xref: /openbmc/linux/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/slab.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include "gpmi-nand.h"
17 #include "bch-regs.h"
18 
19 /* Resource names for the GPMI NAND driver. */
20 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
21 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
22 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
23 
24 /* add our owner bbt descriptor */
25 static uint8_t scan_ff_pattern[] = { 0xff };
26 static struct nand_bbt_descr gpmi_bbt_descr = {
27 	.options	= 0,
28 	.offs		= 0,
29 	.len		= 1,
30 	.pattern	= scan_ff_pattern
31 };
32 
33 /*
34  * We may change the layout if we can get the ECC info from the datasheet,
35  * else we will use all the (page + OOB).
36  */
37 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
38 			      struct mtd_oob_region *oobregion)
39 {
40 	struct nand_chip *chip = mtd_to_nand(mtd);
41 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
42 	struct bch_geometry *geo = &this->bch_geometry;
43 
44 	if (section)
45 		return -ERANGE;
46 
47 	oobregion->offset = 0;
48 	oobregion->length = geo->page_size - mtd->writesize;
49 
50 	return 0;
51 }
52 
53 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
54 			       struct mtd_oob_region *oobregion)
55 {
56 	struct nand_chip *chip = mtd_to_nand(mtd);
57 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
58 	struct bch_geometry *geo = &this->bch_geometry;
59 
60 	if (section)
61 		return -ERANGE;
62 
63 	/* The available oob size we have. */
64 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
65 		oobregion->offset = geo->page_size - mtd->writesize;
66 		oobregion->length = mtd->oobsize - oobregion->offset;
67 	}
68 
69 	return 0;
70 }
71 
72 static const char * const gpmi_clks_for_mx2x[] = {
73 	"gpmi_io",
74 };
75 
76 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
77 	.ecc = gpmi_ooblayout_ecc,
78 	.free = gpmi_ooblayout_free,
79 };
80 
81 static const struct gpmi_devdata gpmi_devdata_imx23 = {
82 	.type = IS_MX23,
83 	.bch_max_ecc_strength = 20,
84 	.max_chain_delay = 16000,
85 	.clks = gpmi_clks_for_mx2x,
86 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
87 };
88 
89 static const struct gpmi_devdata gpmi_devdata_imx28 = {
90 	.type = IS_MX28,
91 	.bch_max_ecc_strength = 20,
92 	.max_chain_delay = 16000,
93 	.clks = gpmi_clks_for_mx2x,
94 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
95 };
96 
97 static const char * const gpmi_clks_for_mx6[] = {
98 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
99 };
100 
101 static const struct gpmi_devdata gpmi_devdata_imx6q = {
102 	.type = IS_MX6Q,
103 	.bch_max_ecc_strength = 40,
104 	.max_chain_delay = 12000,
105 	.clks = gpmi_clks_for_mx6,
106 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
107 };
108 
109 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
110 	.type = IS_MX6SX,
111 	.bch_max_ecc_strength = 62,
112 	.max_chain_delay = 12000,
113 	.clks = gpmi_clks_for_mx6,
114 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
115 };
116 
117 static const char * const gpmi_clks_for_mx7d[] = {
118 	"gpmi_io", "gpmi_bch_apb",
119 };
120 
121 static const struct gpmi_devdata gpmi_devdata_imx7d = {
122 	.type = IS_MX7D,
123 	.bch_max_ecc_strength = 62,
124 	.max_chain_delay = 12000,
125 	.clks = gpmi_clks_for_mx7d,
126 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
127 };
128 
129 static irqreturn_t bch_irq(int irq, void *cookie)
130 {
131 	struct gpmi_nand_data *this = cookie;
132 
133 	gpmi_clear_bch(this);
134 	complete(&this->bch_done);
135 	return IRQ_HANDLED;
136 }
137 
138 /*
139  *  Calculate the ECC strength by hand:
140  *	E : The ECC strength.
141  *	G : the length of Galois Field.
142  *	N : The chunk count of per page.
143  *	O : the oobsize of the NAND chip.
144  *	M : the metasize of per page.
145  *
146  *	The formula is :
147  *		E * G * N
148  *	      ------------ <= (O - M)
149  *                  8
150  *
151  *      So, we get E by:
152  *                    (O - M) * 8
153  *              E <= -------------
154  *                       G * N
155  */
156 static inline int get_ecc_strength(struct gpmi_nand_data *this)
157 {
158 	struct bch_geometry *geo = &this->bch_geometry;
159 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
160 	int ecc_strength;
161 
162 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
163 			/ (geo->gf_len * geo->ecc_chunk_count);
164 
165 	/* We need the minor even number. */
166 	return round_down(ecc_strength, 2);
167 }
168 
169 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
170 {
171 	struct bch_geometry *geo = &this->bch_geometry;
172 
173 	/* Do the sanity check. */
174 	if (GPMI_IS_MXS(this)) {
175 		/* The mx23/mx28 only support the GF13. */
176 		if (geo->gf_len == 14)
177 			return false;
178 	}
179 	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
180 }
181 
182 /*
183  * If we can get the ECC information from the nand chip, we do not
184  * need to calculate them ourselves.
185  *
186  * We may have available oob space in this case.
187  */
188 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
189 				    unsigned int ecc_strength,
190 				    unsigned int ecc_step)
191 {
192 	struct bch_geometry *geo = &this->bch_geometry;
193 	struct nand_chip *chip = &this->nand;
194 	struct mtd_info *mtd = nand_to_mtd(chip);
195 	unsigned int block_mark_bit_offset;
196 
197 	switch (ecc_step) {
198 	case SZ_512:
199 		geo->gf_len = 13;
200 		break;
201 	case SZ_1K:
202 		geo->gf_len = 14;
203 		break;
204 	default:
205 		dev_err(this->dev,
206 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
207 			chip->base.eccreq.strength,
208 			chip->base.eccreq.step_size);
209 		return -EINVAL;
210 	}
211 	geo->ecc_chunk_size = ecc_step;
212 	geo->ecc_strength = round_up(ecc_strength, 2);
213 	if (!gpmi_check_ecc(this))
214 		return -EINVAL;
215 
216 	/* Keep the C >= O */
217 	if (geo->ecc_chunk_size < mtd->oobsize) {
218 		dev_err(this->dev,
219 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
220 			ecc_step, mtd->oobsize);
221 		return -EINVAL;
222 	}
223 
224 	/* The default value, see comment in the legacy_set_geometry(). */
225 	geo->metadata_size = 10;
226 
227 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
228 
229 	/*
230 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
231 	 *
232 	 *    |                          P                            |
233 	 *    |<----------------------------------------------------->|
234 	 *    |                                                       |
235 	 *    |                                        (Block Mark)   |
236 	 *    |                      P'                      |      | |     |
237 	 *    |<-------------------------------------------->|  D   | |  O' |
238 	 *    |                                              |<---->| |<--->|
239 	 *    V                                              V      V V     V
240 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
241 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
242 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
243 	 *                                                   ^              ^
244 	 *                                                   |      O       |
245 	 *                                                   |<------------>|
246 	 *                                                   |              |
247 	 *
248 	 *	P : the page size for BCH module.
249 	 *	E : The ECC strength.
250 	 *	G : the length of Galois Field.
251 	 *	N : The chunk count of per page.
252 	 *	M : the metasize of per page.
253 	 *	C : the ecc chunk size, aka the "data" above.
254 	 *	P': the nand chip's page size.
255 	 *	O : the nand chip's oob size.
256 	 *	O': the free oob.
257 	 *
258 	 *	The formula for P is :
259 	 *
260 	 *	            E * G * N
261 	 *	       P = ------------ + P' + M
262 	 *                      8
263 	 *
264 	 * The position of block mark moves forward in the ECC-based view
265 	 * of page, and the delta is:
266 	 *
267 	 *                   E * G * (N - 1)
268 	 *             D = (---------------- + M)
269 	 *                          8
270 	 *
271 	 * Please see the comment in legacy_set_geometry().
272 	 * With the condition C >= O , we still can get same result.
