1 /* 2 * Freescale GPMI NAND Flash Driver 3 * 4 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. 5 * Copyright (C) 2008 Embedded Alley Solutions, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License along 18 * with this program; if not, write to the Free Software Foundation, Inc., 19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 20 */ 21 #include <linux/clk.h> 22 #include <linux/slab.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/interrupt.h> 25 #include <linux/module.h> 26 #include <linux/mtd/partitions.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include "gpmi-nand.h" 30 #include "bch-regs.h" 31 32 /* Resource names for the GPMI NAND driver. */ 33 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" 34 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" 35 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" 36 37 /* add our owner bbt descriptor */ 38 static uint8_t scan_ff_pattern[] = { 0xff }; 39 static struct nand_bbt_descr gpmi_bbt_descr = { 40 .options = 0, 41 .offs = 0, 42 .len = 1, 43 .pattern = scan_ff_pattern 44 }; 45 46 /* 47 * We may change the layout if we can get the ECC info from the datasheet, 48 * else we will use all the (page + OOB). 49 */ 50 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, 51 struct mtd_oob_region *oobregion) 52 { 53 struct nand_chip *chip = mtd_to_nand(mtd); 54 struct gpmi_nand_data *this = nand_get_controller_data(chip); 55 struct bch_geometry *geo = &this->bch_geometry; 56 57 if (section) 58 return -ERANGE; 59 60 oobregion->offset = 0; 61 oobregion->length = geo->page_size - mtd->writesize; 62 63 return 0; 64 } 65 66 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, 67 struct mtd_oob_region *oobregion) 68 { 69 struct nand_chip *chip = mtd_to_nand(mtd); 70 struct gpmi_nand_data *this = nand_get_controller_data(chip); 71 struct bch_geometry *geo = &this->bch_geometry; 72 73 if (section) 74 return -ERANGE; 75 76 /* The available oob size we have. */ 77 if (geo->page_size < mtd->writesize + mtd->oobsize) { 78 oobregion->offset = geo->page_size - mtd->writesize; 79 oobregion->length = mtd->oobsize - oobregion->offset; 80 } 81 82 return 0; 83 } 84 85 static const char * const gpmi_clks_for_mx2x[] = { 86 "gpmi_io", 87 }; 88 89 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { 90 .ecc = gpmi_ooblayout_ecc, 91 .free = gpmi_ooblayout_free, 92 }; 93 94 static const struct gpmi_devdata gpmi_devdata_imx23 = { 95 .type = IS_MX23, 96 .bch_max_ecc_strength = 20, 97 .max_chain_delay = 16000, 98 .clks = gpmi_clks_for_mx2x, 99 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 100 }; 101 102 static const struct gpmi_devdata gpmi_devdata_imx28 = { 103 .type = IS_MX28, 104 .bch_max_ecc_strength = 20, 105 .max_chain_delay = 16000, 106 .clks = gpmi_clks_for_mx2x, 107 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 108 }; 109 110 static const char * const gpmi_clks_for_mx6[] = { 111 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", 112 }; 113 114 static const struct gpmi_devdata gpmi_devdata_imx6q = { 115 .type = IS_MX6Q, 116 .bch_max_ecc_strength = 40, 117 .max_chain_delay = 12000, 118 .clks = gpmi_clks_for_mx6, 119 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 120 }; 121 122 static const struct gpmi_devdata gpmi_devdata_imx6sx = { 123 .type = IS_MX6SX, 124 .bch_max_ecc_strength = 62, 125 .max_chain_delay = 12000, 126 .clks = gpmi_clks_for_mx6, 127 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 128 }; 129 130 static const char * const gpmi_clks_for_mx7d[] = { 131 "gpmi_io", "gpmi_bch_apb", 132 }; 133 134 static const struct gpmi_devdata gpmi_devdata_imx7d = { 135 .type = IS_MX7D, 136 .bch_max_ecc_strength = 62, 137 .max_chain_delay = 12000, 138 .clks = gpmi_clks_for_mx7d, 139 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), 140 }; 141 142 static irqreturn_t bch_irq(int irq, void *cookie) 143 { 144 struct gpmi_nand_data *this = cookie; 145 146 gpmi_clear_bch(this); 147 complete(&this->bch_done); 148 return IRQ_HANDLED; 149 } 150 151 /* 152 * Calculate the ECC strength by hand: 153 * E : The ECC strength. 154 * G : the length of Galois Field. 155 * N : The chunk count of per page. 156 * O : the oobsize of the NAND chip. 157 * M : the metasize of per page. 158 * 159 * The formula is : 160 * E * G * N 161 * ------------ <= (O - M) 162 * 8 163 * 164 * So, we get E by: 165 * (O - M) * 8 166 * E <= ------------- 167 * G * N 168 */ 169 static inline int get_ecc_strength(struct gpmi_nand_data *this) 170 { 171 struct bch_geometry *geo = &this->bch_geometry; 172 struct mtd_info *mtd = nand_to_mtd(&this->nand); 173 int ecc_strength; 174 175 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) 176 / (geo->gf_len * geo->ecc_chunk_count); 177 178 /* We need the minor even number. */ 179 return round_down(ecc_strength, 2); 180 } 181 182 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) 183 { 184 struct bch_geometry *geo = &this->bch_geometry; 185 186 /* Do the sanity check. */ 187 if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) { 188 /* The mx23/mx28 only support the GF13. */ 189 if (geo->gf_len == 14) 190 return false; 191 } 192 return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; 193 } 194 195 /* 196 * If we can get the ECC information from the nand chip, we do not 197 * need to calculate them ourselves. 198 * 199 * We may have available oob space in this case. 200 */ 201 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this) 202 { 203 struct bch_geometry *geo = &this->bch_geometry; 204 struct nand_chip *chip = &this->nand; 205 struct mtd_info *mtd = nand_to_mtd(chip); 206 unsigned int block_mark_bit_offset; 207 208 if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) 209 return -EINVAL; 210 211 switch (chip->ecc_step_ds) { 212 case SZ_512: 213 geo->gf_len = 13; 214 break; 215 case SZ_1K: 216 geo->gf_len = 14; 217 break; 218 default: 219 dev_err(this->dev, 220 "unsupported nand chip. ecc bits : %d, ecc size : %d\n", 221 chip->ecc_strength_ds, chip->ecc_step_ds); 222 return -EINVAL; 223 } 224 geo->ecc_chunk_size = chip->ecc_step_ds; 225 geo->ecc_strength = round_up(chip->ecc_strength_ds, 2); 226 if (!gpmi_check_ecc(this)) 227 return -EINVAL; 228 229 /* Keep the C >= O */ 230 if (geo->ecc_chunk_size < mtd->oobsize) { 231 dev_err(this->dev, 232 "unsupported nand chip. ecc size: %d, oob size : %d\n", 233 chip->ecc_step_ds, mtd->oobsize); 234 return -EINVAL; 235 } 236 237 /* The default value, see comment in the legacy_set_geometry(). */ 238 geo->metadata_size = 10; 239 240 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 241 242 /* 243 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: 244 * 245 * | P | 246 * |<----------------------------------------------------->| 247 * | | 248 * | (Block Mark) | 249 * | P' | | | | 250 * |<-------------------------------------------->| D | | O' | 251 * | |<---->| |<--->| 252 * V V V V V 253 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 254 * | M | data |E| data |E| data |E| data |E| | 255 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 256 * ^ ^ 257 * | O | 258 * |<------------>| 259 * | | 260 * 261 * P : the page size for BCH module. 262 * E : The ECC strength. 263 * G : the length of Galois Field. 264 * N : The chunk count of per page. 265 * M : the metasize of per page. 266 * C : the ecc chunk size, aka the "data" above. 267 * P': the nand chip's page size. 268 * O : the nand chip's oob size. 269 * O': the free oob. 270 * 271 * The formula for P is : 272 * 273 * E * G * N 274 * P = ------------ + P' + M 275 * 8 276 * 277 * The position of block mark moves forward in the ECC-based view 278 * of page, and the delta is: 279 * 280 * E * G * (N - 1) 281 * D = (---------------- + M) 282 * 8 283 * 284 * Please see the comment in legacy_set_geometry(). 285 * With the condition C >= O , we still can get same result. 