1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale GPMI NAND Flash Driver 4 * 5 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. 6 * Copyright (C) 2008 Embedded Alley Solutions, Inc. 7 */ 8 #include <linux/clk.h> 9 #include <linux/slab.h> 10 #include <linux/sched/task_stack.h> 11 #include <linux/interrupt.h> 12 #include <linux/module.h> 13 #include <linux/mtd/partitions.h> 14 #include <linux/of.h> 15 #include <linux/of_device.h> 16 #include "gpmi-nand.h" 17 #include "bch-regs.h" 18 19 /* Resource names for the GPMI NAND driver. */ 20 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" 21 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" 22 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" 23 24 /* add our owner bbt descriptor */ 25 static uint8_t scan_ff_pattern[] = { 0xff }; 26 static struct nand_bbt_descr gpmi_bbt_descr = { 27 .options = 0, 28 .offs = 0, 29 .len = 1, 30 .pattern = scan_ff_pattern 31 }; 32 33 /* 34 * We may change the layout if we can get the ECC info from the datasheet, 35 * else we will use all the (page + OOB). 36 */ 37 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, 38 struct mtd_oob_region *oobregion) 39 { 40 struct nand_chip *chip = mtd_to_nand(mtd); 41 struct gpmi_nand_data *this = nand_get_controller_data(chip); 42 struct bch_geometry *geo = &this->bch_geometry; 43 44 if (section) 45 return -ERANGE; 46 47 oobregion->offset = 0; 48 oobregion->length = geo->page_size - mtd->writesize; 49 50 return 0; 51 } 52 53 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, 54 struct mtd_oob_region *oobregion) 55 { 56 struct nand_chip *chip = mtd_to_nand(mtd); 57 struct gpmi_nand_data *this = nand_get_controller_data(chip); 58 struct bch_geometry *geo = &this->bch_geometry; 59 60 if (section) 61 return -ERANGE; 62 63 /* The available oob size we have. */ 64 if (geo->page_size < mtd->writesize + mtd->oobsize) { 65 oobregion->offset = geo->page_size - mtd->writesize; 66 oobregion->length = mtd->oobsize - oobregion->offset; 67 } 68 69 return 0; 70 } 71 72 static const char * const gpmi_clks_for_mx2x[] = { 73 "gpmi_io", 74 }; 75 76 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { 77 .ecc = gpmi_ooblayout_ecc, 78 .free = gpmi_ooblayout_free, 79 }; 80 81 static const struct gpmi_devdata gpmi_devdata_imx23 = { 82 .type = IS_MX23, 83 .bch_max_ecc_strength = 20, 84 .max_chain_delay = 16000, 85 .clks = gpmi_clks_for_mx2x, 86 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 87 }; 88 89 static const struct gpmi_devdata gpmi_devdata_imx28 = { 90 .type = IS_MX28, 91 .bch_max_ecc_strength = 20, 92 .max_chain_delay = 16000, 93 .clks = gpmi_clks_for_mx2x, 94 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 95 }; 96 97 static const char * const gpmi_clks_for_mx6[] = { 98 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", 99 }; 100 101 static const struct gpmi_devdata gpmi_devdata_imx6q = { 102 .type = IS_MX6Q, 103 .bch_max_ecc_strength = 40, 104 .max_chain_delay = 12000, 105 .clks = gpmi_clks_for_mx6, 106 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 107 }; 108 109 static const struct gpmi_devdata gpmi_devdata_imx6sx = { 110 .type = IS_MX6SX, 111 .bch_max_ecc_strength = 62, 112 .max_chain_delay = 12000, 113 .clks = gpmi_clks_for_mx6, 114 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 115 }; 116 117 static const char * const gpmi_clks_for_mx7d[] = { 118 "gpmi_io", "gpmi_bch_apb", 119 }; 120 121 static const struct gpmi_devdata gpmi_devdata_imx7d = { 122 .type = IS_MX7D, 123 .bch_max_ecc_strength = 62, 124 .max_chain_delay = 12000, 125 .clks = gpmi_clks_for_mx7d, 126 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), 127 }; 128 129 static irqreturn_t bch_irq(int irq, void *cookie) 130 { 131 struct gpmi_nand_data *this = cookie; 132 133 gpmi_clear_bch(this); 134 complete(&this->bch_done); 135 return IRQ_HANDLED; 136 } 137 138 /* 139 * Calculate the ECC strength by hand: 140 * E : The ECC strength. 141 * G : the length of Galois Field. 142 * N : The chunk count of per page. 143 * O : the oobsize of the NAND chip. 144 * M : the metasize of per page. 145 * 146 * The formula is : 147 * E * G * N 148 * ------------ <= (O - M) 149 * 8 150 * 151 * So, we get E by: 152 * (O - M) * 8 153 * E <= ------------- 154 * G * N 155 */ 156 static inline int get_ecc_strength(struct gpmi_nand_data *this) 157 { 158 struct bch_geometry *geo = &this->bch_geometry; 159 struct mtd_info *mtd = nand_to_mtd(&this->nand); 160 int ecc_strength; 161 162 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) 163 / (geo->gf_len * geo->ecc_chunk_count); 164 165 /* We need the minor even number. */ 166 return round_down(ecc_strength, 2); 167 } 168 169 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) 170 { 171 struct bch_geometry *geo = &this->bch_geometry; 172 173 /* Do the sanity check. */ 174 if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) { 175 /* The mx23/mx28 only support the GF13. */ 176 if (geo->gf_len == 14) 177 return false; 178 } 179 return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; 180 } 181 182 /* 183 * If we can get the ECC information from the nand chip, we do not 184 * need to calculate them ourselves. 185 * 186 * We may have available oob space in this case. 187 */ 188 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, 189 unsigned int ecc_strength, 190 unsigned int ecc_step) 191 { 192 struct bch_geometry *geo = &this->bch_geometry; 193 struct nand_chip *chip = &this->nand; 194 struct mtd_info *mtd = nand_to_mtd(chip); 195 unsigned int block_mark_bit_offset; 196 197 switch (ecc_step) { 198 case SZ_512: 199 geo->gf_len = 13; 200 break; 201 case SZ_1K: 202 geo->gf_len = 14; 203 break; 204 default: 205 dev_err(this->dev, 206 "unsupported nand chip. ecc bits : %d, ecc size : %d\n", 207 chip->ecc_strength_ds, chip->ecc_step_ds); 208 return -EINVAL; 209 } 210 geo->ecc_chunk_size = ecc_step; 211 geo->ecc_strength = round_up(ecc_strength, 2); 212 if (!gpmi_check_ecc(this)) 213 return -EINVAL; 214 215 /* Keep the C >= O */ 216 if (geo->ecc_chunk_size < mtd->oobsize) { 217 dev_err(this->dev, 218 "unsupported nand chip. ecc size: %d, oob size : %d\n", 219 ecc_step, mtd->oobsize); 220 return -EINVAL; 221 } 222 223 /* The default value, see comment in the legacy_set_geometry(). */ 224 geo->metadata_size = 10; 225 226 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 227 228 /* 229 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: 230 * 231 * | P | 232 * |<----------------------------------------------------->| 233 * | | 234 * | (Block Mark) | 235 * | P' | | | | 236 * |<-------------------------------------------->| D | | O' | 237 * | |<---->| |<--->| 238 * V V V V V 239 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 240 * | M | data |E| data |E| data |E| data |E| | 241 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 242 * ^ ^ 243 * | O | 244 * |<------------>| 245 * | | 246 * 247 * P : the page size for BCH module. 248 * E : The ECC strength. 249 * G : the length of Galois Field. 250 * N : The chunk count of per page. 251 * M : the metasize of per page. 252 * C : the ecc chunk size, aka the "data" above. 253 * P': the nand chip's page size. 254 * O : the nand chip's oob size. 255 * O': the free oob. 256 * 257 * The formula for P is : 258 * 259 * E * G * N 260 * P = ------------ + P' + M 261 * 8 262 * 263 * The position of block mark moves forward in the ECC-based view 264 * of page, and the delta is: 265 * 266 * E * G * (N - 1) 267 * D = (---------------- + M) 268 * 8 269 * 270 * Please see the comment in legacy_set_geometry(). 271 * With the condition C >= O , we still can get same result. 