1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale GPMI NAND Flash Driver 4 * 5 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. 6 * Copyright (C) 2008 Embedded Alley Solutions, Inc. 7 */ 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/interrupt.h> 13 #include <linux/module.h> 14 #include <linux/mtd/partitions.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/dma/mxs-dma.h> 19 #include "gpmi-nand.h" 20 #include "gpmi-regs.h" 21 #include "bch-regs.h" 22 23 /* Resource names for the GPMI NAND driver. */ 24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" 25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" 26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" 27 28 /* Converts time to clock cycles */ 29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) 30 31 #define MXS_SET_ADDR 0x4 32 #define MXS_CLR_ADDR 0x8 33 /* 34 * Clear the bit and poll it cleared. This is usually called with 35 * a reset address and mask being either SFTRST(bit 31) or CLKGATE 36 * (bit 30). 37 */ 38 static int clear_poll_bit(void __iomem *addr, u32 mask) 39 { 40 int timeout = 0x400; 41 42 /* clear the bit */ 43 writel(mask, addr + MXS_CLR_ADDR); 44 45 /* 46 * SFTRST needs 3 GPMI clocks to settle, the reference manual 47 * recommends to wait 1us. 48 */ 49 udelay(1); 50 51 /* poll the bit becoming clear */ 52 while ((readl(addr) & mask) && --timeout) 53 /* nothing */; 54 55 return !timeout; 56 } 57 58 #define MODULE_CLKGATE (1 << 30) 59 #define MODULE_SFTRST (1 << 31) 60 /* 61 * The current mxs_reset_block() will do two things: 62 * [1] enable the module. 63 * [2] reset the module. 64 * 65 * In most of the cases, it's ok. 66 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). 67 * If you try to soft reset the BCH block, it becomes unusable until 68 * the next hard reset. This case occurs in the NAND boot mode. When the board 69 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. 70 * So If the driver tries to reset the BCH again, the BCH will not work anymore. 71 * You will see a DMA timeout in this case. The bug has been fixed 72 * in the following chips, such as MX28. 73 * 74 * To avoid this bug, just add a new parameter `just_enable` for 75 * the mxs_reset_block(), and rewrite it here. 76 */ 77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) 78 { 79 int ret; 80 int timeout = 0x400; 81 82 /* clear and poll SFTRST */ 83 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 84 if (unlikely(ret)) 85 goto error; 86 87 /* clear CLKGATE */ 88 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); 89 90 if (!just_enable) { 91 /* set SFTRST to reset the block */ 92 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); 93 udelay(1); 94 95 /* poll CLKGATE becoming set */ 96 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) 97 /* nothing */; 98 if (unlikely(!timeout)) 99 goto error; 100 } 101 102 /* clear and poll SFTRST */ 103 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 104 if (unlikely(ret)) 105 goto error; 106 107 /* clear and poll CLKGATE */ 108 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); 109 if (unlikely(ret)) 110 goto error; 111 112 return 0; 113 114 error: 115 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); 116 return -ETIMEDOUT; 117 } 118 119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) 120 { 121 struct clk *clk; 122 int ret; 123 int i; 124 125 for (i = 0; i < GPMI_CLK_MAX; i++) { 126 clk = this->resources.clock[i]; 127 if (!clk) 128 break; 129 130 if (v) { 131 ret = clk_prepare_enable(clk); 132 if (ret) 133 goto err_clk; 134 } else { 135 clk_disable_unprepare(clk); 136 } 137 } 138 return 0; 139 140 err_clk: 141 for (; i > 0; i--) 142 clk_disable_unprepare(this->resources.clock[i - 1]); 143 return ret; 144 } 145 146 static int gpmi_init(struct gpmi_nand_data *this) 147 { 148 struct resources *r = &this->resources; 149 int ret; 150 151 ret = pm_runtime_resume_and_get(this->dev); 152 if (ret < 0) 153 return ret; 154 155 ret = gpmi_reset_block(r->gpmi_regs, false); 156 if (ret) 157 goto err_out; 158 159 /* 160 * Reset BCH here, too. We got failures otherwise :( 161 * See later BCH reset for explanation of MX23 and MX28 handling 162 */ 163 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 164 if (ret) 165 goto err_out; 166 167 /* Choose NAND mode. */ 168 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); 169 170 /* Set the IRQ polarity. */ 171 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, 172 r->gpmi_regs + HW_GPMI_CTRL1_SET); 173 174 /* Disable Write-Protection. */ 175 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); 176 177 /* Select BCH ECC. */ 178 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); 179 180 /* 181 * Decouple the chip select from dma channel. We use dma0 for all 182 * the chips, force all NAND RDY_BUSY inputs to be sourced from 183 * RDY_BUSY0. 184 */ 185 writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY, 186 r->gpmi_regs + HW_GPMI_CTRL1_SET); 187 188 err_out: 189 pm_runtime_mark_last_busy(this->dev); 190 pm_runtime_put_autosuspend(this->dev); 191 return ret; 192 } 193 194 /* This function is very useful. It is called only when the bug occur. */ 195 static void gpmi_dump_info(struct gpmi_nand_data *this) 196 { 197 struct resources *r = &this->resources; 198 struct bch_geometry *geo = &this->bch_geometry; 199 u32 reg; 200 int i; 201 202 dev_err(this->dev, "Show GPMI registers :\n"); 203 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { 204 reg = readl(r->gpmi_regs + i * 0x10); 205 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 206 } 207 208 /* start to print out the BCH info */ 209 dev_err(this->dev, "Show BCH registers :\n"); 210 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { 211 reg = readl(r->bch_regs + i * 0x10); 212 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 213 } 214 dev_err(this->dev, "BCH Geometry :\n" 215 "GF length : %u\n" 216 "ECC Strength : %u\n" 217 "Page Size in Bytes : %u\n" 218 "Metadata Size in Bytes : %u\n" 219 "ECC0 Chunk Size in Bytes: %u\n" 220 "ECCn Chunk Size in Bytes: %u\n" 221 "ECC Chunk Count : %u\n" 222 "Payload Size in Bytes : %u\n" 223 "Auxiliary Size in Bytes: %u\n" 224 "Auxiliary Status Offset: %u\n" 225 "Block Mark Byte Offset : %u\n" 226 "Block Mark Bit Offset : %u\n", 227 geo->gf_len, 228 geo->ecc_strength, 229 geo->page_size, 230 geo->metadata_size, 231 geo->ecc0_chunk_size, 232 geo->eccn_chunk_size, 233 geo->ecc_chunk_count, 234 geo->payload_size, 235 geo->auxiliary_size, 236 geo->auxiliary_status_offset, 237 geo->block_mark_byte_offset, 238 geo->block_mark_bit_offset); 239 } 240 241 static bool gpmi_check_ecc(struct gpmi_nand_data *this) 242 { 243 struct nand_chip *chip = &this->nand; 244 struct bch_geometry *geo = &this->bch_geometry; 245 struct nand_device *nand = &chip->base; 246 struct nand_ecc_props *conf = &nand->ecc.ctx.conf; 247 248 conf->step_size = geo->eccn_chunk_size; 249 conf->strength = geo->ecc_strength; 250 251 /* Do the sanity check. */ 252 if (GPMI_IS_MXS(this)) { 253 /* The mx23/mx28 only support the GF13. */ 254 if (geo->gf_len == 14) 255 return false; 256 } 257 258 if (geo->ecc_strength > this->devdata->bch_max_ecc_strength) 259 return false; 260 261 if (!nand_ecc_is_strong_enough(nand)) 262 return false; 263 264 return true; 265 } 266 267 /* check if bbm locates in data chunk rather than ecc chunk */ 268 static bool bbm_in_data_chunk(struct gpmi_nand_data *this, 269 unsigned int *chunk_num) 270 { 271 struct bch_geometry *geo = &this->bch_geometry; 272 struct nand_chip *chip = &this->nand; 273 struct mtd_info *mtd = nand_to_mtd(chip); 274 unsigned int i, j; 275 276 if (geo->ecc0_chunk_size != geo->eccn_chunk_size) { 277 dev_err(this->dev, 278 "The size of ecc0_chunk must equal to eccn_chunk\n"); 279 return false; 280 } 281 282 i = (mtd->writesize * 8 - geo->metadata_size * 8) / 283 (geo->gf_len * geo->ecc_strength + 284 geo->eccn_chunk_size * 8); 285 286 j = (mtd->writesize * 8 - geo->metadata_size * 8) - 287 (geo->gf_len * geo->ecc_strength + 288 geo->eccn_chunk_size * 8) * i; 289 290 if (j < geo->eccn_chunk_size * 8) { 291 *chunk_num = i+1; 292 dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n", 293 geo->ecc_strength, *chunk_num); 294 return true; 295 } 296 297 return false; 298 } 299 300 /* 301 * If we can get the ECC information from the nand chip, we do not 302 * need to calculate them ourselves. 303 * 304 * We may have available oob space in this case. 305 */ 306 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, 307 unsigned int ecc_strength, 308 unsigned int ecc_step) 309 { 310 struct bch_geometry *geo = &this->bch_geometry; 311 struct nand_chip *chip = &this->nand; 312 struct mtd_info *mtd = nand_to_mtd(chip); 313 unsigned int block_mark_bit_offset; 314 315 switch (ecc_step) { 316 case SZ_512: 317 geo->gf_len = 13; 318 break; 319 case SZ_1K: 320 geo->gf_len = 14; 321 break; 322 default: 323 dev_err(this->dev, 324 "unsupported nand chip. ecc bits : %d, ecc size : %d\n", 325 nanddev_get_ecc_requirements(&chip->base)->strength, 326 nanddev_get_ecc_requirements(&chip->base)->step_size); 327 return -EINVAL; 328 } 329 geo->ecc0_chunk_size = ecc_step; 330 geo->eccn_chunk_size = ecc_step; 331 geo->ecc_strength = round_up(ecc_strength, 2); 332 if (!gpmi_check_ecc(this)) 333 return -EINVAL; 334 335 /* Keep the C >= O */ 336 if (geo->eccn_chunk_size < mtd->oobsize) { 337 dev_err(this->dev, 338 "unsupported nand chip. ecc size: %d, oob size : %d\n", 339 ecc_step, mtd->oobsize); 340 return -EINVAL; 341 } 342 343 /* The default value, see comment in the legacy_set_geometry(). */ 344 geo->metadata_size = 10; 345 346 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; 347 348 /* 349 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: 350 * 351 * | P | 352 * |<----------------------------------------------------->| 353 * | | 354 * | (Block Mark) | 355 * | P' | | | | 356 * |<-------------------------------------------->| D | | O' | 357 * | |<---->| |<--->| 358 * V V V V V 359 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 360 * | M | data |E| data |E| data |E| data |E| | 361 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 362 * ^ ^ 363 * | O | 364 * |<------------>| 365 * | | 366 * 367 * P : the page size for BCH module. 368 * E : The ECC strength. 369 * G : the length of Galois Field. 370 * N : The chunk count of per page. 371 * M : the metasize of per page. 372 * C : the ecc chunk size, aka the "data" above. 373 * P': the nand chip's page size. 374 * O : the nand chip's oob size. 375 * O': the free oob. 376 * 377 * The formula for P is : 378 * 379 * E * G * N 380 * P = ------------ + P' + M 381 * 8 382 * 383 * The position of block mark moves forward in the ECC-based view 384 * of page, and the delta is: 385 * 386 * E * G * (N - 1) 387 * D = (---------------- + M) 388 * 8 389 * 390 * Please see the comment in legacy_set_geometry(). 391 * With the condition C >= O , we still can get same result. 