286 * So the bit position of the physical block mark within the ECC-based 287 * view of the page is : 288 * (P' - D) * 8 289 */ 290 geo->page_size = mtd->writesize + geo->metadata_size + 291 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 292 293 geo->payload_size = mtd->writesize; 294 295 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); 296 geo->auxiliary_size = ALIGN(geo->metadata_size, 4) 297 + ALIGN(geo->ecc_chunk_count, 4); 298 299 if (!this->swap_block_mark) 300 return 0; 301 302 /* For bit swap. */ 303 block_mark_bit_offset = mtd->writesize * 8 - 304 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 305 + geo->metadata_size * 8); 306 307 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 308 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 309 return 0; 310 } 311 312 static int legacy_set_geometry(struct gpmi_nand_data *this) 313 { 314 struct bch_geometry *geo = &this->bch_geometry; 315 struct mtd_info *mtd = nand_to_mtd(&this->nand); 316 unsigned int metadata_size; 317 unsigned int status_size; 318 unsigned int block_mark_bit_offset; 319 320 /* 321 * The size of the metadata can be changed, though we set it to 10 322 * bytes now. But it can't be too large, because we have to save 323 * enough space for BCH. 324 */ 325 geo->metadata_size = 10; 326 327 /* The default for the length of Galois Field. */ 328 geo->gf_len = 13; 329 330 /* The default for chunk size. */ 331 geo->ecc_chunk_size = 512; 332 while (geo->ecc_chunk_size < mtd->oobsize) { 333 geo->ecc_chunk_size *= 2; /* keep C >= O */ 334 geo->gf_len = 14; 335 } 336 337 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 338 339 /* We use the same ECC strength for all chunks. */ 340 geo->ecc_strength = get_ecc_strength(this); 341 if (!gpmi_check_ecc(this)) { 342 dev_err(this->dev, 343 "ecc strength: %d cannot be supported by the controller (%d)\n" 344 "try to use minimum ecc strength that NAND chip required\n", 345 geo->ecc_strength, 346 this->devdata->bch_max_ecc_strength); 347 return -EINVAL; 348 } 349 350 geo->page_size = mtd->writesize + geo->metadata_size + 351 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 352 geo->payload_size = mtd->writesize; 353 354 /* 355 * The auxiliary buffer contains the metadata and the ECC status. The 356 * metadata is padded to the nearest 32-bit boundary. The ECC status 357 * contains one byte for every ECC chunk, and is also padded to the 358 * nearest 32-bit boundary. 359 */ 360 metadata_size = ALIGN(geo->metadata_size, 4); 361 status_size = ALIGN(geo->ecc_chunk_count, 4); 362 363 geo->auxiliary_size = metadata_size + status_size; 364 geo->auxiliary_status_offset = metadata_size; 365 366 if (!this->swap_block_mark) 367 return 0; 368 369 /* 370 * We need to compute the byte and bit offsets of 371 * the physical block mark within the ECC-based view of the page. 372 * 373 * NAND chip with 2K page shows below: 374 * (Block Mark) 375 * | | 376 * | D | 377 * |<---->| 378 * V V 379 * +---+----------+-+----------+-+----------+-+----------+-+ 380 * | M | data |E| data |E| data |E| data |E| 381 * +---+----------+-+----------+-+----------+-+----------+-+ 382 * 383 * The position of block mark moves forward in the ECC-based view 384 * of page, and the delta is: 385 * 386 * E * G * (N - 1) 387 * D = (---------------- + M) 388 * 8 389 * 390 * With the formula to compute the ECC strength, and the condition 391 * : C >= O (C is the ecc chunk size) 392 * 393 * It's easy to deduce to the following result: 394 * 395 * E * G (O - M) C - M C - M 396 * ----------- <= ------- <= -------- < --------- 397 * 8 N N (N - 1) 398 * 399 * So, we get: 400 * 401 * E * G * (N - 1) 402 * D = (---------------- + M) < C 403 * 8 404 * 405 * The above inequality means the position of block mark 406 * within the ECC-based view of the page is still in the data chunk, 407 * and it's NOT in the ECC bits of the chunk. 408 * 409 * Use the following to compute the bit position of the 410 * physical block mark within the ECC-based view of the page: 411 * (page_size - D) * 8 412 * 413 * --Huang Shijie 414 */ 415 block_mark_bit_offset = mtd->writesize * 8 - 416 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 417 + geo->metadata_size * 8); 418 419 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 420 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 421 return 0; 422 } 423 424 int common_nfc_set_geometry(struct gpmi_nand_data *this) 425 { 426 if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) 427 || legacy_set_geometry(this)) 428 return set_geometry_by_ecc_info(this); 429 430 return 0; 431 } 432 433 struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) 434 { 435 /* We use the DMA channel 0 to access all the nand chips. */ 436 return this->dma_chans[0]; 437 } 438 439 /* Can we use the upper's buffer directly for DMA? */ 440 void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) 441 { 442 struct scatterlist *sgl = &this->data_sgl; 443 int ret; 444 445 /* first try to map the upper buffer directly */ 446 if (virt_addr_valid(this->upper_buf) && 447 !object_is_on_stack(this->upper_buf)) { 448 sg_init_one(sgl, this->upper_buf, this->upper_len); 449 ret = dma_map_sg(this->dev, sgl, 1, dr); 450 if (ret == 0) 451 goto map_fail; 452 453 this->direct_dma_map_ok = true; 454 return; 455 } 456 457 map_fail: 458 /* We have to use our own DMA buffer. */ 459 sg_init_one(sgl, this->data_buffer_dma, this->upper_len); 460 461 if (dr == DMA_TO_DEVICE) 462 memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len); 463 464 dma_map_sg(this->dev, sgl, 1, dr); 465 466 this->direct_dma_map_ok = false; 467 } 468 469 /* This will be called after the DMA operation is finished. */ 470 static void dma_irq_callback(void *param) 471 { 472 struct gpmi_nand_data *this = param; 473 struct completion *dma_c = &this->dma_done; 474 475 switch (this->dma_type) { 476 case DMA_FOR_COMMAND: 477 dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); 478 break; 479 480 case DMA_FOR_READ_DATA: 481 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); 482 if (this->direct_dma_map_ok == false) 483 memcpy(this->upper_buf, this->data_buffer_dma, 484 this->upper_len); 485 break; 486 487 case DMA_FOR_WRITE_DATA: 488 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); 489 break; 490 491 case DMA_FOR_READ_ECC_PAGE: 492 case DMA_FOR_WRITE_ECC_PAGE: 493 /* We have to wait the BCH interrupt to finish. */ 494 break; 495 496 default: 497 dev_err(this->dev, "in wrong DMA operation.\n"); 498 } 499 500 complete(dma_c); 501 } 502 503 int start_dma_without_bch_irq(struct gpmi_nand_data *this, 504 struct dma_async_tx_descriptor *desc) 505 { 506 struct completion *dma_c = &this->dma_done; 507 unsigned long timeout; 508 509 init_completion(dma_c); 510 511 desc->callback = dma_irq_callback; 512 desc->callback_param = this; 513 dmaengine_submit(desc); 514 dma_async_issue_pending(get_dma_chan(this)); 515 516 /* Wait for the interrupt from the DMA block. */ 517 timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); 518 if (!timeout) { 519 dev_err(this->dev, "DMA timeout, last DMA :%d\n", 520 this->last_dma_type); 521 gpmi_dump_info(this); 522 return -ETIMEDOUT; 523 } 524 return 0; 525 } 526 527 /* 528 * This function is used in BCH reading or BCH writing pages. 529 * It will wait for the BCH interrupt as long as ONE second. 530 * Actually, we must wait for two interrupts : 531 * [1] firstly the DMA interrupt and 532 * [2] secondly the BCH interrupt. 533 */ 534 int start_dma_with_bch_irq(struct gpmi_nand_data *this, 535 struct dma_async_tx_descriptor *desc) 536 { 537 struct completion *bch_c = &this->bch_done; 538 unsigned long timeout; 539 540 /* Prepare to receive an interrupt from the BCH block. */ 541 init_completion(bch_c); 542 543 /* start the DMA */ 544 start_dma_without_bch_irq(this, desc); 545 546 /* Wait for the interrupt from the BCH block. */ 547 timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); 548 if (!timeout) { 549 dev_err(this->dev, "BCH timeout, last DMA :%d\n", 550 this->last_dma_type); 551 gpmi_dump_info(this); 552 return -ETIMEDOUT; 553 } 554 return 0; 555 } 556 557 static int acquire_register_block(struct gpmi_nand_data *this, 558 const char *res_name) 559 { 560 struct platform_device *pdev = this->pdev; 561 struct resources *res = &this->resources; 562 struct resource *r; 563 void __iomem *p; 564 565 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); 566 p = devm_ioremap_resource(&pdev->dev, r); 567 if (IS_ERR(p)) 568 return PTR_ERR(p); 569 570 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) 571 res->gpmi_regs = p; 572 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) 573 res->bch_regs = p; 574 else 575 dev_err(this->dev, "unknown resource name : %s\n", res_name); 576 577 return 0; 578 } 579 580 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) 581 { 582 struct platform_device *pdev = this->pdev; 583 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; 584 struct resource *r; 585 int err; 586 587 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); 588 if (!r) { 589 dev_err(this->dev, "Can't get resource for %s\n", res_name); 590 return -ENODEV; 591 } 592 593 err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); 594 if (err) 595 dev_err(this->dev, "error requesting BCH IRQ\n"); 596 597 return err; 598 } 599 600 static void release_dma_channels(struct gpmi_nand_data *this) 601 { 602 unsigned int i; 603 for (i = 0; i < DMA_CHANS; i++) 604 if (this->dma_chans[i]) { 605 dma_release_channel(this->dma_chans[i]); 606 this->dma_chans[i] = NULL; 607 } 608 } 609 610 static int acquire_dma_channels(struct gpmi_nand_data *this) 611 { 612 struct platform_device *pdev = this->pdev; 613 struct dma_chan *dma_chan; 614 615 /* request dma channel */ 616 dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx"); 617 if (!dma_chan) { 618 dev_err(this->dev, "Failed to request DMA channel.