1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale GPMI NAND Flash Driver 4 * 5 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. 6 * Copyright (C) 2008 Embedded Alley Solutions, Inc. 7 */ 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/interrupt.h> 13 #include <linux/module.h> 14 #include <linux/mtd/partitions.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/dma/mxs-dma.h> 19 #include "gpmi-nand.h" 20 #include "gpmi-regs.h" 21 #include "bch-regs.h" 22 23 /* Resource names for the GPMI NAND driver. */ 24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" 25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" 26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" 27 28 /* Converts time to clock cycles */ 29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) 30 31 #define MXS_SET_ADDR 0x4 32 #define MXS_CLR_ADDR 0x8 33 /* 34 * Clear the bit and poll it cleared. This is usually called with 35 * a reset address and mask being either SFTRST(bit 31) or CLKGATE 36 * (bit 30). 37 */ 38 static int clear_poll_bit(void __iomem *addr, u32 mask) 39 { 40 int timeout = 0x400; 41 42 /* clear the bit */ 43 writel(mask, addr + MXS_CLR_ADDR); 44 45 /* 46 * SFTRST needs 3 GPMI clocks to settle, the reference manual 47 * recommends to wait 1us. 48 */ 49 udelay(1); 50 51 /* poll the bit becoming clear */ 52 while ((readl(addr) & mask) && --timeout) 53 /* nothing */; 54 55 return !timeout; 56 } 57 58 #define MODULE_CLKGATE (1 << 30) 59 #define MODULE_SFTRST (1 << 31) 60 /* 61 * The current mxs_reset_block() will do two things: 62 * [1] enable the module. 63 * [2] reset the module. 64 * 65 * In most of the cases, it's ok. 66 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). 67 * If you try to soft reset the BCH block, it becomes unusable until 68 * the next hard reset. This case occurs in the NAND boot mode. When the board 69 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. 70 * So If the driver tries to reset the BCH again, the BCH will not work anymore. 71 * You will see a DMA timeout in this case. The bug has been fixed 72 * in the following chips, such as MX28. 73 * 74 * To avoid this bug, just add a new parameter `just_enable` for 75 * the mxs_reset_block(), and rewrite it here. 76 */ 77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) 78 { 79 int ret; 80 int timeout = 0x400; 81 82 /* clear and poll SFTRST */ 83 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 84 if (unlikely(ret)) 85 goto error; 86 87 /* clear CLKGATE */ 88 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); 89 90 if (!just_enable) { 91 /* set SFTRST to reset the block */ 92 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); 93 udelay(1); 94 95 /* poll CLKGATE becoming set */ 96 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) 97 /* nothing */; 98 if (unlikely(!timeout)) 99 goto error; 100 } 101 102 /* clear and poll SFTRST */ 103 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 104 if (unlikely(ret)) 105 goto error; 106 107 /* clear and poll CLKGATE */ 108 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); 109 if (unlikely(ret)) 110 goto error; 111 112 return 0; 113 114 error: 115 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); 116 return -ETIMEDOUT; 117 } 118 119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) 120 { 121 struct clk *clk; 122 int ret; 123 int i; 124 125 for (i = 0; i < GPMI_CLK_MAX; i++) { 126 clk = this->resources.clock[i]; 127 if (!clk) 128 break; 129 130 if (v) { 131 ret = clk_prepare_enable(clk); 132 if (ret) 133 goto err_clk; 134 } else { 135 clk_disable_unprepare(clk); 136 } 137 } 138 return 0; 139 140 err_clk: 141 for (; i > 0; i--) 142 clk_disable_unprepare(this->resources.clock[i - 1]); 143 return ret; 144 } 145 146 static int gpmi_init(struct gpmi_nand_data *this) 147 { 148 struct resources *r = &this->resources; 149 int ret; 150 151 ret = pm_runtime_get_sync(this->dev); 152 if (ret < 0) { 153 pm_runtime_put_noidle(this->dev); 154 return ret; 155 } 156 157 ret = gpmi_reset_block(r->gpmi_regs, false); 158 if (ret) 159 goto err_out; 160 161 /* 162 * Reset BCH here, too. We got failures otherwise :( 163 * See later BCH reset for explanation of MX23 and MX28 handling 164 */ 165 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 166 if (ret) 167 goto err_out; 168 169 /* Choose NAND mode. */ 170 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); 171 172 /* Set the IRQ polarity. */ 173 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, 174 r->gpmi_regs + HW_GPMI_CTRL1_SET); 175 176 /* Disable Write-Protection. */ 177 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); 178 179 /* Select BCH ECC. */ 180 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); 181 182 /* 183 * Decouple the chip select from dma channel. We use dma0 for all 184 * the chips, force all NAND RDY_BUSY inputs to be sourced from 185 * RDY_BUSY0. 186 */ 187 writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY, 188 r->gpmi_regs + HW_GPMI_CTRL1_SET); 189 190 err_out: 191 pm_runtime_mark_last_busy(this->dev); 192 pm_runtime_put_autosuspend(this->dev); 193 return ret; 194 } 195 196 /* This function is very useful. It is called only when the bug occur. */ 197 static void gpmi_dump_info(struct gpmi_nand_data *this) 198 { 199 struct resources *r = &this->resources; 200 struct bch_geometry *geo = &this->bch_geometry; 201 u32 reg; 202 int i; 203 204 dev_err(this->dev, "Show GPMI registers :\n"); 205 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { 206 reg = readl(r->gpmi_regs + i * 0x10); 207 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 208 } 209 210 /* start to print out the BCH info */ 211 dev_err(this->dev, "Show BCH registers :\n"); 212 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { 213 reg = readl(r->bch_regs + i * 0x10); 214 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 215 } 216 dev_err(this->dev, "BCH Geometry :\n" 217 "GF length : %u\n" 218 "ECC Strength : %u\n" 219 "Page Size in Bytes : %u\n" 220 "Metadata Size in Bytes : %u\n" 221 "ECC Chunk Size in Bytes: %u\n" 222 "ECC Chunk Count : %u\n" 223 "Payload Size in Bytes : %u\n" 224 "Auxiliary Size in Bytes: %u\n" 225 "Auxiliary Status Offset: %u\n" 226 "Block Mark Byte Offset : %u\n" 227 "Block Mark Bit Offset : %u\n", 228 geo->gf_len, 229 geo->ecc_strength, 230 geo->page_size, 231 geo->metadata_size, 232 geo->ecc_chunk_size, 233 geo->ecc_chunk_count, 234 geo->payload_size, 235 geo->auxiliary_size, 236 geo->auxiliary_status_offset, 237 geo->block_mark_byte_offset, 238 geo->block_mark_bit_offset); 239 } 240 241 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) 242 { 243 struct bch_geometry *geo = &this->bch_geometry; 244 245 /* Do the sanity check. */ 246 if (GPMI_IS_MXS(this)) { 247 /* The mx23/mx28 only support the GF13. */ 248 if (geo->gf_len == 14) 249 return false; 250 } 251 return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; 252 } 253 254 /* 255 * If we can get the ECC information from the nand chip, we do not 256 * need to calculate them ourselves. 257 * 258 * We may have available oob space in this case. 259 */ 260 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, 261 unsigned int ecc_strength, 262 unsigned int ecc_step) 263 { 264 struct bch_geometry *geo = &this->bch_geometry; 265 struct nand_chip *chip = &this->nand; 266 struct mtd_info *mtd = nand_to_mtd(chip); 267 unsigned int block_mark_bit_offset; 268 269 switch (ecc_step) { 270 case SZ_512: 271 geo->gf_len = 13; 272 break; 273 case SZ_1K: 274 geo->gf_len = 14; 275 break; 276 default: 277 dev_err(this->dev, 278 "unsupported nand chip. ecc bits : %d, ecc size : %d\n", 279 nanddev_get_ecc_requirements(&chip->base)->strength, 280 nanddev_get_ecc_requirements(&chip->base)->step_size); 281 return -EINVAL; 282 } 283 geo->ecc_chunk_size = ecc_step; 284 geo->ecc_strength = round_up(ecc_strength, 2); 285 if (!gpmi_check_ecc(this)) 286 return -EINVAL; 287 288 /* Keep the C >= O */ 289 if (geo->ecc_chunk_size < mtd->oobsize) { 290 dev_err(this->dev, 291 "unsupported nand chip. ecc size: %d, oob size : %d\n", 292 ecc_step, mtd->oobsize); 293 return -EINVAL; 294 } 295 296 /* The default value, see comment in the legacy_set_geometry(). */ 297 geo->metadata_size = 10; 298 299 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 300 301 /* 302 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: 303 * 304 * | P | 305 * |<----------------------------------------------------->| 306 * | | 307 * | (Block Mark) | 308 * | P' | | | | 309 * |<-------------------------------------------->| D | | O' | 310 * | |<---->| |<--->| 311 * V V V V V 312 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 313 * | M | data |E| data |E| data |E| data |E| | 314 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 315 * ^ ^ 316 * | O | 317 * |<------------>| 318 * | | 319 * 320 * P : the page size for BCH module. 321 * E : The ECC strength. 322 * G : the length of Galois Field. 323 * N : The chunk count of per page. 324 * M : the metasize of per page. 325 * C : the ecc chunk size, aka the "data" above. 326 * P': the nand chip's page size. 327 * O : the nand chip's oob size. 328 * O': the free oob. 329 * 330 * The formula for P is : 331 * 332 * E * G * N 333 * P = ------------ + P' + M 334 * 8 335 * 336 * The position of block mark moves forward in the ECC-based view 337 * of page, and the delta is: 338 * 339 * E * G * (N - 1) 340 * D = (---------------- + M) 341 * 8 342 * 343 * Please see the comment in legacy_set_geometry(). 344 * With the condition C >= O , we still can get same result. 345 * So the bit position of the physical block mark within the ECC-based 346 * view of the page is : 347 * (P' - D) * 8 348 */ 349 geo->page_size = mtd->writesize + geo->metadata_size + 350 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 351 352 geo->payload_size = mtd->writesize; 353 354 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); 355 geo->auxiliary_size = ALIGN(geo->metadata_size, 4) 356 + ALIGN(geo->ecc_chunk_count, 4); 357 358 if (!this->swap_block_mark) 359 return 0; 360 361 /* For bit swap. */ 362 block_mark_bit_offset = mtd->writesize * 8 - 363 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 364 + geo->metadata_size * 8); 365 366 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 367 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 368 return 0; 369 } 370 371 /* 372 * Calculate the ECC strength by hand: 373 * E : The ECC strength. 