392 * So the bit position of the physical block mark within the ECC-based 393 * view of the page is : 394 * (P' - D) * 8 395 */ 396 geo->page_size = mtd->writesize + geo->metadata_size + 397 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 398 399 geo->payload_size = mtd->writesize; 400 401 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); 402 geo->auxiliary_size = ALIGN(geo->metadata_size, 4) 403 + ALIGN(geo->ecc_chunk_count, 4); 404 405 if (!this->swap_block_mark) 406 return 0; 407 408 /* For bit swap. */ 409 block_mark_bit_offset = mtd->writesize * 8 - 410 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 411 + geo->metadata_size * 8); 412 413 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 414 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 415 return 0; 416 } 417 418 /* 419 * Calculate the ECC strength by hand: 420 * E : The ECC strength. 421 * G : the length of Galois Field. 422 * N : The chunk count of per page. 423 * O : the oobsize of the NAND chip. 424 * M : the metasize of per page. 425 * 426 * The formula is : 427 * E * G * N 428 * ------------ <= (O - M) 429 * 8 430 * 431 * So, we get E by: 432 * (O - M) * 8 433 * E <= ------------- 434 * G * N 435 */ 436 static inline int get_ecc_strength(struct gpmi_nand_data *this) 437 { 438 struct bch_geometry *geo = &this->bch_geometry; 439 struct mtd_info *mtd = nand_to_mtd(&this->nand); 440 int ecc_strength; 441 442 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) 443 / (geo->gf_len * geo->ecc_chunk_count); 444 445 /* We need the minor even number. */ 446 return round_down(ecc_strength, 2); 447 } 448 449 static int set_geometry_for_large_oob(struct gpmi_nand_data *this) 450 { 451 struct bch_geometry *geo = &this->bch_geometry; 452 struct nand_chip *chip = &this->nand; 453 struct mtd_info *mtd = nand_to_mtd(chip); 454 const struct nand_ecc_props *requirements = 455 nanddev_get_ecc_requirements(&chip->base); 456 unsigned int block_mark_bit_offset; 457 unsigned int max_ecc; 458 unsigned int bbm_chunk; 459 unsigned int i; 460 461 /* sanity check for the minimum ecc nand required */ 462 if (!(requirements->strength > 0 && 463 requirements->step_size > 0)) 464 return -EINVAL; 465 geo->ecc_strength = requirements->strength; 466 467 /* check if platform can support this nand */ 468 if (!gpmi_check_ecc(this)) { 469 dev_err(this->dev, 470 "unsupported NAND chip, minimum ecc required %d\n", 471 geo->ecc_strength); 472 return -EINVAL; 473 } 474 475 /* calculate the maximum ecc platform can support*/ 476 geo->metadata_size = 10; 477 geo->gf_len = 14; 478 geo->ecc0_chunk_size = 1024; 479 geo->eccn_chunk_size = 1024; 480 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; 481 max_ecc = min(get_ecc_strength(this), 482 this->devdata->bch_max_ecc_strength); 483 484 /* 485 * search a supported ecc strength that makes bbm 486 * located in data chunk 487 */ 488 geo->ecc_strength = max_ecc; 489 while (!(geo->ecc_strength < requirements->strength)) { 490 if (bbm_in_data_chunk(this, &bbm_chunk)) 491 goto geo_setting; 492 geo->ecc_strength -= 2; 493 } 494 495 /* if none of them works, keep using the minimum ecc */ 496 /* nand required but changing ecc page layout */ 497 geo->ecc_strength = requirements->strength; 498 /* add extra ecc for meta data */ 499 geo->ecc0_chunk_size = 0; 500 geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1; 501 geo->ecc_for_meta = 1; 502 /* check if oob can afford this extra ecc chunk */ 503 if (mtd->oobsize * 8 < geo->metadata_size * 8 + 504 geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) { 505 dev_err(this->dev, "unsupported NAND chip with new layout\n"); 506 return -EINVAL; 507 } 508 509 /* calculate in which chunk bbm located */ 510 bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 - 511 geo->gf_len * geo->ecc_strength) / 512 (geo->gf_len * geo->ecc_strength + 513 geo->eccn_chunk_size * 8) + 1; 514 515 geo_setting: 516 517 geo->page_size = mtd->writesize + geo->metadata_size + 518 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 519 geo->payload_size = mtd->writesize; 520 521 /* 522 * The auxiliary buffer contains the metadata and the ECC status. The 523 * metadata is padded to the nearest 32-bit boundary. The ECC status 524 * contains one byte for every ECC chunk, and is also padded to the 525 * nearest 32-bit boundary. 526 */ 527 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); 528 geo->auxiliary_size = ALIGN(geo->metadata_size, 4) 529 + ALIGN(geo->ecc_chunk_count, 4); 530 531 if (!this->swap_block_mark) 532 return 0; 533 534 /* calculate the number of ecc chunk behind the bbm */ 535 i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1; 536 537 block_mark_bit_offset = mtd->writesize * 8 - 538 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i) 539 + geo->metadata_size * 8); 540 541 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 542 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 543 544 dev_dbg(this->dev, "BCH Geometry :\n" 545 "GF length : %u\n" 546 "ECC Strength : %u\n" 547 "Page Size in Bytes : %u\n" 548 "Metadata Size in Bytes : %u\n" 549 "ECC0 Chunk Size in Bytes: %u\n" 550 "ECCn Chunk Size in Bytes: %u\n" 551 "ECC Chunk Count : %u\n" 552 "Payload Size in Bytes : %u\n" 553 "Auxiliary Size in Bytes: %u\n" 554 "Auxiliary Status Offset: %u\n" 555 "Block Mark Byte Offset : %u\n" 556 "Block Mark Bit Offset : %u\n" 557 "Block Mark in chunk : %u\n" 558 "Ecc for Meta data : %u\n", 559 geo->gf_len, 560 geo->ecc_strength, 561 geo->page_size, 562 geo->metadata_size, 563 geo->ecc0_chunk_size, 564 geo->eccn_chunk_size, 565 geo->ecc_chunk_count, 566 geo->payload_size, 567 geo->auxiliary_size, 568 geo->auxiliary_status_offset, 569 geo->block_mark_byte_offset, 570 geo->block_mark_bit_offset, 571 bbm_chunk, 572 geo->ecc_for_meta); 573 574 return 0; 575 } 576 577 static int legacy_set_geometry(struct gpmi_nand_data *this) 578 { 579 struct bch_geometry *geo = &this->bch_geometry; 580 struct mtd_info *mtd = nand_to_mtd(&this->nand); 581 unsigned int metadata_size; 582 unsigned int status_size; 583 unsigned int block_mark_bit_offset; 584 585 /* 586 * The size of the metadata can be changed, though we set it to 10 587 * bytes now. But it can't be too large, because we have to save 588 * enough space for BCH. 589 */ 590 geo->metadata_size = 10; 591 592 /* The default for the length of Galois Field. */ 593 geo->gf_len = 13; 594 595 /* The default for chunk size. */ 596 geo->ecc0_chunk_size = 512; 597 geo->eccn_chunk_size = 512; 598 while (geo->eccn_chunk_size < mtd->oobsize) { 599 geo->ecc0_chunk_size *= 2; /* keep C >= O */ 600 geo->eccn_chunk_size *= 2; /* keep C >= O */ 601 geo->gf_len = 14; 602 } 603 604 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; 605 606 /* We use the same ECC strength for all chunks. */ 607 geo->ecc_strength = get_ecc_strength(this); 608 if (!gpmi_check_ecc(this)) { 609 dev_err(this->dev, 610 "ecc strength: %d cannot be supported by the controller (%d)\n" 611 "try to use minimum ecc strength that NAND chip required\n", 612 geo->ecc_strength, 613 this->devdata->bch_max_ecc_strength); 614 return -EINVAL; 615 } 616 617 geo->page_size = mtd->writesize + geo->metadata_size + 618 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 619 geo->payload_size = mtd->writesize; 620 621 /* 622 * The auxiliary buffer contains the metadata and the ECC status. The 623 * metadata is padded to the nearest 32-bit boundary. The ECC status 624 * contains one byte for every ECC chunk, and is also padded to the 625 * nearest 32-bit boundary. 626 */ 627 metadata_size = ALIGN(geo->metadata_size, 4); 628 status_size = ALIGN(geo->ecc_chunk_count, 4); 629 630 geo->auxiliary_size = metadata_size + status_size; 631 geo->auxiliary_status_offset = metadata_size; 632 633 if (!this->swap_block_mark) 634 return 0; 635 636 /* 637 * We need to compute the byte and bit offsets of 638 * the physical block mark within the ECC-based view of the page. 639 * 640 * NAND chip with 2K page shows below: 641 * (Block Mark) 642 * | | 643 * | D | 644 * |<---->| 645 * V V 646 * +---+----------+-+----------+-+----------+-+----------+-+ 647 * | M | data |E| data |E| data |E| data |E| 648 * +---+----------+-+----------+-+----------+-+----------+-+ 649 * 650 * The position of block mark moves forward in the ECC-based view 651 * of page, and the delta is: 652 * 653 * E * G * (N - 1) 654 * D = (---------------- + M) 655 * 8 656 * 657 * With the formula to compute the ECC strength, and the condition 658 * : C >= O (C is the ecc chunk size) 659 * 660 * It's easy to deduce to the following result: 661 * 662 * E * G (O - M) C - M C - M 663 * ----------- <= ------- <= -------- < --------- 664 * 8 N N (N - 1) 665 * 666 * So, we get: 667 * 668 * E * G * (N - 1) 669 * D = (---------------- + M) < C 670 * 8 671 * 672 * The above inequality means the position of block mark 673 * within the ECC-based view of the page is still in the data chunk, 674 * and it's NOT in the ECC bits of the chunk. 675 * 676 * Use the following to compute the bit position of the 677 * physical block mark within the ECC-based view of the page: 678 * (page_size - D) * 8 679 * 680 * --Huang Shijie 681 */ 682 block_mark_bit_offset = mtd->writesize * 8 - 683 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 684 + geo->metadata_size * 8); 685 686 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 687 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 688 return 0; 689 } 690 691 static int common_nfc_set_geometry(struct gpmi_nand_data *this) 692 { 693 struct nand_chip *chip = &this->nand; 694 struct mtd_info *mtd = nand_to_mtd(&this->nand); 695 const struct nand_ecc_props *requirements = 696 nanddev_get_ecc_requirements(&chip->base); 697 bool use_minimun_ecc; 698 int err; 699 700 use_minimun_ecc = of_property_read_bool(this->dev->of_node, 701 "fsl,use-minimum-ecc"); 702 703 /* use legacy bch geometry settings by default*/ 704 if ((!use_minimun_ecc && mtd->oobsize < 1024) || 705 !(requirements->strength > 0 && requirements->step_size > 0)) { 706 dev_dbg(this->dev, "use legacy bch geometry\n"); 707 err = legacy_set_geometry(this); 708 if (!err) 709 return 0; 710 } 711 712 /* for large oob nand */ 713 if (mtd->oobsize > 1024) { 714 dev_dbg(this->dev, "use large oob bch geometry\n"); 715 err = set_geometry_for_large_oob(this); 716 if (!err) 717 return 0; 718 } 719 720 /* otherwise use the minimum ecc nand chip required */ 721 dev_dbg(this->dev, "use minimum ecc bch geometry\n"); 722 err = set_geometry_by_ecc_info(this, requirements->strength, 723 requirements->step_size); 724 if (err) 725 dev_err(this->dev, "none of the bch geometry setting works\n"); 726 727 return err; 728 } 729 730 /* Configures the geometry for BCH. */ 731 static int bch_set_geometry(struct gpmi_nand_data *this) 732 { 733 struct resources *r = &this->resources; 734 int ret; 735 736 ret = common_nfc_set_geometry(this); 737 if (ret) 738 return ret; 739 740 ret = pm_runtime_get_sync(this->dev); 741 if (ret < 0) { 742 pm_runtime_put_autosuspend(this->dev); 743 return ret; 744 } 745 746 /* 747 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this 748 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. 