1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale GPMI NAND Flash Driver 4 * 5 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. 6 * Copyright (C) 2008 Embedded Alley Solutions, Inc. 7 */ 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/slab.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/interrupt.h> 13 #include <linux/module.h> 14 #include <linux/mtd/partitions.h> 15 #include <linux/of.h> 16 #include <linux/of_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/dma/mxs-dma.h> 19 #include "gpmi-nand.h" 20 #include "gpmi-regs.h" 21 #include "bch-regs.h" 22 23 /* Resource names for the GPMI NAND driver. */ 24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" 25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" 26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" 27 28 /* Converts time to clock cycles */ 29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) 30 31 #define MXS_SET_ADDR 0x4 32 #define MXS_CLR_ADDR 0x8 33 /* 34 * Clear the bit and poll it cleared. This is usually called with 35 * a reset address and mask being either SFTRST(bit 31) or CLKGATE 36 * (bit 30). 37 */ 38 static int clear_poll_bit(void __iomem *addr, u32 mask) 39 { 40 int timeout = 0x400; 41 42 /* clear the bit */ 43 writel(mask, addr + MXS_CLR_ADDR); 44 45 /* 46 * SFTRST needs 3 GPMI clocks to settle, the reference manual 47 * recommends to wait 1us. 48 */ 49 udelay(1); 50 51 /* poll the bit becoming clear */ 52 while ((readl(addr) & mask) && --timeout) 53 /* nothing */; 54 55 return !timeout; 56 } 57 58 #define MODULE_CLKGATE (1 << 30) 59 #define MODULE_SFTRST (1 << 31) 60 /* 61 * The current mxs_reset_block() will do two things: 62 * [1] enable the module. 63 * [2] reset the module. 64 * 65 * In most of the cases, it's ok. 66 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). 67 * If you try to soft reset the BCH block, it becomes unusable until 68 * the next hard reset. This case occurs in the NAND boot mode. When the board 69 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. 70 * So If the driver tries to reset the BCH again, the BCH will not work anymore. 71 * You will see a DMA timeout in this case. The bug has been fixed 72 * in the following chips, such as MX28. 73 * 74 * To avoid this bug, just add a new parameter `just_enable` for 75 * the mxs_reset_block(), and rewrite it here. 76 */ 77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) 78 { 79 int ret; 80 int timeout = 0x400; 81 82 /* clear and poll SFTRST */ 83 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 84 if (unlikely(ret)) 85 goto error; 86 87 /* clear CLKGATE */ 88 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); 89 90 if (!just_enable) { 91 /* set SFTRST to reset the block */ 92 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); 93 udelay(1); 94 95 /* poll CLKGATE becoming set */ 96 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) 97 /* nothing */; 98 if (unlikely(!timeout)) 99 goto error; 100 } 101 102 /* clear and poll SFTRST */ 103 ret = clear_poll_bit(reset_addr, MODULE_SFTRST); 104 if (unlikely(ret)) 105 goto error; 106 107 /* clear and poll CLKGATE */ 108 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); 109 if (unlikely(ret)) 110 goto error; 111 112 return 0; 113 114 error: 115 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); 116 return -ETIMEDOUT; 117 } 118 119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) 120 { 121 struct clk *clk; 122 int ret; 123 int i; 124 125 for (i = 0; i < GPMI_CLK_MAX; i++) { 126 clk = this->resources.clock[i]; 127 if (!clk) 128 break; 129 130 if (v) { 131 ret = clk_prepare_enable(clk); 132 if (ret) 133 goto err_clk; 134 } else { 135 clk_disable_unprepare(clk); 136 } 137 } 138 return 0; 139 140 err_clk: 141 for (; i > 0; i--) 142 clk_disable_unprepare(this->resources.clock[i - 1]); 143 return ret; 144 } 145 146 static int gpmi_init(struct gpmi_nand_data *this) 147 { 148 struct resources *r = &this->resources; 149 int ret; 150 151 ret = pm_runtime_get_sync(this->dev); 152 if (ret < 0) { 153 pm_runtime_put_noidle(this->dev); 154 return ret; 155 } 156 157 ret = gpmi_reset_block(r->gpmi_regs, false); 158 if (ret) 159 goto err_out; 160 161 /* 162 * Reset BCH here, too. We got failures otherwise :( 163 * See later BCH reset for explanation of MX23 and MX28 handling 164 */ 165 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 166 if (ret) 167 goto err_out; 168 169 /* Choose NAND mode. */ 170 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); 171 172 /* Set the IRQ polarity. */ 173 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, 174 r->gpmi_regs + HW_GPMI_CTRL1_SET); 175 176 /* Disable Write-Protection. */ 177 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); 178 179 /* Select BCH ECC. */ 180 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); 181 182 /* 183 * Decouple the chip select from dma channel. We use dma0 for all 184 * the chips, force all NAND RDY_BUSY inputs to be sourced from 185 * RDY_BUSY0. 186 */ 187 writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY, 188 r->gpmi_regs + HW_GPMI_CTRL1_SET); 189 190 err_out: 191 pm_runtime_mark_last_busy(this->dev); 192 pm_runtime_put_autosuspend(this->dev); 193 return ret; 194 } 195 196 /* This function is very useful. It is called only when the bug occur. */ 197 static void gpmi_dump_info(struct gpmi_nand_data *this) 198 { 199 struct resources *r = &this->resources; 200 struct bch_geometry *geo = &this->bch_geometry; 201 u32 reg; 202 int i; 203 204 dev_err(this->dev, "Show GPMI registers :\n"); 205 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { 206 reg = readl(r->gpmi_regs + i * 0x10); 207 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 208 } 209 210 /* start to print out the BCH info */ 211 dev_err(this->dev, "Show BCH registers :\n"); 212 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { 213 reg = readl(r->bch_regs + i * 0x10); 214 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); 215 } 216 dev_err(this->dev, "BCH Geometry :\n" 217 "GF length : %u\n" 218 "ECC Strength : %u\n" 219 "Page Size in Bytes : %u\n" 220 "Metadata Size in Bytes : %u\n" 221 "ECC Chunk Size in Bytes: %u\n" 222 "ECC Chunk Count : %u\n" 223 "Payload Size in Bytes : %u\n" 224 "Auxiliary Size in Bytes: %u\n" 225 "Auxiliary Status Offset: %u\n" 226 "Block Mark Byte Offset : %u\n" 227 "Block Mark Bit Offset : %u\n", 228 geo->gf_len, 229 geo->ecc_strength, 230 geo->page_size, 231 geo->metadata_size, 232 geo->ecc_chunk_size, 233 geo->ecc_chunk_count, 234 geo->payload_size, 235 geo->auxiliary_size, 236 geo->auxiliary_status_offset, 237 geo->block_mark_byte_offset, 238 geo->block_mark_bit_offset); 239 } 240 241 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) 242 { 243 struct bch_geometry *geo = &this->bch_geometry; 244 245 /* Do the sanity check. */ 246 if (GPMI_IS_MXS(this)) { 247 /* The mx23/mx28 only support the GF13. */ 248 if (geo->gf_len == 14) 249 return false; 250 } 251 return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; 252 } 253 254 /* 255 * If we can get the ECC information from the nand chip, we do not 256 * need to calculate them ourselves. 257 * 258 * We may have available oob space in this case. 259 */ 260 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, 261 unsigned int ecc_strength, 262 unsigned int ecc_step) 263 { 264 struct bch_geometry *geo = &this->bch_geometry; 265 struct nand_chip *chip = &this->nand; 266 struct mtd_info *mtd = nand_to_mtd(chip); 267 unsigned int block_mark_bit_offset; 268 269 switch (ecc_step) { 270 case SZ_512: 271 geo->gf_len = 13; 272 break; 273 case SZ_1K: 274 geo->gf_len = 14; 275 break; 276 default: 277 dev_err(this->dev, 278 "unsupported nand chip. ecc bits : %d, ecc size : %d\n", 279 nanddev_get_ecc_requirements(&chip->base)->strength, 280 nanddev_get_ecc_requirements(&chip->base)->step_size); 281 return -EINVAL; 282 } 283 geo->ecc_chunk_size = ecc_step; 284 geo->ecc_strength = round_up(ecc_strength, 2); 285 if (!gpmi_check_ecc(this)) 286 return -EINVAL; 287 288 /* Keep the C >= O */ 289 if (geo->ecc_chunk_size < mtd->oobsize) { 290 dev_err(this->dev, 291 "unsupported nand chip. ecc size: %d, oob size : %d\n", 292 ecc_step, mtd->oobsize); 293 return -EINVAL; 294 } 295 296 /* The default value, see comment in the legacy_set_geometry(). */ 297 geo->metadata_size = 10; 298 299 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 300 301 /* 302 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: 303 * 304 * | P | 305 * |<----------------------------------------------------->| 306 * | | 307 * | (Block Mark) | 308 * | P' | | | | 309 * |<-------------------------------------------->| D | | O' | 310 * | |<---->| |<--->| 311 * V V V V V 312 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 313 * | M | data |E| data |E| data |E| data |E| | 314 * +---+----------+-+----------+-+----------+-+----------+-+-----+ 315 * ^ ^ 316 * | O | 317 * |<------------>| 318 * | | 319 * 320 * P : the page size for BCH module. 321 * E : The ECC strength. 322 * G : the length of Galois Field. 323 * N : The chunk count of per page. 324 * M : the metasize of per page. 325 * C : the ecc chunk size, aka the "data" above. 326 * P': the nand chip's page size. 327 * O : the nand chip's oob size. 328 * O': the free oob. 329 * 330 * The formula for P is : 331 * 332 * E * G * N 333 * P = ------------ + P' + M 334 * 8 335 * 336 * The position of block mark moves forward in the ECC-based view 337 * of page, and the delta is: 338 * 339 * E * G * (N - 1) 340 * D = (---------------- + M) 341 * 8 342 * 343 * Please see the comment in legacy_set_geometry(). 344 * With the condition C >= O , we still can get same result. 