374 * G : the length of Galois Field. 375 * N : The chunk count of per page. 376 * O : the oobsize of the NAND chip. 377 * M : the metasize of per page. 378 * 379 * The formula is : 380 * E * G * N 381 * ------------ <= (O - M) 382 * 8 383 * 384 * So, we get E by: 385 * (O - M) * 8 386 * E <= ------------- 387 * G * N 388 */ 389 static inline int get_ecc_strength(struct gpmi_nand_data *this) 390 { 391 struct bch_geometry *geo = &this->bch_geometry; 392 struct mtd_info *mtd = nand_to_mtd(&this->nand); 393 int ecc_strength; 394 395 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) 396 / (geo->gf_len * geo->ecc_chunk_count); 397 398 /* We need the minor even number. */ 399 return round_down(ecc_strength, 2); 400 } 401 402 static int legacy_set_geometry(struct gpmi_nand_data *this) 403 { 404 struct bch_geometry *geo = &this->bch_geometry; 405 struct mtd_info *mtd = nand_to_mtd(&this->nand); 406 unsigned int metadata_size; 407 unsigned int status_size; 408 unsigned int block_mark_bit_offset; 409 410 /* 411 * The size of the metadata can be changed, though we set it to 10 412 * bytes now. But it can't be too large, because we have to save 413 * enough space for BCH. 414 */ 415 geo->metadata_size = 10; 416 417 /* The default for the length of Galois Field. */ 418 geo->gf_len = 13; 419 420 /* The default for chunk size. */ 421 geo->ecc_chunk_size = 512; 422 while (geo->ecc_chunk_size < mtd->oobsize) { 423 geo->ecc_chunk_size *= 2; /* keep C >= O */ 424 geo->gf_len = 14; 425 } 426 427 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 428 429 /* We use the same ECC strength for all chunks. */ 430 geo->ecc_strength = get_ecc_strength(this); 431 if (!gpmi_check_ecc(this)) { 432 dev_err(this->dev, 433 "ecc strength: %d cannot be supported by the controller (%d)\n" 434 "try to use minimum ecc strength that NAND chip required\n", 435 geo->ecc_strength, 436 this->devdata->bch_max_ecc_strength); 437 return -EINVAL; 438 } 439 440 geo->page_size = mtd->writesize + geo->metadata_size + 441 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 442 geo->payload_size = mtd->writesize; 443 444 /* 445 * The auxiliary buffer contains the metadata and the ECC status. The 446 * metadata is padded to the nearest 32-bit boundary. The ECC status 447 * contains one byte for every ECC chunk, and is also padded to the 448 * nearest 32-bit boundary. 449 */ 450 metadata_size = ALIGN(geo->metadata_size, 4); 451 status_size = ALIGN(geo->ecc_chunk_count, 4); 452 453 geo->auxiliary_size = metadata_size + status_size; 454 geo->auxiliary_status_offset = metadata_size; 455 456 if (!this->swap_block_mark) 457 return 0; 458 459 /* 460 * We need to compute the byte and bit offsets of 461 * the physical block mark within the ECC-based view of the page. 462 * 463 * NAND chip with 2K page shows below: 464 * (Block Mark) 465 * | | 466 * | D | 467 * |<---->| 468 * V V 469 * +---+----------+-+----------+-+----------+-+----------+-+ 470 * | M | data |E| data |E| data |E| data |E| 471 * +---+----------+-+----------+-+----------+-+----------+-+ 472 * 473 * The position of block mark moves forward in the ECC-based view 474 * of page, and the delta is: 475 * 476 * E * G * (N - 1) 477 * D = (---------------- + M) 478 * 8 479 * 480 * With the formula to compute the ECC strength, and the condition 481 * : C >= O (C is the ecc chunk size) 482 * 483 * It's easy to deduce to the following result: 484 * 485 * E * G (O - M) C - M C - M 486 * ----------- <= ------- <= -------- < --------- 487 * 8 N N (N - 1) 488 * 489 * So, we get: 490 * 491 * E * G * (N - 1) 492 * D = (---------------- + M) < C 493 * 8 494 * 495 * The above inequality means the position of block mark 496 * within the ECC-based view of the page is still in the data chunk, 497 * and it's NOT in the ECC bits of the chunk. 498 * 499 * Use the following to compute the bit position of the 500 * physical block mark within the ECC-based view of the page: 501 * (page_size - D) * 8 502 * 503 * --Huang Shijie 504 */ 505 block_mark_bit_offset = mtd->writesize * 8 - 506 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 507 + geo->metadata_size * 8); 508 509 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 510 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 511 return 0; 512 } 513 514 static int common_nfc_set_geometry(struct gpmi_nand_data *this) 515 { 516 struct nand_chip *chip = &this->nand; 517 const struct nand_ecc_props *requirements = 518 nanddev_get_ecc_requirements(&chip->base); 519 520 if (chip->ecc.strength > 0 && chip->ecc.size > 0) 521 return set_geometry_by_ecc_info(this, chip->ecc.strength, 522 chip->ecc.size); 523 524 if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) 525 || legacy_set_geometry(this)) { 526 if (!(requirements->strength > 0 && requirements->step_size > 0)) 527 return -EINVAL; 528 529 return set_geometry_by_ecc_info(this, 530 requirements->strength, 531 requirements->step_size); 532 } 533 534 return 0; 535 } 536 537 /* Configures the geometry for BCH. */ 538 static int bch_set_geometry(struct gpmi_nand_data *this) 539 { 540 struct resources *r = &this->resources; 541 int ret; 542 543 ret = common_nfc_set_geometry(this); 544 if (ret) 545 return ret; 546 547 ret = pm_runtime_get_sync(this->dev); 548 if (ret < 0) { 549 pm_runtime_put_autosuspend(this->dev); 550 return ret; 551 } 552 553 /* 554 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this 555 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. 556 * and MX28. 557 */ 558 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 559 if (ret) 560 goto err_out; 561 562 /* Set *all* chip selects to use layout 0. */ 563 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); 564 565 ret = 0; 566 err_out: 567 pm_runtime_mark_last_busy(this->dev); 568 pm_runtime_put_autosuspend(this->dev); 569 570 return ret; 571 } 572 573 /* 574 * <1> Firstly, we should know what's the GPMI-clock means. 575 * The GPMI-clock is the internal clock in the gpmi nand controller. 576 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period 577 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. 578 * 579 * <2> Secondly, we should know what's the frequency on the nand chip pins. 580 * The frequency on the nand chip pins is derived from the GPMI-clock. 581 * We can get it from the following equation: 582 * 583 * F = G / (DS + DH) 584 * 585 * F : the frequency on the nand chip pins. 586 * G : the GPMI clock, such as 100MHz. 587 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP 588 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD 589 * 590 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, 591 * the nand EDO(extended Data Out) timing could be applied. 592 * The GPMI implements a feedback read strobe to sample the read data. 593 * The feedback read strobe can be delayed to support the nand EDO timing 594 * where the read strobe may deasserts before the read data is valid, and 595 * read data is valid for some time after read strobe. 596 * 597 * The following figure illustrates some aspects of a NAND Flash read: 598 * 599 * |<---tREA---->| 600 * | | 601 * | | | 602 * |<--tRP-->| | 603 * | | | 604 * __ ___|__________________________________ 605 * RDN \________/ | 606 * | 607 * /---------\ 608 * Read Data --------------< >--------- 609 * \---------/ 610 * | | 611 * |<-D->| 612 * FeedbackRDN ________ ____________ 613 * \___________/ 614 * 615 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. 616 * 617 * 618 * <4> Now, we begin to describe how to compute the right RDN_DELAY. 619 * 620 * 4.1) From the aspect of the nand chip pins: 621 * Delay = (tREA + C - tRP) {1} 622 * 623 * tREA : the maximum read access time. 624 * C : a constant to adjust the delay. default is 4000ps. 625 * tRP : the read pulse width, which is exactly: 626 * tRP = (GPMI-clock-period) * DATA_SETUP 627 * 628 * 4.2) From the aspect of the GPMI nand controller: 629 * Delay = RDN_DELAY * 0.125 * RP {2} 630 * 631 * RP : the DLL reference period. 632 * if (GPMI-clock-period > DLL_THRETHOLD) 633 * RP = GPMI-clock-period / 2; 634 * else 635 * RP = GPMI-clock-period; 636 * 637 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period 638 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD 639 * is 16000ps, but in mx6q, we use 12000ps. 640 * 641 * 4.3) since {1} equals {2}, we get: 642 * 643 * (tREA + 4000 - tRP) * 8 644 * RDN_DELAY = ----------------------- {3} 645 * RP 646 */ 647 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this, 648 const struct nand_sdr_timings *sdr) 649 { 650 struct gpmi_nfc_hardware_timing *hw = &this->hw; 651 unsigned int dll_threshold_ps = this->devdata->max_chain_delay; 652 unsigned int period_ps, reference_period_ps; 653 unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; 654 unsigned int tRP_ps; 655 bool use_half_period; 656 int sample_delay_ps, sample_delay_factor; 657 u16 busy_timeout_cycles; 658 u8 wrn_dly_sel; 659 660 if (sdr->tRC_min >= 30000) { 661 /* ONFI non-EDO modes [0-3] */ 662 hw->clk_rate = 22000000; 663 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; 664 } else if (sdr->tRC_min >= 25000) { 665 /* ONFI EDO mode 4 */ 666 hw->clk_rate = 80000000; 667 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 668 } else { 669 /* ONFI EDO mode 5 */ 670 hw->clk_rate = 100000000; 671 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 672 } 673 674 /* SDR core timings are given in picoseconds */ 675 period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); 676 677 addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); 678 data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); 