272 * So the bit position of the physical block mark within the ECC-based 273 * view of the page is : 274 * (P' - D) * 8 275 */ 276 geo->page_size = mtd->writesize + geo->metadata_size + 277 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 278 279 geo->payload_size = mtd->writesize; 280 281 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); 282 geo->auxiliary_size = ALIGN(geo->metadata_size, 4) 283 + ALIGN(geo->ecc_chunk_count, 4); 284 285 if (!this->swap_block_mark) 286 return 0; 287 288 /* For bit swap. */ 289 block_mark_bit_offset = mtd->writesize * 8 - 290 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 291 + geo->metadata_size * 8); 292 293 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 294 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 295 return 0; 296 } 297 298 static int legacy_set_geometry(struct gpmi_nand_data *this) 299 { 300 struct bch_geometry *geo = &this->bch_geometry; 301 struct mtd_info *mtd = nand_to_mtd(&this->nand); 302 unsigned int metadata_size; 303 unsigned int status_size; 304 unsigned int block_mark_bit_offset; 305 306 /* 307 * The size of the metadata can be changed, though we set it to 10 308 * bytes now. But it can't be too large, because we have to save 309 * enough space for BCH. 310 */ 311 geo->metadata_size = 10; 312 313 /* The default for the length of Galois Field. */ 314 geo->gf_len = 13; 315 316 /* The default for chunk size. */ 317 geo->ecc_chunk_size = 512; 318 while (geo->ecc_chunk_size < mtd->oobsize) { 319 geo->ecc_chunk_size *= 2; /* keep C >= O */ 320 geo->gf_len = 14; 321 } 322 323 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 324 325 /* We use the same ECC strength for all chunks. */ 326 geo->ecc_strength = get_ecc_strength(this); 327 if (!gpmi_check_ecc(this)) { 328 dev_err(this->dev, 329 "ecc strength: %d cannot be supported by the controller (%d)\n" 330 "try to use minimum ecc strength that NAND chip required\n", 331 geo->ecc_strength, 332 this->devdata->bch_max_ecc_strength); 333 return -EINVAL; 334 } 335 336 geo->page_size = mtd->writesize + geo->metadata_size + 337 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 338 geo->payload_size = mtd->writesize; 339 340 /* 341 * The auxiliary buffer contains the metadata and the ECC status. The 342 * metadata is padded to the nearest 32-bit boundary. The ECC status 343 * contains one byte for every ECC chunk, and is also padded to the 344 * nearest 32-bit boundary. 345 */ 346 metadata_size = ALIGN(geo->metadata_size, 4); 347 status_size = ALIGN(geo->ecc_chunk_count, 4); 348 349 geo->auxiliary_size = metadata_size + status_size; 350 geo->auxiliary_status_offset = metadata_size; 351 352 if (!this->swap_block_mark) 353 return 0; 354 355 /* 356 * We need to compute the byte and bit offsets of 357 * the physical block mark within the ECC-based view of the page. 358 * 359 * NAND chip with 2K page shows below: 360 * (Block Mark) 361 * | | 362 * | D | 363 * |<---->| 364 * V V 365 * +---+----------+-+----------+-+----------+-+----------+-+ 366 * | M | data |E| data |E| data |E| data |E| 367 * +---+----------+-+----------+-+----------+-+----------+-+ 368 * 369 * The position of block mark moves forward in the ECC-based view 370 * of page, and the delta is: 371 * 372 * E * G * (N - 1) 373 * D = (---------------- + M) 374 * 8 375 * 376 * With the formula to compute the ECC strength, and the condition 377 * : C >= O (C is the ecc chunk size) 378 * 379 * It's easy to deduce to the following result: 380 * 381 * E * G (O - M) C - M C - M 382 * ----------- <= ------- <= -------- < --------- 383 * 8 N N (N - 1) 384 * 385 * So, we get: 386 * 387 * E * G * (N - 1) 388 * D = (---------------- + M) < C 389 * 8 390 * 391 * The above inequality means the position of block mark 392 * within the ECC-based view of the page is still in the data chunk, 393 * and it's NOT in the ECC bits of the chunk. 394 * 395 * Use the following to compute the bit position of the 396 * physical block mark within the ECC-based view of the page: 397 * (page_size - D) * 8 398 * 399 * --Huang Shijie 400 */ 401 block_mark_bit_offset = mtd->writesize * 8 - 402 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 403 + geo->metadata_size * 8); 404 405 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 406 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 407 return 0; 408 } 409 410 int common_nfc_set_geometry(struct gpmi_nand_data *this) 411 { 412 struct nand_chip *chip = &this->nand; 413 414 if (chip->ecc.strength > 0 && chip->ecc.size > 0) 415 return set_geometry_by_ecc_info(this, chip->ecc.strength, 416 chip->ecc.size); 417 418 if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) 419 || legacy_set_geometry(this)) { 420 if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) 421 return -EINVAL; 422 423 return set_geometry_by_ecc_info(this, chip->ecc_strength_ds, 424 chip->ecc_step_ds); 425 } 426 427 return 0; 428 } 429 430 struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) 431 { 432 /* We use the DMA channel 0 to access all the nand chips. */ 433 return this->dma_chans[0]; 434 } 435 436 /* Can we use the upper's buffer directly for DMA? */ 437 bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len, 438 enum dma_data_direction dr) 439 { 440 struct scatterlist *sgl = &this->data_sgl; 441 int ret; 442 443 /* first try to map the upper buffer directly */ 444 if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { 445 sg_init_one(sgl, buf, len); 446 ret = dma_map_sg(this->dev, sgl, 1, dr); 447 if (ret == 0) 448 goto map_fail; 449 450 return true; 451 } 452 453 map_fail: 454 /* We have to use our own DMA buffer. */ 455 sg_init_one(sgl, this->data_buffer_dma, len); 456 457 if (dr == DMA_TO_DEVICE) 458 memcpy(this->data_buffer_dma, buf, len); 459 460 dma_map_sg(this->dev, sgl, 1, dr); 461 462 return false; 463 } 464 465 /* This will be called after the DMA operation is finished. */ 466 static void dma_irq_callback(void *param) 467 { 468 struct gpmi_nand_data *this = param; 469 struct completion *dma_c = &this->dma_done; 470 471 complete(dma_c); 472 } 473 474 int start_dma_without_bch_irq(struct gpmi_nand_data *this, 475 struct dma_async_tx_descriptor *desc) 476 { 477 struct completion *dma_c = &this->dma_done; 478 unsigned long timeout; 479 480 init_completion(dma_c); 481 482 desc->callback = dma_irq_callback; 483 desc->callback_param = this; 484 dmaengine_submit(desc); 485 dma_async_issue_pending(get_dma_chan(this)); 486 487 /* Wait for the interrupt from the DMA block. */ 488 timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); 489 if (!timeout) { 490 dev_err(this->dev, "DMA timeout, last DMA\n"); 491 gpmi_dump_info(this); 492 return -ETIMEDOUT; 493 } 494 return 0; 495 } 496 497 /* 498 * This function is used in BCH reading or BCH writing pages. 499 * It will wait for the BCH interrupt as long as ONE second. 500 * Actually, we must wait for two interrupts : 501 * [1] firstly the DMA interrupt and 502 * [2] secondly the BCH interrupt. 503 */ 504 int start_dma_with_bch_irq(struct gpmi_nand_data *this, 505 struct dma_async_tx_descriptor *desc) 506 { 507 struct completion *bch_c = &this->bch_done; 508 unsigned long timeout; 509 510 /* Prepare to receive an interrupt from the BCH block. */ 511 init_completion(bch_c); 512 513 /* start the DMA */ 514 start_dma_without_bch_irq(this, desc); 515 516 /* Wait for the interrupt from the BCH block. */ 517 timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); 518 if (!timeout) { 519 dev_err(this->dev, "BCH timeout\n"); 520 gpmi_dump_info(this); 521 return -ETIMEDOUT; 522 } 523 return 0; 524 } 525 526 static int acquire_register_block(struct gpmi_nand_data *this, 527 const char *res_name) 528 { 529 struct platform_device *pdev = this->pdev; 530 struct resources *res = &this->resources; 531 struct resource *r; 532 void __iomem *p; 533 534 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); 535 p = devm_ioremap_resource(&pdev->dev, r); 536 if (IS_ERR(p)) 537 return PTR_ERR(p); 538 539 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) 540 res->gpmi_regs = p; 541 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) 542 res->bch_regs = p; 543 else 544 dev_err(this->dev, "unknown resource name : %s\n", res_name); 545 546 return 0; 547 } 548 549 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) 550 { 551 struct platform_device *pdev = this->pdev; 552 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; 553 struct resource *r; 554 int err; 555 556 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); 557 if (!r) { 558 dev_err(this->dev, "Can't get resource for %s\n", res_name); 559 return -ENODEV; 560 } 561 562 err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); 563 if (err) 564 dev_err(this->dev, "error requesting BCH IRQ\n"); 565 566 return err; 567 } 568 569 static void release_dma_channels(struct gpmi_nand_data *this) 570 { 571 unsigned int i; 572 for (i = 0; i < DMA_CHANS; i++) 573 if (this->dma_chans[i]) { 574 dma_release_channel(this->dma_chans[i]); 575 this->dma_chans[i] = NULL; 576 } 577 } 578 579 static int acquire_dma_channels(struct gpmi_nand_data *this) 580 { 581 struct platform_device *pdev = this->pdev; 582 struct dma_chan *dma_chan; 583 584 /* request dma channel */ 585 dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx"); 586 if (!dma_chan) { 587 dev_err(this->dev, "Failed to request DMA channel.