1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale GPMI NAND Flash Driver 4 * 5 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. 6 * Copyright (C) 2008 Embedded Alley Solutions, Inc. 7 */ 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/interrupt.h> 13 #include <linux/module.h> 14 #include <linux/mtd/partitions.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/dma/mxs-dma.h> 19 #include "gpmi-nand.h" 20 #include "gpmi-regs.h" 21 #include "bch-regs.h" 22 23 /* Resource names for the GPMI NAND driver. */ 24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" 25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" 26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" 27 28 /* Converts time to clock cycles */ 29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) 30 31 #define MXS_SET_ADDR 0x4 32 #define MXS_CLR_ADDR 0x8 33 /* 34 * Clear the bit and poll it cleared. This is usually called with 35 * a reset address and mask being either SFTRST(bit 31) or CLKGATE 36 * (bit 30). 37 */ 38 static int clear_poll_bit(void __iomem *addr, u32 mask) 39 { 40 int timeout = 0x400; 41 42 /* clear the bit */ 43 writel(mask, addr + MXS_CLR_ADDR); 44 45 /* 46 * SFTRST needs 3 GPMI clocks to settle, the reference manual 47 * recommends to wait 1us. 48 */ 49 udelay(1); 50 51 /* poll the bit becoming clear */ 52 while ((readl(addr) & mask) && --timeout) 53 /* nothing */; 54 55 return !timeout; 56 } 57 58 #define MODULE_CLKGATE (1 << 30) 59 #define MODULE_SFTRST (1 << 31) 60 /* 61 * The current mxs_reset_block() will do two things: 62 * [1] enable the module. 63 * [2] reset the module. 64 * 65 * In most of the cases, it's ok. 66 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). 67 * If you try to soft reset the BCH block, it becomes unusable until 68 * the next hard reset. This case occurs in the NAND boot mode. When the board 69 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. 70 * So If the driver tries to reset the BCH again, the BCH will not work anymore. 71 * You will see a DMA timeout in this case. The bug has been fixed 72 * in the following chips, such as MX28. 73 * 74 * To avoid this bug, just add a new parameter `just_enable` for 75 * the mxs_reset_block(), and rewrite it here. 76 */ 77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) 78 { 79 int ret; 80 int timeout = 0x400; 81 82 /* clear and poll SFTRST */ 83 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 84 if (unlikely(ret)) 85 goto error; 86 87 /* clear CLKGATE */ 88 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); 89 90 if (!just_enable) { 91 /* set SFTRST to reset the block */ 92 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); 93 udelay(1); 94 95 /* poll CLKGATE becoming set */ 96 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) 97 /* nothing */; 98 if (unlikely(!timeout)) 99 goto error; 100 } 101 102 /* clear and poll SFTRST */ 103 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 104 if (unlikely(ret)) 105 goto error; 106 107 /* clear and poll CLKGATE */ 108 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); 109 if (unlikely(ret)) 110 goto error; 111 112 return 0; 113 114 error: 115 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); 116 return -ETIMEDOUT; 117 } 118 119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) 120 { 121 struct clk *clk; 122 int ret; 123 int i; 124 125 for (i = 0; i < GPMI_CLK_MAX; i++) { 126 clk = this->resources.clock[i]; 127 if (!clk) 128 break; 129 130 if (v) { 131 ret = clk_prepare_enable(clk); 132 if (ret) 133 goto err_clk; 134 } else { 135 clk_disable_unprepare(clk); 136 } 137 } 138 return 0; 139 140 err_clk: 141 for (; i > 0; i--) 142 clk_disable_unprepare(this->resources.clock[i - 1]); 143 return ret; 144 } 145 146 static int gpmi_init(struct gpmi_nand_data *this) 147 { 148 struct resources *r = &this->resources; 149 int ret; 150 151 ret = pm_runtime_get_sync(this->dev); 152 if (ret < 0) { 153 pm_runtime_put_noidle(this->dev); 154 return ret; 155 } 156 157 ret = gpmi_reset_block(r->gpmi_regs, false); 158 if (ret) 159 goto err_out; 160 161 /* 162 * Reset BCH here, too. We got failures otherwise :( 163 * See later BCH reset for explanation of MX23 and MX28 handling 164 */ 165 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 166 if (ret) 167 goto err_out; 168 169 /* Choose NAND mode. */ 170 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); 171 172 /* Set the IRQ polarity. */ 173 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, 174 r->gpmi_regs + HW_GPMI_CTRL1_SET); 175 176 /* Disable Write-Protection. */ 177 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); 178 179 /* Select BCH ECC. */ 180 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); 181 182 /* 183 * Decouple the chip select from dma channel. We use dma0 for all 184 * the chips, force all NAND RDY_BUSY inputs to be sourced from 185 * RDY_BUSY0. 186 */ 187 writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY, 188 r->gpmi_regs + HW_GPMI_CTRL1_SET); 189 190 err_out: 191 pm_runtime_mark_last_busy(this->dev); 192 pm_runtime_put_autosuspend(this->dev); 193 return ret; 194 } 195 196 /* This function is very useful. It is called only when the bug occur. */ 197 static void gpmi_dump_info(struct gpmi_nand_data *this) 198 { 199 struct resources *r = &this->resources; 200 struct bch_geometry *geo = &this->bch_geometry; 201 u32 reg; 202 int i; 203 204 dev_err(this->dev, "Show GPMI registers :\n"); 205 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { 206 reg = readl(r->gpmi_regs + i * 0x10); 207 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 208 } 209 210 /* start to print out the BCH info */ 211 dev_err(this->dev, "Show BCH registers :\n"); 212 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { 213 reg = readl(r->bch_regs + i * 0x10); 214 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 215 } 216 dev_err(this->dev, "BCH Geometry :\n" 217 "GF length : %u\n" 218 "ECC Strength : %u\n" 219 "Page Size in Bytes : %u\n" 220 "Metadata Size in Bytes : %u\n" 221 "ECC Chunk Size in Bytes: %u\n" 222 "ECC Chunk Count : %u\n" 223 "Payload Size in Bytes : %u\n" 224 "Auxiliary Size in Bytes: %u\n" 225 "Auxiliary Status Offset: %u\n" 226 "Block Mark Byte Offset : %u\n" 227 "Block Mark Bit Offset : %u\n", 228 geo->gf_len, 229 geo->ecc_strength, 230 geo->page_size, 231 geo->metadata_size, 232 geo->ecc_chunk_size, 233 geo->ecc_chunk_count, 234 geo->payload_size, 235 geo->auxiliary_size, 236 geo->auxiliary_status_offset, 237 geo->block_mark_byte_offset, 238 geo->block_mark_bit_offset); 239 } 240 241 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) 242 { 243 struct bch_geometry *geo = &this->bch_geometry; 244 245 /* Do the sanity check. */ 246 if (GPMI_IS_MXS(this)) { 247 /* The mx23/mx28 only support the GF13. */ 248 if (geo->gf_len == 14) 249 return false; 250 } 251 return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; 252 } 253 254 /* 255 * If we can get the ECC information from the nand chip, we do not 256 * need to calculate them ourselves. 257 * 258 * We may have available oob space in this case. 259 */ 260 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, 261 unsigned int ecc_strength, 262 unsigned int ecc_step) 263 { 264 struct bch_geometry *geo = &this->bch_geometry; 265 struct nand_chip *chip = &this->nand; 266 struct mtd_info *mtd = nand_to_mtd(chip); 267 unsigned int block_mark_bit_offset; 268 269 switch (ecc_step) { 270 case SZ_512: 271 geo->gf_len = 13; 272 break; 273 case SZ_1K: 274 geo->gf_len = 14; 275 break; 276 default: 277 dev_err(this->dev, 278 "unsupported nand chip. ecc bits : %d, ecc size : %d\n", 279 nanddev_get_ecc_requirements(&chip->base)->strength, 280 nanddev_get_ecc_requirements(&chip->base)->step_size); 281 return -EINVAL; 282 } 283 geo->ecc_chunk_size = ecc_step; 284 geo->ecc_strength = round_up(ecc_strength, 2); 285 if (!gpmi_check_ecc(this)) 286 return -EINVAL; 287 288 /* Keep the C >= O */ 289 if (geo->ecc_chunk_size < mtd->oobsize) { 290 dev_err(this->dev, 291 "unsupported nand chip. ecc size: %d, oob size : %d\n", 292 ecc_step, mtd->oobsize); 293 return -EINVAL; 294 } 295 296 /* The default value, see comment in the legacy_set_geometry(). */ 297 geo->metadata_size = 10; 298 299 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 300 301 /* 302 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: 303 * 304 * | P | 305 * |<----------------------------------------------------->| 306 * | | 307 * | (Block Mark) | 308 * | P' | | | | 309 * |<-------------------------------------------->| D | | O' | 310 * | |<---->| |<--->| 311 * V V V V V 312 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 313 * | M | data |E| data |E| data |E| data |E| | 314 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 315 * ^ ^ 316 * | O | 317 * |<------------>| 318 * | | 319 * 320 * P : the page size for BCH module. 321 * E : The ECC strength. 322 * G : the length of Galois Field. 323 * N : The chunk count of per page. 324 * M : the metasize of per page. 325 * C : the ecc chunk size, aka the "data" above. 326 * P': the nand chip's page size. 327 * O : the nand chip's oob size. 328 * O': the free oob. 329 * 330 * The formula for P is : 331 * 332 * E * G * N 333 * P = ------------ + P' + M 334 * 8 335 * 336 * The position of block mark moves forward in the ECC-based view 337 * of page, and the delta is: 338 * 339 * E * G * (N - 1) 340 * D = (---------------- + M) 341 * 8 342 * 343 * Please see the comment in legacy_set_geometry(). 344 * With the condition C >= O , we still can get same result. 345 * So the bit position of the physical block mark within the ECC-based 346 * view of the page is : 347 * (P' - D) * 8 348 */ 349 geo->page_size = mtd->writesize + geo->metadata_size + 350 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 351 352 geo->payload_size = mtd->writesize; 353 354 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); 355 geo->auxiliary_size = ALIGN(geo->metadata_size, 4) 356 + ALIGN(geo->ecc_chunk_count, 4); 357 358 if (!this->swap_block_mark) 359 return 0; 360 361 /* For bit swap. */ 362 block_mark_bit_offset = mtd->writesize * 8 - 363 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 364 + geo->metadata_size * 8); 365 366 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 367 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 368 return 0; 369 } 370 371 /* 372 * Calculate the ECC strength by hand: 373 * E : The ECC strength. 