679 data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); 680 busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); 681 682 hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | 683 BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | 684 BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); 685 hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096); 686 687 /* 688 * Derive NFC ideal delay from {3}: 689 * 690 * (tREA + 4000 - tRP) * 8 691 * RDN_DELAY = ----------------------- 692 * RP 693 */ 694 if (period_ps > dll_threshold_ps) { 695 use_half_period = true; 696 reference_period_ps = period_ps / 2; 697 } else { 698 use_half_period = false; 699 reference_period_ps = period_ps; 700 } 701 702 tRP_ps = data_setup_cycles * period_ps; 703 sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; 704 if (sample_delay_ps > 0) 705 sample_delay_factor = sample_delay_ps / reference_period_ps; 706 else 707 sample_delay_factor = 0; 708 709 hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); 710 if (sample_delay_factor) 711 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | 712 BM_GPMI_CTRL1_DLL_ENABLE | 713 (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); 714 } 715 716 static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) 717 { 718 struct gpmi_nfc_hardware_timing *hw = &this->hw; 719 struct resources *r = &this->resources; 720 void __iomem *gpmi_regs = r->gpmi_regs; 721 unsigned int dll_wait_time_us; 722 723 clk_set_rate(r->clock[0], hw->clk_rate); 724 725 writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); 726 writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); 727 728 /* 729 * Clear several CTRL1 fields, DLL must be disabled when setting 730 * RDN_DELAY or HALF_PERIOD. 731 */ 732 writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); 733 writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); 734 735 /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ 736 dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; 737 if (!dll_wait_time_us) 738 dll_wait_time_us = 1; 739 740 /* Wait for the DLL to settle. */ 741 udelay(dll_wait_time_us); 742 } 743 744 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr, 745 const struct nand_interface_config *conf) 746 { 747 struct gpmi_nand_data *this = nand_get_controller_data(chip); 748 const struct nand_sdr_timings *sdr; 749 750 /* Retrieve required NAND timings */ 751 sdr = nand_get_sdr_timings(conf); 752 if (IS_ERR(sdr)) 753 return PTR_ERR(sdr); 754 755 /* Only MX6 GPMI controller can reach EDO timings */ 756 if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this)) 757 return -ENOTSUPP; 758 759 /* Stop here if this call was just a check */ 760 if (chipnr < 0) 761 return 0; 762 763 /* Do the actual derivation of the controller timings */ 764 gpmi_nfc_compute_timings(this, sdr); 765 766 this->hw.must_apply_timings = true; 767 768 return 0; 769 } 770 771 /* Clears a BCH interrupt. */ 772 static void gpmi_clear_bch(struct gpmi_nand_data *this) 773 { 774 struct resources *r = &this->resources; 775 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); 776 } 777 778 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) 779 { 780 /* We use the DMA channel 0 to access all the nand chips. */ 781 return this->dma_chans[0]; 782 } 783 784 /* This will be called after the DMA operation is finished. */ 785 static void dma_irq_callback(void *param) 786 { 787 struct gpmi_nand_data *this = param; 788 struct completion *dma_c = &this->dma_done; 789 790 complete(dma_c); 791 } 792 793 static irqreturn_t bch_irq(int irq, void *cookie) 794 { 795 struct gpmi_nand_data *this = cookie; 796 797 gpmi_clear_bch(this); 798 complete(&this->bch_done); 799 return IRQ_HANDLED; 800 } 801 802 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len) 803 { 804 /* 805 * raw_len is the length to read/write including bch data which 806 * we are passed in exec_op. Calculate the data length from it. 807 */ 808 if (this->bch) 809 return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size); 810 else 811 return raw_len; 812 } 813 814 /* Can we use the upper's buffer directly for DMA? */ 815 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, 816 int raw_len, struct scatterlist *sgl, 817 enum dma_data_direction dr) 818 { 819 int ret; 820 int len = gpmi_raw_len_to_len(this, raw_len); 821 822 /* first try to map the upper buffer directly */ 823 if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { 824 sg_init_one(sgl, buf, len); 825 ret = dma_map_sg(this->dev, sgl, 1, dr); 826 if (ret == 0) 827 goto map_fail; 828 829 return true; 830 } 831 832 map_fail: 833 /* We have to use our own DMA buffer. */ 834 sg_init_one(sgl, this->data_buffer_dma, len); 835 836 if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma) 837 memcpy(this->data_buffer_dma, buf, len); 838 839 dma_map_sg(this->dev, sgl, 1, dr); 840 841 return false; 842 } 843 844 /* add our owner bbt descriptor */ 845 static uint8_t scan_ff_pattern[] = { 0xff }; 846 static struct nand_bbt_descr gpmi_bbt_descr = { 847 .options = 0, 848 .offs = 0, 849 .len = 1, 850 .pattern = scan_ff_pattern 851 }; 852 853 /* 854 * We may change the layout if we can get the ECC info from the datasheet, 855 * else we will use all the (page + OOB). 856 */ 857 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, 858 struct mtd_oob_region *oobregion) 859 { 860 struct nand_chip *chip = mtd_to_nand(mtd); 861 struct gpmi_nand_data *this = nand_get_controller_data(chip); 862 struct bch_geometry *geo = &this->bch_geometry; 863 864 if (section) 865 return -ERANGE; 866 867 oobregion->offset = 0; 868 oobregion->length = geo->page_size - mtd->writesize; 869 870 return 0; 871 } 872 873 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, 874 struct mtd_oob_region *oobregion) 875 { 876 struct nand_chip *chip = mtd_to_nand(mtd); 877 struct gpmi_nand_data *this = nand_get_controller_data(chip); 878 struct bch_geometry *geo = &this->bch_geometry; 879 880 if (section) 881 return -ERANGE; 882 883 /* The available oob size we have. */ 884 if (geo->page_size < mtd->writesize + mtd->oobsize) { 885 oobregion->offset = geo->page_size - mtd->writesize; 886 oobregion->length = mtd->oobsize - oobregion->offset; 887 } 888 889 return 0; 890 } 891 892 static const char * const gpmi_clks_for_mx2x[] = { 893 "gpmi_io", 894 }; 895 896 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { 897 .ecc = gpmi_ooblayout_ecc, 898 .free = gpmi_ooblayout_free, 899 }; 900 901 static const struct gpmi_devdata gpmi_devdata_imx23 = { 902 .type = IS_MX23, 903 .bch_max_ecc_strength = 20, 904 .max_chain_delay = 16000, 905 .clks = gpmi_clks_for_mx2x, 906 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 907 }; 908 909 static const struct gpmi_devdata gpmi_devdata_imx28 = { 910 .type = IS_MX28, 911 .bch_max_ecc_strength = 20, 912 .max_chain_delay = 16000, 913 .clks = gpmi_clks_for_mx2x, 914 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 915 }; 916 917 static const char * const gpmi_clks_for_mx6[] = { 918 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", 919 }; 920 921 static const struct gpmi_devdata gpmi_devdata_imx6q = { 922 .type = IS_MX6Q, 923 .bch_max_ecc_strength = 40, 924 .max_chain_delay = 12000, 925 .clks = gpmi_clks_for_mx6, 926 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 927 }; 928 929 static const struct gpmi_devdata gpmi_devdata_imx6sx = { 930 .type = IS_MX6SX, 931 .bch_max_ecc_strength = 62, 932 .max_chain_delay = 12000, 933 .clks = gpmi_clks_for_mx6, 934 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 935 }; 936 937 static const char * const gpmi_clks_for_mx7d[] = { 938 "gpmi_io", "gpmi_bch_apb", 939 }; 940 941 static const struct gpmi_devdata gpmi_devdata_imx7d = { 942 .type = IS_MX7D, 943 .bch_max_ecc_strength = 62, 944 .max_chain_delay = 12000, 945 .clks = gpmi_clks_for_mx7d, 946 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), 947 }; 948 949 static int acquire_register_block(struct gpmi_nand_data *this, 950 const char *res_name) 951 { 952 struct platform_device *pdev = this->pdev; 953 struct resources *res = &this->resources; 954 void __iomem *p; 955 956 p = devm_platform_ioremap_resource_byname(pdev, res_name); 957 if (IS_ERR(p)) 958 return PTR_ERR(p); 959 960 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) 961 res->gpmi_regs = p; 962 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) 963 res->bch_regs = p; 964 else 965 dev_err(this->dev, "unknown resource name : %s\n", res_name); 966 967 return 0; 968 } 969 970 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) 971 { 972 struct platform_device *pdev = this->pdev; 973 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; 974 struct resource *r; 975 int err; 976 977 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); 978 if (!r) { 979 dev_err(this->dev, "Can't get resource for %s\n", res_name); 980 return -ENODEV; 981 } 982 983 err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); 984 if (err) 985 dev_err(this->dev, "error requesting BCH IRQ\n"); 986 987 return err; 988 } 989 990 static void release_dma_channels(struct gpmi_nand_data *this) 991 { 992 unsigned int i; 993 for (i = 0; i < DMA_CHANS; i++) 994 if (this->dma_chans[i]) { 995 dma_release_channel(this->dma_chans[i]); 996 this->dma_chans[i] = NULL; 997 } 998 } 999 1000 static int acquire_dma_channels(struct gpmi_nand_data *this) 1001 { 1002 struct platform_device *pdev = this->pdev; 1003 struct dma_chan *dma_chan; 1004 int ret = 0; 1005 1006 /* request dma channel */ 1007 dma_chan = dma_request_chan(&pdev->dev, "rx-tx"); 1008 if (IS_ERR(dma_chan)) { 1009 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan), 1010 "DMA channel request failed\n"); 1011 release_dma_channels(this); 1012 } else { 1013 this->dma_chans[0] = dma_chan; 1014 } 1015 1016 return ret; 1017 } 1018 1019 static int gpmi_get_clks(struct gpmi_nand_data *this) 1020 { 1021 struct resources *r = &this->resources; 1022 struct clk *clk; 1023 int err, i; 1024 1025 for (i = 0; i < this->devdata->clks_count; i++) { 1026 clk = devm_clk_get(this->dev, this->devdata->clks[i]); 1027 if (IS_ERR(clk)) { 1028 err = PTR_ERR(clk); 1029 goto err_clock; 1030 } 1031 1032 r->clock[i] = clk; 1033 } 1034 1035 if (GPMI_IS_MX6(this)) 1036 /* 1037 * Set the default value for the gpmi clock. 