1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22 
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
27 
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30 
31 #define MXS_SET_ADDR		0x4
32 #define MXS_CLR_ADDR		0x8
33 /*
34  * Clear the bit and poll it cleared.  This is usually called with
35  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36  * (bit 30).
37  */
38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40 	int timeout = 0x400;
41 
42 	/* clear the bit */
43 	writel(mask, addr + MXS_CLR_ADDR);
44 
45 	/*
46 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
47 	 * recommends to wait 1us.
48 	 */
49 	udelay(1);
50 
51 	/* poll the bit becoming clear */
52 	while ((readl(addr) & mask) && --timeout)
53 		/* nothing */;
54 
55 	return !timeout;
56 }
57 
58 #define MODULE_CLKGATE		(1 << 30)
59 #define MODULE_SFTRST		(1 << 31)
60 /*
61  * The current mxs_reset_block() will do two things:
62  *  [1] enable the module.
63  *  [2] reset the module.
64  *
65  * In most of the cases, it's ok.
66  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67  * If you try to soft reset the BCH block, it becomes unusable until
68  * the next hard reset. This case occurs in the NAND boot mode. When the board
69  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71  * You will see a DMA timeout in this case. The bug has been fixed
72  * in the following chips, such as MX28.
73  *
74  * To avoid this bug, just add a new parameter `just_enable` for
75  * the mxs_reset_block(), and rewrite it here.
76  */
77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79 	int ret;
80 	int timeout = 0x400;
81 
82 	/* clear and poll SFTRST */
83 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84 	if (unlikely(ret))
85 		goto error;
86 
87 	/* clear CLKGATE */
88 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89 
90 	if (!just_enable) {
91 		/* set SFTRST to reset the block */
92 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93 		udelay(1);
94 
95 		/* poll CLKGATE becoming set */
96 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97 			/* nothing */;
98 		if (unlikely(!timeout))
99 			goto error;
100 	}
101 
102 	/* clear and poll SFTRST */
103 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104 	if (unlikely(ret))
105 		goto error;
106 
107 	/* clear and poll CLKGATE */
108 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109 	if (unlikely(ret))
110 		goto error;
111 
112 	return 0;
113 
114 error:
115 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116 	return -ETIMEDOUT;
117 }
118 
119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121 	struct clk *clk;
122 	int ret;
123 	int i;
124 
125 	for (i = 0; i < GPMI_CLK_MAX; i++) {
126 		clk = this->resources.clock[i];
127 		if (!clk)
128 			break;
129 
130 		if (v) {
131 			ret = clk_prepare_enable(clk);
132 			if (ret)
133 				goto err_clk;
134 		} else {
135 			clk_disable_unprepare(clk);
136 		}
137 	}
138 	return 0;
139 
140 err_clk:
141 	for (; i > 0; i--)
142 		clk_disable_unprepare(this->resources.clock[i - 1]);
143 	return ret;
144 }
145 
146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148 	struct resources *r = &this->resources;
149 	int ret;
150 
151 	ret = gpmi_reset_block(r->gpmi_regs, false);
152 	if (ret)
153 		goto err_out;
154 
155 	/*
156 	 * Reset BCH here, too. We got failures otherwise :(
157 	 * See later BCH reset for explanation of MX23 and MX28 handling
158 	 */
159 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
160 	if (ret)
161 		goto err_out;
162 
163 	/* Choose NAND mode. */
164 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
165 
166 	/* Set the IRQ polarity. */
167 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
168 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
169 
170 	/* Disable Write-Protection. */
171 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
172 
173 	/* Select BCH ECC. */
174 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
175 
176 	/*
177 	 * Decouple the chip select from dma channel. We use dma0 for all
178 	 * the chips.
179 	 */
180 	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
181 
182 	return 0;
183 err_out:
184 	return ret;
185 }
186 
187 /* This function is very useful. It is called only when the bug occur. */
188 static void gpmi_dump_info(struct gpmi_nand_data *this)
189 {
190 	struct resources *r = &this->resources;
191 	struct bch_geometry *geo = &this->bch_geometry;
192 	u32 reg;
193 	int i;
194 
195 	dev_err(this->dev, "Show GPMI registers :\n");
196 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
197 		reg = readl(r->gpmi_regs + i * 0x10);
198 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
199 	}
200 
201 	/* start to print out the BCH info */
202 	dev_err(this->dev, "Show BCH registers :\n");
203 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
204 		reg = readl(r->bch_regs + i * 0x10);
205 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
206 	}
207 	dev_err(this->dev, "BCH Geometry :\n"
208 		"GF length              : %u\n"
209 		"ECC Strength           : %u\n"
210 		"Page Size in Bytes     : %u\n"
211 		"Metadata Size in Bytes : %u\n"
212 		"ECC Chunk Size in Bytes: %u\n"
213 		"ECC Chunk Count        : %u\n"
214 		"Payload Size in Bytes  : %u\n"
215 		"Auxiliary Size in Bytes: %u\n"
216 		"Auxiliary Status Offset: %u\n"
217 		"Block Mark Byte Offset : %u\n"
218 		"Block Mark Bit Offset  : %u\n",
219 		geo->gf_len,
220 		geo->ecc_strength,
221 		geo->page_size,
222 		geo->metadata_size,
223 		geo->ecc_chunk_size,
224 		geo->ecc_chunk_count,
225 		geo->payload_size,
226 		geo->auxiliary_size,
227 		geo->auxiliary_status_offset,
228 		geo->block_mark_byte_offset,
229 		geo->block_mark_bit_offset);
230 }
231 
232 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
233 {
234 	struct bch_geometry *geo = &this->bch_geometry;
235 
236 	/* Do the sanity check. */
237 	if (GPMI_IS_MXS(this)) {
238 		/* The mx23/mx28 only support the GF13. */
239 		if (geo->gf_len == 14)
240 			return false;
241 	}
242 	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
243 }
244 
245 /*
246  * If we can get the ECC information from the nand chip, we do not
247  * need to calculate them ourselves.
248  *
249  * We may have available oob space in this case.
250  */
251 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
252 				    unsigned int ecc_strength,
253 				    unsigned int ecc_step)
254 {
255 	struct bch_geometry *geo = &this->bch_geometry;
256 	struct nand_chip *chip = &this->nand;
257 	struct mtd_info *mtd = nand_to_mtd(chip);
258 	unsigned int block_mark_bit_offset;
259 
260 	switch (ecc_step) {
261 	case SZ_512:
262 		geo->gf_len = 13;
263 		break;
264 	case SZ_1K:
265 		geo->gf_len = 14;
266 		break;
267 	default:
268 		dev_err(this->dev,
269 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
270 			chip->base.eccreq.strength,
271 			chip->base.eccreq.step_size);
272 		return -EINVAL;
273 	}
274 	geo->ecc_chunk_size = ecc_step;
275 	geo->ecc_strength = round_up(ecc_strength, 2);
276 	if (!gpmi_check_ecc(this))
277 		return -EINVAL;
278 
279 	/* Keep the C >= O */
280 	if (geo->ecc_chunk_size < mtd->oobsize) {
281 		dev_err(this->dev,
282 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
283 			ecc_step, mtd->oobsize);
284 		return -EINVAL;
285 	}
286 
287 	/* The default value, see comment in the legacy_set_geometry(). */
288 	geo->metadata_size = 10;
289 
290 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
291 
292 	/*
293 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
294 	 *
295 	 *    |                          P                            |
296 	 *    |<----------------------------------------------------->|
297 	 *    |                                                       |
298 	 *    |                                        (Block Mark)   |
299 	 *    |                      P'                      |      | |     |
300 	 *    |<-------------------------------------------->|  D   | |  O' |
301 	 *    |                                              |<---->| |<--->|
302 	 *    V                                              V      V V     V
303 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
304 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
305 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
306 	 *                                                   ^              ^
307 	 *                                                   |      O       |
308 	 *                                                   |<------------>|
309 	 *                                                   |              |
310 	 *
311 	 *	P : the page size for BCH module.
312 	 *	E : The ECC strength.
313 	 *	G : the length of Galois Field.
314 	 *	N : The chunk count of per page.
315 	 *	M : the metasize of per page.
316 	 *	C : the ecc chunk size, aka the "data" above.
317 	 *	P': the nand chip's page size.
318 	 *	O : the nand chip's oob size.
319 	 *	O': the free oob.
320 	 *
321 	 *	The formula for P is :
322 	 *
323 	 *	            E * G * N
324 	 *	       P = ------------ + P' + M
325 	 *                      8
326 	 *
327 	 * The position of block mark moves forward in the ECC-based view
328 	 * of page, and the delta is:
329 	 *
330 	 *                   E * G * (N - 1)
331 	 *             D = (---------------- + M)
332 	 *                          8
333 	 *
334 	 * Please see the comment in legacy_set_geometry().
335 	 * With the condition C >= O , we still can get same result.
336 	 * So the bit position of the physical block mark within the ECC-based
337 	 * view of the page is :
338 	 *             (P' - D) * 8
339 	 */
340 	geo->page_size = mtd->writesize + geo->metadata_size +
341 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
342 
343 	geo->payload_size = mtd->writesize;
344 
345 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
346 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
347 				+ ALIGN(geo->ecc_chunk_count, 4);
348 
349 	if (!this->swap_block_mark)
350 		return 0;
351 
352 	/* For bit swap. */
353 	block_mark_bit_offset = mtd->writesize * 8 -
354 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
355 				+ geo->metadata_size * 8);
356 
357 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
358 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
359 	return 0;
360 }
361 
362 /*
363  *  Calculate the ECC strength by hand:
364  *	E : The ECC strength.
365  *	G : the length of Galois Field.
366  *	N : The chunk count of per page.
367  *	O : the oobsize of the NAND chip.
368  *	M : the metasize of per page.
369  *
370  *	The formula is :
371  *		E * G * N
372  *	      ------------ <= (O - M)
373  *                  8
374  *
375  *      So, we get E by:
376  *                    (O - M) * 8
377  *              E <= -------------
378  *                       G * N
379  */
380 static inline int get_ecc_strength(struct gpmi_nand_data *this)
381 {
382 	struct bch_geometry *geo = &this->bch_geometry;
383 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
384 	int ecc_strength;
385 
386 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
387 			/ (geo->gf_len * geo->ecc_chunk_count);
388 
389 	/* We need the minor even number. */
390 	return round_down(ecc_strength, 2);
391 }
392 
393 static int legacy_set_geometry(struct gpmi_nand_data *this)
394 {
395 	struct bch_geometry *geo = &this->bch_geometry;
396 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
397 	unsigned int metadata_size;
398 	unsigned int status_size;
399 	unsigned int block_mark_bit_offset;
400 
401 	/*
402 	 * The size of the metadata can be changed, though we set it to 10
403 	 * bytes now. But it can't be too large, because we have to save
404 	 * enough space for BCH.
