xref: /openbmc/linux/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22 
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
27 
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30 
31 #define MXS_SET_ADDR		0x4
32 #define MXS_CLR_ADDR		0x8
33 /*
34  * Clear the bit and poll it cleared.  This is usually called with
35  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36  * (bit 30).
37  */
38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40 	int timeout = 0x400;
41 
42 	/* clear the bit */
43 	writel(mask, addr + MXS_CLR_ADDR);
44 
45 	/*
46 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
47 	 * recommends to wait 1us.
48 	 */
49 	udelay(1);
50 
51 	/* poll the bit becoming clear */
52 	while ((readl(addr) & mask) && --timeout)
53 		/* nothing */;
54 
55 	return !timeout;
56 }
57 
58 #define MODULE_CLKGATE		(1 << 30)
59 #define MODULE_SFTRST		(1 << 31)
60 /*
61  * The current mxs_reset_block() will do two things:
62  *  [1] enable the module.
63  *  [2] reset the module.
64  *
65  * In most of the cases, it's ok.
66  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67  * If you try to soft reset the BCH block, it becomes unusable until
68  * the next hard reset. This case occurs in the NAND boot mode. When the board
69  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71  * You will see a DMA timeout in this case. The bug has been fixed
72  * in the following chips, such as MX28.
73  *
74  * To avoid this bug, just add a new parameter `just_enable` for
75  * the mxs_reset_block(), and rewrite it here.
76  */
77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79 	int ret;
80 	int timeout = 0x400;
81 
82 	/* clear and poll SFTRST */
83 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84 	if (unlikely(ret))
85 		goto error;
86 
87 	/* clear CLKGATE */
88 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89 
90 	if (!just_enable) {
91 		/* set SFTRST to reset the block */
92 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93 		udelay(1);
94 
95 		/* poll CLKGATE becoming set */
96 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97 			/* nothing */;
98 		if (unlikely(!timeout))
99 			goto error;
100 	}
101 
102 	/* clear and poll SFTRST */
103 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104 	if (unlikely(ret))
105 		goto error;
106 
107 	/* clear and poll CLKGATE */
108 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109 	if (unlikely(ret))
110 		goto error;
111 
112 	return 0;
113 
114 error:
115 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116 	return -ETIMEDOUT;
117 }
118 
119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121 	struct clk *clk;
122 	int ret;
123 	int i;
124 
125 	for (i = 0; i < GPMI_CLK_MAX; i++) {
126 		clk = this->resources.clock[i];
127 		if (!clk)
128 			break;
129 
130 		if (v) {
131 			ret = clk_prepare_enable(clk);
132 			if (ret)
133 				goto err_clk;
134 		} else {
135 			clk_disable_unprepare(clk);
136 		}
137 	}
138 	return 0;
139 
140 err_clk:
141 	for (; i > 0; i--)
142 		clk_disable_unprepare(this->resources.clock[i - 1]);
143 	return ret;
144 }
145 
146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148 	struct resources *r = &this->resources;
149 	int ret;
150 
151 	ret = pm_runtime_get_sync(this->dev);
152 	if (ret < 0)
153 		return ret;
154 
155 	ret = gpmi_reset_block(r->gpmi_regs, false);
156 	if (ret)
157 		goto err_out;
158 
159 	/*
160 	 * Reset BCH here, too. We got failures otherwise :(
161 	 * See later BCH reset for explanation of MX23 and MX28 handling
162 	 */
163 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
164 	if (ret)
165 		goto err_out;
166 
167 	/* Choose NAND mode. */
168 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
169 
170 	/* Set the IRQ polarity. */
171 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
172 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
173 
174 	/* Disable Write-Protection. */
175 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
176 
177 	/* Select BCH ECC. */
178 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
179 
180 	/*
181 	 * Decouple the chip select from dma channel. We use dma0 for all
182 	 * the chips.
183 	 */
184 	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
185 
186 err_out:
187 	pm_runtime_mark_last_busy(this->dev);
188 	pm_runtime_put_autosuspend(this->dev);
189 	return ret;
190 }
191 
192 /* This function is very useful. It is called only when the bug occur. */
193 static void gpmi_dump_info(struct gpmi_nand_data *this)
194 {
195 	struct resources *r = &this->resources;
196 	struct bch_geometry *geo = &this->bch_geometry;
197 	u32 reg;
198 	int i;
199 
200 	dev_err(this->dev, "Show GPMI registers :\n");
201 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
202 		reg = readl(r->gpmi_regs + i * 0x10);
203 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
204 	}
205 
206 	/* start to print out the BCH info */
207 	dev_err(this->dev, "Show BCH registers :\n");
208 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
209 		reg = readl(r->bch_regs + i * 0x10);
210 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
211 	}
212 	dev_err(this->dev, "BCH Geometry :\n"
213 		"GF length              : %u\n"
214 		"ECC Strength           : %u\n"
215 		"Page Size in Bytes     : %u\n"
216 		"Metadata Size in Bytes : %u\n"
217 		"ECC Chunk Size in Bytes: %u\n"
218 		"ECC Chunk Count        : %u\n"
219 		"Payload Size in Bytes  : %u\n"
220 		"Auxiliary Size in Bytes: %u\n"
221 		"Auxiliary Status Offset: %u\n"
222 		"Block Mark Byte Offset : %u\n"
223 		"Block Mark Bit Offset  : %u\n",
224 		geo->gf_len,
225 		geo->ecc_strength,
226 		geo->page_size,
227 		geo->metadata_size,
228 		geo->ecc_chunk_size,
229 		geo->ecc_chunk_count,
230 		geo->payload_size,
231 		geo->auxiliary_size,
232 		geo->auxiliary_status_offset,
233 		geo->block_mark_byte_offset,
234 		geo->block_mark_bit_offset);
235 }
236 
237 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
238 {
239 	struct bch_geometry *geo = &this->bch_geometry;
240 
241 	/* Do the sanity check. */
242 	if (GPMI_IS_MXS(this)) {
243 		/* The mx23/mx28 only support the GF13. */
244 		if (geo->gf_len == 14)
245 			return false;
246 	}
247 	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
248 }
249 
250 /*
251  * If we can get the ECC information from the nand chip, we do not
252  * need to calculate them ourselves.
253  *
254  * We may have available oob space in this case.
255  */
256 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
257 				    unsigned int ecc_strength,
258 				    unsigned int ecc_step)
259 {
260 	struct bch_geometry *geo = &this->bch_geometry;
261 	struct nand_chip *chip = &this->nand;
262 	struct mtd_info *mtd = nand_to_mtd(chip);
263 	unsigned int block_mark_bit_offset;
264 
265 	switch (ecc_step) {
266 	case SZ_512:
267 		geo->gf_len = 13;
268 		break;
269 	case SZ_1K:
270 		geo->gf_len = 14;
271 		break;
272 	default:
273 		dev_err(this->dev,
274 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
275 			nanddev_get_ecc_requirements(&chip->base)->strength,
276 			nanddev_get_ecc_requirements(&chip->base)->step_size);
277 		return -EINVAL;
278 	}
279 	geo->ecc_chunk_size = ecc_step;
280 	geo->ecc_strength = round_up(ecc_strength, 2);
281 	if (!gpmi_check_ecc(this))
282 		return -EINVAL;
283 
284 	/* Keep the C >= O */
285 	if (geo->ecc_chunk_size < mtd->oobsize) {
286 		dev_err(this->dev,
287 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
288 			ecc_step, mtd->oobsize);
289 		return -EINVAL;
290 	}
291 
292 	/* The default value, see comment in the legacy_set_geometry(). */
293 	geo->metadata_size = 10;
294 
295 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
296 
297 	/*
298 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
299 	 *
300 	 *    |                          P                            |
301 	 *    |<----------------------------------------------------->|
302 	 *    |                                                       |
303 	 *    |                                        (Block Mark)   |
304 	 *    |                      P'                      |      | |     |
305 	 *    |<-------------------------------------------->|  D   | |  O' |
306 	 *    |                                              |<---->| |<--->|
307 	 *    V                                              V      V V     V
308 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
309 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
310 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
311 	 *                                                   ^              ^
312 	 *                                                   |      O       |
313 	 *                                                   |<------------>|
314 	 *                                                   |              |
315 	 *
316 	 *	P : the page size for BCH module.
317 	 *	E : The ECC strength.
318 	 *	G : the length of Galois Field.
319 	 *	N : The chunk count of per page.
320 	 *	M : the metasize of per page.
321 	 *	C : the ecc chunk size, aka the "data" above.
322 	 *	P': the nand chip's page size.
323 	 *	O : the nand chip's oob size.
324 	 *	O': the free oob.
325 	 *
326 	 *	The formula for P is :
327 	 *
328 	 *	            E * G * N
329 	 *	       P = ------------ + P' + M
330 	 *                      8
331 	 *
332 	 * The position of block mark moves forward in the ECC-based view
333 	 * of page, and the delta is:
334 	 *
335 	 *                   E * G * (N - 1)
336 	 *             D = (---------------- + M)
337 	 *                          8
338 	 *
339 	 * Please see the comment in legacy_set_geometry().
340 	 * With the condition C >= O , we still can get same result.
341 	 * So the bit position of the physical block mark within the ECC-based
342 	 * view of the page is :
343 	 *             (P' - D) * 8
344 	 */
345 	geo->page_size = mtd->writesize + geo->metadata_size +
346 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
347 
348 	geo->payload_size = mtd->writesize;
349 
350 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
351 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
352 				+ ALIGN(geo->ecc_chunk_count, 4);
353 
354 	if (!this->swap_block_mark)
355 		return 0;
356 
357 	/* For bit swap. */
358 	block_mark_bit_offset = mtd->writesize * 8 -
359 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
360 				+ geo->metadata_size * 8);
361 
362 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
363 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
364 	return 0;
365 }
366 
367 /*
368  *  Calculate the ECC strength by hand:
369  *	E : The ECC strength.
370  *	G : the length of Galois Field.
371  *	N : The chunk count of per page.
372  *	O : the oobsize of the NAND chip.
373  *	M : the metasize of per page.