374 * G : the length of Galois Field. 375 * N : The chunk count of per page. 376 * O : the oobsize of the NAND chip. 377 * M : the metasize of per page. 378 * 379 * The formula is : 380 * E * G * N 381 * ------------ <= (O - M) 382 * 8 383 * 384 * So, we get E by: 385 * (O - M) * 8 386 * E <= ------------- 387 * G * N 388 */ 389 static inline int get_ecc_strength(struct gpmi_nand_data *this) 390 { 391 struct bch_geometry *geo = &this->bch_geometry; 392 struct mtd_info *mtd = nand_to_mtd(&this->nand); 393 int ecc_strength; 394 395 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) 396 / (geo->gf_len * geo->ecc_chunk_count); 397 398 /* We need the minor even number. */ 399 return round_down(ecc_strength, 2); 400 } 401 402 static int legacy_set_geometry(struct gpmi_nand_data *this) 403 { 404 struct bch_geometry *geo = &this->bch_geometry; 405 struct mtd_info *mtd = nand_to_mtd(&this->nand); 406 unsigned int metadata_size; 407 unsigned int status_size; 408 unsigned int block_mark_bit_offset; 409 410 /* 411 * The size of the metadata can be changed, though we set it to 10 412 * bytes now. But it can't be too large, because we have to save 413 * enough space for BCH. 414 */ 415 geo->metadata_size = 10; 416 417 /* The default for the length of Galois Field. */ 418 geo->gf_len = 13; 419 420 /* The default for chunk size. */ 421 geo->ecc_chunk_size = 512; 422 while (geo->ecc_chunk_size < mtd->oobsize) { 423 geo->ecc_chunk_size *= 2; /* keep C >= O */ 424 geo->gf_len = 14; 425 } 426 427 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 428 429 /* We use the same ECC strength for all chunks. */ 430 geo->ecc_strength = get_ecc_strength(this); 431 if (!gpmi_check_ecc(this)) { 432 dev_err(this->dev, 433 "ecc strength: %d cannot be supported by the controller (%d)\n" 434 "try to use minimum ecc strength that NAND chip required\n", 435 geo->ecc_strength, 436 this->devdata->bch_max_ecc_strength); 437 return -EINVAL; 438 } 439 440 geo->page_size = mtd->writesize + geo->metadata_size + 441 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 442 geo->payload_size = mtd->writesize; 443 444 /* 445 * The auxiliary buffer contains the metadata and the ECC status. The 446 * metadata is padded to the nearest 32-bit boundary. The ECC status 447 * contains one byte for every ECC chunk, and is also padded to the 448 * nearest 32-bit boundary. 449 */ 450 metadata_size = ALIGN(geo->metadata_size, 4); 451 status_size = ALIGN(geo->ecc_chunk_count, 4); 452 453 geo->auxiliary_size = metadata_size + status_size; 454 geo->auxiliary_status_offset = metadata_size; 455 456 if (!this->swap_block_mark) 457 return 0; 458 459 /* 460 * We need to compute the byte and bit offsets of 461 * the physical block mark within the ECC-based view of the page. 462 * 463 * NAND chip with 2K page shows below: 464 * (Block Mark) 465 * | | 466 * | D | 467 * |<---->| 468 * V V 469 * +---+----------+-+----------+-+----------+-+----------+-+ 470 * | M | data |E| data |E| data |E| data |E| 471 * +---+----------+-+----------+-+----------+-+----------+-+ 472 * 473 * The position of block mark moves forward in the ECC-based view 474 * of page, and the delta is: 475 * 476 * E * G * (N - 1) 477 * D = (---------------- + M) 478 * 8 479 * 480 * With the formula to compute the ECC strength, and the condition 481 * : C >= O (C is the ecc chunk size) 482 * 483 * It's easy to deduce to the following result: 484 * 485 * E * G (O - M) C - M C - M 486 * ----------- <= ------- <= -------- < --------- 487 * 8 N N (N - 1) 488 * 489 * So, we get: 490 * 491 * E * G * (N - 1) 492 * D = (---------------- + M) < C 493 * 8 494 * 495 * The above inequality means the position of block mark 496 * within the ECC-based view of the page is still in the data chunk, 497 * and it's NOT in the ECC bits of the chunk. 498 * 499 * Use the following to compute the bit position of the 500 * physical block mark within the ECC-based view of the page: 501 * (page_size - D) * 8 502 * 503 * --Huang Shijie 504 */ 505 block_mark_bit_offset = mtd->writesize * 8 - 506 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 507 + geo->metadata_size * 8); 508 509 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 510 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 511 return 0; 512 } 513 514 static int common_nfc_set_geometry(struct gpmi_nand_data *this) 515 { 516 struct nand_chip *chip = &this->nand; 517 const struct nand_ecc_props *requirements = 518 nanddev_get_ecc_requirements(&chip->base); 519 520 if (chip->ecc.strength > 0 && chip->ecc.size > 0) 521 return set_geometry_by_ecc_info(this, chip->ecc.strength, 522 chip->ecc.size); 523 524 if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) 525 || legacy_set_geometry(this)) { 526 if (!(requirements->strength > 0 && requirements->step_size > 0)) 527 return -EINVAL; 528 529 return set_geometry_by_ecc_info(this, 530 requirements->strength, 531 requirements->step_size); 532 } 533 534 return 0; 535 } 536 537 /* Configures the geometry for BCH. */ 538 static int bch_set_geometry(struct gpmi_nand_data *this) 539 { 540 struct resources *r = &this->resources; 541 int ret; 542 543 ret = common_nfc_set_geometry(this); 544 if (ret) 545 return ret; 546 547 ret = pm_runtime_get_sync(this->dev); 548 if (ret < 0) { 549 pm_runtime_put_autosuspend(this->dev); 550 return ret; 551 } 552 553 /* 554 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this 555 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. 556 * and MX28. 557 */ 558 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 559 if (ret) 560 goto err_out; 561 562 /* Set *all* chip selects to use layout 0. */ 563 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); 564 565 ret = 0; 566 err_out: 567 pm_runtime_mark_last_busy(this->dev); 568 pm_runtime_put_autosuspend(this->dev); 569 570 return ret; 571 } 572 573 /* 574 * <1> Firstly, we should know what's the GPMI-clock means. 575 * The GPMI-clock is the internal clock in the gpmi nand controller. 576 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period 577 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. 578 * 579 * <2> Secondly, we should know what's the frequency on the nand chip pins. 580 * The frequency on the nand chip pins is derived from the GPMI-clock. 581 * We can get it from the following equation: 582 * 583 * F = G / (DS + DH) 584 * 585 * F : the frequency on the nand chip pins. 586 * G : the GPMI clock, such as 100MHz. 587 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP 588 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD 589 * 590 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, 591 * the nand EDO(extended Data Out) timing could be applied. 592 * The GPMI implements a feedback read strobe to sample the read data. 593 * The feedback read strobe can be delayed to support the nand EDO timing 594 * where the read strobe may deasserts before the read data is valid, and 595 * read data is valid for some time after read strobe. 596 * 597 * The following figure illustrates some aspects of a NAND Flash read: 598 * 599 * |<---tREA---->| 600 * | | 601 * | | | 602 * |<--tRP-->| | 603 * | | | 604 * __ ___|__________________________________ 605 * RDN \________/ | 606 * | 607 * /---------\ 608 * Read Data --------------< >--------- 609 * \---------/ 610 * | | 611 * |<-D->| 612 * FeedbackRDN ________ ____________ 613 * \___________/ 614 * 615 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. 616 * 617 * 618 * <4> Now, we begin to describe how to compute the right RDN_DELAY. 619 * 620 * 4.1) From the aspect of the nand chip pins: 621 * Delay = (tREA + C - tRP) {1} 622 * 623 * tREA : the maximum read access time. 624 * C : a constant to adjust the delay. default is 4000ps. 625 * tRP : the read pulse width, which is exactly: 626 * tRP = (GPMI-clock-period) * DATA_SETUP 627 * 628 * 4.2) From the aspect of the GPMI nand controller: 629 * Delay = RDN_DELAY * 0.125 * RP {2} 630 * 631 * RP : the DLL reference period. 632 * if (GPMI-clock-period > DLL_THRETHOLD) 633 * RP = GPMI-clock-period / 2; 634 * else 635 * RP = GPMI-clock-period; 636 * 637 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period 638 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD 639 * is 16000ps, but in mx6q, we use 12000ps. 640 * 641 * 4.3) since {1} equals {2}, we get: 642 * 643 * (tREA + 4000 - tRP) * 8 644 * RDN_DELAY = ----------------------- {3} 645 * RP 646 */ 647 static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this, 648 const struct nand_sdr_timings *sdr) 649 { 650 struct gpmi_nfc_hardware_timing *hw = &this->hw; 651 struct resources *r = &this->resources; 652 unsigned int dll_threshold_ps = this->devdata->max_chain_delay; 653 unsigned int period_ps, reference_period_ps; 654 unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; 655 unsigned int tRP_ps; 656 bool use_half_period; 657 int sample_delay_ps, sample_delay_factor; 658 u16 busy_timeout_cycles; 659 u8 wrn_dly_sel; 660 unsigned long clk_rate, min_rate; 661 662 if (sdr->tRC_min >= 30000) { 663 /* ONFI non-EDO modes [0-3] */ 664 hw->clk_rate = 22000000; 665 min_rate = 0; 666 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; 667 } else if (sdr->tRC_min >= 25000) { 668 /* ONFI EDO mode 4 */ 669 hw->clk_rate = 80000000; 670 min_rate = 22000000; 671 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 672 } else { 673 /* ONFI EDO mode 5 */ 674 hw->clk_rate = 100000000; 675 min_rate = 80000000; 676 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 677 } 678 679 clk_rate = clk_round_rate(r->clock[0], hw->clk_rate); 680 if (clk_rate <= min_rate) { 681 dev_err(this->dev, "clock setting: expected %ld, got %ld\n", 682 hw->clk_rate, clk_rate); 683 return -ENOTSUPP; 684 } 685 686 hw->clk_rate = clk_rate; 687 /* SDR core timings are