405 	 */
406 	geo->metadata_size = 10;
407 
408 	/* The default for the length of Galois Field. */
409 	geo->gf_len = 13;
410 
411 	/* The default for chunk size. */
412 	geo->ecc_chunk_size = 512;
413 	while (geo->ecc_chunk_size < mtd->oobsize) {
414 		geo->ecc_chunk_size *= 2; /* keep C >= O */
415 		geo->gf_len = 14;
416 	}
417 
418 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
419 
420 	/* We use the same ECC strength for all chunks. */
421 	geo->ecc_strength = get_ecc_strength(this);
422 	if (!gpmi_check_ecc(this)) {
423 		dev_err(this->dev,
424 			"ecc strength: %d cannot be supported by the controller (%d)\n"
425 			"try to use minimum ecc strength that NAND chip required\n",
426 			geo->ecc_strength,
427 			this->devdata->bch_max_ecc_strength);
428 		return -EINVAL;
429 	}
430 
431 	geo->page_size = mtd->writesize + geo->metadata_size +
432 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
433 	geo->payload_size = mtd->writesize;
434 
435 	/*
436 	 * The auxiliary buffer contains the metadata and the ECC status. The
437 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
438 	 * contains one byte for every ECC chunk, and is also padded to the
439 	 * nearest 32-bit boundary.
440 	 */
441 	metadata_size = ALIGN(geo->metadata_size, 4);
442 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
443 
444 	geo->auxiliary_size = metadata_size + status_size;
445 	geo->auxiliary_status_offset = metadata_size;
446 
447 	if (!this->swap_block_mark)
448 		return 0;
449 
450 	/*
451 	 * We need to compute the byte and bit offsets of
452 	 * the physical block mark within the ECC-based view of the page.
453 	 *
454 	 * NAND chip with 2K page shows below:
455 	 *                                             (Block Mark)
456 	 *                                                   |      |
457 	 *                                                   |  D   |
458 	 *                                                   |<---->|
459 	 *                                                   V      V
460 	 *    +---+----------+-+----------+-+----------+-+----------+-+
461 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
462 	 *    +---+----------+-+----------+-+----------+-+----------+-+
463 	 *
464 	 * The position of block mark moves forward in the ECC-based view
465 	 * of page, and the delta is:
466 	 *
467 	 *                   E * G * (N - 1)
468 	 *             D = (---------------- + M)
469 	 *                          8
470 	 *
471 	 * With the formula to compute the ECC strength, and the condition
472 	 *       : C >= O         (C is the ecc chunk size)
473 	 *
474 	 * It's easy to deduce to the following result:
475 	 *
476 	 *         E * G       (O - M)      C - M         C - M
477 	 *      ----------- <= ------- <=  --------  <  ---------
478 	 *           8            N           N          (N - 1)
479 	 *
480 	 *  So, we get:
481 	 *
482 	 *                   E * G * (N - 1)
483 	 *             D = (---------------- + M) < C
484 	 *                          8
485 	 *
486 	 *  The above inequality means the position of block mark
487 	 *  within the ECC-based view of the page is still in the data chunk,
488 	 *  and it's NOT in the ECC bits of the chunk.
489 	 *
490 	 *  Use the following to compute the bit position of the
491 	 *  physical block mark within the ECC-based view of the page:
492 	 *          (page_size - D) * 8
493 	 *
494 	 *  --Huang Shijie
495 	 */
496 	block_mark_bit_offset = mtd->writesize * 8 -
497 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
498 				+ geo->metadata_size * 8);
499 
500 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
501 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
502 	return 0;
503 }
504 
505 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
506 {
507 	struct nand_chip *chip = &this->nand;
508 
509 	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
510 		return set_geometry_by_ecc_info(this, chip->ecc.strength,
511 						chip->ecc.size);
512 
513 	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
514 				|| legacy_set_geometry(this)) {
515 		if (!(chip->base.eccreq.strength > 0 &&
516 		      chip->base.eccreq.step_size > 0))
517 			return -EINVAL;
518 
519 		return set_geometry_by_ecc_info(this,
520 						chip->base.eccreq.strength,
521 						chip->base.eccreq.step_size);
522 	}
523 
524 	return 0;
525 }
526 
527 /* Configures the geometry for BCH.  */
528 static int bch_set_geometry(struct gpmi_nand_data *this)
529 {
530 	struct resources *r = &this->resources;
531 	int ret;
532 
533 	ret = common_nfc_set_geometry(this);
534 	if (ret)
535 		return ret;
536 
537 	ret = pm_runtime_get_sync(this->dev);
538 	if (ret < 0)
539 		return ret;
540 
541 	/*
542 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
543 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
544 	* and MX28.
545 	*/
546 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
547 	if (ret)
548 		goto err_out;
549 
550 	/* Set *all* chip selects to use layout 0. */
551 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
552 
553 	ret = 0;
554 err_out:
555 	pm_runtime_mark_last_busy(this->dev);
556 	pm_runtime_put_autosuspend(this->dev);
557 
558 	return ret;
559 }
560 
561 /*
562  * <1> Firstly, we should know what's the GPMI-clock means.
563  *     The GPMI-clock is the internal clock in the gpmi nand controller.
564  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
565  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
566  *
567  * <2> Secondly, we should know what's the frequency on the nand chip pins.
568  *     The frequency on the nand chip pins is derived from the GPMI-clock.
569  *     We can get it from the following equation:
570  *
571  *         F = G / (DS + DH)
572  *
573  *         F  : the frequency on the nand chip pins.
574  *         G  : the GPMI clock, such as 100MHz.
575  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
576  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
577  *
578  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
579  *     the nand EDO(extended Data Out) timing could be applied.
580  *     The GPMI implements a feedback read strobe to sample the read data.
581  *     The feedback read strobe can be delayed to support the nand EDO timing
582  *     where the read strobe may deasserts before the read data is valid, and
583  *     read data is valid for some time after read strobe.
584  *
585  *     The following figure illustrates some aspects of a NAND Flash read:
586  *
587  *                   |<---tREA---->|
588  *                   |             |
589  *                   |         |   |
590  *                   |<--tRP-->|   |
591  *                   |         |   |
592  *                  __          ___|__________________________________
593  *     RDN            \________/   |
594  *                                 |
595  *                                 /---------\
596  *     Read Data    --------------<           >---------
597  *                                 \---------/
598  *                                |     |
599  *                                |<-D->|
600  *     FeedbackRDN  ________             ____________
601  *                          \___________/
602  *
603  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
604  *
605  *
606  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
607  *
608  *  4.1) From the aspect of the nand chip pins:
609  *        Delay = (tREA + C - tRP)               {1}
610  *
611  *        tREA : the maximum read access time.
612  *        C    : a constant to adjust the delay. default is 4000ps.
613  *        tRP  : the read pulse width, which is exactly:
614  *                   tRP = (GPMI-clock-period) * DATA_SETUP
615  *
616  *  4.2) From the aspect of the GPMI nand controller:
617  *         Delay = RDN_DELAY * 0.125 * RP        {2}
618  *
619  *         RP   : the DLL reference period.
620  *            if (GPMI-clock-period > DLL_THRETHOLD)
621  *                   RP = GPMI-clock-period / 2;
622  *            else
623  *                   RP = GPMI-clock-period;
624  *
625  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
626  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
627  *            is 16000ps, but in mx6q, we use 12000ps.
628  *
629  *  4.3) since {1} equals {2}, we get:
630  *
631  *                     (tREA + 4000 - tRP) * 8
632  *         RDN_DELAY = -----------------------     {3}
633  *                           RP
634  */
635 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
636 				     const struct nand_sdr_timings *sdr)
637 {
638 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
639 	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
640 	unsigned int period_ps, reference_period_ps;
641 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
642 	unsigned int tRP_ps;
643 	bool use_half_period;
644 	int sample_delay_ps, sample_delay_factor;
645 	u16 busy_timeout_cycles;
646 	u8 wrn_dly_sel;
647 
648 	if (sdr->tRC_min >= 30000) {
649 		/* ONFI non-EDO modes [0-3] */
650 		hw->clk_rate = 22000000;
651 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
652 	} else if (sdr->tRC_min >= 25000) {
653 		/* ONFI EDO mode 4 */
654 		hw->clk_rate = 80000000;
655 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
656 	} else {
657 		/* ONFI EDO mode 5 */
658 		hw->clk_rate = 100000000;
659 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
660 	}
661 
662 	/* SDR core timings are given in picoseconds */
663 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
664 
665 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
666 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
667 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
668 	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
669 
670 	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
671 		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
672 		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
673 	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
674 
675 	/*
676 	 * Derive NFC ideal delay from {3}:
677 	 *
678 	 *                     (tREA + 4000 - tRP) * 8
679 	 *         RDN_DELAY = -----------------------
680 	 *                                RP
681 	 */
682 	if (period_ps > dll_threshold_ps) {
683 		use_half_period = true;
684 		reference_period_ps = period_ps / 2;
685 	} else {
686 		use_half_period = false;
687 		reference_period_ps = period_ps;
688 	}
689 
690 	tRP_ps = data_setup_cycles * period_ps;
691 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
692 	if (sample_delay_ps > 0)
693 		sample_delay_factor = sample_delay_ps / reference_period_ps;
694 	else
695 		sample_delay_factor = 0;
696 
697 	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
698 	if (sample_delay_factor)
699 		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
700 			      BM_GPMI_CTRL1_DLL_ENABLE |
701 			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
702 }
703 
704 static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
705 {
706 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
707 	struct resources *r = &this->resources;
708 	void __iomem *gpmi_regs = r->gpmi_regs;
709 	unsigned int dll_wait_time_us;
710 
711 	clk_set_rate(r->clock[0], hw->clk_rate);
712 
713 	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
714 	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
715 
716 	/*
717 	 * Clear several CTRL1 fields, DLL must be disabled when setting
718 	 * RDN_DELAY or HALF_PERIOD.