345 * So the bit position of the physical block mark within the ECC-based 346 * view of the page is : 347 * (P' - D) * 8 348 */ 349 geo->page_size = mtd->writesize + geo->metadata_size + 350 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 351 352 geo->payload_size = mtd->writesize; 353 354 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); 355 geo->auxiliary_size = ALIGN(geo->metadata_size, 4) 356 + ALIGN(geo->ecc_chunk_count, 4); 357 358 if (!this->swap_block_mark) 359 return 0; 360 361 /* For bit swap. */ 362 block_mark_bit_offset = mtd->writesize * 8 - 363 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 364 + geo->metadata_size * 8); 365 366 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 367 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 368 return 0; 369 } 370 371 /* 372 * Calculate the ECC strength by hand: 373 * E : The ECC strength. 374 * G : the length of Galois Field. 375 * N : The chunk count of per page. 376 * O : the oobsize of the NAND chip. 377 * M : the metasize of per page. 378 * 379 * The formula is : 380 * E * G * N 381 * ------------ <= (O - M) 382 * 8 383 * 384 * So, we get E by: 385 * (O - M) * 8 386 * E <= ------------- 387 * G * N 388 */ 389 static inline int get_ecc_strength(struct gpmi_nand_data *this) 390 { 391 struct bch_geometry *geo = &this->bch_geometry; 392 struct mtd_info *mtd = nand_to_mtd(&this->nand); 393 int ecc_strength; 394 395 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) 396 / (geo->gf_len * geo->ecc_chunk_count); 397 398 /* We need the minor even number. */ 399 return round_down(ecc_strength, 2); 400 } 401 402 static int legacy_set_geometry(struct gpmi_nand_data *this) 403 { 404 struct bch_geometry *geo = &this->bch_geometry; 405 struct mtd_info *mtd = nand_to_mtd(&this->nand); 406 unsigned int metadata_size; 407 unsigned int status_size; 408 unsigned int block_mark_bit_offset; 409 410 /* 411 * The size of the metadata can be changed, though we set it to 10 412 * bytes now. But it can't be too large, because we have to save 413 * enough space for BCH. 414 */ 415 geo->metadata_size = 10; 416 417 /* The default for the length of Galois Field. */ 418 geo->gf_len = 13; 419 420 /* The default for chunk size. */ 421 geo->ecc_chunk_size = 512; 422 while (geo->ecc_chunk_size < mtd->oobsize) { 423 geo->ecc_chunk_size *= 2; /* keep C >= O */ 424 geo->gf_len = 14; 425 } 426 427 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; 428 429 /* We use the same ECC strength for all chunks. */ 430 geo->ecc_strength = get_ecc_strength(this); 431 if (!gpmi_check_ecc(this)) { 432 dev_err(this->dev, 433 "ecc strength: %d cannot be supported by the controller (%d)\n" 434 "try to use minimum ecc strength that NAND chip required\n", 435 geo->ecc_strength, 436 this->devdata->bch_max_ecc_strength); 437 return -EINVAL; 438 } 439 440 geo->page_size = mtd->writesize + geo->metadata_size + 441 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; 442 geo->payload_size = mtd->writesize; 443 444 /* 445 * The auxiliary buffer contains the metadata and the ECC status. The 446 * metadata is padded to the nearest 32-bit boundary. The ECC status 447 * contains one byte for every ECC chunk, and is also padded to the 448 * nearest 32-bit boundary. 449 */ 450 metadata_size = ALIGN(geo->metadata_size, 4); 451 status_size = ALIGN(geo->ecc_chunk_count, 4); 452 453 geo->auxiliary_size = metadata_size + status_size; 454 geo->auxiliary_status_offset = metadata_size; 455 456 if (!this->swap_block_mark) 457 return 0; 458 459 /* 460 * We need to compute the byte and bit offsets of 461 * the physical block mark within the ECC-based view of the page. 462 * 463 * NAND chip with 2K page shows below: 464 * (Block Mark) 465 * | | 466 * | D | 467 * |<---->| 468 * V V 469 * +---+----------+-+----------+-+----------+-+----------+-+ 470 * | M | data |E| data |E| data |E| data |E| 471 * +---+----------+-+----------+-+----------+-+----------+-+ 472 * 473 * The position of block mark moves forward in the ECC-based view 474 * of page, and the delta is: 475 * 476 * E * G * (N - 1) 477 * D = (---------------- + M) 478 * 8 479 * 480 * With the formula to compute the ECC strength, and the condition 481 * : C >= O (C is the ecc chunk size) 482 * 483 * It's easy to deduce to the following result: 484 * 485 * E * G (O - M) C - M C - M 486 * ----------- <= ------- <= -------- < --------- 487 * 8 N N (N - 1) 488 * 489 * So, we get: 490 * 491 * E * G * (N - 1) 492 * D = (---------------- + M) < C 493 * 8 494 * 495 * The above inequality means the position of block mark 496 * within the ECC-based view of the page is still in the data chunk, 497 * and it's NOT in the ECC bits of the chunk. 498 * 499 * Use the following to compute the bit position of the 500 * physical block mark within the ECC-based view of the page: 501 * (page_size - D) * 8 502 * 503 * --Huang Shijie 504 */ 505 block_mark_bit_offset = mtd->writesize * 8 - 506 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) 507 + geo->metadata_size * 8); 508 509 geo->block_mark_byte_offset = block_mark_bit_offset / 8; 510 geo->block_mark_bit_offset = block_mark_bit_offset % 8; 511 return 0; 512 } 513 514 static int common_nfc_set_geometry(struct gpmi_nand_data *this) 515 { 516 struct nand_chip *chip = &this->nand; 517 const struct nand_ecc_props *requirements = 518 nanddev_get_ecc_requirements(&chip->base); 519 520 if (chip->ecc.strength > 0 && chip->ecc.size > 0) 521 return set_geometry_by_ecc_info(this, chip->ecc.strength, 522 chip->ecc.size); 523 524 if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) 525 || legacy_set_geometry(this)) { 526 if (!(requirements->strength > 0 && requirements->step_size > 0)) 527 return -EINVAL; 528 529 return set_geometry_by_ecc_info(this, 530 requirements->strength, 531 requirements->step_size); 532 } 533 534 return 0; 535 } 536 537 /* Configures the geometry for BCH. */ 538 static int bch_set_geometry(struct gpmi_nand_data *this) 539 { 540 struct resources *r = &this->resources; 541 int ret; 542 543 ret = common_nfc_set_geometry(this); 544 if (ret) 545 return ret; 546 547 ret = pm_runtime_get_sync(this->dev); 548 if (ret < 0) { 549 pm_runtime_put_autosuspend(this->dev); 550 return ret; 551 } 552 553 /* 554 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this 555 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. 556 * and MX28. 557 */ 558 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); 559 if (ret) 560 goto err_out; 561 562 /* Set *all* chip selects to use layout 0. */ 563 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); 564 565 ret = 0; 566 err_out: 567 pm_runtime_mark_last_busy(this->dev); 568 pm_runtime_put_autosuspend(this->dev); 569 570 return ret; 571 } 572 573 /* 574 * <1> Firstly, we should know what's the GPMI-clock means. 575 * The GPMI-clock is the internal clock in the gpmi nand controller. 576 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period 577 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. 578 * 579 * <2> Secondly, we should know what's the frequency on the nand chip pins. 580 * The frequency on the nand chip pins is derived from the GPMI-clock. 581 * We can get it from the following equation: 582 * 583 * F = G / (DS + DH) 584 * 585 * F : the frequency on the nand chip pins. 586 * G : the GPMI clock, such as 100MHz. 587 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP 588 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD 589 * 590 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, 591 * the nand EDO(extended Data Out) timing could be applied. 592 * The GPMI implements a feedback read strobe to sample the read data. 593 * The feedback read strobe can be delayed to support the nand EDO timing 594 * where the read strobe may deasserts before the read data is valid, and 595 * read data is valid for some time after read strobe. 596 * 597 * The following figure illustrates some aspects of a NAND Flash read: 598 * 599 * |<---tREA---->| 600 * | | 601 * | | | 602 * |<--tRP-->| | 603 * | | | 604 * __ ___|__________________________________ 605 * RDN \________/ | 606 * | 607 * /---------\ 608 * Read Data --------------< >--------- 609 * \---------/ 610 * | | 611 * |<-D->| 612 * FeedbackRDN ________ ____________ 613 * \___________/ 614 * 615 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. 616 * 617 * 618 * <4> Now, we begin to describe how to compute the right RDN_DELAY. 619 * 620 * 4.1) From the aspect of the nand chip pins: 621 * Delay = (tREA + C - tRP) {1} 622 * 623 * tREA : the maximum read access time. 624 * C : a constant to adjust the delay. default is 4000ps. 625 * tRP : the read pulse width, which is exactly: 626 * tRP = (GPMI-clock-period) * DATA_SETUP 627 * 628 * 4.2) From the aspect of the GPMI nand controller: 629 * Delay = RDN_DELAY * 0.125 * RP {2} 630 * 631 * RP : the DLL reference period. 632 * if (GPMI-clock-period > DLL_THRETHOLD) 633 * RP = GPMI-clock-period / 2; 634 * else 635 * RP = GPMI-clock-period; 636 * 637 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period 638 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD 639 * is 16000ps, but in mx6q, we use 12000ps. 640 * 641 * 4.3) since {1} equals {2}, we get: 642 * 643 * (tREA + 4000 - tRP) * 8 644 * RDN_DELAY = ----------------------- {3} 645 * RP 646 */ 647 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this, 648 const struct nand_sdr_timings *sdr) 649 { 650 struct gpmi_nfc_hardware_timing *hw = &this->hw; 651 unsigned int dll_threshold_ps = this->devdata->max_chain_delay; 652 unsigned int period_ps, reference_period_ps; 653 unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; 654 unsigned int tRP_ps; 655 bool use_half_period; 656 int sample_delay_ps, sample_delay_factor; 657 u16 busy_timeout_cycles; 658 u8 wrn_dly_sel; 659 660 if (sdr->tRC_min >= 30000) { 661 /* ONFI non-EDO modes [0-3] */ 662 hw->clk_rate = 22000000; 663 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; 664 } else if (sdr->tRC_min >= 25000) { 665 /* ONFI EDO mode 4 */ 666 hw->clk_rate = 80000000; 667 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 668 } else { 669 /* ONFI EDO mode 5 */ 670 hw->clk_rate = 100000000; 671 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; 672 } 673 674 /* SDR core timings are given in picoseconds */ 675 period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); 676 677 addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); 