273 	 * So the bit position of the physical block mark within the ECC-based
274 	 * view of the page is :
275 	 *             (P' - D) * 8
276 	 */
277 	geo->page_size = mtd->writesize + geo->metadata_size +
278 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
279 
280 	geo->payload_size = mtd->writesize;
281 
282 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
283 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
284 				+ ALIGN(geo->ecc_chunk_count, 4);
285 
286 	if (!this->swap_block_mark)
287 		return 0;
288 
289 	/* For bit swap. */
290 	block_mark_bit_offset = mtd->writesize * 8 -
291 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
292 				+ geo->metadata_size * 8);
293 
294 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
295 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
296 	return 0;
297 }
298 
299 static int legacy_set_geometry(struct gpmi_nand_data *this)
300 {
301 	struct bch_geometry *geo = &this->bch_geometry;
302 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
303 	unsigned int metadata_size;
304 	unsigned int status_size;
305 	unsigned int block_mark_bit_offset;
306 
307 	/*
308 	 * The size of the metadata can be changed, though we set it to 10
309 	 * bytes now. But it can't be too large, because we have to save
310 	 * enough space for BCH.
311 	 */
312 	geo->metadata_size = 10;
313 
314 	/* The default for the length of Galois Field. */
315 	geo->gf_len = 13;
316 
317 	/* The default for chunk size. */
318 	geo->ecc_chunk_size = 512;
319 	while (geo->ecc_chunk_size < mtd->oobsize) {
320 		geo->ecc_chunk_size *= 2; /* keep C >= O */
321 		geo->gf_len = 14;
322 	}
323 
324 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
325 
326 	/* We use the same ECC strength for all chunks. */
327 	geo->ecc_strength = get_ecc_strength(this);
328 	if (!gpmi_check_ecc(this)) {
329 		dev_err(this->dev,
330 			"ecc strength: %d cannot be supported by the controller (%d)\n"
331 			"try to use minimum ecc strength that NAND chip required\n",
332 			geo->ecc_strength,
333 			this->devdata->bch_max_ecc_strength);
334 		return -EINVAL;
335 	}
336 
337 	geo->page_size = mtd->writesize + geo->metadata_size +
338 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
339 	geo->payload_size = mtd->writesize;
340 
341 	/*
342 	 * The auxiliary buffer contains the metadata and the ECC status. The
343 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
344 	 * contains one byte for every ECC chunk, and is also padded to the
345 	 * nearest 32-bit boundary.
346 	 */
347 	metadata_size = ALIGN(geo->metadata_size, 4);
348 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
349 
350 	geo->auxiliary_size = metadata_size + status_size;
351 	geo->auxiliary_status_offset = metadata_size;
352 
353 	if (!this->swap_block_mark)
354 		return 0;
355 
356 	/*
357 	 * We need to compute the byte and bit offsets of
358 	 * the physical block mark within the ECC-based view of the page.
359 	 *
360 	 * NAND chip with 2K page shows below:
361 	 *                                             (Block Mark)
362 	 *                                                   |      |
363 	 *                                                   |  D   |
364 	 *                                                   |<---->|
365 	 *                                                   V      V
366 	 *    +---+----------+-+----------+-+----------+-+----------+-+
367 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
368 	 *    +---+----------+-+----------+-+----------+-+----------+-+
369 	 *
370 	 * The position of block mark moves forward in the ECC-based view
371 	 * of page, and the delta is:
372 	 *
373 	 *                   E * G * (N - 1)
374 	 *             D = (---------------- + M)
375 	 *                          8
376 	 *
377 	 * With the formula to compute the ECC strength, and the condition
378 	 *       : C >= O         (C is the ecc chunk size)
379 	 *
380 	 * It's easy to deduce to the following result:
381 	 *
382 	 *         E * G       (O - M)      C - M         C - M
383 	 *      ----------- <= ------- <=  --------  <  ---------
384 	 *           8            N           N          (N - 1)
385 	 *
386 	 *  So, we get:
387 	 *
388 	 *                   E * G * (N - 1)
389 	 *             D = (---------------- + M) < C
390 	 *                          8
391 	 *
392 	 *  The above inequality means the position of block mark
393 	 *  within the ECC-based view of the page is still in the data chunk,
394 	 *  and it's NOT in the ECC bits of the chunk.
395 	 *
396 	 *  Use the following to compute the bit position of the
397 	 *  physical block mark within the ECC-based view of the page:
398 	 *          (page_size - D) * 8
399 	 *
400 	 *  --Huang Shijie
401 	 */
402 	block_mark_bit_offset = mtd->writesize * 8 -
403 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
404 				+ geo->metadata_size * 8);
405 
406 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
407 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
408 	return 0;
409 }
410 
411 int common_nfc_set_geometry(struct gpmi_nand_data *this)
412 {
413 	struct nand_chip *chip = &this->nand;
414 
415 	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
416 		return set_geometry_by_ecc_info(this, chip->ecc.strength,
417 						chip->ecc.size);
418 
419 	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
420 				|| legacy_set_geometry(this)) {
421 		if (!(chip->base.eccreq.strength > 0 &&
422 		      chip->base.eccreq.step_size > 0))
423 			return -EINVAL;
424 
425 		return set_geometry_by_ecc_info(this,
426 						chip->base.eccreq.strength,
427 						chip->base.eccreq.step_size);
428 	}
429 
430 	return 0;
431 }
432 
433 struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
434 {
435 	/* We use the DMA channel 0 to access all the nand chips. */
436 	return this->dma_chans[0];
437 }
438 
439 /* Can we use the upper's buffer directly for DMA? */
440 bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len,
441 		      enum dma_data_direction dr)
442 {
443 	struct scatterlist *sgl = &this->data_sgl;
444 	int ret;
445 
446 	/* first try to map the upper buffer directly */
447 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
448 		sg_init_one(sgl, buf, len);
449 		ret = dma_map_sg(this->dev, sgl, 1, dr);
450 		if (ret == 0)
451 			goto map_fail;
452 
453 		return true;
454 	}
455 
456 map_fail:
457 	/* We have to use our own DMA buffer. */
458 	sg_init_one(sgl, this->data_buffer_dma, len);
459 
460 	if (dr == DMA_TO_DEVICE)
461 		memcpy(this->data_buffer_dma, buf, len);
462 
463 	dma_map_sg(this->dev, sgl, 1, dr);
464 
465 	return false;
466 }
467 
468 /* This will be called after the DMA operation is finished. */
469 static void dma_irq_callback(void *param)
470 {
471 	struct gpmi_nand_data *this = param;
472 	struct completion *dma_c = &this->dma_done;
473 
474 	complete(dma_c);
475 }
476 
477 int start_dma_without_bch_irq(struct gpmi_nand_data *this,
478 				struct dma_async_tx_descriptor *desc)
479 {
480 	struct completion *dma_c = &this->dma_done;
481 	unsigned long timeout;
482 
483 	init_completion(dma_c);
484 
485 	desc->callback		= dma_irq_callback;
486 	desc->callback_param	= this;
487 	dmaengine_submit(desc);
488 	dma_async_issue_pending(get_dma_chan(this));
489 
490 	/* Wait for the interrupt from the DMA block. */
491 	timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
492 	if (!timeout) {
493 		dev_err(this->dev, "DMA timeout, last DMA\n");
494 		gpmi_dump_info(this);
495 		return -ETIMEDOUT;
496 	}
497 	return 0;
498 }
499 
500 /*
501  * This function is used in BCH reading or BCH writing pages.
502  * It will wait for the BCH interrupt as long as ONE second.
503  * Actually, we must wait for two interrupts :
504  *	[1] firstly the DMA interrupt and
505  *	[2] secondly the BCH interrupt.