719 	 */
720 	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
721 	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
722 
723 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
724 	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
725 	if (!dll_wait_time_us)
726 		dll_wait_time_us = 1;
727 
728 	/* Wait for the DLL to settle. */
729 	udelay(dll_wait_time_us);
730 }
731 
732 static int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr,
733 				     const struct nand_data_interface *conf)
734 {
735 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
736 	const struct nand_sdr_timings *sdr;
737 
738 	/* Retrieve required NAND timings */
739 	sdr = nand_get_sdr_timings(conf);
740 	if (IS_ERR(sdr))
741 		return PTR_ERR(sdr);
742 
743 	/* Only MX6 GPMI controller can reach EDO timings */
744 	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
745 		return -ENOTSUPP;
746 
747 	/* Stop here if this call was just a check */
748 	if (chipnr < 0)
749 		return 0;
750 
751 	/* Do the actual derivation of the controller timings */
752 	gpmi_nfc_compute_timings(this, sdr);
753 
754 	this->hw.must_apply_timings = true;
755 
756 	return 0;
757 }
758 
759 /* Clears a BCH interrupt. */
760 static void gpmi_clear_bch(struct gpmi_nand_data *this)
761 {
762 	struct resources *r = &this->resources;
763 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
764 }
765 
766 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
767 {
768 	/* We use the DMA channel 0 to access all the nand chips. */
769 	return this->dma_chans[0];
770 }
771 
772 /* This will be called after the DMA operation is finished. */
773 static void dma_irq_callback(void *param)
774 {
775 	struct gpmi_nand_data *this = param;
776 	struct completion *dma_c = &this->dma_done;
777 
778 	complete(dma_c);
779 }
780 
781 static irqreturn_t bch_irq(int irq, void *cookie)
782 {
783 	struct gpmi_nand_data *this = cookie;
784 
785 	gpmi_clear_bch(this);
786 	complete(&this->bch_done);
787 	return IRQ_HANDLED;
788 }
789 
790 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
791 {
792 	/*
793 	 * raw_len is the length to read/write including bch data which
794 	 * we are passed in exec_op. Calculate the data length from it.
795 	 */
796 	if (this->bch)
797 		return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
798 	else
799 		return raw_len;
800 }
801 
802 /* Can we use the upper's buffer directly for DMA? */
803 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
804 			     int raw_len, struct scatterlist *sgl,
805 			     enum dma_data_direction dr)
806 {
807 	int ret;
808 	int len = gpmi_raw_len_to_len(this, raw_len);
809 
810 	/* first try to map the upper buffer directly */
811 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
812 		sg_init_one(sgl, buf, len);
813 		ret = dma_map_sg(this->dev, sgl, 1, dr);
814 		if (ret == 0)
815 			goto map_fail;
816 
817 		return true;
818 	}
819 
820 map_fail:
821 	/* We have to use our own DMA buffer. */
822 	sg_init_one(sgl, this->data_buffer_dma, len);
823 
824 	if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
825 		memcpy(this->data_buffer_dma, buf, len);
826 
827 	dma_map_sg(this->dev, sgl, 1, dr);
828 
829 	return false;
830 }
831 
832 /**
833  * gpmi_copy_bits - copy bits from one memory region to another
834  * @dst: destination buffer
835  * @dst_bit_off: bit offset we're starting to write at
836  * @src: source buffer
837  * @src_bit_off: bit offset we're starting to read from
838  * @nbits: number of bits to copy
839  *
840  * This functions copies bits from one memory region to another, and is used by
841  * the GPMI driver to copy ECC sections which are not guaranteed to be byte
842  * aligned.
843  *
844  * src and dst should not overlap.
845  *
846  */
847 static void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, const u8 *src,
848 			   size_t src_bit_off, size_t nbits)
849 {
850 	size_t i;
851 	size_t nbytes;
852 	u32 src_buffer = 0;
853 	size_t bits_in_src_buffer = 0;
854 
855 	if (!nbits)
856 		return;
857 
858 	/*
859 	 * Move src and dst pointers to the closest byte pointer and store bit
860 	 * offsets within a byte.
861 	 */
862 	src += src_bit_off / 8;
863 	src_bit_off %= 8;
864 
865 	dst += dst_bit_off / 8;
866 	dst_bit_off %= 8;
867 
868 	/*
869 	 * Initialize the src_buffer value with bits available in the first
870 	 * byte of data so that we end up with a byte aligned src pointer.
871 	 */
872 	if (src_bit_off) {
873 		src_buffer = src[0] >> src_bit_off;
874 		if (nbits >= (8 - src_bit_off)) {
875 			bits_in_src_buffer += 8 - src_bit_off;
876 		} else {
877 			src_buffer &= GENMASK(nbits - 1, 0);
878 			bits_in_src_buffer += nbits;
879 		}
880 		nbits -= bits_in_src_buffer;
881 		src++;
882 	}
883 
884 	/* Calculate the number of bytes that can be copied from src to dst. */
885 	nbytes = nbits / 8;
886 
887 	/* Try to align dst to a byte boundary. */
888 	if (dst_bit_off) {
889 		if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
890 			src_buffer |= src[0] << bits_in_src_buffer;
891 			bits_in_src_buffer += 8;
892 			src++;
893 			nbytes--;
894 		}
895 
896 		if (bits_in_src_buffer >= (8 - dst_bit_off)) {
897 			dst[0] &= GENMASK(dst_bit_off - 1, 0);
898 			dst[0] |= src_buffer << dst_bit_off;
899 			src_buffer >>= (8 - dst_bit_off);
900 			bits_in_src_buffer -= (8 - dst_bit_off);
901 			dst_bit_off = 0;
902 			dst++;
903 			if (bits_in_src_buffer > 7) {
904 				bits_in_src_buffer -= 8;
905 				dst[0] = src_buffer;
906 				dst++;
907 				src_buffer >>= 8;
908 			}
909 		}
910 	}
911 
912 	if (!bits_in_src_buffer && !dst_bit_off) {
913 		/*
914 		 * Both src and dst pointers are byte aligned, thus we can
915 		 * just use the optimized memcpy function.
916 		 */
917 		if (nbytes)
918 			memcpy(dst, src, nbytes);
919 	} else {
920 		/*
921 		 * src buffer is not byte aligned, hence we have to copy each
922 		 * src byte to the src_buffer variable before extracting a byte
923 		 * to store in dst.
924 		 */
925 		for (i = 0; i < nbytes; i++) {
926 			src_buffer |= src[i] << bits_in_src_buffer;
927 			dst[i] = src_buffer;
928 			src_buffer >>= 8;
929 		}
930 	}
931 	/* Update dst and src pointers */
932 	dst += nbytes;
933 	src += nbytes;
934 
935 	/*
936 	 * nbits is the number of remaining bits. It should not exceed 8 as
937 	 * we've already copied as much bytes as possible.
938 	 */
939 	nbits %= 8;
940 
941 	/*
942 	 * If there's no more bits to copy to the destination and src buffer
943 	 * was already byte aligned, then we're done.
944 	 */
945 	if (!nbits && !bits_in_src_buffer)
946 		return;
947 
948 	/* Copy the remaining bits to src_buffer */
949 	if (nbits)
950 		src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
951 			      bits_in_src_buffer;
952 	bits_in_src_buffer += nbits;
953 
954 	/*
955 	 * In case there were not enough bits to get a byte aligned dst buffer
956 	 * prepare the src_buffer variable to match the dst organization (shift
957 	 * src_buffer by dst_bit_off and retrieve the least significant bits
958 	 * from dst).
959 	 */
960 	if (dst_bit_off)
961 		src_buffer = (src_buffer << dst_bit_off) |
962 			     (*dst & GENMASK(dst_bit_off - 1, 0));
963 	bits_in_src_buffer += dst_bit_off;
964 
965 	/*
966 	 * Keep most significant bits from dst if we end up with an unaligned
967 	 * number of bits.
968 	 */
969 	nbytes = bits_in_src_buffer / 8;
970 	if (bits_in_src_buffer % 8) {
971 		src_buffer |= (dst[nbytes] &
972 			       GENMASK(7, bits_in_src_buffer % 8)) <<
973 			      (nbytes * 8);
974 		nbytes++;
975 	}
976 
977 	/* Copy the remaining bytes to dst */
978 	for (i = 0; i < nbytes; i++) {
979 		dst[i] = src_buffer;
980 		src_buffer >>= 8;
981 	}
982 }
983 
984 /* add our owner bbt descriptor */
985 static uint8_t scan_ff_pattern[] = { 0xff };
986 static struct nand_bbt_descr gpmi_bbt_descr = {
987 	.options	= 0,
988 	.offs		= 0,
989 	.len		= 1,
990 	.pattern	= scan_ff_pattern
991 };
992 
993 /*
994  * We may change the layout if we can get the ECC info from the datasheet,
995  * else we will use all the (page + OOB).