1038 * 1039 * If you want to use the ONFI nand which is in the 1040 * Synchronous Mode, you should change the clock as you need. 1041 */ 1042 clk_set_rate(r->clock[0], 22000000); 1043 1044 return 0; 1045 1046 err_clock: 1047 dev_dbg(this->dev, "failed in finding the clocks.\n"); 1048 return err; 1049 } 1050 1051 static int acquire_resources(struct gpmi_nand_data *this) 1052 { 1053 int ret; 1054 1055 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); 1056 if (ret) 1057 goto exit_regs; 1058 1059 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); 1060 if (ret) 1061 goto exit_regs; 1062 1063 ret = acquire_bch_irq(this, bch_irq); 1064 if (ret) 1065 goto exit_regs; 1066 1067 ret = acquire_dma_channels(this); 1068 if (ret) 1069 goto exit_regs; 1070 1071 ret = gpmi_get_clks(this); 1072 if (ret) 1073 goto exit_clock; 1074 return 0; 1075 1076 exit_clock: 1077 release_dma_channels(this); 1078 exit_regs: 1079 return ret; 1080 } 1081 1082 static void release_resources(struct gpmi_nand_data *this) 1083 { 1084 release_dma_channels(this); 1085 } 1086 1087 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) 1088 { 1089 struct device *dev = this->dev; 1090 struct bch_geometry *geo = &this->bch_geometry; 1091 1092 if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt)) 1093 dma_free_coherent(dev, geo->auxiliary_size, 1094 this->auxiliary_virt, 1095 this->auxiliary_phys); 1096 kfree(this->data_buffer_dma); 1097 kfree(this->raw_buffer); 1098 1099 this->data_buffer_dma = NULL; 1100 this->raw_buffer = NULL; 1101 } 1102 1103 /* Allocate the DMA buffers */ 1104 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) 1105 { 1106 struct bch_geometry *geo = &this->bch_geometry; 1107 struct device *dev = this->dev; 1108 struct mtd_info *mtd = nand_to_mtd(&this->nand); 1109 1110 /* 1111 * [2] Allocate a read/write data buffer. 1112 * The gpmi_alloc_dma_buffer can be called twice. 1113 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer 1114 * is called before the NAND identification; and we allocate a 1115 * buffer of the real NAND page size when the gpmi_alloc_dma_buffer 1116 * is called after. 1117 */ 1118 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, 1119 GFP_DMA | GFP_KERNEL); 1120 if (this->data_buffer_dma == NULL) 1121 goto error_alloc; 1122 1123 this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size, 1124 &this->auxiliary_phys, GFP_DMA); 1125 if (!this->auxiliary_virt) 1126 goto error_alloc; 1127 1128 this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL); 1129 if (!this->raw_buffer) 1130 goto error_alloc; 1131 1132 return 0; 1133 1134 error_alloc: 1135 gpmi_free_dma_buffer(this); 1136 return -ENOMEM; 1137 } 1138 1139 /* 1140 * Handles block mark swapping. 1141 * It can be called in swapping the block mark, or swapping it back, 1142 * because the the operations are the same. 1143 */ 1144 static void block_mark_swapping(struct gpmi_nand_data *this, 1145 void *payload, void *auxiliary) 1146 { 1147 struct bch_geometry *nfc_geo = &this->bch_geometry; 1148 unsigned char *p; 1149 unsigned char *a; 1150 unsigned int bit; 1151 unsigned char mask; 1152 unsigned char from_data; 1153 unsigned char from_oob; 1154 1155 if (!this->swap_block_mark) 1156 return; 1157 1158 /* 1159 * If control arrives here, we're swapping. Make some convenience 1160 * variables. 1161 */ 1162 bit = nfc_geo->block_mark_bit_offset; 1163 p = payload + nfc_geo->block_mark_byte_offset; 1164 a = auxiliary; 1165 1166 /* 1167 * Get the byte from the data area that overlays the block mark. Since 1168 * the ECC engine applies its own view to the bits in the page, the 1169 * physical block mark won't (in general) appear on a byte boundary in 1170 * the data. 1171 */ 1172 from_data = (p[0] >> bit) | (p[1] << (8 - bit)); 1173 1174 /* Get the byte from the OOB. */ 1175 from_oob = a[0]; 1176 1177 /* Swap them. */ 1178 a[0] = from_data; 1179 1180 mask = (0x1 << bit) - 1; 1181 p[0] = (p[0] & mask) | (from_oob << bit); 1182 1183 mask = ~0 << bit; 1184 p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); 1185 } 1186 1187 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first, 1188 int last, int meta) 1189 { 1190 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1191 struct bch_geometry *nfc_geo = &this->bch_geometry; 1192 struct mtd_info *mtd = nand_to_mtd(chip); 1193 int i; 1194 unsigned char *status; 1195 unsigned int max_bitflips = 0; 1196 1197 /* Loop over status bytes, accumulating ECC status. */ 1198 status = this->auxiliary_virt + ALIGN(meta, 4); 1199 1200 for (i = first; i < last; i++, status++) { 1201 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) 1202 continue; 1203 1204 if (*status == STATUS_UNCORRECTABLE) { 1205 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1206 u8 *eccbuf = this->raw_buffer; 1207 int offset, bitoffset; 1208 int eccbytes; 1209 int flips; 1210 1211 /* Read ECC bytes into our internal raw_buffer */ 1212 offset = nfc_geo->metadata_size * 8; 1213 offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); 1214 offset -= eccbits; 1215 bitoffset = offset % 8; 1216 eccbytes = DIV_ROUND_UP(offset + eccbits, 8); 1217 offset /= 8; 1218 eccbytes -= offset; 1219 nand_change_read_column_op(chip, offset, eccbuf, 1220 eccbytes, false); 1221 1222 /* 1223 * ECC data are not byte aligned and we may have 1224 * in-band data in the first and last byte of 1225 * eccbuf. Set non-eccbits to one so that 1226 * nand_check_erased_ecc_chunk() does not count them 1227 * as bitflips. 1228 */ 1229 if (bitoffset) 1230 eccbuf[0] |= GENMASK(bitoffset - 1, 0); 1231 1232 bitoffset = (bitoffset + eccbits) % 8; 1233 if (bitoffset) 1234 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); 1235 1236 /* 1237 * The ECC hardware has an uncorrectable ECC status 1238 * code in case we have bitflips in an erased page. As 1239 * nothing was written into this subpage the ECC is 1240 * obviously wrong and we can not trust it. We assume 1241 * at this point that we are reading an erased page and 1242 * try to correct the bitflips in buffer up to 1243 * ecc_strength bitflips. If this is a page with random 1244 * data, we exceed this number of bitflips and have a 1245 * ECC failure. Otherwise we use the corrected buffer. 1246 */ 1247 if (i == 0) { 1248 /* The first block includes metadata */ 1249 flips = nand_check_erased_ecc_chunk( 1250 buf + i * nfc_geo->ecc_chunk_size, 1251 nfc_geo->ecc_chunk_size, 1252 eccbuf, eccbytes, 1253 this->auxiliary_virt, 1254 nfc_geo->metadata_size, 1255 nfc_geo->ecc_strength); 1256 } else { 1257 flips = nand_check_erased_ecc_chunk( 1258 buf + i * nfc_geo->ecc_chunk_size, 1259 nfc_geo->ecc_chunk_size, 1260 eccbuf, eccbytes, 1261 NULL, 0, 1262 nfc_geo->ecc_strength); 1263 } 1264 1265 if (flips > 0) { 1266 max_bitflips = max_t(unsigned int, max_bitflips, 1267 flips); 1268 mtd->ecc_stats.corrected += flips; 1269 continue; 1270 } 1271 1272 mtd->ecc_stats.failed++; 1273 continue; 1274 } 1275 1276 mtd->ecc_stats.corrected += *status; 1277 max_bitflips = max_t(unsigned int, max_bitflips, *status); 1278 } 1279 1280 return max_bitflips; 1281 } 1282 1283 static void gpmi_bch_layout_std(struct gpmi_nand_data *this) 1284 { 1285 struct bch_geometry *geo = &this->bch_geometry; 1286 unsigned int ecc_strength = geo->ecc_strength >> 1; 1287 unsigned int gf_len = geo->gf_len; 1288 unsigned int block_size = geo->ecc_chunk_size; 1289 1290 this->bch_flashlayout0 = 1291 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) | 1292 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) | 1293 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1294 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) | 1295 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this); 1296 1297 this->bch_flashlayout1 = 1298 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) | 1299 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1300 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) | 1301 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this); 1302 } 1303 1304 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, 1305 int oob_required, int page) 1306 { 1307 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1308 struct mtd_info *mtd = nand_to_mtd(chip); 1309 struct bch_geometry *geo = &this->bch_geometry; 1310 unsigned int max_bitflips; 1311 int ret; 1312 1313 gpmi_bch_layout_std(this); 1314 this->bch = true; 1315 1316 ret = nand_read_page_op(chip, page, 0, buf, geo->page_size); 1317 if (ret) 1318 return ret; 1319 1320 max_bitflips = gpmi_count_bitflips(chip, buf, 0, 1321 geo->ecc_chunk_count, 1322 geo->auxiliary_status_offset); 1323 1324 /* handle the block mark swapping */ 1325 block_mark_swapping(this, buf, this->auxiliary_virt); 1326 1327 if (oob_required) { 1328 /* 1329 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() 1330 * for details about our policy for delivering the OOB. 1331 * 1332 * We fill the caller's buffer with set bits, and then copy the 1333 * block mark to th caller's buffer. Note that, if block mark 1334 * swapping was necessary, it has already been done, so we can 1335 * rely on the first byte of the auxiliary buffer to contain 1336 * the block mark. 1337 */ 1338 memset(chip->oob_poi, ~0, mtd->oobsize); 1339 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; 1340 } 1341 1342 return max_bitflips; 1343 } 1344 1345 /* Fake a virtual small page for the subpage read */ 1346 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, 1347 uint32_t len, uint8_t *buf, int page) 1348 { 1349 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1350 struct bch_geometry *geo = &this->bch_geometry; 1351 int size = chip->ecc.size; /* ECC chunk size */ 1352 int meta, n, page_size; 1353 unsigned int max_bitflips; 1354 unsigned int ecc_strength; 1355 int first, last, marker_pos; 1356 int ecc_parity_size; 1357 int col = 0; 1358 int ret; 1359 1360 /* The size of ECC parity */ 1361 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1362 1363 /* Align it with the chunk size */ 1364 first = offs / size; 1365 last = (offs + len - 1) / size; 1366 1367 if (this->swap_block_mark) { 1368 /* 1369 * Find the chunk which contains the Block Marker. 