given in picoseconds */ 688 period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); 689 690 addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); 691 data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); 692 data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); 693 busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); 694 695 hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | 696 BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | 697 BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); 698 hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096); 699 700 /* 701 * Derive NFC ideal delay from {3}: 702 * 703 * (tREA + 4000 - tRP) * 8 704 * RDN_DELAY = ----------------------- 705 * RP 706 */ 707 if (period_ps > dll_threshold_ps) { 708 use_half_period = true; 709 reference_period_ps = period_ps / 2; 710 } else { 711 use_half_period = false; 712 reference_period_ps = period_ps; 713 } 714 715 tRP_ps = data_setup_cycles * period_ps; 716 sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; 717 if (sample_delay_ps > 0) 718 sample_delay_factor = sample_delay_ps / reference_period_ps; 719 else 720 sample_delay_factor = 0; 721 722 hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); 723 if (sample_delay_factor) 724 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | 725 BM_GPMI_CTRL1_DLL_ENABLE | 726 (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); 727 return 0; 728 } 729 730 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this) 731 { 732 struct gpmi_nfc_hardware_timing *hw = &this->hw; 733 struct resources *r = &this->resources; 734 void __iomem *gpmi_regs = r->gpmi_regs; 735 unsigned int dll_wait_time_us; 736 int ret; 737 738 /* Clock dividers do NOT guarantee a clean clock signal on its output 739 * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8, 740 * all clock dividers provide these guarantee. 741 */ 742 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) 743 clk_disable_unprepare(r->clock[0]); 744 745 ret = clk_set_rate(r->clock[0], hw->clk_rate); 746 if (ret) { 747 dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret); 748 return ret; 749 } 750 751 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) { 752 ret = clk_prepare_enable(r->clock[0]); 753 if (ret) 754 return ret; 755 } 756 757 writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); 758 writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); 759 760 /* 761 * Clear several CTRL1 fields, DLL must be disabled when setting 762 * RDN_DELAY or HALF_PERIOD. 763 */ 764 writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); 765 writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); 766 767 /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ 768 dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; 769 if (!dll_wait_time_us) 770 dll_wait_time_us = 1; 771 772 /* Wait for the DLL to settle. */ 773 udelay(dll_wait_time_us); 774 775 return 0; 776 } 777 778 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr, 779 const struct nand_interface_config *conf) 780 { 781 struct gpmi_nand_data *this = nand_get_controller_data(chip); 782 const struct nand_sdr_timings *sdr; 783 int ret; 784 785 /* Retrieve required NAND timings */ 786 sdr = nand_get_sdr_timings(conf); 787 if (IS_ERR(sdr)) 788 return PTR_ERR(sdr); 789 790 /* Only MX28/MX6 GPMI controller can reach EDO timings */ 791 if (sdr->tRC_min <= 25000 && !GPMI_IS_MX28(this) && !GPMI_IS_MX6(this)) 792 return -ENOTSUPP; 793 794 /* Stop here if this call was just a check */ 795 if (chipnr < 0) 796 return 0; 797 798 /* Do the actual derivation of the controller timings */ 799 ret = gpmi_nfc_compute_timings(this, sdr); 800 if (ret) 801 return ret; 802 803 this->hw.must_apply_timings = true; 804 805 return 0; 806 } 807 808 /* Clears a BCH interrupt. */ 809 static void gpmi_clear_bch(struct gpmi_nand_data *this) 810 { 811 struct resources *r = &this->resources; 812 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); 813 } 814 815 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) 816 { 817 /* We use the DMA channel 0 to access all the nand chips. */ 818 return this->dma_chans[0]; 819 } 820 821 /* This will be called after the DMA operation is finished. */ 822 static void dma_irq_callback(void *param) 823 { 824 struct gpmi_nand_data *this = param; 825 struct completion *dma_c = &this->dma_done; 826 827 complete(dma_c); 828 } 829 830 static irqreturn_t bch_irq(int irq, void *cookie) 831 { 832 struct gpmi_nand_data *this = cookie; 833 834 gpmi_clear_bch(this); 835 complete(&this->bch_done); 836 return IRQ_HANDLED; 837 } 838 839 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len) 840 { 841 /* 842 * raw_len is the length to read/write including bch data which 843 * we are passed in exec_op. Calculate the data length from it. 844 */ 845 if (this->bch) 846 return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size); 847 else 848 return raw_len; 849 } 850 851 /* Can we use the upper's buffer directly for DMA? */ 852 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, 853 int raw_len, struct scatterlist *sgl, 854 enum dma_data_direction dr) 855 { 856 int ret; 857 int len = gpmi_raw_len_to_len(this, raw_len); 858 859 /* first try to map the upper buffer directly */ 860 if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { 861 sg_init_one(sgl, buf, len); 862 ret = dma_map_sg(this->dev, sgl, 1, dr); 863 if (ret == 0) 864 goto map_fail; 865 866 return true; 867 } 868 869 map_fail: 870 /* We have to use our own DMA buffer. */ 871 sg_init_one(sgl, this->data_buffer_dma, len); 872 873 if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma) 874 memcpy(this->data_buffer_dma, buf, len); 875 876 dma_map_sg(this->dev, sgl, 1, dr); 877 878 return false; 879 } 880 881 /* add our owner bbt descriptor */ 882 static uint8_t scan_ff_pattern[] = { 0xff }; 883 static struct nand_bbt_descr gpmi_bbt_descr = { 884 .options = 0, 885 .offs = 0, 886 .len = 1, 887 .pattern = scan_ff_pattern 888 }; 889 890 /* 891 * We may change the layout if we can get the ECC info from the datasheet, 892 * else we will use all the (page + OOB). 893 */ 894 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, 895 struct mtd_oob_region *oobregion) 896 { 897 struct nand_chip *chip = mtd_to_nand(mtd); 898 struct gpmi_nand_data *this = nand_get_controller_data(chip); 899 struct bch_geometry *geo = &this->bch_geometry; 900 901 if (section) 902 return -ERANGE; 903 904 oobregion->offset = 0; 905 oobregion->length = geo->page_size - mtd->writesize; 906 907 return 0; 908 } 909 910 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, 911 struct mtd_oob_region *oobregion) 912 { 913 struct nand_chip *chip = mtd_to_nand(mtd); 914 struct gpmi_nand_data *this = nand_get_controller_data(chip); 915 struct bch_geometry *geo = &this->bch_geometry; 916 917 if (section) 918 return -ERANGE; 919 920 /* The available oob size we have. */ 921 if (geo->page_size < mtd->writesize + mtd->oobsize) { 922 oobregion->offset = geo->page_size - mtd->writesize; 923 oobregion->length = mtd->oobsize - oobregion->offset; 924 } 925 926 return 0; 927 } 928 929 static const char * const gpmi_clks_for_mx2x[] = { 930 "gpmi_io", 931 }; 932 933 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { 934 .ecc = gpmi_ooblayout_ecc, 935 .free = gpmi_ooblayout_free, 936 }; 937 938 static const struct gpmi_devdata gpmi_devdata_imx23 = { 939 .type = IS_MX23, 940 .bch_max_ecc_strength = 20, 941 .max_chain_delay = 16000, 942 .clks = gpmi_clks_for_mx2x, 943 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 944 }; 945 946 static const struct gpmi_devdata gpmi_devdata_imx28 = { 947 .type = IS_MX28, 948 .bch_max_ecc_strength = 20, 949 .max_chain_delay = 16000, 950 .clks = gpmi_clks_for_mx2x, 951 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 952 }; 953 954 static const char * const gpmi_clks_for_mx6[] = { 955 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", 956 }; 957 958 static const struct gpmi_devdata gpmi_devdata_imx6q = { 959 .type = IS_MX6Q, 960 .bch_max_ecc_strength = 40, 961 .max_chain_delay = 12000, 962 .clks = gpmi_clks_for_mx6, 963 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 964 }; 965 966 static const struct gpmi_devdata gpmi_devdata_imx6sx = { 967 .type = IS_MX6SX, 968 .bch_max_ecc_strength = 62, 969 .max_chain_delay = 12000, 970 .clks = gpmi_clks_for_mx6, 971 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 972 }; 973 974 static const char * const gpmi_clks_for_mx7d[] = { 975 "gpmi_io", "gpmi_bch_apb", 976 }; 977 978 static const struct gpmi_devdata gpmi_devdata_imx7d = { 979 .type = IS_MX7D, 980 .bch_max_ecc_strength = 62, 981 .max_chain_delay = 12000, 982 .clks = gpmi_clks_for_mx7d, 983 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), 984 }; 985 986 static int acquire_register_block(struct gpmi_nand_data *this, 987 const char *res_name) 988 { 989 struct platform_device *pdev = this->pdev; 990 struct resources *res = &this->resources; 991 void __iomem *p; 992 993 p = devm_platform_ioremap_resource_byname(pdev, res_name); 994 if (IS_ERR(p)) 995 return PTR_ERR(p); 996 997 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) 998 res->gpmi_regs = p; 999 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) 1000 res->bch_regs = p; 1001 else 1002 dev_err(this->dev, "unknown resource name : %s\n", res_name); 1003 1004 return 0; 1005 } 1006 1007 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) 1008 { 1009 struct platform_device *pdev = this->pdev; 1010 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; 1011 int err; 1012 1013 err = platform_get_irq_byname(pdev, res_name); 1014 if (err < 0) 1015 return err; 1016 1017 err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this); 1018 if (err) 1019 dev_err(this->dev, "error requesting BCH IRQ\n"); 1020 1021 return err; 1022 } 1023 1024 static void release_dma_channels(struct gpmi_nand_data *this) 1025 { 1026 unsigned int i; 1027 for (i = 0; i < DMA_CHANS; i++) 1028 if (this->dma_chans[i]) { 1029 dma_release_channel(this->dma_chans[i]); 1030 this->dma_chans[i] = NULL; 1031 } 1032 } 1033 1034 static int acquire_dma_channels(struct gpmi_nand_data *this) 1035 { 1036 struct platform_device *pdev = this->pdev; 1037 struct dma_chan *dma_chan; 1038 int ret = 0; 1039 1040 /* request dma channel */ 1041 dma_chan = dma_request_chan(&pdev->dev, "rx-tx"); 1042 if (IS_ERR(dma_chan)) { 1043 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan), 1044 "DMA channel request failed\n"); 1045 release_dma_channels(this); 1046 } else { 1047 this->dma_chans[0] = dma_chan; 1048 } 1049 1050 return ret; 1051 } 1052 1053 static int gpmi_get_clks(struct gpmi_nand_data *this) 1054 { 1055 struct resources *r = &this->resources; 1056 struct clk *clk; 1057 int err, i; 1058 1059 for (i = 0; i < this->devdata->clks_count; i++) { 1060 clk = devm_clk_get(this->dev, this->devdata->clks[i]); 1061 if (IS_ERR(clk)) { 1062 err = PTR_ERR(clk); 1063 goto err_clock; 1064 } 1065 1066 r->clock[i] = clk; 1067 } 1068 1069 return 0; 1070 1071 err_clock: 1072 dev_dbg(this->dev, "failed in finding the clocks.