374  *
375  *	The formula is :
376  *		E * G * N
377  *	      ------------ <= (O - M)
378  *                  8
379  *
380  *      So, we get E by:
381  *                    (O - M) * 8
382  *              E <= -------------
383  *                       G * N
384  */
385 static inline int get_ecc_strength(struct gpmi_nand_data *this)
386 {
387 	struct bch_geometry *geo = &this->bch_geometry;
388 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
389 	int ecc_strength;
390 
391 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
392 			/ (geo->gf_len * geo->ecc_chunk_count);
393 
394 	/* We need the minor even number. */
395 	return round_down(ecc_strength, 2);
396 }
397 
398 static int legacy_set_geometry(struct gpmi_nand_data *this)
399 {
400 	struct bch_geometry *geo = &this->bch_geometry;
401 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
402 	unsigned int metadata_size;
403 	unsigned int status_size;
404 	unsigned int block_mark_bit_offset;
405 
406 	/*
407 	 * The size of the metadata can be changed, though we set it to 10
408 	 * bytes now. But it can't be too large, because we have to save
409 	 * enough space for BCH.
410 	 */
411 	geo->metadata_size = 10;
412 
413 	/* The default for the length of Galois Field. */
414 	geo->gf_len = 13;
415 
416 	/* The default for chunk size. */
417 	geo->ecc_chunk_size = 512;
418 	while (geo->ecc_chunk_size < mtd->oobsize) {
419 		geo->ecc_chunk_size *= 2; /* keep C >= O */
420 		geo->gf_len = 14;
421 	}
422 
423 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
424 
425 	/* We use the same ECC strength for all chunks. */
426 	geo->ecc_strength = get_ecc_strength(this);
427 	if (!gpmi_check_ecc(this)) {
428 		dev_err(this->dev,
429 			"ecc strength: %d cannot be supported by the controller (%d)\n"
430 			"try to use minimum ecc strength that NAND chip required\n",
431 			geo->ecc_strength,
432 			this->devdata->bch_max_ecc_strength);
433 		return -EINVAL;
434 	}
435 
436 	geo->page_size = mtd->writesize + geo->metadata_size +
437 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
438 	geo->payload_size = mtd->writesize;
439 
440 	/*
441 	 * The auxiliary buffer contains the metadata and the ECC status. The
442 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
443 	 * contains one byte for every ECC chunk, and is also padded to the
444 	 * nearest 32-bit boundary.
445 	 */
446 	metadata_size = ALIGN(geo->metadata_size, 4);
447 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
448 
449 	geo->auxiliary_size = metadata_size + status_size;
450 	geo->auxiliary_status_offset = metadata_size;
451 
452 	if (!this->swap_block_mark)
453 		return 0;
454 
455 	/*
456 	 * We need to compute the byte and bit offsets of
457 	 * the physical block mark within the ECC-based view of the page.
458 	 *
459 	 * NAND chip with 2K page shows below:
460 	 *                                             (Block Mark)
461 	 *                                                   |      |
462 	 *                                                   |  D   |
463 	 *                                                   |<---->|
464 	 *                                                   V      V
465 	 *    +---+----------+-+----------+-+----------+-+----------+-+
466 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
467 	 *    +---+----------+-+----------+-+----------+-+----------+-+
468 	 *
469 	 * The position of block mark moves forward in the ECC-based view
470 	 * of page, and the delta is:
471 	 *
472 	 *                   E * G * (N - 1)
473 	 *             D = (---------------- + M)
474 	 *                          8
475 	 *
476 	 * With the formula to compute the ECC strength, and the condition
477 	 *       : C >= O         (C is the ecc chunk size)
478 	 *
479 	 * It's easy to deduce to the following result:
480 	 *
481 	 *         E * G       (O - M)      C - M         C - M
482 	 *      ----------- <= ------- <=  --------  <  ---------
483 	 *           8            N           N          (N - 1)
484 	 *
485 	 *  So, we get:
486 	 *
487 	 *                   E * G * (N - 1)
488 	 *             D = (---------------- + M) < C
489 	 *                          8
490 	 *
491 	 *  The above inequality means the position of block mark
492 	 *  within the ECC-based view of the page is still in the data chunk,
493 	 *  and it's NOT in the ECC bits of the chunk.
494 	 *
495 	 *  Use the following to compute the bit position of the
496 	 *  physical block mark within the ECC-based view of the page:
497 	 *          (page_size - D) * 8
498 	 *
499 	 *  --Huang Shijie
500 	 */
501 	block_mark_bit_offset = mtd->writesize * 8 -
502 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
503 				+ geo->metadata_size * 8);
504 
505 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
506 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
507 	return 0;
508 }
509 
510 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
511 {
512 	struct nand_chip *chip = &this->nand;
513 	const struct nand_ecc_props *requirements =
514 		nanddev_get_ecc_requirements(&chip->base);
515 
516 	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
517 		return set_geometry_by_ecc_info(this, chip->ecc.strength,
518 						chip->ecc.size);
519 
520 	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
521 				|| legacy_set_geometry(this)) {
522 		if (!(requirements->strength > 0 && requirements->step_size > 0))
523 			return -EINVAL;
524 
525 		return set_geometry_by_ecc_info(this,
526 						requirements->strength,
527 						requirements->step_size);
528 	}
529 
530 	return 0;
531 }
532 
533 /* Configures the geometry for BCH.  */
534 static int bch_set_geometry(struct gpmi_nand_data *this)
535 {
536 	struct resources *r = &this->resources;
537 	int ret;
538 
539 	ret = common_nfc_set_geometry(this);
540 	if (ret)
541 		return ret;
542 
543 	ret = pm_runtime_get_sync(this->dev);
544 	if (ret < 0) {
545 		pm_runtime_put_autosuspend(this->dev);
546 		return ret;
547 	}
548 
549 	/*
550 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
551 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
552 	* and MX28.
553 	*/
554 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
555 	if (ret)
556 		goto err_out;
557 
558 	/* Set *all* chip selects to use layout 0. */
559 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
560 
561 	ret = 0;
562 err_out:
563 	pm_runtime_mark_last_busy(this->dev);
564 	pm_runtime_put_autosuspend(this->dev);
565 
566 	return ret;
567 }
568 
569 /*
570  * <1> Firstly, we should know what's the GPMI-clock means.
571  *     The GPMI-clock is the internal clock in the gpmi nand controller.
572  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
573  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
574  *
575  * <2> Secondly, we should know what's the frequency on the nand chip pins.
576  *     The frequency on the nand chip pins is derived from the GPMI-clock.
577  *     We can get it from the following equation:
578  *
579  *         F = G / (DS + DH)
580  *
581  *         F  : the frequency on the nand chip pins.
582  *         G  : the GPMI clock, such as 100MHz.
583  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
584  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
585  *
586  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
587  *     the nand EDO(extended Data Out) timing could be applied.
588  *     The GPMI implements a feedback read strobe to sample the read data.
589  *     The feedback read strobe can be delayed to support the nand EDO timing
590  *     where the read strobe may deasserts before the read data is valid, and
591  *     read data is valid for some time after read strobe.
592  *
593  *     The following figure illustrates some aspects of a NAND Flash read:
594  *
595  *                   |<---tREA---->|
596  *                   |             |
597  *                   |         |   |
598  *                   |<--tRP-->|   |
599  *                   |         |   |
600  *                  __          ___|__________________________________
601  *     RDN            \________/   |
602  *                                 |
603  *                                 /---------\
604  *     Read Data    --------------<           >---------
605  *                                 \---------/
606  *                                |     |
607  *                                |<-D->|
608  *     FeedbackRDN  ________             ____________
609  *                          \___________/
610  *
611  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
612  *
613  *
614  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
615  *
616  *  4.1) From the aspect of the nand chip pins:
617  *        Delay = (tREA + C - tRP)               {1}
618  *
619  *        tREA : the maximum read access time.
620  *        C    : a constant to adjust the delay. default is 4000ps.
621  *        tRP  : the read pulse width, which is exactly:
622  *                   tRP = (GPMI-clock-period) * DATA_SETUP
623  *
624  *  4.2) From the aspect of the GPMI nand controller:
625  *         Delay = RDN_DELAY * 0.125 * RP        {2}
626  *
627  *         RP   : the DLL reference period.
628  *            if (GPMI-clock-period > DLL_THRETHOLD)
629  *                   RP = GPMI-clock-period / 2;
630  *            else
631  *                   RP = GPMI-clock-period;
632  *
633  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
634  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
635  *            is 16000ps, but in mx6q, we use 12000ps.
636  *
637  *  4.3) since {1} equals {2}, we get:
638  *
639  *                     (tREA + 4000 - tRP) * 8
640  *         RDN_DELAY = -----------------------     {3}
641  *                           RP
642  */
643 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
644 				     const struct nand_sdr_timings *sdr)
645 {
646 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
647 	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
648 	unsigned int period_ps, reference_period_ps;
649 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
650 	unsigned int tRP_ps;
651 	bool use_half_period;
652 	int sample_delay_ps, sample_delay_factor;
653 	u16 busy_timeout_cycles;
654 	u8 wrn_dly_sel;
655 
656 	if (sdr->tRC_min >= 30000) {
657 		/* ONFI non-EDO modes [0-3] */
658 		hw->clk_rate = 22000000;
659 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
660 	} else if (sdr->tRC_min >= 25000) {
661 		/* ONFI EDO mode 4 */
662 		hw->clk_rate = 80000000;
663 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
664 	} else {
665 		/* ONFI EDO mode 5 */
666 		hw->clk_rate = 100000000;
667 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
668 	}
669 
670 	/* SDR core timings are given in picoseconds */
671 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
672 
673 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
674 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
675 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
676 	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
677 
678 	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
679 		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
680 		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
681 	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
682 
683 	/*
684 	 * Derive NFC ideal delay from {3}:
685 	 *
686 	 *                     (tREA + 4000 - tRP) * 8
687 	 *         RDN_DELAY = -----------------------
688 	 *                                RP
689 	 */
690 	if (period_ps > dll_threshold_ps) {
691 		use_half_period = true;
692 		reference_period_ps = period_ps / 2;
693 	} else {
694 		use_half_period = false;
695 		reference_period_ps = period_ps;
696 	}
697 
698 	tRP_ps = data_setup_cycles * period_ps;
699 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
700 	if (sample_delay_ps > 0)
701 		sample_delay_factor = sample_delay_ps / reference_period_ps;
702 	else
703 		sample_delay_factor = 0;
704 
705 	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
706 	if (sample_delay_factor)
707 		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
708 			      BM_GPMI_CTRL1_DLL_ENABLE |
709 			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
710 }
711 
712 static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
713 {
714 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
715 	struct resources *r = &this->resources;
716 	void __iomem *gpmi_regs = r->gpmi_regs;
717 	unsigned int dll_wait_time_us;
718 
719 	clk_set_rate(r->clock[0], hw->clk_rate);
720 
721 	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
722 	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
723 
724 	/*
725 	 * Clear several CTRL1 fields, DLL must be disabled when setting
726 	 * RDN_DELAY or HALF_PERIOD.