\n"); 588 goto acquire_err; 589 } 590 591 this->dma_chans[0] = dma_chan; 592 return 0; 593 594 acquire_err: 595 release_dma_channels(this); 596 return -EINVAL; 597 } 598 599 static int gpmi_get_clks(struct gpmi_nand_data *this) 600 { 601 struct resources *r = &this->resources; 602 struct clk *clk; 603 int err, i; 604 605 for (i = 0; i < this->devdata->clks_count; i++) { 606 clk = devm_clk_get(this->dev, this->devdata->clks[i]); 607 if (IS_ERR(clk)) { 608 err = PTR_ERR(clk); 609 goto err_clock; 610 } 611 612 r->clock[i] = clk; 613 } 614 615 if (GPMI_IS_MX6(this)) 616 /* 617 * Set the default value for the gpmi clock. 618 * 619 * If you want to use the ONFI nand which is in the 620 * Synchronous Mode, you should change the clock as you need. 621 */ 622 clk_set_rate(r->clock[0], 22000000); 623 624 return 0; 625 626 err_clock: 627 dev_dbg(this->dev, "failed in finding the clocks.\n"); 628 return err; 629 } 630 631 static int acquire_resources(struct gpmi_nand_data *this) 632 { 633 int ret; 634 635 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); 636 if (ret) 637 goto exit_regs; 638 639 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); 640 if (ret) 641 goto exit_regs; 642 643 ret = acquire_bch_irq(this, bch_irq); 644 if (ret) 645 goto exit_regs; 646 647 ret = acquire_dma_channels(this); 648 if (ret) 649 goto exit_regs; 650 651 ret = gpmi_get_clks(this); 652 if (ret) 653 goto exit_clock; 654 return 0; 655 656 exit_clock: 657 release_dma_channels(this); 658 exit_regs: 659 return ret; 660 } 661 662 static void release_resources(struct gpmi_nand_data *this) 663 { 664 release_dma_channels(this); 665 } 666 667 static int send_page_prepare(struct gpmi_nand_data *this, 668 const void *source, unsigned length, 669 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, 670 const void **use_virt, dma_addr_t *use_phys) 671 { 672 struct device *dev = this->dev; 673 674 if (virt_addr_valid(source)) { 675 dma_addr_t source_phys; 676 677 source_phys = dma_map_single(dev, (void *)source, length, 678 DMA_TO_DEVICE); 679 if (dma_mapping_error(dev, source_phys)) { 680 if (alt_size < length) { 681 dev_err(dev, "Alternate buffer is too small\n"); 682 return -ENOMEM; 683 } 684 goto map_failed; 685 } 686 *use_virt = source; 687 *use_phys = source_phys; 688 return 0; 689 } 690 map_failed: 691 /* 692 * Copy the content of the source buffer into the alternate 693 * buffer and set up the return values accordingly. 694 */ 695 memcpy(alt_virt, source, length); 696 697 *use_virt = alt_virt; 698 *use_phys = alt_phys; 699 return 0; 700 } 701 702 static void send_page_end(struct gpmi_nand_data *this, 703 const void *source, unsigned length, 704 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, 705 const void *used_virt, dma_addr_t used_phys) 706 { 707 struct device *dev = this->dev; 708 if (used_virt == source) 709 dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); 710 } 711 712 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) 713 { 714 struct device *dev = this->dev; 715 716 if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) 717 dma_free_coherent(dev, this->page_buffer_size, 718 this->page_buffer_virt, 719 this->page_buffer_phys); 720 kfree(this->cmd_buffer); 721 kfree(this->data_buffer_dma); 722 kfree(this->raw_buffer); 723 724 this->cmd_buffer = NULL; 725 this->data_buffer_dma = NULL; 726 this->raw_buffer = NULL; 727 this->page_buffer_virt = NULL; 728 this->page_buffer_size = 0; 729 } 730 731 /* Allocate the DMA buffers */ 732 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) 733 { 734 struct bch_geometry *geo = &this->bch_geometry; 735 struct device *dev = this->dev; 736 struct mtd_info *mtd = nand_to_mtd(&this->nand); 737 738 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ 739 this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); 740 if (this->cmd_buffer == NULL) 741 goto error_alloc; 742 743 /* 744 * [2] Allocate a read/write data buffer. 745 * The gpmi_alloc_dma_buffer can be called twice. 746 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer 747 * is called before the NAND identification; and we allocate a 748 * buffer of the real NAND page size when the gpmi_alloc_dma_buffer 749 * is called after. 750 */ 751 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, 752 GFP_DMA | GFP_KERNEL); 753 if (this->data_buffer_dma == NULL) 754 goto error_alloc; 755 756 /* 757 * [3] Allocate the page buffer. 758 * 759 * Both the payload buffer and the auxiliary buffer must appear on 760 * 32-bit boundaries. We presume the size of the payload buffer is a 761 * power of two and is much larger than four, which guarantees the 762 * auxiliary buffer will appear on a 32-bit boundary. 763 */ 764 this->page_buffer_size = geo->payload_size + geo->auxiliary_size; 765 this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, 766 &this->page_buffer_phys, GFP_DMA); 767 if (!this->page_buffer_virt) 768 goto error_alloc; 769 770 this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); 771 if (!this->raw_buffer) 772 goto error_alloc; 773 774 /* Slice up the page buffer. */ 775 this->payload_virt = this->page_buffer_virt; 776 this->payload_phys = this->page_buffer_phys; 777 this->auxiliary_virt = this->payload_virt + geo->payload_size; 778 this->auxiliary_phys = this->payload_phys + geo->payload_size; 779 return 0; 780 781 error_alloc: 782 gpmi_free_dma_buffer(this); 783 return -ENOMEM; 784 } 785 786 static void gpmi_cmd_ctrl(struct nand_chip *chip, int data, unsigned int ctrl) 787 { 788 struct gpmi_nand_data *this = nand_get_controller_data(chip); 789 int ret; 790 791 /* 792 * Every operation begins with a command byte and a series of zero or 793 * more address bytes. These are distinguished by either the Address 794 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being 795 * asserted. When MTD is ready to execute the command, it will deassert 796 * both latch enables. 797 * 798 * Rather than run a separate DMA operation for every single byte, we 799 * queue them up and run a single DMA operation for the entire series 800 * of command and data bytes. NAND_CMD_NONE means the END of the queue. 801 */ 802 if ((ctrl & (NAND_ALE | NAND_CLE))) { 803 if (data != NAND_CMD_NONE) 804 this->cmd_buffer[this->command_length++] = data; 805 return; 806 } 807 808 if (!this->command_length) 809 return; 810 811 ret = gpmi_send_command(this); 812 if (ret) 813 dev_err(this->dev, "Chip: %u, Error %d\n", 814 this->current_chip, ret); 815 816 this->command_length = 0; 817 } 818 819 static int gpmi_dev_ready(struct nand_chip *chip) 820 { 821 struct gpmi_nand_data *this = nand_get_controller_data(chip); 822 823 return gpmi_is_ready(this, this->current_chip); 824 } 825 826 static void gpmi_select_chip(struct nand_chip *chip, int chipnr) 827 { 828 struct gpmi_nand_data *this = nand_get_controller_data(chip); 829 int ret; 830 831 /* 832 * For power consumption matters, disable/enable the clock each time a 833 * die is selected/unselected. 