996  */
997 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
998 			      struct mtd_oob_region *oobregion)
999 {
1000 	struct nand_chip *chip = mtd_to_nand(mtd);
1001 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1002 	struct bch_geometry *geo = &this->bch_geometry;
1003 
1004 	if (section)
1005 		return -ERANGE;
1006 
1007 	oobregion->offset = 0;
1008 	oobregion->length = geo->page_size - mtd->writesize;
1009 
1010 	return 0;
1011 }
1012 
1013 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
1014 			       struct mtd_oob_region *oobregion)
1015 {
1016 	struct nand_chip *chip = mtd_to_nand(mtd);
1017 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1018 	struct bch_geometry *geo = &this->bch_geometry;
1019 
1020 	if (section)
1021 		return -ERANGE;
1022 
1023 	/* The available oob size we have. */
1024 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
1025 		oobregion->offset = geo->page_size - mtd->writesize;
1026 		oobregion->length = mtd->oobsize - oobregion->offset;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static const char * const gpmi_clks_for_mx2x[] = {
1033 	"gpmi_io",
1034 };
1035 
1036 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
1037 	.ecc = gpmi_ooblayout_ecc,
1038 	.free = gpmi_ooblayout_free,
1039 };
1040 
1041 static const struct gpmi_devdata gpmi_devdata_imx23 = {
1042 	.type = IS_MX23,
1043 	.bch_max_ecc_strength = 20,
1044 	.max_chain_delay = 16000,
1045 	.clks = gpmi_clks_for_mx2x,
1046 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1047 };
1048 
1049 static const struct gpmi_devdata gpmi_devdata_imx28 = {
1050 	.type = IS_MX28,
1051 	.bch_max_ecc_strength = 20,
1052 	.max_chain_delay = 16000,
1053 	.clks = gpmi_clks_for_mx2x,
1054 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1055 };
1056 
1057 static const char * const gpmi_clks_for_mx6[] = {
1058 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
1059 };
1060 
1061 static const struct gpmi_devdata gpmi_devdata_imx6q = {
1062 	.type = IS_MX6Q,
1063 	.bch_max_ecc_strength = 40,
1064 	.max_chain_delay = 12000,
1065 	.clks = gpmi_clks_for_mx6,
1066 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1067 };
1068 
1069 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
1070 	.type = IS_MX6SX,
1071 	.bch_max_ecc_strength = 62,
1072 	.max_chain_delay = 12000,
1073 	.clks = gpmi_clks_for_mx6,
1074 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1075 };
1076 
1077 static const char * const gpmi_clks_for_mx7d[] = {
1078 	"gpmi_io", "gpmi_bch_apb",
1079 };
1080 
1081 static const struct gpmi_devdata gpmi_devdata_imx7d = {
1082 	.type = IS_MX7D,
1083 	.bch_max_ecc_strength = 62,
1084 	.max_chain_delay = 12000,
1085 	.clks = gpmi_clks_for_mx7d,
1086 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
1087 };
1088 
1089 static int acquire_register_block(struct gpmi_nand_data *this,
1090 				  const char *res_name)
1091 {
1092 	struct platform_device *pdev = this->pdev;
1093 	struct resources *res = &this->resources;
1094 	struct resource *r;
1095 	void __iomem *p;
1096 
1097 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
1098 	p = devm_ioremap_resource(&pdev->dev, r);
1099 	if (IS_ERR(p))
1100 		return PTR_ERR(p);
1101 
1102 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
1103 		res->gpmi_regs = p;
1104 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
1105 		res->bch_regs = p;
1106 	else
1107 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
1108 
1109 	return 0;
1110 }
1111 
1112 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
1113 {
1114 	struct platform_device *pdev = this->pdev;
1115 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
1116 	struct resource *r;
1117 	int err;
1118 
1119 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
1120 	if (!r) {
1121 		dev_err(this->dev, "Can't get resource for %s\n", res_name);
1122 		return -ENODEV;
1123 	}
1124 
1125 	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
1126 	if (err)
1127 		dev_err(this->dev, "error requesting BCH IRQ\n");
1128 
1129 	return err;
1130 }
1131 
1132 static void release_dma_channels(struct gpmi_nand_data *this)
1133 {
1134 	unsigned int i;
1135 	for (i = 0; i < DMA_CHANS; i++)
1136 		if (this->dma_chans[i]) {
1137 			dma_release_channel(this->dma_chans[i]);
1138 			this->dma_chans[i] = NULL;
1139 		}
1140 }
1141 
1142 static int acquire_dma_channels(struct gpmi_nand_data *this)
1143 {
1144 	struct platform_device *pdev = this->pdev;
1145 	struct dma_chan *dma_chan;
1146 
1147 	/* request dma channel */
1148 	dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
1149 	if (!dma_chan) {
1150 		dev_err(this->dev, "Failed to request DMA channel.\n");
1151 		goto acquire_err;
1152 	}
1153 
1154 	this->dma_chans[0] = dma_chan;
1155 	return 0;
1156 
1157 acquire_err:
1158 	release_dma_channels(this);
1159 	return -EINVAL;
1160 }
1161 
1162 static int gpmi_get_clks(struct gpmi_nand_data *this)
1163 {
1164 	struct resources *r = &this->resources;
1165 	struct clk *clk;
1166 	int err, i;
1167 
1168 	for (i = 0; i < this->devdata->clks_count; i++) {
1169 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1170 		if (IS_ERR(clk)) {
1171 			err = PTR_ERR(clk);
1172 			goto err_clock;
1173 		}
1174 
1175 		r->clock[i] = clk;
1176 	}
1177 
1178 	if (GPMI_IS_MX6(this))
1179 		/*
1180 		 * Set the default value for the gpmi clock.
1181 		 *
1182 		 * If you want to use the ONFI nand which is in the
1183 		 * Synchronous Mode, you should change the clock as you need.
1184 		 */
1185 		clk_set_rate(r->clock[0], 22000000);
1186 
1187 	return 0;
1188 
1189 err_clock:
1190 	dev_dbg(this->dev, "failed in finding the clocks.\n");
1191 	return err;
1192 }
1193 
1194 static int acquire_resources(struct gpmi_nand_data *this)
1195 {
1196 	int ret;
1197 
1198 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1199 	if (ret)
1200 		goto exit_regs;
1201 
1202 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1203 	if (ret)
1204 		goto exit_regs;
1205 
1206 	ret = acquire_bch_irq(this, bch_irq);
1207 	if (ret)
1208 		goto exit_regs;
1209 
1210 	ret = acquire_dma_channels(this);
1211 	if (ret)
1212 		goto exit_regs;
1213 
1214 	ret = gpmi_get_clks(this);
1215 	if (ret)
1216 		goto exit_clock;
1217 	return 0;
1218 
1219 exit_clock:
1220 	release_dma_channels(this);
1221 exit_regs:
1222 	return ret;
1223 }
1224 
1225 static void release_resources(struct gpmi_nand_data *this)
1226 {
1227 	release_dma_channels(this);
1228 }
1229 
1230 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1231 {
1232 	struct device *dev = this->dev;
1233 	struct bch_geometry *geo = &this->bch_geometry;
1234 
1235 	if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1236 		dma_free_coherent(dev, geo->auxiliary_size,
1237 					this->auxiliary_virt,
1238 					this->auxiliary_phys);
1239 	kfree(this->data_buffer_dma);
1240 	kfree(this->raw_buffer);
1241 
1242 	this->data_buffer_dma	= NULL;
1243 	this->raw_buffer	= NULL;
1244 }
1245 
1246 /* Allocate the DMA buffers */
1247 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1248 {
1249 	struct bch_geometry *geo = &this->bch_geometry;
1250 	struct device *dev = this->dev;
1251 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
1252 
1253 	/*
1254 	 * [2] Allocate a read/write data buffer.
1255 	 *     The gpmi_alloc_dma_buffer can be called twice.
1256 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1257 	 *     is called before the NAND identification; and we allocate a
1258 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1259 	 *     is called after.
1260 	 */
1261 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1262 					GFP_DMA | GFP_KERNEL);
1263 	if (this->data_buffer_dma == NULL)
1264 		goto error_alloc;
1265 
1266 	this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1267 					&this->auxiliary_phys, GFP_DMA);
1268 	if (!this->auxiliary_virt)
1269 		goto error_alloc;
1270 
1271 	this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1272 	if (!this->raw_buffer)
1273 		goto error_alloc;
1274 
1275 	return 0;
1276 
1277 error_alloc:
1278 	gpmi_free_dma_buffer(this);
1279 	return -ENOMEM;
1280 }
1281 
1282 /*
1283  * Handles block mark swapping.
1284  * It can be called in swapping the block mark, or swapping it back,
1285  * because the the operations are the same.
1286  */
1287 static void block_mark_swapping(struct gpmi_nand_data *this,
1288 				void *payload, void *auxiliary)
1289 {
1290 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1291 	unsigned char *p;
1292 	unsigned char *a;
1293 	unsigned int  bit;
1294 	unsigned char mask;
1295 	unsigned char from_data;
1296 	unsigned char from_oob;
1297 
1298 	if (!this->swap_block_mark)
1299 		return;
1300 
1301 	/*
1302 	 * If control arrives here, we're swapping. Make some convenience
1303 	 * variables.
1304 	 */
1305 	bit = nfc_geo->block_mark_bit_offset;
1306 	p   = payload + nfc_geo->block_mark_byte_offset;
1307 	a   = auxiliary;
1308 
1309 	/*
1310 	 * Get the byte from the data area that overlays the block mark. Since
1311 	 * the ECC engine applies its own view to the bits in the page, the
1312 	 * physical block mark won't (in general) appear on a byte boundary in
1313 	 * the data.
1314 	 */
1315 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1316 
1317 	/* Get the byte from the OOB. */
1318 	from_oob = a[0];
1319 
1320 	/* Swap them. */
1321 	a[0] = from_data;
1322 
1323 	mask = (0x1 << bit) - 1;
1324 	p[0] = (p[0] & mask) | (from_oob << bit);
1325 
1326 	mask = ~0 << bit;
1327 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1328 }
1329 
1330 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1331 			       int last, int meta)
1332 {
1333 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1334 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1335 	struct mtd_info *mtd = nand_to_mtd(chip);
1336 	int i;
1337 	unsigned char *status;
1338 	unsigned int max_bitflips = 0;
1339 
1340 	/* Loop over status bytes, accumulating ECC status. */
1341 	status = this->auxiliary_virt + ALIGN(meta, 4);
1342 
1343 	for (i = first; i < last; i++, status++) {
1344 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1345 			continue;
1346 
1347 		if (*status == STATUS_UNCORRECTABLE) {
1348 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1349 			u8 *eccbuf = this->raw_buffer;
1350 			int offset, bitoffset;
1351 			int eccbytes;
1352 			int flips;
1353 
1354 			/* Read ECC bytes into our internal raw_buffer */
1355 			offset = nfc_geo->metadata_size * 8;
1356 			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
1357 			offset -= eccbits;
1358 			bitoffset = offset % 8;
1359 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1360 			offset /= 8;
1361 			eccbytes -= offset;
1362 			nand_change_read_column_op(chip, offset, eccbuf,
1363 						   eccbytes, false);
1364 
1365 			/*
1366 			 * ECC data are not byte aligned and we may have
1367 			 * in-band data in the first and last byte of
1368 			 * eccbuf. Set non-eccbits to one so that
1369 			 * nand_check_erased_ecc_chunk() does not count them
1370 			 * as bitflips.
1371 			 */
1372 			if (bitoffset)
1373 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1374 
1375 			bitoffset = (bitoffset + eccbits) % 8;
1376 			if (bitoffset)
1377 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1378 
1379 			/*
1380 			 * The ECC hardware has an uncorrectable ECC status
1381 			 * code in case we have bitflips in an erased page. As
1382 			 * nothing was written into this subpage the ECC is
1383 			 * obviously wrong and we can not trust it. We assume
1384 			 * at this point that we are reading an erased page and
1385 			 * try to correct the bitflips in buffer up to
1386 			 * ecc_strength bitflips. If this is a page with random
1387 			 * data, we exceed this number of bitflips and have a
1388 			 * ECC failure. Otherwise we use the corrected buffer.