727 	 */
728 	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
729 	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
730 
731 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
732 	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
733 	if (!dll_wait_time_us)
734 		dll_wait_time_us = 1;
735 
736 	/* Wait for the DLL to settle. */
737 	udelay(dll_wait_time_us);
738 }
739 
740 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
741 				const struct nand_interface_config *conf)
742 {
743 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
744 	const struct nand_sdr_timings *sdr;
745 
746 	/* Retrieve required NAND timings */
747 	sdr = nand_get_sdr_timings(conf);
748 	if (IS_ERR(sdr))
749 		return PTR_ERR(sdr);
750 
751 	/* Only MX6 GPMI controller can reach EDO timings */
752 	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
753 		return -ENOTSUPP;
754 
755 	/* Stop here if this call was just a check */
756 	if (chipnr < 0)
757 		return 0;
758 
759 	/* Do the actual derivation of the controller timings */
760 	gpmi_nfc_compute_timings(this, sdr);
761 
762 	this->hw.must_apply_timings = true;
763 
764 	return 0;
765 }
766 
767 /* Clears a BCH interrupt. */
768 static void gpmi_clear_bch(struct gpmi_nand_data *this)
769 {
770 	struct resources *r = &this->resources;
771 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
772 }
773 
774 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
775 {
776 	/* We use the DMA channel 0 to access all the nand chips. */
777 	return this->dma_chans[0];
778 }
779 
780 /* This will be called after the DMA operation is finished. */
781 static void dma_irq_callback(void *param)
782 {
783 	struct gpmi_nand_data *this = param;
784 	struct completion *dma_c = &this->dma_done;
785 
786 	complete(dma_c);
787 }
788 
789 static irqreturn_t bch_irq(int irq, void *cookie)
790 {
791 	struct gpmi_nand_data *this = cookie;
792 
793 	gpmi_clear_bch(this);
794 	complete(&this->bch_done);
795 	return IRQ_HANDLED;
796 }
797 
798 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
799 {
800 	/*
801 	 * raw_len is the length to read/write including bch data which
802 	 * we are passed in exec_op. Calculate the data length from it.
803 	 */
804 	if (this->bch)
805 		return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
806 	else
807 		return raw_len;
808 }
809 
810 /* Can we use the upper's buffer directly for DMA? */
811 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
812 			     int raw_len, struct scatterlist *sgl,
813 			     enum dma_data_direction dr)
814 {
815 	int ret;
816 	int len = gpmi_raw_len_to_len(this, raw_len);
817 
818 	/* first try to map the upper buffer directly */
819 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
820 		sg_init_one(sgl, buf, len);
821 		ret = dma_map_sg(this->dev, sgl, 1, dr);
822 		if (ret == 0)
823 			goto map_fail;
824 
825 		return true;
826 	}
827 
828 map_fail:
829 	/* We have to use our own DMA buffer. */
830 	sg_init_one(sgl, this->data_buffer_dma, len);
831 
832 	if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
833 		memcpy(this->data_buffer_dma, buf, len);
834 
835 	dma_map_sg(this->dev, sgl, 1, dr);
836 
837 	return false;
838 }
839 
840 /* add our owner bbt descriptor */
841 static uint8_t scan_ff_pattern[] = { 0xff };
842 static struct nand_bbt_descr gpmi_bbt_descr = {
843 	.options	= 0,
844 	.offs		= 0,
845 	.len		= 1,
846 	.pattern	= scan_ff_pattern
847 };
848 
849 /*
850  * We may change the layout if we can get the ECC info from the datasheet,
851  * else we will use all the (page + OOB).
852  */
853 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
854 			      struct mtd_oob_region *oobregion)
855 {
856 	struct nand_chip *chip = mtd_to_nand(mtd);
857 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
858 	struct bch_geometry *geo = &this->bch_geometry;
859 
860 	if (section)
861 		return -ERANGE;
862 
863 	oobregion->offset = 0;
864 	oobregion->length = geo->page_size - mtd->writesize;
865 
866 	return 0;
867 }
868 
869 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
870 			       struct mtd_oob_region *oobregion)
871 {
872 	struct nand_chip *chip = mtd_to_nand(mtd);
873 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
874 	struct bch_geometry *geo = &this->bch_geometry;
875 
876 	if (section)
877 		return -ERANGE;
878 
879 	/* The available oob size we have. */
880 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
881 		oobregion->offset = geo->page_size - mtd->writesize;
882 		oobregion->length = mtd->oobsize - oobregion->offset;
883 	}
884 
885 	return 0;
886 }
887 
888 static const char * const gpmi_clks_for_mx2x[] = {
889 	"gpmi_io",
890 };
891 
892 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
893 	.ecc = gpmi_ooblayout_ecc,
894 	.free = gpmi_ooblayout_free,
895 };
896 
897 static const struct gpmi_devdata gpmi_devdata_imx23 = {
898 	.type = IS_MX23,
899 	.bch_max_ecc_strength = 20,
900 	.max_chain_delay = 16000,
901 	.clks = gpmi_clks_for_mx2x,
902 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
903 };
904 
905 static const struct gpmi_devdata gpmi_devdata_imx28 = {
906 	.type = IS_MX28,
907 	.bch_max_ecc_strength = 20,
908 	.max_chain_delay = 16000,
909 	.clks = gpmi_clks_for_mx2x,
910 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
911 };
912 
913 static const char * const gpmi_clks_for_mx6[] = {
914 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
915 };
916 
917 static const struct gpmi_devdata gpmi_devdata_imx6q = {
918 	.type = IS_MX6Q,
919 	.bch_max_ecc_strength = 40,
920 	.max_chain_delay = 12000,
921 	.clks = gpmi_clks_for_mx6,
922 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
923 };
924 
925 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
926 	.type = IS_MX6SX,
927 	.bch_max_ecc_strength = 62,
928 	.max_chain_delay = 12000,
929 	.clks = gpmi_clks_for_mx6,
930 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
931 };
932 
933 static const char * const gpmi_clks_for_mx7d[] = {
934 	"gpmi_io", "gpmi_bch_apb",
935 };
936 
937 static const struct gpmi_devdata gpmi_devdata_imx7d = {
938 	.type = IS_MX7D,
939 	.bch_max_ecc_strength = 62,
940 	.max_chain_delay = 12000,
941 	.clks = gpmi_clks_for_mx7d,
942 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
943 };
944 
945 static int acquire_register_block(struct gpmi_nand_data *this,
946 				  const char *res_name)
947 {
948 	struct platform_device *pdev = this->pdev;
949 	struct resources *res = &this->resources;
950 	struct resource *r;
951 	void __iomem *p;
952 
953 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
954 	p = devm_ioremap_resource(&pdev->dev, r);
955 	if (IS_ERR(p))
956 		return PTR_ERR(p);
957 
958 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
959 		res->gpmi_regs = p;
960 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
961 		res->bch_regs = p;
962 	else
963 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
964 
965 	return 0;
966 }
967 
968 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
969 {
970 	struct platform_device *pdev = this->pdev;
971 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
972 	struct resource *r;
973 	int err;
974 
975 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
976 	if (!r) {
977 		dev_err(this->dev, "Can't get resource for %s\n", res_name);
978 		return -ENODEV;
979 	}
980 
981 	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
982 	if (err)
983 		dev_err(this->dev, "error requesting BCH IRQ\n");
984 
985 	return err;
986 }
987 
988 static void release_dma_channels(struct gpmi_nand_data *this)
989 {
990 	unsigned int i;
991 	for (i = 0; i < DMA_CHANS; i++)
992 		if (this->dma_chans[i]) {
993 			dma_release_channel(this->dma_chans[i]);
994 			this->dma_chans[i] = NULL;
995 		}
996 }
997 
998 static int acquire_dma_channels(struct gpmi_nand_data *this)
999 {
1000 	struct platform_device *pdev = this->pdev;
1001 	struct dma_chan *dma_chan;
1002 	int ret = 0;
1003 
1004 	/* request dma channel */
1005 	dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1006 	if (IS_ERR(dma_chan)) {
1007 		ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
1008 				    "DMA channel request failed\n");
1009 		release_dma_channels(this);
1010 	} else {
1011 		this->dma_chans[0] = dma_chan;
1012 	}
1013 
1014 	return ret;
1015 }
1016 
1017 static int gpmi_get_clks(struct gpmi_nand_data *this)
1018 {
1019 	struct resources *r = &this->resources;
1020 	struct clk *clk;
1021 	int err, i;
1022 
1023 	for (i = 0; i < this->devdata->clks_count; i++) {
1024 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1025 		if (IS_ERR(clk)) {
1026 			err = PTR_ERR(clk);
1027 			goto err_clock;
1028 		}
1029 
1030 		r->clock[i] = clk;
1031 	}
1032 
1033 	if (GPMI_IS_MX6(this))
1034 		/*
1035 		 * Set the default value for the gpmi clock.
1036 		 *
1037 		 * If you want to use the ONFI nand which is in the
1038 		 * Synchronous Mode, you should change the clock as you need.