834 */ 835 if (this->current_chip < 0 && chipnr >= 0) { 836 ret = gpmi_enable_clk(this); 837 if (ret) 838 dev_err(this->dev, "Failed to enable the clock\n"); 839 } else if (this->current_chip >= 0 && chipnr < 0) { 840 ret = gpmi_disable_clk(this); 841 if (ret) 842 dev_err(this->dev, "Failed to disable the clock\n"); 843 } 844 845 /* 846 * This driver currently supports only one NAND chip. Plus, dies share 847 * the same configuration. So once timings have been applied on the 848 * controller side, they will not change anymore. When the time will 849 * come, the check on must_apply_timings will have to be dropped. 850 */ 851 if (chipnr >= 0 && this->hw.must_apply_timings) { 852 this->hw.must_apply_timings = false; 853 gpmi_nfc_apply_timings(this); 854 } 855 856 this->current_chip = chipnr; 857 } 858 859 static void gpmi_read_buf(struct nand_chip *chip, uint8_t *buf, int len) 860 { 861 struct gpmi_nand_data *this = nand_get_controller_data(chip); 862 863 dev_dbg(this->dev, "len is %d\n", len); 864 865 gpmi_read_data(this, buf, len); 866 } 867 868 static void gpmi_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) 869 { 870 struct gpmi_nand_data *this = nand_get_controller_data(chip); 871 872 dev_dbg(this->dev, "len is %d\n", len); 873 874 gpmi_send_data(this, buf, len); 875 } 876 877 static uint8_t gpmi_read_byte(struct nand_chip *chip) 878 { 879 struct gpmi_nand_data *this = nand_get_controller_data(chip); 880 uint8_t *buf = this->data_buffer_dma; 881 882 gpmi_read_buf(chip, buf, 1); 883 return buf[0]; 884 } 885 886 /* 887 * Handles block mark swapping. 888 * It can be called in swapping the block mark, or swapping it back, 889 * because the the operations are the same. 890 */ 891 static void block_mark_swapping(struct gpmi_nand_data *this, 892 void *payload, void *auxiliary) 893 { 894 struct bch_geometry *nfc_geo = &this->bch_geometry; 895 unsigned char *p; 896 unsigned char *a; 897 unsigned int bit; 898 unsigned char mask; 899 unsigned char from_data; 900 unsigned char from_oob; 901 902 if (!this->swap_block_mark) 903 return; 904 905 /* 906 * If control arrives here, we're swapping. Make some convenience 907 * variables. 908 */ 909 bit = nfc_geo->block_mark_bit_offset; 910 p = payload + nfc_geo->block_mark_byte_offset; 911 a = auxiliary; 912 913 /* 914 * Get the byte from the data area that overlays the block mark. Since 915 * the ECC engine applies its own view to the bits in the page, the 916 * physical block mark won't (in general) appear on a byte boundary in 917 * the data. 918 */ 919 from_data = (p[0] >> bit) | (p[1] << (8 - bit)); 920 921 /* Get the byte from the OOB. */ 922 from_oob = a[0]; 923 924 /* Swap them. */ 925 a[0] = from_data; 926 927 mask = (0x1 << bit) - 1; 928 p[0] = (p[0] & mask) | (from_oob << bit); 929 930 mask = ~0 << bit; 931 p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); 932 } 933 934 static int gpmi_ecc_read_page_data(struct nand_chip *chip, 935 uint8_t *buf, int oob_required, 936 int page) 937 { 938 struct gpmi_nand_data *this = nand_get_controller_data(chip); 939 struct bch_geometry *nfc_geo = &this->bch_geometry; 940 struct mtd_info *mtd = nand_to_mtd(chip); 941 dma_addr_t payload_phys; 942 unsigned int i; 943 unsigned char *status; 944 unsigned int max_bitflips = 0; 945 int ret; 946 bool direct = false; 947 948 dev_dbg(this->dev, "page number is : %d\n", page); 949 950 payload_phys = this->payload_phys; 951 952 if (virt_addr_valid(buf)) { 953 dma_addr_t dest_phys; 954 955 dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size, 956 DMA_FROM_DEVICE); 957 if (!dma_mapping_error(this->dev, dest_phys)) { 958 payload_phys = dest_phys; 959 direct = true; 960 } 961 } 962 963 /* go! */ 964 ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys); 965 966 if (direct) 967 dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size, 968 DMA_FROM_DEVICE); 969 970 if (ret) { 971 dev_err(this->dev, "Error in ECC-based read: %d\n", ret); 972 return ret; 973 } 974 975 /* Loop over status bytes, accumulating ECC status. */ 976 status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset; 977 978 if (!direct) 979 memcpy(buf, this->payload_virt, nfc_geo->payload_size); 980 981 for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { 982 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) 983 continue; 984 985 if (*status == STATUS_UNCORRECTABLE) { 986 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 987 u8 *eccbuf = this->raw_buffer; 988 int offset, bitoffset; 989 int eccbytes; 990 int flips; 991 992 /* Read ECC bytes into our internal raw_buffer */ 993 offset = nfc_geo->metadata_size * 8; 994 offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); 995 offset -= eccbits; 996 bitoffset = offset % 8; 997 eccbytes = DIV_ROUND_UP(offset + eccbits, 8); 998 offset /= 8; 999 eccbytes -= offset; 1000 nand_change_read_column_op(chip, offset, eccbuf, 1001 eccbytes, false); 1002 1003 /* 1004 * ECC data are not byte aligned and we may have 1005 * in-band data in the first and last byte of 1006 * eccbuf. Set non-eccbits to one so that 1007 * nand_check_erased_ecc_chunk() does not count them 1008 * as bitflips. 1009 */ 1010 if (bitoffset) 1011 eccbuf[0] |= GENMASK(bitoffset - 1, 0); 1012 1013 bitoffset = (bitoffset + eccbits) % 8; 1014 if (bitoffset) 1015 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); 1016 1017 /* 1018 * The ECC hardware has an uncorrectable ECC status 1019 * code in case we have bitflips in an erased page. As 1020 * nothing was written into this subpage the ECC is 1021 * obviously wrong and we can not trust it. We assume 1022 * at this point that we are reading an erased page and 1023 * try to correct the bitflips in buffer up to 1024 * ecc_strength bitflips. If this is a page with random 1025 * data, we exceed this number of bitflips and have a 1026 * ECC failure. Otherwise we use the corrected buffer. 1027 */ 1028 if (i == 0) { 1029 /* The first block includes metadata */ 1030 flips = nand_check_erased_ecc_chunk( 1031 buf + i * nfc_geo->ecc_chunk_size, 1032 nfc_geo->ecc_chunk_size, 1033 eccbuf, eccbytes, 1034 this->auxiliary_virt, 1035 nfc_geo->metadata_size, 1036 nfc_geo->ecc_strength); 1037 } else { 1038 flips = nand_check_erased_ecc_chunk( 1039 buf + i * nfc_geo->ecc_chunk_size, 1040 nfc_geo->ecc_chunk_size, 1041 eccbuf, eccbytes, 1042 NULL, 0, 1043 nfc_geo->ecc_strength); 1044 } 1045 1046 if (flips > 0) { 1047 max_bitflips = max_t(unsigned int, max_bitflips, 1048 flips); 1049 mtd->ecc_stats.corrected += flips; 1050 continue; 1051 } 1052 1053 mtd->ecc_stats.failed++; 1054 continue; 1055 } 1056 1057 mtd->ecc_stats.corrected += *status; 1058 max_bitflips = max_t(unsigned int, max_bitflips, *status); 1059 } 1060 1061 /* handle the block mark swapping */ 1062 block_mark_swapping(this, buf, this->auxiliary_virt); 1063 1064 if (oob_required) { 1065 /* 1066 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() 1067 * for details about our policy for delivering the OOB. 1068 * 1069 * We fill the caller's buffer with set bits, and then copy the 1070 * block mark to th caller's buffer. Note that, if block mark 1071 * swapping was necessary, it has already been done, so we can 1072 * rely on the first byte of the auxiliary buffer to contain 1073 * the block mark. 1074 */ 1075 memset(chip->oob_poi, ~0, mtd->oobsize); 1076 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; 1077 } 1078 1079 return max_bitflips; 1080 } 1081 1082 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, 1083 int oob_required, int page) 1084 { 1085 nand_read_page_op(chip, page, 0, NULL, 0); 1086 1087 return gpmi_ecc_read_page_data(chip, buf, oob_required, page); 1088 } 1089 1090 /* Fake a virtual small page for the subpage read */ 1091 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, 1092 uint32_t len, uint8_t *buf, int page) 1093 { 1094 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1095 void __iomem *bch_regs = this->resources.bch_regs; 1096 struct bch_geometry old_geo = this->bch_geometry; 1097 struct bch_geometry *geo = &this->bch_geometry; 1098 int size = chip->ecc.size; /* ECC chunk size */ 1099 int meta, n, page_size; 1100 u32 r1_old, r2_old, r1_new, r2_new; 1101 unsigned int max_bitflips; 1102 int first, last, marker_pos; 1103 int ecc_parity_size; 1104 int col = 0; 1105 int old_swap_block_mark = this->swap_block_mark; 1106 1107 /* The size of ECC parity */ 1108 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1109 1110 /* Align it with the chunk size */ 1111 first = offs / size; 1112 last = (offs + len - 1) / size; 1113 1114 if (this->swap_block_mark) { 1115 /* 1116 * Find the chunk which contains the Block Marker. 