506  */
507 int start_dma_with_bch_irq(struct gpmi_nand_data *this,
508 			struct dma_async_tx_descriptor *desc)
509 {
510 	struct completion *bch_c = &this->bch_done;
511 	unsigned long timeout;
512 
513 	/* Prepare to receive an interrupt from the BCH block. */
514 	init_completion(bch_c);
515 
516 	/* start the DMA */
517 	start_dma_without_bch_irq(this, desc);
518 
519 	/* Wait for the interrupt from the BCH block. */
520 	timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
521 	if (!timeout) {
522 		dev_err(this->dev, "BCH timeout\n");
523 		gpmi_dump_info(this);
524 		return -ETIMEDOUT;
525 	}
526 	return 0;
527 }
528 
529 static int acquire_register_block(struct gpmi_nand_data *this,
530 				  const char *res_name)
531 {
532 	struct platform_device *pdev = this->pdev;
533 	struct resources *res = &this->resources;
534 	struct resource *r;
535 	void __iomem *p;
536 
537 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
538 	p = devm_ioremap_resource(&pdev->dev, r);
539 	if (IS_ERR(p))
540 		return PTR_ERR(p);
541 
542 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
543 		res->gpmi_regs = p;
544 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
545 		res->bch_regs = p;
546 	else
547 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
548 
549 	return 0;
550 }
551 
552 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
553 {
554 	struct platform_device *pdev = this->pdev;
555 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
556 	struct resource *r;
557 	int err;
558 
559 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
560 	if (!r) {
561 		dev_err(this->dev, "Can't get resource for %s\n", res_name);
562 		return -ENODEV;
563 	}
564 
565 	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
566 	if (err)
567 		dev_err(this->dev, "error requesting BCH IRQ\n");
568 
569 	return err;
570 }
571 
572 static void release_dma_channels(struct gpmi_nand_data *this)
573 {
574 	unsigned int i;
575 	for (i = 0; i < DMA_CHANS; i++)
576 		if (this->dma_chans[i]) {
577 			dma_release_channel(this->dma_chans[i]);
578 			this->dma_chans[i] = NULL;
579 		}
580 }
581 
582 static int acquire_dma_channels(struct gpmi_nand_data *this)
583 {
584 	struct platform_device *pdev = this->pdev;
585 	struct dma_chan *dma_chan;
586 
587 	/* request dma channel */
588 	dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
589 	if (!dma_chan) {
590 		dev_err(this->dev, "Failed to request DMA channel.\n");
591 		goto acquire_err;
592 	}
593 
594 	this->dma_chans[0] = dma_chan;
595 	return 0;
596 
597 acquire_err:
598 	release_dma_channels(this);
599 	return -EINVAL;
600 }
601 
602 static int gpmi_get_clks(struct gpmi_nand_data *this)
603 {
604 	struct resources *r = &this->resources;
605 	struct clk *clk;
606 	int err, i;
607 
608 	for (i = 0; i < this->devdata->clks_count; i++) {
609 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
610 		if (IS_ERR(clk)) {
611 			err = PTR_ERR(clk);
612 			goto err_clock;
613 		}
614 
615 		r->clock[i] = clk;
616 	}
617 
618 	if (GPMI_IS_MX6(this))
619 		/*
620 		 * Set the default value for the gpmi clock.
621 		 *
622 		 * If you want to use the ONFI nand which is in the
623 		 * Synchronous Mode, you should change the clock as you need.
624 		 */
625 		clk_set_rate(r->clock[0], 22000000);
626 
627 	return 0;
628 
629 err_clock:
630 	dev_dbg(this->dev, "failed in finding the clocks.\n");
631 	return err;
632 }
633 
634 static int acquire_resources(struct gpmi_nand_data *this)
635 {
636 	int ret;
637 
638 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
639 	if (ret)
640 		goto exit_regs;
641 
642 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
643 	if (ret)
644 		goto exit_regs;
645 
646 	ret = acquire_bch_irq(this, bch_irq);
647 	if (ret)
648 		goto exit_regs;
649 
650 	ret = acquire_dma_channels(this);
651 	if (ret)
652 		goto exit_regs;
653 
654 	ret = gpmi_get_clks(this);
655 	if (ret)
656 		goto exit_clock;
657 	return 0;
658 
659 exit_clock:
660 	release_dma_channels(this);
661 exit_regs:
662 	return ret;
663 }
664 
665 static void release_resources(struct gpmi_nand_data *this)
666 {
667 	release_dma_channels(this);
668 }
669 
670 static int send_page_prepare(struct gpmi_nand_data *this,
671 			const void *source, unsigned length,
672 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
673 			const void **use_virt, dma_addr_t *use_phys)
674 {
675 	struct device *dev = this->dev;
676 
677 	if (virt_addr_valid(source)) {
678 		dma_addr_t source_phys;
679 
680 		source_phys = dma_map_single(dev, (void *)source, length,
681 						DMA_TO_DEVICE);
682 		if (dma_mapping_error(dev, source_phys)) {
683 			if (alt_size < length) {
684 				dev_err(dev, "Alternate buffer is too small\n");
685 				return -ENOMEM;
686 			}
687 			goto map_failed;
688 		}
689 		*use_virt = source;
690 		*use_phys = source_phys;
691 		return 0;
692 	}
693 map_failed:
694 	/*
695 	 * Copy the content of the source buffer into the alternate
696 	 * buffer and set up the return values accordingly.
697 	 */
698 	memcpy(alt_virt, source, length);
699 
700 	*use_virt = alt_virt;
701 	*use_phys = alt_phys;
702 	return 0;
703 }
704 
705 static void send_page_end(struct gpmi_nand_data *this,
706 			const void *source, unsigned length,
707 			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
708 			const void *used_virt, dma_addr_t used_phys)
709 {
710 	struct device *dev = this->dev;
711 	if (used_virt == source)
712 		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
713 }
714 
715 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
716 {
717 	struct device *dev = this->dev;
718 
719 	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
720 		dma_free_coherent(dev, this->page_buffer_size,
721 					this->page_buffer_virt,
722 					this->page_buffer_phys);
723 	kfree(this->cmd_buffer);
724 	kfree(this->data_buffer_dma);
725 	kfree(this->raw_buffer);
726 
727 	this->cmd_buffer	= NULL;
728 	this->data_buffer_dma	= NULL;
729 	this->raw_buffer	= NULL;
730 	this->page_buffer_virt	= NULL;
731 	this->page_buffer_size	=  0;
732 }
733 
734 /* Allocate the DMA buffers */
735 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
736 {
737 	struct bch_geometry *geo = &this->bch_geometry;
738 	struct device *dev = this->dev;
739 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
740 
741 	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
742 	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
743 	if (this->cmd_buffer == NULL)
744 		goto error_alloc;
745 
746 	/*
747 	 * [2] Allocate a read/write data buffer.
748 	 *     The gpmi_alloc_dma_buffer can be called twice.
749 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
750 	 *     is called before the NAND identification; and we allocate a
751 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
752 	 *     is called after.
753 	 */
754 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
755 					GFP_DMA | GFP_KERNEL);
756 	if (this->data_buffer_dma == NULL)
757 		goto error_alloc;
758 
759 	/*
760 	 * [3] Allocate the page buffer.
761 	 *
762 	 * Both the payload buffer and the auxiliary buffer must appear on
763 	 * 32-bit boundaries. We presume the size of the payload buffer is a
764 	 * power of two and is much larger than four, which guarantees the
765 	 * auxiliary buffer will appear on a 32-bit boundary.
766 	 */
767 	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
768 	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
769 					&this->page_buffer_phys, GFP_DMA);
770 	if (!this->page_buffer_virt)
771 		goto error_alloc;
772 
773 	this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
774 	if (!this->raw_buffer)
775 		goto error_alloc;
776 
777 	/* Slice up the page buffer. */
778 	this->payload_virt = this->page_buffer_virt;
779 	this->payload_phys = this->page_buffer_phys;
780 	this->auxiliary_virt = this->payload_virt + geo->payload_size;
781 	this->auxiliary_phys = this->payload_phys + geo->payload_size;
782 	return 0;
783 
784 error_alloc:
785 	gpmi_free_dma_buffer(this);
786 	return -ENOMEM;
787 }
788 
789 static void gpmi_cmd_ctrl(struct nand_chip *chip, int data, unsigned int ctrl)
790 {
791 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
792 	int ret;
793 
794 	/*
795 	 * Every operation begins with a command byte and a series of zero or
796 	 * more address bytes. These are distinguished by either the Address
797 	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
798 	 * asserted. When MTD is ready to execute the command, it will deassert
799 	 * both latch enables.
800 	 *
801 	 * Rather than run a separate DMA operation for every single byte, we
802 	 * queue them up and run a single DMA operation for the entire series
803 	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
804 	 */
805 	if ((ctrl & (NAND_ALE | NAND_CLE))) {
806 		if (data != NAND_CMD_NONE)
807 			this->cmd_buffer[this->command_length++] = data;
808 		return;
809 	}
810 
811 	if (!this->command_length)
812 		return;
813 
814 	ret = gpmi_send_command(this);
815 	if (ret)
816 		dev_err(this->dev, "Chip: %u, Error %d\n",
817 			this->current_chip, ret);
818 
819 	this->command_length = 0;
820 }
821 
822 static int gpmi_dev_ready(struct nand_chip *chip)
823 {
824 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
825 
826 	return gpmi_is_ready(this, this->current_chip);
827 }
828 
829 static void gpmi_select_chip(struct nand_chip *chip, int chipnr)
830 {
831 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
832 	int ret;
833 
834 	/*
835 	 * For power consumption matters, disable/enable the clock each time a
836 	 * die is selected/unselected.