1370 * If this chunk is in the range of [first, last], 1371 * we have to read out the whole page. 1372 * Why? since we had swapped the data at the position of Block 1373 * Marker to the metadata which is bound with the chunk 0. 1374 */ 1375 marker_pos = geo->block_mark_byte_offset / size; 1376 if (last >= marker_pos && first <= marker_pos) { 1377 dev_dbg(this->dev, 1378 "page:%d, first:%d, last:%d, marker at:%d\n", 1379 page, first, last, marker_pos); 1380 return gpmi_ecc_read_page(chip, buf, 0, page); 1381 } 1382 } 1383 1384 meta = geo->metadata_size; 1385 if (first) { 1386 col = meta + (size + ecc_parity_size) * first; 1387 meta = 0; 1388 buf = buf + first * size; 1389 } 1390 1391 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1392 1393 n = last - first + 1; 1394 page_size = meta + (size + ecc_parity_size) * n; 1395 ecc_strength = geo->ecc_strength >> 1; 1396 1397 this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) | 1398 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) | 1399 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1400 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) | 1401 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this); 1402 1403 this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | 1404 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1405 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) | 1406 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this); 1407 1408 this->bch = true; 1409 1410 ret = nand_read_page_op(chip, page, col, buf, page_size); 1411 if (ret) 1412 return ret; 1413 1414 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", 1415 page, offs, len, col, first, n, page_size); 1416 1417 max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta); 1418 1419 return max_bitflips; 1420 } 1421 1422 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, 1423 int oob_required, int page) 1424 { 1425 struct mtd_info *mtd = nand_to_mtd(chip); 1426 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1427 struct bch_geometry *nfc_geo = &this->bch_geometry; 1428 int ret; 1429 1430 dev_dbg(this->dev, "ecc write page.\n"); 1431 1432 gpmi_bch_layout_std(this); 1433 this->bch = true; 1434 1435 memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size); 1436 1437 if (this->swap_block_mark) { 1438 /* 1439 * When doing bad block marker swapping we must always copy the 1440 * input buffer as we can't modify the const buffer. 1441 */ 1442 memcpy(this->data_buffer_dma, buf, mtd->writesize); 1443 buf = this->data_buffer_dma; 1444 block_mark_swapping(this, this->data_buffer_dma, 1445 this->auxiliary_virt); 1446 } 1447 1448 ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size); 1449 1450 return ret; 1451 } 1452 1453 /* 1454 * There are several places in this driver where we have to handle the OOB and 1455 * block marks. This is the function where things are the most complicated, so 1456 * this is where we try to explain it all. All the other places refer back to 1457 * here. 1458 * 1459 * These are the rules, in order of decreasing importance: 1460 * 1461 * 1) Nothing the caller does can be allowed to imperil the block mark. 1462 * 1463 * 2) In read operations, the first byte of the OOB we return must reflect the 1464 * true state of the block mark, no matter where that block mark appears in 1465 * the physical page. 1466 * 1467 * 3) ECC-based read operations return an OOB full of set bits (since we never 1468 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads 1469 * return). 1470 * 1471 * 4) "Raw" read operations return a direct view of the physical bytes in the 1472 * page, using the conventional definition of which bytes are data and which 1473 * are OOB. This gives the caller a way to see the actual, physical bytes 1474 * in the page, without the distortions applied by our ECC engine. 1475 * 1476 * 1477 * What we do for this specific read operation depends on two questions: 1478 * 1479 * 1) Are we doing a "raw" read, or an ECC-based read? 1480 * 1481 * 2) Are we using block mark swapping or transcription? 1482 * 1483 * There are four cases, illustrated by the following Karnaugh map: 1484 * 1485 * | Raw | ECC-based | 1486 * -------------+-------------------------+-------------------------+ 1487 * | Read the conventional | | 1488 * | OOB at the end of the | | 1489 * Swapping | page and return it. It | | 1490 * | contains exactly what | | 1491 * | we want. | Read the block mark and | 1492 * -------------+-------------------------+ return it in a buffer | 1493 * | Read the conventional | full of set bits. | 1494 * | OOB at the end of the | | 1495 * | page and also the block | | 1496 * Transcribing | mark in the metadata. | | 1497 * | Copy the block mark | | 1498 * | into the first byte of | | 1499 * | the OOB. | | 1500 * -------------+-------------------------+-------------------------+ 1501 * 1502 * Note that we break rule #4 in the Transcribing/Raw case because we're not 1503 * giving an accurate view of the actual, physical bytes in the page (we're 1504 * overwriting the block mark). That's OK because it's more important to follow 1505 * rule #2. 1506 * 1507 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not 1508 * easy. When reading a page, for example, the NAND Flash MTD code calls our 1509 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an 1510 * ECC-based or raw view of the page is implicit in which function it calls 1511 * (there is a similar pair of ECC-based/raw functions for writing). 1512 */ 1513 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) 1514 { 1515 struct mtd_info *mtd = nand_to_mtd(chip); 1516 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1517 int ret; 1518 1519 /* clear the OOB buffer */ 1520 memset(chip->oob_poi, ~0, mtd->oobsize); 1521 1522 /* Read out the conventional OOB. */ 1523 ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi, 1524 mtd->oobsize); 1525 if (ret) 1526 return ret; 1527 1528 /* 1529 * Now, we want to make sure the block mark is correct. In the 1530 * non-transcribing case (!GPMI_IS_MX23()), we already have it. 1531 * Otherwise, we need to explicitly read it. 1532 */ 1533 if (GPMI_IS_MX23(this)) { 1534 /* Read the block mark into the first byte of the OOB buffer. */ 1535 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1); 1536 if (ret) 1537 return ret; 1538 } 1539 1540 return 0; 1541 } 1542 1543 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) 1544 { 1545 struct mtd_info *mtd = nand_to_mtd(chip); 1546 struct mtd_oob_region of = { }; 1547 1548 /* Do we have available oob area? */ 1549 mtd_ooblayout_free(mtd, 0, &of); 1550 if (!of.length) 1551 return -EPERM; 1552 1553 if (!nand_is_slc(chip)) 1554 return -EPERM; 1555 1556 return nand_prog_page_op(chip, page, mtd->writesize + of.offset, 1557 chip->oob_poi + of.offset, of.length); 1558 } 1559 1560 /* 1561 * This function reads a NAND page without involving the ECC engine (no HW 1562 * ECC correction). 1563 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1564 * inline (interleaved with payload DATA), and do not align data chunk on 1565 * byte boundaries. 1566 * We thus need to take care moving the payload data and ECC bits stored in the 1567 * page into the provided buffers, which is why we're using nand_extract_bits(). 1568 * 1569 * See set_geometry_by_ecc_info inline comments to have a full description 1570 * of the layout used by the GPMI controller. 1571 */ 1572 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1573 int oob_required, int page) 1574 { 1575 struct mtd_info *mtd = nand_to_mtd(chip); 1576 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1577 struct bch_geometry *nfc_geo = &this->bch_geometry; 1578 int eccsize = nfc_geo->ecc_chunk_size; 1579 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1580 u8 *tmp_buf = this->raw_buffer; 1581 size_t src_bit_off; 1582 size_t oob_bit_off; 1583 size_t oob_byte_off; 1584 uint8_t *oob = chip->oob_poi; 1585 int step; 1586 int ret; 1587 1588 ret = nand_read_page_op(chip, page, 0, tmp_buf, 1589 mtd->writesize + mtd->oobsize); 1590 if (ret) 1591 return ret; 1592 1593 /* 1594 * If required, swap the bad block marker and the data stored in the 1595 * metadata section, so that we don't wrongly consider a block as bad. 1596 * 1597 * See the layout description for a detailed explanation on why this 1598 * is needed. 1599 */ 1600 if (this->swap_block_mark) 1601 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1602 1603 /* 1604 * Copy the metadata section into the oob buffer (this section is 1605 * guaranteed to be aligned on a byte boundary). 1606 */ 1607 if (oob_required) 1608 memcpy(oob, tmp_buf, nfc_geo->metadata_size); 1609 1610 oob_bit_off = nfc_geo->metadata_size * 8; 1611 src_bit_off = oob_bit_off; 1612 1613 /* Extract interleaved payload data and ECC bits */ 1614 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1615 if (buf) 1616 nand_extract_bits(buf, step * eccsize * 8, tmp_buf, 1617 src_bit_off, eccsize * 8); 1618 src_bit_off += eccsize * 8; 1619 1620 /* Align last ECC block to align a byte boundary */ 1621 if (step == nfc_geo->ecc_chunk_count - 1 && 1622 (oob_bit_off + eccbits) % 8) 1623 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1624 1625 if (oob_required) 1626 nand_extract_bits(oob, oob_bit_off, tmp_buf, 1627 src_bit_off, eccbits); 1628 1629 src_bit_off += eccbits; 1630 oob_bit_off += eccbits; 1631 } 1632 1633 if (oob_required) { 1634 oob_byte_off = oob_bit_off / 8; 1635 1636 if (oob_byte_off < mtd->oobsize) 1637 memcpy(oob + oob_byte_off, 1638 tmp_buf + mtd->writesize + oob_byte_off, 1639 mtd->oobsize - oob_byte_off); 1640 } 1641 1642 return 0; 1643 } 1644 1645 /* 1646 * This function writes a NAND page without involving the ECC engine (no HW 1647 * ECC generation). 