xref: /openbmc/linux/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22 
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
27 
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30 
31 #define MXS_SET_ADDR		0x4
32 #define MXS_CLR_ADDR		0x8
33 /*
34  * Clear the bit and poll it cleared.  This is usually called with
35  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36  * (bit 30).
37  */
38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40 	int timeout = 0x400;
41 
42 	/* clear the bit */
43 	writel(mask, addr + MXS_CLR_ADDR);
44 
45 	/*
46 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
47 	 * recommends to wait 1us.
48 	 */
49 	udelay(1);
50 
51 	/* poll the bit becoming clear */
52 	while ((readl(addr) & mask) && --timeout)
53 		/* nothing */;
54 
55 	return !timeout;
56 }
57 
58 #define MODULE_CLKGATE		(1 << 30)
59 #define MODULE_SFTRST		(1 << 31)
60 /*
61  * The current mxs_reset_block() will do two things:
62  *  [1] enable the module.
63  *  [2] reset the module.
64  *
65  * In most of the cases, it's ok.
66  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67  * If you try to soft reset the BCH block, it becomes unusable until
68  * the next hard reset. This case occurs in the NAND boot mode. When the board
69  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71  * You will see a DMA timeout in this case. The bug has been fixed
72  * in the following chips, such as MX28.
73  *
74  * To avoid this bug, just add a new parameter `just_enable` for
75  * the mxs_reset_block(), and rewrite it here.
76  */
77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79 	int ret;
80 	int timeout = 0x400;
81 
82 	/* clear and poll SFTRST */
83 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84 	if (unlikely(ret))
85 		goto error;
86 
87 	/* clear CLKGATE */
88 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89 
90 	if (!just_enable) {
91 		/* set SFTRST to reset the block */
92 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93 		udelay(1);
94 
95 		/* poll CLKGATE becoming set */
96 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97 			/* nothing */;
98 		if (unlikely(!timeout))
99 			goto error;
100 	}
101 
102 	/* clear and poll SFTRST */
103 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104 	if (unlikely(ret))
105 		goto error;
106 
107 	/* clear and poll CLKGATE */
108 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109 	if (unlikely(ret))
110 		goto error;
111 
112 	return 0;
113 
114 error:
115 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116 	return -ETIMEDOUT;
117 }
118 
119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121 	struct clk *clk;
122 	int ret;
123 	int i;
124 
125 	for (i = 0; i < GPMI_CLK_MAX; i++) {
126 		clk = this->resources.clock[i];
127 		if (!clk)
128 			break;
129 
130 		if (v) {
131 			ret = clk_prepare_enable(clk);
132 			if (ret)
133 				goto err_clk;
134 		} else {
135 			clk_disable_unprepare(clk);
136 		}
137 	}
138 	return 0;
139 
140 err_clk:
141 	for (; i > 0; i--)
142 		clk_disable_unprepare(this->resources.clock[i - 1]);
143 	return ret;
144 }
145 
146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148 	struct resources *r = &this->resources;
149 	int ret;
150 
151 	ret = pm_runtime_get_sync(this->dev);
152 	if (ret < 0)
153 		return ret;
154 
155 	ret = gpmi_reset_block(r->gpmi_regs, false);
156 	if (ret)
157 		goto err_out;
158 
159 	/*
160 	 * Reset BCH here, too. We got failures otherwise :(
161 	 * See later BCH reset for explanation of MX23 and MX28 handling
162 	 */
163 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
164 	if (ret)
165 		goto err_out;
166 
167 	/* Choose NAND mode. */
168 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
169 
170 	/* Set the IRQ polarity. */
171 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
172 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
173 
174 	/* Disable Write-Protection. */
175 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
176 
177 	/* Select BCH ECC. */
178 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
179 
180 	/*
181 	 * Decouple the chip select from dma channel. We use dma0 for all
182 	 * the chips.
183 	 */
184 	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
185 
186 err_out:
187 	pm_runtime_mark_last_busy(this->dev);
188 	pm_runtime_put_autosuspend(this->dev);
189 	return ret;
190 }
191 
192 /* This function is very useful. It is called only when the bug occur. */
193 static void gpmi_dump_info(struct gpmi_nand_data *this)
194 {
195 	struct resources *r = &this->resources;
196 	struct bch_geometry *geo = &this->bch_geometry;
197 	u32 reg;
198 	int i;
199 
200 	dev_err(this->dev, "Show GPMI registers :\n");
201 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
202 		reg = readl(r->gpmi_regs + i * 0x10);
203 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
204 	}
205 
206 	/* start to print out the BCH info */
207 	dev_err(this->dev, "Show BCH registers :\n");
208 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
209 		reg = readl(r->bch_regs + i * 0x10);
210 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
211 	}
212 	dev_err(this->dev, "BCH Geometry :\n"
213 		"GF length              : %u\n"
214 		"ECC Strength           : %u\n"
215 		"Page Size in Bytes     : %u\n"
216 		"Metadata Size in Bytes : %u\n"
217 		"ECC Chunk Size in Bytes: %u\n"
218 		"ECC Chunk Count        : %u\n"
219 		"Payload Size in Bytes  : %u\n"
220 		"Auxiliary Size in Bytes: %u\n"
221 		"Auxiliary Status Offset: %u\n"
222 		"Block Mark Byte Offset : %u\n"
223 		"Block Mark Bit Offset  : %u\n",
224 		geo->gf_len,
225 		geo->ecc_strength,
226 		geo->page_size,
227 		geo->metadata_size,
228 		geo->ecc_chunk_size,
229 		geo->ecc_chunk_count,
230 		geo->payload_size,
231 		geo->auxiliary_size,
232 		geo->auxiliary_status_offset,
233 		geo->block_mark_byte_offset,
234 		geo->block_mark_bit_offset);
235 }
236 
237 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
238 {
239 	struct bch_geometry *geo = &this->bch_geometry;
240 
241 	/* Do the sanity check. */
242 	if (GPMI_IS_MXS(this)) {
243 		/* The mx23/mx28 only support the GF13. */
244 		if (geo->gf_len == 14)
245 			return false;
246 	}
247 	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
248 }
249 
250 /*
251  * If we can get the ECC information from the nand chip, we do not
252  * need to calculate them ourselves.
253  *
254  * We may have available oob space in this case.
255  */
256 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
257 				    unsigned int ecc_strength,
258 				    unsigned int ecc_step)
259 {
260 	struct bch_geometry *geo = &this->bch_geometry;
261 	struct nand_chip *chip = &this->nand;
262 	struct mtd_info *mtd = nand_to_mtd(chip);
263 	unsigned int block_mark_bit_offset;
264 
265 	switch (ecc_step) {
266 	case SZ_512:
267 		geo->gf_len = 13;
268 		break;
269 	case SZ_1K:
270 		geo->gf_len = 14;
271 		break;
272 	default:
273 		dev_err(this->dev,
274 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
275 			chip->base.eccreq.strength,
276 			chip->base.eccreq.step_size);
277 		return -EINVAL;
278 	}
279 	geo->ecc_chunk_size = ecc_step;
280 	geo->ecc_strength = round_up(ecc_strength, 2);
281 	if (!gpmi_check_ecc(this))
282 		return -EINVAL;
283 
284 	/* Keep the C >= O */
285 	if (geo->ecc_chunk_size < mtd->oobsize) {
286 		dev_err(this->dev,
287 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
288 			ecc_step, mtd->oobsize);
289 		return -EINVAL;
290 	}
291 
292 	/* The default value, see comment in the legacy_set_geometry(). */
293 	geo->metadata_size = 10;
294 
295 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
296 
297 	/*
298 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
299 	 *
300 	 *    |                          P                            |
301 	 *    |<----------------------------------------------------->|
302 	 *    |                                                       |
303 	 *    |                                        (Block Mark)   |
304 	 *    |                      P'                      |      | |     |
305 	 *    |<-------------------------------------------->|  D   | |  O' |
306 	 *    |                                              |<---->| |<--->|
307 	 *    V                                              V      V V     V
308 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
309 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
310 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
311 	 *                                                   ^              ^
312 	 *                                                   |      O       |
313 	 *                                                   |<------------>|
314 	 *                                                   |              |
315 	 *
316 	 *	P : the page size for BCH module.