837 	 */
838 	if (this->current_chip < 0 && chipnr >= 0) {
839 		ret = gpmi_enable_clk(this);
840 		if (ret)
841 			dev_err(this->dev, "Failed to enable the clock\n");
842 	} else if (this->current_chip >= 0 && chipnr < 0) {
843 		ret = gpmi_disable_clk(this);
844 		if (ret)
845 			dev_err(this->dev, "Failed to disable the clock\n");
846 	}
847 
848 	/*
849 	 * This driver currently supports only one NAND chip. Plus, dies share
850 	 * the same configuration. So once timings have been applied on the
851 	 * controller side, they will not change anymore. When the time will
852 	 * come, the check on must_apply_timings will have to be dropped.
853 	 */
854 	if (chipnr >= 0 && this->hw.must_apply_timings) {
855 		this->hw.must_apply_timings = false;
856 		gpmi_nfc_apply_timings(this);
857 	}
858 
859 	this->current_chip = chipnr;
860 }
861 
862 static void gpmi_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
863 {
864 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
865 
866 	dev_dbg(this->dev, "len is %d\n", len);
867 
868 	gpmi_read_data(this, buf, len);
869 }
870 
871 static void gpmi_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
872 {
873 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
874 
875 	dev_dbg(this->dev, "len is %d\n", len);
876 
877 	gpmi_send_data(this, buf, len);
878 }
879 
880 static uint8_t gpmi_read_byte(struct nand_chip *chip)
881 {
882 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
883 	uint8_t *buf = this->data_buffer_dma;
884 
885 	gpmi_read_buf(chip, buf, 1);
886 	return buf[0];
887 }
888 
889 /*
890  * Handles block mark swapping.
891  * It can be called in swapping the block mark, or swapping it back,
892  * because the the operations are the same.
893  */
894 static void block_mark_swapping(struct gpmi_nand_data *this,
895 				void *payload, void *auxiliary)
896 {
897 	struct bch_geometry *nfc_geo = &this->bch_geometry;
898 	unsigned char *p;
899 	unsigned char *a;
900 	unsigned int  bit;
901 	unsigned char mask;
902 	unsigned char from_data;
903 	unsigned char from_oob;
904 
905 	if (!this->swap_block_mark)
906 		return;
907 
908 	/*
909 	 * If control arrives here, we're swapping. Make some convenience
910 	 * variables.
911 	 */
912 	bit = nfc_geo->block_mark_bit_offset;
913 	p   = payload + nfc_geo->block_mark_byte_offset;
914 	a   = auxiliary;
915 
916 	/*
917 	 * Get the byte from the data area that overlays the block mark. Since
918 	 * the ECC engine applies its own view to the bits in the page, the
919 	 * physical block mark won't (in general) appear on a byte boundary in
920 	 * the data.
921 	 */
922 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
923 
924 	/* Get the byte from the OOB. */
925 	from_oob = a[0];
926 
927 	/* Swap them. */
928 	a[0] = from_data;
929 
930 	mask = (0x1 << bit) - 1;
931 	p[0] = (p[0] & mask) | (from_oob << bit);
932 
933 	mask = ~0 << bit;
934 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
935 }
936 
937 static int gpmi_ecc_read_page_data(struct nand_chip *chip,
938 				   uint8_t *buf, int oob_required,
939 				   int page)
940 {
941 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
942 	struct bch_geometry *nfc_geo = &this->bch_geometry;
943 	struct mtd_info *mtd = nand_to_mtd(chip);
944 	dma_addr_t    payload_phys;
945 	unsigned int  i;
946 	unsigned char *status;
947 	unsigned int  max_bitflips = 0;
948 	int           ret;
949 	bool          direct = false;
950 
951 	dev_dbg(this->dev, "page number is : %d\n", page);
952 
953 	payload_phys = this->payload_phys;
954 
955 	if (virt_addr_valid(buf)) {
956 		dma_addr_t dest_phys;
957 
958 		dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size,
959 					   DMA_FROM_DEVICE);
960 		if (!dma_mapping_error(this->dev, dest_phys)) {
961 			payload_phys = dest_phys;
962 			direct = true;
963 		}
964 	}
965 
966 	/* go! */
967 	ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys);
968 
969 	if (direct)
970 		dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size,
971 				 DMA_FROM_DEVICE);
972 
973 	if (ret) {
974 		dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
975 		return ret;
976 	}
977 
978 	/* Loop over status bytes, accumulating ECC status. */
979 	status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset;
980 
981 	if (!direct)
982 		memcpy(buf, this->payload_virt, nfc_geo->payload_size);
983 
984 	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
985 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
986 			continue;
987 
988 		if (*status == STATUS_UNCORRECTABLE) {
989 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
990 			u8 *eccbuf = this->raw_buffer;
991 			int offset, bitoffset;
992 			int eccbytes;
993 			int flips;
994 
995 			/* Read ECC bytes into our internal raw_buffer */
996 			offset = nfc_geo->metadata_size * 8;
997 			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
998 			offset -= eccbits;
999 			bitoffset = offset % 8;
1000 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1001 			offset /= 8;
1002 			eccbytes -= offset;
1003 			nand_change_read_column_op(chip, offset, eccbuf,
1004 						   eccbytes, false);
1005 
1006 			/*
1007 			 * ECC data are not byte aligned and we may have
1008 			 * in-band data in the first and last byte of
1009 			 * eccbuf. Set non-eccbits to one so that
1010 			 * nand_check_erased_ecc_chunk() does not count them
1011 			 * as bitflips.
1012 			 */
1013 			if (bitoffset)
1014 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1015 
1016 			bitoffset = (bitoffset + eccbits) % 8;
1017 			if (bitoffset)
1018 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1019 
1020 			/*
1021 			 * The ECC hardware has an uncorrectable ECC status
1022 			 * code in case we have bitflips in an erased page. As
1023 			 * nothing was written into this subpage the ECC is
1024 			 * obviously wrong and we can not trust it. We assume
1025 			 * at this point that we are reading an erased page and
1026 			 * try to correct the bitflips in buffer up to
1027 			 * ecc_strength bitflips. If this is a page with random
1028 			 * data, we exceed this number of bitflips and have a
1029 			 * ECC failure. Otherwise we use the corrected buffer.
1030 			 */
1031 			if (i == 0) {
1032 				/* The first block includes metadata */
1033 				flips = nand_check_erased_ecc_chunk(
1034 						buf + i * nfc_geo->ecc_chunk_size,
1035 						nfc_geo->ecc_chunk_size,
1036 						eccbuf, eccbytes,
1037 						this->auxiliary_virt,
1038 						nfc_geo->metadata_size,
1039 						nfc_geo->ecc_strength);
1040 			} else {
1041 				flips = nand_check_erased_ecc_chunk(
1042 						buf + i * nfc_geo->ecc_chunk_size,
1043 						nfc_geo->ecc_chunk_size,
1044 						eccbuf, eccbytes,
1045 						NULL, 0,
1046 						nfc_geo->ecc_strength);
1047 			}
1048 
1049 			if (flips > 0) {
1050 				max_bitflips = max_t(unsigned int, max_bitflips,
1051 						     flips);
1052 				mtd->ecc_stats.corrected += flips;
1053 				continue;
1054 			}
1055 
1056 			mtd->ecc_stats.failed++;
1057 			continue;
1058 		}
1059 
1060 		mtd->ecc_stats.corrected += *status;
1061 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1062 	}
1063 
1064 	/* handle the block mark swapping */
1065 	block_mark_swapping(this, buf, this->auxiliary_virt);
1066 
1067 	if (oob_required) {
1068 		/*
1069 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1070 		 * for details about our policy for delivering the OOB.
1071 		 *
1072 		 * We fill the caller's buffer with set bits, and then copy the
1073 		 * block mark to th caller's buffer. Note that, if block mark
1074 		 * swapping was necessary, it has already been done, so we can
1075 		 * rely on the first byte of the auxiliary buffer to contain
1076 		 * the block mark.