\n"); 619 goto acquire_err; 620 } 621 622 this->dma_chans[0] = dma_chan; 623 return 0; 624 625 acquire_err: 626 release_dma_channels(this); 627 return -EINVAL; 628 } 629 630 static int gpmi_get_clks(struct gpmi_nand_data *this) 631 { 632 struct resources *r = &this->resources; 633 struct clk *clk; 634 int err, i; 635 636 for (i = 0; i < this->devdata->clks_count; i++) { 637 clk = devm_clk_get(this->dev, this->devdata->clks[i]); 638 if (IS_ERR(clk)) { 639 err = PTR_ERR(clk); 640 goto err_clock; 641 } 642 643 r->clock[i] = clk; 644 } 645 646 if (GPMI_IS_MX6(this)) 647 /* 648 * Set the default value for the gpmi clock. 649 * 650 * If you want to use the ONFI nand which is in the 651 * Synchronous Mode, you should change the clock as you need. 652 */ 653 clk_set_rate(r->clock[0], 22000000); 654 655 return 0; 656 657 err_clock: 658 dev_dbg(this->dev, "failed in finding the clocks.\n"); 659 return err; 660 } 661 662 static int acquire_resources(struct gpmi_nand_data *this) 663 { 664 int ret; 665 666 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); 667 if (ret) 668 goto exit_regs; 669 670 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); 671 if (ret) 672 goto exit_regs; 673 674 ret = acquire_bch_irq(this, bch_irq); 675 if (ret) 676 goto exit_regs; 677 678 ret = acquire_dma_channels(this); 679 if (ret) 680 goto exit_regs; 681 682 ret = gpmi_get_clks(this); 683 if (ret) 684 goto exit_clock; 685 return 0; 686 687 exit_clock: 688 release_dma_channels(this); 689 exit_regs: 690 return ret; 691 } 692 693 static void release_resources(struct gpmi_nand_data *this) 694 { 695 release_dma_channels(this); 696 } 697 698 static int read_page_prepare(struct gpmi_nand_data *this, 699 void *destination, unsigned length, 700 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, 701 void **use_virt, dma_addr_t *use_phys) 702 { 703 struct device *dev = this->dev; 704 705 if (virt_addr_valid(destination)) { 706 dma_addr_t dest_phys; 707 708 dest_phys = dma_map_single(dev, destination, 709 length, DMA_FROM_DEVICE); 710 if (dma_mapping_error(dev, dest_phys)) { 711 if (alt_size < length) { 712 dev_err(dev, "Alternate buffer is too small\n"); 713 return -ENOMEM; 714 } 715 goto map_failed; 716 } 717 *use_virt = destination; 718 *use_phys = dest_phys; 719 this->direct_dma_map_ok = true; 720 return 0; 721 } 722 723 map_failed: 724 *use_virt = alt_virt; 725 *use_phys = alt_phys; 726 this->direct_dma_map_ok = false; 727 return 0; 728 } 729 730 static inline void read_page_end(struct gpmi_nand_data *this, 731 void *destination, unsigned length, 732 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, 733 void *used_virt, dma_addr_t used_phys) 734 { 735 if (this->direct_dma_map_ok) 736 dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); 737 } 738 739 static inline void read_page_swap_end(struct gpmi_nand_data *this, 740 void *destination, unsigned length, 741 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, 742 void *used_virt, dma_addr_t used_phys) 743 { 744 if (!this->direct_dma_map_ok) 745 memcpy(destination, alt_virt, length); 746 } 747 748 static int send_page_prepare(struct gpmi_nand_data *this, 749 const void *source, unsigned length, 750 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, 751 const void **use_virt, dma_addr_t *use_phys) 752 { 753 struct device *dev = this->dev; 754 755 if (virt_addr_valid(source)) { 756 dma_addr_t source_phys; 757 758 source_phys = dma_map_single(dev, (void *)source, length, 759 DMA_TO_DEVICE); 760 if (dma_mapping_error(dev, source_phys)) { 761 if (alt_size < length) { 762 dev_err(dev, "Alternate buffer is too small\n"); 763 return -ENOMEM; 764 } 765 goto map_failed; 766 } 767 *use_virt = source; 768 *use_phys = source_phys; 769 return 0; 770 } 771 map_failed: 772 /* 773 * Copy the content of the source buffer into the alternate 774 * buffer and set up the return values accordingly. 775 */ 776 memcpy(alt_virt, source, length); 777 778 *use_virt = alt_virt; 779 *use_phys = alt_phys; 780 return 0; 781 } 782 783 static void send_page_end(struct gpmi_nand_data *this, 784 const void *source, unsigned length, 785 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, 786 const void *used_virt, dma_addr_t used_phys) 787 { 788 struct device *dev = this->dev; 789 if (used_virt == source) 790 dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); 791 } 792 793 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) 794 { 795 struct device *dev = this->dev; 796 797 if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) 798 dma_free_coherent(dev, this->page_buffer_size, 799 this->page_buffer_virt, 800 this->page_buffer_phys); 801 kfree(this->cmd_buffer); 802 kfree(this->data_buffer_dma); 803 kfree(this->raw_buffer); 804 805 this->cmd_buffer = NULL; 806 this->data_buffer_dma = NULL; 807 this->raw_buffer = NULL; 808 this->page_buffer_virt = NULL; 809 this->page_buffer_size = 0; 810 } 811 812 /* Allocate the DMA buffers */ 813 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) 814 { 815 struct bch_geometry *geo = &this->bch_geometry; 816 struct device *dev = this->dev; 817 struct mtd_info *mtd = nand_to_mtd(&this->nand); 818 819 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ 820 this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); 821 if (this->cmd_buffer == NULL) 822 goto error_alloc; 823 824 /* 825 * [2] Allocate a read/write data buffer. 826 * The gpmi_alloc_dma_buffer can be called twice. 827 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer 828 * is called before the nand_scan_ident; and we allocate a buffer 829 * of the real NAND page size when the gpmi_alloc_dma_buffer is 830 * called after the nand_scan_ident. 831 */ 832 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, 833 GFP_DMA | GFP_KERNEL); 834 if (this->data_buffer_dma == NULL) 835 goto error_alloc; 836 837 /* 838 * [3] Allocate the page buffer. 839 * 840 * Both the payload buffer and the auxiliary buffer must appear on 841 * 32-bit boundaries. We presume the size of the payload buffer is a 842 * power of two and is much larger than four, which guarantees the 843 * auxiliary buffer will appear on a 32-bit boundary. 844 */ 845 this->page_buffer_size = geo->payload_size + geo->auxiliary_size; 846 this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, 847 &this->page_buffer_phys, GFP_DMA); 848 if (!this->page_buffer_virt) 849 goto error_alloc; 850 851 this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 852 if (!this->raw_buffer) 853 goto error_alloc; 854 855 /* Slice up the page buffer. */ 856 this->payload_virt = this->page_buffer_virt; 857 this->payload_phys = this->page_buffer_phys; 858 this->auxiliary_virt = this->payload_virt + geo->payload_size; 859 this->auxiliary_phys = this->payload_phys + geo->payload_size; 860 return 0; 861 862 error_alloc: 863 gpmi_free_dma_buffer(this); 864 return -ENOMEM; 865 } 866 867 static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) 868 { 869 struct nand_chip *chip = mtd_to_nand(mtd); 870 struct gpmi_nand_data *this = nand_get_controller_data(chip); 871 int ret; 872 873 /* 874 * Every operation begins with a command byte and a series of zero or 875 * more address bytes. These are distinguished by either the Address 876 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being 877 * asserted. When MTD is ready to execute the command, it will deassert 878 * both latch enables. 