1389 			 */
1390 			if (i == 0) {
1391 				/* The first block includes metadata */
1392 				flips = nand_check_erased_ecc_chunk(
1393 						buf + i * nfc_geo->ecc_chunk_size,
1394 						nfc_geo->ecc_chunk_size,
1395 						eccbuf, eccbytes,
1396 						this->auxiliary_virt,
1397 						nfc_geo->metadata_size,
1398 						nfc_geo->ecc_strength);
1399 			} else {
1400 				flips = nand_check_erased_ecc_chunk(
1401 						buf + i * nfc_geo->ecc_chunk_size,
1402 						nfc_geo->ecc_chunk_size,
1403 						eccbuf, eccbytes,
1404 						NULL, 0,
1405 						nfc_geo->ecc_strength);
1406 			}
1407 
1408 			if (flips > 0) {
1409 				max_bitflips = max_t(unsigned int, max_bitflips,
1410 						     flips);
1411 				mtd->ecc_stats.corrected += flips;
1412 				continue;
1413 			}
1414 
1415 			mtd->ecc_stats.failed++;
1416 			continue;
1417 		}
1418 
1419 		mtd->ecc_stats.corrected += *status;
1420 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1421 	}
1422 
1423 	return max_bitflips;
1424 }
1425 
1426 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1427 {
1428 	struct bch_geometry *geo = &this->bch_geometry;
1429 	unsigned int ecc_strength = geo->ecc_strength >> 1;
1430 	unsigned int gf_len = geo->gf_len;
1431 	unsigned int block_size = geo->ecc_chunk_size;
1432 
1433 	this->bch_flashlayout0 =
1434 		BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1435 		BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1436 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1437 		BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1438 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
1439 
1440 	this->bch_flashlayout1 =
1441 		BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1442 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1443 		BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1444 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
1445 }
1446 
1447 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1448 			      int oob_required, int page)
1449 {
1450 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1451 	struct mtd_info *mtd = nand_to_mtd(chip);
1452 	struct bch_geometry *geo = &this->bch_geometry;
1453 	unsigned int max_bitflips;
1454 	int ret;
1455 
1456 	gpmi_bch_layout_std(this);
1457 	this->bch = true;
1458 
1459 	ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1460 	if (ret)
1461 		return ret;
1462 
1463 	max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1464 					   geo->ecc_chunk_count,
1465 					   geo->auxiliary_status_offset);
1466 
1467 	/* handle the block mark swapping */
1468 	block_mark_swapping(this, buf, this->auxiliary_virt);
1469 
1470 	if (oob_required) {
1471 		/*
1472 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1473 		 * for details about our policy for delivering the OOB.
1474 		 *
1475 		 * We fill the caller's buffer with set bits, and then copy the
1476 		 * block mark to th caller's buffer. Note that, if block mark
1477 		 * swapping was necessary, it has already been done, so we can
1478 		 * rely on the first byte of the auxiliary buffer to contain
1479 		 * the block mark.
1480 		 */
1481 		memset(chip->oob_poi, ~0, mtd->oobsize);
1482 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1483 	}
1484 
1485 	return max_bitflips;
1486 }
1487 
1488 /* Fake a virtual small page for the subpage read */
1489 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1490 				 uint32_t len, uint8_t *buf, int page)
1491 {
1492 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1493 	struct bch_geometry *geo = &this->bch_geometry;
1494 	int size = chip->ecc.size; /* ECC chunk size */
1495 	int meta, n, page_size;
1496 	unsigned int max_bitflips;
1497 	unsigned int ecc_strength;
1498 	int first, last, marker_pos;
1499 	int ecc_parity_size;
1500 	int col = 0;
1501 	int ret;
1502 
1503 	/* The size of ECC parity */
1504 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1505 
1506 	/* Align it with the chunk size */
1507 	first = offs / size;
1508 	last = (offs + len - 1) / size;
1509 
1510 	if (this->swap_block_mark) {
1511 		/*
1512 		 * Find the chunk which contains the Block Marker.
1513 		 * If this chunk is in the range of [first, last],
1514 		 * we have to read out the whole page.
1515 		 * Why? since we had swapped the data at the position of Block
1516 		 * Marker to the metadata which is bound with the chunk 0.
1517 		 */
1518 		marker_pos = geo->block_mark_byte_offset / size;
1519 		if (last >= marker_pos && first <= marker_pos) {
1520 			dev_dbg(this->dev,
1521 				"page:%d, first:%d, last:%d, marker at:%d\n",
1522 				page, first, last, marker_pos);
1523 			return gpmi_ecc_read_page(chip, buf, 0, page);
1524 		}
1525 	}
1526 
1527 	meta = geo->metadata_size;
1528 	if (first) {
1529 		col = meta + (size + ecc_parity_size) * first;
1530 		meta = 0;
1531 		buf = buf + first * size;
1532 	}
1533 
1534 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1535 
1536 	n = last - first + 1;
1537 	page_size = meta + (size + ecc_parity_size) * n;
1538 	ecc_strength = geo->ecc_strength >> 1;
1539 
1540 	this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
1541 		BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1542 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1543 		BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1544 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
1545 
1546 	this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1547 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1548 		BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1549 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
1550 
1551 	this->bch = true;
1552 
1553 	ret = nand_read_page_op(chip, page, col, buf, page_size);
1554 	if (ret)
1555 		return ret;
1556 
1557 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1558 		page, offs, len, col, first, n, page_size);
1559 
1560 	max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1561 
1562 	return max_bitflips;
1563 }
1564 
1565 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1566 			       int oob_required, int page)
1567 {
1568 	struct mtd_info *mtd = nand_to_mtd(chip);
1569 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1570 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1571 	int ret;
1572 
1573 	dev_dbg(this->dev, "ecc write page.\n");
1574 
1575 	gpmi_bch_layout_std(this);
1576 	this->bch = true;
1577 
1578 	memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1579 
1580 	if (this->swap_block_mark) {
1581 		/*
1582 		 * When doing bad block marker swapping we must always copy the
1583 		 * input buffer as we can't modify the const buffer.
1584 		 */
1585 		memcpy(this->data_buffer_dma, buf, mtd->writesize);
1586 		buf = this->data_buffer_dma;
1587 		block_mark_swapping(this, this->data_buffer_dma,
1588 				    this->auxiliary_virt);
1589 	}
1590 
1591 	ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1592 
1593 	return ret;
1594 }
1595 
1596 /*
1597  * There are several places in this driver where we have to handle the OOB and
1598  * block marks. This is the function where things are the most complicated, so
1599  * this is where we try to explain it all. All the other places refer back to
1600  * here.
1601  *
1602  * These are the rules, in order of decreasing importance:
1603  *
1604  * 1) Nothing the caller does can be allowed to imperil the block mark.
1605  *
1606  * 2) In read operations, the first byte of the OOB we return must reflect the
1607  *    true state of the block mark, no matter where that block mark appears in
1608  *    the physical page.
1609  *
1610  * 3) ECC-based read operations return an OOB full of set bits (since we never
1611  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1612  *    return).
1613  *
1614  * 4) "Raw" read operations return a direct view of the physical bytes in the
1615  *    page, using the conventional definition of which bytes are data and which
1616  *    are OOB. This gives the caller a way to see the actual, physical bytes
1617  *    in the page, without the distortions applied by our ECC engine.
1618  *
1619  *
1620  * What we do for this specific read operation depends on two questions:
1621  *
1622  * 1) Are we doing a "raw" read, or an ECC-based read?
1623  *
1624  * 2) Are we using block mark swapping or transcription?
1625  *
1626  * There are four cases, illustrated by the following Karnaugh map:
1627  *
1628  *                    |           Raw           |         ECC-based       |
1629  *       -------------+-------------------------+-------------------------+
1630  *                    | Read the conventional   |                         |
1631  *                    | OOB at the end of the   |                         |
1632  *       Swapping     | page and return it. It  |                         |
1633  *                    | contains exactly what   |                         |
1634  *                    | we want.                | Read the block mark and |
1635  *       -------------+-------------------------+ return it in a buffer   |
1636  *                    | Read the conventional   | full of set bits.       |
1637  *                    | OOB at the end of the   |                         |
1638  *                    | page and also the block |                         |
1639  *       Transcribing | mark in the metadata.   |                         |
1640  *                    | Copy the block mark     |                         |
1641  *                    | into the first byte of  |                         |
1642  *                    | the OOB.                |                         |
1643  *       -------------+-------------------------+-------------------------+
1644  *
1645  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1646  * giving an accurate view of the actual, physical bytes in the page (we're
1647  * overwriting the block mark). That's OK because it's more important to follow
1648  * rule #2.
1649  *
1650  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1651  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1652  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1653  * ECC-based or raw view of the page is implicit in which function it calls
1654  * (there is a similar pair of ECC-based/raw functions for writing).
1655  */
1656 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1657 {
1658 	struct mtd_info *mtd = nand_to_mtd(chip);
1659 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1660 	int ret;
1661 
1662 	/* clear the OOB buffer */
1663 	memset(chip->oob_poi, ~0, mtd->oobsize);
1664 
1665 	/* Read out the conventional OOB. */
1666 	ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1667 				mtd->oobsize);
1668 	if (ret)
1669 		return ret;
1670 
1671 	/*
1672 	 * Now, we want to make sure the block mark is correct. In the
1673 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1674 	 * Otherwise, we need to explicitly read it.
1675 	 */
1676 	if (GPMI_IS_MX23(this)) {
1677 		/* Read the block mark into the first byte of the OOB buffer. */
1678 		ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1679 		if (ret)
1680 			return ret;
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1687 {
1688 	struct mtd_info *mtd = nand_to_mtd(chip);
1689 	struct mtd_oob_region of = { };
1690 
1691 	/* Do we have available oob area? */
1692 	mtd_ooblayout_free(mtd, 0, &of);
1693 	if (!of.length)
1694 		return -EPERM;
1695 
1696 	if (!nand_is_slc(chip))
1697 		return -EPERM;
1698 
1699 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1700 				 chip->oob_poi + of.offset, of.length);
1701 }
1702 
1703 /*
1704  * This function reads a NAND page without involving the ECC engine (no HW
1705  * ECC correction).
1706  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1707  * inline (interleaved with payload DATA), and do not align data chunk on
1708  * byte boundaries.
1709  * We thus need to take care moving the payload data and ECC bits stored in the
1710  * page into the provided buffers, which is why we're using gpmi_copy_bits.
1711  *
1712  * See set_geometry_by_ecc_info inline comments to have a full description
1713  * of the layout used by the GPMI controller.
1714  */
1715 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1716 				  int oob_required, int page)
1717 {
1718 	struct mtd_info *mtd = nand_to_mtd(chip);
1719 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1720 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1721 	int eccsize = nfc_geo->ecc_chunk_size;
1722 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1723 	u8 *tmp_buf = this->raw_buffer;
1724 	size_t src_bit_off;
1725 	size_t oob_bit_off;
1726 	size_t oob_byte_off;
1727 	uint8_t *oob = chip->oob_poi;
1728 	int step;
1729 	int ret;
1730 
1731 	ret = nand_read_page_op(chip, page, 0, tmp_buf,
1732 				mtd->writesize + mtd->oobsize);
1733 	if (ret)
1734 		return ret;
1735 
1736 	/*
1737 	 * If required, swap the bad block marker and the data stored in the
1738 	 * metadata section, so that we don't wrongly consider a block as bad.
1739 	 *
1740 	 * See the layout description for a detailed explanation on why this
1741 	 * is needed.
1742 	 */
1743 	if (this->swap_block_mark)
1744 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1745 
1746 	/*
1747 	 * Copy the metadata section into the oob buffer (this section is
1748 	 * guaranteed to be aligned on a byte boundary).