317 	 *	E : The ECC strength.
318 	 *	G : the length of Galois Field.
319 	 *	N : The chunk count of per page.
320 	 *	M : the metasize of per page.
321 	 *	C : the ecc chunk size, aka the "data" above.
322 	 *	P': the nand chip's page size.
323 	 *	O : the nand chip's oob size.
324 	 *	O': the free oob.
325 	 *
326 	 *	The formula for P is :
327 	 *
328 	 *	            E * G * N
329 	 *	       P = ------------ + P' + M
330 	 *                      8
331 	 *
332 	 * The position of block mark moves forward in the ECC-based view
333 	 * of page, and the delta is:
334 	 *
335 	 *                   E * G * (N - 1)
336 	 *             D = (---------------- + M)
337 	 *                          8
338 	 *
339 	 * Please see the comment in legacy_set_geometry().
340 	 * With the condition C >= O , we still can get same result.
341 	 * So the bit position of the physical block mark within the ECC-based
342 	 * view of the page is :
343 	 *             (P' - D) * 8
344 	 */
345 	geo->page_size = mtd->writesize + geo->metadata_size +
346 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
347 
348 	geo->payload_size = mtd->writesize;
349 
350 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
351 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
352 				+ ALIGN(geo->ecc_chunk_count, 4);
353 
354 	if (!this->swap_block_mark)
355 		return 0;
356 
357 	/* For bit swap. */
358 	block_mark_bit_offset = mtd->writesize * 8 -
359 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
360 				+ geo->metadata_size * 8);
361 
362 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
363 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
364 	return 0;
365 }
366 
367 /*
368  *  Calculate the ECC strength by hand:
369  *	E : The ECC strength.
370  *	G : the length of Galois Field.
371  *	N : The chunk count of per page.
372  *	O : the oobsize of the NAND chip.
373  *	M : the metasize of per page.
374  *
375  *	The formula is :
376  *		E * G * N
377  *	      ------------ <= (O - M)
378  *                  8
379  *
380  *      So, we get E by:
381  *                    (O - M) * 8
382  *              E <= -------------
383  *                       G * N
384  */
385 static inline int get_ecc_strength(struct gpmi_nand_data *this)
386 {
387 	struct bch_geometry *geo = &this->bch_geometry;
388 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
389 	int ecc_strength;
390 
391 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
392 			/ (geo->gf_len * geo->ecc_chunk_count);
393 
394 	/* We need the minor even number. */
395 	return round_down(ecc_strength, 2);
396 }
397 
398 static int legacy_set_geometry(struct gpmi_nand_data *this)
399 {
400 	struct bch_geometry *geo = &this->bch_geometry;
401 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
402 	unsigned int metadata_size;
403 	unsigned int status_size;
404 	unsigned int block_mark_bit_offset;
405 
406 	/*
407 	 * The size of the metadata can be changed, though we set it to 10
408 	 * bytes now. But it can't be too large, because we have to save
409 	 * enough space for BCH.
410 	 */
411 	geo->metadata_size = 10;
412 
413 	/* The default for the length of Galois Field. */
414 	geo->gf_len = 13;
415 
416 	/* The default for chunk size. */
417 	geo->ecc_chunk_size = 512;
418 	while (geo->ecc_chunk_size < mtd->oobsize) {
419 		geo->ecc_chunk_size *= 2; /* keep C >= O */
420 		geo->gf_len = 14;
421 	}
422 
423 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
424 
425 	/* We use the same ECC strength for all chunks. */
426 	geo->ecc_strength = get_ecc_strength(this);
427 	if (!gpmi_check_ecc(this)) {
428 		dev_err(this->dev,
429 			"ecc strength: %d cannot be supported by the controller (%d)\n"
430 			"try to use minimum ecc strength that NAND chip required\n",
431 			geo->ecc_strength,
432 			this->devdata->bch_max_ecc_strength);
433 		return -EINVAL;
434 	}
435 
436 	geo->page_size = mtd->writesize + geo->metadata_size +
437 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
438 	geo->payload_size = mtd->writesize;
439 
440 	/*
441 	 * The auxiliary buffer contains the metadata and the ECC status. The
442 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
443 	 * contains one byte for every ECC chunk, and is also padded to the
444 	 * nearest 32-bit boundary.
445 	 */
446 	metadata_size = ALIGN(geo->metadata_size, 4);
447 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
448 
449 	geo->auxiliary_size = metadata_size + status_size;
450 	geo->auxiliary_status_offset = metadata_size;
451 
452 	if (!this->swap_block_mark)
453 		return 0;
454 
455 	/*
456 	 * We need to compute the byte and bit offsets of
457 	 * the physical block mark within the ECC-based view of the page.
458 	 *
459 	 * NAND chip with 2K page shows below:
460 	 *                                             (Block Mark)
461 	 *                                                   |      |
462 	 *                                                   |  D   |
463 	 *                                                   |<---->|
464 	 *                                                   V      V
465 	 *    +---+----------+-+----------+-+----------+-+----------+-+
466 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
467 	 *    +---+----------+-+----------+-+----------+-+----------+-+
468 	 *
469 	 * The position of block mark moves forward in the ECC-based view
470 	 * of page, and the delta is:
471 	 *
472 	 *                   E * G * (N - 1)
473 	 *             D = (---------------- + M)
474 	 *                          8
475 	 *
476 	 * With the formula to compute the ECC strength, and the condition
477 	 *       : C >= O         (C is the ecc chunk size)
478 	 *
479 	 * It's easy to deduce to the following result:
480 	 *
481 	 *         E * G       (O - M)      C - M         C - M
482 	 *      ----------- <= ------- <=  --------  <  ---------
483 	 *           8            N           N          (N - 1)
484 	 *
485 	 *  So, we get:
486 	 *
487 	 *                   E * G * (N - 1)
488 	 *             D = (---------------- + M) < C
489 	 *                          8
490 	 *
491 	 *  The above inequality means the position of block mark
492 	 *  within the ECC-based view of the page is still in the data chunk,
493 	 *  and it's NOT in the ECC bits of the chunk.
494 	 *
495 	 *  Use the following to compute the bit position of the
496 	 *  physical block mark within the ECC-based view of the page:
497 	 *          (page_size - D) * 8
498 	 *
499 	 *  --Huang Shijie
500 	 */
501 	block_mark_bit_offset = mtd->writesize * 8 -
502 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
503 				+ geo->metadata_size * 8);
504 
505 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
506 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
507 	return 0;
508 }
509 
510 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
511 {
512 	struct nand_chip *chip = &this->nand;
513 
514 	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
515 		return set_geometry_by_ecc_info(this, chip->ecc.strength,
516 						chip->ecc.size);
517 
518 	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
519 				|| legacy_set_geometry(this)) {
520 		if (!(chip->base.eccreq.strength > 0 &&
521 		      chip->base.eccreq.step_size > 0))
522 			return -EINVAL;
523 
524 		return set_geometry_by_ecc_info(this,
525 						chip->base.eccreq.strength,
526 						chip->base.eccreq.step_size);
527 	}
528 
529 	return 0;
530 }
531 
532 /* Configures the geometry for BCH.  */
533 static int bch_set_geometry(struct gpmi_nand_data *this)
534 {
535 	struct resources *r = &this->resources;
536 	int ret;
537 
538 	ret = common_nfc_set_geometry(this);
539 	if (ret)
540 		return ret;
541 
542 	ret = pm_runtime_get_sync(this->dev);
543 	if (ret < 0) {
544 		pm_runtime_put_autosuspend(this->dev);
545 		return ret;
546 	}
547 
548 	/*
549 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
550 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
551 	* and MX28.