879 * 880 * Rather than run a separate DMA operation for every single byte, we 881 * queue them up and run a single DMA operation for the entire series 882 * of command and data bytes. NAND_CMD_NONE means the END of the queue. 883 */ 884 if ((ctrl & (NAND_ALE | NAND_CLE))) { 885 if (data != NAND_CMD_NONE) 886 this->cmd_buffer[this->command_length++] = data; 887 return; 888 } 889 890 if (!this->command_length) 891 return; 892 893 ret = gpmi_send_command(this); 894 if (ret) 895 dev_err(this->dev, "Chip: %u, Error %d\n", 896 this->current_chip, ret); 897 898 this->command_length = 0; 899 } 900 901 static int gpmi_dev_ready(struct mtd_info *mtd) 902 { 903 struct nand_chip *chip = mtd_to_nand(mtd); 904 struct gpmi_nand_data *this = nand_get_controller_data(chip); 905 906 return gpmi_is_ready(this, this->current_chip); 907 } 908 909 static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) 910 { 911 struct nand_chip *chip = mtd_to_nand(mtd); 912 struct gpmi_nand_data *this = nand_get_controller_data(chip); 913 int ret; 914 915 /* 916 * For power consumption matters, disable/enable the clock each time a 917 * die is selected/unselected. 918 */ 919 if (this->current_chip < 0 && chipnr >= 0) { 920 ret = gpmi_enable_clk(this); 921 if (ret) 922 dev_err(this->dev, "Failed to enable the clock\n"); 923 } else if (this->current_chip >= 0 && chipnr < 0) { 924 ret = gpmi_disable_clk(this); 925 if (ret) 926 dev_err(this->dev, "Failed to disable the clock\n"); 927 } 928 929 /* 930 * This driver currently supports only one NAND chip. Plus, dies share 931 * the same configuration. So once timings have been applied on the 932 * controller side, they will not change anymore. When the time will 933 * come, the check on must_apply_timings will have to be dropped. 934 */ 935 if (chipnr >= 0 && this->hw.must_apply_timings) { 936 this->hw.must_apply_timings = false; 937 gpmi_nfc_apply_timings(this); 938 } 939 940 this->current_chip = chipnr; 941 } 942 943 static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) 944 { 945 struct nand_chip *chip = mtd_to_nand(mtd); 946 struct gpmi_nand_data *this = nand_get_controller_data(chip); 947 948 dev_dbg(this->dev, "len is %d\n", len); 949 this->upper_buf = buf; 950 this->upper_len = len; 951 952 gpmi_read_data(this); 953 } 954 955 static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) 956 { 957 struct nand_chip *chip = mtd_to_nand(mtd); 958 struct gpmi_nand_data *this = nand_get_controller_data(chip); 959 960 dev_dbg(this->dev, "len is %d\n", len); 961 this->upper_buf = (uint8_t *)buf; 962 this->upper_len = len; 963 964 gpmi_send_data(this); 965 } 966 967 static uint8_t gpmi_read_byte(struct mtd_info *mtd) 968 { 969 struct nand_chip *chip = mtd_to_nand(mtd); 970 struct gpmi_nand_data *this = nand_get_controller_data(chip); 971 uint8_t *buf = this->data_buffer_dma; 972 973 gpmi_read_buf(mtd, buf, 1); 974 return buf[0]; 975 } 976 977 /* 978 * Handles block mark swapping. 979 * It can be called in swapping the block mark, or swapping it back, 980 * because the the operations are the same. 981 */ 982 static void block_mark_swapping(struct gpmi_nand_data *this, 983 void *payload, void *auxiliary) 984 { 985 struct bch_geometry *nfc_geo = &this->bch_geometry; 986 unsigned char *p; 987 unsigned char *a; 988 unsigned int bit; 989 unsigned char mask; 990 unsigned char from_data; 991 unsigned char from_oob; 992 993 if (!this->swap_block_mark) 994 return; 995 996 /* 997 * If control arrives here, we're swapping. Make some convenience 998 * variables. 999 */ 1000 bit = nfc_geo->block_mark_bit_offset; 1001 p = payload + nfc_geo->block_mark_byte_offset; 1002 a = auxiliary; 1003 1004 /* 1005 * Get the byte from the data area that overlays the block mark. Since 1006 * the ECC engine applies its own view to the bits in the page, the 1007 * physical block mark won't (in general) appear on a byte boundary in 1008 * the data. 1009 */ 1010 from_data = (p[0] >> bit) | (p[1] << (8 - bit)); 1011 1012 /* Get the byte from the OOB. */ 1013 from_oob = a[0]; 1014 1015 /* Swap them. */ 1016 a[0] = from_data; 1017 1018 mask = (0x1 << bit) - 1; 1019 p[0] = (p[0] & mask) | (from_oob << bit); 1020 1021 mask = ~0 << bit; 1022 p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); 1023 } 1024 1025 static int gpmi_ecc_read_page_data(struct nand_chip *chip, 1026 uint8_t *buf, int oob_required, 1027 int page) 1028 { 1029 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1030 struct bch_geometry *nfc_geo = &this->bch_geometry; 1031 struct mtd_info *mtd = nand_to_mtd(chip); 1032 void *payload_virt; 1033 dma_addr_t payload_phys; 1034 void *auxiliary_virt; 1035 dma_addr_t auxiliary_phys; 1036 unsigned int i; 1037 unsigned char *status; 1038 unsigned int max_bitflips = 0; 1039 int ret; 1040 1041 dev_dbg(this->dev, "page number is : %d\n", page); 1042 ret = read_page_prepare(this, buf, nfc_geo->payload_size, 1043 this->payload_virt, this->payload_phys, 1044 nfc_geo->payload_size, 1045 &payload_virt, &payload_phys); 1046 if (ret) { 1047 dev_err(this->dev, "Inadequate DMA buffer\n"); 1048 ret = -ENOMEM; 1049 return ret; 1050 } 1051 auxiliary_virt = this->auxiliary_virt; 1052 auxiliary_phys = this->auxiliary_phys; 1053 1054 /* go! */ 1055 ret = gpmi_read_page(this, payload_phys, auxiliary_phys); 1056 read_page_end(this, buf, nfc_geo->payload_size, 1057 this->payload_virt, this->payload_phys, 1058 nfc_geo->payload_size, 1059 payload_virt, payload_phys); 1060 if (ret) { 1061 dev_err(this->dev, "Error in ECC-based read: %d\n", ret); 1062 return ret; 1063 } 1064 1065 /* Loop over status bytes, accumulating ECC status. */ 1066 status = auxiliary_virt + nfc_geo->auxiliary_status_offset; 1067 1068 read_page_swap_end(this, buf, nfc_geo->payload_size, 1069 this->payload_virt, this->payload_phys, 1070 nfc_geo->payload_size, 1071 payload_virt, payload_phys); 1072 1073 for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { 1074 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) 1075 continue; 1076 1077 if (*status == STATUS_UNCORRECTABLE) { 1078 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1079 u8 *eccbuf = this->raw_buffer; 1080 int offset, bitoffset; 1081 int eccbytes; 1082 int flips; 1083 1084 /* Read ECC bytes into our internal raw_buffer */ 1085 offset = nfc_geo->metadata_size * 8; 1086 offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); 1087 offset -= eccbits; 1088 bitoffset = offset % 8; 1089 eccbytes = DIV_ROUND_UP(offset + eccbits, 8); 1090 offset /= 8; 1091 eccbytes -= offset; 1092 nand_change_read_column_op(chip, offset, eccbuf, 1093 eccbytes, false); 1094 1095 /* 1096 * ECC data are not byte aligned and we may have 1097 * in-band data in the first and last byte of 1098 * eccbuf. Set non-eccbits to one so that 1099 * nand_check_erased_ecc_chunk() does not count them 1100 * as bitflips. 1101 */ 1102 if (bitoffset) 1103 eccbuf[0] |= GENMASK(bitoffset - 1, 0); 1104 1105 bitoffset = (bitoffset + eccbits) % 8; 1106 if (bitoffset) 1107 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); 1108 1109 /* 1110 * The ECC hardware has an uncorrectable ECC status 1111 * code in case we have bitflips in an erased page. As 1112 * nothing was written into this subpage the ECC is 1113 * obviously wrong and we can not trust it. We assume 1114 * at this point that we are reading an erased page and 1115 * try to correct the bitflips in buffer up to 1116 * ecc_strength bitflips. If this is a page with random 1117 * data, we exceed this number of bitflips and have a 1118 * ECC failure. Otherwise we use the corrected buffer. 