1749 	 */
1750 	if (oob_required)
1751 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1752 
1753 	oob_bit_off = nfc_geo->metadata_size * 8;
1754 	src_bit_off = oob_bit_off;
1755 
1756 	/* Extract interleaved payload data and ECC bits */
1757 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1758 		if (buf)
1759 			gpmi_copy_bits(buf, step * eccsize * 8,
1760 				       tmp_buf, src_bit_off,
1761 				       eccsize * 8);
1762 		src_bit_off += eccsize * 8;
1763 
1764 		/* Align last ECC block to align a byte boundary */
1765 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1766 		    (oob_bit_off + eccbits) % 8)
1767 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1768 
1769 		if (oob_required)
1770 			gpmi_copy_bits(oob, oob_bit_off,
1771 				       tmp_buf, src_bit_off,
1772 				       eccbits);
1773 
1774 		src_bit_off += eccbits;
1775 		oob_bit_off += eccbits;
1776 	}
1777 
1778 	if (oob_required) {
1779 		oob_byte_off = oob_bit_off / 8;
1780 
1781 		if (oob_byte_off < mtd->oobsize)
1782 			memcpy(oob + oob_byte_off,
1783 			       tmp_buf + mtd->writesize + oob_byte_off,
1784 			       mtd->oobsize - oob_byte_off);
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 /*
1791  * This function writes a NAND page without involving the ECC engine (no HW
1792  * ECC generation).
1793  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1794  * inline (interleaved with payload DATA), and do not align data chunk on
1795  * byte boundaries.
1796  * We thus need to take care moving the OOB area at the right place in the
1797  * final page, which is why we're using gpmi_copy_bits.
1798  *
1799  * See set_geometry_by_ecc_info inline comments to have a full description
1800  * of the layout used by the GPMI controller.
1801  */
1802 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1803 				   int oob_required, int page)
1804 {
1805 	struct mtd_info *mtd = nand_to_mtd(chip);
1806 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1807 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1808 	int eccsize = nfc_geo->ecc_chunk_size;
1809 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1810 	u8 *tmp_buf = this->raw_buffer;
1811 	uint8_t *oob = chip->oob_poi;
1812 	size_t dst_bit_off;
1813 	size_t oob_bit_off;
1814 	size_t oob_byte_off;
1815 	int step;
1816 
1817 	/*
1818 	 * Initialize all bits to 1 in case we don't have a buffer for the
1819 	 * payload or oob data in order to leave unspecified bits of data
1820 	 * to their initial state.
1821 	 */
1822 	if (!buf || !oob_required)
1823 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1824 
1825 	/*
1826 	 * First copy the metadata section (stored in oob buffer) at the
1827 	 * beginning of the page, as imposed by the GPMI layout.
1828 	 */
1829 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1830 	oob_bit_off = nfc_geo->metadata_size * 8;
1831 	dst_bit_off = oob_bit_off;
1832 
1833 	/* Interleave payload data and ECC bits */
1834 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1835 		if (buf)
1836 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1837 				       buf, step * eccsize * 8, eccsize * 8);
1838 		dst_bit_off += eccsize * 8;
1839 
1840 		/* Align last ECC block to align a byte boundary */
1841 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1842 		    (oob_bit_off + eccbits) % 8)
1843 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1844 
1845 		if (oob_required)
1846 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1847 				       oob, oob_bit_off, eccbits);
1848 
1849 		dst_bit_off += eccbits;
1850 		oob_bit_off += eccbits;
1851 	}
1852 
1853 	oob_byte_off = oob_bit_off / 8;
1854 
1855 	if (oob_required && oob_byte_off < mtd->oobsize)
1856 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1857 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1858 
1859 	/*
1860 	 * If required, swap the bad block marker and the first byte of the
1861 	 * metadata section, so that we don't modify the bad block marker.
1862 	 *
1863 	 * See the layout description for a detailed explanation on why this
1864 	 * is needed.
1865 	 */
1866 	if (this->swap_block_mark)
1867 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1868 
1869 	return nand_prog_page_op(chip, page, 0, tmp_buf,
1870 				 mtd->writesize + mtd->oobsize);
1871 }
1872 
1873 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1874 {
1875 	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1876 }
1877 
1878 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1879 {
1880 	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1881 }
1882 
1883 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1884 {
1885 	struct mtd_info *mtd = nand_to_mtd(chip);
1886 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1887 	int ret = 0;
1888 	uint8_t *block_mark;
1889 	int column, page, chipnr;
1890 
1891 	chipnr = (int)(ofs >> chip->chip_shift);
1892 	nand_select_target(chip, chipnr);
1893 
1894 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1895 
1896 	/* Write the block mark. */
1897 	block_mark = this->data_buffer_dma;
1898 	block_mark[0] = 0; /* bad block marker */
1899 
1900 	/* Shift to get page */
1901 	page = (int)(ofs >> chip->page_shift);
1902 
1903 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1904 
1905 	nand_deselect_target(chip);
1906 
1907 	return ret;
1908 }
1909 
1910 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1911 {
1912 	struct boot_rom_geometry *geometry = &this->rom_geometry;
1913 
1914 	/*
1915 	 * Set the boot block stride size.
1916 	 *
1917 	 * In principle, we should be reading this from the OTP bits, since
1918 	 * that's where the ROM is going to get it. In fact, we don't have any
1919 	 * way to read the OTP bits, so we go with the default and hope for the
1920 	 * best.
1921 	 */
1922 	geometry->stride_size_in_pages = 64;
1923 
1924 	/*
1925 	 * Set the search area stride exponent.
1926 	 *
1927 	 * In principle, we should be reading this from the OTP bits, since
1928 	 * that's where the ROM is going to get it. In fact, we don't have any
1929 	 * way to read the OTP bits, so we go with the default and hope for the
1930 	 * best.
1931 	 */
1932 	geometry->search_area_stride_exponent = 2;
1933 	return 0;
1934 }
1935 
1936 static const char  *fingerprint = "STMP";
1937 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1938 {
1939 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1940 	struct device *dev = this->dev;
1941 	struct nand_chip *chip = &this->nand;
1942 	unsigned int search_area_size_in_strides;
1943 	unsigned int stride;
1944 	unsigned int page;
1945 	u8 *buffer = nand_get_data_buf(chip);
1946 	int found_an_ncb_fingerprint = false;
1947 	int ret;
1948 
1949 	/* Compute the number of strides in a search area. */
1950 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1951 
1952 	nand_select_target(chip, 0);
1953 
1954 	/*
1955 	 * Loop through the first search area, looking for the NCB fingerprint.
1956 	 */
1957 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1958 
1959 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1960 		/* Compute the page addresses. */
1961 		page = stride * rom_geo->stride_size_in_pages;
1962 
1963 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1964 
1965 		/*
1966 		 * Read the NCB fingerprint. The fingerprint is four bytes long
1967 		 * and starts in the 12th byte of the page.
1968 		 */
1969 		ret = nand_read_page_op(chip, page, 12, buffer,
1970 					strlen(fingerprint));
1971 		if (ret)
1972 			continue;
1973 
1974 		/* Look for the fingerprint. */
1975 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1976 			found_an_ncb_fingerprint = true;
1977 			break;
1978 		}
1979 
1980 	}
1981 
1982 	nand_deselect_target(chip);
1983 
1984 	if (found_an_ncb_fingerprint)
1985 		dev_dbg(dev, "\tFound a fingerprint\n");
1986 	else
1987 		dev_dbg(dev, "\tNo fingerprint found\n");
1988 	return found_an_ncb_fingerprint;
1989 }
1990 
1991 /* Writes a transcription stamp. */
1992 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1993 {
1994 	struct device *dev = this->dev;
1995 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1996 	struct nand_chip *chip = &this->nand;
1997 	struct mtd_info *mtd = nand_to_mtd(chip);
1998 	unsigned int block_size_in_pages;
1999 	unsigned int search_area_size_in_strides;
2000 	unsigned int search_area_size_in_pages;
2001 	unsigned int search_area_size_in_blocks;
2002 	unsigned int block;
2003 	unsigned int stride;
2004 	unsigned int page;
2005 	u8 *buffer = nand_get_data_buf(chip);
2006 	int status;
2007 
2008 	/* Compute the search area geometry. */
2009 	block_size_in_pages = mtd->erasesize / mtd->writesize;
2010 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2011 	search_area_size_in_pages = search_area_size_in_strides *
2012 					rom_geo->stride_size_in_pages;
2013 	search_area_size_in_blocks =
2014 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
2015 				    block_size_in_pages;
2016 
2017 	dev_dbg(dev, "Search Area Geometry :\n");
2018 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
2019 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
2020 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
2021 
2022 	nand_select_target(chip, 0);
2023 
2024 	/* Loop over blocks in the first search area, erasing them. */
2025 	dev_dbg(dev, "Erasing the search area...\n");
2026 
2027 	for (block = 0; block < search_area_size_in_blocks; block++) {
2028 		/* Erase this block. */
2029 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
2030 		status = nand_erase_op(chip, block);
2031 		if (status)
2032 			dev_err(dev, "[%s] Erase failed.\n", __func__);
2033 	}
2034 
2035 	/* Write the NCB fingerprint into the page buffer. */
2036 	memset(buffer, ~0, mtd->writesize);
2037 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
2038 
2039 	/* Loop through the first search area, writing NCB fingerprints. */
2040 	dev_dbg(dev, "Writing NCB fingerprints...\n");
2041 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
2042 		/* Compute the page addresses. */
2043 		page = stride * rom_geo->stride_size_in_pages;
2044 
2045 		/* Write the first page of the current stride. */
2046 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
2047 
2048 		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
2049 		if (status)
2050 			dev_err(dev, "[%s] Write failed.\n", __func__);
2051 	}
2052 
2053 	nand_deselect_target(chip);
2054 
2055 	return 0;
2056 }
2057 
2058 static int mx23_boot_init(struct gpmi_nand_data  *this)
2059 {
2060 	struct device *dev = this->dev;
2061 	struct nand_chip *chip = &this->nand;
2062 	struct mtd_info *mtd = nand_to_mtd(chip);
2063 	unsigned int block_count;
2064 	unsigned int block;
2065 	int     chipnr;
2066 	int     page;
2067 	loff_t  byte;
2068 	uint8_t block_mark;
2069 	int     ret = 0;
2070 
2071 	/*
2072 	 * If control arrives here, we can't use block mark swapping, which
2073 	 * means we're forced to use transcription. First, scan for the
2074 	 * transcription stamp. If we find it, then we don't have to do
2075 	 * anything -- the block marks are already transcribed.
2076 	 */
2077 	if (mx23_check_transcription_stamp(this))
2078 		return 0;
2079 
2080 	/*
2081 	 * If control arrives here, we couldn't find a transcription stamp, so
2082 	 * so we presume the block marks are in the conventional location.