749 * and MX28. 750 */ 751 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 752 if (ret) 753 goto err_out; 754 755 /* Set *all* chip selects to use layout 0. */ 756 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); 757 758 ret = 0; 759 err_out: 760 pm_runtime_mark_last_busy(this->dev); 761 pm_runtime_put_autosuspend(this->dev); 762 763 return ret; 764 } 765 766 /* 767 * <1> Firstly, we should know what's the GPMI-clock means. 768 * The GPMI-clock is the internal clock in the gpmi nand controller. 769 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period 770 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. 771 * 772 * <2> Secondly, we should know what's the frequency on the nand chip pins. 773 * The frequency on the nand chip pins is derived from the GPMI-clock. 774 * We can get it from the following equation: 775 * 776 * F = G / (DS + DH) 777 * 778 * F : the frequency on the nand chip pins. 779 * G : the GPMI clock, such as 100MHz. 780 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP 781 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD 782 * 783 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, 784 * the nand EDO(extended Data Out) timing could be applied. 785 * The GPMI implements a feedback read strobe to sample the read data. 786 * The feedback read strobe can be delayed to support the nand EDO timing 787 * where the read strobe may deasserts before the read data is valid, and 788 * read data is valid for some time after read strobe. 789 * 790 * The following figure illustrates some aspects of a NAND Flash read: 791 * 792 * |<---tREA---->| 793 * | | 794 * | | | 795 * |<--tRP-->| | 796 * | | | 797 * __ ___|__________________________________ 798 * RDN \________/ | 799 * | 800 * /---------\ 801 * Read Data --------------< >--------- 802 * \---------/ 803 * | | 804 * |<-D->| 805 * FeedbackRDN ________ ____________ 806 * \___________/ 807 * 808 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. 809 * 810 * 811 * <4> Now, we begin to describe how to compute the right RDN_DELAY. 812 * 813 * 4.1) From the aspect of the nand chip pins: 814 * Delay = (tREA + C - tRP) {1} 815 * 816 * tREA : the maximum read access time. 817 * C : a constant to adjust the delay. default is 4000ps. 818 * tRP : the read pulse width, which is exactly: 819 * tRP = (GPMI-clock-period) * DATA_SETUP 820 * 821 * 4.2) From the aspect of the GPMI nand controller: 822 * Delay = RDN_DELAY * 0.125 * RP {2} 823 * 824 * RP : the DLL reference period. 825 * if (GPMI-clock-period > DLL_THRETHOLD) 826 * RP = GPMI-clock-period / 2; 827 * else 828 * RP = GPMI-clock-period; 829 * 830 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period 831 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD 832 * is 16000ps, but in mx6q, we use 12000ps. 833 * 834 * 4.3) since {1} equals {2}, we get: 835 * 836 * (tREA + 4000 - tRP) * 8 837 * RDN_DELAY = ----------------------- {3} 838 * RP 839 */ 840 static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this, 841 const struct nand_sdr_timings *sdr) 842 { 843 struct gpmi_nfc_hardware_timing *hw = &this->hw; 844 struct resources *r = &this->resources; 845 unsigned int dll_threshold_ps = this->devdata->max_chain_delay; 846 unsigned int period_ps, reference_period_ps; 847 unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; 848 unsigned int tRP_ps; 849 bool use_half_period; 850 int sample_delay_ps, sample_delay_factor; 851 unsigned int busy_timeout_cycles; 852 u8 wrn_dly_sel; 853 unsigned long clk_rate, min_rate; 854 u64 busy_timeout_ps; 855 856 if (sdr->tRC_min >= 30000) { 857 /* ONFI non-EDO modes [0-3] */ 858 hw->clk_rate = 22000000; 859 min_rate = 0; 860 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; 861 } else if (sdr->tRC_min >= 25000) { 862 /* ONFI EDO mode 4 */ 863 hw->clk_rate = 80000000; 864 min_rate = 22000000; 865 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 866 } else { 867 /* ONFI EDO mode 5 */ 868 hw->clk_rate = 100000000; 869 min_rate = 80000000; 870 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 871 } 872 873 clk_rate = clk_round_rate(r->clock[0], hw->clk_rate); 874 if (clk_rate <= min_rate) { 875 dev_err(this->dev, "clock setting: expected %ld, got %ld\n", 876 hw->clk_rate, clk_rate); 877 return -ENOTSUPP; 878 } 879 880 hw->clk_rate = clk_rate; 881 /* SDR core timings are given in picoseconds */ 882 period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); 883 884 addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); 885 data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); 886 data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); 887 busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max); 888 busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps); 889 890 hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | 891 BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | 892 BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); 893 hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096)); 894 895 /* 896 * Derive NFC ideal delay from {3}: 897 * 898 * (tREA + 4000 - tRP) * 8 899 * RDN_DELAY = ----------------------- 900 * RP 901 */ 902 if (period_ps > dll_threshold_ps) { 903 use_half_period = true; 904 reference_period_ps = period_ps / 2; 905 } else { 906 use_half_period = false; 907 reference_period_ps = period_ps; 908 } 909 910 tRP_ps = data_setup_cycles * period_ps; 911 sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; 912 if (sample_delay_ps > 0) 913 sample_delay_factor = sample_delay_ps / reference_period_ps; 914 else 915 sample_delay_factor = 0; 916 917 hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); 918 if (sample_delay_factor) 919 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | 920 BM_GPMI_CTRL1_DLL_ENABLE | 921 (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); 922 return 0; 923 } 924 925 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this) 926 { 927 struct gpmi_nfc_hardware_timing *hw = &this->hw; 928 struct resources *r = &this->resources; 929 void __iomem *gpmi_regs = r->gpmi_regs; 930 unsigned int dll_wait_time_us; 931 int ret; 932 933 /* Clock dividers do NOT guarantee a clean clock signal on its output 934 * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8, 935 * all clock dividers provide these guarantee. 936 */ 937 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) 938 clk_disable_unprepare(r->clock[0]); 939 940 ret = clk_set_rate(r->clock[0], hw->clk_rate); 941 if (ret) { 942 dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret); 943 return ret; 944 } 945 946 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) { 947 ret = clk_prepare_enable(r->clock[0]); 948 if (ret) 949 return ret; 950 } 951 952 writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); 953 writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); 954 955 /* 956 * Clear several CTRL1 fields, DLL must be disabled when setting 957 * RDN_DELAY or HALF_PERIOD. 958 */ 959 writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); 960 writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); 961 962 /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ 963 dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; 964 if (!dll_wait_time_us) 965 dll_wait_time_us = 1; 966 967 /* Wait for the DLL to settle. */ 968 udelay(dll_wait_time_us); 969 970 return 0; 971 } 972 973 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr, 974 const struct nand_interface_config *conf) 975 { 976 struct gpmi_nand_data *this = nand_get_controller_data(chip); 977 const struct nand_sdr_timings *sdr; 978 int ret; 979 980 /* Retrieve required NAND timings */ 981 sdr = nand_get_sdr_timings(conf); 982 if (IS_ERR(sdr)) 983 return PTR_ERR(sdr); 984 985 /* Only MX28/MX6 GPMI controller can reach EDO timings */ 986 if (sdr->tRC_min <= 25000 && !GPMI_IS_MX28(this) && !GPMI_IS_MX6(this)) 987 return -ENOTSUPP; 988 989 /* Stop here if this call was just a check */ 990 if (chipnr < 0) 991 return 0; 992 993 /* Do the actual derivation of the controller timings */ 994 ret = gpmi_nfc_compute_timings(this, sdr); 995 if (ret) 996 return ret; 997 998 this->hw.must_apply_timings = true; 999 1000 return 0; 1001 } 1002 1003 /* Clears a BCH interrupt. */ 1004 static void gpmi_clear_bch(struct gpmi_nand_data *this) 1005 { 1006 struct resources *r = &this->resources; 1007 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); 1008 } 1009 1010 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) 1011 { 1012 /* We use the DMA channel 0 to access all the nand chips. */ 1013 return this->dma_chans[0]; 1014 } 1015 1016 /* This will be called after the DMA operation is finished. */ 1017 static void dma_irq_callback(void *param) 1018 { 1019 struct gpmi_nand_data *this = param; 1020 struct completion *dma_c = &this->dma_done; 1021 1022 complete(dma_c); 1023 } 1024 1025 static irqreturn_t bch_irq(int irq, void *cookie) 1026 { 1027 struct gpmi_nand_data *this = cookie; 1028 1029 gpmi_clear_bch(this); 1030 complete(&this->bch_done); 1031 return IRQ_HANDLED; 1032 } 1033 1034 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len) 1035 { 1036 /* 1037 * raw_len is the length to read/write including bch data which 1038 * we are passed in exec_op. Calculate the data length from it. 1039 */ 1040 if (this->bch) 1041 return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size); 1042 else 1043 return raw_len; 1044 } 1045 1046 /* Can we use the upper's buffer directly for DMA? */ 1047 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, 1048 int raw_len, struct scatterlist *sgl, 1049 enum dma_data_direction dr) 1050 { 1051 int ret; 1052 int len = gpmi_raw_len_to_len(this, raw_len); 1053 1054 /* first try to map the upper buffer directly */ 1055 if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { 1056 sg_init_one(sgl, buf, len); 1057 ret = dma_map_sg(this->dev, sgl, 1, dr); 1058 if (ret == 0) 1059 goto map_fail; 1060 1061 return true; 1062 } 1063 1064 map_fail: 1065 /* We have to use our own DMA buffer. */ 1066 sg_init_one(sgl, this->data_buffer_dma, len); 1067 1068 if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma) 1069 memcpy(this->data_buffer_dma, buf, len); 1070 1071 dma_map_sg(this->dev, sgl, 1, dr); 1072 1073 return false; 1074 } 1075 1076 /* add our owner bbt descriptor */ 1077 static uint8_t scan_ff_pattern[] = { 0xff }; 1078 static struct nand_bbt_descr gpmi_bbt_descr = { 1079 .options = 0, 1080 .offs = 0, 1081 .len = 1, 1082 .pattern = scan_ff_pattern 1083 }; 1084 1085 /* 1086 * We may change the layout if we can get the ECC info from the datasheet, 1087 * else we will use all the (page + OOB). 