678 data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); 679 data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); 680 busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); 681 682 hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | 683 BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | 684 BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); 685 hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096); 686 687 /* 688 * Derive NFC ideal delay from {3}: 689 * 690 * (tREA + 4000 - tRP) * 8 691 * RDN_DELAY = ----------------------- 692 * RP 693 */ 694 if (period_ps > dll_threshold_ps) { 695 use_half_period = true; 696 reference_period_ps = period_ps / 2; 697 } else { 698 use_half_period = false; 699 reference_period_ps = period_ps; 700 } 701 702 tRP_ps = data_setup_cycles * period_ps; 703 sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; 704 if (sample_delay_ps > 0) 705 sample_delay_factor = sample_delay_ps / reference_period_ps; 706 else 707 sample_delay_factor = 0; 708 709 hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); 710 if (sample_delay_factor) 711 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | 712 BM_GPMI_CTRL1_DLL_ENABLE | 713 (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); 714 } 715 716 static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) 717 { 718 struct gpmi_nfc_hardware_timing *hw = &this->hw; 719 struct resources *r = &this->resources; 720 void __iomem *gpmi_regs = r->gpmi_regs; 721 unsigned int dll_wait_time_us; 722 723 clk_set_rate(r->clock[0], hw->clk_rate); 724 725 writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); 726 writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); 727 728 /* 729 * Clear several CTRL1 fields, DLL must be disabled when setting 730 * RDN_DELAY or HALF_PERIOD. 731 */ 732 writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); 733 writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); 734 735 /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ 736 dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; 737 if (!dll_wait_time_us) 738 dll_wait_time_us = 1; 739 740 /* Wait for the DLL to settle. */ 741 udelay(dll_wait_time_us); 742 } 743 744 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr, 745 const struct nand_interface_config *conf) 746 { 747 struct gpmi_nand_data *this = nand_get_controller_data(chip); 748 const struct nand_sdr_timings *sdr; 749 750 /* Retrieve required NAND timings */ 751 sdr = nand_get_sdr_timings(conf); 752 if (IS_ERR(sdr)) 753 return PTR_ERR(sdr); 754 755 /* Only MX6 GPMI controller can reach EDO timings */ 756 if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this)) 757 return -ENOTSUPP; 758 759 /* Stop here if this call was just a check */ 760 if (chipnr < 0) 761 return 0; 762 763 /* Do the actual derivation of the controller timings */ 764 gpmi_nfc_compute_timings(this, sdr); 765 766 this->hw.must_apply_timings = true; 767 768 return 0; 769 } 770 771 /* Clears a BCH interrupt. */ 772 static void gpmi_clear_bch(struct gpmi_nand_data *this) 773 { 774 struct resources *r = &this->resources; 775 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); 776 } 777 778 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) 779 { 780 /* We use the DMA channel 0 to access all the nand chips. */ 781 return this->dma_chans[0]; 782 } 783 784 /* This will be called after the DMA operation is finished. */ 785 static void dma_irq_callback(void *param) 786 { 787 struct gpmi_nand_data *this = param; 788 struct completion *dma_c = &this->dma_done; 789 790 complete(dma_c); 791 } 792 793 static irqreturn_t bch_irq(int irq, void *cookie) 794 { 795 struct gpmi_nand_data *this = cookie; 796 797 gpmi_clear_bch(this); 798 complete(&this->bch_done); 799 return IRQ_HANDLED; 800 } 801 802 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len) 803 { 804 /* 805 * raw_len is the length to read/write including bch data which 806 * we are passed in exec_op. Calculate the data length from it. 807 */ 808 if (this->bch) 809 return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size); 810 else 811 return raw_len; 812 } 813 814 /* Can we use the upper's buffer directly for DMA? */ 815 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, 816 int raw_len, struct scatterlist *sgl, 817 enum dma_data_direction dr) 818 { 819 int ret; 820 int len = gpmi_raw_len_to_len(this, raw_len); 821 822 /* first try to map the upper buffer directly */ 823 if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { 824 sg_init_one(sgl, buf, len); 825 ret = dma_map_sg(this->dev, sgl, 1, dr); 826 if (ret == 0) 827 goto map_fail; 828 829 return true; 830 } 831 832 map_fail: 833 /* We have to use our own DMA buffer. */ 834 sg_init_one(sgl, this->data_buffer_dma, len); 835 836 if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma) 837 memcpy(this->data_buffer_dma, buf, len); 838 839 dma_map_sg(this->dev, sgl, 1, dr); 840 841 return false; 842 } 843 844 /* add our owner bbt descriptor */ 845 static uint8_t scan_ff_pattern[] = { 0xff }; 846 static struct nand_bbt_descr gpmi_bbt_descr = { 847 .options = 0, 848 .offs = 0, 849 .len = 1, 850 .pattern = scan_ff_pattern 851 }; 852 853 /* 854 * We may change the layout if we can get the ECC info from the datasheet, 855 * else we will use all the (page + OOB). 856 */ 857 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, 858 struct mtd_oob_region *oobregion) 859 { 860 struct nand_chip *chip = mtd_to_nand(mtd); 861 struct gpmi_nand_data *this = nand_get_controller_data(chip); 862 struct bch_geometry *geo = &this->bch_geometry; 863 864 if (section) 865 return -ERANGE; 866 867 oobregion->offset = 0; 868 oobregion->length = geo->page_size - mtd->writesize; 869 870 return 0; 871 } 872 873 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, 874 struct mtd_oob_region *oobregion) 875 { 876 struct nand_chip *chip = mtd_to_nand(mtd); 877 struct gpmi_nand_data *this = nand_get_controller_data(chip); 878 struct bch_geometry *geo = &this->bch_geometry; 879 880 if (section) 881 return -ERANGE; 882 883 /* The available oob size we have. */ 884 if (geo->page_size < mtd->writesize + mtd->oobsize) { 885 oobregion->offset = geo->page_size - mtd->writesize; 886 oobregion->length = mtd->oobsize - oobregion->offset; 887 } 888 889 return 0; 890 } 891 892 static const char * const gpmi_clks_for_mx2x[] = { 893 "gpmi_io", 894 }; 895 896 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { 897 .ecc = gpmi_ooblayout_ecc, 898 .free = gpmi_ooblayout_free, 899 }; 900 901 static const struct gpmi_devdata gpmi_devdata_imx23 = { 902 .type = IS_MX23, 903 .bch_max_ecc_strength = 20, 904 .max_chain_delay = 16000, 905 .clks = gpmi_clks_for_mx2x, 906 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 907 }; 908 909 static const struct gpmi_devdata gpmi_devdata_imx28 = { 910 .type = IS_MX28, 911 .bch_max_ecc_strength = 20, 912 .max_chain_delay = 16000, 913 .clks = gpmi_clks_for_mx2x, 914 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), 915 }; 916 917 static const char * const gpmi_clks_for_mx6[] = { 918 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", 919 }; 920 921 static const struct gpmi_devdata gpmi_devdata_imx6q = { 922 .type = IS_MX6Q, 923 .bch_max_ecc_strength = 40, 924 .max_chain_delay = 12000, 925 .clks = gpmi_clks_for_mx6, 926 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 927 }; 928 929 static const struct gpmi_devdata gpmi_devdata_imx6sx = { 930 .type = IS_MX6SX, 931 .bch_max_ecc_strength = 62, 932 .max_chain_delay = 12000, 933 .clks = gpmi_clks_for_mx6, 934 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), 935 }; 936 937 static const char * const gpmi_clks_for_mx7d[] = { 938 "gpmi_io", "gpmi_bch_apb", 939 }; 940 941 static const struct gpmi_devdata gpmi_devdata_imx7d = { 942 .type = IS_MX7D, 943 .bch_max_ecc_strength = 62, 944 .max_chain_delay = 12000, 945 .clks = gpmi_clks_for_mx7d, 946 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), 947 }; 948 949 static int acquire_register_block(struct gpmi_nand_data *this, 950 const char *res_name) 951 { 952 struct platform_device *pdev = this->pdev; 953 struct resources *res = &this->resources; 954 struct resource *r; 955 void __iomem *p; 956 957 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); 958 p = devm_ioremap_resource(&pdev->dev, r); 959 if (IS_ERR(p)) 960 return PTR_ERR(p); 961 962 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) 963 res->gpmi_regs = p; 964 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) 965 res->bch_regs = p; 966 else 967 dev_err(this->dev, "unknown resource name : %s\n", res_name); 968 969 return 0; 970 } 971 972 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) 973 { 974 struct platform_device *pdev = this->pdev; 975 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; 976 struct resource *r; 977 int err; 978 979 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); 980 if (!r) { 981 dev_err(this->dev, "Can't get resource for %s\n", res_name); 982 return -ENODEV; 983 } 984 985 err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); 986 if (err) 987 dev_err(this->dev, "error requesting BCH IRQ\n"); 988 989 return err; 990 } 991 992 static void release_dma_channels(struct gpmi_nand_data *this) 993 { 994 unsigned int i; 995 for (i = 0; i < DMA_CHANS; i++) 996 if (this->dma_chans[i]) { 997 dma_release_channel(this->dma_chans[i]); 998 this->dma_chans[i] = NULL; 999 } 1000 } 1001 1002 static int acquire_dma_channels(struct gpmi_nand_data *this) 1003 { 1004 struct platform_device *pdev = this->pdev; 1005 struct dma_chan *dma_chan; 1006 int ret = 0; 1007 1008 /* request dma channel */ 1009 dma_chan = dma_request_chan(&pdev->dev, "rx-tx"); 1010 if (IS_ERR(dma_chan)) { 1011 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan), 1012 "DMA channel request failed\n"); 1013 release_dma_channels(this); 1014 } else { 1015 this->dma_chans[0] = dma_chan; 1016 } 1017 1018 return ret; 1019 } 1020 1021 static int gpmi_get_clks(struct gpmi_nand_data *this) 1022 { 1023 struct resources *r = &this->resources; 1024 struct clk *clk; 1025 int err, i; 1026 1027 for (i = 0; i < this->devdata->clks_count; i++) { 1028 clk = devm_clk_get(this->dev, this->devdata->clks[i]); 1029 if (IS_ERR(clk)) { 1030 err = PTR_ERR(clk); 1031 goto err_clock; 1032 } 1033 1034 r->clock[i] = clk; 1035 } 1036 1037 if (GPMI_IS_MX6(this)) 1038 /* 1039 * Set the default value for the gpmi clock. 