1117 * If this chunk is in the range of [first, last], 1118 * we have to read out the whole page. 1119 * Why? since we had swapped the data at the position of Block 1120 * Marker to the metadata which is bound with the chunk 0. 1121 */ 1122 marker_pos = geo->block_mark_byte_offset / size; 1123 if (last >= marker_pos && first <= marker_pos) { 1124 dev_dbg(this->dev, 1125 "page:%d, first:%d, last:%d, marker at:%d\n", 1126 page, first, last, marker_pos); 1127 return gpmi_ecc_read_page(chip, buf, 0, page); 1128 } 1129 } 1130 1131 meta = geo->metadata_size; 1132 if (first) { 1133 col = meta + (size + ecc_parity_size) * first; 1134 meta = 0; 1135 buf = buf + first * size; 1136 } 1137 1138 nand_read_page_op(chip, page, col, NULL, 0); 1139 1140 /* Save the old environment */ 1141 r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0); 1142 r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1); 1143 1144 /* change the BCH registers and bch_geometry{} */ 1145 n = last - first + 1; 1146 page_size = meta + (size + ecc_parity_size) * n; 1147 1148 r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS | 1149 BM_BCH_FLASH0LAYOUT0_META_SIZE); 1150 r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) 1151 | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta); 1152 writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0); 1153 1154 r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE; 1155 r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size); 1156 writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1); 1157 1158 geo->ecc_chunk_count = n; 1159 geo->payload_size = n * size; 1160 geo->page_size = page_size; 1161 geo->auxiliary_status_offset = ALIGN(meta, 4); 1162 1163 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", 1164 page, offs, len, col, first, n, page_size); 1165 1166 /* Read the subpage now */ 1167 this->swap_block_mark = false; 1168 max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page); 1169 1170 /* Restore */ 1171 writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0); 1172 writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1); 1173 this->bch_geometry = old_geo; 1174 this->swap_block_mark = old_swap_block_mark; 1175 1176 return max_bitflips; 1177 } 1178 1179 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, 1180 int oob_required, int page) 1181 { 1182 struct mtd_info *mtd = nand_to_mtd(chip); 1183 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1184 struct bch_geometry *nfc_geo = &this->bch_geometry; 1185 const void *payload_virt; 1186 dma_addr_t payload_phys; 1187 const void *auxiliary_virt; 1188 dma_addr_t auxiliary_phys; 1189 int ret; 1190 1191 dev_dbg(this->dev, "ecc write page.\n"); 1192 1193 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 1194 1195 if (this->swap_block_mark) { 1196 /* 1197 * If control arrives here, we're doing block mark swapping. 1198 * Since we can't modify the caller's buffers, we must copy them 1199 * into our own. 1200 */ 1201 memcpy(this->payload_virt, buf, mtd->writesize); 1202 payload_virt = this->payload_virt; 1203 payload_phys = this->payload_phys; 1204 1205 memcpy(this->auxiliary_virt, chip->oob_poi, 1206 nfc_geo->auxiliary_size); 1207 auxiliary_virt = this->auxiliary_virt; 1208 auxiliary_phys = this->auxiliary_phys; 1209 1210 /* Handle block mark swapping. */ 1211 block_mark_swapping(this, 1212 (void *)payload_virt, (void *)auxiliary_virt); 1213 } else { 1214 /* 1215 * If control arrives here, we're not doing block mark swapping, 1216 * so we can to try and use the caller's buffers. 1217 */ 1218 ret = send_page_prepare(this, 1219 buf, mtd->writesize, 1220 this->payload_virt, this->payload_phys, 1221 nfc_geo->payload_size, 1222 &payload_virt, &payload_phys); 1223 if (ret) { 1224 dev_err(this->dev, "Inadequate payload DMA buffer\n"); 1225 return 0; 1226 } 1227 1228 ret = send_page_prepare(this, 1229 chip->oob_poi, mtd->oobsize, 1230 this->auxiliary_virt, this->auxiliary_phys, 1231 nfc_geo->auxiliary_size, 1232 &auxiliary_virt, &auxiliary_phys); 1233 if (ret) { 1234 dev_err(this->dev, "Inadequate auxiliary DMA buffer\n"); 1235 goto exit_auxiliary; 1236 } 1237 } 1238 1239 /* Ask the NFC. */ 1240 ret = gpmi_send_page(this, payload_phys, auxiliary_phys); 1241 if (ret) 1242 dev_err(this->dev, "Error in ECC-based write: %d\n", ret); 1243 1244 if (!this->swap_block_mark) { 1245 send_page_end(this, chip->oob_poi, mtd->oobsize, 1246 this->auxiliary_virt, this->auxiliary_phys, 1247 nfc_geo->auxiliary_size, 1248 auxiliary_virt, auxiliary_phys); 1249 exit_auxiliary: 1250 send_page_end(this, buf, mtd->writesize, 1251 this->payload_virt, this->payload_phys, 1252 nfc_geo->payload_size, 1253 payload_virt, payload_phys); 1254 } 1255 1256 if (ret) 1257 return ret; 1258 1259 return nand_prog_page_end_op(chip); 1260 } 1261 1262 /* 1263 * There are several places in this driver where we have to handle the OOB and 1264 * block marks. This is the function where things are the most complicated, so 1265 * this is where we try to explain it all. All the other places refer back to 1266 * here. 1267 * 1268 * These are the rules, in order of decreasing importance: 1269 * 1270 * 1) Nothing the caller does can be allowed to imperil the block mark. 1271 * 1272 * 2) In read operations, the first byte of the OOB we return must reflect the 1273 * true state of the block mark, no matter where that block mark appears in 1274 * the physical page. 1275 * 1276 * 3) ECC-based read operations return an OOB full of set bits (since we never 1277 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads 1278 * return). 1279 * 1280 * 4) "Raw" read operations return a direct view of the physical bytes in the 1281 * page, using the conventional definition of which bytes are data and which 1282 * are OOB. This gives the caller a way to see the actual, physical bytes 1283 * in the page, without the distortions applied by our ECC engine. 1284 * 1285 * 1286 * What we do for this specific read operation depends on two questions: 1287 * 1288 * 1) Are we doing a "raw" read, or an ECC-based read? 1289 * 1290 * 2) Are we using block mark swapping or transcription? 1291 * 1292 * There are four cases, illustrated by the following Karnaugh map: 1293 * 1294 * | Raw | ECC-based | 1295 * -------------+-------------------------+-------------------------+ 1296 * | Read the conventional | | 1297 * | OOB at the end of the | | 1298 * Swapping | page and return it. It | | 1299 * | contains exactly what | | 1300 * | we want. | Read the block mark and | 1301 * -------------+-------------------------+ return it in a buffer | 1302 * | Read the conventional | full of set bits. | 1303 * | OOB at the end of the | | 1304 * | page and also the block | | 1305 * Transcribing | mark in the metadata. | | 1306 * | Copy the block mark | | 1307 * | into the first byte of | | 1308 * | the OOB. | | 1309 * -------------+-------------------------+-------------------------+ 1310 * 1311 * Note that we break rule #4 in the Transcribing/Raw case because we're not 1312 * giving an accurate view of the actual, physical bytes in the page (we're 1313 * overwriting the block mark). That's OK because it's more important to follow 1314 * rule #2. 1315 * 1316 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not 1317 * easy. When reading a page, for example, the NAND Flash MTD code calls our 1318 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an 1319 * ECC-based or raw view of the page is implicit in which function it calls 1320 * (there is a similar pair of ECC-based/raw functions for writing). 