1648 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1649 * inline (interleaved with payload DATA), and do not align data chunk on 1650 * byte boundaries. 1651 * We thus need to take care moving the OOB area at the right place in the 1652 * final page, which is why we're using nand_extract_bits(). 1653 * 1654 * See set_geometry_by_ecc_info inline comments to have a full description 1655 * of the layout used by the GPMI controller. 1656 */ 1657 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1658 int oob_required, int page) 1659 { 1660 struct mtd_info *mtd = nand_to_mtd(chip); 1661 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1662 struct bch_geometry *nfc_geo = &this->bch_geometry; 1663 int eccsize = nfc_geo->ecc_chunk_size; 1664 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1665 u8 *tmp_buf = this->raw_buffer; 1666 uint8_t *oob = chip->oob_poi; 1667 size_t dst_bit_off; 1668 size_t oob_bit_off; 1669 size_t oob_byte_off; 1670 int step; 1671 1672 /* 1673 * Initialize all bits to 1 in case we don't have a buffer for the 1674 * payload or oob data in order to leave unspecified bits of data 1675 * to their initial state. 1676 */ 1677 if (!buf || !oob_required) 1678 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); 1679 1680 /* 1681 * First copy the metadata section (stored in oob buffer) at the 1682 * beginning of the page, as imposed by the GPMI layout. 1683 */ 1684 memcpy(tmp_buf, oob, nfc_geo->metadata_size); 1685 oob_bit_off = nfc_geo->metadata_size * 8; 1686 dst_bit_off = oob_bit_off; 1687 1688 /* Interleave payload data and ECC bits */ 1689 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1690 if (buf) 1691 nand_extract_bits(tmp_buf, dst_bit_off, buf, 1692 step * eccsize * 8, eccsize * 8); 1693 dst_bit_off += eccsize * 8; 1694 1695 /* Align last ECC block to align a byte boundary */ 1696 if (step == nfc_geo->ecc_chunk_count - 1 && 1697 (oob_bit_off + eccbits) % 8) 1698 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1699 1700 if (oob_required) 1701 nand_extract_bits(tmp_buf, dst_bit_off, oob, 1702 oob_bit_off, eccbits); 1703 1704 dst_bit_off += eccbits; 1705 oob_bit_off += eccbits; 1706 } 1707 1708 oob_byte_off = oob_bit_off / 8; 1709 1710 if (oob_required && oob_byte_off < mtd->oobsize) 1711 memcpy(tmp_buf + mtd->writesize + oob_byte_off, 1712 oob + oob_byte_off, mtd->oobsize - oob_byte_off); 1713 1714 /* 1715 * If required, swap the bad block marker and the first byte of the 1716 * metadata section, so that we don't modify the bad block marker. 1717 * 1718 * See the layout description for a detailed explanation on why this 1719 * is needed. 1720 */ 1721 if (this->swap_block_mark) 1722 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1723 1724 return nand_prog_page_op(chip, page, 0, tmp_buf, 1725 mtd->writesize + mtd->oobsize); 1726 } 1727 1728 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) 1729 { 1730 return gpmi_ecc_read_page_raw(chip, NULL, 1, page); 1731 } 1732 1733 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) 1734 { 1735 return gpmi_ecc_write_page_raw(chip, NULL, 1, page); 1736 } 1737 1738 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) 1739 { 1740 struct mtd_info *mtd = nand_to_mtd(chip); 1741 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1742 int ret = 0; 1743 uint8_t *block_mark; 1744 int column, page, chipnr; 1745 1746 chipnr = (int)(ofs >> chip->chip_shift); 1747 nand_select_target(chip, chipnr); 1748 1749 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; 1750 1751 /* Write the block mark. */ 1752 block_mark = this->data_buffer_dma; 1753 block_mark[0] = 0; /* bad block marker */ 1754 1755 /* Shift to get page */ 1756 page = (int)(ofs >> chip->page_shift); 1757 1758 ret = nand_prog_page_op(chip, page, column, block_mark, 1); 1759 1760 nand_deselect_target(chip); 1761 1762 return ret; 1763 } 1764 1765 static int nand_boot_set_geometry(struct gpmi_nand_data *this) 1766 { 1767 struct boot_rom_geometry *geometry = &this->rom_geometry; 1768 1769 /* 1770 * Set the boot block stride size. 1771 * 1772 * In principle, we should be reading this from the OTP bits, since 1773 * that's where the ROM is going to get it. In fact, we don't have any 1774 * way to read the OTP bits, so we go with the default and hope for the 1775 * best. 1776 */ 1777 geometry->stride_size_in_pages = 64; 1778 1779 /* 1780 * Set the search area stride exponent. 1781 * 1782 * In principle, we should be reading this from the OTP bits, since 1783 * that's where the ROM is going to get it. In fact, we don't have any 1784 * way to read the OTP bits, so we go with the default and hope for the 1785 * best. 1786 */ 1787 geometry->search_area_stride_exponent = 2; 1788 return 0; 1789 } 1790 1791 static const char *fingerprint = "STMP"; 1792 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) 1793 { 1794 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1795 struct device *dev = this->dev; 1796 struct nand_chip *chip = &this->nand; 1797 unsigned int search_area_size_in_strides; 1798 unsigned int stride; 1799 unsigned int page; 1800 u8 *buffer = nand_get_data_buf(chip); 1801 int found_an_ncb_fingerprint = false; 1802 int ret; 1803 1804 /* Compute the number of strides in a search area. */ 1805 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1806 1807 nand_select_target(chip, 0); 1808 1809 /* 1810 * Loop through the first search area, looking for the NCB fingerprint. 1811 */ 1812 dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); 1813 1814 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1815 /* Compute the page addresses. */ 1816 page = stride * rom_geo->stride_size_in_pages; 1817 1818 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); 1819 1820 /* 1821 * Read the NCB fingerprint. The fingerprint is four bytes long 1822 * and starts in the 12th byte of the page. 1823 */ 1824 ret = nand_read_page_op(chip, page, 12, buffer, 1825 strlen(fingerprint)); 1826 if (ret) 1827 continue; 1828 1829 /* Look for the fingerprint. */ 1830 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { 1831 found_an_ncb_fingerprint = true; 1832 break; 1833 } 1834 1835 } 1836 1837 nand_deselect_target(chip); 1838 1839 if (found_an_ncb_fingerprint) 1840 dev_dbg(dev, "\tFound a fingerprint\n"); 1841 else 1842 dev_dbg(dev, "\tNo fingerprint found\n"); 1843 return found_an_ncb_fingerprint; 1844 } 1845 1846 /* Writes a transcription stamp. */ 1847 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) 1848 { 1849 struct device *dev = this->dev; 1850 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1851 struct nand_chip *chip = &this->nand; 1852 struct mtd_info *mtd = nand_to_mtd(chip); 1853 unsigned int block_size_in_pages; 1854 unsigned int search_area_size_in_strides; 1855 unsigned int search_area_size_in_pages; 1856 unsigned int search_area_size_in_blocks; 1857 unsigned int block; 1858 unsigned int stride; 1859 unsigned int page; 1860 u8 *buffer = nand_get_data_buf(chip); 1861 int status; 1862 1863 /* Compute the search area geometry. */ 1864 block_size_in_pages = mtd->erasesize / mtd->writesize; 1865 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1866 search_area_size_in_pages = search_area_size_in_strides * 1867 rom_geo->stride_size_in_pages; 1868 search_area_size_in_blocks = 1869 (search_area_size_in_pages + (block_size_in_pages - 1)) / 1870 block_size_in_pages; 1871 1872 dev_dbg(dev, "Search Area Geometry :\n"); 1873 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); 1874 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); 1875 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); 1876 1877 nand_select_target(chip, 0); 1878 1879 /* Loop over blocks in the first search area, erasing them. */ 1880 dev_dbg(dev, "Erasing the search area...\n"); 1881 1882 for (block = 0; block < search_area_size_in_blocks; block++) { 1883 /* Erase this block. */ 1884 dev_dbg(dev, "\tErasing block 0x%x\n", block); 1885 status = nand_erase_op(chip, block); 1886 if (status) 1887 dev_err(dev, "[%s] Erase failed.\n", __func__); 1888 } 1889 1890 /* Write the NCB fingerprint into the page buffer. */ 1891 memset(buffer, ~0, mtd->writesize); 1892 memcpy(buffer + 12, fingerprint, strlen(fingerprint)); 1893 1894 /* Loop through the first search area, writing NCB fingerprints. */ 1895 dev_dbg(dev, "Writing NCB fingerprints...\n"); 1896 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1897 /* Compute the page addresses. */ 1898 page = stride * rom_geo->stride_size_in_pages; 1899 1900 /* Write the first page of the current stride. */ 1901 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); 1902 1903 status = chip->ecc.write_page_raw(chip, buffer, 0, page); 1904 if (status) 1905 dev_err(dev, "[%s] Write failed.\n", __func__); 1906 } 1907 1908 nand_deselect_target(chip); 1909 1910 return 0; 1911 } 1912 1913 static int mx23_boot_init(struct gpmi_nand_data *this) 1914 { 1915 struct device *dev = this->dev; 1916 struct nand_chip *chip = &this->nand; 1917 struct mtd_info *mtd = nand_to_mtd(chip); 1918 unsigned int block_count; 1919 unsigned int block; 1920 int chipnr; 1921 int page; 1922 loff_t byte; 1923 uint8_t block_mark; 1924 int ret = 0; 1925 1926 /* 1927 * If control arrives here, we can't use block mark swapping, which 1928 * means we're forced to use transcription. First, scan for the 1929 * transcription stamp. If we find it, then we don't have to do 1930 * anything -- the block marks are already transcribed. 1931 */ 1932 if (mx23_check_transcription_stamp(this)) 1933 return 0; 1934 1935 /* 1936 * If control arrives here, we couldn't find a transcription stamp, so 1937 * so we presume the block marks are in the conventional location. 1938 */ 1939 dev_dbg(dev, "Transcribing bad block marks...