1039 		 */
1040 		clk_set_rate(r->clock[0], 22000000);
1041 
1042 	return 0;
1043 
1044 err_clock:
1045 	dev_dbg(this->dev, "failed in finding the clocks.\n");
1046 	return err;
1047 }
1048 
1049 static int acquire_resources(struct gpmi_nand_data *this)
1050 {
1051 	int ret;
1052 
1053 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1054 	if (ret)
1055 		goto exit_regs;
1056 
1057 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1058 	if (ret)
1059 		goto exit_regs;
1060 
1061 	ret = acquire_bch_irq(this, bch_irq);
1062 	if (ret)
1063 		goto exit_regs;
1064 
1065 	ret = acquire_dma_channels(this);
1066 	if (ret)
1067 		goto exit_regs;
1068 
1069 	ret = gpmi_get_clks(this);
1070 	if (ret)
1071 		goto exit_clock;
1072 	return 0;
1073 
1074 exit_clock:
1075 	release_dma_channels(this);
1076 exit_regs:
1077 	return ret;
1078 }
1079 
1080 static void release_resources(struct gpmi_nand_data *this)
1081 {
1082 	release_dma_channels(this);
1083 }
1084 
1085 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1086 {
1087 	struct device *dev = this->dev;
1088 	struct bch_geometry *geo = &this->bch_geometry;
1089 
1090 	if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1091 		dma_free_coherent(dev, geo->auxiliary_size,
1092 					this->auxiliary_virt,
1093 					this->auxiliary_phys);
1094 	kfree(this->data_buffer_dma);
1095 	kfree(this->raw_buffer);
1096 
1097 	this->data_buffer_dma	= NULL;
1098 	this->raw_buffer	= NULL;
1099 }
1100 
1101 /* Allocate the DMA buffers */
1102 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1103 {
1104 	struct bch_geometry *geo = &this->bch_geometry;
1105 	struct device *dev = this->dev;
1106 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
1107 
1108 	/*
1109 	 * [2] Allocate a read/write data buffer.
1110 	 *     The gpmi_alloc_dma_buffer can be called twice.
1111 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1112 	 *     is called before the NAND identification; and we allocate a
1113 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1114 	 *     is called after.
1115 	 */
1116 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1117 					GFP_DMA | GFP_KERNEL);
1118 	if (this->data_buffer_dma == NULL)
1119 		goto error_alloc;
1120 
1121 	this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1122 					&this->auxiliary_phys, GFP_DMA);
1123 	if (!this->auxiliary_virt)
1124 		goto error_alloc;
1125 
1126 	this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1127 	if (!this->raw_buffer)
1128 		goto error_alloc;
1129 
1130 	return 0;
1131 
1132 error_alloc:
1133 	gpmi_free_dma_buffer(this);
1134 	return -ENOMEM;
1135 }
1136 
1137 /*
1138  * Handles block mark swapping.
1139  * It can be called in swapping the block mark, or swapping it back,
1140  * because the the operations are the same.
1141  */
1142 static void block_mark_swapping(struct gpmi_nand_data *this,
1143 				void *payload, void *auxiliary)
1144 {
1145 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1146 	unsigned char *p;
1147 	unsigned char *a;
1148 	unsigned int  bit;
1149 	unsigned char mask;
1150 	unsigned char from_data;
1151 	unsigned char from_oob;
1152 
1153 	if (!this->swap_block_mark)
1154 		return;
1155 
1156 	/*
1157 	 * If control arrives here, we're swapping. Make some convenience
1158 	 * variables.
1159 	 */
1160 	bit = nfc_geo->block_mark_bit_offset;
1161 	p   = payload + nfc_geo->block_mark_byte_offset;
1162 	a   = auxiliary;
1163 
1164 	/*
1165 	 * Get the byte from the data area that overlays the block mark. Since
1166 	 * the ECC engine applies its own view to the bits in the page, the
1167 	 * physical block mark won't (in general) appear on a byte boundary in
1168 	 * the data.
1169 	 */
1170 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1171 
1172 	/* Get the byte from the OOB. */
1173 	from_oob = a[0];
1174 
1175 	/* Swap them. */
1176 	a[0] = from_data;
1177 
1178 	mask = (0x1 << bit) - 1;
1179 	p[0] = (p[0] & mask) | (from_oob << bit);
1180 
1181 	mask = ~0 << bit;
1182 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1183 }
1184 
1185 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1186 			       int last, int meta)
1187 {
1188 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1189 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1190 	struct mtd_info *mtd = nand_to_mtd(chip);
1191 	int i;
1192 	unsigned char *status;
1193 	unsigned int max_bitflips = 0;
1194 
1195 	/* Loop over status bytes, accumulating ECC status. */
1196 	status = this->auxiliary_virt + ALIGN(meta, 4);
1197 
1198 	for (i = first; i < last; i++, status++) {
1199 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1200 			continue;
1201 
1202 		if (*status == STATUS_UNCORRECTABLE) {
1203 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1204 			u8 *eccbuf = this->raw_buffer;
1205 			int offset, bitoffset;
1206 			int eccbytes;
1207 			int flips;
1208 
1209 			/* Read ECC bytes into our internal raw_buffer */
1210 			offset = nfc_geo->metadata_size * 8;
1211 			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
1212 			offset -= eccbits;
1213 			bitoffset = offset % 8;
1214 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1215 			offset /= 8;
1216 			eccbytes -= offset;
1217 			nand_change_read_column_op(chip, offset, eccbuf,
1218 						   eccbytes, false);
1219 
1220 			/*
1221 			 * ECC data are not byte aligned and we may have
1222 			 * in-band data in the first and last byte of
1223 			 * eccbuf. Set non-eccbits to one so that
1224 			 * nand_check_erased_ecc_chunk() does not count them
1225 			 * as bitflips.
1226 			 */
1227 			if (bitoffset)
1228 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1229 
1230 			bitoffset = (bitoffset + eccbits) % 8;
1231 			if (bitoffset)
1232 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1233 
1234 			/*
1235 			 * The ECC hardware has an uncorrectable ECC status
1236 			 * code in case we have bitflips in an erased page. As
1237 			 * nothing was written into this subpage the ECC is
1238 			 * obviously wrong and we can not trust it. We assume
1239 			 * at this point that we are reading an erased page and
1240 			 * try to correct the bitflips in buffer up to
1241 			 * ecc_strength bitflips. If this is a page with random
1242 			 * data, we exceed this number of bitflips and have a
1243 			 * ECC failure. Otherwise we use the corrected buffer.
1244 			 */
1245 			if (i == 0) {
1246 				/* The first block includes metadata */
1247 				flips = nand_check_erased_ecc_chunk(
1248 						buf + i * nfc_geo->ecc_chunk_size,
1249 						nfc_geo->ecc_chunk_size,
1250 						eccbuf, eccbytes,
1251 						this->auxiliary_virt,
1252 						nfc_geo->metadata_size,
1253 						nfc_geo->ecc_strength);
1254 			} else {
1255 				flips = nand_check_erased_ecc_chunk(
1256 						buf + i * nfc_geo->ecc_chunk_size,
1257 						nfc_geo->ecc_chunk_size,
1258 						eccbuf, eccbytes,
1259 						NULL, 0,
1260 						nfc_geo->ecc_strength);
1261 			}
1262 
1263 			if (flips > 0) {
1264 				max_bitflips = max_t(unsigned int, max_bitflips,
1265 						     flips);
1266 				mtd->ecc_stats.corrected += flips;
1267 				continue;
1268 			}
1269 
1270 			mtd->ecc_stats.failed++;
1271 			continue;
1272 		}
1273 
1274 		mtd->ecc_stats.corrected += *status;
1275 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1276 	}
1277 
1278 	return max_bitflips;
1279 }
1280 
1281 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1282 {
1283 	struct bch_geometry *geo = &this->bch_geometry;
1284 	unsigned int ecc_strength = geo->ecc_strength >> 1;
1285 	unsigned int gf_len = geo->gf_len;
1286 	unsigned int block_size = geo->ecc_chunk_size;
1287 
1288 	this->bch_flashlayout0 =
1289 		BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1290 		BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1291 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1292 		BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1293 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
1294 
1295 	this->bch_flashlayout1 =
1296 		BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1297 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1298 		BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1299 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
1300 }
1301 
1302 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1303 			      int oob_required, int page)
1304 {
1305 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1306 	struct mtd_info *mtd = nand_to_mtd(chip);
1307 	struct bch_geometry *geo = &this->bch_geometry;
1308 	unsigned int max_bitflips;
1309 	int ret;
1310 
1311 	gpmi_bch_layout_std(this);
1312 	this->bch = true;
1313 
1314 	ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1315 	if (ret)
1316 		return ret;
1317 
1318 	max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1319 					   geo->ecc_chunk_count,
1320 					   geo->auxiliary_status_offset);
1321 
1322 	/* handle the block mark swapping */
1323 	block_mark_swapping(this, buf, this->auxiliary_virt);
1324 
1325 	if (oob_required) {
1326 		/*
1327 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1328 		 * for details about our policy for delivering the OOB.
1329 		 *
1330 		 * We fill the caller's buffer with set bits, and then copy the
1331 		 * block mark to th caller's buffer. Note that, if block mark
1332 		 * swapping was necessary, it has already been done, so we can
1333 		 * rely on the first byte of the auxiliary buffer to contain
1334 		 * the block mark.
1335 		 */
1336 		memset(chip->oob_poi, ~0, mtd->oobsize);
1337 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1338 	}
1339 
1340 	return max_bitflips;
1341 }
1342 
1343 /* Fake a virtual small page for the subpage read */
1344 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1345 				 uint32_t len, uint8_t *buf, int page)
1346 {
1347 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1348 	struct bch_geometry *geo = &this->bch_geometry;
1349 	int size = chip->ecc.size; /* ECC chunk size */
1350 	int meta, n, page_size;
1351 	unsigned int max_bitflips;
1352 	unsigned int ecc_strength;
1353 	int first, last, marker_pos;
1354 	int ecc_parity_size;
1355 	int col = 0;
1356 	int ret;
1357 
1358 	/* The size of ECC parity */
1359 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1360 
1361 	/* Align it with the chunk size */
1362 	first = offs / size;
1363 	last = (offs + len - 1) / size;
1364 
1365 	if (this->swap_block_mark) {
1366 		/*
1367 		 * Find the chunk which contains the Block Marker.
1368 		 * If this chunk is in the range of [first, last],
1369 		 * we have to read out the whole page.