1077 		 */
1078 		memset(chip->oob_poi, ~0, mtd->oobsize);
1079 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1080 	}
1081 
1082 	return max_bitflips;
1083 }
1084 
1085 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1086 			      int oob_required, int page)
1087 {
1088 	nand_read_page_op(chip, page, 0, NULL, 0);
1089 
1090 	return gpmi_ecc_read_page_data(chip, buf, oob_required, page);
1091 }
1092 
1093 /* Fake a virtual small page for the subpage read */
1094 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1095 				 uint32_t len, uint8_t *buf, int page)
1096 {
1097 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1098 	void __iomem *bch_regs = this->resources.bch_regs;
1099 	struct bch_geometry old_geo = this->bch_geometry;
1100 	struct bch_geometry *geo = &this->bch_geometry;
1101 	int size = chip->ecc.size; /* ECC chunk size */
1102 	int meta, n, page_size;
1103 	u32 r1_old, r2_old, r1_new, r2_new;
1104 	unsigned int max_bitflips;
1105 	int first, last, marker_pos;
1106 	int ecc_parity_size;
1107 	int col = 0;
1108 	int old_swap_block_mark = this->swap_block_mark;
1109 
1110 	/* The size of ECC parity */
1111 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1112 
1113 	/* Align it with the chunk size */
1114 	first = offs / size;
1115 	last = (offs + len - 1) / size;
1116 
1117 	if (this->swap_block_mark) {
1118 		/*
1119 		 * Find the chunk which contains the Block Marker.
1120 		 * If this chunk is in the range of [first, last],
1121 		 * we have to read out the whole page.
1122 		 * Why? since we had swapped the data at the position of Block
1123 		 * Marker to the metadata which is bound with the chunk 0.
1124 		 */
1125 		marker_pos = geo->block_mark_byte_offset / size;
1126 		if (last >= marker_pos && first <= marker_pos) {
1127 			dev_dbg(this->dev,
1128 				"page:%d, first:%d, last:%d, marker at:%d\n",
1129 				page, first, last, marker_pos);
1130 			return gpmi_ecc_read_page(chip, buf, 0, page);
1131 		}
1132 	}
1133 
1134 	meta = geo->metadata_size;
1135 	if (first) {
1136 		col = meta + (size + ecc_parity_size) * first;
1137 		meta = 0;
1138 		buf = buf + first * size;
1139 	}
1140 
1141 	nand_read_page_op(chip, page, col, NULL, 0);
1142 
1143 	/* Save the old environment */
1144 	r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
1145 	r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
1146 
1147 	/* change the BCH registers and bch_geometry{} */
1148 	n = last - first + 1;
1149 	page_size = meta + (size + ecc_parity_size) * n;
1150 
1151 	r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
1152 			BM_BCH_FLASH0LAYOUT0_META_SIZE);
1153 	r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
1154 			| BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
1155 	writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
1156 
1157 	r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
1158 	r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
1159 	writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
1160 
1161 	geo->ecc_chunk_count = n;
1162 	geo->payload_size = n * size;
1163 	geo->page_size = page_size;
1164 	geo->auxiliary_status_offset = ALIGN(meta, 4);
1165 
1166 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1167 		page, offs, len, col, first, n, page_size);
1168 
1169 	/* Read the subpage now */
1170 	this->swap_block_mark = false;
1171 	max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page);
1172 
1173 	/* Restore */
1174 	writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
1175 	writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
1176 	this->bch_geometry = old_geo;
1177 	this->swap_block_mark = old_swap_block_mark;
1178 
1179 	return max_bitflips;
1180 }
1181 
1182 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1183 			       int oob_required, int page)
1184 {
1185 	struct mtd_info *mtd = nand_to_mtd(chip);
1186 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1187 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1188 	const void *payload_virt;
1189 	dma_addr_t payload_phys;
1190 	const void *auxiliary_virt;
1191 	dma_addr_t auxiliary_phys;
1192 	int        ret;
1193 
1194 	dev_dbg(this->dev, "ecc write page.\n");
1195 
1196 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1197 
1198 	if (this->swap_block_mark) {
1199 		/*
1200 		 * If control arrives here, we're doing block mark swapping.
1201 		 * Since we can't modify the caller's buffers, we must copy them
1202 		 * into our own.
1203 		 */
1204 		memcpy(this->payload_virt, buf, mtd->writesize);
1205 		payload_virt = this->payload_virt;
1206 		payload_phys = this->payload_phys;
1207 
1208 		memcpy(this->auxiliary_virt, chip->oob_poi,
1209 				nfc_geo->auxiliary_size);
1210 		auxiliary_virt = this->auxiliary_virt;
1211 		auxiliary_phys = this->auxiliary_phys;
1212 
1213 		/* Handle block mark swapping. */
1214 		block_mark_swapping(this,
1215 				(void *)payload_virt, (void *)auxiliary_virt);
1216 	} else {
1217 		/*
1218 		 * If control arrives here, we're not doing block mark swapping,
1219 		 * so we can to try and use the caller's buffers.
1220 		 */
1221 		ret = send_page_prepare(this,
1222 				buf, mtd->writesize,
1223 				this->payload_virt, this->payload_phys,
1224 				nfc_geo->payload_size,
1225 				&payload_virt, &payload_phys);
1226 		if (ret) {
1227 			dev_err(this->dev, "Inadequate payload DMA buffer\n");
1228 			return 0;
1229 		}
1230 
1231 		ret = send_page_prepare(this,
1232 				chip->oob_poi, mtd->oobsize,
1233 				this->auxiliary_virt, this->auxiliary_phys,
1234 				nfc_geo->auxiliary_size,
1235 				&auxiliary_virt, &auxiliary_phys);
1236 		if (ret) {
1237 			dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
1238 			goto exit_auxiliary;
1239 		}
1240 	}
1241 
1242 	/* Ask the NFC. */
1243 	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1244 	if (ret)
1245 		dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
1246 
1247 	if (!this->swap_block_mark) {
1248 		send_page_end(this, chip->oob_poi, mtd->oobsize,
1249 				this->auxiliary_virt, this->auxiliary_phys,
1250 				nfc_geo->auxiliary_size,
1251 				auxiliary_virt, auxiliary_phys);
1252 exit_auxiliary:
1253 		send_page_end(this, buf, mtd->writesize,
1254 				this->payload_virt, this->payload_phys,
1255 				nfc_geo->payload_size,
1256 				payload_virt, payload_phys);
1257 	}
1258 
1259 	if (ret)
1260 		return ret;
1261 
1262 	return nand_prog_page_end_op(chip);
1263 }
1264 
1265 /*
1266  * There are several places in this driver where we have to handle the OOB and
1267  * block marks. This is the function where things are the most complicated, so
1268  * this is where we try to explain it all. All the other places refer back to
1269  * here.
1270  *
1271  * These are the rules, in order of decreasing importance:
1272  *
1273  * 1) Nothing the caller does can be allowed to imperil the block mark.
1274  *
1275  * 2) In read operations, the first byte of the OOB we return must reflect the
1276  *    true state of the block mark, no matter where that block mark appears in
1277  *    the physical page.
1278  *
1279  * 3) ECC-based read operations return an OOB full of set bits (since we never
1280  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1281  *    return).
1282  *
1283  * 4) "Raw" read operations return a direct view of the physical bytes in the
1284  *    page, using the conventional definition of which bytes are data and which
1285  *    are OOB. This gives the caller a way to see the actual, physical bytes
1286  *    in the page, without the distortions applied by our ECC engine.
1287  *
1288  *
1289  * What we do for this specific read operation depends on two questions:
1290  *
1291  * 1) Are we doing a "raw" read, or an ECC-based read?
1292  *
1293  * 2) Are we using block mark swapping or transcription?
1294  *
1295  * There are four cases, illustrated by the following Karnaugh map:
1296  *
1297  *                    |           Raw           |         ECC-based       |
1298  *       -------------+-------------------------+-------------------------+
1299  *                    | Read the conventional   |                         |
1300  *                    | OOB at the end of the   |                         |
1301  *       Swapping     | page and return it. It  |                         |
1302  *                    | contains exactly what   |                         |
1303  *                    | we want.                | Read the block mark and |
1304  *       -------------+-------------------------+ return it in a buffer   |
1305  *                    | Read the conventional   | full of set bits.       |
1306  *                    | OOB at the end of the   |                         |
1307  *                    | page and also the block |                         |
1308  *       Transcribing | mark in the metadata.   |                         |
1309  *                    | Copy the block mark     |                         |
1310  *                    | into the first byte of  |                         |
1311  *                    | the OOB.                |                         |
1312  *       -------------+-------------------------+-------------------------+
1313  *
1314  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1315  * giving an accurate view of the actual, physical bytes in the page (we're
1316  * overwriting the block mark). That's OK because it's more important to follow
1317  * rule #2.
1318  *
1319  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1320  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1321  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1322  * ECC-based or raw view of the page is implicit in which function it calls
1323  * (there is a similar pair of ECC-based/raw functions for writing).