1119 */ 1120 if (i == 0) { 1121 /* The first block includes metadata */ 1122 flips = nand_check_erased_ecc_chunk( 1123 buf + i * nfc_geo->ecc_chunk_size, 1124 nfc_geo->ecc_chunk_size, 1125 eccbuf, eccbytes, 1126 auxiliary_virt, 1127 nfc_geo->metadata_size, 1128 nfc_geo->ecc_strength); 1129 } else { 1130 flips = nand_check_erased_ecc_chunk( 1131 buf + i * nfc_geo->ecc_chunk_size, 1132 nfc_geo->ecc_chunk_size, 1133 eccbuf, eccbytes, 1134 NULL, 0, 1135 nfc_geo->ecc_strength); 1136 } 1137 1138 if (flips > 0) { 1139 max_bitflips = max_t(unsigned int, max_bitflips, 1140 flips); 1141 mtd->ecc_stats.corrected += flips; 1142 continue; 1143 } 1144 1145 mtd->ecc_stats.failed++; 1146 continue; 1147 } 1148 1149 mtd->ecc_stats.corrected += *status; 1150 max_bitflips = max_t(unsigned int, max_bitflips, *status); 1151 } 1152 1153 /* handle the block mark swapping */ 1154 block_mark_swapping(this, buf, auxiliary_virt); 1155 1156 if (oob_required) { 1157 /* 1158 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() 1159 * for details about our policy for delivering the OOB. 1160 * 1161 * We fill the caller's buffer with set bits, and then copy the 1162 * block mark to th caller's buffer. Note that, if block mark 1163 * swapping was necessary, it has already been done, so we can 1164 * rely on the first byte of the auxiliary buffer to contain 1165 * the block mark. 1166 */ 1167 memset(chip->oob_poi, ~0, mtd->oobsize); 1168 chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; 1169 } 1170 1171 return max_bitflips; 1172 } 1173 1174 static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, 1175 uint8_t *buf, int oob_required, int page) 1176 { 1177 nand_read_page_op(chip, page, 0, NULL, 0); 1178 1179 return gpmi_ecc_read_page_data(chip, buf, oob_required, page); 1180 } 1181 1182 /* Fake a virtual small page for the subpage read */ 1183 static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, 1184 uint32_t offs, uint32_t len, uint8_t *buf, int page) 1185 { 1186 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1187 void __iomem *bch_regs = this->resources.bch_regs; 1188 struct bch_geometry old_geo = this->bch_geometry; 1189 struct bch_geometry *geo = &this->bch_geometry; 1190 int size = chip->ecc.size; /* ECC chunk size */ 1191 int meta, n, page_size; 1192 u32 r1_old, r2_old, r1_new, r2_new; 1193 unsigned int max_bitflips; 1194 int first, last, marker_pos; 1195 int ecc_parity_size; 1196 int col = 0; 1197 int old_swap_block_mark = this->swap_block_mark; 1198 1199 /* The size of ECC parity */ 1200 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1201 1202 /* Align it with the chunk size */ 1203 first = offs / size; 1204 last = (offs + len - 1) / size; 1205 1206 if (this->swap_block_mark) { 1207 /* 1208 * Find the chunk which contains the Block Marker. 1209 * If this chunk is in the range of [first, last], 1210 * we have to read out the whole page. 1211 * Why? since we had swapped the data at the position of Block 1212 * Marker to the metadata which is bound with the chunk 0. 1213 */ 1214 marker_pos = geo->block_mark_byte_offset / size; 1215 if (last >= marker_pos && first <= marker_pos) { 1216 dev_dbg(this->dev, 1217 "page:%d, first:%d, last:%d, marker at:%d\n", 1218 page, first, last, marker_pos); 1219 return gpmi_ecc_read_page(mtd, chip, buf, 0, page); 1220 } 1221 } 1222 1223 meta = geo->metadata_size; 1224 if (first) { 1225 col = meta + (size + ecc_parity_size) * first; 1226 meta = 0; 1227 buf = buf + first * size; 1228 } 1229 1230 nand_read_page_op(chip, page, col, NULL, 0); 1231 1232 /* Save the old environment */ 1233 r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0); 1234 r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1); 1235 1236 /* change the BCH registers and bch_geometry{} */ 1237 n = last - first + 1; 1238 page_size = meta + (size + ecc_parity_size) * n; 1239 1240 r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS | 1241 BM_BCH_FLASH0LAYOUT0_META_SIZE); 1242 r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) 1243 | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta); 1244 writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0); 1245 1246 r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE; 1247 r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size); 1248 writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1); 1249 1250 geo->ecc_chunk_count = n; 1251 geo->payload_size = n * size; 1252 geo->page_size = page_size; 1253 geo->auxiliary_status_offset = ALIGN(meta, 4); 1254 1255 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", 1256 page, offs, len, col, first, n, page_size); 1257 1258 /* Read the subpage now */ 1259 this->swap_block_mark = false; 1260 max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page); 1261 1262 /* Restore */ 1263 writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0); 1264 writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1); 1265 this->bch_geometry = old_geo; 1266 this->swap_block_mark = old_swap_block_mark; 1267 1268 return max_bitflips; 1269 } 1270 1271 static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, 1272 const uint8_t *buf, int oob_required, int page) 1273 { 1274 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1275 struct bch_geometry *nfc_geo = &this->bch_geometry; 1276 const void *payload_virt; 1277 dma_addr_t payload_phys; 1278 const void *auxiliary_virt; 1279 dma_addr_t auxiliary_phys; 1280 int ret; 1281 1282 dev_dbg(this->dev, "ecc write page.\n"); 1283 1284 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1285 1286 if (this->swap_block_mark) { 1287 /* 1288 * If control arrives here, we're doing block mark swapping. 1289 * Since we can't modify the caller's buffers, we must copy them 1290 * into our own. 1291 */ 1292 memcpy(this->payload_virt, buf, mtd->writesize); 1293 payload_virt = this->payload_virt; 1294 payload_phys = this->payload_phys; 1295 1296 memcpy(this->auxiliary_virt, chip->oob_poi, 1297 nfc_geo->auxiliary_size); 1298 auxiliary_virt = this->auxiliary_virt; 1299 auxiliary_phys = this->auxiliary_phys; 1300 1301 /* Handle block mark swapping. */ 1302 block_mark_swapping(this, 1303 (void *)payload_virt, (void *)auxiliary_virt); 1304 } else { 1305 /* 1306 * If control arrives here, we're not doing block mark swapping, 1307 * so we can to try and use the caller's buffers. 1308 */ 1309 ret = send_page_prepare(this, 1310 buf, mtd->writesize, 1311 this->payload_virt, this->payload_phys, 1312 nfc_geo->payload_size, 1313 &payload_virt, &payload_phys); 1314 if (ret) { 1315 dev_err(this->dev, "Inadequate payload DMA buffer\n"); 1316 return 0; 1317 } 1318 1319 ret = send_page_prepare(this, 1320 chip->oob_poi, mtd->oobsize, 1321 this->auxiliary_virt, this->auxiliary_phys, 1322 nfc_geo->auxiliary_size, 1323 &auxiliary_virt, &auxiliary_phys); 1324 if (ret) { 1325 dev_err(this->dev, "Inadequate auxiliary DMA buffer\n"); 1326 goto exit_auxiliary; 1327 } 1328 } 1329 1330 /* Ask the NFC. */ 1331 ret = gpmi_send_page(this, payload_phys, auxiliary_phys); 1332 if (ret) 1333 dev_err(this->dev, "Error in ECC-based write: %d\n", ret); 1334 1335 if (!this->swap_block_mark) { 1336 send_page_end(this, chip->oob_poi, mtd->oobsize, 1337 this->auxiliary_virt, this->auxiliary_phys, 1338 nfc_geo->auxiliary_size, 1339 auxiliary_virt, auxiliary_phys); 1340 exit_auxiliary: 1341 send_page_end(this, buf, mtd->writesize, 1342 this->payload_virt, this->payload_phys, 1343 nfc_geo->payload_size, 1344 payload_virt, payload_phys); 1345 } 1346 1347 if (ret) 1348 return ret; 1349 1350 return nand_prog_page_end_op(chip); 1351 } 1352 1353 /* 1354 * There are several places in this driver where we have to handle the OOB and 1355 * block marks. This is the function where things are the most complicated, so 1356 * this is where we try to explain it all. All the other places refer back to 1357 * here. 1358 * 1359 * These are the rules, in order of decreasing importance: 1360 * 1361 * 1) Nothing the caller does can be allowed to imperil the block mark. 1362 * 1363 * 2) In read operations, the first byte of the OOB we return must reflect the 1364 * true state of the block mark, no matter where that block mark appears in 1365 * the physical page. 1366 * 1367 * 3) ECC-based read operations return an OOB full of set bits (since we never 1368 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads 1369 * return). 1370 * 1371 * 4) "Raw" read operations return a direct view of the physical bytes in the 1372 * page, using the conventional definition of which bytes are data and which 1373 * are OOB. This gives the caller a way to see the actual, physical bytes 1374 * in the page, without the distortions applied by our ECC engine. 1375 * 1376 * 1377 * What we do for this specific read operation depends on two questions: 1378 * 1379 * 1) Are we doing a "raw" read, or an ECC-based read? 1380 * 1381 * 2) Are we using block mark swapping or transcription? 