1040 * 1041 * If you want to use the ONFI nand which is in the 1042 * Synchronous Mode, you should change the clock as you need. 1043 */ 1044 clk_set_rate(r->clock[0], 22000000); 1045 1046 return 0; 1047 1048 err_clock: 1049 dev_dbg(this->dev, "failed in finding the clocks.\n"); 1050 return err; 1051 } 1052 1053 static int acquire_resources(struct gpmi_nand_data *this) 1054 { 1055 int ret; 1056 1057 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); 1058 if (ret) 1059 goto exit_regs; 1060 1061 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); 1062 if (ret) 1063 goto exit_regs; 1064 1065 ret = acquire_bch_irq(this, bch_irq); 1066 if (ret) 1067 goto exit_regs; 1068 1069 ret = acquire_dma_channels(this); 1070 if (ret) 1071 goto exit_regs; 1072 1073 ret = gpmi_get_clks(this); 1074 if (ret) 1075 goto exit_clock; 1076 return 0; 1077 1078 exit_clock: 1079 release_dma_channels(this); 1080 exit_regs: 1081 return ret; 1082 } 1083 1084 static void release_resources(struct gpmi_nand_data *this) 1085 { 1086 release_dma_channels(this); 1087 } 1088 1089 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) 1090 { 1091 struct device *dev = this->dev; 1092 struct bch_geometry *geo = &this->bch_geometry; 1093 1094 if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt)) 1095 dma_free_coherent(dev, geo->auxiliary_size, 1096 this->auxiliary_virt, 1097 this->auxiliary_phys); 1098 kfree(this->data_buffer_dma); 1099 kfree(this->raw_buffer); 1100 1101 this->data_buffer_dma = NULL; 1102 this->raw_buffer = NULL; 1103 } 1104 1105 /* Allocate the DMA buffers */ 1106 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) 1107 { 1108 struct bch_geometry *geo = &this->bch_geometry; 1109 struct device *dev = this->dev; 1110 struct mtd_info *mtd = nand_to_mtd(&this->nand); 1111 1112 /* 1113 * [2] Allocate a read/write data buffer. 1114 * The gpmi_alloc_dma_buffer can be called twice. 1115 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer 1116 * is called before the NAND identification; and we allocate a 1117 * buffer of the real NAND page size when the gpmi_alloc_dma_buffer 1118 * is called after. 1119 */ 1120 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, 1121 GFP_DMA | GFP_KERNEL); 1122 if (this->data_buffer_dma == NULL) 1123 goto error_alloc; 1124 1125 this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size, 1126 &this->auxiliary_phys, GFP_DMA); 1127 if (!this->auxiliary_virt) 1128 goto error_alloc; 1129 1130 this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL); 1131 if (!this->raw_buffer) 1132 goto error_alloc; 1133 1134 return 0; 1135 1136 error_alloc: 1137 gpmi_free_dma_buffer(this); 1138 return -ENOMEM; 1139 } 1140 1141 /* 1142 * Handles block mark swapping. 1143 * It can be called in swapping the block mark, or swapping it back, 1144 * because the the operations are the same. 1145 */ 1146 static void block_mark_swapping(struct gpmi_nand_data *this, 1147 void *payload, void *auxiliary) 1148 { 1149 struct bch_geometry *nfc_geo = &this->bch_geometry; 1150 unsigned char *p; 1151 unsigned char *a; 1152 unsigned int bit; 1153 unsigned char mask; 1154 unsigned char from_data; 1155 unsigned char from_oob; 1156 1157 if (!this->swap_block_mark) 1158 return; 1159 1160 /* 1161 * If control arrives here, we're swapping. Make some convenience 1162 * variables. 1163 */ 1164 bit = nfc_geo->block_mark_bit_offset; 1165 p = payload + nfc_geo->block_mark_byte_offset; 1166 a = auxiliary; 1167 1168 /* 1169 * Get the byte from the data area that overlays the block mark. Since 1170 * the ECC engine applies its own view to the bits in the page, the 1171 * physical block mark won't (in general) appear on a byte boundary in 1172 * the data. 1173 */ 1174 from_data = (p[0] >> bit) | (p[1] << (8 - bit)); 1175 1176 /* Get the byte from the OOB. */ 1177 from_oob = a[0]; 1178 1179 /* Swap them. */ 1180 a[0] = from_data; 1181 1182 mask = (0x1 << bit) - 1; 1183 p[0] = (p[0] & mask) | (from_oob << bit); 1184 1185 mask = ~0 << bit; 1186 p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); 1187 } 1188 1189 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first, 1190 int last, int meta) 1191 { 1192 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1193 struct bch_geometry *nfc_geo = &this->bch_geometry; 1194 struct mtd_info *mtd = nand_to_mtd(chip); 1195 int i; 1196 unsigned char *status; 1197 unsigned int max_bitflips = 0; 1198 1199 /* Loop over status bytes, accumulating ECC status. */ 1200 status = this->auxiliary_virt + ALIGN(meta, 4); 1201 1202 for (i = first; i < last; i++, status++) { 1203 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) 1204 continue; 1205 1206 if (*status == STATUS_UNCORRECTABLE) { 1207 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1208 u8 *eccbuf = this->raw_buffer; 1209 int offset, bitoffset; 1210 int eccbytes; 1211 int flips; 1212 1213 /* Read ECC bytes into our internal raw_buffer */ 1214 offset = nfc_geo->metadata_size * 8; 1215 offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); 1216 offset -= eccbits; 1217 bitoffset = offset % 8; 1218 eccbytes = DIV_ROUND_UP(offset + eccbits, 8); 1219 offset /= 8; 1220 eccbytes -= offset; 1221 nand_change_read_column_op(chip, offset, eccbuf, 1222 eccbytes, false); 1223 1224 /* 1225 * ECC data are not byte aligned and we may have 1226 * in-band data in the first and last byte of 1227 * eccbuf. Set non-eccbits to one so that 1228 * nand_check_erased_ecc_chunk() does not count them 1229 * as bitflips. 1230 */ 1231 if (bitoffset) 1232 eccbuf[0] |= GENMASK(bitoffset - 1, 0); 1233 1234 bitoffset = (bitoffset + eccbits) % 8; 1235 if (bitoffset) 1236 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); 1237 1238 /* 1239 * The ECC hardware has an uncorrectable ECC status 1240 * code in case we have bitflips in an erased page. As 1241 * nothing was written into this subpage the ECC is 1242 * obviously wrong and we can not trust it. We assume 1243 * at this point that we are reading an erased page and 1244 * try to correct the bitflips in buffer up to 1245 * ecc_strength bitflips. If this is a page with random 1246 * data, we exceed this number of bitflips and have a 1247 * ECC failure. Otherwise we use the corrected buffer. 1248 */ 1249 if (i == 0) { 1250 /* The first block includes metadata */ 1251 flips = nand_check_erased_ecc_chunk( 1252 buf + i * nfc_geo->ecc_chunk_size, 1253 nfc_geo->ecc_chunk_size, 1254 eccbuf, eccbytes, 1255 this->auxiliary_virt, 1256 nfc_geo->metadata_size, 1257 nfc_geo->ecc_strength); 1258 } else { 1259 flips = nand_check_erased_ecc_chunk( 1260 buf + i * nfc_geo->ecc_chunk_size, 1261 nfc_geo->ecc_chunk_size, 1262 eccbuf, eccbytes, 1263 NULL, 0, 1264 nfc_geo->ecc_strength); 1265 } 1266 1267 if (flips > 0) { 1268 max_bitflips = max_t(unsigned int, max_bitflips, 1269 flips); 1270 mtd->ecc_stats.corrected += flips; 1271 continue; 1272 } 1273 1274 mtd->ecc_stats.failed++; 1275 continue; 1276 } 1277 1278 mtd->ecc_stats.corrected += *status; 1279 max_bitflips = max_t(unsigned int, max_bitflips, *status); 1280 } 1281 1282 return max_bitflips; 1283 } 1284 1285 static void gpmi_bch_layout_std(struct gpmi_nand_data *this) 1286 { 1287 struct bch_geometry *geo = &this->bch_geometry; 1288 unsigned int ecc_strength = geo->ecc_strength >> 1; 1289 unsigned int gf_len = geo->gf_len; 1290 unsigned int block_size = geo->ecc_chunk_size; 1291 1292 this->bch_flashlayout0 = 1293 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) | 1294 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) | 1295 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1296 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) | 1297 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this); 1298 1299 this->bch_flashlayout1 = 1300 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) | 1301 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1302 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) | 1303 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this); 1304 } 1305 1306 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, 1307 int oob_required, int page) 1308 { 1309 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1310 struct mtd_info *mtd = nand_to_mtd(chip); 1311 struct bch_geometry *geo = &this->bch_geometry; 1312 unsigned int max_bitflips; 1313 int ret; 1314 1315 gpmi_bch_layout_std(this); 1316 this->bch = true; 1317 1318 ret = nand_read_page_op(chip, page, 0, buf, geo->page_size); 1319 if (ret) 1320 return ret; 1321 1322 max_bitflips = gpmi_count_bitflips(chip, buf, 0, 1323 geo->ecc_chunk_count, 1324 geo->auxiliary_status_offset); 1325 1326 /* handle the block mark swapping */ 1327 block_mark_swapping(this, buf, this->auxiliary_virt); 1328 1329 if (oob_required) { 1330 /* 1331 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() 1332 * for details about our policy for delivering the OOB. 1333 * 1334 * We fill the caller's buffer with set bits, and then copy the 1335 * block mark to th caller's buffer. Note that, if block mark 1336 * swapping was necessary, it has already been done, so we can 1337 * rely on the first byte of the auxiliary buffer to contain 1338 * the block mark. 1339 */ 1340 memset(chip->oob_poi, ~0, mtd->oobsize); 1341 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; 1342 } 1343 1344 return max_bitflips; 1345 } 1346 1347 /* Fake a virtual small page for the subpage read */ 1348 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, 1349 uint32_t len, uint8_t *buf, int page) 1350 { 1351 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1352 struct bch_geometry *geo = &this->bch_geometry; 1353 int size = chip->ecc.size; /* ECC chunk size */ 1354 int meta, n, page_size; 1355 unsigned int max_bitflips; 1356 unsigned int ecc_strength; 1357 int first, last, marker_pos; 1358 int ecc_parity_size; 1359 int col = 0; 1360 int ret; 1361 1362 /* The size of ECC parity */ 1363 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1364 1365 /* Align it with the chunk size */ 1366 first = offs / size; 1367 last = (offs + len - 1) / size; 1368 1369 if (this->swap_block_mark) { 1370 /* 1371 * Find the chunk which contains the Block Marker. 