1370 		 * Why? since we had swapped the data at the position of Block
1371 		 * Marker to the metadata which is bound with the chunk 0.
1372 		 */
1373 		marker_pos = geo->block_mark_byte_offset / size;
1374 		if (last >= marker_pos && first <= marker_pos) {
1375 			dev_dbg(this->dev,
1376 				"page:%d, first:%d, last:%d, marker at:%d\n",
1377 				page, first, last, marker_pos);
1378 			return gpmi_ecc_read_page(chip, buf, 0, page);
1379 		}
1380 	}
1381 
1382 	meta = geo->metadata_size;
1383 	if (first) {
1384 		col = meta + (size + ecc_parity_size) * first;
1385 		meta = 0;
1386 		buf = buf + first * size;
1387 	}
1388 
1389 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1390 
1391 	n = last - first + 1;
1392 	page_size = meta + (size + ecc_parity_size) * n;
1393 	ecc_strength = geo->ecc_strength >> 1;
1394 
1395 	this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
1396 		BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1397 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1398 		BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1399 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
1400 
1401 	this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1402 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1403 		BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1404 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
1405 
1406 	this->bch = true;
1407 
1408 	ret = nand_read_page_op(chip, page, col, buf, page_size);
1409 	if (ret)
1410 		return ret;
1411 
1412 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1413 		page, offs, len, col, first, n, page_size);
1414 
1415 	max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1416 
1417 	return max_bitflips;
1418 }
1419 
1420 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1421 			       int oob_required, int page)
1422 {
1423 	struct mtd_info *mtd = nand_to_mtd(chip);
1424 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1425 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1426 	int ret;
1427 
1428 	dev_dbg(this->dev, "ecc write page.\n");
1429 
1430 	gpmi_bch_layout_std(this);
1431 	this->bch = true;
1432 
1433 	memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1434 
1435 	if (this->swap_block_mark) {
1436 		/*
1437 		 * When doing bad block marker swapping we must always copy the
1438 		 * input buffer as we can't modify the const buffer.
1439 		 */
1440 		memcpy(this->data_buffer_dma, buf, mtd->writesize);
1441 		buf = this->data_buffer_dma;
1442 		block_mark_swapping(this, this->data_buffer_dma,
1443 				    this->auxiliary_virt);
1444 	}
1445 
1446 	ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1447 
1448 	return ret;
1449 }
1450 
1451 /*
1452  * There are several places in this driver where we have to handle the OOB and
1453  * block marks. This is the function where things are the most complicated, so
1454  * this is where we try to explain it all. All the other places refer back to
1455  * here.
1456  *
1457  * These are the rules, in order of decreasing importance:
1458  *
1459  * 1) Nothing the caller does can be allowed to imperil the block mark.
1460  *
1461  * 2) In read operations, the first byte of the OOB we return must reflect the
1462  *    true state of the block mark, no matter where that block mark appears in
1463  *    the physical page.
1464  *
1465  * 3) ECC-based read operations return an OOB full of set bits (since we never
1466  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1467  *    return).
1468  *
1469  * 4) "Raw" read operations return a direct view of the physical bytes in the
1470  *    page, using the conventional definition of which bytes are data and which
1471  *    are OOB. This gives the caller a way to see the actual, physical bytes
1472  *    in the page, without the distortions applied by our ECC engine.
1473  *
1474  *
1475  * What we do for this specific read operation depends on two questions:
1476  *
1477  * 1) Are we doing a "raw" read, or an ECC-based read?
1478  *
1479  * 2) Are we using block mark swapping or transcription?
1480  *
1481  * There are four cases, illustrated by the following Karnaugh map:
1482  *
1483  *                    |           Raw           |         ECC-based       |
1484  *       -------------+-------------------------+-------------------------+
1485  *                    | Read the conventional   |                         |
1486  *                    | OOB at the end of the   |                         |
1487  *       Swapping     | page and return it. It  |                         |
1488  *                    | contains exactly what   |                         |
1489  *                    | we want.                | Read the block mark and |
1490  *       -------------+-------------------------+ return it in a buffer   |
1491  *                    | Read the conventional   | full of set bits.       |
1492  *                    | OOB at the end of the   |                         |
1493  *                    | page and also the block |                         |
1494  *       Transcribing | mark in the metadata.   |                         |
1495  *                    | Copy the block mark     |                         |
1496  *                    | into the first byte of  |                         |
1497  *                    | the OOB.                |                         |
1498  *       -------------+-------------------------+-------------------------+
1499  *
1500  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1501  * giving an accurate view of the actual, physical bytes in the page (we're
1502  * overwriting the block mark). That's OK because it's more important to follow
1503  * rule #2.
1504  *
1505  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1506  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1507  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1508  * ECC-based or raw view of the page is implicit in which function it calls
1509  * (there is a similar pair of ECC-based/raw functions for writing).
1510  */
1511 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1512 {
1513 	struct mtd_info *mtd = nand_to_mtd(chip);
1514 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1515 	int ret;
1516 
1517 	/* clear the OOB buffer */
1518 	memset(chip->oob_poi, ~0, mtd->oobsize);
1519 
1520 	/* Read out the conventional OOB. */
1521 	ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1522 				mtd->oobsize);
1523 	if (ret)
1524 		return ret;
1525 
1526 	/*
1527 	 * Now, we want to make sure the block mark is correct. In the
1528 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1529 	 * Otherwise, we need to explicitly read it.
1530 	 */
1531 	if (GPMI_IS_MX23(this)) {
1532 		/* Read the block mark into the first byte of the OOB buffer. */
1533 		ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1534 		if (ret)
1535 			return ret;
1536 	}
1537 
1538 	return 0;
1539 }
1540 
1541 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1542 {
1543 	struct mtd_info *mtd = nand_to_mtd(chip);
1544 	struct mtd_oob_region of = { };
1545 
1546 	/* Do we have available oob area? */
1547 	mtd_ooblayout_free(mtd, 0, &of);
1548 	if (!of.length)
1549 		return -EPERM;
1550 
1551 	if (!nand_is_slc(chip))
1552 		return -EPERM;
1553 
1554 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1555 				 chip->oob_poi + of.offset, of.length);
1556 }
1557 
1558 /*
1559  * This function reads a NAND page without involving the ECC engine (no HW
1560  * ECC correction).
1561  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1562  * inline (interleaved with payload DATA), and do not align data chunk on
1563  * byte boundaries.
1564  * We thus need to take care moving the payload data and ECC bits stored in the
1565  * page into the provided buffers, which is why we're using nand_extract_bits().
1566  *
1567  * See set_geometry_by_ecc_info inline comments to have a full description
1568  * of the layout used by the GPMI controller.
1569  */
1570 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1571 				  int oob_required, int page)
1572 {
1573 	struct mtd_info *mtd = nand_to_mtd(chip);
1574 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1575 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1576 	int eccsize = nfc_geo->ecc_chunk_size;
1577 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1578 	u8 *tmp_buf = this->raw_buffer;
1579 	size_t src_bit_off;
1580 	size_t oob_bit_off;
1581 	size_t oob_byte_off;
1582 	uint8_t *oob = chip->oob_poi;
1583 	int step;
1584 	int ret;
1585 
1586 	ret = nand_read_page_op(chip, page, 0, tmp_buf,
1587 				mtd->writesize + mtd->oobsize);
1588 	if (ret)
1589 		return ret;
1590 
1591 	/*
1592 	 * If required, swap the bad block marker and the data stored in the
1593 	 * metadata section, so that we don't wrongly consider a block as bad.
1594 	 *
1595 	 * See the layout description for a detailed explanation on why this
1596 	 * is needed.
1597 	 */
1598 	if (this->swap_block_mark)
1599 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1600 
1601 	/*
1602 	 * Copy the metadata section into the oob buffer (this section is
1603 	 * guaranteed to be aligned on a byte boundary).
1604 	 */
1605 	if (oob_required)
1606 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1607 
1608 	oob_bit_off = nfc_geo->metadata_size * 8;
1609 	src_bit_off = oob_bit_off;
1610 
1611 	/* Extract interleaved payload data and ECC bits */
1612 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1613 		if (buf)
1614 			nand_extract_bits(buf, step * eccsize, tmp_buf,
1615 					  src_bit_off, eccsize * 8);
1616 		src_bit_off += eccsize * 8;
1617 
1618 		/* Align last ECC block to align a byte boundary */
1619 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1620 		    (oob_bit_off + eccbits) % 8)
1621 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1622 
1623 		if (oob_required)
1624 			nand_extract_bits(oob, oob_bit_off, tmp_buf,
1625 					  src_bit_off, eccbits);
1626 
1627 		src_bit_off += eccbits;
1628 		oob_bit_off += eccbits;
1629 	}
1630 
1631 	if (oob_required) {
1632 		oob_byte_off = oob_bit_off / 8;
1633 
1634 		if (oob_byte_off < mtd->oobsize)
1635 			memcpy(oob + oob_byte_off,
1636 			       tmp_buf + mtd->writesize + oob_byte_off,
1637 			       mtd->oobsize - oob_byte_off);
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 /*
1644  * This function writes a NAND page without involving the ECC engine (no HW
1645  * ECC generation).
1646  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1647  * inline (interleaved with payload DATA), and do not align data chunk on
1648  * byte boundaries.
1649  * We thus need to take care moving the OOB area at the right place in the
1650  * final page, which is why we're using nand_extract_bits().
1651  *
1652  * See set_geometry_by_ecc_info inline comments to have a full description
1653  * of the layout used by the GPMI controller.
1654  */
1655 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1656 				   int oob_required, int page)
1657 {
1658 	struct mtd_info *mtd = nand_to_mtd(chip);
1659 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1660 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1661 	int eccsize = nfc_geo->ecc_chunk_size;
1662 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1663 	u8 *tmp_buf = this->raw_buffer;
1664 	uint8_t *oob = chip->oob_poi;
1665 	size_t dst_bit_off;
1666 	size_t oob_bit_off;
1667 	size_t oob_byte_off;
1668 	int step;
1669 
1670 	/*
1671 	 * Initialize all bits to 1 in case we don't have a buffer for the
1672 	 * payload or oob data in order to leave unspecified bits of data
1673 	 * to their initial state.