1321 */ 1322 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) 1323 { 1324 struct mtd_info *mtd = nand_to_mtd(chip); 1325 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1326 1327 dev_dbg(this->dev, "page number is %d\n", page); 1328 /* clear the OOB buffer */ 1329 memset(chip->oob_poi, ~0, mtd->oobsize); 1330 1331 /* Read out the conventional OOB. */ 1332 nand_read_page_op(chip, page, mtd->writesize, NULL, 0); 1333 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); 1334 1335 /* 1336 * Now, we want to make sure the block mark is correct. In the 1337 * non-transcribing case (!GPMI_IS_MX23()), we already have it. 1338 * Otherwise, we need to explicitly read it. 1339 */ 1340 if (GPMI_IS_MX23(this)) { 1341 /* Read the block mark into the first byte of the OOB buffer. */ 1342 nand_read_page_op(chip, page, 0, NULL, 0); 1343 chip->oob_poi[0] = chip->legacy.read_byte(chip); 1344 } 1345 1346 return 0; 1347 } 1348 1349 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) 1350 { 1351 struct mtd_info *mtd = nand_to_mtd(chip); 1352 struct mtd_oob_region of = { }; 1353 1354 /* Do we have available oob area? */ 1355 mtd_ooblayout_free(mtd, 0, &of); 1356 if (!of.length) 1357 return -EPERM; 1358 1359 if (!nand_is_slc(chip)) 1360 return -EPERM; 1361 1362 return nand_prog_page_op(chip, page, mtd->writesize + of.offset, 1363 chip->oob_poi + of.offset, of.length); 1364 } 1365 1366 /* 1367 * This function reads a NAND page without involving the ECC engine (no HW 1368 * ECC correction). 1369 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1370 * inline (interleaved with payload DATA), and do not align data chunk on 1371 * byte boundaries. 1372 * We thus need to take care moving the payload data and ECC bits stored in the 1373 * page into the provided buffers, which is why we're using gpmi_copy_bits. 1374 * 1375 * See set_geometry_by_ecc_info inline comments to have a full description 1376 * of the layout used by the GPMI controller. 1377 */ 1378 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1379 int oob_required, int page) 1380 { 1381 struct mtd_info *mtd = nand_to_mtd(chip); 1382 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1383 struct bch_geometry *nfc_geo = &this->bch_geometry; 1384 int eccsize = nfc_geo->ecc_chunk_size; 1385 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1386 u8 *tmp_buf = this->raw_buffer; 1387 size_t src_bit_off; 1388 size_t oob_bit_off; 1389 size_t oob_byte_off; 1390 uint8_t *oob = chip->oob_poi; 1391 int step; 1392 1393 nand_read_page_op(chip, page, 0, tmp_buf, 1394 mtd->writesize + mtd->oobsize); 1395 1396 /* 1397 * If required, swap the bad block marker and the data stored in the 1398 * metadata section, so that we don't wrongly consider a block as bad. 1399 * 1400 * See the layout description for a detailed explanation on why this 1401 * is needed. 1402 */ 1403 if (this->swap_block_mark) 1404 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1405 1406 /* 1407 * Copy the metadata section into the oob buffer (this section is 1408 * guaranteed to be aligned on a byte boundary). 1409 */ 1410 if (oob_required) 1411 memcpy(oob, tmp_buf, nfc_geo->metadata_size); 1412 1413 oob_bit_off = nfc_geo->metadata_size * 8; 1414 src_bit_off = oob_bit_off; 1415 1416 /* Extract interleaved payload data and ECC bits */ 1417 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1418 if (buf) 1419 gpmi_copy_bits(buf, step * eccsize * 8, 1420 tmp_buf, src_bit_off, 1421 eccsize * 8); 1422 src_bit_off += eccsize * 8; 1423 1424 /* Align last ECC block to align a byte boundary */ 1425 if (step == nfc_geo->ecc_chunk_count - 1 && 1426 (oob_bit_off + eccbits) % 8) 1427 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1428 1429 if (oob_required) 1430 gpmi_copy_bits(oob, oob_bit_off, 1431 tmp_buf, src_bit_off, 1432 eccbits); 1433 1434 src_bit_off += eccbits; 1435 oob_bit_off += eccbits; 1436 } 1437 1438 if (oob_required) { 1439 oob_byte_off = oob_bit_off / 8; 1440 1441 if (oob_byte_off < mtd->oobsize) 1442 memcpy(oob + oob_byte_off, 1443 tmp_buf + mtd->writesize + oob_byte_off, 1444 mtd->oobsize - oob_byte_off); 1445 } 1446 1447 return 0; 1448 } 1449 1450 /* 1451 * This function writes a NAND page without involving the ECC engine (no HW 1452 * ECC generation). 1453 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1454 * inline (interleaved with payload DATA), and do not align data chunk on 1455 * byte boundaries. 1456 * We thus need to take care moving the OOB area at the right place in the 1457 * final page, which is why we're using gpmi_copy_bits. 1458 * 1459 * See set_geometry_by_ecc_info inline comments to have a full description 1460 * of the layout used by the GPMI controller. 1461 */ 1462 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1463 int oob_required, int page) 1464 { 1465 struct mtd_info *mtd = nand_to_mtd(chip); 1466 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1467 struct bch_geometry *nfc_geo = &this->bch_geometry; 1468 int eccsize = nfc_geo->ecc_chunk_size; 1469 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1470 u8 *tmp_buf = this->raw_buffer; 1471 uint8_t *oob = chip->oob_poi; 1472 size_t dst_bit_off; 1473 size_t oob_bit_off; 1474 size_t oob_byte_off; 1475 int step; 1476 1477 /* 1478 * Initialize all bits to 1 in case we don't have a buffer for the 1479 * payload or oob data in order to leave unspecified bits of data 1480 * to their initial state. 1481 */ 1482 if (!buf || !oob_required) 1483 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); 1484 1485 /* 1486 * First copy the metadata section (stored in oob buffer) at the 1487 * beginning of the page, as imposed by the GPMI layout. 1488 */ 1489 memcpy(tmp_buf, oob, nfc_geo->metadata_size); 1490 oob_bit_off = nfc_geo->metadata_size * 8; 1491 dst_bit_off = oob_bit_off; 1492 1493 /* Interleave payload data and ECC bits */ 1494 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1495 if (buf) 1496 gpmi_copy_bits(tmp_buf, dst_bit_off, 1497 buf, step * eccsize * 8, eccsize * 8); 1498 dst_bit_off += eccsize * 8; 1499 1500 /* Align last ECC block to align a byte boundary */ 1501 if (step == nfc_geo->ecc_chunk_count - 1 && 1502 (oob_bit_off + eccbits) % 8) 1503 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1504 1505 if (oob_required) 1506 gpmi_copy_bits(tmp_buf, dst_bit_off, 1507 oob, oob_bit_off, eccbits); 1508 1509 dst_bit_off += eccbits; 1510 oob_bit_off += eccbits; 1511 } 1512 1513 oob_byte_off = oob_bit_off / 8; 1514 1515 if (oob_required && oob_byte_off < mtd->oobsize) 1516 memcpy(tmp_buf + mtd->writesize + oob_byte_off, 1517 oob + oob_byte_off, mtd->oobsize - oob_byte_off); 1518 1519 /* 1520 * If required, swap the bad block marker and the first byte of the 1521 * metadata section, so that we don't modify the bad block marker. 1522 * 1523 * See the layout description for a detailed explanation on why this 1524 * is needed. 1525 */ 1526 if (this->swap_block_mark) 1527 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1528 1529 return nand_prog_page_op(chip, page, 0, tmp_buf, 1530 mtd->writesize + mtd->oobsize); 1531 } 1532 1533 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) 1534 { 1535 return gpmi_ecc_read_page_raw(chip, NULL, 1, page); 1536 } 1537 1538 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) 1539 { 1540 return gpmi_ecc_write_page_raw(chip, NULL, 1, page); 1541 } 1542 1543 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) 1544 { 1545 struct mtd_info *mtd = nand_to_mtd(chip); 1546 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1547 int ret = 0; 1548 uint8_t *block_mark; 1549 int column, page, chipnr; 1550 1551 chipnr = (int)(ofs >> chip->chip_shift); 1552 nand_select_target(chip, chipnr); 1553 1554 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; 1555 1556 /* Write the block mark. */ 1557 block_mark = this->data_buffer_dma; 1558 block_mark[0] = 0; /* bad block marker */ 1559 1560 /* Shift to get page */ 1561 page = (int)(ofs >> chip->page_shift); 1562 1563 ret = nand_prog_page_op(chip, page, column, block_mark, 1); 1564 1565 nand_deselect_target(chip); 1566 1567 return ret; 1568 } 1569 1570 static int nand_boot_set_geometry(struct gpmi_nand_data *this) 1571 { 1572 struct boot_rom_geometry *geometry = &this->rom_geometry; 1573 1574 /* 1575 * Set the boot block stride size. 1576 * 1577 * In principle, we should be reading this from the OTP bits, since 1578 * that's where the ROM is going to get it. In fact, we don't have any 1579 * way to read the OTP bits, so we go with the default and hope for the 1580 * best. 1581 */ 1582 geometry->stride_size_in_pages = 64; 1583 1584 /* 1585 * Set the search area stride exponent. 