552 	*/
553 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
554 	if (ret)
555 		goto err_out;
556 
557 	/* Set *all* chip selects to use layout 0. */
558 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
559 
560 	ret = 0;
561 err_out:
562 	pm_runtime_mark_last_busy(this->dev);
563 	pm_runtime_put_autosuspend(this->dev);
564 
565 	return ret;
566 }
567 
568 /*
569  * <1> Firstly, we should know what's the GPMI-clock means.
570  *     The GPMI-clock is the internal clock in the gpmi nand controller.
571  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
572  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
573  *
574  * <2> Secondly, we should know what's the frequency on the nand chip pins.
575  *     The frequency on the nand chip pins is derived from the GPMI-clock.
576  *     We can get it from the following equation:
577  *
578  *         F = G / (DS + DH)
579  *
580  *         F  : the frequency on the nand chip pins.
581  *         G  : the GPMI clock, such as 100MHz.
582  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
583  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
584  *
585  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
586  *     the nand EDO(extended Data Out) timing could be applied.
587  *     The GPMI implements a feedback read strobe to sample the read data.
588  *     The feedback read strobe can be delayed to support the nand EDO timing
589  *     where the read strobe may deasserts before the read data is valid, and
590  *     read data is valid for some time after read strobe.
591  *
592  *     The following figure illustrates some aspects of a NAND Flash read:
593  *
594  *                   |<---tREA---->|
595  *                   |             |
596  *                   |         |   |
597  *                   |<--tRP-->|   |
598  *                   |         |   |
599  *                  __          ___|__________________________________
600  *     RDN            \________/   |
601  *                                 |
602  *                                 /---------\
603  *     Read Data    --------------<           >---------
604  *                                 \---------/
605  *                                |     |
606  *                                |<-D->|
607  *     FeedbackRDN  ________             ____________
608  *                          \___________/
609  *
610  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
611  *
612  *
613  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
614  *
615  *  4.1) From the aspect of the nand chip pins:
616  *        Delay = (tREA + C - tRP)               {1}
617  *
618  *        tREA : the maximum read access time.
619  *        C    : a constant to adjust the delay. default is 4000ps.
620  *        tRP  : the read pulse width, which is exactly:
621  *                   tRP = (GPMI-clock-period) * DATA_SETUP
622  *
623  *  4.2) From the aspect of the GPMI nand controller:
624  *         Delay = RDN_DELAY * 0.125 * RP        {2}
625  *
626  *         RP   : the DLL reference period.
627  *            if (GPMI-clock-period > DLL_THRETHOLD)
628  *                   RP = GPMI-clock-period / 2;
629  *            else
630  *                   RP = GPMI-clock-period;
631  *
632  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
633  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
634  *            is 16000ps, but in mx6q, we use 12000ps.
635  *
636  *  4.3) since {1} equals {2}, we get:
637  *
638  *                     (tREA + 4000 - tRP) * 8
639  *         RDN_DELAY = -----------------------     {3}
640  *                           RP
641  */
642 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
643 				     const struct nand_sdr_timings *sdr)
644 {
645 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
646 	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
647 	unsigned int period_ps, reference_period_ps;
648 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
649 	unsigned int tRP_ps;
650 	bool use_half_period;
651 	int sample_delay_ps, sample_delay_factor;
652 	u16 busy_timeout_cycles;
653 	u8 wrn_dly_sel;
654 
655 	if (sdr->tRC_min >= 30000) {
656 		/* ONFI non-EDO modes [0-3] */
657 		hw->clk_rate = 22000000;
658 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
659 	} else if (sdr->tRC_min >= 25000) {
660 		/* ONFI EDO mode 4 */
661 		hw->clk_rate = 80000000;
662 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
663 	} else {
664 		/* ONFI EDO mode 5 */
665 		hw->clk_rate = 100000000;
666 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
667 	}
668 
669 	/* SDR core timings are given in picoseconds */
670 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
671 
672 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
673 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
674 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
675 	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
676 
677 	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
678 		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
679 		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
680 	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
681 
682 	/*
683 	 * Derive NFC ideal delay from {3}:
684 	 *
685 	 *                     (tREA + 4000 - tRP) * 8
686 	 *         RDN_DELAY = -----------------------
687 	 *                                RP
688 	 */
689 	if (period_ps > dll_threshold_ps) {
690 		use_half_period = true;
691 		reference_period_ps = period_ps / 2;
692 	} else {
693 		use_half_period = false;
694 		reference_period_ps = period_ps;
695 	}
696 
697 	tRP_ps = data_setup_cycles * period_ps;
698 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
699 	if (sample_delay_ps > 0)
700 		sample_delay_factor = sample_delay_ps / reference_period_ps;
701 	else
702 		sample_delay_factor = 0;
703 
704 	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
705 	if (sample_delay_factor)
706 		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
707 			      BM_GPMI_CTRL1_DLL_ENABLE |
708 			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
709 }
710 
711 static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
712 {
713 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
714 	struct resources *r = &this->resources;
715 	void __iomem *gpmi_regs = r->gpmi_regs;
716 	unsigned int dll_wait_time_us;
717 
718 	clk_set_rate(r->clock[0], hw->clk_rate);
719 
720 	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
721 	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
722 
723 	/*
724 	 * Clear several CTRL1 fields, DLL must be disabled when setting
725 	 * RDN_DELAY or HALF_PERIOD.
726 	 */
727 	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
728 	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
729 
730 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
731 	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
732 	if (!dll_wait_time_us)
733 		dll_wait_time_us = 1;
734 
735 	/* Wait for the DLL to settle. */
736 	udelay(dll_wait_time_us);
737 }
738 
739 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
740 				const struct nand_interface_config *conf)
741 {
742 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
743 	const struct nand_sdr_timings *sdr;
744 
745 	/* Retrieve required NAND timings */
746 	sdr = nand_get_sdr_timings(conf);
747 	if (IS_ERR(sdr))
748 		return PTR_ERR(sdr);
749 
750 	/* Only MX6 GPMI controller can reach EDO timings */
751 	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
752 		return -ENOTSUPP;
753 
754 	/* Stop here if this call was just a check */
755 	if (chipnr < 0)
756 		return 0;
757 
758 	/* Do the actual derivation of the controller timings */
759 	gpmi_nfc_compute_timings(this, sdr);
760 
761 	this->hw.must_apply_timings = true;
762 
763 	return 0;
764 }
765 
766 /* Clears a BCH interrupt. */
767 static void gpmi_clear_bch(struct gpmi_nand_data *this)
768 {
769 	struct resources *r = &this->resources;
770 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
771 }
772 
773 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
774 {
775 	/* We use the DMA channel 0 to access all the nand chips. */
776 	return this->dma_chans[0];
777 }
778 
779 /* This will be called after the DMA operation is finished. */
780 static void dma_irq_callback(void *param)
781 {
782 	struct gpmi_nand_data *this = param;
783 	struct completion *dma_c = &this->dma_done;
784 
785 	complete(dma_c);
786 }
787 
788 static irqreturn_t bch_irq(int irq, void *cookie)
789 {
790 	struct gpmi_nand_data *this = cookie;
791 
792 	gpmi_clear_bch(this);
793 	complete(&this->bch_done);
794 	return IRQ_HANDLED;
795 }
796 
797 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
798 {
799 	/*
800 	 * raw_len is the length to read/write including bch data which
801 	 * we are passed in exec_op. Calculate the data length from it.