1324  */
1325 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1326 {
1327 	struct mtd_info *mtd = nand_to_mtd(chip);
1328 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1329 
1330 	dev_dbg(this->dev, "page number is %d\n", page);
1331 	/* clear the OOB buffer */
1332 	memset(chip->oob_poi, ~0, mtd->oobsize);
1333 
1334 	/* Read out the conventional OOB. */
1335 	nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
1336 	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
1337 
1338 	/*
1339 	 * Now, we want to make sure the block mark is correct. In the
1340 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1341 	 * Otherwise, we need to explicitly read it.
1342 	 */
1343 	if (GPMI_IS_MX23(this)) {
1344 		/* Read the block mark into the first byte of the OOB buffer. */
1345 		nand_read_page_op(chip, page, 0, NULL, 0);
1346 		chip->oob_poi[0] = chip->legacy.read_byte(chip);
1347 	}
1348 
1349 	return 0;
1350 }
1351 
1352 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1353 {
1354 	struct mtd_info *mtd = nand_to_mtd(chip);
1355 	struct mtd_oob_region of = { };
1356 
1357 	/* Do we have available oob area? */
1358 	mtd_ooblayout_free(mtd, 0, &of);
1359 	if (!of.length)
1360 		return -EPERM;
1361 
1362 	if (!nand_is_slc(chip))
1363 		return -EPERM;
1364 
1365 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1366 				 chip->oob_poi + of.offset, of.length);
1367 }
1368 
1369 /*
1370  * This function reads a NAND page without involving the ECC engine (no HW
1371  * ECC correction).
1372  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1373  * inline (interleaved with payload DATA), and do not align data chunk on
1374  * byte boundaries.
1375  * We thus need to take care moving the payload data and ECC bits stored in the
1376  * page into the provided buffers, which is why we're using gpmi_copy_bits.
1377  *
1378  * See set_geometry_by_ecc_info inline comments to have a full description
1379  * of the layout used by the GPMI controller.
1380  */
1381 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1382 				  int oob_required, int page)
1383 {
1384 	struct mtd_info *mtd = nand_to_mtd(chip);
1385 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1386 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1387 	int eccsize = nfc_geo->ecc_chunk_size;
1388 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1389 	u8 *tmp_buf = this->raw_buffer;
1390 	size_t src_bit_off;
1391 	size_t oob_bit_off;
1392 	size_t oob_byte_off;
1393 	uint8_t *oob = chip->oob_poi;
1394 	int step;
1395 
1396 	nand_read_page_op(chip, page, 0, tmp_buf,
1397 			  mtd->writesize + mtd->oobsize);
1398 
1399 	/*
1400 	 * If required, swap the bad block marker and the data stored in the
1401 	 * metadata section, so that we don't wrongly consider a block as bad.
1402 	 *
1403 	 * See the layout description for a detailed explanation on why this
1404 	 * is needed.
1405 	 */
1406 	if (this->swap_block_mark)
1407 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1408 
1409 	/*
1410 	 * Copy the metadata section into the oob buffer (this section is
1411 	 * guaranteed to be aligned on a byte boundary).
1412 	 */
1413 	if (oob_required)
1414 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1415 
1416 	oob_bit_off = nfc_geo->metadata_size * 8;
1417 	src_bit_off = oob_bit_off;
1418 
1419 	/* Extract interleaved payload data and ECC bits */
1420 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1421 		if (buf)
1422 			gpmi_copy_bits(buf, step * eccsize * 8,
1423 				       tmp_buf, src_bit_off,
1424 				       eccsize * 8);
1425 		src_bit_off += eccsize * 8;
1426 
1427 		/* Align last ECC block to align a byte boundary */
1428 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1429 		    (oob_bit_off + eccbits) % 8)
1430 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1431 
1432 		if (oob_required)
1433 			gpmi_copy_bits(oob, oob_bit_off,
1434 				       tmp_buf, src_bit_off,
1435 				       eccbits);
1436 
1437 		src_bit_off += eccbits;
1438 		oob_bit_off += eccbits;
1439 	}
1440 
1441 	if (oob_required) {
1442 		oob_byte_off = oob_bit_off / 8;
1443 
1444 		if (oob_byte_off < mtd->oobsize)
1445 			memcpy(oob + oob_byte_off,
1446 			       tmp_buf + mtd->writesize + oob_byte_off,
1447 			       mtd->oobsize - oob_byte_off);
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 /*
1454  * This function writes a NAND page without involving the ECC engine (no HW
1455  * ECC generation).
1456  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1457  * inline (interleaved with payload DATA), and do not align data chunk on
1458  * byte boundaries.
1459  * We thus need to take care moving the OOB area at the right place in the
1460  * final page, which is why we're using gpmi_copy_bits.
1461  *
1462  * See set_geometry_by_ecc_info inline comments to have a full description
1463  * of the layout used by the GPMI controller.
1464  */
1465 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1466 				   int oob_required, int page)
1467 {
1468 	struct mtd_info *mtd = nand_to_mtd(chip);
1469 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1470 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1471 	int eccsize = nfc_geo->ecc_chunk_size;
1472 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1473 	u8 *tmp_buf = this->raw_buffer;
1474 	uint8_t *oob = chip->oob_poi;
1475 	size_t dst_bit_off;
1476 	size_t oob_bit_off;
1477 	size_t oob_byte_off;
1478 	int step;
1479 
1480 	/*
1481 	 * Initialize all bits to 1 in case we don't have a buffer for the
1482 	 * payload or oob data in order to leave unspecified bits of data
1483 	 * to their initial state.
1484 	 */
1485 	if (!buf || !oob_required)
1486 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1487 
1488 	/*
1489 	 * First copy the metadata section (stored in oob buffer) at the
1490 	 * beginning of the page, as imposed by the GPMI layout.
1491 	 */
1492 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1493 	oob_bit_off = nfc_geo->metadata_size * 8;
1494 	dst_bit_off = oob_bit_off;
1495 
1496 	/* Interleave payload data and ECC bits */
1497 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1498 		if (buf)
1499 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1500 				       buf, step * eccsize * 8, eccsize * 8);
1501 		dst_bit_off += eccsize * 8;
1502 
1503 		/* Align last ECC block to align a byte boundary */
1504 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1505 		    (oob_bit_off + eccbits) % 8)
1506 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1507 
1508 		if (oob_required)
1509 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1510 				       oob, oob_bit_off, eccbits);
1511 
1512 		dst_bit_off += eccbits;
1513 		oob_bit_off += eccbits;
1514 	}
1515 
1516 	oob_byte_off = oob_bit_off / 8;
1517 
1518 	if (oob_required && oob_byte_off < mtd->oobsize)
1519 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1520 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1521 
1522 	/*
1523 	 * If required, swap the bad block marker and the first byte of the
1524 	 * metadata section, so that we don't modify the bad block marker.
1525 	 *
1526 	 * See the layout description for a detailed explanation on why this
1527 	 * is needed.
1528 	 */
1529 	if (this->swap_block_mark)
1530 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1531 
1532 	return nand_prog_page_op(chip, page, 0, tmp_buf,
1533 				 mtd->writesize + mtd->oobsize);
1534 }
1535 
1536 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1537 {
1538 	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1539 }
1540 
1541 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1542 {
1543 	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1544 }
1545 
1546 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1547 {
1548 	struct mtd_info *mtd = nand_to_mtd(chip);
1549 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1550 	int ret = 0;
1551 	uint8_t *block_mark;
1552 	int column, page, chipnr;
1553 
1554 	chipnr = (int)(ofs >> chip->chip_shift);
1555 	nand_select_target(chip, chipnr);
1556 
1557 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1558 
1559 	/* Write the block mark. */
1560 	block_mark = this->data_buffer_dma;
1561 	block_mark[0] = 0; /* bad block marker */
1562 
1563 	/* Shift to get page */
1564 	page = (int)(ofs >> chip->page_shift);
1565 
1566 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1567 
1568 	nand_deselect_target(chip);
1569 
1570 	return ret;
1571 }
1572 
1573 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1574 {
1575 	struct boot_rom_geometry *geometry = &this->rom_geometry;
1576 
1577 	/*
1578 	 * Set the boot block stride size.
1579 	 *
1580 	 * In principle, we should be reading this from the OTP bits, since
1581 	 * that's where the ROM is going to get it. In fact, we don't have any
1582 	 * way to read the OTP bits, so we go with the default and hope for the
1583 	 * best.
1584 	 */
1585 	geometry->stride_size_in_pages = 64;
1586 
1587 	/*
1588 	 * Set the search area stride exponent.
1589 	 *
1590 	 * In principle, we should be reading this from the OTP bits, since
1591 	 * that's where the ROM is going to get it. In fact, we don't have any
1592 	 * way to read the OTP bits, so we go with the default and hope for the
1593 	 * best.