1586 * 1587 * In principle, we should be reading this from the OTP bits, since 1588 * that's where the ROM is going to get it. In fact, we don't have any 1589 * way to read the OTP bits, so we go with the default and hope for the 1590 * best. 1591 */ 1592 geometry->search_area_stride_exponent = 2; 1593 return 0; 1594 } 1595 1596 static const char *fingerprint = "STMP"; 1597 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) 1598 { 1599 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1600 struct device *dev = this->dev; 1601 struct nand_chip *chip = &this->nand; 1602 unsigned int search_area_size_in_strides; 1603 unsigned int stride; 1604 unsigned int page; 1605 uint8_t *buffer = chip->data_buf; 1606 int saved_chip_number; 1607 int found_an_ncb_fingerprint = false; 1608 1609 /* Compute the number of strides in a search area. */ 1610 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1611 1612 saved_chip_number = this->current_chip; 1613 nand_select_target(chip, 0); 1614 1615 /* 1616 * Loop through the first search area, looking for the NCB fingerprint. 1617 */ 1618 dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); 1619 1620 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1621 /* Compute the page addresses. */ 1622 page = stride * rom_geo->stride_size_in_pages; 1623 1624 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); 1625 1626 /* 1627 * Read the NCB fingerprint. The fingerprint is four bytes long 1628 * and starts in the 12th byte of the page. 1629 */ 1630 nand_read_page_op(chip, page, 12, NULL, 0); 1631 chip->legacy.read_buf(chip, buffer, strlen(fingerprint)); 1632 1633 /* Look for the fingerprint. */ 1634 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { 1635 found_an_ncb_fingerprint = true; 1636 break; 1637 } 1638 1639 } 1640 1641 if (saved_chip_number >= 0) 1642 nand_select_target(chip, saved_chip_number); 1643 else 1644 nand_deselect_target(chip); 1645 1646 if (found_an_ncb_fingerprint) 1647 dev_dbg(dev, "\tFound a fingerprint\n"); 1648 else 1649 dev_dbg(dev, "\tNo fingerprint found\n"); 1650 return found_an_ncb_fingerprint; 1651 } 1652 1653 /* Writes a transcription stamp. */ 1654 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) 1655 { 1656 struct device *dev = this->dev; 1657 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1658 struct nand_chip *chip = &this->nand; 1659 struct mtd_info *mtd = nand_to_mtd(chip); 1660 unsigned int block_size_in_pages; 1661 unsigned int search_area_size_in_strides; 1662 unsigned int search_area_size_in_pages; 1663 unsigned int search_area_size_in_blocks; 1664 unsigned int block; 1665 unsigned int stride; 1666 unsigned int page; 1667 uint8_t *buffer = chip->data_buf; 1668 int saved_chip_number; 1669 int status; 1670 1671 /* Compute the search area geometry. */ 1672 block_size_in_pages = mtd->erasesize / mtd->writesize; 1673 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1674 search_area_size_in_pages = search_area_size_in_strides * 1675 rom_geo->stride_size_in_pages; 1676 search_area_size_in_blocks = 1677 (search_area_size_in_pages + (block_size_in_pages - 1)) / 1678 block_size_in_pages; 1679 1680 dev_dbg(dev, "Search Area Geometry :\n"); 1681 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); 1682 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); 1683 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); 1684 1685 /* Select chip 0. */ 1686 saved_chip_number = this->current_chip; 1687 nand_select_target(chip, 0); 1688 1689 /* Loop over blocks in the first search area, erasing them. */ 1690 dev_dbg(dev, "Erasing the search area...\n"); 1691 1692 for (block = 0; block < search_area_size_in_blocks; block++) { 1693 /* Erase this block. */ 1694 dev_dbg(dev, "\tErasing block 0x%x\n", block); 1695 status = nand_erase_op(chip, block); 1696 if (status) 1697 dev_err(dev, "[%s] Erase failed.\n", __func__); 1698 } 1699 1700 /* Write the NCB fingerprint into the page buffer. */ 1701 memset(buffer, ~0, mtd->writesize); 1702 memcpy(buffer + 12, fingerprint, strlen(fingerprint)); 1703 1704 /* Loop through the first search area, writing NCB fingerprints. */ 1705 dev_dbg(dev, "Writing NCB fingerprints...\n"); 1706 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1707 /* Compute the page addresses. */ 1708 page = stride * rom_geo->stride_size_in_pages; 1709 1710 /* Write the first page of the current stride. */ 1711 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); 1712 1713 status = chip->ecc.write_page_raw(chip, buffer, 0, page); 1714 if (status) 1715 dev_err(dev, "[%s] Write failed.\n", __func__); 1716 } 1717 1718 /* Deselect chip 0. */ 1719 if (saved_chip_number >= 0) 1720 nand_select_target(chip, saved_chip_number); 1721 else 1722 nand_deselect_target(chip); 1723 1724 return 0; 1725 } 1726 1727 static int mx23_boot_init(struct gpmi_nand_data *this) 1728 { 1729 struct device *dev = this->dev; 1730 struct nand_chip *chip = &this->nand; 1731 struct mtd_info *mtd = nand_to_mtd(chip); 1732 unsigned int block_count; 1733 unsigned int block; 1734 int chipnr; 1735 int page; 1736 loff_t byte; 1737 uint8_t block_mark; 1738 int ret = 0; 1739 1740 /* 1741 * If control arrives here, we can't use block mark swapping, which 1742 * means we're forced to use transcription. First, scan for the 1743 * transcription stamp. If we find it, then we don't have to do 1744 * anything -- the block marks are already transcribed. 1745 */ 1746 if (mx23_check_transcription_stamp(this)) 1747 return 0; 1748 1749 /* 1750 * If control arrives here, we couldn't find a transcription stamp, so 1751 * so we presume the block marks are in the conventional location. 1752 */ 1753 dev_dbg(dev, "Transcribing bad block marks...\n"); 1754 1755 /* Compute the number of blocks in the entire medium. */ 1756 block_count = chip->chipsize >> chip->phys_erase_shift; 1757 1758 /* 1759 * Loop over all the blocks in the medium, transcribing block marks as 1760 * we go. 1761 */ 1762 for (block = 0; block < block_count; block++) { 1763 /* 1764 * Compute the chip, page and byte addresses for this block's 1765 * conventional mark. 1766 */ 1767 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); 1768 page = block << (chip->phys_erase_shift - chip->page_shift); 1769 byte = block << chip->phys_erase_shift; 1770 1771 /* Send the command to read the conventional block mark. */ 1772 nand_select_target(chip, chipnr); 1773 nand_read_page_op(chip, page, mtd->writesize, NULL, 0); 1774 block_mark = chip->legacy.read_byte(chip); 1775 nand_deselect_target(chip); 1776 1777 /* 1778 * Check if the block is marked bad. If so, we need to mark it 1779 * again, but this time the result will be a mark in the 1780 * location where we transcribe block marks. 