\n"); 1940 1941 /* Compute the number of blocks in the entire medium. */ 1942 block_count = nanddev_eraseblocks_per_target(&chip->base); 1943 1944 /* 1945 * Loop over all the blocks in the medium, transcribing block marks as 1946 * we go. 1947 */ 1948 for (block = 0; block < block_count; block++) { 1949 /* 1950 * Compute the chip, page and byte addresses for this block's 1951 * conventional mark. 1952 */ 1953 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); 1954 page = block << (chip->phys_erase_shift - chip->page_shift); 1955 byte = block << chip->phys_erase_shift; 1956 1957 /* Send the command to read the conventional block mark. */ 1958 nand_select_target(chip, chipnr); 1959 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark, 1960 1); 1961 nand_deselect_target(chip); 1962 1963 if (ret) 1964 continue; 1965 1966 /* 1967 * Check if the block is marked bad. If so, we need to mark it 1968 * again, but this time the result will be a mark in the 1969 * location where we transcribe block marks. 1970 */ 1971 if (block_mark != 0xff) { 1972 dev_dbg(dev, "Transcribing mark in block %u\n", block); 1973 ret = chip->legacy.block_markbad(chip, byte); 1974 if (ret) 1975 dev_err(dev, 1976 "Failed to mark block bad with ret %d\n", 1977 ret); 1978 } 1979 } 1980 1981 /* Write the stamp that indicates we've transcribed the block marks. */ 1982 mx23_write_transcription_stamp(this); 1983 return 0; 1984 } 1985 1986 static int nand_boot_init(struct gpmi_nand_data *this) 1987 { 1988 nand_boot_set_geometry(this); 1989 1990 /* This is ROM arch-specific initilization before the BBT scanning. */ 1991 if (GPMI_IS_MX23(this)) 1992 return mx23_boot_init(this); 1993 return 0; 1994 } 1995 1996 static int gpmi_set_geometry(struct gpmi_nand_data *this) 1997 { 1998 int ret; 1999 2000 /* Free the temporary DMA memory for reading ID. */ 2001 gpmi_free_dma_buffer(this); 2002 2003 /* Set up the NFC geometry which is used by BCH. */ 2004 ret = bch_set_geometry(this); 2005 if (ret) { 2006 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); 2007 return ret; 2008 } 2009 2010 /* Alloc the new DMA buffers according to the pagesize and oobsize */ 2011 return gpmi_alloc_dma_buffer(this); 2012 } 2013 2014 static int gpmi_init_last(struct gpmi_nand_data *this) 2015 { 2016 struct nand_chip *chip = &this->nand; 2017 struct mtd_info *mtd = nand_to_mtd(chip); 2018 struct nand_ecc_ctrl *ecc = &chip->ecc; 2019 struct bch_geometry *bch_geo = &this->bch_geometry; 2020 int ret; 2021 2022 /* Set up the medium geometry */ 2023 ret = gpmi_set_geometry(this); 2024 if (ret) 2025 return ret; 2026 2027 /* Init the nand_ecc_ctrl{} */ 2028 ecc->read_page = gpmi_ecc_read_page; 2029 ecc->write_page = gpmi_ecc_write_page; 2030 ecc->read_oob = gpmi_ecc_read_oob; 2031 ecc->write_oob = gpmi_ecc_write_oob; 2032 ecc->read_page_raw = gpmi_ecc_read_page_raw; 2033 ecc->write_page_raw = gpmi_ecc_write_page_raw; 2034 ecc->read_oob_raw = gpmi_ecc_read_oob_raw; 2035 ecc->write_oob_raw = gpmi_ecc_write_oob_raw; 2036 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2037 ecc->size = bch_geo->ecc_chunk_size; 2038 ecc->strength = bch_geo->ecc_strength; 2039 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); 2040 2041 /* 2042 * We only enable the subpage read when: 2043 * (1) the chip is imx6, and 2044 * (2) the size of the ECC parity is byte aligned. 2045 */ 2046 if (GPMI_IS_MX6(this) && 2047 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { 2048 ecc->read_subpage = gpmi_ecc_read_subpage; 2049 chip->options |= NAND_SUBPAGE_READ; 2050 } 2051 2052 return 0; 2053 } 2054 2055 static int gpmi_nand_attach_chip(struct nand_chip *chip) 2056 { 2057 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2058 int ret; 2059 2060 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2061 chip->bbt_options |= NAND_BBT_NO_OOB; 2062 2063 if (of_property_read_bool(this->dev->of_node, 2064 "fsl,no-blockmark-swap")) 2065 this->swap_block_mark = false; 2066 } 2067 dev_dbg(this->dev, "Blockmark swapping %sabled\n", 2068 this->swap_block_mark ? "en" : "dis"); 2069 2070 ret = gpmi_init_last(this); 2071 if (ret) 2072 return ret; 2073 2074 chip->options |= NAND_SKIP_BBTSCAN; 2075 2076 return 0; 2077 } 2078 2079 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this) 2080 { 2081 struct gpmi_transfer *transfer = &this->transfers[this->ntransfers]; 2082 2083 this->ntransfers++; 2084 2085 if (this->ntransfers == GPMI_MAX_TRANSFERS) 2086 return NULL; 2087 2088 return transfer; 2089 } 2090 2091 static struct dma_async_tx_descriptor *gpmi_chain_command( 2092 struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr) 2093 { 2094 struct dma_chan *channel = get_dma_chan(this); 2095 struct dma_async_tx_descriptor *desc; 2096 struct gpmi_transfer *transfer; 2097 int chip = this->nand.cur_cs; 2098 u32 pio[3]; 2099 2100 /* [1] send out the PIO words */ 2101 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2102 | BM_GPMI_CTRL0_WORD_LENGTH 2103 | BF_GPMI_CTRL0_CS(chip, this) 2104 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2105 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) 2106 | BM_GPMI_CTRL0_ADDRESS_INCREMENT 2107 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1); 2108 pio[1] = 0; 2109 pio[2] = 0; 2110 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2111 DMA_TRANS_NONE, 0); 2112 if (!desc) 2113 return NULL; 2114 2115 transfer = get_next_transfer(this); 2116 if (!transfer) 2117 return NULL; 2118 2119 transfer->cmdbuf[0] = cmd; 2120 if (naddr) 2121 memcpy(&transfer->cmdbuf[1], addr, naddr); 2122 2123 sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1); 2124 dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE); 2125 2126 transfer->direction = DMA_TO_DEVICE; 2127 2128 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV, 2129 MXS_DMA_CTRL_WAIT4END); 2130 return desc; 2131 } 2132 2133 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready( 2134 struct gpmi_nand_data *this) 2135 { 2136 struct dma_chan *channel = get_dma_chan(this); 2137 u32 pio[2]; 2138 2139 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY) 2140 | BM_GPMI_CTRL0_WORD_LENGTH 2141 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2142 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2143 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2144 | BF_GPMI_CTRL0_XFER_COUNT(0); 2145 pio[1] = 0; 2146 2147 return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE, 2148 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY); 2149 } 2150 2151 static struct dma_async_tx_descriptor *gpmi_chain_data_read( 2152 struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct) 2153 { 2154 struct dma_async_tx_descriptor *desc; 2155 struct dma_chan *channel = get_dma_chan(this); 2156 struct gpmi_transfer *transfer; 2157 u32 pio[6] = {}; 2158 2159 transfer = get_next_transfer(this); 2160 if (!transfer) 2161 return NULL; 2162 2163 transfer->direction = DMA_FROM_DEVICE; 2164 2165 *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl, 2166 DMA_FROM_DEVICE); 2167 2168 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) 2169 | BM_GPMI_CTRL0_WORD_LENGTH 2170 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2171 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2172 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2173 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2174 2175 if (this->bch) { 2176 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2177 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE) 2178 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 2179 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2180 pio[3] = raw_len; 2181 pio[4] = transfer->sgl.dma_address; 2182 pio[5] = this->auxiliary_phys; 2183 } 2184 2185 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2186 DMA_TRANS_NONE, 0); 2187 if (!desc) 2188 return NULL; 2189 2190 if (!this->bch) 2191 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2192 DMA_DEV_TO_MEM, 2193 MXS_DMA_CTRL_WAIT4END); 2194 2195 return desc; 2196 } 2197 2198 static struct dma_async_tx_descriptor *gpmi_chain_data_write( 2199 struct gpmi_nand_data *this, const void *buf, int raw_len) 2200 { 2201 struct dma_chan *channel = get_dma_chan(this); 2202 struct dma_async_tx_descriptor *desc; 2203 struct gpmi_transfer *transfer; 2204 u32 pio[6] = {}; 2205 2206 transfer = get_next_transfer(this); 2207 if (!transfer) 2208 return NULL; 2209 2210 transfer->direction = DMA_TO_DEVICE; 2211 2212 prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE); 2213 2214 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2215 | BM_GPMI_CTRL0_WORD_LENGTH 2216 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2217 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2218 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2219 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2220 2221 if (this->bch) { 2222 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2223 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE) 2224 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | 2225 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2226 pio[3] = raw_len; 2227 pio[4] = transfer->sgl.dma_address; 2228 pio[5] = this->auxiliary_phys; 2229 } 2230 2231 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2232 DMA_TRANS_NONE, 2233 (this->bch ? MXS_DMA_CTRL_WAIT4END : 0)); 2234 if (!desc) 2235 return NULL; 2236 2237 if (!this->bch) 2238 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2239 DMA_MEM_TO_DEV, 2240 MXS_DMA_CTRL_WAIT4END); 2241 2242 return desc; 2243 } 2244 2245 static int gpmi_nfc_exec_op(struct nand_chip *chip, 2246 const struct nand_operation *op, 2247 bool check_only) 2248 { 2249 const struct nand_op_instr *instr; 2250 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2251 struct dma_async_tx_descriptor *desc = NULL; 2252 int i, ret, buf_len = 0, nbufs = 0; 2253 u8 cmd = 0; 2254 void *buf_read = NULL; 2255 const void *buf_write = NULL; 2256 bool direct = false; 2257 struct completion *dma_completion, *bch_completion; 2258 unsigned long to; 2259 2260 if (check_only) 2261 return 0; 2262 2263 this->ntransfers = 0; 2264 for (i = 0; i < GPMI_MAX_TRANSFERS; i++) 2265 this->transfers[i].direction = DMA_NONE; 2266 2267 ret = pm_runtime_get_sync(this->dev); 2268 if (ret < 0) { 2269 pm_runtime_put_noidle(this->dev); 2270 return ret; 2271 } 2272 2273 /* 2274 * This driver currently supports only one NAND chip. Plus, dies share 2275 * the same configuration. So once timings have been applied on the 2276 * controller side, they will not change anymore. When the time will 2277 * come, the check on must_apply_timings will have to be dropped. 