1674 	 */
1675 	if (!buf || !oob_required)
1676 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1677 
1678 	/*
1679 	 * First copy the metadata section (stored in oob buffer) at the
1680 	 * beginning of the page, as imposed by the GPMI layout.
1681 	 */
1682 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1683 	oob_bit_off = nfc_geo->metadata_size * 8;
1684 	dst_bit_off = oob_bit_off;
1685 
1686 	/* Interleave payload data and ECC bits */
1687 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1688 		if (buf)
1689 			nand_extract_bits(tmp_buf, dst_bit_off, buf,
1690 					  step * eccsize * 8, eccsize * 8);
1691 		dst_bit_off += eccsize * 8;
1692 
1693 		/* Align last ECC block to align a byte boundary */
1694 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1695 		    (oob_bit_off + eccbits) % 8)
1696 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1697 
1698 		if (oob_required)
1699 			nand_extract_bits(tmp_buf, dst_bit_off, oob,
1700 					  oob_bit_off, eccbits);
1701 
1702 		dst_bit_off += eccbits;
1703 		oob_bit_off += eccbits;
1704 	}
1705 
1706 	oob_byte_off = oob_bit_off / 8;
1707 
1708 	if (oob_required && oob_byte_off < mtd->oobsize)
1709 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1710 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1711 
1712 	/*
1713 	 * If required, swap the bad block marker and the first byte of the
1714 	 * metadata section, so that we don't modify the bad block marker.
1715 	 *
1716 	 * See the layout description for a detailed explanation on why this
1717 	 * is needed.
1718 	 */
1719 	if (this->swap_block_mark)
1720 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1721 
1722 	return nand_prog_page_op(chip, page, 0, tmp_buf,
1723 				 mtd->writesize + mtd->oobsize);
1724 }
1725 
1726 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1727 {
1728 	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1729 }
1730 
1731 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1732 {
1733 	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1734 }
1735 
1736 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1737 {
1738 	struct mtd_info *mtd = nand_to_mtd(chip);
1739 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1740 	int ret = 0;
1741 	uint8_t *block_mark;
1742 	int column, page, chipnr;
1743 
1744 	chipnr = (int)(ofs >> chip->chip_shift);
1745 	nand_select_target(chip, chipnr);
1746 
1747 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1748 
1749 	/* Write the block mark. */
1750 	block_mark = this->data_buffer_dma;
1751 	block_mark[0] = 0; /* bad block marker */
1752 
1753 	/* Shift to get page */
1754 	page = (int)(ofs >> chip->page_shift);
1755 
1756 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1757 
1758 	nand_deselect_target(chip);
1759 
1760 	return ret;
1761 }
1762 
1763 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1764 {
1765 	struct boot_rom_geometry *geometry = &this->rom_geometry;
1766 
1767 	/*
1768 	 * Set the boot block stride size.
1769 	 *
1770 	 * In principle, we should be reading this from the OTP bits, since
1771 	 * that's where the ROM is going to get it. In fact, we don't have any
1772 	 * way to read the OTP bits, so we go with the default and hope for the
1773 	 * best.
1774 	 */
1775 	geometry->stride_size_in_pages = 64;
1776 
1777 	/*
1778 	 * Set the search area stride exponent.
1779 	 *
1780 	 * In principle, we should be reading this from the OTP bits, since
1781 	 * that's where the ROM is going to get it. In fact, we don't have any
1782 	 * way to read the OTP bits, so we go with the default and hope for the
1783 	 * best.
1784 	 */
1785 	geometry->search_area_stride_exponent = 2;
1786 	return 0;
1787 }
1788 
1789 static const char  *fingerprint = "STMP";
1790 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1791 {
1792 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1793 	struct device *dev = this->dev;
1794 	struct nand_chip *chip = &this->nand;
1795 	unsigned int search_area_size_in_strides;
1796 	unsigned int stride;
1797 	unsigned int page;
1798 	u8 *buffer = nand_get_data_buf(chip);
1799 	int found_an_ncb_fingerprint = false;
1800 	int ret;
1801 
1802 	/* Compute the number of strides in a search area. */
1803 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1804 
1805 	nand_select_target(chip, 0);
1806 
1807 	/*
1808 	 * Loop through the first search area, looking for the NCB fingerprint.
1809 	 */
1810 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1811 
1812 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1813 		/* Compute the page addresses. */
1814 		page = stride * rom_geo->stride_size_in_pages;
1815 
1816 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1817 
1818 		/*
1819 		 * Read the NCB fingerprint. The fingerprint is four bytes long
1820 		 * and starts in the 12th byte of the page.
1821 		 */
1822 		ret = nand_read_page_op(chip, page, 12, buffer,
1823 					strlen(fingerprint));
1824 		if (ret)
1825 			continue;
1826 
1827 		/* Look for the fingerprint. */
1828 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1829 			found_an_ncb_fingerprint = true;
1830 			break;
1831 		}
1832 
1833 	}
1834 
1835 	nand_deselect_target(chip);
1836 
1837 	if (found_an_ncb_fingerprint)
1838 		dev_dbg(dev, "\tFound a fingerprint\n");
1839 	else
1840 		dev_dbg(dev, "\tNo fingerprint found\n");
1841 	return found_an_ncb_fingerprint;
1842 }
1843 
1844 /* Writes a transcription stamp. */
1845 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1846 {
1847 	struct device *dev = this->dev;
1848 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1849 	struct nand_chip *chip = &this->nand;
1850 	struct mtd_info *mtd = nand_to_mtd(chip);
1851 	unsigned int block_size_in_pages;
1852 	unsigned int search_area_size_in_strides;
1853 	unsigned int search_area_size_in_pages;
1854 	unsigned int search_area_size_in_blocks;
1855 	unsigned int block;
1856 	unsigned int stride;
1857 	unsigned int page;
1858 	u8 *buffer = nand_get_data_buf(chip);
1859 	int status;
1860 
1861 	/* Compute the search area geometry. */
1862 	block_size_in_pages = mtd->erasesize / mtd->writesize;
1863 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1864 	search_area_size_in_pages = search_area_size_in_strides *
1865 					rom_geo->stride_size_in_pages;
1866 	search_area_size_in_blocks =
1867 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
1868 				    block_size_in_pages;
1869 
1870 	dev_dbg(dev, "Search Area Geometry :\n");
1871 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1872 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1873 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1874 
1875 	nand_select_target(chip, 0);
1876 
1877 	/* Loop over blocks in the first search area, erasing them. */
1878 	dev_dbg(dev, "Erasing the search area...\n");
1879 
1880 	for (block = 0; block < search_area_size_in_blocks; block++) {
1881 		/* Erase this block. */
1882 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
1883 		status = nand_erase_op(chip, block);
1884 		if (status)
1885 			dev_err(dev, "[%s] Erase failed.\n", __func__);
1886 	}
1887 
1888 	/* Write the NCB fingerprint into the page buffer. */
1889 	memset(buffer, ~0, mtd->writesize);
1890 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1891 
1892 	/* Loop through the first search area, writing NCB fingerprints. */
1893 	dev_dbg(dev, "Writing NCB fingerprints...\n");
1894 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1895 		/* Compute the page addresses. */
1896 		page = stride * rom_geo->stride_size_in_pages;
1897 
1898 		/* Write the first page of the current stride. */
1899 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1900 
1901 		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
1902 		if (status)
1903 			dev_err(dev, "[%s] Write failed.\n", __func__);
1904 	}
1905 
1906 	nand_deselect_target(chip);
1907 
1908 	return 0;
1909 }
1910 
1911 static int mx23_boot_init(struct gpmi_nand_data  *this)
1912 {
1913 	struct device *dev = this->dev;
1914 	struct nand_chip *chip = &this->nand;
1915 	struct mtd_info *mtd = nand_to_mtd(chip);
1916 	unsigned int block_count;
1917 	unsigned int block;
1918 	int     chipnr;
1919 	int     page;
1920 	loff_t  byte;
1921 	uint8_t block_mark;
1922 	int     ret = 0;
1923 
1924 	/*
1925 	 * If control arrives here, we can't use block mark swapping, which
1926 	 * means we're forced to use transcription. First, scan for the
1927 	 * transcription stamp. If we find it, then we don't have to do
1928 	 * anything -- the block marks are already transcribed.
1929 	 */
1930 	if (mx23_check_transcription_stamp(this))
1931 		return 0;
1932 
1933 	/*
1934 	 * If control arrives here, we couldn't find a transcription stamp, so
1935 	 * so we presume the block marks are in the conventional location.
1936 	 */
1937 	dev_dbg(dev, "Transcribing bad block marks...\n");
1938 
1939 	/* Compute the number of blocks in the entire medium. */
1940 	block_count = nanddev_eraseblocks_per_target(&chip->base);
1941 
1942 	/*
1943 	 * Loop over all the blocks in the medium, transcribing block marks as
1944 	 * we go.
1945 	 */
1946 	for (block = 0; block < block_count; block++) {
1947 		/*
1948 		 * Compute the chip, page and byte addresses for this block's
1949 		 * conventional mark.
1950 		 */
1951 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1952 		page = block << (chip->phys_erase_shift - chip->page_shift);
1953 		byte = block <<  chip->phys_erase_shift;
1954 
1955 		/* Send the command to read the conventional block mark. */
1956 		nand_select_target(chip, chipnr);
1957 		ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
1958 					1);
1959 		nand_deselect_target(chip);
1960 
1961 		if (ret)
1962 			continue;
1963 
1964 		/*
1965 		 * Check if the block is marked bad. If so, we need to mark it
1966 		 * again, but this time the result will be a mark in the
1967 		 * location where we transcribe block marks.