1088 */ 1089 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, 1090 struct mtd_oob_region *oobregion) 1091 { 1092 struct nand_chip *chip = mtd_to_nand(mtd); 1093 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1094 struct bch_geometry *geo = &this->bch_geometry; 1095 1096 if (section) 1097 return -ERANGE; 1098 1099 oobregion->offset = 0; 1100 oobregion->length = geo->page_size - mtd->writesize; 1101 1102 return 0; 1103 } 1104 1105 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, 1106 struct mtd_oob_region *oobregion) 1107 { 1108 struct nand_chip *chip = mtd_to_nand(mtd); 1109 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1110 struct bch_geometry *geo = &this->bch_geometry; 1111 1112 if (section) 1113 return -ERANGE; 1114 1115 /* The available oob size we have. */ 1116 if (geo->page_size < mtd->writesize + mtd->oobsize) { 1117 oobregion->offset = geo->page_size - mtd->writesize; 1118 oobregion->length = mtd->oobsize - oobregion->offset; 1119 } 1120 1121 return 0; 1122 } 1123 1124 static const char * const gpmi_clks_for_mx2x[] = { 1125 "gpmi_io", 1126 }; 1127 1128 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { 1129 .ecc = gpmi_ooblayout_ecc, 1130 .free = gpmi_ooblayout_free, 1131 }; 1132 1133 static const struct gpmi_devdata gpmi_devdata_imx23 = { 1134 .type = IS_MX23, 1135 .bch_max_ecc_strength = 20, 1136 .max_chain_delay = 16000, 1137 .clks = gpmi_clks_for_mx2x, 1138 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 1139 }; 1140 1141 static const struct gpmi_devdata gpmi_devdata_imx28 = { 1142 .type = IS_MX28, 1143 .bch_max_ecc_strength = 20, 1144 .max_chain_delay = 16000, 1145 .clks = gpmi_clks_for_mx2x, 1146 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 1147 }; 1148 1149 static const char * const gpmi_clks_for_mx6[] = { 1150 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", 1151 }; 1152 1153 static const struct gpmi_devdata gpmi_devdata_imx6q = { 1154 .type = IS_MX6Q, 1155 .bch_max_ecc_strength = 40, 1156 .max_chain_delay = 12000, 1157 .clks = gpmi_clks_for_mx6, 1158 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 1159 }; 1160 1161 static const struct gpmi_devdata gpmi_devdata_imx6sx = { 1162 .type = IS_MX6SX, 1163 .bch_max_ecc_strength = 62, 1164 .max_chain_delay = 12000, 1165 .clks = gpmi_clks_for_mx6, 1166 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 1167 }; 1168 1169 static const char * const gpmi_clks_for_mx7d[] = { 1170 "gpmi_io", "gpmi_bch_apb", 1171 }; 1172 1173 static const struct gpmi_devdata gpmi_devdata_imx7d = { 1174 .type = IS_MX7D, 1175 .bch_max_ecc_strength = 62, 1176 .max_chain_delay = 12000, 1177 .clks = gpmi_clks_for_mx7d, 1178 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), 1179 }; 1180 1181 static int acquire_register_block(struct gpmi_nand_data *this, 1182 const char *res_name) 1183 { 1184 struct platform_device *pdev = this->pdev; 1185 struct resources *res = &this->resources; 1186 void __iomem *p; 1187 1188 p = devm_platform_ioremap_resource_byname(pdev, res_name); 1189 if (IS_ERR(p)) 1190 return PTR_ERR(p); 1191 1192 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) 1193 res->gpmi_regs = p; 1194 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) 1195 res->bch_regs = p; 1196 else 1197 dev_err(this->dev, "unknown resource name : %s\n", res_name); 1198 1199 return 0; 1200 } 1201 1202 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) 1203 { 1204 struct platform_device *pdev = this->pdev; 1205 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; 1206 int err; 1207 1208 err = platform_get_irq_byname(pdev, res_name); 1209 if (err < 0) 1210 return err; 1211 1212 err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this); 1213 if (err) 1214 dev_err(this->dev, "error requesting BCH IRQ\n"); 1215 1216 return err; 1217 } 1218 1219 static void release_dma_channels(struct gpmi_nand_data *this) 1220 { 1221 unsigned int i; 1222 for (i = 0; i < DMA_CHANS; i++) 1223 if (this->dma_chans[i]) { 1224 dma_release_channel(this->dma_chans[i]); 1225 this->dma_chans[i] = NULL; 1226 } 1227 } 1228 1229 static int acquire_dma_channels(struct gpmi_nand_data *this) 1230 { 1231 struct platform_device *pdev = this->pdev; 1232 struct dma_chan *dma_chan; 1233 int ret = 0; 1234 1235 /* request dma channel */ 1236 dma_chan = dma_request_chan(&pdev->dev, "rx-tx"); 1237 if (IS_ERR(dma_chan)) { 1238 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan), 1239 "DMA channel request failed\n"); 1240 release_dma_channels(this); 1241 } else { 1242 this->dma_chans[0] = dma_chan; 1243 } 1244 1245 return ret; 1246 } 1247 1248 static int gpmi_get_clks(struct gpmi_nand_data *this) 1249 { 1250 struct resources *r = &this->resources; 1251 struct clk *clk; 1252 int err, i; 1253 1254 for (i = 0; i < this->devdata->clks_count; i++) { 1255 clk = devm_clk_get(this->dev, this->devdata->clks[i]); 1256 if (IS_ERR(clk)) { 1257 err = PTR_ERR(clk); 1258 goto err_clock; 1259 } 1260 1261 r->clock[i] = clk; 1262 } 1263 1264 return 0; 1265 1266 err_clock: 1267 dev_dbg(this->dev, "failed in finding the clocks.\n"); 1268 return err; 1269 } 1270 1271 static int acquire_resources(struct gpmi_nand_data *this) 1272 { 1273 int ret; 1274 1275 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); 1276 if (ret) 1277 goto exit_regs; 1278 1279 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); 1280 if (ret) 1281 goto exit_regs; 1282 1283 ret = acquire_bch_irq(this, bch_irq); 1284 if (ret) 1285 goto exit_regs; 1286 1287 ret = acquire_dma_channels(this); 1288 if (ret) 1289 goto exit_regs; 1290 1291 ret = gpmi_get_clks(this); 1292 if (ret) 1293 goto exit_clock; 1294 return 0; 1295 1296 exit_clock: 1297 release_dma_channels(this); 1298 exit_regs: 1299 return ret; 1300 } 1301 1302 static void release_resources(struct gpmi_nand_data *this) 1303 { 1304 release_dma_channels(this); 1305 } 1306 1307 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) 1308 { 1309 struct device *dev = this->dev; 1310 struct bch_geometry *geo = &this->bch_geometry; 1311 1312 if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt)) 1313 dma_free_coherent(dev, geo->auxiliary_size, 1314 this->auxiliary_virt, 1315 this->auxiliary_phys); 1316 kfree(this->data_buffer_dma); 1317 kfree(this->raw_buffer); 1318 1319 this->data_buffer_dma = NULL; 1320 this->raw_buffer = NULL; 1321 } 1322 1323 /* Allocate the DMA buffers */ 1324 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) 1325 { 1326 struct bch_geometry *geo = &this->bch_geometry; 1327 struct device *dev = this->dev; 1328 struct mtd_info *mtd = nand_to_mtd(&this->nand); 1329 1330 /* 1331 * [2] Allocate a read/write data buffer. 1332 * The gpmi_alloc_dma_buffer can be called twice. 1333 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer 1334 * is called before the NAND identification; and we allocate a 1335 * buffer of the real NAND page size when the gpmi_alloc_dma_buffer 1336 * is called after. 1337 */ 1338 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, 1339 GFP_DMA | GFP_KERNEL); 1340 if (this->data_buffer_dma == NULL) 1341 goto error_alloc; 1342 1343 this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size, 1344 &this->auxiliary_phys, GFP_DMA); 1345 if (!this->auxiliary_virt) 1346 goto error_alloc; 1347 1348 this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL); 1349 if (!this->raw_buffer) 1350 goto error_alloc; 1351 1352 return 0; 1353 1354 error_alloc: 1355 gpmi_free_dma_buffer(this); 1356 return -ENOMEM; 1357 } 1358 1359 /* 1360 * Handles block mark swapping. 1361 * It can be called in swapping the block mark, or swapping it back, 1362 * because the operations are the same. 1363 */ 1364 static void block_mark_swapping(struct gpmi_nand_data *this, 1365 void *payload, void *auxiliary) 1366 { 1367 struct bch_geometry *nfc_geo = &this->bch_geometry; 1368 unsigned char *p; 1369 unsigned char *a; 1370 unsigned int bit; 1371 unsigned char mask; 1372 unsigned char from_data; 1373 unsigned char from_oob; 1374 1375 if (!this->swap_block_mark) 1376 return; 1377 1378 /* 1379 * If control arrives here, we're swapping. Make some convenience 1380 * variables. 1381 */ 1382 bit = nfc_geo->block_mark_bit_offset; 1383 p = payload + nfc_geo->block_mark_byte_offset; 1384 a = auxiliary; 1385 1386 /* 1387 * Get the byte from the data area that overlays the block mark. Since 1388 * the ECC engine applies its own view to the bits in the page, the 1389 * physical block mark won't (in general) appear on a byte boundary in 1390 * the data. 1391 */ 1392 from_data = (p[0] >> bit) | (p[1] << (8 - bit)); 1393 1394 /* Get the byte from the OOB. */ 1395 from_oob = a[0]; 1396 1397 /* Swap them. */ 1398 a[0] = from_data; 1399 1400 mask = (0x1 << bit) - 1; 1401 p[0] = (p[0] & mask) | (from_oob << bit); 1402 1403 mask = ~0 << bit; 1404 p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); 1405 } 1406 1407 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first, 1408 int last, int meta) 1409 { 1410 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1411 struct bch_geometry *nfc_geo = &this->bch_geometry; 1412 struct mtd_info *mtd = nand_to_mtd(chip); 1413 int i; 1414 unsigned char *status; 1415 unsigned int max_bitflips = 0; 1416 1417 /* Loop over status bytes, accumulating ECC status. */ 1418 status = this->auxiliary_virt + ALIGN(meta, 4); 1419 1420 for (i = first; i < last; i++, status++) { 1421 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) 1422 continue; 1423 1424 if (*status == STATUS_UNCORRECTABLE) { 1425 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1426 u8 *eccbuf = this->raw_buffer; 1427 int offset, bitoffset; 1428 int eccbytes; 1429 int flips; 1430 1431 /* Read ECC bytes into our internal raw_buffer */ 1432 offset = nfc_geo->metadata_size * 8; 1433 offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1); 1434 offset -= eccbits; 1435 bitoffset = offset % 8; 1436 eccbytes = DIV_ROUND_UP(offset + eccbits, 8); 1437 offset /= 8; 1438 eccbytes -= offset; 1439 nand_change_read_column_op(chip, offset, eccbuf, 1440 eccbytes, false); 1441 1442 /* 1443 * ECC data are not byte aligned and we may have 1444 * in-band data in the first and last byte of 1445 * eccbuf. Set non-eccbits to one so that 1446 * nand_check_erased_ecc_chunk() does not count them 1447 * as bitflips. 1448 */ 1449 if (bitoffset) 1450 eccbuf[0] |= GENMASK(bitoffset - 1, 0); 1451 1452 bitoffset = (bitoffset + eccbits) % 8; 1453 if (bitoffset) 1454 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); 1455 1456 /* 1457 * The ECC hardware has an uncorrectable ECC status 1458 * code in case we have bitflips in an erased page. As 1459 * nothing was written into this subpage the ECC is 1460 * obviously wrong and we can not trust it. We assume 1461 * at this point that we are reading an erased page and 1462 * try to correct the bitflips in buffer up to 1463 * ecc_strength bitflips. If this is a page with random 1464 * data, we exceed this number of bitflips and have a 1465 * ECC failure. Otherwise we use the corrected buffer. 