1372 * If this chunk is in the range of [first, last], 1373 * we have to read out the whole page. 1374 * Why? since we had swapped the data at the position of Block 1375 * Marker to the metadata which is bound with the chunk 0. 1376 */ 1377 marker_pos = geo->block_mark_byte_offset / size; 1378 if (last >= marker_pos && first <= marker_pos) { 1379 dev_dbg(this->dev, 1380 "page:%d, first:%d, last:%d, marker at:%d\n", 1381 page, first, last, marker_pos); 1382 return gpmi_ecc_read_page(chip, buf, 0, page); 1383 } 1384 } 1385 1386 meta = geo->metadata_size; 1387 if (first) { 1388 col = meta + (size + ecc_parity_size) * first; 1389 meta = 0; 1390 buf = buf + first * size; 1391 } 1392 1393 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; 1394 1395 n = last - first + 1; 1396 page_size = meta + (size + ecc_parity_size) * n; 1397 ecc_strength = geo->ecc_strength >> 1; 1398 1399 this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) | 1400 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) | 1401 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | 1402 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) | 1403 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this); 1404 1405 this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | 1406 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | 1407 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) | 1408 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this); 1409 1410 this->bch = true; 1411 1412 ret = nand_read_page_op(chip, page, col, buf, page_size); 1413 if (ret) 1414 return ret; 1415 1416 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", 1417 page, offs, len, col, first, n, page_size); 1418 1419 max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta); 1420 1421 return max_bitflips; 1422 } 1423 1424 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, 1425 int oob_required, int page) 1426 { 1427 struct mtd_info *mtd = nand_to_mtd(chip); 1428 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1429 struct bch_geometry *nfc_geo = &this->bch_geometry; 1430 int ret; 1431 1432 dev_dbg(this->dev, "ecc write page.\n"); 1433 1434 gpmi_bch_layout_std(this); 1435 this->bch = true; 1436 1437 memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size); 1438 1439 if (this->swap_block_mark) { 1440 /* 1441 * When doing bad block marker swapping we must always copy the 1442 * input buffer as we can't modify the const buffer. 1443 */ 1444 memcpy(this->data_buffer_dma, buf, mtd->writesize); 1445 buf = this->data_buffer_dma; 1446 block_mark_swapping(this, this->data_buffer_dma, 1447 this->auxiliary_virt); 1448 } 1449 1450 ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size); 1451 1452 return ret; 1453 } 1454 1455 /* 1456 * There are several places in this driver where we have to handle the OOB and 1457 * block marks. This is the function where things are the most complicated, so 1458 * this is where we try to explain it all. All the other places refer back to 1459 * here. 1460 * 1461 * These are the rules, in order of decreasing importance: 1462 * 1463 * 1) Nothing the caller does can be allowed to imperil the block mark. 1464 * 1465 * 2) In read operations, the first byte of the OOB we return must reflect the 1466 * true state of the block mark, no matter where that block mark appears in 1467 * the physical page. 1468 * 1469 * 3) ECC-based read operations return an OOB full of set bits (since we never 1470 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads 1471 * return). 1472 * 1473 * 4) "Raw" read operations return a direct view of the physical bytes in the 1474 * page, using the conventional definition of which bytes are data and which 1475 * are OOB. This gives the caller a way to see the actual, physical bytes 1476 * in the page, without the distortions applied by our ECC engine. 1477 * 1478 * 1479 * What we do for this specific read operation depends on two questions: 1480 * 1481 * 1) Are we doing a "raw" read, or an ECC-based read? 1482 * 1483 * 2) Are we using block mark swapping or transcription? 1484 * 1485 * There are four cases, illustrated by the following Karnaugh map: 1486 * 1487 * | Raw | ECC-based | 1488 * -------------+-------------------------+-------------------------+ 1489 * | Read the conventional | | 1490 * | OOB at the end of the | | 1491 * Swapping | page and return it. It | | 1492 * | contains exactly what | | 1493 * | we want. | Read the block mark and | 1494 * -------------+-------------------------+ return it in a buffer | 1495 * | Read the conventional | full of set bits. | 1496 * | OOB at the end of the | | 1497 * | page and also the block | | 1498 * Transcribing | mark in the metadata. | | 1499 * | Copy the block mark | | 1500 * | into the first byte of | | 1501 * | the OOB. | | 1502 * -------------+-------------------------+-------------------------+ 1503 * 1504 * Note that we break rule #4 in the Transcribing/Raw case because we're not 1505 * giving an accurate view of the actual, physical bytes in the page (we're 1506 * overwriting the block mark). That's OK because it's more important to follow 1507 * rule #2. 1508 * 1509 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not 1510 * easy. When reading a page, for example, the NAND Flash MTD code calls our 1511 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an 1512 * ECC-based or raw view of the page is implicit in which function it calls 1513 * (there is a similar pair of ECC-based/raw functions for writing). 1514 */ 1515 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) 1516 { 1517 struct mtd_info *mtd = nand_to_mtd(chip); 1518 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1519 int ret; 1520 1521 /* clear the OOB buffer */ 1522 memset(chip->oob_poi, ~0, mtd->oobsize); 1523 1524 /* Read out the conventional OOB. */ 1525 ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi, 1526 mtd->oobsize); 1527 if (ret) 1528 return ret; 1529 1530 /* 1531 * Now, we want to make sure the block mark is correct. In the 1532 * non-transcribing case (!GPMI_IS_MX23()), we already have it. 1533 * Otherwise, we need to explicitly read it. 1534 */ 1535 if (GPMI_IS_MX23(this)) { 1536 /* Read the block mark into the first byte of the OOB buffer. */ 1537 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1); 1538 if (ret) 1539 return ret; 1540 } 1541 1542 return 0; 1543 } 1544 1545 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) 1546 { 1547 struct mtd_info *mtd = nand_to_mtd(chip); 1548 struct mtd_oob_region of = { }; 1549 1550 /* Do we have available oob area? */ 1551 mtd_ooblayout_free(mtd, 0, &of); 1552 if (!of.length) 1553 return -EPERM; 1554 1555 if (!nand_is_slc(chip)) 1556 return -EPERM; 1557 1558 return nand_prog_page_op(chip, page, mtd->writesize + of.offset, 1559 chip->oob_poi + of.offset, of.length); 1560 } 1561 1562 /* 1563 * This function reads a NAND page without involving the ECC engine (no HW 1564 * ECC correction). 1565 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1566 * inline (interleaved with payload DATA), and do not align data chunk on 1567 * byte boundaries. 1568 * We thus need to take care moving the payload data and ECC bits stored in the 1569 * page into the provided buffers, which is why we're using nand_extract_bits(). 1570 * 1571 * See set_geometry_by_ecc_info inline comments to have a full description 1572 * of the layout used by the GPMI controller. 1573 */ 1574 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1575 int oob_required, int page) 1576 { 1577 struct mtd_info *mtd = nand_to_mtd(chip); 1578 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1579 struct bch_geometry *nfc_geo = &this->bch_geometry; 1580 int eccsize = nfc_geo->ecc_chunk_size; 1581 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1582 u8 *tmp_buf = this->raw_buffer; 1583 size_t src_bit_off; 1584 size_t oob_bit_off; 1585 size_t oob_byte_off; 1586 uint8_t *oob = chip->oob_poi; 1587 int step; 1588 int ret; 1589 1590 ret = nand_read_page_op(chip, page, 0, tmp_buf, 1591 mtd->writesize + mtd->oobsize); 1592 if (ret) 1593 return ret; 1594 1595 /* 1596 * If required, swap the bad block marker and the data stored in the 1597 * metadata section, so that we don't wrongly consider a block as bad. 1598 * 1599 * See the layout description for a detailed explanation on why this 1600 * is needed. 1601 */ 1602 if (this->swap_block_mark) 1603 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1604 1605 /* 1606 * Copy the metadata section into the oob buffer (this section is 1607 * guaranteed to be aligned on a byte boundary). 1608 */ 1609 if (oob_required) 1610 memcpy(oob, tmp_buf, nfc_geo->metadata_size); 1611 1612 oob_bit_off = nfc_geo->metadata_size * 8; 1613 src_bit_off = oob_bit_off; 1614 1615 /* Extract interleaved payload data and ECC bits */ 1616 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1617 if (buf) 1618 nand_extract_bits(buf, step * eccsize * 8, tmp_buf, 1619 src_bit_off, eccsize * 8); 1620 src_bit_off += eccsize * 8; 1621 1622 /* Align last ECC block to align a byte boundary */ 1623 if (step == nfc_geo->ecc_chunk_count - 1 && 1624 (oob_bit_off + eccbits) % 8) 1625 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1626 1627 if (oob_required) 1628 nand_extract_bits(oob, oob_bit_off, tmp_buf, 1629 src_bit_off, eccbits); 1630 1631 src_bit_off += eccbits; 1632 oob_bit_off += eccbits; 1633 } 1634 1635 if (oob_required) { 1636 oob_byte_off = oob_bit_off / 8; 1637 1638 if (oob_byte_off < mtd->oobsize) 1639 memcpy(oob + oob_byte_off, 1640 tmp_buf + mtd->writesize + oob_byte_off, 1641 mtd->oobsize - oob_byte_off); 1642 } 1643 1644 return 0; 1645 } 1646 1647 /* 1648 * This function writes a NAND page without involving the ECC engine (no HW 1649 * ECC generation). 