1382 * 1383 * There are four cases, illustrated by the following Karnaugh map: 1384 * 1385 * | Raw | ECC-based | 1386 * -------------+-------------------------+-------------------------+ 1387 * | Read the conventional | | 1388 * | OOB at the end of the | | 1389 * Swapping | page and return it. It | | 1390 * | contains exactly what | | 1391 * | we want. | Read the block mark and | 1392 * -------------+-------------------------+ return it in a buffer | 1393 * | Read the conventional | full of set bits. | 1394 * | OOB at the end of the | | 1395 * | page and also the block | | 1396 * Transcribing | mark in the metadata. | | 1397 * | Copy the block mark | | 1398 * | into the first byte of | | 1399 * | the OOB. | | 1400 * -------------+-------------------------+-------------------------+ 1401 * 1402 * Note that we break rule #4 in the Transcribing/Raw case because we're not 1403 * giving an accurate view of the actual, physical bytes in the page (we're 1404 * overwriting the block mark). That's OK because it's more important to follow 1405 * rule #2. 1406 * 1407 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not 1408 * easy. When reading a page, for example, the NAND Flash MTD code calls our 1409 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an 1410 * ECC-based or raw view of the page is implicit in which function it calls 1411 * (there is a similar pair of ECC-based/raw functions for writing). 1412 */ 1413 static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, 1414 int page) 1415 { 1416 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1417 1418 dev_dbg(this->dev, "page number is %d\n", page); 1419 /* clear the OOB buffer */ 1420 memset(chip->oob_poi, ~0, mtd->oobsize); 1421 1422 /* Read out the conventional OOB. */ 1423 nand_read_page_op(chip, page, mtd->writesize, NULL, 0); 1424 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); 1425 1426 /* 1427 * Now, we want to make sure the block mark is correct. In the 1428 * non-transcribing case (!GPMI_IS_MX23()), we already have it. 1429 * Otherwise, we need to explicitly read it. 1430 */ 1431 if (GPMI_IS_MX23(this)) { 1432 /* Read the block mark into the first byte of the OOB buffer. */ 1433 nand_read_page_op(chip, page, 0, NULL, 0); 1434 chip->oob_poi[0] = chip->read_byte(mtd); 1435 } 1436 1437 return 0; 1438 } 1439 1440 static int 1441 gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) 1442 { 1443 struct mtd_oob_region of = { }; 1444 1445 /* Do we have available oob area? */ 1446 mtd_ooblayout_free(mtd, 0, &of); 1447 if (!of.length) 1448 return -EPERM; 1449 1450 if (!nand_is_slc(chip)) 1451 return -EPERM; 1452 1453 return nand_prog_page_op(chip, page, mtd->writesize + of.offset, 1454 chip->oob_poi + of.offset, of.length); 1455 } 1456 1457 /* 1458 * This function reads a NAND page without involving the ECC engine (no HW 1459 * ECC correction). 1460 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1461 * inline (interleaved with payload DATA), and do not align data chunk on 1462 * byte boundaries. 1463 * We thus need to take care moving the payload data and ECC bits stored in the 1464 * page into the provided buffers, which is why we're using gpmi_copy_bits. 1465 * 1466 * See set_geometry_by_ecc_info inline comments to have a full description 1467 * of the layout used by the GPMI controller. 1468 */ 1469 static int gpmi_ecc_read_page_raw(struct mtd_info *mtd, 1470 struct nand_chip *chip, uint8_t *buf, 1471 int oob_required, int page) 1472 { 1473 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1474 struct bch_geometry *nfc_geo = &this->bch_geometry; 1475 int eccsize = nfc_geo->ecc_chunk_size; 1476 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1477 u8 *tmp_buf = this->raw_buffer; 1478 size_t src_bit_off; 1479 size_t oob_bit_off; 1480 size_t oob_byte_off; 1481 uint8_t *oob = chip->oob_poi; 1482 int step; 1483 1484 nand_read_page_op(chip, page, 0, tmp_buf, 1485 mtd->writesize + mtd->oobsize); 1486 1487 /* 1488 * If required, swap the bad block marker and the data stored in the 1489 * metadata section, so that we don't wrongly consider a block as bad. 1490 * 1491 * See the layout description for a detailed explanation on why this 1492 * is needed. 1493 */ 1494 if (this->swap_block_mark) 1495 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1496 1497 /* 1498 * Copy the metadata section into the oob buffer (this section is 1499 * guaranteed to be aligned on a byte boundary). 1500 */ 1501 if (oob_required) 1502 memcpy(oob, tmp_buf, nfc_geo->metadata_size); 1503 1504 oob_bit_off = nfc_geo->metadata_size * 8; 1505 src_bit_off = oob_bit_off; 1506 1507 /* Extract interleaved payload data and ECC bits */ 1508 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1509 if (buf) 1510 gpmi_copy_bits(buf, step * eccsize * 8, 1511 tmp_buf, src_bit_off, 1512 eccsize * 8); 1513 src_bit_off += eccsize * 8; 1514 1515 /* Align last ECC block to align a byte boundary */ 1516 if (step == nfc_geo->ecc_chunk_count - 1 && 1517 (oob_bit_off + eccbits) % 8) 1518 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1519 1520 if (oob_required) 1521 gpmi_copy_bits(oob, oob_bit_off, 1522 tmp_buf, src_bit_off, 1523 eccbits); 1524 1525 src_bit_off += eccbits; 1526 oob_bit_off += eccbits; 1527 } 1528 1529 if (oob_required) { 1530 oob_byte_off = oob_bit_off / 8; 1531 1532 if (oob_byte_off < mtd->oobsize) 1533 memcpy(oob + oob_byte_off, 1534 tmp_buf + mtd->writesize + oob_byte_off, 1535 mtd->oobsize - oob_byte_off); 1536 } 1537 1538 return 0; 1539 } 1540 1541 /* 1542 * This function writes a NAND page without involving the ECC engine (no HW 1543 * ECC generation). 1544 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1545 * inline (interleaved with payload DATA), and do not align data chunk on 1546 * byte boundaries. 1547 * We thus need to take care moving the OOB area at the right place in the 1548 * final page, which is why we're using gpmi_copy_bits. 1549 * 1550 * See set_geometry_by_ecc_info inline comments to have a full description 1551 * of the layout used by the GPMI controller. 1552 */ 1553 static int gpmi_ecc_write_page_raw(struct mtd_info *mtd, 1554 struct nand_chip *chip, 1555 const uint8_t *buf, 1556 int oob_required, int page) 1557 { 1558 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1559 struct bch_geometry *nfc_geo = &this->bch_geometry; 1560 int eccsize = nfc_geo->ecc_chunk_size; 1561 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1562 u8 *tmp_buf = this->raw_buffer; 1563 uint8_t *oob = chip->oob_poi; 1564 size_t dst_bit_off; 1565 size_t oob_bit_off; 1566 size_t oob_byte_off; 1567 int step; 1568 1569 /* 1570 * Initialize all bits to 1 in case we don't have a buffer for the 1571 * payload or oob data in order to leave unspecified bits of data 1572 * to their initial state. 1573 */ 1574 if (!buf || !oob_required) 1575 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); 1576 1577 /* 1578 * First copy the metadata section (stored in oob buffer) at the 1579 * beginning of the page, as imposed by the GPMI layout. 1580 */ 1581 memcpy(tmp_buf, oob, nfc_geo->metadata_size); 1582 oob_bit_off = nfc_geo->metadata_size * 8; 1583 dst_bit_off = oob_bit_off; 1584 1585 /* Interleave payload data and ECC bits */ 1586 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1587 if (buf) 1588 gpmi_copy_bits(tmp_buf, dst_bit_off, 1589 buf, step * eccsize * 8, eccsize * 8); 1590 dst_bit_off += eccsize * 8; 1591 1592 /* Align last ECC block to align a byte boundary */ 1593 if (step == nfc_geo->ecc_chunk_count - 1 && 1594 (oob_bit_off + eccbits) % 8) 1595 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1596 1597 if (oob_required) 1598 gpmi_copy_bits(tmp_buf, dst_bit_off, 1599 oob, oob_bit_off, eccbits); 1600 1601 dst_bit_off += eccbits; 1602 oob_bit_off += eccbits; 1603 } 1604 1605 oob_byte_off = oob_bit_off / 8; 1606 1607 if (oob_required && oob_byte_off < mtd->oobsize) 1608 memcpy(tmp_buf + mtd->writesize + oob_byte_off, 1609 oob + oob_byte_off, mtd->oobsize - oob_byte_off); 1610 1611 /* 1612 * If required, swap the bad block marker and the first byte of the 1613 * metadata section, so that we don't modify the bad block marker. 1614 * 1615 * See the layout description for a detailed explanation on why this 1616 * is needed. 