1466 */ 1467 if (i == 0) { 1468 /* The first block includes metadata */ 1469 flips = nand_check_erased_ecc_chunk( 1470 buf + i * nfc_geo->eccn_chunk_size, 1471 nfc_geo->eccn_chunk_size, 1472 eccbuf, eccbytes, 1473 this->auxiliary_virt, 1474 nfc_geo->metadata_size, 1475 nfc_geo->ecc_strength); 1476 } else { 1477 flips = nand_check_erased_ecc_chunk( 1478 buf + i * nfc_geo->eccn_chunk_size, 1479 nfc_geo->eccn_chunk_size, 1480 eccbuf, eccbytes, 1481 NULL, 0, 1482 nfc_geo->ecc_strength); 1483 } 1484 1485 if (flips > 0) { 1486 max_bitflips = max_t(unsigned int, max_bitflips, 1487 flips); 1488 mtd->ecc_stats.corrected += flips; 1489 continue; 1490 } 1491 1492 mtd->ecc_stats.failed++; 1493 continue; 1494 } 1495 1496 mtd->ecc_stats.corrected += *status; 1497 max_bitflips = max_t(unsigned int, max_bitflips, *status); 1498 } 1499 1500 return max_bitflips; 1501 } 1502 1503 static void gpmi_bch_layout_std(struct gpmi_nand_data *this) 1504 { 1505 struct bch_geometry *geo = &this->bch_geometry; 1506 unsigned int ecc_strength = geo->ecc_strength >> 1; 1507 unsigned int gf_len = geo->gf_len; 1508 unsigned int block0_size = geo->ecc0_chunk_size; 1509 unsigned int blockn_size = geo->eccn_chunk_size; 1510 1511 this->bch_flashlayout0 = 1512 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) | 1513 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) | 1514 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1515 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) | 1516 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this); 1517 1518 this->bch_flashlayout1 = 1519 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) | 1520 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1521 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) | 1522 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this); 1523 } 1524 1525 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, 1526 int oob_required, int page) 1527 { 1528 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1529 struct mtd_info *mtd = nand_to_mtd(chip); 1530 struct bch_geometry *geo = &this->bch_geometry; 1531 unsigned int max_bitflips; 1532 int ret; 1533 1534 gpmi_bch_layout_std(this); 1535 this->bch = true; 1536 1537 ret = nand_read_page_op(chip, page, 0, buf, geo->page_size); 1538 if (ret) 1539 return ret; 1540 1541 max_bitflips = gpmi_count_bitflips(chip, buf, 0, 1542 geo->ecc_chunk_count, 1543 geo->auxiliary_status_offset); 1544 1545 /* handle the block mark swapping */ 1546 block_mark_swapping(this, buf, this->auxiliary_virt); 1547 1548 if (oob_required) { 1549 /* 1550 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() 1551 * for details about our policy for delivering the OOB. 1552 * 1553 * We fill the caller's buffer with set bits, and then copy the 1554 * block mark to th caller's buffer. Note that, if block mark 1555 * swapping was necessary, it has already been done, so we can 1556 * rely on the first byte of the auxiliary buffer to contain 1557 * the block mark. 1558 */ 1559 memset(chip->oob_poi, ~0, mtd->oobsize); 1560 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; 1561 } 1562 1563 return max_bitflips; 1564 } 1565 1566 /* Fake a virtual small page for the subpage read */ 1567 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, 1568 uint32_t len, uint8_t *buf, int page) 1569 { 1570 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1571 struct bch_geometry *geo = &this->bch_geometry; 1572 int size = chip->ecc.size; /* ECC chunk size */ 1573 int meta, n, page_size; 1574 unsigned int max_bitflips; 1575 unsigned int ecc_strength; 1576 int first, last, marker_pos; 1577 int ecc_parity_size; 1578 int col = 0; 1579 int ret; 1580 1581 /* The size of ECC parity */ 1582 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1583 1584 /* Align it with the chunk size */ 1585 first = offs / size; 1586 last = (offs + len - 1) / size; 1587 1588 if (this->swap_block_mark) { 1589 /* 1590 * Find the chunk which contains the Block Marker. 1591 * If this chunk is in the range of [first, last], 1592 * we have to read out the whole page. 1593 * Why? since we had swapped the data at the position of Block 1594 * Marker to the metadata which is bound with the chunk 0. 1595 */ 1596 marker_pos = geo->block_mark_byte_offset / size; 1597 if (last >= marker_pos && first <= marker_pos) { 1598 dev_dbg(this->dev, 1599 "page:%d, first:%d, last:%d, marker at:%d\n", 1600 page, first, last, marker_pos); 1601 return gpmi_ecc_read_page(chip, buf, 0, page); 1602 } 1603 } 1604 1605 /* 1606 * if there is an ECC dedicate for meta: 1607 * - need to add an extra ECC size when calculating col and page_size, 1608 * if the meta size is NOT zero. 1609 * - ecc0_chunk size need to set to the same size as other chunks, 1610 * if the meta size is zero. 1611 */ 1612 1613 meta = geo->metadata_size; 1614 if (first) { 1615 if (geo->ecc_for_meta) 1616 col = meta + ecc_parity_size 1617 + (size + ecc_parity_size) * first; 1618 else 1619 col = meta + (size + ecc_parity_size) * first; 1620 1621 meta = 0; 1622 buf = buf + first * size; 1623 } 1624 1625 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1626 n = last - first + 1; 1627 1628 if (geo->ecc_for_meta && meta) 1629 page_size = meta + ecc_parity_size 1630 + (size + ecc_parity_size) * n; 1631 else 1632 page_size = meta + (size + ecc_parity_size) * n; 1633 1634 ecc_strength = geo->ecc_strength >> 1; 1635 1636 this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS( 1637 (geo->ecc_for_meta ? n : n - 1)) | 1638 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) | 1639 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1640 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) | 1641 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ? 1642 0 : geo->ecc0_chunk_size), this); 1643 1644 this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | 1645 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1646 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) | 1647 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this); 1648 1649 this->bch = true; 1650 1651 ret = nand_read_page_op(chip, page, col, buf, page_size); 1652 if (ret) 1653 return ret; 1654 1655 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", 1656 page, offs, len, col, first, n, page_size); 1657 1658 max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta); 1659 1660 return max_bitflips; 1661 } 1662 1663 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, 1664 int oob_required, int page) 1665 { 1666 struct mtd_info *mtd = nand_to_mtd(chip); 1667 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1668 struct bch_geometry *nfc_geo = &this->bch_geometry; 1669 1670 dev_dbg(this->dev, "ecc write page.\n"); 1671 1672 gpmi_bch_layout_std(this); 1673 this->bch = true; 1674 1675 memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size); 1676 1677 if (this->swap_block_mark) { 1678 /* 1679 * When doing bad block marker swapping we must always copy the 1680 * input buffer as we can't modify the const buffer. 1681 */ 1682 memcpy(this->data_buffer_dma, buf, mtd->writesize); 1683 buf = this->data_buffer_dma; 1684 block_mark_swapping(this, this->data_buffer_dma, 1685 this->auxiliary_virt); 1686 } 1687 1688 return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size); 1689 } 1690 1691 /* 1692 * There are several places in this driver where we have to handle the OOB and 1693 * block marks. This is the function where things are the most complicated, so 1694 * this is where we try to explain it all. All the other places refer back to 1695 * here. 1696 * 1697 * These are the rules, in order of decreasing importance: 1698 * 1699 * 1) Nothing the caller does can be allowed to imperil the block mark. 1700 * 1701 * 2) In read operations, the first byte of the OOB we return must reflect the 1702 * true state of the block mark, no matter where that block mark appears in 1703 * the physical page. 1704 * 1705 * 3) ECC-based read operations return an OOB full of set bits (since we never 1706 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads 1707 * return). 1708 * 1709 * 4) "Raw" read operations return a direct view of the physical bytes in the 1710 * page, using the conventional definition of which bytes are data and which 1711 * are OOB. This gives the caller a way to see the actual, physical bytes 1712 * in the page, without the distortions applied by our ECC engine. 1713 * 1714 * 1715 * What we do for this specific read operation depends on two questions: 1716 * 1717 * 1) Are we doing a "raw" read, or an ECC-based read? 1718 * 1719 * 2) Are we using block mark swapping or transcription? 1720 * 1721 * There are four cases, illustrated by the following Karnaugh map: 1722 * 1723 * | Raw | ECC-based | 1724 * -------------+-------------------------+-------------------------+ 1725 * | Read the conventional | | 1726 * | OOB at the end of the | | 1727 * Swapping | page and return it. It | | 1728 * | contains exactly what | | 1729 * | we want. | Read the block mark and | 1730 * -------------+-------------------------+ return it in a buffer | 1731 * | Read the conventional | full of set bits. | 1732 * | OOB at the end of the | | 1733 * | page and also the block | | 1734 * Transcribing | mark in the metadata. | | 1735 * | Copy the block mark | | 1736 * | into the first byte of | | 1737 * | the OOB. | | 1738 * -------------+-------------------------+-------------------------+ 1739 * 1740 * Note that we break rule #4 in the Transcribing/Raw case because we're not 1741 * giving an accurate view of the actual, physical bytes in the page (we're 1742 * overwriting the block mark). That's OK because it's more important to follow 1743 * rule #2. 1744 * 1745 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not 1746 * easy. When reading a page, for example, the NAND Flash MTD code calls our 1747 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an 1748 * ECC-based or raw view of the page is implicit in which function it calls 1749 * (there is a similar pair of ECC-based/raw functions for writing). 1750 */ 1751 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) 1752 { 1753 struct mtd_info *mtd = nand_to_mtd(chip); 1754 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1755 int ret; 1756 1757 /* clear the OOB buffer */ 1758 memset(chip->oob_poi, ~0, mtd->oobsize); 1759 1760 /* Read out the conventional OOB. */ 1761 ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi, 1762 mtd->oobsize); 1763 if (ret) 1764 return ret; 1765 1766 /* 1767 * Now, we want to make sure the block mark is correct. In the 1768 * non-transcribing case (!GPMI_IS_MX23()), we already have it. 1769 * Otherwise, we need to explicitly read it. 1770 */ 1771 if (GPMI_IS_MX23(this)) { 1772 /* Read the block mark into the first byte of the OOB buffer. */ 1773 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1); 1774 if (ret) 1775 return ret; 1776 } 1777 1778 return 0; 1779 } 1780 1781 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) 1782 { 1783 struct mtd_info *mtd = nand_to_mtd(chip); 1784 struct mtd_oob_region of = { }; 1785 1786 /* Do we have available oob area? */ 1787 mtd_ooblayout_free(mtd, 0, &of); 1788 if (!of.length) 1789 return -EPERM; 1790 1791 if (!nand_is_slc(chip)) 1792 return -EPERM; 1793 1794 return nand_prog_page_op(chip, page, mtd->writesize + of.offset, 1795 chip->oob_poi + of.offset, of.length); 1796 } 1797 1798 /* 1799 * This function reads a NAND page without involving the ECC engine (no HW 1800 * ECC correction). 