\n"); 1073 return err; 1074 } 1075 1076 static int acquire_resources(struct gpmi_nand_data *this) 1077 { 1078 int ret; 1079 1080 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); 1081 if (ret) 1082 goto exit_regs; 1083 1084 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); 1085 if (ret) 1086 goto exit_regs; 1087 1088 ret = acquire_bch_irq(this, bch_irq); 1089 if (ret) 1090 goto exit_regs; 1091 1092 ret = acquire_dma_channels(this); 1093 if (ret) 1094 goto exit_regs; 1095 1096 ret = gpmi_get_clks(this); 1097 if (ret) 1098 goto exit_clock; 1099 return 0; 1100 1101 exit_clock: 1102 release_dma_channels(this); 1103 exit_regs: 1104 return ret; 1105 } 1106 1107 static void release_resources(struct gpmi_nand_data *this) 1108 { 1109 release_dma_channels(this); 1110 } 1111 1112 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) 1113 { 1114 struct device *dev = this->dev; 1115 struct bch_geometry *geo = &this->bch_geometry; 1116 1117 if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt)) 1118 dma_free_coherent(dev, geo->auxiliary_size, 1119 this->auxiliary_virt, 1120 this->auxiliary_phys); 1121 kfree(this->data_buffer_dma); 1122 kfree(this->raw_buffer); 1123 1124 this->data_buffer_dma = NULL; 1125 this->raw_buffer = NULL; 1126 } 1127 1128 /* Allocate the DMA buffers */ 1129 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) 1130 { 1131 struct bch_geometry *geo = &this->bch_geometry; 1132 struct device *dev = this->dev; 1133 struct mtd_info *mtd = nand_to_mtd(&this->nand); 1134 1135 /* 1136 * [2] Allocate a read/write data buffer. 1137 * The gpmi_alloc_dma_buffer can be called twice. 1138 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer 1139 * is called before the NAND identification; and we allocate a 1140 * buffer of the real NAND page size when the gpmi_alloc_dma_buffer 1141 * is called after. 1142 */ 1143 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, 1144 GFP_DMA | GFP_KERNEL); 1145 if (this->data_buffer_dma == NULL) 1146 goto error_alloc; 1147 1148 this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size, 1149 &this->auxiliary_phys, GFP_DMA); 1150 if (!this->auxiliary_virt) 1151 goto error_alloc; 1152 1153 this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL); 1154 if (!this->raw_buffer) 1155 goto error_alloc; 1156 1157 return 0; 1158 1159 error_alloc: 1160 gpmi_free_dma_buffer(this); 1161 return -ENOMEM; 1162 } 1163 1164 /* 1165 * Handles block mark swapping. 1166 * It can be called in swapping the block mark, or swapping it back, 1167 * because the the operations are the same. 1168 */ 1169 static void block_mark_swapping(struct gpmi_nand_data *this, 1170 void *payload, void *auxiliary) 1171 { 1172 struct bch_geometry *nfc_geo = &this->bch_geometry; 1173 unsigned char *p; 1174 unsigned char *a; 1175 unsigned int bit; 1176 unsigned char mask; 1177 unsigned char from_data; 1178 unsigned char from_oob; 1179 1180 if (!this->swap_block_mark) 1181 return; 1182 1183 /* 1184 * If control arrives here, we're swapping. Make some convenience 1185 * variables. 1186 */ 1187 bit = nfc_geo->block_mark_bit_offset; 1188 p = payload + nfc_geo->block_mark_byte_offset; 1189 a = auxiliary; 1190 1191 /* 1192 * Get the byte from the data area that overlays the block mark. Since 1193 * the ECC engine applies its own view to the bits in the page, the 1194 * physical block mark won't (in general) appear on a byte boundary in 1195 * the data. 1196 */ 1197 from_data = (p[0] >> bit) | (p[1] << (8 - bit)); 1198 1199 /* Get the byte from the OOB. */ 1200 from_oob = a[0]; 1201 1202 /* Swap them. */ 1203 a[0] = from_data; 1204 1205 mask = (0x1 << bit) - 1; 1206 p[0] = (p[0] & mask) | (from_oob << bit); 1207 1208 mask = ~0 << bit; 1209 p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); 1210 } 1211 1212 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first, 1213 int last, int meta) 1214 { 1215 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1216 struct bch_geometry *nfc_geo = &this->bch_geometry; 1217 struct mtd_info *mtd = nand_to_mtd(chip); 1218 int i; 1219 unsigned char *status; 1220 unsigned int max_bitflips = 0; 1221 1222 /* Loop over status bytes, accumulating ECC status. */ 1223 status = this->auxiliary_virt + ALIGN(meta, 4); 1224 1225 for (i = first; i < last; i++, status++) { 1226 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) 1227 continue; 1228 1229 if (*status == STATUS_UNCORRECTABLE) { 1230 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1231 u8 *eccbuf = this->raw_buffer; 1232 int offset, bitoffset; 1233 int eccbytes; 1234 int flips; 1235 1236 /* Read ECC bytes into our internal raw_buffer */ 1237 offset = nfc_geo->metadata_size * 8; 1238 offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); 1239 offset -= eccbits; 1240 bitoffset = offset % 8; 1241 eccbytes = DIV_ROUND_UP(offset + eccbits, 8); 1242 offset /= 8; 1243 eccbytes -= offset; 1244 nand_change_read_column_op(chip, offset, eccbuf, 1245 eccbytes, false); 1246 1247 /* 1248 * ECC data are not byte aligned and we may have 1249 * in-band data in the first and last byte of 1250 * eccbuf. Set non-eccbits to one so that 1251 * nand_check_erased_ecc_chunk() does not count them 1252 * as bitflips. 1253 */ 1254 if (bitoffset) 1255 eccbuf[0] |= GENMASK(bitoffset - 1, 0); 1256 1257 bitoffset = (bitoffset + eccbits) % 8; 1258 if (bitoffset) 1259 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); 1260 1261 /* 1262 * The ECC hardware has an uncorrectable ECC status 1263 * code in case we have bitflips in an erased page. As 1264 * nothing was written into this subpage the ECC is 1265 * obviously wrong and we can not trust it. We assume 1266 * at this point that we are reading an erased page and 1267 * try to correct the bitflips in buffer up to 1268 * ecc_strength bitflips. If this is a page with random 1269 * data, we exceed this number of bitflips and have a 1270 * ECC failure. Otherwise we use the corrected buffer. 1271 */ 1272 if (i == 0) { 1273 /* The first block includes metadata */ 1274 flips = nand_check_erased_ecc_chunk( 1275 buf + i * nfc_geo->ecc_chunk_size, 1276 nfc_geo->ecc_chunk_size, 1277 eccbuf, eccbytes, 1278 this->auxiliary_virt, 1279 nfc_geo->metadata_size, 1280 nfc_geo->ecc_strength); 1281 } else { 1282 flips = nand_check_erased_ecc_chunk( 1283 buf + i * nfc_geo->ecc_chunk_size, 1284 nfc_geo->ecc_chunk_size, 1285 eccbuf, eccbytes, 1286 NULL, 0, 1287 nfc_geo->ecc_strength); 1288 } 1289 1290 if (flips > 0) { 1291 max_bitflips = max_t(unsigned int, max_bitflips, 1292 flips); 1293 mtd->ecc_stats.corrected += flips; 1294 continue; 1295 } 1296 1297 mtd->ecc_stats.failed++; 1298 continue; 1299 } 1300 1301 mtd->ecc_stats.corrected += *status; 1302 max_bitflips = max_t(unsigned int, max_bitflips, *status); 1303 } 1304 1305 return max_bitflips; 1306 } 1307 1308 static void gpmi_bch_layout_std(struct gpmi_nand_data *this) 1309 { 1310 struct bch_geometry *geo = &this->bch_geometry; 1311 unsigned int ecc_strength = geo->ecc_strength >> 1; 1312 unsigned int gf_len = geo->gf_len; 1313 unsigned int block_size = geo->ecc_chunk_size; 1314 1315 this->bch_flashlayout0 = 1316 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) | 1317 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) | 1318 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1319 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) | 1320 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this); 1321 1322 this->bch_flashlayout1 = 1323 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) | 1324 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1325 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) | 1326 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this); 1327 } 1328 1329 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, 1330 int oob_required, int page) 1331 { 1332 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1333 struct mtd_info *mtd = nand_to_mtd(chip); 1334 struct bch_geometry *geo = &this->bch_geometry; 1335 unsigned int max_bitflips; 1336 int ret; 1337 1338 gpmi_bch_layout_std(this); 1339 this->bch = true; 1340 1341 ret = nand_read_page_op(chip, page, 0, buf, geo->page_size); 1342 if (ret) 1343 return ret; 1344 1345 max_bitflips = gpmi_count_bitflips(chip, buf, 0, 1346 geo->ecc_chunk_count, 1347 geo->auxiliary_status_offset); 1348 1349 /* handle the block mark swapping */ 1350 block_mark_swapping(this, buf, this->auxiliary_virt); 1351 1352 if (oob_required) { 1353 /* 1354 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() 1355 * for details about our policy for delivering the OOB. 1356 * 1357 * We fill the caller's buffer with set bits, and then copy the 1358 * block mark to th caller's buffer. Note that, if block mark 1359 * swapping was necessary, it has already been done, so we can 1360 * rely on the first byte of the auxiliary buffer to contain 1361 * the block mark. 1362 */ 1363 memset(chip->oob_poi, ~0, mtd->oobsize); 1364 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; 1365 } 1366 1367 return max_bitflips; 1368 } 1369 1370 /* Fake a virtual small page for the subpage read */ 1371 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, 1372 uint32_t len, uint8_t *buf, int page) 1373 { 1374 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1375 struct bch_geometry *geo = &this->bch_geometry; 1376 int size = chip->ecc.size; /* ECC chunk size */ 1377 int meta, n, page_size; 1378 unsigned int max_bitflips; 1379 unsigned int ecc_strength; 1380 int first, last, marker_pos; 1381 int ecc_parity_size; 1382 int col = 0; 1383 int ret; 1384 1385 /* The size of ECC parity */ 1386 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1387 1388 /* Align it with the chunk size */ 1389 first = offs / size; 1390 last = (offs + len - 1) / size; 1391 1392 if (this->swap_block_mark) { 1393 /* 1394 * Find the chunk which contains the Block Marker. 