nand_cleanup;
1938 
1939 	ret = mtd_device_register(mtd, NULL, 0);
1940 	if (ret)
1941 		goto err_nand_cleanup;
1942 	return 0;
1943 
1944 err_nand_cleanup:
1945 	nand_cleanup(chip);
1946 err_out:
1947 	gpmi_free_dma_buffer(this);
1948 	return ret;
1949 }
1950 
1951 static const struct of_device_id gpmi_nand_id_table[] = {
1952 	{
1953 		.compatible = "fsl,imx23-gpmi-nand",
1954 		.data = &gpmi_devdata_imx23,
1955 	}, {
1956 		.compatible = "fsl,imx28-gpmi-nand",
1957 		.data = &gpmi_devdata_imx28,
1958 	}, {
1959 		.compatible = "fsl,imx6q-gpmi-nand",
1960 		.data = &gpmi_devdata_imx6q,
1961 	}, {
1962 		.compatible = "fsl,imx6sx-gpmi-nand",
1963 		.data = &gpmi_devdata_imx6sx,
1964 	}, {
1965 		.compatible = "fsl,imx7d-gpmi-nand",
1966 		.data = &gpmi_devdata_imx7d,
1967 	}, {}
1968 };
1969 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
1970 
1971 static int gpmi_nand_probe(struct platform_device *pdev)
1972 {
1973 	struct gpmi_nand_data *this;
1974 	const struct of_device_id *of_id;
1975 	int ret;
1976 
1977 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
1978 	if (!this)
1979 		return -ENOMEM;
1980 
1981 	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
1982 	if (of_id) {
1983 		this->devdata = of_id->data;
1984 	} else {
1985 		dev_err(&pdev->dev, "Failed to find the right device id.\n");
1986 		return -ENODEV;
1987 	}
1988 
1989 	platform_set_drvdata(pdev, this);
1990 	this->pdev  = pdev;
1991 	this->dev   = &pdev->dev;
1992 
1993 	ret = acquire_resources(this);
1994 	if (ret)
1995 		goto exit_acquire_resources;
1996 
1997 	ret = gpmi_init(this);
1998 	if (ret)
1999 		goto exit_nfc_init;
2000 
2001 	ret = gpmi_nand_init(this);
2002 	if (ret)
2003 		goto exit_nfc_init;
2004 
2005 	dev_info(this->dev, "driver registered.\n");
2006 
2007 	return 0;
2008 
2009 exit_nfc_init:
2010 	release_resources(this);
2011 exit_acquire_resources:
2012 
2013 	return ret;
2014 }
2015 
2016 static int gpmi_nand_remove(struct platform_device *pdev)
2017 {
2018 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2019 
2020 	nand_release(&this->nand);
2021 	gpmi_free_dma_buffer(this);
2022 	release_resources(this);
2023 	return 0;
2024 }
2025 
2026 #ifdef CONFIG_PM_SLEEP
2027 static int gpmi_pm_suspend(struct device *dev)
2028 {
2029 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2030 
2031 	release_dma_channels(this);
2032 	return 0;
2033 }
2034 
2035 static int gpmi_pm_resume(struct device *dev)
2036 {
2037 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2038 	int ret;
2039 
2040 	ret = acquire_dma_channels(this);
2041 	if (ret < 0)
2042 		return ret;
2043 
2044 	/* re-init the GPMI registers */
2045 	ret = gpmi_init(this);
2046 	if (ret) {
2047 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2048 		return ret;
2049 	}
2050 
2051 	/* re-init the BCH registers */
2052 	ret = bch_set_geometry(this);
2053 	if (ret) {
2054 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
2055 		return ret;
2056 	}
2057 
2058 	return 0;
2059 }
2060 #endif /* CONFIG_PM_SLEEP */
2061 
2062 static const struct dev_pm_ops gpmi_pm_ops = {
2063 	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2064 };
2065 
2066 static struct platform_driver gpmi_nand_driver = {
2067 	.driver = {
2068 		.name = "gpmi-nand",
2069 		.pm = &gpmi_pm_ops,
2070 		.of_match_table = gpmi_nand_id_table,
2071 	},
2072 	.probe   = gpmi_nand_probe,
2073 	.remove  = gpmi_nand_remove,
2074 };
2075 module_platform_driver(gpmi_nand_driver);
2076 
2077 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2078 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2079 MODULE_LICENSE("GPL");
2080