1801 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1802 * inline (interleaved with payload DATA), and do not align data chunk on 1803 * byte boundaries. 1804 * We thus need to take care moving the payload data and ECC bits stored in the 1805 * page into the provided buffers, which is why we're using nand_extract_bits(). 1806 * 1807 * See set_geometry_by_ecc_info inline comments to have a full description 1808 * of the layout used by the GPMI controller. 1809 */ 1810 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1811 int oob_required, int page) 1812 { 1813 struct mtd_info *mtd = nand_to_mtd(chip); 1814 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1815 struct bch_geometry *nfc_geo = &this->bch_geometry; 1816 int eccsize = nfc_geo->eccn_chunk_size; 1817 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1818 u8 *tmp_buf = this->raw_buffer; 1819 size_t src_bit_off; 1820 size_t oob_bit_off; 1821 size_t oob_byte_off; 1822 uint8_t *oob = chip->oob_poi; 1823 int step; 1824 int ret; 1825 1826 ret = nand_read_page_op(chip, page, 0, tmp_buf, 1827 mtd->writesize + mtd->oobsize); 1828 if (ret) 1829 return ret; 1830 1831 /* 1832 * If required, swap the bad block marker and the data stored in the 1833 * metadata section, so that we don't wrongly consider a block as bad. 1834 * 1835 * See the layout description for a detailed explanation on why this 1836 * is needed. 1837 */ 1838 if (this->swap_block_mark) 1839 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1840 1841 /* 1842 * Copy the metadata section into the oob buffer (this section is 1843 * guaranteed to be aligned on a byte boundary). 1844 */ 1845 if (oob_required) 1846 memcpy(oob, tmp_buf, nfc_geo->metadata_size); 1847 1848 oob_bit_off = nfc_geo->metadata_size * 8; 1849 src_bit_off = oob_bit_off; 1850 1851 /* Extract interleaved payload data and ECC bits */ 1852 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1853 if (buf) 1854 nand_extract_bits(buf, step * eccsize * 8, tmp_buf, 1855 src_bit_off, eccsize * 8); 1856 src_bit_off += eccsize * 8; 1857 1858 /* Align last ECC block to align a byte boundary */ 1859 if (step == nfc_geo->ecc_chunk_count - 1 && 1860 (oob_bit_off + eccbits) % 8) 1861 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1862 1863 if (oob_required) 1864 nand_extract_bits(oob, oob_bit_off, tmp_buf, 1865 src_bit_off, eccbits); 1866 1867 src_bit_off += eccbits; 1868 oob_bit_off += eccbits; 1869 } 1870 1871 if (oob_required) { 1872 oob_byte_off = oob_bit_off / 8; 1873 1874 if (oob_byte_off < mtd->oobsize) 1875 memcpy(oob + oob_byte_off, 1876 tmp_buf + mtd->writesize + oob_byte_off, 1877 mtd->oobsize - oob_byte_off); 1878 } 1879 1880 return 0; 1881 } 1882 1883 /* 1884 * This function writes a NAND page without involving the ECC engine (no HW 1885 * ECC generation). 1886 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1887 * inline (interleaved with payload DATA), and do not align data chunk on 1888 * byte boundaries. 1889 * We thus need to take care moving the OOB area at the right place in the 1890 * final page, which is why we're using nand_extract_bits(). 1891 * 1892 * See set_geometry_by_ecc_info inline comments to have a full description 1893 * of the layout used by the GPMI controller. 1894 */ 1895 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1896 int oob_required, int page) 1897 { 1898 struct mtd_info *mtd = nand_to_mtd(chip); 1899 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1900 struct bch_geometry *nfc_geo = &this->bch_geometry; 1901 int eccsize = nfc_geo->eccn_chunk_size; 1902 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1903 u8 *tmp_buf = this->raw_buffer; 1904 uint8_t *oob = chip->oob_poi; 1905 size_t dst_bit_off; 1906 size_t oob_bit_off; 1907 size_t oob_byte_off; 1908 int step; 1909 1910 /* 1911 * Initialize all bits to 1 in case we don't have a buffer for the 1912 * payload or oob data in order to leave unspecified bits of data 1913 * to their initial state. 1914 */ 1915 if (!buf || !oob_required) 1916 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); 1917 1918 /* 1919 * First copy the metadata section (stored in oob buffer) at the 1920 * beginning of the page, as imposed by the GPMI layout. 1921 */ 1922 memcpy(tmp_buf, oob, nfc_geo->metadata_size); 1923 oob_bit_off = nfc_geo->metadata_size * 8; 1924 dst_bit_off = oob_bit_off; 1925 1926 /* Interleave payload data and ECC bits */ 1927 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1928 if (buf) 1929 nand_extract_bits(tmp_buf, dst_bit_off, buf, 1930 step * eccsize * 8, eccsize * 8); 1931 dst_bit_off += eccsize * 8; 1932 1933 /* Align last ECC block to align a byte boundary */ 1934 if (step == nfc_geo->ecc_chunk_count - 1 && 1935 (oob_bit_off + eccbits) % 8) 1936 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1937 1938 if (oob_required) 1939 nand_extract_bits(tmp_buf, dst_bit_off, oob, 1940 oob_bit_off, eccbits); 1941 1942 dst_bit_off += eccbits; 1943 oob_bit_off += eccbits; 1944 } 1945 1946 oob_byte_off = oob_bit_off / 8; 1947 1948 if (oob_required && oob_byte_off < mtd->oobsize) 1949 memcpy(tmp_buf + mtd->writesize + oob_byte_off, 1950 oob + oob_byte_off, mtd->oobsize - oob_byte_off); 1951 1952 /* 1953 * If required, swap the bad block marker and the first byte of the 1954 * metadata section, so that we don't modify the bad block marker. 1955 * 1956 * See the layout description for a detailed explanation on why this 1957 * is needed. 1958 */ 1959 if (this->swap_block_mark) 1960 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1961 1962 return nand_prog_page_op(chip, page, 0, tmp_buf, 1963 mtd->writesize + mtd->oobsize); 1964 } 1965 1966 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) 1967 { 1968 return gpmi_ecc_read_page_raw(chip, NULL, 1, page); 1969 } 1970 1971 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) 1972 { 1973 return gpmi_ecc_write_page_raw(chip, NULL, 1, page); 1974 } 1975 1976 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) 1977 { 1978 struct mtd_info *mtd = nand_to_mtd(chip); 1979 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1980 int ret = 0; 1981 uint8_t *block_mark; 1982 int column, page, chipnr; 1983 1984 chipnr = (int)(ofs >> chip->chip_shift); 1985 nand_select_target(chip, chipnr); 1986 1987 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; 1988 1989 /* Write the block mark. */ 1990 block_mark = this->data_buffer_dma; 1991 block_mark[0] = 0; /* bad block marker */ 1992 1993 /* Shift to get page */ 1994 page = (int)(ofs >> chip->page_shift); 1995 1996 ret = nand_prog_page_op(chip, page, column, block_mark, 1); 1997 1998 nand_deselect_target(chip); 1999 2000 return ret; 2001 } 2002 2003 static int nand_boot_set_geometry(struct gpmi_nand_data *this) 2004 { 2005 struct boot_rom_geometry *geometry = &this->rom_geometry; 2006 2007 /* 2008 * Set the boot block stride size. 2009 * 2010 * In principle, we should be reading this from the OTP bits, since 2011 * that's where the ROM is going to get it. In fact, we don't have any 2012 * way to read the OTP bits, so we go with the default and hope for the 2013 * best. 2014 */ 2015 geometry->stride_size_in_pages = 64; 2016 2017 /* 2018 * Set the search area stride exponent. 2019 * 2020 * In principle, we should be reading this from the OTP bits, since 2021 * that's where the ROM is going to get it. In fact, we don't have any 2022 * way to read the OTP bits, so we go with the default and hope for the 2023 * best. 2024 */ 2025 geometry->search_area_stride_exponent = 2; 2026 return 0; 2027 } 2028 2029 static const char *fingerprint = "STMP"; 2030 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) 2031 { 2032 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 2033 struct device *dev = this->dev; 2034 struct nand_chip *chip = &this->nand; 2035 unsigned int search_area_size_in_strides; 2036 unsigned int stride; 2037 unsigned int page; 2038 u8 *buffer = nand_get_data_buf(chip); 2039 int found_an_ncb_fingerprint = false; 2040 int ret; 2041 2042 /* Compute the number of strides in a search area. */ 2043 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 2044 2045 nand_select_target(chip, 0); 2046 2047 /* 2048 * Loop through the first search area, looking for the NCB fingerprint. 2049 */ 2050 dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); 2051 2052 for (stride = 0; stride < search_area_size_in_strides; stride++) { 2053 /* Compute the page addresses. */ 2054 page = stride * rom_geo->stride_size_in_pages; 2055 2056 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); 2057 2058 /* 2059 * Read the NCB fingerprint. The fingerprint is four bytes long 2060 * and starts in the 12th byte of the page. 2061 */ 2062 ret = nand_read_page_op(chip, page, 12, buffer, 2063 strlen(fingerprint)); 2064 if (ret) 2065 continue; 2066 2067 /* Look for the fingerprint. */ 2068 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { 2069 found_an_ncb_fingerprint = true; 2070 break; 2071 } 2072 2073 } 2074 2075 nand_deselect_target(chip); 2076 2077 if (found_an_ncb_fingerprint) 2078 dev_dbg(dev, "\tFound a fingerprint\n"); 2079 else 2080 dev_dbg(dev, "\tNo fingerprint found\n"); 2081 return found_an_ncb_fingerprint; 2082 } 2083 2084 /* Writes a transcription stamp. */ 2085 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) 2086 { 2087 struct device *dev = this->dev; 2088 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 2089 struct nand_chip *chip = &this->nand; 2090 struct mtd_info *mtd = nand_to_mtd(chip); 2091 unsigned int block_size_in_pages; 2092 unsigned int search_area_size_in_strides; 2093 unsigned int search_area_size_in_pages; 2094 unsigned int search_area_size_in_blocks; 2095 unsigned int block; 2096 unsigned int stride; 2097 unsigned int page; 2098 u8 *buffer = nand_get_data_buf(chip); 2099 int status; 2100 2101 /* Compute the search area geometry. */ 2102 block_size_in_pages = mtd->erasesize / mtd->writesize; 2103 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 2104 search_area_size_in_pages = search_area_size_in_strides * 2105 rom_geo->stride_size_in_pages; 2106 search_area_size_in_blocks = 2107 (search_area_size_in_pages + (block_size_in_pages - 1)) / 2108 block_size_in_pages; 2109 2110 dev_dbg(dev, "Search Area Geometry :\n"); 2111 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); 2112 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); 2113 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); 2114 2115 nand_select_target(chip, 0); 2116 2117 /* Loop over blocks in the first search area, erasing them. */ 2118 dev_dbg(dev, "Erasing the search area...\n"); 2119 2120 for (block = 0; block < search_area_size_in_blocks; block++) { 2121 /* Erase this block. */ 2122 dev_dbg(dev, "\tErasing block 0x%x\n", block); 2123 status = nand_erase_op(chip, block); 2124 if (status) 2125 dev_err(dev, "[%s] Erase failed.