1395 * If this chunk is in the range of [first, last], 1396 * we have to read out the whole page. 1397 * Why? since we had swapped the data at the position of Block 1398 * Marker to the metadata which is bound with the chunk 0. 1399 */ 1400 marker_pos = geo->block_mark_byte_offset / size; 1401 if (last >= marker_pos && first <= marker_pos) { 1402 dev_dbg(this->dev, 1403 "page:%d, first:%d, last:%d, marker at:%d\n", 1404 page, first, last, marker_pos); 1405 return gpmi_ecc_read_page(chip, buf, 0, page); 1406 } 1407 } 1408 1409 meta = geo->metadata_size; 1410 if (first) { 1411 col = meta + (size + ecc_parity_size) * first; 1412 meta = 0; 1413 buf = buf + first * size; 1414 } 1415 1416 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1417 1418 n = last - first + 1; 1419 page_size = meta + (size + ecc_parity_size) * n; 1420 ecc_strength = geo->ecc_strength >> 1; 1421 1422 this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) | 1423 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) | 1424 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1425 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) | 1426 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this); 1427 1428 this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | 1429 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1430 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) | 1431 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this); 1432 1433 this->bch = true; 1434 1435 ret = nand_read_page_op(chip, page, col, buf, page_size); 1436 if (ret) 1437 return ret; 1438 1439 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", 1440 page, offs, len, col, first, n, page_size); 1441 1442 max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta); 1443 1444 return max_bitflips; 1445 } 1446 1447 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, 1448 int oob_required, int page) 1449 { 1450 struct mtd_info *mtd = nand_to_mtd(chip); 1451 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1452 struct bch_geometry *nfc_geo = &this->bch_geometry; 1453 1454 dev_dbg(this->dev, "ecc write page.\n"); 1455 1456 gpmi_bch_layout_std(this); 1457 this->bch = true; 1458 1459 memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size); 1460 1461 if (this->swap_block_mark) { 1462 /* 1463 * When doing bad block marker swapping we must always copy the 1464 * input buffer as we can't modify the const buffer. 1465 */ 1466 memcpy(this->data_buffer_dma, buf, mtd->writesize); 1467 buf = this->data_buffer_dma; 1468 block_mark_swapping(this, this->data_buffer_dma, 1469 this->auxiliary_virt); 1470 } 1471 1472 return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size); 1473 } 1474 1475 /* 1476 * There are several places in this driver where we have to handle the OOB and 1477 * block marks. This is the function where things are the most complicated, so 1478 * this is where we try to explain it all. All the other places refer back to 1479 * here. 1480 * 1481 * These are the rules, in order of decreasing importance: 1482 * 1483 * 1) Nothing the caller does can be allowed to imperil the block mark. 1484 * 1485 * 2) In read operations, the first byte of the OOB we return must reflect the 1486 * true state of the block mark, no matter where that block mark appears in 1487 * the physical page. 1488 * 1489 * 3) ECC-based read operations return an OOB full of set bits (since we never 1490 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads 1491 * return). 1492 * 1493 * 4) "Raw" read operations return a direct view of the physical bytes in the 1494 * page, using the conventional definition of which bytes are data and which 1495 * are OOB. This gives the caller a way to see the actual, physical bytes 1496 * in the page, without the distortions applied by our ECC engine. 1497 * 1498 * 1499 * What we do for this specific read operation depends on two questions: 1500 * 1501 * 1) Are we doing a "raw" read, or an ECC-based read? 1502 * 1503 * 2) Are we using block mark swapping or transcription? 1504 * 1505 * There are four cases, illustrated by the following Karnaugh map: 1506 * 1507 * | Raw | ECC-based | 1508 * -------------+-------------------------+-------------------------+ 1509 * | Read the conventional | | 1510 * | OOB at the end of the | | 1511 * Swapping | page and return it. It | | 1512 * | contains exactly what | | 1513 * | we want. | Read the block mark and | 1514 * -------------+-------------------------+ return it in a buffer | 1515 * | Read the conventional | full of set bits. | 1516 * | OOB at the end of the | | 1517 * | page and also the block | | 1518 * Transcribing | mark in the metadata. | | 1519 * | Copy the block mark | | 1520 * | into the first byte of | | 1521 * | the OOB. | | 1522 * -------------+-------------------------+-------------------------+ 1523 * 1524 * Note that we break rule #4 in the Transcribing/Raw case because we're not 1525 * giving an accurate view of the actual, physical bytes in the page (we're 1526 * overwriting the block mark). That's OK because it's more important to follow 1527 * rule #2. 1528 * 1529 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not 1530 * easy. When reading a page, for example, the NAND Flash MTD code calls our 1531 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an 1532 * ECC-based or raw view of the page is implicit in which function it calls 1533 * (there is a similar pair of ECC-based/raw functions for writing). 1534 */ 1535 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) 1536 { 1537 struct mtd_info *mtd = nand_to_mtd(chip); 1538 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1539 int ret; 1540 1541 /* clear the OOB buffer */ 1542 memset(chip->oob_poi, ~0, mtd->oobsize); 1543 1544 /* Read out the conventional OOB. */ 1545 ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi, 1546 mtd->oobsize); 1547 if (ret) 1548 return ret; 1549 1550 /* 1551 * Now, we want to make sure the block mark is correct. In the 1552 * non-transcribing case (!GPMI_IS_MX23()), we already have it. 1553 * Otherwise, we need to explicitly read it. 1554 */ 1555 if (GPMI_IS_MX23(this)) { 1556 /* Read the block mark into the first byte of the OOB buffer. */ 1557 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1); 1558 if (ret) 1559 return ret; 1560 } 1561 1562 return 0; 1563 } 1564 1565 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) 1566 { 1567 struct mtd_info *mtd = nand_to_mtd(chip); 1568 struct mtd_oob_region of = { }; 1569 1570 /* Do we have available oob area? */ 1571 mtd_ooblayout_free(mtd, 0, &of); 1572 if (!of.length) 1573 return -EPERM; 1574 1575 if (!nand_is_slc(chip)) 1576 return -EPERM; 1577 1578 return nand_prog_page_op(chip, page, mtd->writesize + of.offset, 1579 chip->oob_poi + of.offset, of.length); 1580 } 1581 1582 /* 1583 * This function reads a NAND page without involving the ECC engine (no HW 1584 * ECC correction). 1585 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1586 * inline (interleaved with payload DATA), and do not align data chunk on 1587 * byte boundaries. 1588 * We thus need to take care moving the payload data and ECC bits stored in the 1589 * page into the provided buffers, which is why we're using nand_extract_bits(). 1590 * 1591 * See set_geometry_by_ecc_info inline comments to have a full description 1592 * of the layout used by the GPMI controller. 1593 */ 1594 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1595 int oob_required, int page) 1596 { 1597 struct mtd_info *mtd = nand_to_mtd(chip); 1598 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1599 struct bch_geometry *nfc_geo = &this->bch_geometry; 1600 int eccsize = nfc_geo->ecc_chunk_size; 1601 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1602 u8 *tmp_buf = this->raw_buffer; 1603 size_t src_bit_off; 1604 size_t oob_bit_off; 1605 size_t oob_byte_off; 1606 uint8_t *oob = chip->oob_poi; 1607 int step; 1608 int ret; 1609 1610 ret = nand_read_page_op(chip, page, 0, tmp_buf, 1611 mtd->writesize + mtd->oobsize); 1612 if (ret) 1613 return ret; 1614 1615 /* 1616 * If required, swap the bad block marker and the data stored in the 1617 * metadata section, so that we don't wrongly consider a block as bad. 1618 * 1619 * See the layout description for a detailed explanation on why this 1620 * is needed. 1621 */ 1622 if (this->swap_block_mark) 1623 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1624 1625 /* 1626 * Copy the metadata section into the oob buffer (this section is 1627 * guaranteed to be aligned on a byte boundary). 1628 */ 1629 if (oob_required) 1630 memcpy(oob, tmp_buf, nfc_geo->metadata_size); 1631 1632 oob_bit_off = nfc_geo->metadata_size * 8; 1633 src_bit_off = oob_bit_off; 1634 1635 /* Extract interleaved payload data and ECC bits */ 1636 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1637 if (buf) 1638 nand_extract_bits(buf, step * eccsize * 8, tmp_buf, 1639 src_bit_off, eccsize * 8); 1640 src_bit_off += eccsize * 8; 1641 1642 /* Align last ECC block to align a byte boundary */ 1643 if (step == nfc_geo->ecc_chunk_count - 1 && 1644 (oob_bit_off + eccbits) % 8) 1645 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1646 1647 if (oob_required) 1648 nand_extract_bits(oob, oob_bit_off, tmp_buf, 1649 src_bit_off, eccbits); 1650 1651 src_bit_off += eccbits; 1652 oob_bit_off += eccbits; 1653 } 1654 1655 if (oob_required) { 1656 oob_byte_off = oob_bit_off / 8; 1657 1658 if (oob_byte_off < mtd->oobsize) 1659 memcpy(oob + oob_byte_off, 1660 tmp_buf + mtd->writesize + oob_byte_off, 1661 mtd->oobsize - oob_byte_off); 1662 } 1663 1664 return 0; 1665 } 1666 1667 /* 1668 * This function writes a NAND page without involving the ECC engine (no HW 1669 * ECC generation). 