1650 * The tricky part in the GPMI/BCH controller is that it stores ECC bits 1651 * inline (interleaved with payload DATA), and do not align data chunk on 1652 * byte boundaries. 1653 * We thus need to take care moving the OOB area at the right place in the 1654 * final page, which is why we're using nand_extract_bits(). 1655 * 1656 * See set_geometry_by_ecc_info inline comments to have a full description 1657 * of the layout used by the GPMI controller. 1658 */ 1659 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1660 int oob_required, int page) 1661 { 1662 struct mtd_info *mtd = nand_to_mtd(chip); 1663 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1664 struct bch_geometry *nfc_geo = &this->bch_geometry; 1665 int eccsize = nfc_geo->ecc_chunk_size; 1666 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; 1667 u8 *tmp_buf = this->raw_buffer; 1668 uint8_t *oob = chip->oob_poi; 1669 size_t dst_bit_off; 1670 size_t oob_bit_off; 1671 size_t oob_byte_off; 1672 int step; 1673 1674 /* 1675 * Initialize all bits to 1 in case we don't have a buffer for the 1676 * payload or oob data in order to leave unspecified bits of data 1677 * to their initial state. 1678 */ 1679 if (!buf || !oob_required) 1680 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); 1681 1682 /* 1683 * First copy the metadata section (stored in oob buffer) at the 1684 * beginning of the page, as imposed by the GPMI layout. 1685 */ 1686 memcpy(tmp_buf, oob, nfc_geo->metadata_size); 1687 oob_bit_off = nfc_geo->metadata_size * 8; 1688 dst_bit_off = oob_bit_off; 1689 1690 /* Interleave payload data and ECC bits */ 1691 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { 1692 if (buf) 1693 nand_extract_bits(tmp_buf, dst_bit_off, buf, 1694 step * eccsize * 8, eccsize * 8); 1695 dst_bit_off += eccsize * 8; 1696 1697 /* Align last ECC block to align a byte boundary */ 1698 if (step == nfc_geo->ecc_chunk_count - 1 && 1699 (oob_bit_off + eccbits) % 8) 1700 eccbits += 8 - ((oob_bit_off + eccbits) % 8); 1701 1702 if (oob_required) 1703 nand_extract_bits(tmp_buf, dst_bit_off, oob, 1704 oob_bit_off, eccbits); 1705 1706 dst_bit_off += eccbits; 1707 oob_bit_off += eccbits; 1708 } 1709 1710 oob_byte_off = oob_bit_off / 8; 1711 1712 if (oob_required && oob_byte_off < mtd->oobsize) 1713 memcpy(tmp_buf + mtd->writesize + oob_byte_off, 1714 oob + oob_byte_off, mtd->oobsize - oob_byte_off); 1715 1716 /* 1717 * If required, swap the bad block marker and the first byte of the 1718 * metadata section, so that we don't modify the bad block marker. 1719 * 1720 * See the layout description for a detailed explanation on why this 1721 * is needed. 1722 */ 1723 if (this->swap_block_mark) 1724 swap(tmp_buf[0], tmp_buf[mtd->writesize]); 1725 1726 return nand_prog_page_op(chip, page, 0, tmp_buf, 1727 mtd->writesize + mtd->oobsize); 1728 } 1729 1730 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) 1731 { 1732 return gpmi_ecc_read_page_raw(chip, NULL, 1, page); 1733 } 1734 1735 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) 1736 { 1737 return gpmi_ecc_write_page_raw(chip, NULL, 1, page); 1738 } 1739 1740 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) 1741 { 1742 struct mtd_info *mtd = nand_to_mtd(chip); 1743 struct gpmi_nand_data *this = nand_get_controller_data(chip); 1744 int ret = 0; 1745 uint8_t *block_mark; 1746 int column, page, chipnr; 1747 1748 chipnr = (int)(ofs >> chip->chip_shift); 1749 nand_select_target(chip, chipnr); 1750 1751 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; 1752 1753 /* Write the block mark. */ 1754 block_mark = this->data_buffer_dma; 1755 block_mark[0] = 0; /* bad block marker */ 1756 1757 /* Shift to get page */ 1758 page = (int)(ofs >> chip->page_shift); 1759 1760 ret = nand_prog_page_op(chip, page, column, block_mark, 1); 1761 1762 nand_deselect_target(chip); 1763 1764 return ret; 1765 } 1766 1767 static int nand_boot_set_geometry(struct gpmi_nand_data *this) 1768 { 1769 struct boot_rom_geometry *geometry = &this->rom_geometry; 1770 1771 /* 1772 * Set the boot block stride size. 1773 * 1774 * In principle, we should be reading this from the OTP bits, since 1775 * that's where the ROM is going to get it. In fact, we don't have any 1776 * way to read the OTP bits, so we go with the default and hope for the 1777 * best. 1778 */ 1779 geometry->stride_size_in_pages = 64; 1780 1781 /* 1782 * Set the search area stride exponent. 1783 * 1784 * In principle, we should be reading this from the OTP bits, since 1785 * that's where the ROM is going to get it. In fact, we don't have any 1786 * way to read the OTP bits, so we go with the default and hope for the 1787 * best. 1788 */ 1789 geometry->search_area_stride_exponent = 2; 1790 return 0; 1791 } 1792 1793 static const char *fingerprint = "STMP"; 1794 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) 1795 { 1796 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1797 struct device *dev = this->dev; 1798 struct nand_chip *chip = &this->nand; 1799 unsigned int search_area_size_in_strides; 1800 unsigned int stride; 1801 unsigned int page; 1802 u8 *buffer = nand_get_data_buf(chip); 1803 int found_an_ncb_fingerprint = false; 1804 int ret; 1805 1806 /* Compute the number of strides in a search area. */ 1807 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1808 1809 nand_select_target(chip, 0); 1810 1811 /* 1812 * Loop through the first search area, looking for the NCB fingerprint. 1813 */ 1814 dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); 1815 1816 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1817 /* Compute the page addresses. */ 1818 page = stride * rom_geo->stride_size_in_pages; 1819 1820 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); 1821 1822 /* 1823 * Read the NCB fingerprint. The fingerprint is four bytes long 1824 * and starts in the 12th byte of the page. 1825 */ 1826 ret = nand_read_page_op(chip, page, 12, buffer, 1827 strlen(fingerprint)); 1828 if (ret) 1829 continue; 1830 1831 /* Look for the fingerprint. */ 1832 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { 1833 found_an_ncb_fingerprint = true; 1834 break; 1835 } 1836 1837 } 1838 1839 nand_deselect_target(chip); 1840 1841 if (found_an_ncb_fingerprint) 1842 dev_dbg(dev, "\tFound a fingerprint\n"); 1843 else 1844 dev_dbg(dev, "\tNo fingerprint found\n"); 1845 return found_an_ncb_fingerprint; 1846 } 1847 1848 /* Writes a transcription stamp. */ 1849 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) 1850 { 1851 struct device *dev = this->dev; 1852 struct boot_rom_geometry *rom_geo = &this->rom_geometry; 1853 struct nand_chip *chip = &this->nand; 1854 struct mtd_info *mtd = nand_to_mtd(chip); 1855 unsigned int block_size_in_pages; 1856 unsigned int search_area_size_in_strides; 1857 unsigned int search_area_size_in_pages; 1858 unsigned int search_area_size_in_blocks; 1859 unsigned int block; 1860 unsigned int stride; 1861 unsigned int page; 1862 u8 *buffer = nand_get_data_buf(chip); 1863 int status; 1864 1865 /* Compute the search area geometry. */ 1866 block_size_in_pages = mtd->erasesize / mtd->writesize; 1867 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; 1868 search_area_size_in_pages = search_area_size_in_strides * 1869 rom_geo->stride_size_in_pages; 1870 search_area_size_in_blocks = 1871 (search_area_size_in_pages + (block_size_in_pages - 1)) / 1872 block_size_in_pages; 1873 1874 dev_dbg(dev, "Search Area Geometry :\n"); 1875 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); 1876 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); 1877 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); 1878 1879 nand_select_target(chip, 0); 1880 1881 /* Loop over blocks in the first search area, erasing them. */ 1882 dev_dbg(dev, "Erasing the search area...\n"); 1883 1884 for (block = 0; block < search_area_size_in_blocks; block++) { 1885 /* Erase this block. */ 1886 dev_dbg(dev, "\tErasing block 0x%x\n", block); 1887 status = nand_erase_op(chip, block); 1888 if (status) 1889 dev_err(dev, "[%s] Erase failed.\n", __func__); 1890 } 1891 1892 /* Write the NCB fingerprint into the page buffer. */ 1893 memset(buffer, ~0, mtd->writesize); 1894 memcpy(buffer + 12, fingerprint, strlen(fingerprint)); 1895 1896 /* Loop through the first search area, writing NCB fingerprints. */ 1897 dev_dbg(dev, "Writing NCB fingerprints...\n"); 1898 for (stride = 0; stride < search_area_size_in_strides; stride++) { 1899 /* Compute the page addresses. */ 1900 page = stride * rom_geo->stride_size_in_pages; 1901 1902 /* Write the first page of the current stride. */ 1903 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); 1904 1905 status = chip->ecc.write_page_raw(chip, buffer, 0, page); 1906 if (status) 1907 dev_err(dev, "[%s] Write failed.\n", __func__); 1908 } 1909 1910 nand_deselect_target(chip); 1911 1912 return 0; 1913 } 1914 1915 static int mx23_boot_init(struct gpmi_nand_data *this) 1916 { 1917 struct device *dev = this->dev; 1918 struct nand_chip *chip = &this->nand; 1919 struct mtd_info *mtd = nand_to_mtd(chip); 1920 unsigned int block_count; 1921 unsigned int block; 1922 int chipnr; 1923 int page; 1924 loff_t byte; 1925 uint8_t block_mark; 1926 int ret = 0; 1927 1928 /* 1929 * If control arrives here, we can't use block mark swapping, which 1930 * means we're forced to use transcription. First, scan for the 1931 * transcription stamp. If we find it, then we don't have to do 1932 * anything -- the block marks are already transcribed. 1933 */ 1934 if (mx23_check_transcription_stamp(this)) 1935 return 0; 1936 1937 /* 1938 * If control arrives here, we couldn't find a transcription stamp, so 1939 * so we presume the block marks are in the conventional location. 1940 */ 1941 dev_dbg(dev, "Transcribing bad block marks...