1594 	 */
1595 	geometry->search_area_stride_exponent = 2;
1596 	return 0;
1597 }
1598 
1599 static const char  *fingerprint = "STMP";
1600 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1601 {
1602 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1603 	struct device *dev = this->dev;
1604 	struct nand_chip *chip = &this->nand;
1605 	unsigned int search_area_size_in_strides;
1606 	unsigned int stride;
1607 	unsigned int page;
1608 	u8 *buffer = nand_get_data_buf(chip);
1609 	int saved_chip_number;
1610 	int found_an_ncb_fingerprint = false;
1611 
1612 	/* Compute the number of strides in a search area. */
1613 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1614 
1615 	saved_chip_number = this->current_chip;
1616 	nand_select_target(chip, 0);
1617 
1618 	/*
1619 	 * Loop through the first search area, looking for the NCB fingerprint.
1620 	 */
1621 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1622 
1623 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1624 		/* Compute the page addresses. */
1625 		page = stride * rom_geo->stride_size_in_pages;
1626 
1627 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1628 
1629 		/*
1630 		 * Read the NCB fingerprint. The fingerprint is four bytes long
1631 		 * and starts in the 12th byte of the page.
1632 		 */
1633 		nand_read_page_op(chip, page, 12, NULL, 0);
1634 		chip->legacy.read_buf(chip, buffer, strlen(fingerprint));
1635 
1636 		/* Look for the fingerprint. */
1637 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1638 			found_an_ncb_fingerprint = true;
1639 			break;
1640 		}
1641 
1642 	}
1643 
1644 	if (saved_chip_number >= 0)
1645 		nand_select_target(chip, saved_chip_number);
1646 	else
1647 		nand_deselect_target(chip);
1648 
1649 	if (found_an_ncb_fingerprint)
1650 		dev_dbg(dev, "\tFound a fingerprint\n");
1651 	else
1652 		dev_dbg(dev, "\tNo fingerprint found\n");
1653 	return found_an_ncb_fingerprint;
1654 }
1655 
1656 /* Writes a transcription stamp. */
1657 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1658 {
1659 	struct device *dev = this->dev;
1660 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1661 	struct nand_chip *chip = &this->nand;
1662 	struct mtd_info *mtd = nand_to_mtd(chip);
1663 	unsigned int block_size_in_pages;
1664 	unsigned int search_area_size_in_strides;
1665 	unsigned int search_area_size_in_pages;
1666 	unsigned int search_area_size_in_blocks;
1667 	unsigned int block;
1668 	unsigned int stride;
1669 	unsigned int page;
1670 	u8 *buffer = nand_get_data_buf(chip);
1671 	int saved_chip_number;
1672 	int status;
1673 
1674 	/* Compute the search area geometry. */
1675 	block_size_in_pages = mtd->erasesize / mtd->writesize;
1676 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1677 	search_area_size_in_pages = search_area_size_in_strides *
1678 					rom_geo->stride_size_in_pages;
1679 	search_area_size_in_blocks =
1680 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
1681 				    block_size_in_pages;
1682 
1683 	dev_dbg(dev, "Search Area Geometry :\n");
1684 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1685 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1686 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1687 
1688 	/* Select chip 0. */
1689 	saved_chip_number = this->current_chip;
1690 	nand_select_target(chip, 0);
1691 
1692 	/* Loop over blocks in the first search area, erasing them. */
1693 	dev_dbg(dev, "Erasing the search area...\n");
1694 
1695 	for (block = 0; block < search_area_size_in_blocks; block++) {
1696 		/* Erase this block. */
1697 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
1698 		status = nand_erase_op(chip, block);
1699 		if (status)
1700 			dev_err(dev, "[%s] Erase failed.\n", __func__);
1701 	}
1702 
1703 	/* Write the NCB fingerprint into the page buffer. */
1704 	memset(buffer, ~0, mtd->writesize);
1705 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1706 
1707 	/* Loop through the first search area, writing NCB fingerprints. */
1708 	dev_dbg(dev, "Writing NCB fingerprints...\n");
1709 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1710 		/* Compute the page addresses. */
1711 		page = stride * rom_geo->stride_size_in_pages;
1712 
1713 		/* Write the first page of the current stride. */
1714 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1715 
1716 		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
1717 		if (status)
1718 			dev_err(dev, "[%s] Write failed.\n", __func__);
1719 	}
1720 
1721 	/* Deselect chip 0. */
1722 	if (saved_chip_number >= 0)
1723 		nand_select_target(chip, saved_chip_number);
1724 	else
1725 		nand_deselect_target(chip);
1726 
1727 	return 0;
1728 }
1729 
1730 static int mx23_boot_init(struct gpmi_nand_data  *this)
1731 {
1732 	struct device *dev = this->dev;
1733 	struct nand_chip *chip = &this->nand;
1734 	struct mtd_info *mtd = nand_to_mtd(chip);
1735 	unsigned int block_count;
1736 	unsigned int block;
1737 	int     chipnr;
1738 	int     page;
1739 	loff_t  byte;
1740 	uint8_t block_mark;
1741 	int     ret = 0;
1742 
1743 	/*
1744 	 * If control arrives here, we can't use block mark swapping, which
1745 	 * means we're forced to use transcription. First, scan for the
1746 	 * transcription stamp. If we find it, then we don't have to do
1747 	 * anything -- the block marks are already transcribed.
1748 	 */
1749 	if (mx23_check_transcription_stamp(this))
1750 		return 0;
1751 
1752 	/*
1753 	 * If control arrives here, we couldn't find a transcription stamp, so
1754 	 * so we presume the block marks are in the conventional location.
1755 	 */
1756 	dev_dbg(dev, "Transcribing bad block marks...\n");
1757 
1758 	/* Compute the number of blocks in the entire medium. */
1759 	block_count = nanddev_eraseblocks_per_target(&chip->base);
1760 
1761 	/*
1762 	 * Loop over all the blocks in the medium, transcribing block marks as
1763 	 * we go.
1764 	 */
1765 	for (block = 0; block < block_count; block++) {
1766 		/*
1767 		 * Compute the chip, page and byte addresses for this block's
1768 		 * conventional mark.
1769 		 */
1770 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1771 		page = block << (chip->phys_erase_shift - chip->page_shift);
1772 		byte = block <<  chip->phys_erase_shift;
1773 
1774 		/* Send the command to read the conventional block mark. */
1775 		nand_select_target(chip, chipnr);
1776 		nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
1777 		block_mark = chip->legacy.read_byte(chip);
1778 		nand_deselect_target(chip);
1779 
1780 		/*
1781 		 * Check if the block is marked bad. If so, we need to mark it
1782 		 * again, but this time the result will be a mark in the
1783 		 * location where we transcribe block marks.
1784 		 */
1785 		if (block_mark != 0xff) {
1786 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
1787 			ret = chip->legacy.block_markbad(chip, byte);
1788 			if (ret)
1789 				dev_err(dev,
1790 					"Failed to mark block bad with ret %d\n",
1791 					ret);
1792 		}
1793 	}
1794 
1795 	/* Write the stamp that indicates we've transcribed the block marks. */
1796 	mx23_write_transcription_stamp(this);
1797 	return 0;
1798 }
1799 
1800 static int nand_boot_init(struct gpmi_nand_data  *this)
1801 {
1802 	nand_boot_set_geometry(this);
1803 
1804 	/* This is ROM arch-specific initilization before the BBT scanning. */
1805 	if (GPMI_IS_MX23(this))
1806 		return mx23_boot_init(this);
1807 	return 0;
1808 }
1809 
1810 static int gpmi_set_geometry(struct gpmi_nand_data *this)
1811 {
1812 	int ret;
1813 
1814 	/* Free the temporary DMA memory for reading ID. */
1815 	gpmi_free_dma_buffer(this);
1816 
1817 	/* Set up the NFC geometry which is used by BCH. */
1818 	ret = bch_set_geometry(this);
1819 	if (ret) {
1820 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
1821 		return ret;
1822 	}
1823 
1824 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
1825 	return gpmi_alloc_dma_buffer(this);
1826 }
1827 
1828 static int gpmi_init_last(struct gpmi_nand_data *this)
1829 {
1830 	struct nand_chip *chip = &this->nand;
1831 	struct mtd_info *mtd = nand_to_mtd(chip);
1832 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1833 	struct bch_geometry *bch_geo = &this->bch_geometry;
1834 	int ret;
1835 
1836 	/* Set up the medium geometry */
1837 	ret = gpmi_set_geometry(this);
1838 	if (ret)
1839 		return ret;
1840 
1841 	/* Init the nand_ecc_ctrl{} */
1842 	ecc->read_page	= gpmi_ecc_read_page;
1843 	ecc->write_page	= gpmi_ecc_write_page;
1844 	ecc->read_oob	= gpmi_ecc_read_oob;
1845 	ecc->write_oob	= gpmi_ecc_write_oob;
1846 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
1847 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
1848 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
1849 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
1850 	ecc->mode	= NAND_ECC_HW;
1851 	ecc->size	= bch_geo->ecc_chunk_size;
1852 	ecc->strength	= bch_geo->ecc_strength;
1853 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
1854 
1855 	/*
1856 	 * We only enable the subpage read when:
1857 	 *  (1) the chip is imx6, and
1858 	 *  (2) the size of the ECC parity is byte aligned.