1968 		 */
1969 		if (block_mark != 0xff) {
1970 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
1971 			ret = chip->legacy.block_markbad(chip, byte);
1972 			if (ret)
1973 				dev_err(dev,
1974 					"Failed to mark block bad with ret %d\n",
1975 					ret);
1976 		}
1977 	}
1978 
1979 	/* Write the stamp that indicates we've transcribed the block marks. */
1980 	mx23_write_transcription_stamp(this);
1981 	return 0;
1982 }
1983 
1984 static int nand_boot_init(struct gpmi_nand_data  *this)
1985 {
1986 	nand_boot_set_geometry(this);
1987 
1988 	/* This is ROM arch-specific initilization before the BBT scanning. */
1989 	if (GPMI_IS_MX23(this))
1990 		return mx23_boot_init(this);
1991 	return 0;
1992 }
1993 
1994 static int gpmi_set_geometry(struct gpmi_nand_data *this)
1995 {
1996 	int ret;
1997 
1998 	/* Free the temporary DMA memory for reading ID. */
1999 	gpmi_free_dma_buffer(this);
2000 
2001 	/* Set up the NFC geometry which is used by BCH. */
2002 	ret = bch_set_geometry(this);
2003 	if (ret) {
2004 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2005 		return ret;
2006 	}
2007 
2008 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
2009 	return gpmi_alloc_dma_buffer(this);
2010 }
2011 
2012 static int gpmi_init_last(struct gpmi_nand_data *this)
2013 {
2014 	struct nand_chip *chip = &this->nand;
2015 	struct mtd_info *mtd = nand_to_mtd(chip);
2016 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2017 	struct bch_geometry *bch_geo = &this->bch_geometry;
2018 	int ret;
2019 
2020 	/* Set up the medium geometry */
2021 	ret = gpmi_set_geometry(this);
2022 	if (ret)
2023 		return ret;
2024 
2025 	/* Init the nand_ecc_ctrl{} */
2026 	ecc->read_page	= gpmi_ecc_read_page;
2027 	ecc->write_page	= gpmi_ecc_write_page;
2028 	ecc->read_oob	= gpmi_ecc_read_oob;
2029 	ecc->write_oob	= gpmi_ecc_write_oob;
2030 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
2031 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
2032 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2033 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2034 	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2035 	ecc->size	= bch_geo->ecc_chunk_size;
2036 	ecc->strength	= bch_geo->ecc_strength;
2037 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2038 
2039 	/*
2040 	 * We only enable the subpage read when:
2041 	 *  (1) the chip is imx6, and
2042 	 *  (2) the size of the ECC parity is byte aligned.
2043 	 */
2044 	if (GPMI_IS_MX6(this) &&
2045 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2046 		ecc->read_subpage = gpmi_ecc_read_subpage;
2047 		chip->options |= NAND_SUBPAGE_READ;
2048 	}
2049 
2050 	return 0;
2051 }
2052 
2053 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2054 {
2055 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2056 	int ret;
2057 
2058 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2059 		chip->bbt_options |= NAND_BBT_NO_OOB;
2060 
2061 		if (of_property_read_bool(this->dev->of_node,
2062 					  "fsl,no-blockmark-swap"))
2063 			this->swap_block_mark = false;
2064 	}
2065 	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2066 		this->swap_block_mark ? "en" : "dis");
2067 
2068 	ret = gpmi_init_last(this);
2069 	if (ret)
2070 		return ret;
2071 
2072 	chip->options |= NAND_SKIP_BBTSCAN;
2073 
2074 	return 0;
2075 }
2076 
2077 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2078 {
2079 	struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2080 
2081 	this->ntransfers++;
2082 
2083 	if (this->ntransfers == GPMI_MAX_TRANSFERS)
2084 		return NULL;
2085 
2086 	return transfer;
2087 }
2088 
2089 static struct dma_async_tx_descriptor *gpmi_chain_command(
2090 	struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2091 {
2092 	struct dma_chan *channel = get_dma_chan(this);
2093 	struct dma_async_tx_descriptor *desc;
2094 	struct gpmi_transfer *transfer;
2095 	int chip = this->nand.cur_cs;
2096 	u32 pio[3];
2097 
2098 	/* [1] send out the PIO words */
2099 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2100 		| BM_GPMI_CTRL0_WORD_LENGTH
2101 		| BF_GPMI_CTRL0_CS(chip, this)
2102 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2103 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2104 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
2105 		| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2106 	pio[1] = 0;
2107 	pio[2] = 0;
2108 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2109 				      DMA_TRANS_NONE, 0);
2110 	if (!desc)
2111 		return NULL;
2112 
2113 	transfer = get_next_transfer(this);
2114 	if (!transfer)
2115 		return NULL;
2116 
2117 	transfer->cmdbuf[0] = cmd;
2118 	if (naddr)
2119 		memcpy(&transfer->cmdbuf[1], addr, naddr);
2120 
2121 	sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2122 	dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2123 
2124 	transfer->direction = DMA_TO_DEVICE;
2125 
2126 	desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2127 				       MXS_DMA_CTRL_WAIT4END);
2128 	return desc;
2129 }
2130 
2131 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2132 	struct gpmi_nand_data *this)
2133 {
2134 	struct dma_chan *channel = get_dma_chan(this);
2135 	u32 pio[2];
2136 
2137 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2138 		| BM_GPMI_CTRL0_WORD_LENGTH
2139 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2140 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2141 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2142 		| BF_GPMI_CTRL0_XFER_COUNT(0);
2143 	pio[1] = 0;
2144 
2145 	return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2146 				MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2147 }
2148 
2149 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2150 	struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2151 {
2152 	struct dma_async_tx_descriptor *desc;
2153 	struct dma_chan *channel = get_dma_chan(this);
2154 	struct gpmi_transfer *transfer;
2155 	u32 pio[6] = {};
2156 
2157 	transfer = get_next_transfer(this);
2158 	if (!transfer)
2159 		return NULL;
2160 
2161 	transfer->direction = DMA_FROM_DEVICE;
2162 
2163 	*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2164 				   DMA_FROM_DEVICE);
2165 
2166 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2167 		| BM_GPMI_CTRL0_WORD_LENGTH
2168 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2169 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2170 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2171 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2172 
2173 	if (this->bch) {
2174 		pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2175 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2176 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2177 				| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2178 		pio[3] = raw_len;
2179 		pio[4] = transfer->sgl.dma_address;
2180 		pio[5] = this->auxiliary_phys;
2181 	}
2182 
2183 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2184 				      DMA_TRANS_NONE, 0);
2185 	if (!desc)
2186 		return NULL;
2187 
2188 	if (!this->bch)
2189 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2190 					     DMA_DEV_TO_MEM,
2191 					     MXS_DMA_CTRL_WAIT4END);
2192 
2193 	return desc;
2194 }
2195 
2196 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2197 	struct gpmi_nand_data *this, const void *buf, int raw_len)
2198 {
2199 	struct dma_chan *channel = get_dma_chan(this);
2200 	struct dma_async_tx_descriptor *desc;
2201 	struct gpmi_transfer *transfer;
2202 	u32 pio[6] = {};
2203 
2204 	transfer = get_next_transfer(this);
2205 	if (!transfer)
2206 		return NULL;
2207 
2208 	transfer->direction = DMA_TO_DEVICE;
2209 
2210 	prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2211 
2212 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2213 		| BM_GPMI_CTRL0_WORD_LENGTH
2214 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2215 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2216 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2217 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2218 
2219 	if (this->bch) {
2220 		pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2221 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2222 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2223 					BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2224 		pio[3] = raw_len;
2225 		pio[4] = transfer->sgl.dma_address;
2226 		pio[5] = this->auxiliary_phys;
2227 	}
2228 
2229 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2230 				      DMA_TRANS_NONE,
2231 				      (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2232 	if (!desc)
2233 		return NULL;
2234 
2235 	if (!this->bch)
2236 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2237 					       DMA_MEM_TO_DEV,
2238 					       MXS_DMA_CTRL_WAIT4END);
2239 
2240 	return desc;
2241 }
2242 
2243 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2244 			     const struct nand_operation *op,
2245 			     bool check_only)
2246 {
2247 	const struct nand_op_instr *instr;
2248 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2249 	struct dma_async_tx_descriptor *desc = NULL;
2250 	int i, ret, buf_len = 0, nbufs = 0;
2251 	u8 cmd = 0;
2252 	void *buf_read = NULL;
2253 	const void *buf_write = NULL;
2254 	bool direct = false;
2255 	struct completion *completion;
2256 	unsigned long to;
2257 
2258 	if (check_only)
2259 		return 0;
2260 
2261 	this->ntransfers = 0;
2262 	for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2263 		this->transfers[i].direction = DMA_NONE;
2264 
2265 	ret = pm_runtime_get_sync(this->dev);
2266 	if (ret < 0)
2267 		return ret;
2268 
2269 	/*
2270 	 * This driver currently supports only one NAND chip. Plus, dies share
2271 	 * the same configuration. So once timings have been applied on the
2272 	 * controller side, they will not change anymore. When the time will
2273 	 * come, the check on must_apply_timings will have to be dropped.