\n"); 1942 1943 /* Compute the number of blocks in the entire medium. */ 1944 block_count = nanddev_eraseblocks_per_target(&chip->base); 1945 1946 /* 1947 * Loop over all the blocks in the medium, transcribing block marks as 1948 * we go. 1949 */ 1950 for (block = 0; block < block_count; block++) { 1951 /* 1952 * Compute the chip, page and byte addresses for this block's 1953 * conventional mark. 1954 */ 1955 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); 1956 page = block << (chip->phys_erase_shift - chip->page_shift); 1957 byte = block << chip->phys_erase_shift; 1958 1959 /* Send the command to read the conventional block mark. */ 1960 nand_select_target(chip, chipnr); 1961 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark, 1962 1); 1963 nand_deselect_target(chip); 1964 1965 if (ret) 1966 continue; 1967 1968 /* 1969 * Check if the block is marked bad. If so, we need to mark it 1970 * again, but this time the result will be a mark in the 1971 * location where we transcribe block marks. 1972 */ 1973 if (block_mark != 0xff) { 1974 dev_dbg(dev, "Transcribing mark in block %u\n", block); 1975 ret = chip->legacy.block_markbad(chip, byte); 1976 if (ret) 1977 dev_err(dev, 1978 "Failed to mark block bad with ret %d\n", 1979 ret); 1980 } 1981 } 1982 1983 /* Write the stamp that indicates we've transcribed the block marks. */ 1984 mx23_write_transcription_stamp(this); 1985 return 0; 1986 } 1987 1988 static int nand_boot_init(struct gpmi_nand_data *this) 1989 { 1990 nand_boot_set_geometry(this); 1991 1992 /* This is ROM arch-specific initilization before the BBT scanning. */ 1993 if (GPMI_IS_MX23(this)) 1994 return mx23_boot_init(this); 1995 return 0; 1996 } 1997 1998 static int gpmi_set_geometry(struct gpmi_nand_data *this) 1999 { 2000 int ret; 2001 2002 /* Free the temporary DMA memory for reading ID. */ 2003 gpmi_free_dma_buffer(this); 2004 2005 /* Set up the NFC geometry which is used by BCH. */ 2006 ret = bch_set_geometry(this); 2007 if (ret) { 2008 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); 2009 return ret; 2010 } 2011 2012 /* Alloc the new DMA buffers according to the pagesize and oobsize */ 2013 return gpmi_alloc_dma_buffer(this); 2014 } 2015 2016 static int gpmi_init_last(struct gpmi_nand_data *this) 2017 { 2018 struct nand_chip *chip = &this->nand; 2019 struct mtd_info *mtd = nand_to_mtd(chip); 2020 struct nand_ecc_ctrl *ecc = &chip->ecc; 2021 struct bch_geometry *bch_geo = &this->bch_geometry; 2022 int ret; 2023 2024 /* Set up the medium geometry */ 2025 ret = gpmi_set_geometry(this); 2026 if (ret) 2027 return ret; 2028 2029 /* Init the nand_ecc_ctrl{} */ 2030 ecc->read_page = gpmi_ecc_read_page; 2031 ecc->write_page = gpmi_ecc_write_page; 2032 ecc->read_oob = gpmi_ecc_read_oob; 2033 ecc->write_oob = gpmi_ecc_write_oob; 2034 ecc->read_page_raw = gpmi_ecc_read_page_raw; 2035 ecc->write_page_raw = gpmi_ecc_write_page_raw; 2036 ecc->read_oob_raw = gpmi_ecc_read_oob_raw; 2037 ecc->write_oob_raw = gpmi_ecc_write_oob_raw; 2038 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2039 ecc->size = bch_geo->ecc_chunk_size; 2040 ecc->strength = bch_geo->ecc_strength; 2041 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); 2042 2043 /* 2044 * We only enable the subpage read when: 2045 * (1) the chip is imx6, and 2046 * (2) the size of the ECC parity is byte aligned. 2047 */ 2048 if (GPMI_IS_MX6(this) && 2049 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { 2050 ecc->read_subpage = gpmi_ecc_read_subpage; 2051 chip->options |= NAND_SUBPAGE_READ; 2052 } 2053 2054 return 0; 2055 } 2056 2057 static int gpmi_nand_attach_chip(struct nand_chip *chip) 2058 { 2059 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2060 int ret; 2061 2062 if (chip->bbt_options & NAND_BBT_USE_FLASH) { 2063 chip->bbt_options |= NAND_BBT_NO_OOB; 2064 2065 if (of_property_read_bool(this->dev->of_node, 2066 "fsl,no-blockmark-swap")) 2067 this->swap_block_mark = false; 2068 } 2069 dev_dbg(this->dev, "Blockmark swapping %sabled\n", 2070 this->swap_block_mark ? "en" : "dis"); 2071 2072 ret = gpmi_init_last(this); 2073 if (ret) 2074 return ret; 2075 2076 chip->options |= NAND_SKIP_BBTSCAN; 2077 2078 return 0; 2079 } 2080 2081 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this) 2082 { 2083 struct gpmi_transfer *transfer = &this->transfers[this->ntransfers]; 2084 2085 this->ntransfers++; 2086 2087 if (this->ntransfers == GPMI_MAX_TRANSFERS) 2088 return NULL; 2089 2090 return transfer; 2091 } 2092 2093 static struct dma_async_tx_descriptor *gpmi_chain_command( 2094 struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr) 2095 { 2096 struct dma_chan *channel = get_dma_chan(this); 2097 struct dma_async_tx_descriptor *desc; 2098 struct gpmi_transfer *transfer; 2099 int chip = this->nand.cur_cs; 2100 u32 pio[3]; 2101 2102 /* [1] send out the PIO words */ 2103 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2104 | BM_GPMI_CTRL0_WORD_LENGTH 2105 | BF_GPMI_CTRL0_CS(chip, this) 2106 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2107 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) 2108 | BM_GPMI_CTRL0_ADDRESS_INCREMENT 2109 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1); 2110 pio[1] = 0; 2111 pio[2] = 0; 2112 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2113 DMA_TRANS_NONE, 0); 2114 if (!desc) 2115 return NULL; 2116 2117 transfer = get_next_transfer(this); 2118 if (!transfer) 2119 return NULL; 2120 2121 transfer->cmdbuf[0] = cmd; 2122 if (naddr) 2123 memcpy(&transfer->cmdbuf[1], addr, naddr); 2124 2125 sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1); 2126 dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE); 2127 2128 transfer->direction = DMA_TO_DEVICE; 2129 2130 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV, 2131 MXS_DMA_CTRL_WAIT4END); 2132 return desc; 2133 } 2134 2135 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready( 2136 struct gpmi_nand_data *this) 2137 { 2138 struct dma_chan *channel = get_dma_chan(this); 2139 u32 pio[2]; 2140 2141 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY) 2142 | BM_GPMI_CTRL0_WORD_LENGTH 2143 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2144 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2145 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2146 | BF_GPMI_CTRL0_XFER_COUNT(0); 2147 pio[1] = 0; 2148 2149 return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE, 2150 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY); 2151 } 2152 2153 static struct dma_async_tx_descriptor *gpmi_chain_data_read( 2154 struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct) 2155 { 2156 struct dma_async_tx_descriptor *desc; 2157 struct dma_chan *channel = get_dma_chan(this); 2158 struct gpmi_transfer *transfer; 2159 u32 pio[6] = {}; 2160 2161 transfer = get_next_transfer(this); 2162 if (!transfer) 2163 return NULL; 2164 2165 transfer->direction = DMA_FROM_DEVICE; 2166 2167 *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl, 2168 DMA_FROM_DEVICE); 2169 2170 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) 2171 | BM_GPMI_CTRL0_WORD_LENGTH 2172 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2173 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2174 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2175 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2176 2177 if (this->bch) { 2178 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2179 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE) 2180 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 2181 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2182 pio[3] = raw_len; 2183 pio[4] = transfer->sgl.dma_address; 2184 pio[5] = this->auxiliary_phys; 2185 } 2186 2187 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2188 DMA_TRANS_NONE, 0); 2189 if (!desc) 2190 return NULL; 2191 2192 if (!this->bch) 2193 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2194 DMA_DEV_TO_MEM, 2195 MXS_DMA_CTRL_WAIT4END); 2196 2197 return desc; 2198 } 2199 2200 static struct dma_async_tx_descriptor *gpmi_chain_data_write( 2201 struct gpmi_nand_data *this, const void *buf, int raw_len) 2202 { 2203 struct dma_chan *channel = get_dma_chan(this); 2204 struct dma_async_tx_descriptor *desc; 2205 struct gpmi_transfer *transfer; 2206 u32 pio[6] = {}; 2207 2208 transfer = get_next_transfer(this); 2209 if (!transfer) 2210 return NULL; 2211 2212 transfer->direction = DMA_TO_DEVICE; 2213 2214 prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE); 2215 2216 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) 2217 | BM_GPMI_CTRL0_WORD_LENGTH 2218 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) 2219 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) 2220 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) 2221 | BF_GPMI_CTRL0_XFER_COUNT(raw_len); 2222 2223 if (this->bch) { 2224 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC 2225 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE) 2226 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | 2227 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); 2228 pio[3] = raw_len; 2229 pio[4] = transfer->sgl.dma_address; 2230 pio[5] = this->auxiliary_phys; 2231 } 2232 2233 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), 2234 DMA_TRANS_NONE, 2235 (this->bch ? MXS_DMA_CTRL_WAIT4END : 0)); 2236 if (!desc) 2237 return NULL; 2238 2239 if (!this->bch) 2240 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, 2241 DMA_MEM_TO_DEV, 2242 MXS_DMA_CTRL_WAIT4END); 2243 2244 return desc; 2245 } 2246 2247 static int gpmi_nfc_exec_op(struct nand_chip *chip, 2248 const struct nand_operation *op, 2249 bool check_only) 2250 { 2251 const struct nand_op_instr *instr; 2252 struct gpmi_nand_data *this = nand_get_controller_data(chip); 2253 struct dma_async_tx_descriptor *desc = NULL; 2254 int i, ret, buf_len = 0, nbufs = 0; 2255 u8 cmd = 0; 2256 void *buf_read = NULL; 2257 const void *buf_write = NULL; 2258 bool direct = false; 2259 struct completion *dma_completion, *bch_completion; 2260 unsigned long to; 2261 2262 if (check_only) 2263 return 0; 2264 2265 this->ntransfers = 0; 2266 for (i = 0; i < GPMI_MAX_TRANSFERS; i++) 2267 this->transfers[i].direction = DMA_NONE; 2268 2269 ret = pm_runtime_get_sync(this->dev); 2270 if (ret < 0) { 2271 pm_runtime_put_noidle(this->dev); 2272 return ret; 2273 } 2274 2275 /* 2276 * This driver currently supports only one NAND chip. Plus, dies share 2277 * the same configuration. So once timings have been applied on the 2278 * controller side, they will not change anymore. When the time will 2279 * come, the check on must_apply_timings will have to be dropped. 