2083 	 */
2084 	dev_dbg(dev, "Transcribing bad block marks...\n");
2085 
2086 	/* Compute the number of blocks in the entire medium. */
2087 	block_count = nanddev_eraseblocks_per_target(&chip->base);
2088 
2089 	/*
2090 	 * Loop over all the blocks in the medium, transcribing block marks as
2091 	 * we go.
2092 	 */
2093 	for (block = 0; block < block_count; block++) {
2094 		/*
2095 		 * Compute the chip, page and byte addresses for this block's
2096 		 * conventional mark.
2097 		 */
2098 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
2099 		page = block << (chip->phys_erase_shift - chip->page_shift);
2100 		byte = block <<  chip->phys_erase_shift;
2101 
2102 		/* Send the command to read the conventional block mark. */
2103 		nand_select_target(chip, chipnr);
2104 		ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
2105 					1);
2106 		nand_deselect_target(chip);
2107 
2108 		if (ret)
2109 			continue;
2110 
2111 		/*
2112 		 * Check if the block is marked bad. If so, we need to mark it
2113 		 * again, but this time the result will be a mark in the
2114 		 * location where we transcribe block marks.
2115 		 */
2116 		if (block_mark != 0xff) {
2117 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
2118 			ret = chip->legacy.block_markbad(chip, byte);
2119 			if (ret)
2120 				dev_err(dev,
2121 					"Failed to mark block bad with ret %d\n",
2122 					ret);
2123 		}
2124 	}
2125 
2126 	/* Write the stamp that indicates we've transcribed the block marks. */
2127 	mx23_write_transcription_stamp(this);
2128 	return 0;
2129 }
2130 
2131 static int nand_boot_init(struct gpmi_nand_data  *this)
2132 {
2133 	nand_boot_set_geometry(this);
2134 
2135 	/* This is ROM arch-specific initilization before the BBT scanning. */
2136 	if (GPMI_IS_MX23(this))
2137 		return mx23_boot_init(this);
2138 	return 0;
2139 }
2140 
2141 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2142 {
2143 	int ret;
2144 
2145 	/* Free the temporary DMA memory for reading ID. */
2146 	gpmi_free_dma_buffer(this);
2147 
2148 	/* Set up the NFC geometry which is used by BCH. */
2149 	ret = bch_set_geometry(this);
2150 	if (ret) {
2151 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2152 		return ret;
2153 	}
2154 
2155 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
2156 	return gpmi_alloc_dma_buffer(this);
2157 }
2158 
2159 static int gpmi_init_last(struct gpmi_nand_data *this)
2160 {
2161 	struct nand_chip *chip = &this->nand;
2162 	struct mtd_info *mtd = nand_to_mtd(chip);
2163 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2164 	struct bch_geometry *bch_geo = &this->bch_geometry;
2165 	int ret;
2166 
2167 	/* Set up the medium geometry */
2168 	ret = gpmi_set_geometry(this);
2169 	if (ret)
2170 		return ret;
2171 
2172 	/* Init the nand_ecc_ctrl{} */
2173 	ecc->read_page	= gpmi_ecc_read_page;
2174 	ecc->write_page	= gpmi_ecc_write_page;
2175 	ecc->read_oob	= gpmi_ecc_read_oob;
2176 	ecc->write_oob	= gpmi_ecc_write_oob;
2177 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
2178 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
2179 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2180 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2181 	ecc->mode	= NAND_ECC_HW;
2182 	ecc->size	= bch_geo->ecc_chunk_size;
2183 	ecc->strength	= bch_geo->ecc_strength;
2184 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2185 
2186 	/*
2187 	 * We only enable the subpage read when:
2188 	 *  (1) the chip is imx6, and
2189 	 *  (2) the size of the ECC parity is byte aligned.
2190 	 */
2191 	if (GPMI_IS_MX6(this) &&
2192 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2193 		ecc->read_subpage = gpmi_ecc_read_subpage;
2194 		chip->options |= NAND_SUBPAGE_READ;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2201 {
2202 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2203 	int ret;
2204 
2205 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2206 		chip->bbt_options |= NAND_BBT_NO_OOB;
2207 
2208 		if (of_property_read_bool(this->dev->of_node,
2209 					  "fsl,no-blockmark-swap"))
2210 			this->swap_block_mark = false;
2211 	}
2212 	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2213 		this->swap_block_mark ? "en" : "dis");
2214 
2215 	ret = gpmi_init_last(this);
2216 	if (ret)
2217 		return ret;
2218 
2219 	chip->options |= NAND_SKIP_BBTSCAN;
2220 
2221 	return 0;
2222 }
2223 
2224 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2225 {
2226 	struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2227 
2228 	this->ntransfers++;
2229 
2230 	if (this->ntransfers == GPMI_MAX_TRANSFERS)
2231 		return NULL;
2232 
2233 	return transfer;
2234 }
2235 
2236 static struct dma_async_tx_descriptor *gpmi_chain_command(
2237 	struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2238 {
2239 	struct dma_chan *channel = get_dma_chan(this);
2240 	struct dma_async_tx_descriptor *desc;
2241 	struct gpmi_transfer *transfer;
2242 	int chip = this->nand.cur_cs;
2243 	u32 pio[3];
2244 
2245 	/* [1] send out the PIO words */
2246 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2247 		| BM_GPMI_CTRL0_WORD_LENGTH
2248 		| BF_GPMI_CTRL0_CS(chip, this)
2249 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2250 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2251 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
2252 		| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2253 	pio[1] = 0;
2254 	pio[2] = 0;
2255 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2256 				      DMA_TRANS_NONE, 0);
2257 	if (!desc)
2258 		return NULL;
2259 
2260 	transfer = get_next_transfer(this);
2261 	if (!transfer)
2262 		return NULL;
2263 
2264 	transfer->cmdbuf[0] = cmd;
2265 	if (naddr)
2266 		memcpy(&transfer->cmdbuf[1], addr, naddr);
2267 
2268 	sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2269 	dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2270 
2271 	transfer->direction = DMA_TO_DEVICE;
2272 
2273 	desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2274 				       MXS_DMA_CTRL_WAIT4END);
2275 	return desc;
2276 }
2277 
2278 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2279 	struct gpmi_nand_data *this)
2280 {
2281 	struct dma_chan *channel = get_dma_chan(this);
2282 	u32 pio[2];
2283 
2284 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2285 		| BM_GPMI_CTRL0_WORD_LENGTH
2286 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2287 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2288 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2289 		| BF_GPMI_CTRL0_XFER_COUNT(0);
2290 	pio[1] = 0;
2291 
2292 	return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2293 				MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2294 }
2295 
2296 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2297 	struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2298 {
2299 	struct dma_async_tx_descriptor *desc;
2300 	struct dma_chan *channel = get_dma_chan(this);
2301 	struct gpmi_transfer *transfer;
2302 	u32 pio[6] = {};
2303 
2304 	transfer = get_next_transfer(this);
2305 	if (!transfer)
2306 		return NULL;
2307 
2308 	transfer->direction = DMA_FROM_DEVICE;
2309 
2310 	*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2311 				   DMA_FROM_DEVICE);
2312 
2313 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2314 		| BM_GPMI_CTRL0_WORD_LENGTH
2315 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2316 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2317 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2318 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2319 
2320 	if (this->bch) {
2321 		pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2322 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2323 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2324 				| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2325 		pio[3] = raw_len;
2326 		pio[4] = transfer->sgl.dma_address;
2327 		pio[5] = this->auxiliary_phys;
2328 	}
2329 
2330 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2331 				      DMA_TRANS_NONE, 0);
2332 	if (!desc)
2333 		return NULL;
2334 
2335 	if (!this->bch)
2336 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2337 					     DMA_DEV_TO_MEM,
2338 					     MXS_DMA_CTRL_WAIT4END);
2339 
2340 	return desc;
2341 }
2342 
2343 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2344 	struct gpmi_nand_data *this, const void *buf, int raw_len)
2345 {
2346 	struct dma_chan *channel = get_dma_chan(this);
2347 	struct dma_async_tx_descriptor *desc;
2348 	struct gpmi_transfer *transfer;
2349 	u32 pio[6] = {};
2350 
2351 	transfer = get_next_transfer(this);
2352 	if (!transfer)
2353 		return NULL;
2354 
2355 	transfer->direction = DMA_TO_DEVICE;
2356 
2357 	prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2358 
2359 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2360 		| BM_GPMI_CTRL0_WORD_LENGTH
2361 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2362 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2363 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2364 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2365 
2366 	if (this->bch) {
2367 		pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2368 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2369 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2370 					BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2371 		pio[3] = raw_len;
2372 		pio[4] = transfer->sgl.dma_address;
2373 		pio[5] = this->auxiliary_phys;
2374 	}
2375 
2376 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2377 				      DMA_TRANS_NONE,
2378 				      (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2379 	if (!desc)
2380 		return NULL;
2381 
2382 	if (!this->bch)
2383 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2384 					       DMA_MEM_TO_DEV,
2385 					       MXS_DMA_CTRL_WAIT4END);
2386 
2387 	return desc;
2388 }
2389 
2390 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2391 			     const struct nand_operation *op,
2392 			     bool check_only)
2393 {
2394 	const struct nand_op_instr *instr;
2395 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2396 	struct dma_async_tx_descriptor *desc = NULL;
2397 	int i, ret, buf_len = 0, nbufs = 0;
2398 	u8 cmd = 0;
2399 	void *buf_read = NULL;
2400 	const void *buf_write = NULL;
2401 	bool direct = false;
2402 	struct completion *completion;
2403 	unsigned long to;
2404 
2405 	this->ntransfers = 0;
2406 	for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2407 		this->transfers[i].direction = DMA_NONE;
2408 
2409 	ret = pm_runtime_get_sync(this->dev);
2410 	if (ret < 0)
2411 		return ret;
2412 
2413 	/*
2414 	 * This driver currently supports only one NAND chip. Plus, dies share
2415 	 * the same configuration. So once timings have been applied on the
2416 	 * controller side, they will not change anymore. When the time will
2417 	 * come, the check on must_apply_timings will have to be dropped.