802 	 */
803 	if (this->bch)
804 		return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
805 	else
806 		return raw_len;
807 }
808 
809 /* Can we use the upper's buffer directly for DMA? */
810 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
811 			     int raw_len, struct scatterlist *sgl,
812 			     enum dma_data_direction dr)
813 {
814 	int ret;
815 	int len = gpmi_raw_len_to_len(this, raw_len);
816 
817 	/* first try to map the upper buffer directly */
818 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
819 		sg_init_one(sgl, buf, len);
820 		ret = dma_map_sg(this->dev, sgl, 1, dr);
821 		if (ret == 0)
822 			goto map_fail;
823 
824 		return true;
825 	}
826 
827 map_fail:
828 	/* We have to use our own DMA buffer. */
829 	sg_init_one(sgl, this->data_buffer_dma, len);
830 
831 	if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
832 		memcpy(this->data_buffer_dma, buf, len);
833 
834 	dma_map_sg(this->dev, sgl, 1, dr);
835 
836 	return false;
837 }
838 
839 /* add our owner bbt descriptor */
840 static uint8_t scan_ff_pattern[] = { 0xff };
841 static struct nand_bbt_descr gpmi_bbt_descr = {
842 	.options	= 0,
843 	.offs		= 0,
844 	.len		= 1,
845 	.pattern	= scan_ff_pattern
846 };
847 
848 /*
849  * We may change the layout if we can get the ECC info from the datasheet,
850  * else we will use all the (page + OOB).
851  */
852 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
853 			      struct mtd_oob_region *oobregion)
854 {
855 	struct nand_chip *chip = mtd_to_nand(mtd);
856 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
857 	struct bch_geometry *geo = &this->bch_geometry;
858 
859 	if (section)
860 		return -ERANGE;
861 
862 	oobregion->offset = 0;
863 	oobregion->length = geo->page_size - mtd->writesize;
864 
865 	return 0;
866 }
867 
868 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
869 			       struct mtd_oob_region *oobregion)
870 {
871 	struct nand_chip *chip = mtd_to_nand(mtd);
872 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
873 	struct bch_geometry *geo = &this->bch_geometry;
874 
875 	if (section)
876 		return -ERANGE;
877 
878 	/* The available oob size we have. */
879 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
880 		oobregion->offset = geo->page_size - mtd->writesize;
881 		oobregion->length = mtd->oobsize - oobregion->offset;
882 	}
883 
884 	return 0;
885 }
886 
887 static const char * const gpmi_clks_for_mx2x[] = {
888 	"gpmi_io",
889 };
890 
891 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
892 	.ecc = gpmi_ooblayout_ecc,
893 	.free = gpmi_ooblayout_free,
894 };
895 
896 static const struct gpmi_devdata gpmi_devdata_imx23 = {
897 	.type = IS_MX23,
898 	.bch_max_ecc_strength = 20,
899 	.max_chain_delay = 16000,
900 	.clks = gpmi_clks_for_mx2x,
901 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
902 };
903 
904 static const struct gpmi_devdata gpmi_devdata_imx28 = {
905 	.type = IS_MX28,
906 	.bch_max_ecc_strength = 20,
907 	.max_chain_delay = 16000,
908 	.clks = gpmi_clks_for_mx2x,
909 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
910 };
911 
912 static const char * const gpmi_clks_for_mx6[] = {
913 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
914 };
915 
916 static const struct gpmi_devdata gpmi_devdata_imx6q = {
917 	.type = IS_MX6Q,
918 	.bch_max_ecc_strength = 40,
919 	.max_chain_delay = 12000,
920 	.clks = gpmi_clks_for_mx6,
921 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
922 };
923 
924 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
925 	.type = IS_MX6SX,
926 	.bch_max_ecc_strength = 62,
927 	.max_chain_delay = 12000,
928 	.clks = gpmi_clks_for_mx6,
929 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
930 };
931 
932 static const char * const gpmi_clks_for_mx7d[] = {
933 	"gpmi_io", "gpmi_bch_apb",
934 };
935 
936 static const struct gpmi_devdata gpmi_devdata_imx7d = {
937 	.type = IS_MX7D,
938 	.bch_max_ecc_strength = 62,
939 	.max_chain_delay = 12000,
940 	.clks = gpmi_clks_for_mx7d,
941 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
942 };
943 
944 static int acquire_register_block(struct gpmi_nand_data *this,
945 				  const char *res_name)
946 {
947 	struct platform_device *pdev = this->pdev;
948 	struct resources *res = &this->resources;
949 	struct resource *r;
950 	void __iomem *p;
951 
952 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
953 	p = devm_ioremap_resource(&pdev->dev, r);
954 	if (IS_ERR(p))
955 		return PTR_ERR(p);
956 
957 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
958 		res->gpmi_regs = p;
959 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
960 		res->bch_regs = p;
961 	else
962 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
963 
964 	return 0;
965 }
966 
967 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
968 {
969 	struct platform_device *pdev = this->pdev;
970 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
971 	struct resource *r;
972 	int err;
973 
974 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
975 	if (!r) {
976 		dev_err(this->dev, "Can't get resource for %s\n", res_name);
977 		return -ENODEV;
978 	}
979 
980 	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
981 	if (err)
982 		dev_err(this->dev, "error requesting BCH IRQ\n");
983 
984 	return err;
985 }
986 
987 static void release_dma_channels(struct gpmi_nand_data *this)
988 {
989 	unsigned int i;
990 	for (i = 0; i < DMA_CHANS; i++)
991 		if (this->dma_chans[i]) {
992 			dma_release_channel(this->dma_chans[i]);
993 			this->dma_chans[i] = NULL;
994 		}
995 }
996 
997 static int acquire_dma_channels(struct gpmi_nand_data *this)
998 {
999 	struct platform_device *pdev = this->pdev;
1000 	struct dma_chan *dma_chan;
1001 	int ret = 0;
1002 
1003 	/* request dma channel */
1004 	dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1005 	if (IS_ERR(dma_chan)) {
1006 		ret = PTR_ERR(dma_chan);
1007 		if (ret != -EPROBE_DEFER)
1008 			dev_err(this->dev, "DMA channel request failed: %d\n",
1009 				ret);
1010 		release_dma_channels(this);
1011 	} else {
1012 		this->dma_chans[0] = dma_chan;
1013 	}
1014 
1015 	return ret;
1016 }
1017 
1018 static int gpmi_get_clks(struct gpmi_nand_data *this)
1019 {
1020 	struct resources *r = &this->resources;
1021 	struct clk *clk;
1022 	int err, i;
1023 
1024 	for (i = 0; i < this->devdata->clks_count; i++) {
1025 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1026 		if (IS_ERR(clk)) {
1027 			err = PTR_ERR(clk);
1028 			goto err_clock;
1029 		}
1030 
1031 		r->clock[i] = clk;
1032 	}
1033 
1034 	if (GPMI_IS_MX6(this))
1035 		/*
1036 		 * Set the default value for the gpmi clock.
1037 		 *
1038 		 * If you want to use the ONFI nand which is in the
1039 		 * Synchronous Mode, you should change the clock as you need.