2280 */ 2281 if (this->hw.must_apply_timings) { 2282 this->hw.must_apply_timings = false; 2283 gpmi_nfc_apply_timings(this); 2284 } 2285 2286 dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs); 2287 2288 for (i = 0; i < op->ninstrs; i++) { 2289 instr = &op->instrs[i]; 2290 2291 nand_op_trace(" ", instr); 2292 2293 switch (instr->type) { 2294 case NAND_OP_WAITRDY_INSTR: 2295 desc = gpmi_chain_wait_ready(this); 2296 break; 2297 case NAND_OP_CMD_INSTR: 2298 cmd = instr->ctx.cmd.opcode; 2299 2300 /* 2301 * When this command has an address cycle chain it 2302 * together with the address cycle 2303 */ 2304 if (i + 1 != op->ninstrs && 2305 op->instrs[i + 1].type == NAND_OP_ADDR_INSTR) 2306 continue; 2307 2308 desc = gpmi_chain_command(this, cmd, NULL, 0); 2309 2310 break; 2311 case NAND_OP_ADDR_INSTR: 2312 desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs, 2313 instr->ctx.addr.naddrs); 2314 break; 2315 case NAND_OP_DATA_OUT_INSTR: 2316 buf_write = instr->ctx.data.buf.out; 2317 buf_len = instr->ctx.data.len; 2318 nbufs++; 2319 2320 desc = gpmi_chain_data_write(this, buf_write, buf_len); 2321 2322 break; 2323 case NAND_OP_DATA_IN_INSTR: 2324 if (!instr->ctx.data.len) 2325 break; 2326 buf_read = instr->ctx.data.buf.in; 2327 buf_len = instr->ctx.data.len; 2328 nbufs++; 2329 2330 desc = gpmi_chain_data_read(this, buf_read, buf_len, 2331 &direct); 2332 break; 2333 } 2334 2335 if (!desc) { 2336 ret = -ENXIO; 2337 goto unmap; 2338 } 2339 } 2340 2341 dev_dbg(this->dev, "%s setup done\n", __func__); 2342 2343 if (nbufs > 1) { 2344 dev_err(this->dev, "Multiple data instructions not supported\n"); 2345 ret = -EINVAL; 2346 goto unmap; 2347 } 2348 2349 if (this->bch) { 2350 writel(this->bch_flashlayout0, 2351 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0); 2352 writel(this->bch_flashlayout1, 2353 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1); 2354 } 2355 2356 desc->callback = dma_irq_callback; 2357 desc->callback_param = this; 2358 dma_completion = &this->dma_done; 2359 bch_completion = NULL; 2360 2361 init_completion(dma_completion); 2362 2363 if (this->bch && buf_read) { 2364 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2365 this->resources.bch_regs + HW_BCH_CTRL_SET); 2366 bch_completion = &this->bch_done; 2367 init_completion(bch_completion); 2368 } 2369 2370 dmaengine_submit(desc); 2371 dma_async_issue_pending(get_dma_chan(this)); 2372 2373 to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000)); 2374 if (!to) { 2375 dev_err(this->dev, "DMA timeout, last DMA\n"); 2376 gpmi_dump_info(this); 2377 ret = -ETIMEDOUT; 2378 goto unmap; 2379 } 2380 2381 if (this->bch && buf_read) { 2382 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000)); 2383 if (!to) { 2384 dev_err(this->dev, "BCH timeout, last DMA\n"); 2385 gpmi_dump_info(this); 2386 ret = -ETIMEDOUT; 2387 goto unmap; 2388 } 2389 } 2390 2391 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, 2392 this->resources.bch_regs + HW_BCH_CTRL_CLR); 2393 gpmi_clear_bch(this); 2394 2395 ret = 0; 2396 2397 unmap: 2398 for (i = 0; i < this->ntransfers; i++) { 2399 struct gpmi_transfer *transfer = &this->transfers[i]; 2400 2401 if (transfer->direction != DMA_NONE) 2402 dma_unmap_sg(this->dev, &transfer->sgl, 1, 2403 transfer->direction); 2404 } 2405 2406 if (!ret && buf_read && !direct) 2407 memcpy(buf_read, this->data_buffer_dma, 2408 gpmi_raw_len_to_len(this, buf_len)); 2409 2410 this->bch = false; 2411 2412 pm_runtime_mark_last_busy(this->dev); 2413 pm_runtime_put_autosuspend(this->dev); 2414 2415 return ret; 2416 } 2417 2418 static const struct nand_controller_ops gpmi_nand_controller_ops = { 2419 .attach_chip = gpmi_nand_attach_chip, 2420 .setup_interface = gpmi_setup_interface, 2421 .exec_op = gpmi_nfc_exec_op, 2422 }; 2423 2424 static int gpmi_nand_init(struct gpmi_nand_data *this) 2425 { 2426 struct nand_chip *chip = &this->nand; 2427 struct mtd_info *mtd = nand_to_mtd(chip); 2428 int ret; 2429 2430 /* init the MTD data structures */ 2431 mtd->name = "gpmi-nand"; 2432 mtd->dev.parent = this->dev; 2433 2434 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ 2435 nand_set_controller_data(chip, this); 2436 nand_set_flash_node(chip, this->pdev->dev.of_node); 2437 chip->legacy.block_markbad = gpmi_block_markbad; 2438 chip->badblock_pattern = &gpmi_bbt_descr; 2439 chip->options |= NAND_NO_SUBPAGE_WRITE; 2440 2441 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ 2442 this->swap_block_mark = !GPMI_IS_MX23(this); 2443 2444 /* 2445 * Allocate a temporary DMA buffer for reading ID in the 2446 * nand_scan_ident(). 2447 */ 2448 this->bch_geometry.payload_size = 1024; 2449 this->bch_geometry.auxiliary_size = 128; 2450 ret = gpmi_alloc_dma_buffer(this); 2451 if (ret) 2452 return ret; 2453 2454 nand_controller_init(&this->base); 2455 this->base.ops = &gpmi_nand_controller_ops; 2456 chip->controller = &this->base; 2457 2458 ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); 2459 if (ret) 2460 goto err_out; 2461 2462 ret = nand_boot_init(this); 2463 if (ret) 2464 goto err_nand_cleanup; 2465 ret = nand_create_bbt(chip); 2466 if (ret) 2467 goto err_nand_cleanup; 2468 2469 ret = mtd_device_register(mtd, NULL, 0); 2470 if (ret) 2471 goto err_nand_cleanup; 2472 return 0; 2473 2474 err_nand_cleanup: 2475 nand_cleanup(chip); 2476 err_out: 2477 gpmi_free_dma_buffer(this); 2478 return ret; 2479 } 2480 2481 static const struct of_device_id gpmi_nand_id_table[] = { 2482 { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, }, 2483 { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, }, 2484 { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, }, 2485 { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, }, 2486 { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,}, 2487 {} 2488 }; 2489 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); 2490 2491 static int gpmi_nand_probe(struct platform_device *pdev) 2492 { 2493 struct gpmi_nand_data *this; 2494 int ret; 2495 2496 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); 2497 if (!this) 2498 return -ENOMEM; 2499 2500 this->devdata = of_device_get_match_data(&pdev->dev); 2501 platform_set_drvdata(pdev, this); 2502 this->pdev = pdev; 2503 this->dev = &pdev->dev; 2504 2505 ret = acquire_resources(this); 2506 if (ret) 2507 goto exit_acquire_resources; 2508 2509 ret = __gpmi_enable_clk(this, true); 2510 if (ret) 2511 goto exit_acquire_resources; 2512 2513 pm_runtime_set_autosuspend_delay(&pdev->dev, 500); 2514 pm_runtime_use_autosuspend(&pdev->dev); 2515 pm_runtime_set_active(&pdev->dev); 2516 pm_runtime_enable(&pdev->dev); 2517 pm_runtime_get_sync(&pdev->dev); 2518 2519 ret = gpmi_init(this); 2520 if (ret) 2521 goto exit_nfc_init; 2522 2523 ret = gpmi_nand_init(this); 2524 if (ret) 2525 goto exit_nfc_init; 2526 2527 pm_runtime_mark_last_busy(&pdev->dev); 2528 pm_runtime_put_autosuspend(&pdev->dev); 2529 2530 dev_info(this->dev, "driver registered.\n"); 2531 2532 return 0; 2533 2534 exit_nfc_init: 2535 pm_runtime_put(&pdev->dev); 2536 pm_runtime_disable(&pdev->dev); 2537 release_resources(this); 2538 exit_acquire_resources: 2539 2540 return ret; 2541 } 2542 2543 static int gpmi_nand_remove(struct platform_device *pdev) 2544 { 2545 struct gpmi_nand_data *this = platform_get_drvdata(pdev); 2546 struct nand_chip *chip = &this->nand; 2547 int ret; 2548 2549 pm_runtime_put_sync(&pdev->dev); 2550 pm_runtime_disable(&pdev->dev); 2551 2552 ret = mtd_device_unregister(nand_to_mtd(chip)); 2553 WARN_ON(ret); 2554 nand_cleanup(chip); 2555 gpmi_free_dma_buffer(this); 2556 release_resources(this); 2557 return 0; 2558 } 2559 2560 #ifdef CONFIG_PM_SLEEP 2561 static int gpmi_pm_suspend(struct device *dev) 2562 { 2563 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2564 2565 release_dma_channels(this); 2566 return 0; 2567 } 2568 2569 static int gpmi_pm_resume(struct device *dev) 2570 { 2571 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2572 int ret; 2573 2574 ret = acquire_dma_channels(this); 2575 if (ret < 0) 2576 return ret; 2577 2578 /* re-init the GPMI registers */ 2579 ret = gpmi_init(this); 2580 if (ret) { 2581 dev_err(this->dev, "Error setting GPMI : %d\n", ret); 2582 return ret; 2583 } 2584 2585 /* Set flag to get timing setup restored for next exec_op */ 2586 if (this->hw.clk_rate) 2587 this->hw.must_apply_timings = true; 2588 2589 /* re-init the BCH registers */ 2590 ret = bch_set_geometry(this); 2591 if (ret) { 2592 dev_err(this->dev, "Error setting BCH : %d\n", ret); 2593 return ret; 2594 } 2595 2596 return 0; 2597 } 2598 #endif /* CONFIG_PM_SLEEP */ 2599 2600 static int __maybe_unused gpmi_runtime_suspend(struct device *dev) 2601 { 2602 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2603 2604 return __gpmi_enable_clk(this, false); 2605 } 2606 2607 static int __maybe_unused gpmi_runtime_resume(struct device *dev) 2608 { 2609 struct gpmi_nand_data *this = dev_get_drvdata(dev); 2610 2611 return __gpmi_enable_clk(this, true); 2612 } 2613 2614 static const struct dev_pm_ops gpmi_pm_ops = { 2615 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) 2616 SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL) 2617 }; 2618 2619 static struct platform_driver gpmi_nand_driver = { 2620 .driver = { 2621 .name = "gpmi-nand", 2622 .pm = &gpmi_pm_ops, 2623 .of_match_table = gpmi_nand_id_table, 2624 }, 2625 .probe = gpmi_nand_probe, 2626 .remove = gpmi_nand_remove, 2627 }; 2628 module_platform_driver(gpmi_nand_driver); 2629 2630 MODULE_AUTHOR("Freescale Semiconductor, Inc."); 2631 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); 2632 MODULE_LICENSE("GPL"); 2633