2418 	 */
2419 	if (this->hw.must_apply_timings) {
2420 		this->hw.must_apply_timings = false;
2421 		gpmi_nfc_apply_timings(this);
2422 	}
2423 
2424 	dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2425 
2426 	for (i = 0; i < op->ninstrs; i++) {
2427 		instr = &op->instrs[i];
2428 
2429 		nand_op_trace("  ", instr);
2430 
2431 		switch (instr->type) {
2432 		case NAND_OP_WAITRDY_INSTR:
2433 			desc = gpmi_chain_wait_ready(this);
2434 			break;
2435 		case NAND_OP_CMD_INSTR:
2436 			cmd = instr->ctx.cmd.opcode;
2437 
2438 			/*
2439 			 * When this command has an address cycle chain it
2440 			 * together with the address cycle
2441 			 */
2442 			if (i + 1 != op->ninstrs &&
2443 			    op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2444 				continue;
2445 
2446 			desc = gpmi_chain_command(this, cmd, NULL, 0);
2447 
2448 			break;
2449 		case NAND_OP_ADDR_INSTR:
2450 			desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2451 						  instr->ctx.addr.naddrs);
2452 			break;
2453 		case NAND_OP_DATA_OUT_INSTR:
2454 			buf_write = instr->ctx.data.buf.out;
2455 			buf_len = instr->ctx.data.len;
2456 			nbufs++;
2457 
2458 			desc = gpmi_chain_data_write(this, buf_write, buf_len);
2459 
2460 			break;
2461 		case NAND_OP_DATA_IN_INSTR:
2462 			if (!instr->ctx.data.len)
2463 				break;
2464 			buf_read = instr->ctx.data.buf.in;
2465 			buf_len = instr->ctx.data.len;
2466 			nbufs++;
2467 
2468 			desc = gpmi_chain_data_read(this, buf_read, buf_len,
2469 						   &direct);
2470 			break;
2471 		}
2472 
2473 		if (!desc) {
2474 			ret = -ENXIO;
2475 			goto unmap;
2476 		}
2477 	}
2478 
2479 	dev_dbg(this->dev, "%s setup done\n", __func__);
2480 
2481 	if (nbufs > 1) {
2482 		dev_err(this->dev, "Multiple data instructions not supported\n");
2483 		ret = -EINVAL;
2484 		goto unmap;
2485 	}
2486 
2487 	if (this->bch) {
2488 		writel(this->bch_flashlayout0,
2489 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2490 		writel(this->bch_flashlayout1,
2491 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2492 	}
2493 
2494 	if (this->bch && buf_read) {
2495 		writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2496 		       this->resources.bch_regs + HW_BCH_CTRL_SET);
2497 		completion = &this->bch_done;
2498 	} else {
2499 		desc->callback = dma_irq_callback;
2500 		desc->callback_param = this;
2501 		completion = &this->dma_done;
2502 	}
2503 
2504 	init_completion(completion);
2505 
2506 	dmaengine_submit(desc);
2507 	dma_async_issue_pending(get_dma_chan(this));
2508 
2509 	to = wait_for_completion_timeout(completion, msecs_to_jiffies(1000));
2510 	if (!to) {
2511 		dev_err(this->dev, "DMA timeout, last DMA\n");
2512 		gpmi_dump_info(this);
2513 		ret = -ETIMEDOUT;
2514 		goto unmap;
2515 	}
2516 
2517 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2518 	       this->resources.bch_regs + HW_BCH_CTRL_CLR);
2519 	gpmi_clear_bch(this);
2520 
2521 	ret = 0;
2522 
2523 unmap:
2524 	for (i = 0; i < this->ntransfers; i++) {
2525 		struct gpmi_transfer *transfer = &this->transfers[i];
2526 
2527 		if (transfer->direction != DMA_NONE)
2528 			dma_unmap_sg(this->dev, &transfer->sgl, 1,
2529 				     transfer->direction);
2530 	}
2531 
2532 	if (!ret && buf_read && !direct)
2533 		memcpy(buf_read, this->data_buffer_dma,
2534 		       gpmi_raw_len_to_len(this, buf_len));
2535 
2536 	this->bch = false;
2537 
2538 	pm_runtime_mark_last_busy(this->dev);
2539 	pm_runtime_put_autosuspend(this->dev);
2540 
2541 	return ret;
2542 }
2543 
2544 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2545 	.attach_chip = gpmi_nand_attach_chip,
2546 	.setup_data_interface = gpmi_setup_data_interface,
2547 	.exec_op = gpmi_nfc_exec_op,
2548 };
2549 
2550 static int gpmi_nand_init(struct gpmi_nand_data *this)
2551 {
2552 	struct nand_chip *chip = &this->nand;
2553 	struct mtd_info  *mtd = nand_to_mtd(chip);
2554 	int ret;
2555 
2556 	/* init the MTD data structures */
2557 	mtd->name		= "gpmi-nand";
2558 	mtd->dev.parent		= this->dev;
2559 
2560 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2561 	nand_set_controller_data(chip, this);
2562 	nand_set_flash_node(chip, this->pdev->dev.of_node);
2563 	chip->legacy.block_markbad = gpmi_block_markbad;
2564 	chip->badblock_pattern	= &gpmi_bbt_descr;
2565 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
2566 
2567 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2568 	this->swap_block_mark = !GPMI_IS_MX23(this);
2569 
2570 	/*
2571 	 * Allocate a temporary DMA buffer for reading ID in the
2572 	 * nand_scan_ident().
2573 	 */
2574 	this->bch_geometry.payload_size = 1024;
2575 	this->bch_geometry.auxiliary_size = 128;
2576 	ret = gpmi_alloc_dma_buffer(this);
2577 	if (ret)
2578 		goto err_out;
2579 
2580 	nand_controller_init(&this->base);
2581 	this->base.ops = &gpmi_nand_controller_ops;
2582 	chip->controller = &this->base;
2583 
2584 	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2585 	if (ret)
2586 		goto err_out;
2587 
2588 	ret = nand_boot_init(this);
2589 	if (ret)
2590 		goto err_nand_cleanup;
2591 	ret = nand_create_bbt(chip);
2592 	if (ret)
2593 		goto err_nand_cleanup;
2594 
2595 	ret = mtd_device_register(mtd, NULL, 0);
2596 	if (ret)
2597 		goto err_nand_cleanup;
2598 	return 0;
2599 
2600 err_nand_cleanup:
2601 	nand_cleanup(chip);
2602 err_out:
2603 	gpmi_free_dma_buffer(this);
2604 	return ret;
2605 }
2606 
2607 static const struct of_device_id gpmi_nand_id_table[] = {
2608 	{
2609 		.compatible = "fsl,imx23-gpmi-nand",
2610 		.data = &gpmi_devdata_imx23,
2611 	}, {
2612 		.compatible = "fsl,imx28-gpmi-nand",
2613 		.data = &gpmi_devdata_imx28,
2614 	}, {
2615 		.compatible = "fsl,imx6q-gpmi-nand",
2616 		.data = &gpmi_devdata_imx6q,
2617 	}, {
2618 		.compatible = "fsl,imx6sx-gpmi-nand",
2619 		.data = &gpmi_devdata_imx6sx,
2620 	}, {
2621 		.compatible = "fsl,imx7d-gpmi-nand",
2622 		.data = &gpmi_devdata_imx7d,
2623 	}, {}
2624 };
2625 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2626 
2627 static int gpmi_nand_probe(struct platform_device *pdev)
2628 {
2629 	struct gpmi_nand_data *this;
2630 	const struct of_device_id *of_id;
2631 	int ret;
2632 
2633 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2634 	if (!this)
2635 		return -ENOMEM;
2636 
2637 	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
2638 	if (of_id) {
2639 		this->devdata = of_id->data;
2640 	} else {
2641 		dev_err(&pdev->dev, "Failed to find the right device id.\n");
2642 		return -ENODEV;
2643 	}
2644 
2645 	platform_set_drvdata(pdev, this);
2646 	this->pdev  = pdev;
2647 	this->dev   = &pdev->dev;
2648 
2649 	ret = acquire_resources(this);
2650 	if (ret)
2651 		goto exit_acquire_resources;
2652 
2653 	ret = __gpmi_enable_clk(this, true);
2654 	if (ret)
2655 		goto exit_nfc_init;
2656 
2657 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2658 	pm_runtime_use_autosuspend(&pdev->dev);
2659 	pm_runtime_set_active(&pdev->dev);
2660 	pm_runtime_enable(&pdev->dev);
2661 	pm_runtime_get_sync(&pdev->dev);
2662 
2663 	ret = gpmi_init(this);
2664 	if (ret)
2665 		goto exit_nfc_init;
2666 
2667 	ret = gpmi_nand_init(this);
2668 	if (ret)
2669 		goto exit_nfc_init;
2670 
2671 	pm_runtime_mark_last_busy(&pdev->dev);
2672 	pm_runtime_put_autosuspend(&pdev->dev);
2673 
2674 	dev_info(this->dev, "driver registered.\n");
2675 
2676 	return 0;
2677 
2678 exit_nfc_init:
2679 	pm_runtime_put(&pdev->dev);
2680 	pm_runtime_disable(&pdev->dev);
2681 	release_resources(this);
2682 exit_acquire_resources:
2683 
2684 	return ret;
2685 }
2686 
2687 static int gpmi_nand_remove(struct platform_device *pdev)
2688 {
2689 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2690 
2691 	pm_runtime_put_sync(&pdev->dev);
2692 	pm_runtime_disable(&pdev->dev);
2693 
2694 	nand_release(&this->nand);
2695 	gpmi_free_dma_buffer(this);
2696 	release_resources(this);
2697 	return 0;
2698 }
2699 
2700 #ifdef CONFIG_PM_SLEEP
2701 static int gpmi_pm_suspend(struct device *dev)
2702 {
2703 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2704 
2705 	release_dma_channels(this);
2706 	return 0;
2707 }
2708 
2709 static int gpmi_pm_resume(struct device *dev)
2710 {
2711 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2712 	int ret;
2713 
2714 	ret = acquire_dma_channels(this);
2715 	if (ret < 0)
2716 		return ret;
2717 
2718 	/* re-init the GPMI registers */
2719 	ret = gpmi_init(this);
2720 	if (ret) {
2721 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2722 		return ret;
2723 	}
2724 
2725 	/* re-init the BCH registers */
2726 	ret = bch_set_geometry(this);
2727 	if (ret) {
2728 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
2729 		return ret;
2730 	}
2731 
2732 	return 0;
2733 }
2734 #endif /* CONFIG_PM_SLEEP */
2735 
2736 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2737 {
2738 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2739 
2740 	return __gpmi_enable_clk(this, false);
2741 }
2742 
2743 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2744 {
2745 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2746 
2747 	return __gpmi_enable_clk(this, true);
2748 }
2749 
2750 static const struct dev_pm_ops gpmi_pm_ops = {
2751 	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2752 	SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2753 };
2754 
2755 static struct platform_driver gpmi_nand_driver = {
2756 	.driver = {
2757 		.name = "gpmi-nand",
2758 		.pm = &gpmi_pm_ops,
2759 		.of_match_table = gpmi_nand_id_table,
2760 	},
2761 	.probe   = gpmi_nand_probe,
2762 	.remove  = gpmi_nand_remove,
2763 };
2764 module_platform_driver(gpmi_nand_driver);
2765 
2766 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2767 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2768 MODULE_LICENSE("GPL");
2769