1040 		 */
1041 		clk_set_rate(r->clock[0], 22000000);
1042 
1043 	return 0;
1044 
1045 err_clock:
1046 	dev_dbg(this->dev, "failed in finding the clocks.\n");
1047 	return err;
1048 }
1049 
1050 static int acquire_resources(struct gpmi_nand_data *this)
1051 {
1052 	int ret;
1053 
1054 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1055 	if (ret)
1056 		goto exit_regs;
1057 
1058 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1059 	if (ret)
1060 		goto exit_regs;
1061 
1062 	ret = acquire_bch_irq(this, bch_irq);
1063 	if (ret)
1064 		goto exit_regs;
1065 
1066 	ret = acquire_dma_channels(this);
1067 	if (ret)
1068 		goto exit_regs;
1069 
1070 	ret = gpmi_get_clks(this);
1071 	if (ret)
1072 		goto exit_clock;
1073 	return 0;
1074 
1075 exit_clock:
1076 	release_dma_channels(this);
1077 exit_regs:
1078 	return ret;
1079 }
1080 
1081 static void release_resources(struct gpmi_nand_data *this)
1082 {
1083 	release_dma_channels(this);
1084 }
1085 
1086 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1087 {
1088 	struct device *dev = this->dev;
1089 	struct bch_geometry *geo = &this->bch_geometry;
1090 
1091 	if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1092 		dma_free_coherent(dev, geo->auxiliary_size,
1093 					this->auxiliary_virt,
1094 					this->auxiliary_phys);
1095 	kfree(this->data_buffer_dma);
1096 	kfree(this->raw_buffer);
1097 
1098 	this->data_buffer_dma	= NULL;
1099 	this->raw_buffer	= NULL;
1100 }
1101 
1102 /* Allocate the DMA buffers */
1103 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1104 {
1105 	struct bch_geometry *geo = &this->bch_geometry;
1106 	struct device *dev = this->dev;
1107 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
1108 
1109 	/*
1110 	 * [2] Allocate a read/write data buffer.
1111 	 *     The gpmi_alloc_dma_buffer can be called twice.
1112 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1113 	 *     is called before the NAND identification; and we allocate a
1114 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1115 	 *     is called after.
1116 	 */
1117 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1118 					GFP_DMA | GFP_KERNEL);
1119 	if (this->data_buffer_dma == NULL)
1120 		goto error_alloc;
1121 
1122 	this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1123 					&this->auxiliary_phys, GFP_DMA);
1124 	if (!this->auxiliary_virt)
1125 		goto error_alloc;
1126 
1127 	this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1128 	if (!this->raw_buffer)
1129 		goto error_alloc;
1130 
1131 	return 0;
1132 
1133 error_alloc:
1134 	gpmi_free_dma_buffer(this);
1135 	return -ENOMEM;
1136 }
1137 
1138 /*
1139  * Handles block mark swapping.
1140  * It can be called in swapping the block mark, or swapping it back,
1141  * because the the operations are the same.
1142  */
1143 static void block_mark_swapping(struct gpmi_nand_data *this,
1144 				void *payload, void *auxiliary)
1145 {
1146 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1147 	unsigned char *p;
1148 	unsigned char *a;
1149 	unsigned int  bit;
1150 	unsigned char mask;
1151 	unsigned char from_data;
1152 	unsigned char from_oob;
1153 
1154 	if (!this->swap_block_mark)
1155 		return;
1156 
1157 	/*
1158 	 * If control arrives here, we're swapping. Make some convenience
1159 	 * variables.
1160 	 */
1161 	bit = nfc_geo->block_mark_bit_offset;
1162 	p   = payload + nfc_geo->block_mark_byte_offset;
1163 	a   = auxiliary;
1164 
1165 	/*
1166 	 * Get the byte from the data area that overlays the block mark. Since
1167 	 * the ECC engine applies its own view to the bits in the page, the
1168 	 * physical block mark won't (in general) appear on a byte boundary in
1169 	 * the data.
1170 	 */
1171 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1172 
1173 	/* Get the byte from the OOB. */
1174 	from_oob = a[0];
1175 
1176 	/* Swap them. */
1177 	a[0] = from_data;
1178 
1179 	mask = (0x1 << bit) - 1;
1180 	p[0] = (p[0] & mask) | (from_oob << bit);
1181 
1182 	mask = ~0 << bit;
1183 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1184 }
1185 
1186 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1187 			       int last, int meta)
1188 {
1189 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1190 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1191 	struct mtd_info *mtd = nand_to_mtd(chip);
1192 	int i;
1193 	unsigned char *status;
1194 	unsigned int max_bitflips = 0;
1195 
1196 	/* Loop over status bytes, accumulating ECC status. */
1197 	status = this->auxiliary_virt + ALIGN(meta, 4);
1198 
1199 	for (i = first; i < last; i++, status++) {
1200 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1201 			continue;
1202 
1203 		if (*status == STATUS_UNCORRECTABLE) {
1204 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1205 			u8 *eccbuf = this->raw_buffer;
1206 			int offset, bitoffset;
1207 			int eccbytes;
1208 			int flips;
1209 
1210 			/* Read ECC bytes into our internal raw_buffer */
1211 			offset = nfc_geo->metadata_size * 8;
1212 			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
1213 			offset -= eccbits;
1214 			bitoffset = offset % 8;
1215 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1216 			offset /= 8;
1217 			eccbytes -= offset;
1218 			nand_change_read_column_op(chip, offset, eccbuf,
1219 						   eccbytes, false);
1220 
1221 			/*
1222 			 * ECC data are not byte aligned and we may have
1223 			 * in-band data in the first and last byte of
1224 			 * eccbuf. Set non-eccbits to one so that
1225 			 * nand_check_erased_ecc_chunk() does not count them
1226 			 * as bitflips.
1227 			 */
1228 			if (bitoffset)
1229 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1230 
1231 			bitoffset = (bitoffset + eccbits) % 8;
1232 			if (bitoffset)
1233 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1234 
1235 			/*
1236 			 * The ECC hardware has an uncorrectable ECC status
1237 			 * code in case we have bitflips in an erased page. As
1238 			 * nothing was written into this subpage the ECC is
1239 			 * obviously wrong and we can not trust it. We assume
1240 			 * at this point that we are reading an erased page and
1241 			 * try to correct the bitflips in buffer up to
1242 			 * ecc_strength bitflips. If this is a page with random
1243 			 * data, we exceed this number of bitflips and have a
1244 			 * ECC failure. Otherwise we use the corrected buffer.