2278 */ 2279 if (this->hw.must_apply_timings) { 2280 this->hw.must_apply_timings = false; 2281 gpmi_nfc_apply_timings(this); 2282 } 2283 2284 dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs); 2285 2286 for (i = 0; i < op->ninstrs; i++) { 2287 instr = &op->instrs[i]; 2288 2289 nand_op_trace(" ", instr); 2290 2291 switch (instr->type) { 2292 case NAND_OP_WAITRDY_INSTR: 2293 desc = gpmi_chain_wait_ready(this); 2294 break; 2295 case NAND_OP_CMD_INSTR: 2296 cmd = instr->ctx.cmd.opcode; 2297 2298 /* 2299 * When this command has an address cycle chain it 2300 * together with the address cycle 2301 */ 2302 if (i + 1 != op->ninstrs && 2303 op->instrs[i + 1].type == NAND_OP_ADDR_INSTR) 2304 continue; 2305 2306 desc = gpmi_chain_command(this, cmd, NULL, 0); 2307 2308 break; 2309 case NAND_OP_ADDR_INSTR: 2310 desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs, 2311 instr->ctx.addr.naddrs); 2312 break; 2313 case NAND_OP_DATA_OUT_INSTR: 2314 buf_write = instr->ctx.data.buf.out; 2315 buf_len = instr->ctx.data.len; 2316 nbufs++; 2317 2318 desc = gpmi_chain_data_write(this, buf_write, buf_len); 2319 2320 break; 2321 case NAND_OP_DATA_IN_INSTR: 2322 if (!instr->ctx.data.len) 2323 break; 2324 buf_read = instr->ctx.data.buf.in; 2325 buf_len = instr->ctx.data.len; 2326 nbufs++; 2327 2328 desc = gpmi_chain_data_read(this, buf_read, buf_len, 2329 &direct); 2330 break; 2331 } 2332 2333 if (!desc) { 2334 ret = -ENXIO; 2335 goto unmap; 2336 } 2337 } 2338 2339 dev_dbg(this->dev, "%s setup done\n", __func__); 2340 2341 if (nbufs > 1) { 2342 dev_err(this->dev, "Multiple data instructions not supported\n"); 2343 ret = -EINVAL; 2344 goto unmap; 2345 } 2346 2347 if (this->bch) { 2348 writel(this->bch_flashlayout0, 2349 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0); 2350 writel(this->bch_flashlayout1, 2351 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1); 2352 } 2353 2354 desc->callback = dma_irq_callback; 2355 desc->callback_param = this; 2356 dma_completion = &this->dma_done; 2357 bch_completion = NULL; 2358 2359 init_completion(dma_completion); 2360 2361 if (this->bch && buf_read) { 2362 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2363 this->resources.bch_regs + HW_BCH_CTRL_SET); 2364 bch_completion = &this->bch_done; 2365 init_completion(bch_completion); 2366 } 2367 2368 dmaengine_submit(desc); 2369 dma_async_issue_pending(get_dma_chan(this)); 2370 2371 to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000)); 2372 if (!to) { 2373 dev_err(this->dev, "DMA timeout, last DMA\n"); 2374 gpmi_dump_info(this); 2375 ret = -ETIMEDOUT; 2376 goto unmap; 2377 } 2378 2379 if (this->bch && buf_read) { 2380 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000)); 2381 if (!to) { 2382 dev_err(this->dev, "BCH timeout, last DMA\n"); 2383 gpmi_dump_info(this); 2384 ret = -ETIMEDOUT; 2385 goto unmap; 2386 } 2387 } 2388 2389 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2390 this->resources.bch_regs + HW_BCH_CTRL_CLR); 2391 gpmi_clear_bch(this); 2392 2393 ret = 0; 2394 2395 unmap: 2396 for (i = 0; i < this->ntransfers; i++) { 2397 struct gpmi_transfer *transfer = &this->transfers[i]; 2398 2399 if (transfer->direction != DMA_NONE) 2400 dma_unmap_sg(this->dev, &transfer->sgl, 1, 2401 transfer->direction); 2402 } 2403 2404 if (!ret && buf_read && !direct) 2405 memcpy(buf_read, this->data_buffer_dma, 2406 gpmi_raw_len_to_len(this, buf_len)); 2407 2408 this->bch = false; 2409 2410 pm_runtime_mark_last_busy(this->dev); 2411 pm_runtime_put_autosuspend(this->dev); 2412 2413 return ret; 2414 } 2415 2416 static const struct nand_controller_ops gpmi_nand_controller_ops = { 2417 .attach_chip = gpmi_nand_attach_chip, 2418 .setup_interface = gpmi_setup_interface, 2419 .exec_op = gpmi_nfc_exec_op, 2420 }; 2421 2422 static int gpmi_nand_init(struct gpmi_nand_data *this) 2423 { 2424 struct nand_chip *chip = &this->nand; 2425 struct mtd_info *mtd = nand_to_mtd(chip); 2426 int ret; 2427 2428 /* init the MTD data structures */ 2429 mtd->name = "gpmi-nand"; 2430 mtd->dev.parent = this->dev; 2431 2432 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ 2433 nand_set_controller_data(chip, this); 2434 nand_set_flash_node(chip, this->pdev->dev.of_node); 2435 chip->legacy.block_markbad = gpmi_block_markbad; 2436 chip->badblock_pattern = &gpmi_bbt_descr; 2437 chip->options |= NAND_NO_SUBPAGE_WRITE; 2438 2439 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ 2440 this->swap_block_mark = !GPMI_IS_MX23(this); 2441 2442 /* 2443 * Allocate a temporary DMA buffer for reading ID in the 2444 * nand_scan_ident(). 2445 */ 2446 this->bch_geometry.payload_size = 1024; 2447 this->bch_geometry.auxiliary_size = 128; 2448 ret = gpmi_alloc_dma_buffer(this); 2449 if (ret) 2450 return ret; 2451 2452 nand_controller_init(&this->base); 2453 this->base.ops = &gpmi_nand_controller_ops; 2454 chip->controller = &this->base; 2455 2456 ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); 2457 if (ret) 2458 goto err_out; 2459 2460 ret = nand_boot_init(this); 2461 if (ret) 2462 goto err_nand_cleanup; 2463 ret = nand_create_bbt(chip); 2464 if (ret) 2465 goto err_nand_cleanup; 2466 2467 ret = mtd_device_register(mtd, NULL, 0); 2468 if (ret) 2469 goto err_nand_cleanup; 2470 return 0; 2471 2472 err_nand_cleanup: 2473 nand_cleanup(chip); 2474 err_out: 2475 gpmi_free_dma_buffer(this); 2476 return ret; 2477 } 2478 2479 static const struct of_device_id gpmi_nand_id_table[] = { 2480 { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, }, 2481 { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, }, 2482 { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, }, 2483 { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, }, 2484 { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,}, 2485 {} 2486 }; 2487 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); 2488 2489 static int gpmi_nand_probe(struct platform_device *pdev) 2490 { 2491 struct gpmi_nand_data *this; 2492 int ret; 2493 2494 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); 2495 if (!this) 2496 return -ENOMEM; 2497 2498 this->devdata = of_device_get_match_data(&pdev->dev); 2499 platform_set_drvdata(pdev, this); 2500 this->pdev = pdev; 2501 this->dev = &pdev->dev; 2502 2503 ret = acquire_resources(this); 2504 if (ret) 2505 goto exit_acquire_resources; 2506 2507 ret = __gpmi_enable_clk(this, true); 2508 if (ret) 2509 goto exit_acquire_resources; 2510 2511 pm_runtime_set_autosuspend_delay(&pdev->dev, 500); 2512 pm_runtime_use_autosuspend(&pdev->dev); 2513 pm_runtime_set_active(&pdev->dev); 2514 pm_runtime_enable(&pdev->dev); 2515 pm_runtime_get_sync(&pdev->dev); 2516 2517 ret = gpmi_init(this); 2518 if (ret) 2519 goto exit_nfc_init; 2520 2521 ret = gpmi_nand_init(this); 2522 if (ret) 2523 goto exit_nfc_init; 2524 2525 pm_runtime_mark_last_busy(&pdev->dev); 2526 pm_runtime_put_autosuspend(&pdev->dev); 2527 2528 dev_info(this->dev, "driver registered.\n"); 2529 2530 return 0; 2531 2532 exit_nfc_init: 2533 pm_runtime_put(&pdev->dev); 2534 pm_runtime_disable(&pdev->dev); 2535 release_resources(this); 2536 exit_acquire_resources: 2537 2538 return ret; 2539 } 2540 2541 static int gpmi_nand_remove(struct platform_device *pdev) 2542 { 2543 struct gpmi_nand_data *this = platform_get_drvdata(pdev); 2544 struct nand_chip *chip = &this->nand; 2545 int ret; 2546 2547 pm_runtime_put_sync(&pdev->dev); 2548 pm_runtime_disable(&pdev->dev); 2549 2550 ret = mtd_device_unregister(nand_to_mtd(chip)); 2551 WARN_ON(ret); 2552 nand_cleanup(chip); 2553 gpmi_free_dma_buffer(this); 2554 release_resources(this); 2555 return 0; 2556 } 2557 2558 #ifdef CONFIG_PM_SLEEP 2559 static int gpmi_pm_suspend(struct device *dev) 2560 { 2561 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2562 2563 release_dma_channels(this); 2564 return 0; 2565 } 2566 2567 static int gpmi_pm_resume(struct device *dev) 2568 { 2569 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2570 int ret; 2571 2572 ret = acquire_dma_channels(this); 2573 if (ret < 0) 2574 return ret; 2575 2576 /* re-init the GPMI registers */ 2577 ret = gpmi_init(this); 2578 if (ret) { 2579 dev_err(this->dev, "Error setting GPMI : %d\n", ret); 2580 return ret; 2581 } 2582 2583 /* Set flag to get timing setup restored for next exec_op */ 2584 if (this->hw.clk_rate) 2585 this->hw.must_apply_timings = true; 2586 2587 /* re-init the BCH registers */ 2588 ret = bch_set_geometry(this); 2589 if (ret) { 2590 dev_err(this->dev, "Error setting BCH : %d\n", ret); 2591 return ret; 2592 } 2593 2594 return 0; 2595 } 2596 #endif /* CONFIG_PM_SLEEP */ 2597 2598 static int __maybe_unused gpmi_runtime_suspend(struct device *dev) 2599 { 2600 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2601 2602 return __gpmi_enable_clk(this, false); 2603 } 2604 2605 static int __maybe_unused gpmi_runtime_resume(struct device *dev) 2606 { 2607 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2608 2609 return __gpmi_enable_clk(this, true); 2610 } 2611 2612 static const struct dev_pm_ops gpmi_pm_ops = { 2613 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) 2614 SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL) 2615 }; 2616 2617 static struct platform_driver gpmi_nand_driver = { 2618 .driver = { 2619 .name = "gpmi-nand", 2620 .pm = &gpmi_pm_ops, 2621 .of_match_table = gpmi_nand_id_table, 2622 }, 2623 .probe = gpmi_nand_probe, 2624 .remove = gpmi_nand_remove, 2625 }; 2626 module_platform_driver(gpmi_nand_driver); 2627 2628 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 2629 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); 2630 MODULE_LICENSE("GPL"); 2631