1670 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1671 * inline (interleaved with payload DATA), and do not align data chunk on 1672 * byte boundaries. 1673 * We thus need to take care moving the OOB area at the right place in the 1674 * final page, which is why we're using nand_extract_bits(). 1675 * 1676 * See set_geometry_by_ecc_info inline comments to have a full description 1677 * of the layout used by the GPMI controller. 1678 */ 1679 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1680 int oob_required, int page) 1681 { 1682 struct mtd_info *mtd = nand_to_mtd(chip); 1683 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1684 struct bch_geometry *nfc_geo = &this->bch_geometry; 1685 int eccsize = nfc_geo->ecc_chunk_size; 1686 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1687 u8 *tmp_buf = this->raw_buffer; 1688 uint8_t *oob = chip->oob_poi; 1689 size_t dst_bit_off; 1690 size_t oob_bit_off; 1691 size_t oob_byte_off; 1692 int step; 1693 1694 /* 1695 * Initialize all bits to 1 in case we don't have a buffer for the 1696 * payload or oob data in order to leave unspecified bits of data 1697 * to their initial state. 1698 */ 1699 if (!buf || !oob_required) 1700 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); 1701 1702 /* 1703 * First copy the metadata section (stored in oob buffer) at the 1704 * beginning of the page, as imposed by the GPMI layout. 1705 */ 1706 memcpy(tmp_buf, oob, nfc_geo->metadata_size); 1707 oob_bit_off = nfc_geo->metadata_size * 8; 1708 dst_bit_off = oob_bit_off; 1709 1710 /* Interleave payload data and ECC bits */ 1711 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1712 if (buf) 1713 nand_extract_bits(tmp_buf, dst_bit_off, buf, 1714 step * eccsize * 8, eccsize * 8); 1715 dst_bit_off += eccsize * 8; 1716 1717 /* Align last ECC block to align a byte boundary */ 1718 if (step == nfc_geo->ecc_chunk_count - 1 && 1719 (oob_bit_off + eccbits) % 8) 1720 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1721 1722 if (oob_required) 1723 nand_extract_bits(tmp_buf, dst_bit_off, oob, 1724 oob_bit_off, eccbits); 1725 1726 dst_bit_off += eccbits; 1727 oob_bit_off += eccbits; 1728 } 1729 1730 oob_byte_off = oob_bit_off / 8; 1731 1732 if (oob_required && oob_byte_off < mtd->oobsize) 1733 memcpy(tmp_buf + mtd->writesize + oob_byte_off, 1734 oob + oob_byte_off, mtd->oobsize - oob_byte_off); 1735 1736 /* 1737 * If required, swap the bad block marker and the first byte of the 1738 * metadata section, so that we don't modify the bad block marker. 1739 * 1740 * See the layout description for a detailed explanation on why this 1741 * is needed. 1742 */ 1743 if (this->swap_block_mark) 1744 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1745 1746 return nand_prog_page_op(chip, page, 0, tmp_buf, 1747 mtd->writesize + mtd->oobsize); 1748 } 1749 1750 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) 1751 { 1752 return gpmi_ecc_read_page_raw(chip, NULL, 1, page); 1753 } 1754 1755 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) 1756 { 1757 return gpmi_ecc_write_page_raw(chip, NULL, 1, page); 1758 } 1759 1760 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) 1761 { 1762 struct mtd_info *mtd = nand_to_mtd(chip); 1763 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1764 int ret = 0; 1765 uint8_t *block_mark; 1766 int column, page, chipnr; 1767 1768 chipnr = (int)(ofs >> chip->chip_shift); 1769 nand_select_target(chip, chipnr); 1770 1771 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; 1772 1773 /* Write the block mark. */ 1774 block_mark = this->data_buffer_dma; 1775 block_mark[0] = 0; /* bad block marker */ 1776 1777 /* Shift to get page */ 1778 page = (int)(ofs >> chip->page_shift); 1779 1780 ret = nand_prog_page_op(chip, page, column, block_mark, 1); 1781 1782 nand_deselect_target(chip); 1783 1784 return ret; 1785 } 1786 1787 static int nand_boot_set_geometry(struct gpmi_nand_data *this) 1788 { 1789 struct boot_rom_geometry *geometry = &this->rom_geometry; 1790 1791 /* 1792 * Set the boot block stride size. 1793 * 1794 * In principle, we should be reading this from the OTP bits, since 1795 * that's where the ROM is going to get it. In fact, we don't have any 1796 * way to read the OTP bits, so we go with the default and hope for the 1797 * best. 1798 */ 1799 geometry->stride_size_in_pages = 64; 1800 1801 /* 1802 * Set the search area stride exponent. 1803 * 1804 * In principle, we should be reading this from the OTP bits, since 1805 * that's where the ROM is going to get it. In fact, we don't have any 1806 * way to read the OTP bits, so we go with the default and hope for the 1807 * best. 1808 */ 1809 geometry->search_area_stride_exponent = 2; 1810 return 0; 1811 } 1812 1813 static const char *fingerprint = "STMP"; 1814 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) 1815 { 1816 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1817 struct device *dev = this->dev; 1818 struct nand_chip *chip = &this->nand; 1819 unsigned int search_area_size_in_strides; 1820 unsigned int stride; 1821 unsigned int page; 1822 u8 *buffer = nand_get_data_buf(chip); 1823 int found_an_ncb_fingerprint = false; 1824 int ret; 1825 1826 /* Compute the number of strides in a search area. */ 1827 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1828 1829 nand_select_target(chip, 0); 1830 1831 /* 1832 * Loop through the first search area, looking for the NCB fingerprint. 1833 */ 1834 dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); 1835 1836 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1837 /* Compute the page addresses. */ 1838 page = stride * rom_geo->stride_size_in_pages; 1839 1840 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); 1841 1842 /* 1843 * Read the NCB fingerprint. The fingerprint is four bytes long 1844 * and starts in the 12th byte of the page. 1845 */ 1846 ret = nand_read_page_op(chip, page, 12, buffer, 1847 strlen(fingerprint)); 1848 if (ret) 1849 continue; 1850 1851 /* Look for the fingerprint. */ 1852 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { 1853 found_an_ncb_fingerprint = true; 1854 break; 1855 } 1856 1857 } 1858 1859 nand_deselect_target(chip); 1860 1861 if (found_an_ncb_fingerprint) 1862 dev_dbg(dev, "\tFound a fingerprint\n"); 1863 else 1864 dev_dbg(dev, "\tNo fingerprint found\n"); 1865 return found_an_ncb_fingerprint; 1866 } 1867 1868 /* Writes a transcription stamp. */ 1869 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) 1870 { 1871 struct device *dev = this->dev; 1872 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1873 struct nand_chip *chip = &this->nand; 1874 struct mtd_info *mtd = nand_to_mtd(chip); 1875 unsigned int block_size_in_pages; 1876 unsigned int search_area_size_in_strides; 1877 unsigned int search_area_size_in_pages; 1878 unsigned int search_area_size_in_blocks; 1879 unsigned int block; 1880 unsigned int stride; 1881 unsigned int page; 1882 u8 *buffer = nand_get_data_buf(chip); 1883 int status; 1884 1885 /* Compute the search area geometry. */ 1886 block_size_in_pages = mtd->erasesize / mtd->writesize; 1887 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1888 search_area_size_in_pages = search_area_size_in_strides * 1889 rom_geo->stride_size_in_pages; 1890 search_area_size_in_blocks = 1891 (search_area_size_in_pages + (block_size_in_pages - 1)) / 1892 block_size_in_pages; 1893 1894 dev_dbg(dev, "Search Area Geometry :\n"); 1895 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); 1896 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); 1897 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); 1898 1899 nand_select_target(chip, 0); 1900 1901 /* Loop over blocks in the first search area, erasing them. */ 1902 dev_dbg(dev, "Erasing the search area...\n"); 1903 1904 for (block = 0; block < search_area_size_in_blocks; block++) { 1905 /* Erase this block. */ 1906 dev_dbg(dev, "\tErasing block 0x%x\n", block); 1907 status = nand_erase_op(chip, block); 1908 if (status) 1909 dev_err(dev, "[%s] Erase failed.\n", __func__); 1910 } 1911 1912 /* Write the NCB fingerprint into the page buffer. */ 1913 memset(buffer, ~0, mtd->writesize); 1914 memcpy(buffer + 12, fingerprint, strlen(fingerprint)); 1915 1916 /* Loop through the first search area, writing NCB fingerprints. */ 1917 dev_dbg(dev, "Writing NCB fingerprints...\n"); 1918 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1919 /* Compute the page addresses. */ 1920 page = stride * rom_geo->stride_size_in_pages; 1921 1922 /* Write the first page of the current stride. */ 1923 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); 1924 1925 status = chip->ecc.write_page_raw(chip, buffer, 0, page); 1926 if (status) 1927 dev_err(dev, "[%s] Write failed.\n", __func__); 1928 } 1929 1930 nand_deselect_target(chip); 1931 1932 return 0; 1933 } 1934 1935 static int mx23_boot_init(struct gpmi_nand_data *this) 1936 { 1937 struct device *dev = this->dev; 1938 struct nand_chip *chip = &this->nand; 1939 struct mtd_info *mtd = nand_to_mtd(chip); 1940 unsigned int block_count; 1941 unsigned int block; 1942 int chipnr; 1943 int page; 1944 loff_t byte; 1945 uint8_t block_mark; 1946 int ret = 0; 1947 1948 /* 1949 * If control arrives here, we can't use block mark swapping, which 1950 * means we're forced to use transcription. First, scan for the 1951 * transcription stamp. If we find it, then we don't have to do 1952 * anything -- the block marks are already transcribed. 1953 */ 1954 if (mx23_check_transcription_stamp(this)) 1955 return 0; 1956 1957 /* 1958 * If control arrives here, we couldn't find a transcription stamp, so 1959 * so we presume the block marks are in the conventional location. 1960 */ 1961 dev_dbg(dev, "Transcribing bad block marks...