\n", __func__); 2126 } 2127 2128 /* Write the NCB fingerprint into the page buffer. */ 2129 memset(buffer, ~0, mtd->writesize); 2130 memcpy(buffer + 12, fingerprint, strlen(fingerprint)); 2131 2132 /* Loop through the first search area, writing NCB fingerprints. */ 2133 dev_dbg(dev, "Writing NCB fingerprints...\n"); 2134 for (stride = 0; stride < search_area_size_in_strides; stride++) { 2135 /* Compute the page addresses. */ 2136 page = stride * rom_geo->stride_size_in_pages; 2137 2138 /* Write the first page of the current stride. */ 2139 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); 2140 2141 status = chip->ecc.write_page_raw(chip, buffer, 0, page); 2142 if (status) 2143 dev_err(dev, "[%s] Write failed.\n", __func__); 2144 } 2145 2146 nand_deselect_target(chip); 2147 2148 return 0; 2149 } 2150 2151 static int mx23_boot_init(struct gpmi_nand_data *this) 2152 { 2153 struct device *dev = this->dev; 2154 struct nand_chip *chip = &this->nand; 2155 struct mtd_info *mtd = nand_to_mtd(chip); 2156 unsigned int block_count; 2157 unsigned int block; 2158 int chipnr; 2159 int page; 2160 loff_t byte; 2161 uint8_t block_mark; 2162 int ret = 0; 2163 2164 /* 2165 * If control arrives here, we can't use block mark swapping, which 2166 * means we're forced to use transcription. First, scan for the 2167 * transcription stamp. If we find it, then we don't have to do 2168 * anything -- the block marks are already transcribed. 2169 */ 2170 if (mx23_check_transcription_stamp(this)) 2171 return 0; 2172 2173 /* 2174 * If control arrives here, we couldn't find a transcription stamp, so 2175 * so we presume the block marks are in the conventional location. 2176 */ 2177 dev_dbg(dev, "Transcribing bad block marks...\n"); 2178 2179 /* Compute the number of blocks in the entire medium. */ 2180 block_count = nanddev_eraseblocks_per_target(&chip->base); 2181 2182 /* 2183 * Loop over all the blocks in the medium, transcribing block marks as 2184 * we go. 2185 */ 2186 for (block = 0; block < block_count; block++) { 2187 /* 2188 * Compute the chip, page and byte addresses for this block's 2189 * conventional mark. 2190 */ 2191 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); 2192 page = block << (chip->phys_erase_shift - chip->page_shift); 2193 byte = block << chip->phys_erase_shift; 2194 2195 /* Send the command to read the conventional block mark. */ 2196 nand_select_target(chip, chipnr); 2197 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark, 2198 1); 2199 nand_deselect_target(chip); 2200 2201 if (ret) 2202 continue; 2203 2204 /* 2205 * Check if the block is marked bad. If so, we need to mark it 2206 * again, but this time the result will be a mark in the 2207 * location where we transcribe block marks. 2208 */ 2209 if (block_mark != 0xff) { 2210 dev_dbg(dev, "Transcribing mark in block %u\n", block); 2211 ret = chip->legacy.block_markbad(chip, byte); 2212 if (ret) 2213 dev_err(dev, 2214 "Failed to mark block bad with ret %d\n", 2215 ret); 2216 } 2217 } 2218 2219 /* Write the stamp that indicates we've transcribed the block marks. */ 2220 mx23_write_transcription_stamp(this); 2221 return 0; 2222 } 2223 2224 static int nand_boot_init(struct gpmi_nand_data *this) 2225 { 2226 nand_boot_set_geometry(this); 2227 2228 /* This is ROM arch-specific initilization before the BBT scanning. */ 2229 if (GPMI_IS_MX23(this)) 2230 return mx23_boot_init(this); 2231 return 0; 2232 } 2233 2234 static int gpmi_set_geometry(struct gpmi_nand_data *this) 2235 { 2236 int ret; 2237 2238 /* Free the temporary DMA memory for reading ID. */ 2239 gpmi_free_dma_buffer(this); 2240 2241 /* Set up the NFC geometry which is used by BCH. */ 2242 ret = bch_set_geometry(this); 2243 if (ret) { 2244 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); 2245 return ret; 2246 } 2247 2248 /* Alloc the new DMA buffers according to the pagesize and oobsize */ 2249 return gpmi_alloc_dma_buffer(this); 2250 } 2251 2252 static int gpmi_init_last(struct gpmi_nand_data *this) 2253 { 2254 struct nand_chip *chip = &this->nand; 2255 struct mtd_info *mtd = nand_to_mtd(chip); 2256 struct nand_ecc_ctrl *ecc = &chip->ecc; 2257 struct bch_geometry *bch_geo = &this->bch_geometry; 2258 int ret; 2259 2260 /* Set up the medium geometry */ 2261 ret = gpmi_set_geometry(this); 2262 if (ret) 2263 return ret; 2264 2265 /* Init the nand_ecc_ctrl{} */ 2266 ecc->read_page = gpmi_ecc_read_page; 2267 ecc->write_page = gpmi_ecc_write_page; 2268 ecc->read_oob = gpmi_ecc_read_oob; 2269 ecc->write_oob = gpmi_ecc_write_oob; 2270 ecc->read_page_raw = gpmi_ecc_read_page_raw; 2271 ecc->write_page_raw = gpmi_ecc_write_page_raw; 2272 ecc->read_oob_raw = gpmi_ecc_read_oob_raw; 2273 ecc->write_oob_raw = gpmi_ecc_write_oob_raw; 2274 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2275 ecc->size = bch_geo->eccn_chunk_size; 2276 ecc->strength = bch_geo->ecc_strength; 2277 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); 2278 2279 /* 2280 * We only enable the subpage read when: 2281 * (1) the chip is imx6, and 2282 * (2) the size of the ECC parity is byte aligned. 2283 */ 2284 if (GPMI_IS_MX6(this) && 2285 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { 2286 ecc->read_subpage = gpmi_ecc_read_subpage; 2287 chip->options |= NAND_SUBPAGE_READ; 2288 } 2289 2290 return 0; 2291 } 2292 2293 static int gpmi_nand_attach_chip(struct nand_chip *chip) 2294 { 2295 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2296 int ret; 2297 2298 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2299 chip->bbt_options |= NAND_BBT_NO_OOB; 2300 2301 if (of_property_read_bool(this->dev->of_node, 2302 "fsl,no-blockmark-swap")) 2303 this->swap_block_mark = false; 2304 } 2305 dev_dbg(this->dev, "Blockmark swapping %sabled\n", 2306 this->swap_block_mark ? "en" : "dis"); 2307 2308 ret = gpmi_init_last(this); 2309 if (ret) 2310 return ret; 2311 2312 chip->options |= NAND_SKIP_BBTSCAN; 2313 2314 return 0; 2315 } 2316 2317 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this) 2318 { 2319 struct gpmi_transfer *transfer = &this->transfers[this->ntransfers]; 2320 2321 this->ntransfers++; 2322 2323 if (this->ntransfers == GPMI_MAX_TRANSFERS) 2324 return NULL; 2325 2326 return transfer; 2327 } 2328 2329 static struct dma_async_tx_descriptor *gpmi_chain_command( 2330 struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr) 2331 { 2332 struct dma_chan *channel = get_dma_chan(this); 2333 struct dma_async_tx_descriptor *desc; 2334 struct gpmi_transfer *transfer; 2335 int chip = this->nand.cur_cs; 2336 u32 pio[3]; 2337 2338 /* [1] send out the PIO words */ 2339 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2340 | BM_GPMI_CTRL0_WORD_LENGTH 2341 | BF_GPMI_CTRL0_CS(chip, this) 2342 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2343 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) 2344 | BM_GPMI_CTRL0_ADDRESS_INCREMENT 2345 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1); 2346 pio[1] = 0; 2347 pio[2] = 0; 2348 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2349 DMA_TRANS_NONE, 0); 2350 if (!desc) 2351 return NULL; 2352 2353 transfer = get_next_transfer(this); 2354 if (!transfer) 2355 return NULL; 2356 2357 transfer->cmdbuf[0] = cmd; 2358 if (naddr) 2359 memcpy(&transfer->cmdbuf[1], addr, naddr); 2360 2361 sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1); 2362 dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE); 2363 2364 transfer->direction = DMA_TO_DEVICE; 2365 2366 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV, 2367 MXS_DMA_CTRL_WAIT4END); 2368 return desc; 2369 } 2370 2371 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready( 2372 struct gpmi_nand_data *this) 2373 { 2374 struct dma_chan *channel = get_dma_chan(this); 2375 u32 pio[2]; 2376 2377 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY) 2378 | BM_GPMI_CTRL0_WORD_LENGTH 2379 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2380 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2381 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2382 | BF_GPMI_CTRL0_XFER_COUNT(0); 2383 pio[1] = 0; 2384 2385 return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE, 2386 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY); 2387 } 2388 2389 static struct dma_async_tx_descriptor *gpmi_chain_data_read( 2390 struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct) 2391 { 2392 struct dma_async_tx_descriptor *desc; 2393 struct dma_chan *channel = get_dma_chan(this); 2394 struct gpmi_transfer *transfer; 2395 u32 pio[6] = {}; 2396 2397 transfer = get_next_transfer(this); 2398 if (!transfer) 2399 return NULL; 2400 2401 transfer->direction = DMA_FROM_DEVICE; 2402 2403 *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl, 2404 DMA_FROM_DEVICE); 2405 2406 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) 2407 | BM_GPMI_CTRL0_WORD_LENGTH 2408 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2409 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2410 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2411 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2412 2413 if (this->bch) { 2414 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2415 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE) 2416 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 2417 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2418 pio[3] = raw_len; 2419 pio[4] = transfer->sgl.dma_address; 2420 pio[5] = this->auxiliary_phys; 2421 } 2422 2423 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2424 DMA_TRANS_NONE, 0); 2425 if (!desc) 2426 return NULL; 2427 2428 if (!this->bch) 2429 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2430 DMA_DEV_TO_MEM, 2431 MXS_DMA_CTRL_WAIT4END); 2432 2433 return desc; 2434 } 2435 2436 static struct dma_async_tx_descriptor *gpmi_chain_data_write( 2437 struct gpmi_nand_data *this, const void *buf, int raw_len) 2438 { 2439 struct dma_chan *channel = get_dma_chan(this); 2440 struct dma_async_tx_descriptor *desc; 2441 struct gpmi_transfer *transfer; 2442 u32 pio[6] = {}; 2443 2444 transfer = get_next_transfer(this); 2445 if (!transfer) 2446 return NULL; 2447 2448 transfer->direction = DMA_TO_DEVICE; 2449 2450 prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE); 2451 2452 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2453 | BM_GPMI_CTRL0_WORD_LENGTH 2454 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2455 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2456 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2457 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2458 2459 if (this->bch) { 2460 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2461 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE) 2462 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | 2463 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2464 pio[3] = raw_len; 2465 pio[4] = transfer->sgl.dma_address; 2466 pio[5] = this->auxiliary_phys; 2467 } 2468 2469 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2470 DMA_TRANS_NONE, 2471 (this->bch ? MXS_DMA_CTRL_WAIT4END : 0)); 2472 if (!desc) 2473 return NULL; 2474 2475 if (!this->bch) 2476 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2477 DMA_MEM_TO_DEV, 2478 MXS_DMA_CTRL_WAIT4END); 2479 2480 return desc; 2481 } 2482 2483 static int gpmi_nfc_exec_op(struct nand_chip *chip, 2484 const struct nand_operation *op, 2485 bool check_only) 2486 { 2487 const struct nand_op_instr *instr; 2488 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2489 struct dma_async_tx_descriptor *desc = NULL; 2490 int i, ret, buf_len = 0, nbufs = 0; 2491 u8 cmd = 0; 2492 void *buf_read = NULL; 2493 const void *buf_write = NULL; 2494 bool direct = false; 2495 struct completion *dma_completion, *bch_completion; 2496 unsigned long to; 2497 2498 if (check_only) 2499 return 0; 2500 2501 this->ntransfers = 0; 2502 for (i = 0; i < GPMI_MAX_TRANSFERS; i++) 2503 this->transfers[i].direction = DMA_NONE; 2504 2505 ret = pm_runtime_resume_and_get(this->dev); 2506 if (ret < 0) 2507 return ret; 2508 2509 /* 2510 * This driver currently supports only one NAND chip. Plus, dies share 2511 * the same configuration. So once timings have been applied on the 2512 * controller side, they will not change anymore. When the time will 2513 * come, the check on must_apply_timings will have to be dropped. 