1859 	 */
1860 	if (GPMI_IS_MX6(this) &&
1861 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
1862 		ecc->read_subpage = gpmi_ecc_read_subpage;
1863 		chip->options |= NAND_SUBPAGE_READ;
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 static int gpmi_nand_attach_chip(struct nand_chip *chip)
1870 {
1871 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1872 	int ret;
1873 
1874 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1875 		chip->bbt_options |= NAND_BBT_NO_OOB;
1876 
1877 		if (of_property_read_bool(this->dev->of_node,
1878 					  "fsl,no-blockmark-swap"))
1879 			this->swap_block_mark = false;
1880 	}
1881 	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
1882 		this->swap_block_mark ? "en" : "dis");
1883 
1884 	ret = gpmi_init_last(this);
1885 	if (ret)
1886 		return ret;
1887 
1888 	chip->options |= NAND_SKIP_BBTSCAN;
1889 
1890 	return 0;
1891 }
1892 
1893 static const struct nand_controller_ops gpmi_nand_controller_ops = {
1894 	.attach_chip = gpmi_nand_attach_chip,
1895 	.setup_data_interface = gpmi_setup_data_interface,
1896 };
1897 
1898 static int gpmi_nand_init(struct gpmi_nand_data *this)
1899 {
1900 	struct nand_chip *chip = &this->nand;
1901 	struct mtd_info  *mtd = nand_to_mtd(chip);
1902 	int ret;
1903 
1904 	/* init current chip */
1905 	this->current_chip	= -1;
1906 
1907 	/* init the MTD data structures */
1908 	mtd->name		= "gpmi-nand";
1909 	mtd->dev.parent		= this->dev;
1910 
1911 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1912 	nand_set_controller_data(chip, this);
1913 	nand_set_flash_node(chip, this->pdev->dev.of_node);
1914 	chip->legacy.select_chip	= gpmi_select_chip;
1915 	chip->legacy.cmd_ctrl	= gpmi_cmd_ctrl;
1916 	chip->legacy.dev_ready	= gpmi_dev_ready;
1917 	chip->legacy.read_byte	= gpmi_read_byte;
1918 	chip->legacy.read_buf	= gpmi_read_buf;
1919 	chip->legacy.write_buf	= gpmi_write_buf;
1920 	chip->badblock_pattern	= &gpmi_bbt_descr;
1921 	chip->legacy.block_markbad = gpmi_block_markbad;
1922 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
1923 
1924 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1925 	this->swap_block_mark = !GPMI_IS_MX23(this);
1926 
1927 	/*
1928 	 * Allocate a temporary DMA buffer for reading ID in the
1929 	 * nand_scan_ident().
1930 	 */
1931 	this->bch_geometry.payload_size = 1024;
1932 	this->bch_geometry.auxiliary_size = 128;
1933 	ret = gpmi_alloc_dma_buffer(this);
1934 	if (ret)
1935 		goto err_out;
1936 
1937 	chip->legacy.dummy_controller.ops = &gpmi_nand_controller_ops;
1938 	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
1939 	if (ret)
1940 		goto err_out;
1941 
1942 	ret = nand_boot_init(this);
1943 	if (ret)
1944 		goto err_nand_cleanup;
1945 	ret = nand_create_bbt(chip);
1946 	if (ret)
1947 		goto err_nand_cleanup;
1948 
1949 	ret = mtd_device_register(mtd, NULL, 0);
1950 	if (ret)
1951 		goto err_nand_cleanup;
1952 	return 0;
1953 
1954 err_nand_cleanup:
1955 	nand_cleanup(chip);
1956 err_out:
1957 	gpmi_free_dma_buffer(this);
1958 	return ret;
1959 }
1960 
1961 static const struct of_device_id gpmi_nand_id_table[] = {
1962 	{
1963 		.compatible = "fsl,imx23-gpmi-nand",
1964 		.data = &gpmi_devdata_imx23,
1965 	}, {
1966 		.compatible = "fsl,imx28-gpmi-nand",
1967 		.data = &gpmi_devdata_imx28,
1968 	}, {
1969 		.compatible = "fsl,imx6q-gpmi-nand",
1970 		.data = &gpmi_devdata_imx6q,
1971 	}, {
1972 		.compatible = "fsl,imx6sx-gpmi-nand",
1973 		.data = &gpmi_devdata_imx6sx,
1974 	}, {
1975 		.compatible = "fsl,imx7d-gpmi-nand",
1976 		.data = &gpmi_devdata_imx7d,
1977 	}, {}
1978 };
1979 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
1980 
1981 static int gpmi_nand_probe(struct platform_device *pdev)
1982 {
1983 	struct gpmi_nand_data *this;
1984 	const struct of_device_id *of_id;
1985 	int ret;
1986 
1987 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
1988 	if (!this)
1989 		return -ENOMEM;
1990 
1991 	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
1992 	if (of_id) {
1993 		this->devdata = of_id->data;
1994 	} else {
1995 		dev_err(&pdev->dev, "Failed to find the right device id.\n");
1996 		return -ENODEV;
1997 	}
1998 
1999 	platform_set_drvdata(pdev, this);
2000 	this->pdev  = pdev;
2001 	this->dev   = &pdev->dev;
2002 
2003 	ret = acquire_resources(this);
2004 	if (ret)
2005 		goto exit_acquire_resources;
2006 
2007 	ret = gpmi_init(this);
2008 	if (ret)
2009 		goto exit_nfc_init;
2010 
2011 	ret = gpmi_nand_init(this);
2012 	if (ret)
2013 		goto exit_nfc_init;
2014 
2015 	dev_info(this->dev, "driver registered.\n");
2016 
2017 	return 0;
2018 
2019 exit_nfc_init:
2020 	release_resources(this);
2021 exit_acquire_resources:
2022 
2023 	return ret;
2024 }
2025 
2026 static int gpmi_nand_remove(struct platform_device *pdev)
2027 {
2028 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2029 
2030 	nand_release(&this->nand);
2031 	gpmi_free_dma_buffer(this);
2032 	release_resources(this);
2033 	return 0;
2034 }
2035 
2036 #ifdef CONFIG_PM_SLEEP
2037 static int gpmi_pm_suspend(struct device *dev)
2038 {
2039 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2040 
2041 	release_dma_channels(this);
2042 	return 0;
2043 }
2044 
2045 static int gpmi_pm_resume(struct device *dev)
2046 {
2047 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2048 	int ret;
2049 
2050 	ret = acquire_dma_channels(this);
2051 	if (ret < 0)
2052 		return ret;
2053 
2054 	/* re-init the GPMI registers */
2055 	ret = gpmi_init(this);
2056 	if (ret) {
2057 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2058 		return ret;
2059 	}
2060 
2061 	/* re-init the BCH registers */
2062 	ret = bch_set_geometry(this);
2063 	if (ret) {
2064 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
2065 		return ret;
2066 	}
2067 
2068 	return 0;
2069 }
2070 #endif /* CONFIG_PM_SLEEP */
2071 
2072 static const struct dev_pm_ops gpmi_pm_ops = {
2073 	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2074 };
2075 
2076 static struct platform_driver gpmi_nand_driver = {
2077 	.driver = {
2078 		.name = "gpmi-nand",
2079 		.pm = &gpmi_pm_ops,
2080 		.of_match_table = gpmi_nand_id_table,
2081 	},
2082 	.probe   = gpmi_nand_probe,
2083 	.remove  = gpmi_nand_remove,
2084 };
2085 module_platform_driver(gpmi_nand_driver);
2086 
2087 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2088 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2089 MODULE_LICENSE("GPL");
2090