\n"); 1962 1963 /* Compute the number of blocks in the entire medium. */ 1964 block_count = nanddev_eraseblocks_per_target(&chip->base); 1965 1966 /* 1967 * Loop over all the blocks in the medium, transcribing block marks as 1968 * we go. 1969 */ 1970 for (block = 0; block < block_count; block++) { 1971 /* 1972 * Compute the chip, page and byte addresses for this block's 1973 * conventional mark. 1974 */ 1975 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); 1976 page = block << (chip->phys_erase_shift - chip->page_shift); 1977 byte = block << chip->phys_erase_shift; 1978 1979 /* Send the command to read the conventional block mark. */ 1980 nand_select_target(chip, chipnr); 1981 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark, 1982 1); 1983 nand_deselect_target(chip); 1984 1985 if (ret) 1986 continue; 1987 1988 /* 1989 * Check if the block is marked bad. If so, we need to mark it 1990 * again, but this time the result will be a mark in the 1991 * location where we transcribe block marks. 1992 */ 1993 if (block_mark != 0xff) { 1994 dev_dbg(dev, "Transcribing mark in block %u\n", block); 1995 ret = chip->legacy.block_markbad(chip, byte); 1996 if (ret) 1997 dev_err(dev, 1998 "Failed to mark block bad with ret %d\n", 1999 ret); 2000 } 2001 } 2002 2003 /* Write the stamp that indicates we've transcribed the block marks. */ 2004 mx23_write_transcription_stamp(this); 2005 return 0; 2006 } 2007 2008 static int nand_boot_init(struct gpmi_nand_data *this) 2009 { 2010 nand_boot_set_geometry(this); 2011 2012 /* This is ROM arch-specific initilization before the BBT scanning. */ 2013 if (GPMI_IS_MX23(this)) 2014 return mx23_boot_init(this); 2015 return 0; 2016 } 2017 2018 static int gpmi_set_geometry(struct gpmi_nand_data *this) 2019 { 2020 int ret; 2021 2022 /* Free the temporary DMA memory for reading ID. */ 2023 gpmi_free_dma_buffer(this); 2024 2025 /* Set up the NFC geometry which is used by BCH. */ 2026 ret = bch_set_geometry(this); 2027 if (ret) { 2028 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); 2029 return ret; 2030 } 2031 2032 /* Alloc the new DMA buffers according to the pagesize and oobsize */ 2033 return gpmi_alloc_dma_buffer(this); 2034 } 2035 2036 static int gpmi_init_last(struct gpmi_nand_data *this) 2037 { 2038 struct nand_chip *chip = &this->nand; 2039 struct mtd_info *mtd = nand_to_mtd(chip); 2040 struct nand_ecc_ctrl *ecc = &chip->ecc; 2041 struct bch_geometry *bch_geo = &this->bch_geometry; 2042 int ret; 2043 2044 /* Set up the medium geometry */ 2045 ret = gpmi_set_geometry(this); 2046 if (ret) 2047 return ret; 2048 2049 /* Init the nand_ecc_ctrl{} */ 2050 ecc->read_page = gpmi_ecc_read_page; 2051 ecc->write_page = gpmi_ecc_write_page; 2052 ecc->read_oob = gpmi_ecc_read_oob; 2053 ecc->write_oob = gpmi_ecc_write_oob; 2054 ecc->read_page_raw = gpmi_ecc_read_page_raw; 2055 ecc->write_page_raw = gpmi_ecc_write_page_raw; 2056 ecc->read_oob_raw = gpmi_ecc_read_oob_raw; 2057 ecc->write_oob_raw = gpmi_ecc_write_oob_raw; 2058 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2059 ecc->size = bch_geo->ecc_chunk_size; 2060 ecc->strength = bch_geo->ecc_strength; 2061 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); 2062 2063 /* 2064 * We only enable the subpage read when: 2065 * (1) the chip is imx6, and 2066 * (2) the size of the ECC parity is byte aligned. 2067 */ 2068 if (GPMI_IS_MX6(this) && 2069 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { 2070 ecc->read_subpage = gpmi_ecc_read_subpage; 2071 chip->options |= NAND_SUBPAGE_READ; 2072 } 2073 2074 return 0; 2075 } 2076 2077 static int gpmi_nand_attach_chip(struct nand_chip *chip) 2078 { 2079 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2080 int ret; 2081 2082 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2083 chip->bbt_options |= NAND_BBT_NO_OOB; 2084 2085 if (of_property_read_bool(this->dev->of_node, 2086 "fsl,no-blockmark-swap")) 2087 this->swap_block_mark = false; 2088 } 2089 dev_dbg(this->dev, "Blockmark swapping %sabled\n", 2090 this->swap_block_mark ? "en" : "dis"); 2091 2092 ret = gpmi_init_last(this); 2093 if (ret) 2094 return ret; 2095 2096 chip->options |= NAND_SKIP_BBTSCAN; 2097 2098 return 0; 2099 } 2100 2101 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this) 2102 { 2103 struct gpmi_transfer *transfer = &this->transfers[this->ntransfers]; 2104 2105 this->ntransfers++; 2106 2107 if (this->ntransfers == GPMI_MAX_TRANSFERS) 2108 return NULL; 2109 2110 return transfer; 2111 } 2112 2113 static struct dma_async_tx_descriptor *gpmi_chain_command( 2114 struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr) 2115 { 2116 struct dma_chan *channel = get_dma_chan(this); 2117 struct dma_async_tx_descriptor *desc; 2118 struct gpmi_transfer *transfer; 2119 int chip = this->nand.cur_cs; 2120 u32 pio[3]; 2121 2122 /* [1] send out the PIO words */ 2123 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2124 | BM_GPMI_CTRL0_WORD_LENGTH 2125 | BF_GPMI_CTRL0_CS(chip, this) 2126 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2127 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) 2128 | BM_GPMI_CTRL0_ADDRESS_INCREMENT 2129 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1); 2130 pio[1] = 0; 2131 pio[2] = 0; 2132 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2133 DMA_TRANS_NONE, 0); 2134 if (!desc) 2135 return NULL; 2136 2137 transfer = get_next_transfer(this); 2138 if (!transfer) 2139 return NULL; 2140 2141 transfer->cmdbuf[0] = cmd; 2142 if (naddr) 2143 memcpy(&transfer->cmdbuf[1], addr, naddr); 2144 2145 sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1); 2146 dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE); 2147 2148 transfer->direction = DMA_TO_DEVICE; 2149 2150 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV, 2151 MXS_DMA_CTRL_WAIT4END); 2152 return desc; 2153 } 2154 2155 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready( 2156 struct gpmi_nand_data *this) 2157 { 2158 struct dma_chan *channel = get_dma_chan(this); 2159 u32 pio[2]; 2160 2161 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY) 2162 | BM_GPMI_CTRL0_WORD_LENGTH 2163 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2164 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2165 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2166 | BF_GPMI_CTRL0_XFER_COUNT(0); 2167 pio[1] = 0; 2168 2169 return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE, 2170 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY); 2171 } 2172 2173 static struct dma_async_tx_descriptor *gpmi_chain_data_read( 2174 struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct) 2175 { 2176 struct dma_async_tx_descriptor *desc; 2177 struct dma_chan *channel = get_dma_chan(this); 2178 struct gpmi_transfer *transfer; 2179 u32 pio[6] = {}; 2180 2181 transfer = get_next_transfer(this); 2182 if (!transfer) 2183 return NULL; 2184 2185 transfer->direction = DMA_FROM_DEVICE; 2186 2187 *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl, 2188 DMA_FROM_DEVICE); 2189 2190 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) 2191 | BM_GPMI_CTRL0_WORD_LENGTH 2192 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2193 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2194 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2195 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2196 2197 if (this->bch) { 2198 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2199 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE) 2200 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 2201 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2202 pio[3] = raw_len; 2203 pio[4] = transfer->sgl.dma_address; 2204 pio[5] = this->auxiliary_phys; 2205 } 2206 2207 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2208 DMA_TRANS_NONE, 0); 2209 if (!desc) 2210 return NULL; 2211 2212 if (!this->bch) 2213 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2214 DMA_DEV_TO_MEM, 2215 MXS_DMA_CTRL_WAIT4END); 2216 2217 return desc; 2218 } 2219 2220 static struct dma_async_tx_descriptor *gpmi_chain_data_write( 2221 struct gpmi_nand_data *this, const void *buf, int raw_len) 2222 { 2223 struct dma_chan *channel = get_dma_chan(this); 2224 struct dma_async_tx_descriptor *desc; 2225 struct gpmi_transfer *transfer; 2226 u32 pio[6] = {}; 2227 2228 transfer = get_next_transfer(this); 2229 if (!transfer) 2230 return NULL; 2231 2232 transfer->direction = DMA_TO_DEVICE; 2233 2234 prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE); 2235 2236 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2237 | BM_GPMI_CTRL0_WORD_LENGTH 2238 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2239 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2240 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2241 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2242 2243 if (this->bch) { 2244 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2245 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE) 2246 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | 2247 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2248 pio[3] = raw_len; 2249 pio[4] = transfer->sgl.dma_address; 2250 pio[5] = this->auxiliary_phys; 2251 } 2252 2253 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2254 DMA_TRANS_NONE, 2255 (this->bch ? MXS_DMA_CTRL_WAIT4END : 0)); 2256 if (!desc) 2257 return NULL; 2258 2259 if (!this->bch) 2260 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2261 DMA_MEM_TO_DEV, 2262 MXS_DMA_CTRL_WAIT4END); 2263 2264 return desc; 2265 } 2266 2267 static int gpmi_nfc_exec_op(struct nand_chip *chip, 2268 const struct nand_operation *op, 2269 bool check_only) 2270 { 2271 const struct nand_op_instr *instr; 2272 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2273 struct dma_async_tx_descriptor *desc = NULL; 2274 int i, ret, buf_len = 0, nbufs = 0; 2275 u8 cmd = 0; 2276 void *buf_read = NULL; 2277 const void *buf_write = NULL; 2278 bool direct = false; 2279 struct completion *dma_completion, *bch_completion; 2280 unsigned long to; 2281 2282 if (check_only) 2283 return 0; 2284 2285 this->ntransfers = 0; 2286 for (i = 0; i < GPMI_MAX_TRANSFERS; i++) 2287 this->transfers[i].direction = DMA_NONE; 2288 2289 ret = pm_runtime_get_sync(this->dev); 2290 if (ret < 0) { 2291 pm_runtime_put_noidle(this->dev); 2292 return ret; 2293 } 2294 2295 /* 2296 * This driver currently supports only one NAND chip. Plus, dies share 2297 * the same configuration. So once timings have been applied on the 2298 * controller side, they will not change anymore. When the time will 2299 * come, the check on must_apply_timings will have to be dropped. 