2514 */ 2515 if (this->hw.must_apply_timings) { 2516 this->hw.must_apply_timings = false; 2517 ret = gpmi_nfc_apply_timings(this); 2518 if (ret) 2519 goto out_pm; 2520 } 2521 2522 dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs); 2523 2524 for (i = 0; i < op->ninstrs; i++) { 2525 instr = &op->instrs[i]; 2526 2527 nand_op_trace(" ", instr); 2528 2529 switch (instr->type) { 2530 case NAND_OP_WAITRDY_INSTR: 2531 desc = gpmi_chain_wait_ready(this); 2532 break; 2533 case NAND_OP_CMD_INSTR: 2534 cmd = instr->ctx.cmd.opcode; 2535 2536 /* 2537 * When this command has an address cycle chain it 2538 * together with the address cycle 2539 */ 2540 if (i + 1 != op->ninstrs && 2541 op->instrs[i + 1].type == NAND_OP_ADDR_INSTR) 2542 continue; 2543 2544 desc = gpmi_chain_command(this, cmd, NULL, 0); 2545 2546 break; 2547 case NAND_OP_ADDR_INSTR: 2548 desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs, 2549 instr->ctx.addr.naddrs); 2550 break; 2551 case NAND_OP_DATA_OUT_INSTR: 2552 buf_write = instr->ctx.data.buf.out; 2553 buf_len = instr->ctx.data.len; 2554 nbufs++; 2555 2556 desc = gpmi_chain_data_write(this, buf_write, buf_len); 2557 2558 break; 2559 case NAND_OP_DATA_IN_INSTR: 2560 if (!instr->ctx.data.len) 2561 break; 2562 buf_read = instr->ctx.data.buf.in; 2563 buf_len = instr->ctx.data.len; 2564 nbufs++; 2565 2566 desc = gpmi_chain_data_read(this, buf_read, buf_len, 2567 &direct); 2568 break; 2569 } 2570 2571 if (!desc) { 2572 ret = -ENXIO; 2573 goto unmap; 2574 } 2575 } 2576 2577 dev_dbg(this->dev, "%s setup done\n", __func__); 2578 2579 if (nbufs > 1) { 2580 dev_err(this->dev, "Multiple data instructions not supported\n"); 2581 ret = -EINVAL; 2582 goto unmap; 2583 } 2584 2585 if (this->bch) { 2586 writel(this->bch_flashlayout0, 2587 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0); 2588 writel(this->bch_flashlayout1, 2589 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1); 2590 } 2591 2592 desc->callback = dma_irq_callback; 2593 desc->callback_param = this; 2594 dma_completion = &this->dma_done; 2595 bch_completion = NULL; 2596 2597 init_completion(dma_completion); 2598 2599 if (this->bch && buf_read) { 2600 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2601 this->resources.bch_regs + HW_BCH_CTRL_SET); 2602 bch_completion = &this->bch_done; 2603 init_completion(bch_completion); 2604 } 2605 2606 dmaengine_submit(desc); 2607 dma_async_issue_pending(get_dma_chan(this)); 2608 2609 to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000)); 2610 if (!to) { 2611 dev_err(this->dev, "DMA timeout, last DMA\n"); 2612 gpmi_dump_info(this); 2613 ret = -ETIMEDOUT; 2614 goto unmap; 2615 } 2616 2617 if (this->bch && buf_read) { 2618 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000)); 2619 if (!to) { 2620 dev_err(this->dev, "BCH timeout, last DMA\n"); 2621 gpmi_dump_info(this); 2622 ret = -ETIMEDOUT; 2623 goto unmap; 2624 } 2625 } 2626 2627 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2628 this->resources.bch_regs + HW_BCH_CTRL_CLR); 2629 gpmi_clear_bch(this); 2630 2631 ret = 0; 2632 2633 unmap: 2634 for (i = 0; i < this->ntransfers; i++) { 2635 struct gpmi_transfer *transfer = &this->transfers[i]; 2636 2637 if (transfer->direction != DMA_NONE) 2638 dma_unmap_sg(this->dev, &transfer->sgl, 1, 2639 transfer->direction); 2640 } 2641 2642 if (!ret && buf_read && !direct) 2643 memcpy(buf_read, this->data_buffer_dma, 2644 gpmi_raw_len_to_len(this, buf_len)); 2645 2646 this->bch = false; 2647 2648 out_pm: 2649 pm_runtime_mark_last_busy(this->dev); 2650 pm_runtime_put_autosuspend(this->dev); 2651 2652 return ret; 2653 } 2654 2655 static const struct nand_controller_ops gpmi_nand_controller_ops = { 2656 .attach_chip = gpmi_nand_attach_chip, 2657 .setup_interface = gpmi_setup_interface, 2658 .exec_op = gpmi_nfc_exec_op, 2659 }; 2660 2661 static int gpmi_nand_init(struct gpmi_nand_data *this) 2662 { 2663 struct nand_chip *chip = &this->nand; 2664 struct mtd_info *mtd = nand_to_mtd(chip); 2665 int ret; 2666 2667 /* init the MTD data structures */ 2668 mtd->name = "gpmi-nand"; 2669 mtd->dev.parent = this->dev; 2670 2671 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ 2672 nand_set_controller_data(chip, this); 2673 nand_set_flash_node(chip, this->pdev->dev.of_node); 2674 chip->legacy.block_markbad = gpmi_block_markbad; 2675 chip->badblock_pattern = &gpmi_bbt_descr; 2676 chip->options |= NAND_NO_SUBPAGE_WRITE; 2677 2678 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ 2679 this->swap_block_mark = !GPMI_IS_MX23(this); 2680 2681 /* 2682 * Allocate a temporary DMA buffer for reading ID in the 2683 * nand_scan_ident(). 2684 */ 2685 this->bch_geometry.payload_size = 1024; 2686 this->bch_geometry.auxiliary_size = 128; 2687 ret = gpmi_alloc_dma_buffer(this); 2688 if (ret) 2689 return ret; 2690 2691 nand_controller_init(&this->base); 2692 this->base.ops = &gpmi_nand_controller_ops; 2693 chip->controller = &this->base; 2694 2695 ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); 2696 if (ret) 2697 goto err_out; 2698 2699 ret = nand_boot_init(this); 2700 if (ret) 2701 goto err_nand_cleanup; 2702 ret = nand_create_bbt(chip); 2703 if (ret) 2704 goto err_nand_cleanup; 2705 2706 ret = mtd_device_register(mtd, NULL, 0); 2707 if (ret) 2708 goto err_nand_cleanup; 2709 return 0; 2710 2711 err_nand_cleanup: 2712 nand_cleanup(chip); 2713 err_out: 2714 gpmi_free_dma_buffer(this); 2715 return ret; 2716 } 2717 2718 static const struct of_device_id gpmi_nand_id_table[] = { 2719 { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, }, 2720 { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, }, 2721 { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, }, 2722 { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, }, 2723 { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,}, 2724 {} 2725 }; 2726 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); 2727 2728 static int gpmi_nand_probe(struct platform_device *pdev) 2729 { 2730 struct gpmi_nand_data *this; 2731 int ret; 2732 2733 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); 2734 if (!this) 2735 return -ENOMEM; 2736 2737 this->devdata = of_device_get_match_data(&pdev->dev); 2738 platform_set_drvdata(pdev, this); 2739 this->pdev = pdev; 2740 this->dev = &pdev->dev; 2741 2742 ret = acquire_resources(this); 2743 if (ret) 2744 goto exit_acquire_resources; 2745 2746 ret = __gpmi_enable_clk(this, true); 2747 if (ret) 2748 goto exit_acquire_resources; 2749 2750 pm_runtime_set_autosuspend_delay(&pdev->dev, 500); 2751 pm_runtime_use_autosuspend(&pdev->dev); 2752 pm_runtime_set_active(&pdev->dev); 2753 pm_runtime_enable(&pdev->dev); 2754 pm_runtime_get_sync(&pdev->dev); 2755 2756 ret = gpmi_init(this); 2757 if (ret) 2758 goto exit_nfc_init; 2759 2760 ret = gpmi_nand_init(this); 2761 if (ret) 2762 goto exit_nfc_init; 2763 2764 pm_runtime_mark_last_busy(&pdev->dev); 2765 pm_runtime_put_autosuspend(&pdev->dev); 2766 2767 dev_info(this->dev, "driver registered.\n"); 2768 2769 return 0; 2770 2771 exit_nfc_init: 2772 pm_runtime_put(&pdev->dev); 2773 pm_runtime_disable(&pdev->dev); 2774 release_resources(this); 2775 exit_acquire_resources: 2776 2777 return ret; 2778 } 2779 2780 static int gpmi_nand_remove(struct platform_device *pdev) 2781 { 2782 struct gpmi_nand_data *this = platform_get_drvdata(pdev); 2783 struct nand_chip *chip = &this->nand; 2784 int ret; 2785 2786 pm_runtime_put_sync(&pdev->dev); 2787 pm_runtime_disable(&pdev->dev); 2788 2789 ret = mtd_device_unregister(nand_to_mtd(chip)); 2790 WARN_ON(ret); 2791 nand_cleanup(chip); 2792 gpmi_free_dma_buffer(this); 2793 release_resources(this); 2794 return 0; 2795 } 2796 2797 #ifdef CONFIG_PM_SLEEP 2798 static int gpmi_pm_suspend(struct device *dev) 2799 { 2800 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2801 2802 release_dma_channels(this); 2803 return 0; 2804 } 2805 2806 static int gpmi_pm_resume(struct device *dev) 2807 { 2808 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2809 int ret; 2810 2811 ret = acquire_dma_channels(this); 2812 if (ret < 0) 2813 return ret; 2814 2815 /* re-init the GPMI registers */ 2816 ret = gpmi_init(this); 2817 if (ret) { 2818 dev_err(this->dev, "Error setting GPMI : %d\n", ret); 2819 return ret; 2820 } 2821 2822 /* Set flag to get timing setup restored for next exec_op */ 2823 if (this->hw.clk_rate) 2824 this->hw.must_apply_timings = true; 2825 2826 /* re-init the BCH registers */ 2827 ret = bch_set_geometry(this); 2828 if (ret) { 2829 dev_err(this->dev, "Error setting BCH : %d\n", ret); 2830 return ret; 2831 } 2832 2833 return 0; 2834 } 2835 #endif /* CONFIG_PM_SLEEP */ 2836 2837 static int __maybe_unused gpmi_runtime_suspend(struct device *dev) 2838 { 2839 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2840 2841 return __gpmi_enable_clk(this, false); 2842 } 2843 2844 static int __maybe_unused gpmi_runtime_resume(struct device *dev) 2845 { 2846 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2847 2848 return __gpmi_enable_clk(this, true); 2849 } 2850 2851 static const struct dev_pm_ops gpmi_pm_ops = { 2852 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) 2853 SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL) 2854 }; 2855 2856 static struct platform_driver gpmi_nand_driver = { 2857 .driver = { 2858 .name = "gpmi-nand", 2859 .pm = &gpmi_pm_ops, 2860 .of_match_table = gpmi_nand_id_table, 2861 }, 2862 .probe = gpmi_nand_probe, 2863 .remove = gpmi_nand_remove, 2864 }; 2865 module_platform_driver(gpmi_nand_driver); 2866 2867 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 2868 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); 2869 MODULE_LICENSE("GPL"); 2870