1617 */ 1618 if (this->swap_block_mark) 1619 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1620 1621 return nand_prog_page_op(chip, page, 0, tmp_buf, 1622 mtd->writesize + mtd->oobsize); 1623 } 1624 1625 static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, 1626 int page) 1627 { 1628 return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page); 1629 } 1630 1631 static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, 1632 int page) 1633 { 1634 return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page); 1635 } 1636 1637 static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) 1638 { 1639 struct nand_chip *chip = mtd_to_nand(mtd); 1640 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1641 int ret = 0; 1642 uint8_t *block_mark; 1643 int column, page, chipnr; 1644 1645 chipnr = (int)(ofs >> chip->chip_shift); 1646 chip->select_chip(mtd, chipnr); 1647 1648 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; 1649 1650 /* Write the block mark. */ 1651 block_mark = this->data_buffer_dma; 1652 block_mark[0] = 0; /* bad block marker */ 1653 1654 /* Shift to get page */ 1655 page = (int)(ofs >> chip->page_shift); 1656 1657 ret = nand_prog_page_op(chip, page, column, block_mark, 1); 1658 1659 chip->select_chip(mtd, -1); 1660 1661 return ret; 1662 } 1663 1664 static int nand_boot_set_geometry(struct gpmi_nand_data *this) 1665 { 1666 struct boot_rom_geometry *geometry = &this->rom_geometry; 1667 1668 /* 1669 * Set the boot block stride size. 1670 * 1671 * In principle, we should be reading this from the OTP bits, since 1672 * that's where the ROM is going to get it. In fact, we don't have any 1673 * way to read the OTP bits, so we go with the default and hope for the 1674 * best. 1675 */ 1676 geometry->stride_size_in_pages = 64; 1677 1678 /* 1679 * Set the search area stride exponent. 1680 * 1681 * In principle, we should be reading this from the OTP bits, since 1682 * that's where the ROM is going to get it. In fact, we don't have any 1683 * way to read the OTP bits, so we go with the default and hope for the 1684 * best. 1685 */ 1686 geometry->search_area_stride_exponent = 2; 1687 return 0; 1688 } 1689 1690 static const char *fingerprint = "STMP"; 1691 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) 1692 { 1693 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1694 struct device *dev = this->dev; 1695 struct nand_chip *chip = &this->nand; 1696 struct mtd_info *mtd = nand_to_mtd(chip); 1697 unsigned int search_area_size_in_strides; 1698 unsigned int stride; 1699 unsigned int page; 1700 uint8_t *buffer = chip->data_buf; 1701 int saved_chip_number; 1702 int found_an_ncb_fingerprint = false; 1703 1704 /* Compute the number of strides in a search area. */ 1705 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1706 1707 saved_chip_number = this->current_chip; 1708 chip->select_chip(mtd, 0); 1709 1710 /* 1711 * Loop through the first search area, looking for the NCB fingerprint. 1712 */ 1713 dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); 1714 1715 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1716 /* Compute the page addresses. */ 1717 page = stride * rom_geo->stride_size_in_pages; 1718 1719 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); 1720 1721 /* 1722 * Read the NCB fingerprint. The fingerprint is four bytes long 1723 * and starts in the 12th byte of the page. 1724 */ 1725 nand_read_page_op(chip, page, 12, NULL, 0); 1726 chip->read_buf(mtd, buffer, strlen(fingerprint)); 1727 1728 /* Look for the fingerprint. */ 1729 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { 1730 found_an_ncb_fingerprint = true; 1731 break; 1732 } 1733 1734 } 1735 1736 chip->select_chip(mtd, saved_chip_number); 1737 1738 if (found_an_ncb_fingerprint) 1739 dev_dbg(dev, "\tFound a fingerprint\n"); 1740 else 1741 dev_dbg(dev, "\tNo fingerprint found\n"); 1742 return found_an_ncb_fingerprint; 1743 } 1744 1745 /* Writes a transcription stamp. */ 1746 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) 1747 { 1748 struct device *dev = this->dev; 1749 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1750 struct nand_chip *chip = &this->nand; 1751 struct mtd_info *mtd = nand_to_mtd(chip); 1752 unsigned int block_size_in_pages; 1753 unsigned int search_area_size_in_strides; 1754 unsigned int search_area_size_in_pages; 1755 unsigned int search_area_size_in_blocks; 1756 unsigned int block; 1757 unsigned int stride; 1758 unsigned int page; 1759 uint8_t *buffer = chip->data_buf; 1760 int saved_chip_number; 1761 int status; 1762 1763 /* Compute the search area geometry. */ 1764 block_size_in_pages = mtd->erasesize / mtd->writesize; 1765 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1766 search_area_size_in_pages = search_area_size_in_strides * 1767 rom_geo->stride_size_in_pages; 1768 search_area_size_in_blocks = 1769 (search_area_size_in_pages + (block_size_in_pages - 1)) / 1770 block_size_in_pages; 1771 1772 dev_dbg(dev, "Search Area Geometry :\n"); 1773 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); 1774 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); 1775 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); 1776 1777 /* Select chip 0. */ 1778 saved_chip_number = this->current_chip; 1779 chip->select_chip(mtd, 0); 1780 1781 /* Loop over blocks in the first search area, erasing them. */ 1782 dev_dbg(dev, "Erasing the search area...\n"); 1783 1784 for (block = 0; block < search_area_size_in_blocks; block++) { 1785 /* Erase this block. */ 1786 dev_dbg(dev, "\tErasing block 0x%x\n", block); 1787 status = nand_erase_op(chip, block); 1788 if (status) 1789 dev_err(dev, "[%s] Erase failed.\n", __func__); 1790 } 1791 1792 /* Write the NCB fingerprint into the page buffer. */ 1793 memset(buffer, ~0, mtd->writesize); 1794 memcpy(buffer + 12, fingerprint, strlen(fingerprint)); 1795 1796 /* Loop through the first search area, writing NCB fingerprints. */ 1797 dev_dbg(dev, "Writing NCB fingerprints...\n"); 1798 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1799 /* Compute the page addresses. */ 1800 page = stride * rom_geo->stride_size_in_pages; 1801 1802 /* Write the first page of the current stride. */ 1803 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); 1804 1805 status = chip->ecc.write_page_raw(mtd, chip, buffer, 0, page); 1806 if (status) 1807 dev_err(dev, "[%s] Write failed.\n", __func__); 1808 } 1809 1810 /* Deselect chip 0. */ 1811 chip->select_chip(mtd, saved_chip_number); 1812 return 0; 1813 } 1814 1815 static int mx23_boot_init(struct gpmi_nand_data *this) 1816 { 1817 struct device *dev = this->dev; 1818 struct nand_chip *chip = &this->nand; 1819 struct mtd_info *mtd = nand_to_mtd(chip); 1820 unsigned int block_count; 1821 unsigned int block; 1822 int chipnr; 1823 int page; 1824 loff_t byte; 1825 uint8_t block_mark; 1826 int ret = 0; 1827 1828 /* 1829 * If control arrives here, we can't use block mark swapping, which 1830 * means we're forced to use transcription. First, scan for the 1831 * transcription stamp. If we find it, then we don't have to do 1832 * anything -- the block marks are already transcribed. 1833 */ 1834 if (mx23_check_transcription_stamp(this)) 1835 return 0; 1836 1837 /* 1838 * If control arrives here, we couldn't find a transcription stamp, so 1839 * so we presume the block marks are in the conventional location. 1840 */ 1841 dev_dbg(dev, "Transcribing bad block marks...\n"); 1842 1843 /* Compute the number of blocks in the entire medium. */ 1844 block_count = chip->chipsize >> chip->phys_erase_shift; 1845 1846 /* 1847 * Loop over all the blocks in the medium, transcribing block marks as 1848 * we go. 1849 */ 1850 for (block = 0; block < block_count; block++) { 1851 /* 1852 * Compute the chip, page and byte addresses for this block's 1853 * conventional mark. 1854 */ 1855 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); 1856 page = block << (chip->phys_erase_shift - chip->page_shift); 1857 byte = block << chip->phys_erase_shift; 1858 1859 /* Send the command to read the conventional block mark. */ 1860 chip->select_chip(mtd, chipnr); 1861 nand_read_page_op(chip, page, mtd->writesize, NULL, 0); 1862 block_mark = chip->read_byte(mtd); 1863 chip->select_chip(mtd, -1); 1864 1865 /* 1866 * Check if the block is marked bad. If so, we need to mark it 1867 * again, but this time the result will be a mark in the 1868 * location where we transcribe block marks. 