1781 */ 1782 if (block_mark != 0xff) { 1783 dev_dbg(dev, "Transcribing mark in block %u\n", block); 1784 ret = chip->legacy.block_markbad(chip, byte); 1785 if (ret) 1786 dev_err(dev, 1787 "Failed to mark block bad with ret %d\n", 1788 ret); 1789 } 1790 } 1791 1792 /* Write the stamp that indicates we've transcribed the block marks. */ 1793 mx23_write_transcription_stamp(this); 1794 return 0; 1795 } 1796 1797 static int nand_boot_init(struct gpmi_nand_data *this) 1798 { 1799 nand_boot_set_geometry(this); 1800 1801 /* This is ROM arch-specific initilization before the BBT scanning. */ 1802 if (GPMI_IS_MX23(this)) 1803 return mx23_boot_init(this); 1804 return 0; 1805 } 1806 1807 static int gpmi_set_geometry(struct gpmi_nand_data *this) 1808 { 1809 int ret; 1810 1811 /* Free the temporary DMA memory for reading ID. */ 1812 gpmi_free_dma_buffer(this); 1813 1814 /* Set up the NFC geometry which is used by BCH. */ 1815 ret = bch_set_geometry(this); 1816 if (ret) { 1817 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); 1818 return ret; 1819 } 1820 1821 /* Alloc the new DMA buffers according to the pagesize and oobsize */ 1822 return gpmi_alloc_dma_buffer(this); 1823 } 1824 1825 static int gpmi_init_last(struct gpmi_nand_data *this) 1826 { 1827 struct nand_chip *chip = &this->nand; 1828 struct mtd_info *mtd = nand_to_mtd(chip); 1829 struct nand_ecc_ctrl *ecc = &chip->ecc; 1830 struct bch_geometry *bch_geo = &this->bch_geometry; 1831 int ret; 1832 1833 /* Set up the medium geometry */ 1834 ret = gpmi_set_geometry(this); 1835 if (ret) 1836 return ret; 1837 1838 /* Init the nand_ecc_ctrl{} */ 1839 ecc->read_page = gpmi_ecc_read_page; 1840 ecc->write_page = gpmi_ecc_write_page; 1841 ecc->read_oob = gpmi_ecc_read_oob; 1842 ecc->write_oob = gpmi_ecc_write_oob; 1843 ecc->read_page_raw = gpmi_ecc_read_page_raw; 1844 ecc->write_page_raw = gpmi_ecc_write_page_raw; 1845 ecc->read_oob_raw = gpmi_ecc_read_oob_raw; 1846 ecc->write_oob_raw = gpmi_ecc_write_oob_raw; 1847 ecc->mode = NAND_ECC_HW; 1848 ecc->size = bch_geo->ecc_chunk_size; 1849 ecc->strength = bch_geo->ecc_strength; 1850 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); 1851 1852 /* 1853 * We only enable the subpage read when: 1854 * (1) the chip is imx6, and 1855 * (2) the size of the ECC parity is byte aligned. 1856 */ 1857 if (GPMI_IS_MX6(this) && 1858 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { 1859 ecc->read_subpage = gpmi_ecc_read_subpage; 1860 chip->options |= NAND_SUBPAGE_READ; 1861 } 1862 1863 return 0; 1864 } 1865 1866 static int gpmi_nand_attach_chip(struct nand_chip *chip) 1867 { 1868 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1869 int ret; 1870 1871 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 1872 chip->bbt_options |= NAND_BBT_NO_OOB; 1873 1874 if (of_property_read_bool(this->dev->of_node, 1875 "fsl,no-blockmark-swap")) 1876 this->swap_block_mark = false; 1877 } 1878 dev_dbg(this->dev, "Blockmark swapping %sabled\n", 1879 this->swap_block_mark ? "en" : "dis"); 1880 1881 ret = gpmi_init_last(this); 1882 if (ret) 1883 return ret; 1884 1885 chip->options |= NAND_SKIP_BBTSCAN; 1886 1887 return 0; 1888 } 1889 1890 static const struct nand_controller_ops gpmi_nand_controller_ops = { 1891 .attach_chip = gpmi_nand_attach_chip, 1892 .setup_data_interface = gpmi_setup_data_interface, 1893 }; 1894 1895 static int gpmi_nand_init(struct gpmi_nand_data *this) 1896 { 1897 struct nand_chip *chip = &this->nand; 1898 struct mtd_info *mtd = nand_to_mtd(chip); 1899 int ret; 1900 1901 /* init current chip */ 1902 this->current_chip = -1; 1903 1904 /* init the MTD data structures */ 1905 mtd->name = "gpmi-nand"; 1906 mtd->dev.parent = this->dev; 1907 1908 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ 1909 nand_set_controller_data(chip, this); 1910 nand_set_flash_node(chip, this->pdev->dev.of_node); 1911 chip->legacy.select_chip = gpmi_select_chip; 1912 chip->legacy.cmd_ctrl = gpmi_cmd_ctrl; 1913 chip->legacy.dev_ready = gpmi_dev_ready; 1914 chip->legacy.read_byte = gpmi_read_byte; 1915 chip->legacy.read_buf = gpmi_read_buf; 1916 chip->legacy.write_buf = gpmi_write_buf; 1917 chip->badblock_pattern = &gpmi_bbt_descr; 1918 chip->legacy.block_markbad = gpmi_block_markbad; 1919 chip->options |= NAND_NO_SUBPAGE_WRITE; 1920 1921 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ 1922 this->swap_block_mark = !GPMI_IS_MX23(this); 1923 1924 /* 1925 * Allocate a temporary DMA buffer for reading ID in the 1926 * nand_scan_ident(). 1927 */ 1928 this->bch_geometry.payload_size = 1024; 1929 this->bch_geometry.auxiliary_size = 128; 1930 ret = gpmi_alloc_dma_buffer(this); 1931 if (ret) 1932 goto err_out; 1933 1934 chip->legacy.dummy_controller.ops = &gpmi_nand_controller_ops; 1935 ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); 1936 if (ret) 1937 goto err_out; 1938 1939 ret = nand_boot_init(this); 1940 if (ret) 1941 goto err_nand_cleanup; 1942 ret = nand_create_bbt(chip); 1943 if (ret) 1944 goto err_nand_cleanup; 1945 1946 ret = mtd_device_register(mtd, NULL, 0); 1947 if (ret) 1948 goto err_nand_cleanup; 1949 return 0; 1950 1951 err_nand_cleanup: 1952 nand_cleanup(chip); 1953 err_out: 1954 gpmi_free_dma_buffer(this); 1955 return ret; 1956 } 1957 1958 static const struct of_device_id gpmi_nand_id_table[] = { 1959 { 1960 .compatible = "fsl,imx23-gpmi-nand", 1961 .data = &gpmi_devdata_imx23, 1962 }, { 1963 .compatible = "fsl,imx28-gpmi-nand", 1964 .data = &gpmi_devdata_imx28, 1965 }, { 1966 .compatible = "fsl,imx6q-gpmi-nand", 1967 .data = &gpmi_devdata_imx6q, 1968 }, { 1969 .compatible = "fsl,imx6sx-gpmi-nand", 1970 .data = &gpmi_devdata_imx6sx, 1971 }, { 1972 .compatible = "fsl,imx7d-gpmi-nand", 1973 .data = &gpmi_devdata_imx7d, 1974 }, {} 1975 }; 1976 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); 1977 1978 static int gpmi_nand_probe(struct platform_device *pdev) 1979 { 1980 struct gpmi_nand_data *this; 1981 const struct of_device_id *of_id; 1982 int ret; 1983 1984 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); 1985 if (!this) 1986 return -ENOMEM; 1987 1988 of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); 1989 if (of_id) { 1990 this->devdata = of_id->data; 1991 } else { 1992 dev_err(&pdev->dev, "Failed to find the right device id.\n"); 1993 return -ENODEV; 1994 } 1995 1996 platform_set_drvdata(pdev, this); 1997 this->pdev = pdev; 1998 this->dev = &pdev->dev; 1999 2000 ret = acquire_resources(this); 2001 if (ret) 2002 goto exit_acquire_resources; 2003 2004 ret = gpmi_init(this); 2005 if (ret) 2006 goto exit_nfc_init; 2007 2008 ret = gpmi_nand_init(this); 2009 if (ret) 2010 goto exit_nfc_init; 2011 2012 dev_info(this->dev, "driver registered.\n"); 2013 2014 return 0; 2015 2016 exit_nfc_init: 2017 release_resources(this); 2018 exit_acquire_resources: 2019 2020 return ret; 2021 } 2022 2023 static int gpmi_nand_remove(struct platform_device *pdev) 2024 { 2025 struct gpmi_nand_data *this = platform_get_drvdata(pdev); 2026 2027 nand_release(&this->nand); 2028 gpmi_free_dma_buffer(this); 2029 release_resources(this); 2030 return 0; 2031 } 2032 2033 #ifdef CONFIG_PM_SLEEP 2034 static int gpmi_pm_suspend(struct device *dev) 2035 { 2036 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2037 2038 release_dma_channels(this); 2039 return 0; 2040 } 2041 2042 static int gpmi_pm_resume(struct device *dev) 2043 { 2044 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2045 int ret; 2046 2047 ret = acquire_dma_channels(this); 2048 if (ret < 0) 2049 return ret; 2050 2051 /* re-init the GPMI registers */ 2052 ret = gpmi_init(this); 2053 if (ret) { 2054 dev_err(this->dev, "Error setting GPMI : %d\n", ret); 2055 return ret; 2056 } 2057 2058 /* re-init the BCH registers */ 2059 ret = bch_set_geometry(this); 2060 if (ret) { 2061 dev_err(this->dev, "Error setting BCH : %d\n", ret); 2062 return ret; 2063 } 2064 2065 return 0; 2066 } 2067 #endif /* CONFIG_PM_SLEEP */ 2068 2069 static const struct dev_pm_ops gpmi_pm_ops = { 2070 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) 2071 }; 2072 2073 static struct platform_driver gpmi_nand_driver = { 2074 .driver = { 2075 .name = "gpmi-nand", 2076 .pm = &gpmi_pm_ops, 2077 .of_match_table = gpmi_nand_id_table, 2078 }, 2079 .probe = gpmi_nand_probe, 2080 .remove = gpmi_nand_remove, 2081 }; 2082 module_platform_driver(gpmi_nand_driver); 2083 2084 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 2085 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); 2086 MODULE_LICENSE("GPL"); 2087