1245 			 */
1246 			if (i == 0) {
1247 				/* The first block includes metadata */
1248 				flips = nand_check_erased_ecc_chunk(
1249 						buf + i * nfc_geo->ecc_chunk_size,
1250 						nfc_geo->ecc_chunk_size,
1251 						eccbuf, eccbytes,
1252 						this->auxiliary_virt,
1253 						nfc_geo->metadata_size,
1254 						nfc_geo->ecc_strength);
1255 			} else {
1256 				flips = nand_check_erased_ecc_chunk(
1257 						buf + i * nfc_geo->ecc_chunk_size,
1258 						nfc_geo->ecc_chunk_size,
1259 						eccbuf, eccbytes,
1260 						NULL, 0,
1261 						nfc_geo->ecc_strength);
1262 			}
1263 
1264 			if (flips > 0) {
1265 				max_bitflips = max_t(unsigned int, max_bitflips,
1266 						     flips);
1267 				mtd->ecc_stats.corrected += flips;
1268 				continue;
1269 			}
1270 
1271 			mtd->ecc_stats.failed++;
1272 			continue;
1273 		}
1274 
1275 		mtd->ecc_stats.corrected += *status;
1276 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1277 	}
1278 
1279 	return max_bitflips;
1280 }
1281 
1282 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1283 {
1284 	struct bch_geometry *geo = &this->bch_geometry;
1285 	unsigned int ecc_strength = geo->ecc_strength >> 1;
1286 	unsigned int gf_len = geo->gf_len;
1287 	unsigned int block_size = geo->ecc_chunk_size;
1288 
1289 	this->bch_flashlayout0 =
1290 		BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1291 		BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1292 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1293 		BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1294 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
1295 
1296 	this->bch_flashlayout1 =
1297 		BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1298 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1299 		BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1300 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
1301 }
1302 
1303 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1304 			      int oob_required, int page)
1305 {
1306 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1307 	struct mtd_info *mtd = nand_to_mtd(chip);
1308 	struct bch_geometry *geo = &this->bch_geometry;
1309 	unsigned int max_bitflips;
1310 	int ret;
1311 
1312 	gpmi_bch_layout_std(this);
1313 	this->bch = true;
1314 
1315 	ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1316 	if (ret)
1317 		return ret;
1318 
1319 	max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1320 					   geo->ecc_chunk_count,
1321 					   geo->auxiliary_status_offset);
1322 
1323 	/* handle the block mark swapping */
1324 	block_mark_swapping(this, buf, this->auxiliary_virt);
1325 
1326 	if (oob_required) {
1327 		/*
1328 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1329 		 * for details about our policy for delivering the OOB.
1330 		 *
1331 		 * We fill the caller's buffer with set bits, and then copy the
1332 		 * block mark to th caller's buffer. Note that, if block mark
1333 		 * swapping was necessary, it has already been done, so we can
1334 		 * rely on the first byte of the auxiliary buffer to contain
1335 		 * the block mark.
1336 		 */
1337 		memset(chip->oob_poi, ~0, mtd->oobsize);
1338 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1339 	}
1340 
1341 	return max_bitflips;
1342 }
1343 
1344 /* Fake a virtual small page for the subpage read */
1345 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1346 				 uint32_t len, uint8_t *buf, int page)
1347 {
1348 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1349 	struct bch_geometry *geo = &this->bch_geometry;
1350 	int size = chip->ecc.size; /* ECC chunk size */
1351 	int meta, n, page_size;
1352 	unsigned int max_bitflips;
1353 	unsigned int ecc_strength;
1354 	int first, last, marker_pos;
1355 	int ecc_parity_size;
1356 	int col = 0;
1357 	int ret;
1358 
1359 	/* The size of ECC parity */
1360 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1361 
1362 	/* Align it with the chunk size */
1363 	first = offs / size;
1364 	last = (offs + len - 1) / size;
1365 
1366 	if (this->swap_block_mark) {
1367 		/*
1368 		 * Find the chunk which contains the Block Marker.
1369 		 * If this chunk is in the range of [first, last],
1370 		 * we have to read out the whole page.
1371 		 * Why? since we had swapped the data at the position of Block
1372 		 * Marker to the metadata which is bound with the chunk 0.
1373 		 */
1374 		marker_pos = geo->block_mark_byte_offset / size;
1375 		if (last >= marker_pos && first <= marker_pos) {
1376 			dev_dbg(this->dev,
1377 				"page:%d, first:%d, last:%d, marker at:%d\n",
1378 				page, first, last, marker_pos);
1379 			return gpmi_ecc_read_page(chip, buf, 0, page);
1380 		}
1381 	}
1382 
1383 	meta = geo->metadata_size;
1384 	if (first) {
1385 		col = meta + (size + ecc_parity_size) * first;
1386 		meta = 0;
1387 		buf = buf + first * size;
1388 	}
1389 
1390 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1391 
1392 	n = last - first + 1;
1393 	page_size = meta + (size + ecc_parity_size) * n;
1394 	ecc_strength = geo->ecc_strength >> 1;
1395 
1396 	this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
1397 		BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1398 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1399 		BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1400 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
1401 
1402 	this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1403 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1404 		BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1405 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
1406 
1407 	this->bch = true;
1408 
1409 	ret = nand_read_page_op(chip, page, col, buf, page_size);
1410 	if (ret)
1411 		return ret;
1412 
1413 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1414 		page, offs, len, col, first, n, page_size);
1415 
1416 	max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1417 
1418 	return max_bitflips;
1419 }
1420 
1421 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1422 			       int oob_required, int page)
1423 {
1424 	struct mtd_info *mtd = nand_to_mtd(chip);
1425 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1426 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1427 	int ret;
1428 
1429 	dev_dbg(this->dev, "ecc write page.\n");
1430 
1431 	gpmi_bch_layout_std(this);
1432 	this->bch = true;
1433 
1434 	memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1435 
1436 	if (this->swap_block_mark) {
1437 		/*
1438 		 * When doing bad block marker swapping we must always copy the
1439 		 * input buffer as we can't modify the const buffer.
1440 		 */
1441 		memcpy(this->data_buffer_dma, buf, mtd->writesize);
1442 		buf = this->data_buffer_dma;
1443 		block_mark_swapping(this, this->data_buffer_dma,
1444 				    this->auxiliary_virt);
1445 	}
1446 
1447 	ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1448 
1449 	return ret;
1450 }
1451 
1452 /*
1453  * There are several places in this driver where we have to handle the OOB and
1454  * block marks. This is the function where things are the most complicated, so
1455  * this is where we try to explain it all. All the other places refer back to
1456  * here.
1457  *
1458  * These are the rules, in order of decreasing importance:
1459  *
1460  * 1) Nothing the caller does can be allowed to imperil the block mark.
1461  *
1462  * 2) In read operations, the first byte of the OOB we return must reflect the
1463  *    true state of the block mark, no matter where that block mark appears in
1464  *    the physical page.
1465  *
1466  * 3) ECC-based read operations return an OOB full of set bits (since we never
1467  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1468  *    return).
1469  *
1470  * 4) "Raw" read operations return a direct view of the physical bytes in the
1471  *    page, using the conventional definition of which bytes are data and which
1472  *    are OOB. This gives the caller a way to see the actual, physical bytes
1473  *    in the page, without the distortions applied by our ECC engine.
1474  *
1475  *
1476  * What we do for this specific read operation depends on two questions:
1477  *
1478  * 1) Are we doing a "raw" read, or an ECC-based read?
1479  *
1480  * 2) Are we using block mark swapping or transcription?
1481  *
1482  * There are four cases, illustrated by the following Karnaugh map:
1483  *
1484  *                    |           Raw           |         ECC-based       |
1485  *       -------------+-------------------------+-------------------------+
1486  *                    | Read the conventional   |                         |
1487  *                    | OOB at the end of the   |                         |
1488  *       Swapping     | page and return it. It  |                         |
1489  *                    | contains exactly what   |                         |
1490  *                    | we want.                | Read the block mark and |
1491  *       -------------+-------------------------+ return it in a buffer   |
1492  *                    | Read the conventional   | full of set bits.       |
1493  *                    | OOB at the end of the   |                         |
1494  *                    | page and also the block |                         |
1495  *       Transcribing | mark in the metadata.   |                         |
1496  *                    | Copy the block mark     |                         |
1497  *                    | into the first byte of  |                         |
1498  *                    | the OOB.                |                         |
1499  *       -------------+-------------------------+-------------------------+
1500  *
1501  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1502  * giving an accurate view of the actual, physical bytes in the page (we're
1503  * overwriting the block mark). That's OK because it's more important to follow
1504  * rule #2.
1505  *
1506  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1507  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1508  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1509  * ECC-based or raw view of the page is implicit in which function it calls
1510  * (there is a similar pair of ECC-based/raw functions for writing).