2300 */ 2301 if (this->hw.must_apply_timings) { 2302 this->hw.must_apply_timings = false; 2303 ret = gpmi_nfc_apply_timings(this); 2304 if (ret) 2305 goto out_pm; 2306 } 2307 2308 dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs); 2309 2310 for (i = 0; i < op->ninstrs; i++) { 2311 instr = &op->instrs[i]; 2312 2313 nand_op_trace(" ", instr); 2314 2315 switch (instr->type) { 2316 case NAND_OP_WAITRDY_INSTR: 2317 desc = gpmi_chain_wait_ready(this); 2318 break; 2319 case NAND_OP_CMD_INSTR: 2320 cmd = instr->ctx.cmd.opcode; 2321 2322 /* 2323 * When this command has an address cycle chain it 2324 * together with the address cycle 2325 */ 2326 if (i + 1 != op->ninstrs && 2327 op->instrs[i + 1].type == NAND_OP_ADDR_INSTR) 2328 continue; 2329 2330 desc = gpmi_chain_command(this, cmd, NULL, 0); 2331 2332 break; 2333 case NAND_OP_ADDR_INSTR: 2334 desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs, 2335 instr->ctx.addr.naddrs); 2336 break; 2337 case NAND_OP_DATA_OUT_INSTR: 2338 buf_write = instr->ctx.data.buf.out; 2339 buf_len = instr->ctx.data.len; 2340 nbufs++; 2341 2342 desc = gpmi_chain_data_write(this, buf_write, buf_len); 2343 2344 break; 2345 case NAND_OP_DATA_IN_INSTR: 2346 if (!instr->ctx.data.len) 2347 break; 2348 buf_read = instr->ctx.data.buf.in; 2349 buf_len = instr->ctx.data.len; 2350 nbufs++; 2351 2352 desc = gpmi_chain_data_read(this, buf_read, buf_len, 2353 &direct); 2354 break; 2355 } 2356 2357 if (!desc) { 2358 ret = -ENXIO; 2359 goto unmap; 2360 } 2361 } 2362 2363 dev_dbg(this->dev, "%s setup done\n", __func__); 2364 2365 if (nbufs > 1) { 2366 dev_err(this->dev, "Multiple data instructions not supported\n"); 2367 ret = -EINVAL; 2368 goto unmap; 2369 } 2370 2371 if (this->bch) { 2372 writel(this->bch_flashlayout0, 2373 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0); 2374 writel(this->bch_flashlayout1, 2375 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1); 2376 } 2377 2378 desc->callback = dma_irq_callback; 2379 desc->callback_param = this; 2380 dma_completion = &this->dma_done; 2381 bch_completion = NULL; 2382 2383 init_completion(dma_completion); 2384 2385 if (this->bch && buf_read) { 2386 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2387 this->resources.bch_regs + HW_BCH_CTRL_SET); 2388 bch_completion = &this->bch_done; 2389 init_completion(bch_completion); 2390 } 2391 2392 dmaengine_submit(desc); 2393 dma_async_issue_pending(get_dma_chan(this)); 2394 2395 to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000)); 2396 if (!to) { 2397 dev_err(this->dev, "DMA timeout, last DMA\n"); 2398 gpmi_dump_info(this); 2399 ret = -ETIMEDOUT; 2400 goto unmap; 2401 } 2402 2403 if (this->bch && buf_read) { 2404 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000)); 2405 if (!to) { 2406 dev_err(this->dev, "BCH timeout, last DMA\n"); 2407 gpmi_dump_info(this); 2408 ret = -ETIMEDOUT; 2409 goto unmap; 2410 } 2411 } 2412 2413 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2414 this->resources.bch_regs + HW_BCH_CTRL_CLR); 2415 gpmi_clear_bch(this); 2416 2417 ret = 0; 2418 2419 unmap: 2420 for (i = 0; i < this->ntransfers; i++) { 2421 struct gpmi_transfer *transfer = &this->transfers[i]; 2422 2423 if (transfer->direction != DMA_NONE) 2424 dma_unmap_sg(this->dev, &transfer->sgl, 1, 2425 transfer->direction); 2426 } 2427 2428 if (!ret && buf_read && !direct) 2429 memcpy(buf_read, this->data_buffer_dma, 2430 gpmi_raw_len_to_len(this, buf_len)); 2431 2432 this->bch = false; 2433 2434 out_pm: 2435 pm_runtime_mark_last_busy(this->dev); 2436 pm_runtime_put_autosuspend(this->dev); 2437 2438 return ret; 2439 } 2440 2441 static const struct nand_controller_ops gpmi_nand_controller_ops = { 2442 .attach_chip = gpmi_nand_attach_chip, 2443 .setup_interface = gpmi_setup_interface, 2444 .exec_op = gpmi_nfc_exec_op, 2445 }; 2446 2447 static int gpmi_nand_init(struct gpmi_nand_data *this) 2448 { 2449 struct nand_chip *chip = &this->nand; 2450 struct mtd_info *mtd = nand_to_mtd(chip); 2451 int ret; 2452 2453 /* init the MTD data structures */ 2454 mtd->name = "gpmi-nand"; 2455 mtd->dev.parent = this->dev; 2456 2457 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ 2458 nand_set_controller_data(chip, this); 2459 nand_set_flash_node(chip, this->pdev->dev.of_node); 2460 chip->legacy.block_markbad = gpmi_block_markbad; 2461 chip->badblock_pattern = &gpmi_bbt_descr; 2462 chip->options |= NAND_NO_SUBPAGE_WRITE; 2463 2464 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ 2465 this->swap_block_mark = !GPMI_IS_MX23(this); 2466 2467 /* 2468 * Allocate a temporary DMA buffer for reading ID in the 2469 * nand_scan_ident(). 2470 */ 2471 this->bch_geometry.payload_size = 1024; 2472 this->bch_geometry.auxiliary_size = 128; 2473 ret = gpmi_alloc_dma_buffer(this); 2474 if (ret) 2475 return ret; 2476 2477 nand_controller_init(&this->base); 2478 this->base.ops = &gpmi_nand_controller_ops; 2479 chip->controller = &this->base; 2480 2481 ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); 2482 if (ret) 2483 goto err_out; 2484 2485 ret = nand_boot_init(this); 2486 if (ret) 2487 goto err_nand_cleanup; 2488 ret = nand_create_bbt(chip); 2489 if (ret) 2490 goto err_nand_cleanup; 2491 2492 ret = mtd_device_register(mtd, NULL, 0); 2493 if (ret) 2494 goto err_nand_cleanup; 2495 return 0; 2496 2497 err_nand_cleanup: 2498 nand_cleanup(chip); 2499 err_out: 2500 gpmi_free_dma_buffer(this); 2501 return ret; 2502 } 2503 2504 static const struct of_device_id gpmi_nand_id_table[] = { 2505 { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, }, 2506 { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, }, 2507 { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, }, 2508 { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, }, 2509 { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,}, 2510 {} 2511 }; 2512 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); 2513 2514 static int gpmi_nand_probe(struct platform_device *pdev) 2515 { 2516 struct gpmi_nand_data *this; 2517 int ret; 2518 2519 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); 2520 if (!this) 2521 return -ENOMEM; 2522 2523 this->devdata = of_device_get_match_data(&pdev->dev); 2524 platform_set_drvdata(pdev, this); 2525 this->pdev = pdev; 2526 this->dev = &pdev->dev; 2527 2528 ret = acquire_resources(this); 2529 if (ret) 2530 goto exit_acquire_resources; 2531 2532 ret = __gpmi_enable_clk(this, true); 2533 if (ret) 2534 goto exit_acquire_resources; 2535 2536 pm_runtime_set_autosuspend_delay(&pdev->dev, 500); 2537 pm_runtime_use_autosuspend(&pdev->dev); 2538 pm_runtime_set_active(&pdev->dev); 2539 pm_runtime_enable(&pdev->dev); 2540 pm_runtime_get_sync(&pdev->dev); 2541 2542 ret = gpmi_init(this); 2543 if (ret) 2544 goto exit_nfc_init; 2545 2546 ret = gpmi_nand_init(this); 2547 if (ret) 2548 goto exit_nfc_init; 2549 2550 pm_runtime_mark_last_busy(&pdev->dev); 2551 pm_runtime_put_autosuspend(&pdev->dev); 2552 2553 dev_info(this->dev, "driver registered.\n"); 2554 2555 return 0; 2556 2557 exit_nfc_init: 2558 pm_runtime_put(&pdev->dev); 2559 pm_runtime_disable(&pdev->dev); 2560 release_resources(this); 2561 exit_acquire_resources: 2562 2563 return ret; 2564 } 2565 2566 static int gpmi_nand_remove(struct platform_device *pdev) 2567 { 2568 struct gpmi_nand_data *this = platform_get_drvdata(pdev); 2569 struct nand_chip *chip = &this->nand; 2570 int ret; 2571 2572 pm_runtime_put_sync(&pdev->dev); 2573 pm_runtime_disable(&pdev->dev); 2574 2575 ret = mtd_device_unregister(nand_to_mtd(chip)); 2576 WARN_ON(ret); 2577 nand_cleanup(chip); 2578 gpmi_free_dma_buffer(this); 2579 release_resources(this); 2580 return 0; 2581 } 2582 2583 #ifdef CONFIG_PM_SLEEP 2584 static int gpmi_pm_suspend(struct device *dev) 2585 { 2586 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2587 2588 release_dma_channels(this); 2589 return 0; 2590 } 2591 2592 static int gpmi_pm_resume(struct device *dev) 2593 { 2594 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2595 int ret; 2596 2597 ret = acquire_dma_channels(this); 2598 if (ret < 0) 2599 return ret; 2600 2601 /* re-init the GPMI registers */ 2602 ret = gpmi_init(this); 2603 if (ret) { 2604 dev_err(this->dev, "Error setting GPMI : %d\n", ret); 2605 return ret; 2606 } 2607 2608 /* Set flag to get timing setup restored for next exec_op */ 2609 if (this->hw.clk_rate) 2610 this->hw.must_apply_timings = true; 2611 2612 /* re-init the BCH registers */ 2613 ret = bch_set_geometry(this); 2614 if (ret) { 2615 dev_err(this->dev, "Error setting BCH : %d\n", ret); 2616 return ret; 2617 } 2618 2619 return 0; 2620 } 2621 #endif /* CONFIG_PM_SLEEP */ 2622 2623 static int __maybe_unused gpmi_runtime_suspend(struct device *dev) 2624 { 2625 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2626 2627 return __gpmi_enable_clk(this, false); 2628 } 2629 2630 static int __maybe_unused gpmi_runtime_resume(struct device *dev) 2631 { 2632 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2633 2634 return __gpmi_enable_clk(this, true); 2635 } 2636 2637 static const struct dev_pm_ops gpmi_pm_ops = { 2638 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) 2639 SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL) 2640 }; 2641 2642 static struct platform_driver gpmi_nand_driver = { 2643 .driver = { 2644 .name = "gpmi-nand", 2645 .pm = &gpmi_pm_ops, 2646 .of_match_table = gpmi_nand_id_table, 2647 }, 2648 .probe = gpmi_nand_probe, 2649 .remove = gpmi_nand_remove, 2650 }; 2651 module_platform_driver(gpmi_nand_driver); 2652 2653 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 2654 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); 2655 MODULE_LICENSE("GPL"); 2656