1869 */ 1870 if (block_mark != 0xff) { 1871 dev_dbg(dev, "Transcribing mark in block %u\n", block); 1872 ret = chip->block_markbad(mtd, byte); 1873 if (ret) 1874 dev_err(dev, 1875 "Failed to mark block bad with ret %d\n", 1876 ret); 1877 } 1878 } 1879 1880 /* Write the stamp that indicates we've transcribed the block marks. */ 1881 mx23_write_transcription_stamp(this); 1882 return 0; 1883 } 1884 1885 static int nand_boot_init(struct gpmi_nand_data *this) 1886 { 1887 nand_boot_set_geometry(this); 1888 1889 /* This is ROM arch-specific initilization before the BBT scanning. */ 1890 if (GPMI_IS_MX23(this)) 1891 return mx23_boot_init(this); 1892 return 0; 1893 } 1894 1895 static int gpmi_set_geometry(struct gpmi_nand_data *this) 1896 { 1897 int ret; 1898 1899 /* Free the temporary DMA memory for reading ID. */ 1900 gpmi_free_dma_buffer(this); 1901 1902 /* Set up the NFC geometry which is used by BCH. */ 1903 ret = bch_set_geometry(this); 1904 if (ret) { 1905 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); 1906 return ret; 1907 } 1908 1909 /* Alloc the new DMA buffers according to the pagesize and oobsize */ 1910 return gpmi_alloc_dma_buffer(this); 1911 } 1912 1913 static int gpmi_init_last(struct gpmi_nand_data *this) 1914 { 1915 struct nand_chip *chip = &this->nand; 1916 struct mtd_info *mtd = nand_to_mtd(chip); 1917 struct nand_ecc_ctrl *ecc = &chip->ecc; 1918 struct bch_geometry *bch_geo = &this->bch_geometry; 1919 int ret; 1920 1921 /* Set up the medium geometry */ 1922 ret = gpmi_set_geometry(this); 1923 if (ret) 1924 return ret; 1925 1926 /* Init the nand_ecc_ctrl{} */ 1927 ecc->read_page = gpmi_ecc_read_page; 1928 ecc->write_page = gpmi_ecc_write_page; 1929 ecc->read_oob = gpmi_ecc_read_oob; 1930 ecc->write_oob = gpmi_ecc_write_oob; 1931 ecc->read_page_raw = gpmi_ecc_read_page_raw; 1932 ecc->write_page_raw = gpmi_ecc_write_page_raw; 1933 ecc->read_oob_raw = gpmi_ecc_read_oob_raw; 1934 ecc->write_oob_raw = gpmi_ecc_write_oob_raw; 1935 ecc->mode = NAND_ECC_HW; 1936 ecc->size = bch_geo->ecc_chunk_size; 1937 ecc->strength = bch_geo->ecc_strength; 1938 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); 1939 1940 /* 1941 * We only enable the subpage read when: 1942 * (1) the chip is imx6, and 1943 * (2) the size of the ECC parity is byte aligned. 1944 */ 1945 if (GPMI_IS_MX6(this) && 1946 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { 1947 ecc->read_subpage = gpmi_ecc_read_subpage; 1948 chip->options |= NAND_SUBPAGE_READ; 1949 } 1950 1951 return 0; 1952 } 1953 1954 static int gpmi_nand_init(struct gpmi_nand_data *this) 1955 { 1956 struct nand_chip *chip = &this->nand; 1957 struct mtd_info *mtd = nand_to_mtd(chip); 1958 int ret; 1959 1960 /* init current chip */ 1961 this->current_chip = -1; 1962 1963 /* init the MTD data structures */ 1964 mtd->name = "gpmi-nand"; 1965 mtd->dev.parent = this->dev; 1966 1967 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ 1968 nand_set_controller_data(chip, this); 1969 nand_set_flash_node(chip, this->pdev->dev.of_node); 1970 chip->select_chip = gpmi_select_chip; 1971 chip->setup_data_interface = gpmi_setup_data_interface; 1972 chip->cmd_ctrl = gpmi_cmd_ctrl; 1973 chip->dev_ready = gpmi_dev_ready; 1974 chip->read_byte = gpmi_read_byte; 1975 chip->read_buf = gpmi_read_buf; 1976 chip->write_buf = gpmi_write_buf; 1977 chip->badblock_pattern = &gpmi_bbt_descr; 1978 chip->block_markbad = gpmi_block_markbad; 1979 chip->options |= NAND_NO_SUBPAGE_WRITE; 1980 1981 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ 1982 this->swap_block_mark = !GPMI_IS_MX23(this); 1983 1984 /* 1985 * Allocate a temporary DMA buffer for reading ID in the 1986 * nand_scan_ident(). 1987 */ 1988 this->bch_geometry.payload_size = 1024; 1989 this->bch_geometry.auxiliary_size = 128; 1990 ret = gpmi_alloc_dma_buffer(this); 1991 if (ret) 1992 goto err_out; 1993 1994 ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL); 1995 if (ret) 1996 goto err_out; 1997 1998 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 1999 chip->bbt_options |= NAND_BBT_NO_OOB; 2000 2001 if (of_property_read_bool(this->dev->of_node, 2002 "fsl,no-blockmark-swap")) 2003 this->swap_block_mark = false; 2004 } 2005 dev_dbg(this->dev, "Blockmark swapping %sabled\n", 2006 this->swap_block_mark ? "en" : "dis"); 2007 2008 ret = gpmi_init_last(this); 2009 if (ret) 2010 goto err_out; 2011 2012 chip->options |= NAND_SKIP_BBTSCAN; 2013 ret = nand_scan_tail(mtd); 2014 if (ret) 2015 goto err_out; 2016 2017 ret = nand_boot_init(this); 2018 if (ret) 2019 goto err_nand_cleanup; 2020 ret = chip->scan_bbt(mtd); 2021 if (ret) 2022 goto err_nand_cleanup; 2023 2024 ret = mtd_device_register(mtd, NULL, 0); 2025 if (ret) 2026 goto err_nand_cleanup; 2027 return 0; 2028 2029 err_nand_cleanup: 2030 nand_cleanup(chip); 2031 err_out: 2032 gpmi_free_dma_buffer(this); 2033 return ret; 2034 } 2035 2036 static const struct of_device_id gpmi_nand_id_table[] = { 2037 { 2038 .compatible = "fsl,imx23-gpmi-nand", 2039 .data = &gpmi_devdata_imx23, 2040 }, { 2041 .compatible = "fsl,imx28-gpmi-nand", 2042 .data = &gpmi_devdata_imx28, 2043 }, { 2044 .compatible = "fsl,imx6q-gpmi-nand", 2045 .data = &gpmi_devdata_imx6q, 2046 }, { 2047 .compatible = "fsl,imx6sx-gpmi-nand", 2048 .data = &gpmi_devdata_imx6sx, 2049 }, { 2050 .compatible = "fsl,imx7d-gpmi-nand", 2051 .data = &gpmi_devdata_imx7d, 2052 }, {} 2053 }; 2054 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); 2055 2056 static int gpmi_nand_probe(struct platform_device *pdev) 2057 { 2058 struct gpmi_nand_data *this; 2059 const struct of_device_id *of_id; 2060 int ret; 2061 2062 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); 2063 if (!this) 2064 return -ENOMEM; 2065 2066 of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); 2067 if (of_id) { 2068 this->devdata = of_id->data; 2069 } else { 2070 dev_err(&pdev->dev, "Failed to find the right device id.\n"); 2071 return -ENODEV; 2072 } 2073 2074 platform_set_drvdata(pdev, this); 2075 this->pdev = pdev; 2076 this->dev = &pdev->dev; 2077 2078 ret = acquire_resources(this); 2079 if (ret) 2080 goto exit_acquire_resources; 2081 2082 ret = gpmi_init(this); 2083 if (ret) 2084 goto exit_nfc_init; 2085 2086 ret = gpmi_nand_init(this); 2087 if (ret) 2088 goto exit_nfc_init; 2089 2090 dev_info(this->dev, "driver registered.\n"); 2091 2092 return 0; 2093 2094 exit_nfc_init: 2095 release_resources(this); 2096 exit_acquire_resources: 2097 2098 return ret; 2099 } 2100 2101 static int gpmi_nand_remove(struct platform_device *pdev) 2102 { 2103 struct gpmi_nand_data *this = platform_get_drvdata(pdev); 2104 2105 nand_release(nand_to_mtd(&this->nand)); 2106 gpmi_free_dma_buffer(this); 2107 release_resources(this); 2108 return 0; 2109 } 2110 2111 #ifdef CONFIG_PM_SLEEP 2112 static int gpmi_pm_suspend(struct device *dev) 2113 { 2114 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2115 2116 release_dma_channels(this); 2117 return 0; 2118 } 2119 2120 static int gpmi_pm_resume(struct device *dev) 2121 { 2122 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2123 int ret; 2124 2125 ret = acquire_dma_channels(this); 2126 if (ret < 0) 2127 return ret; 2128 2129 /* re-init the GPMI registers */ 2130 ret = gpmi_init(this); 2131 if (ret) { 2132 dev_err(this->dev, "Error setting GPMI : %d\n", ret); 2133 return ret; 2134 } 2135 2136 /* re-init the BCH registers */ 2137 ret = bch_set_geometry(this); 2138 if (ret) { 2139 dev_err(this->dev, "Error setting BCH : %d\n", ret); 2140 return ret; 2141 } 2142 2143 return 0; 2144 } 2145 #endif /* CONFIG_PM_SLEEP */ 2146 2147 static const struct dev_pm_ops gpmi_pm_ops = { 2148 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) 2149 }; 2150 2151 static struct platform_driver gpmi_nand_driver = { 2152 .driver = { 2153 .name = "gpmi-nand", 2154 .pm = &gpmi_pm_ops, 2155 .of_match_table = gpmi_nand_id_table, 2156 }, 2157 .probe = gpmi_nand_probe, 2158 .remove = gpmi_nand_remove, 2159 }; 2160 module_platform_driver(gpmi_nand_driver); 2161 2162 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 2163 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); 2164 MODULE_LICENSE("GPL"); 2165