1511  */
1512 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1513 {
1514 	struct mtd_info *mtd = nand_to_mtd(chip);
1515 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1516 	int ret;
1517 
1518 	/* clear the OOB buffer */
1519 	memset(chip->oob_poi, ~0, mtd->oobsize);
1520 
1521 	/* Read out the conventional OOB. */
1522 	ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1523 				mtd->oobsize);
1524 	if (ret)
1525 		return ret;
1526 
1527 	/*
1528 	 * Now, we want to make sure the block mark is correct. In the
1529 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1530 	 * Otherwise, we need to explicitly read it.
1531 	 */
1532 	if (GPMI_IS_MX23(this)) {
1533 		/* Read the block mark into the first byte of the OOB buffer. */
1534 		ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1535 		if (ret)
1536 			return ret;
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1543 {
1544 	struct mtd_info *mtd = nand_to_mtd(chip);
1545 	struct mtd_oob_region of = { };
1546 
1547 	/* Do we have available oob area? */
1548 	mtd_ooblayout_free(mtd, 0, &of);
1549 	if (!of.length)
1550 		return -EPERM;
1551 
1552 	if (!nand_is_slc(chip))
1553 		return -EPERM;
1554 
1555 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1556 				 chip->oob_poi + of.offset, of.length);
1557 }
1558 
1559 /*
1560  * This function reads a NAND page without involving the ECC engine (no HW
1561  * ECC correction).
1562  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1563  * inline (interleaved with payload DATA), and do not align data chunk on
1564  * byte boundaries.
1565  * We thus need to take care moving the payload data and ECC bits stored in the
1566  * page into the provided buffers, which is why we're using nand_extract_bits().
1567  *
1568  * See set_geometry_by_ecc_info inline comments to have a full description
1569  * of the layout used by the GPMI controller.
1570  */
1571 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1572 				  int oob_required, int page)
1573 {
1574 	struct mtd_info *mtd = nand_to_mtd(chip);
1575 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1576 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1577 	int eccsize = nfc_geo->ecc_chunk_size;
1578 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1579 	u8 *tmp_buf = this->raw_buffer;
1580 	size_t src_bit_off;
1581 	size_t oob_bit_off;
1582 	size_t oob_byte_off;
1583 	uint8_t *oob = chip->oob_poi;
1584 	int step;
1585 	int ret;
1586 
1587 	ret = nand_read_page_op(chip, page, 0, tmp_buf,
1588 				mtd->writesize + mtd->oobsize);
1589 	if (ret)
1590 		return ret;
1591 
1592 	/*
1593 	 * If required, swap the bad block marker and the data stored in the
1594 	 * metadata section, so that we don't wrongly consider a block as bad.
1595 	 *
1596 	 * See the layout description for a detailed explanation on why this
1597 	 * is needed.
1598 	 */
1599 	if (this->swap_block_mark)
1600 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1601 
1602 	/*
1603 	 * Copy the metadata section into the oob buffer (this section is
1604 	 * guaranteed to be aligned on a byte boundary).
1605 	 */
1606 	if (oob_required)
1607 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1608 
1609 	oob_bit_off = nfc_geo->metadata_size * 8;
1610 	src_bit_off = oob_bit_off;
1611 
1612 	/* Extract interleaved payload data and ECC bits */
1613 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1614 		if (buf)
1615 			nand_extract_bits(buf, step * eccsize, tmp_buf,
1616 					  src_bit_off, eccsize * 8);
1617 		src_bit_off += eccsize * 8;
1618 
1619 		/* Align last ECC block to align a byte boundary */
1620 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1621 		    (oob_bit_off + eccbits) % 8)
1622 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1623 
1624 		if (oob_required)
1625 			nand_extract_bits(oob, oob_bit_off, tmp_buf,
1626 					  src_bit_off, eccbits);
1627 
1628 		src_bit_off += eccbits;
1629 		oob_bit_off += eccbits;
1630 	}
1631 
1632 	if (oob_required) {
1633 		oob_byte_off = oob_bit_off / 8;
1634 
1635 		if (oob_byte_off < mtd->oobsize)
1636 			memcpy(oob + oob_byte_off,
1637 			       tmp_buf + mtd->writesize + oob_byte_off,
1638 			       mtd->oobsize - oob_byte_off);
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 /*
1645  * This function writes a NAND page without involving the ECC engine (no HW
1646  * ECC generation).
1647  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1648  * inline (interleaved with payload DATA), and do not align data chunk on
1649  * byte boundaries.
1650  * We thus need to take care moving the OOB area at the right place in the
1651  * final page, which is why we're using nand_extract_bits().
1652  *
1653  * See set_geometry_by_ecc_info inline comments to have a full description
1654  * of the layout used by the GPMI controller.
1655  */
1656 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1657 				   int oob_required, int page)
1658 {
1659 	struct mtd_info *mtd = nand_to_mtd(chip);
1660 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1661 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1662 	int eccsize = nfc_geo->ecc_chunk_size;
1663 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1664 	u8 *tmp_buf = this->raw_buffer;
1665 	uint8_t *oob = chip->oob_poi;
1666 	size_t dst_bit_off;
1667 	size_t oob_bit_off;
1668 	size_t oob_byte_off;
1669 	int step;
1670 
1671 	/*
1672 	 * Initialize all bits to 1 in case we don't have a buffer for the
1673 	 * payload or oob data in order to leave unspecified bits of data
1674 	 * to their initial state.
1675 	 */
1676 	if (!buf || !oob_required)
1677 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1678 
1679 	/*
1680 	 * First copy the metadata section (stored in oob buffer) at the
1681 	 * beginning of the page, as imposed by the GPMI layout.
1682 	 */
1683 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1684 	oob_bit_off = nfc_geo->metadata_size * 8;
1685 	dst_bit_off = oob_bit_off;
1686 
1687 	/* Interleave payload data and ECC bits */
1688 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1689 		if (buf)
1690 			nand_extract_bits(tmp_buf, dst_bit_off, buf,
1691 					  step * eccsize * 8, eccsize * 8);
1692 		dst_bit_off += eccsize * 8;
1693 
1694 		/* Align last ECC block to align a byte boundary */
1695 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1696 		    (oob_bit_off + eccbits) % 8)
1697 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1698 
1699 		if (oob_required)
1700 			nand_extract_bits(tmp_buf, dst_bit_off, oob,
1701 					  oob_bit_off, eccbits);
1702 
1703 		dst_bit_off += eccbits;
1704 		oob_bit_off += eccbits;
1705 	}
1706 
1707 	oob_byte_off = oob_bit_off / 8;
1708 
1709 	if (oob_required && oob_byte_off < mtd->oobsize)
1710 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1711 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1712 
1713 	/*
1714 	 * If required, swap the bad block marker and the first byte of the
1715 	 * metadata section, so that we don't modify the bad block marker.
1716 	 *
1717 	 * See the layout description for a detailed explanation on why this
1718 	 * is needed.
1719 	 */
1720 	if (this->swap_block_mark)
1721 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1722 
1723 	return nand_prog_page_op(chip, page, 0, tmp_buf,
1724 				 mtd->writesize + mtd->oobsize);
1725 }
1726 
1727 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1728 {
1729 	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1730 }
1731 
1732 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1733 {
1734 	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1735 }
1736 
1737 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1738 {
1739 	struct mtd_info *mtd = nand_to_mtd(chip);
1740 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1741 	int ret = 0;
1742 	uint8_t *block_mark;
1743 	int column, page, chipnr;
1744 
1745 	chipnr = (int)(ofs >> chip->chip_shift);
1746 	nand_select_target(chip, chipnr);
1747 
1748 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1749 
1750 	/* Write the block mark. */
1751 	block_mark = this->data_buffer_dma;
1752 	block_mark[0] = 0; /* bad block marker */
1753 
1754 	/* Shift to get page */
1755 	page = (int)(ofs >> chip->page_shift);
1756 
1757 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1758 
1759 	nand_deselect_target(chip);
1760 
1761 	return ret;
1762 }
1763 
1764 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1765 {
1766 	struct boot_rom_geometry *geometry = &this->rom_geometry;
1767 
1768 	/*
1769 	 * Set the boot block stride size.