2274 	 */
2275 	if (this->hw.must_apply_timings) {
2276 		this->hw.must_apply_timings = false;
2277 		gpmi_nfc_apply_timings(this);
2278 	}
2279 
2280 	dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2281 
2282 	for (i = 0; i < op->ninstrs; i++) {
2283 		instr = &op->instrs[i];
2284 
2285 		nand_op_trace("  ", instr);
2286 
2287 		switch (instr->type) {
2288 		case NAND_OP_WAITRDY_INSTR:
2289 			desc = gpmi_chain_wait_ready(this);
2290 			break;
2291 		case NAND_OP_CMD_INSTR:
2292 			cmd = instr->ctx.cmd.opcode;
2293 
2294 			/*
2295 			 * When this command has an address cycle chain it
2296 			 * together with the address cycle
2297 			 */
2298 			if (i + 1 != op->ninstrs &&
2299 			    op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2300 				continue;
2301 
2302 			desc = gpmi_chain_command(this, cmd, NULL, 0);
2303 
2304 			break;
2305 		case NAND_OP_ADDR_INSTR:
2306 			desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2307 						  instr->ctx.addr.naddrs);
2308 			break;
2309 		case NAND_OP_DATA_OUT_INSTR:
2310 			buf_write = instr->ctx.data.buf.out;
2311 			buf_len = instr->ctx.data.len;
2312 			nbufs++;
2313 
2314 			desc = gpmi_chain_data_write(this, buf_write, buf_len);
2315 
2316 			break;
2317 		case NAND_OP_DATA_IN_INSTR:
2318 			if (!instr->ctx.data.len)
2319 				break;
2320 			buf_read = instr->ctx.data.buf.in;
2321 			buf_len = instr->ctx.data.len;
2322 			nbufs++;
2323 
2324 			desc = gpmi_chain_data_read(this, buf_read, buf_len,
2325 						   &direct);
2326 			break;
2327 		}
2328 
2329 		if (!desc) {
2330 			ret = -ENXIO;
2331 			goto unmap;
2332 		}
2333 	}
2334 
2335 	dev_dbg(this->dev, "%s setup done\n", __func__);
2336 
2337 	if (nbufs > 1) {
2338 		dev_err(this->dev, "Multiple data instructions not supported\n");
2339 		ret = -EINVAL;
2340 		goto unmap;
2341 	}
2342 
2343 	if (this->bch) {
2344 		writel(this->bch_flashlayout0,
2345 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2346 		writel(this->bch_flashlayout1,
2347 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2348 	}
2349 
2350 	if (this->bch && buf_read) {
2351 		writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2352 		       this->resources.bch_regs + HW_BCH_CTRL_SET);
2353 		completion = &this->bch_done;
2354 	} else {
2355 		desc->callback = dma_irq_callback;
2356 		desc->callback_param = this;
2357 		completion = &this->dma_done;
2358 	}
2359 
2360 	init_completion(completion);
2361 
2362 	dmaengine_submit(desc);
2363 	dma_async_issue_pending(get_dma_chan(this));
2364 
2365 	to = wait_for_completion_timeout(completion, msecs_to_jiffies(1000));
2366 	if (!to) {
2367 		dev_err(this->dev, "DMA timeout, last DMA\n");
2368 		gpmi_dump_info(this);
2369 		ret = -ETIMEDOUT;
2370 		goto unmap;
2371 	}
2372 
2373 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2374 	       this->resources.bch_regs + HW_BCH_CTRL_CLR);
2375 	gpmi_clear_bch(this);
2376 
2377 	ret = 0;
2378 
2379 unmap:
2380 	for (i = 0; i < this->ntransfers; i++) {
2381 		struct gpmi_transfer *transfer = &this->transfers[i];
2382 
2383 		if (transfer->direction != DMA_NONE)
2384 			dma_unmap_sg(this->dev, &transfer->sgl, 1,
2385 				     transfer->direction);
2386 	}
2387 
2388 	if (!ret && buf_read && !direct)
2389 		memcpy(buf_read, this->data_buffer_dma,
2390 		       gpmi_raw_len_to_len(this, buf_len));
2391 
2392 	this->bch = false;
2393 
2394 	pm_runtime_mark_last_busy(this->dev);
2395 	pm_runtime_put_autosuspend(this->dev);
2396 
2397 	return ret;
2398 }
2399 
2400 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2401 	.attach_chip = gpmi_nand_attach_chip,
2402 	.setup_interface = gpmi_setup_interface,
2403 	.exec_op = gpmi_nfc_exec_op,
2404 };
2405 
2406 static int gpmi_nand_init(struct gpmi_nand_data *this)
2407 {
2408 	struct nand_chip *chip = &this->nand;
2409 	struct mtd_info  *mtd = nand_to_mtd(chip);
2410 	int ret;
2411 
2412 	/* init the MTD data structures */
2413 	mtd->name		= "gpmi-nand";
2414 	mtd->dev.parent		= this->dev;
2415 
2416 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2417 	nand_set_controller_data(chip, this);
2418 	nand_set_flash_node(chip, this->pdev->dev.of_node);
2419 	chip->legacy.block_markbad = gpmi_block_markbad;
2420 	chip->badblock_pattern	= &gpmi_bbt_descr;
2421 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
2422 
2423 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2424 	this->swap_block_mark = !GPMI_IS_MX23(this);
2425 
2426 	/*
2427 	 * Allocate a temporary DMA buffer for reading ID in the
2428 	 * nand_scan_ident().
2429 	 */
2430 	this->bch_geometry.payload_size = 1024;
2431 	this->bch_geometry.auxiliary_size = 128;
2432 	ret = gpmi_alloc_dma_buffer(this);
2433 	if (ret)
2434 		goto err_out;
2435 
2436 	nand_controller_init(&this->base);
2437 	this->base.ops = &gpmi_nand_controller_ops;
2438 	chip->controller = &this->base;
2439 
2440 	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2441 	if (ret)
2442 		goto err_out;
2443 
2444 	ret = nand_boot_init(this);
2445 	if (ret)
2446 		goto err_nand_cleanup;
2447 	ret = nand_create_bbt(chip);
2448 	if (ret)
2449 		goto err_nand_cleanup;
2450 
2451 	ret = mtd_device_register(mtd, NULL, 0);
2452 	if (ret)
2453 		goto err_nand_cleanup;
2454 	return 0;
2455 
2456 err_nand_cleanup:
2457 	nand_cleanup(chip);
2458 err_out:
2459 	gpmi_free_dma_buffer(this);
2460 	return ret;
2461 }
2462 
2463 static const struct of_device_id gpmi_nand_id_table[] = {
2464 	{
2465 		.compatible = "fsl,imx23-gpmi-nand",
2466 		.data = &gpmi_devdata_imx23,
2467 	}, {
2468 		.compatible = "fsl,imx28-gpmi-nand",
2469 		.data = &gpmi_devdata_imx28,
2470 	}, {
2471 		.compatible = "fsl,imx6q-gpmi-nand",
2472 		.data = &gpmi_devdata_imx6q,
2473 	}, {
2474 		.compatible = "fsl,imx6sx-gpmi-nand",
2475 		.data = &gpmi_devdata_imx6sx,
2476 	}, {
2477 		.compatible = "fsl,imx7d-gpmi-nand",
2478 		.data = &gpmi_devdata_imx7d,
2479 	}, {}
2480 };
2481 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2482 
2483 static int gpmi_nand_probe(struct platform_device *pdev)
2484 {
2485 	struct gpmi_nand_data *this;
2486 	const struct of_device_id *of_id;
2487 	int ret;
2488 
2489 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2490 	if (!this)
2491 		return -ENOMEM;
2492 
2493 	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
2494 	if (of_id) {
2495 		this->devdata = of_id->data;
2496 	} else {
2497 		dev_err(&pdev->dev, "Failed to find the right device id.\n");
2498 		return -ENODEV;
2499 	}
2500 
2501 	platform_set_drvdata(pdev, this);
2502 	this->pdev  = pdev;
2503 	this->dev   = &pdev->dev;
2504 
2505 	ret = acquire_resources(this);
2506 	if (ret)
2507 		goto exit_acquire_resources;
2508 
2509 	ret = __gpmi_enable_clk(this, true);
2510 	if (ret)
2511 		goto exit_acquire_resources;
2512 
2513 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2514 	pm_runtime_use_autosuspend(&pdev->dev);
2515 	pm_runtime_set_active(&pdev->dev);
2516 	pm_runtime_enable(&pdev->dev);
2517 	pm_runtime_get_sync(&pdev->dev);
2518 
2519 	ret = gpmi_init(this);
2520 	if (ret)
2521 		goto exit_nfc_init;
2522 
2523 	ret = gpmi_nand_init(this);
2524 	if (ret)
2525 		goto exit_nfc_init;
2526 
2527 	pm_runtime_mark_last_busy(&pdev->dev);
2528 	pm_runtime_put_autosuspend(&pdev->dev);
2529 
2530 	dev_info(this->dev, "driver registered.\n");
2531 
2532 	return 0;
2533 
2534 exit_nfc_init:
2535 	pm_runtime_put(&pdev->dev);
2536 	pm_runtime_disable(&pdev->dev);
2537 	release_resources(this);
2538 exit_acquire_resources:
2539 
2540 	return ret;
2541 }
2542 
2543 static int gpmi_nand_remove(struct platform_device *pdev)
2544 {
2545 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2546 	struct nand_chip *chip = &this->nand;
2547 	int ret;
2548 
2549 	pm_runtime_put_sync(&pdev->dev);
2550 	pm_runtime_disable(&pdev->dev);
2551 
2552 	ret = mtd_device_unregister(nand_to_mtd(chip));
2553 	WARN_ON(ret);
2554 	nand_cleanup(chip);
2555 	gpmi_free_dma_buffer(this);
2556 	release_resources(this);
2557 	return 0;
2558 }
2559 
2560 #ifdef CONFIG_PM_SLEEP
2561 static int gpmi_pm_suspend(struct device *dev)
2562 {
2563 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2564 
2565 	release_dma_channels(this);
2566 	return 0;
2567 }
2568 
2569 static int gpmi_pm_resume(struct device *dev)
2570 {
2571 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2572 	int ret;
2573 
2574 	ret = acquire_dma_channels(this);
2575 	if (ret < 0)
2576 		return ret;
2577 
2578 	/* re-init the GPMI registers */
2579 	ret = gpmi_init(this);
2580 	if (ret) {
2581 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2582 		return ret;
2583 	}
2584 
2585 	/* Set flag to get timing setup restored for next exec_op */
2586 	if (this->hw.clk_rate)
2587 		this->hw.must_apply_timings = true;
2588 
2589 	/* re-init the BCH registers */
2590 	ret = bch_set_geometry(this);
2591 	if (ret) {
2592 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
2593 		return ret;
2594 	}
2595 
2596 	return 0;
2597 }
2598 #endif /* CONFIG_PM_SLEEP */
2599 
2600 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2601 {
2602 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2603 
2604 	return __gpmi_enable_clk(this, false);
2605 }
2606 
2607 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2608 {
2609 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2610 
2611 	return __gpmi_enable_clk(this, true);
2612 }
2613 
2614 static const struct dev_pm_ops gpmi_pm_ops = {
2615 	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2616 	SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2617 };
2618 
2619 static struct platform_driver gpmi_nand_driver = {
2620 	.driver = {
2621 		.name = "gpmi-nand",
2622 		.pm = &gpmi_pm_ops,
2623 		.of_match_table = gpmi_nand_id_table,
2624 	},
2625 	.probe   = gpmi_nand_probe,
2626 	.remove  = gpmi_nand_remove,
2627 };
2628 module_platform_driver(gpmi_nand_driver);
2629 
2630 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2631 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2632 MODULE_LICENSE("GPL");
2633