1770 	 *
1771 	 * In principle, we should be reading this from the OTP bits, since
1772 	 * that's where the ROM is going to get it. In fact, we don't have any
1773 	 * way to read the OTP bits, so we go with the default and hope for the
1774 	 * best.
1775 	 */
1776 	geometry->stride_size_in_pages = 64;
1777 
1778 	/*
1779 	 * Set the search area stride exponent.
1780 	 *
1781 	 * In principle, we should be reading this from the OTP bits, since
1782 	 * that's where the ROM is going to get it. In fact, we don't have any
1783 	 * way to read the OTP bits, so we go with the default and hope for the
1784 	 * best.
1785 	 */
1786 	geometry->search_area_stride_exponent = 2;
1787 	return 0;
1788 }
1789 
1790 static const char  *fingerprint = "STMP";
1791 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1792 {
1793 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1794 	struct device *dev = this->dev;
1795 	struct nand_chip *chip = &this->nand;
1796 	unsigned int search_area_size_in_strides;
1797 	unsigned int stride;
1798 	unsigned int page;
1799 	u8 *buffer = nand_get_data_buf(chip);
1800 	int found_an_ncb_fingerprint = false;
1801 	int ret;
1802 
1803 	/* Compute the number of strides in a search area. */
1804 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1805 
1806 	nand_select_target(chip, 0);
1807 
1808 	/*
1809 	 * Loop through the first search area, looking for the NCB fingerprint.
1810 	 */
1811 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1812 
1813 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1814 		/* Compute the page addresses. */
1815 		page = stride * rom_geo->stride_size_in_pages;
1816 
1817 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1818 
1819 		/*
1820 		 * Read the NCB fingerprint. The fingerprint is four bytes long
1821 		 * and starts in the 12th byte of the page.
1822 		 */
1823 		ret = nand_read_page_op(chip, page, 12, buffer,
1824 					strlen(fingerprint));
1825 		if (ret)
1826 			continue;
1827 
1828 		/* Look for the fingerprint. */
1829 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1830 			found_an_ncb_fingerprint = true;
1831 			break;
1832 		}
1833 
1834 	}
1835 
1836 	nand_deselect_target(chip);
1837 
1838 	if (found_an_ncb_fingerprint)
1839 		dev_dbg(dev, "\tFound a fingerprint\n");
1840 	else
1841 		dev_dbg(dev, "\tNo fingerprint found\n");
1842 	return found_an_ncb_fingerprint;
1843 }
1844 
1845 /* Writes a transcription stamp. */
1846 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1847 {
1848 	struct device *dev = this->dev;
1849 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1850 	struct nand_chip *chip = &this->nand;
1851 	struct mtd_info *mtd = nand_to_mtd(chip);
1852 	unsigned int block_size_in_pages;
1853 	unsigned int search_area_size_in_strides;
1854 	unsigned int search_area_size_in_pages;
1855 	unsigned int search_area_size_in_blocks;
1856 	unsigned int block;
1857 	unsigned int stride;
1858 	unsigned int page;
1859 	u8 *buffer = nand_get_data_buf(chip);
1860 	int status;
1861 
1862 	/* Compute the search area geometry. */
1863 	block_size_in_pages = mtd->erasesize / mtd->writesize;
1864 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1865 	search_area_size_in_pages = search_area_size_in_strides *
1866 					rom_geo->stride_size_in_pages;
1867 	search_area_size_in_blocks =
1868 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
1869 				    block_size_in_pages;
1870 
1871 	dev_dbg(dev, "Search Area Geometry :\n");
1872 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1873 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1874 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1875 
1876 	nand_select_target(chip, 0);
1877 
1878 	/* Loop over blocks in the first search area, erasing them. */
1879 	dev_dbg(dev, "Erasing the search area...\n");
1880 
1881 	for (block = 0; block < search_area_size_in_blocks; block++) {
1882 		/* Erase this block. */
1883 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
1884 		status = nand_erase_op(chip, block);
1885 		if (status)
1886 			dev_err(dev, "[%s] Erase failed.\n", __func__);
1887 	}
1888 
1889 	/* Write the NCB fingerprint into the page buffer. */
1890 	memset(buffer, ~0, mtd->writesize);
1891 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1892 
1893 	/* Loop through the first search area, writing NCB fingerprints. */
1894 	dev_dbg(dev, "Writing NCB fingerprints...\n");
1895 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1896 		/* Compute the page addresses. */
1897 		page = stride * rom_geo->stride_size_in_pages;
1898 
1899 		/* Write the first page of the current stride. */
1900 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1901 
1902 		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
1903 		if (status)
1904 			dev_err(dev, "[%s] Write failed.\n", __func__);
1905 	}
1906 
1907 	nand_deselect_target(chip);
1908 
1909 	return 0;
1910 }
1911 
1912 static int mx23_boot_init(struct gpmi_nand_data  *this)
1913 {
1914 	struct device *dev = this->dev;
1915 	struct nand_chip *chip = &this->nand;
1916 	struct mtd_info *mtd = nand_to_mtd(chip);
1917 	unsigned int block_count;
1918 	unsigned int block;
1919 	int     chipnr;
1920 	int     page;
1921 	loff_t  byte;
1922 	uint8_t block_mark;
1923 	int     ret = 0;
1924 
1925 	/*
1926 	 * If control arrives here, we can't use block mark swapping, which
1927 	 * means we're forced to use transcription. First, scan for the
1928 	 * transcription stamp. If we find it, then we don't have to do
1929 	 * anything -- the block marks are already transcribed.
1930 	 */
1931 	if (mx23_check_transcription_stamp(this))
1932 		return 0;
1933 
1934 	/*
1935 	 * If control arrives here, we couldn't find a transcription stamp, so
1936 	 * so we presume the block marks are in the conventional location.
1937 	 */
1938 	dev_dbg(dev, "Transcribing bad block marks...\n");
1939 
1940 	/* Compute the number of blocks in the entire medium. */
1941 	block_count = nanddev_eraseblocks_per_target(&chip->base);
1942 
1943 	/*
1944 	 * Loop over all the blocks in the medium, transcribing block marks as
1945 	 * we go.
1946 	 */
1947 	for (block = 0; block < block_count; block++) {
1948 		/*
1949 		 * Compute the chip, page and byte addresses for this block's
1950 		 * conventional mark.
1951 		 */
1952 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1953 		page = block << (chip->phys_erase_shift - chip->page_shift);
1954 		byte = block <<  chip->phys_erase_shift;
1955 
1956 		/* Send the command to read the conventional block mark. */
1957 		nand_select_target(chip, chipnr);
1958 		ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
1959 					1);
1960 		nand_deselect_target(chip);
1961 
1962 		if (ret)
1963 			continue;
1964 
1965 		/*
1966 		 * Check if the block is marked bad. If so, we need to mark it
1967 		 * again, but this time the result will be a mark in the
1968 		 * location where we transcribe block marks.
1969 		 */
1970 		if (block_mark != 0xff) {
1971 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
1972 			ret = chip->legacy.block_markbad(chip, byte);
1973 			if (ret)
1974 				dev_err(dev,
1975 					"Failed to mark block bad with ret %d\n",
1976 					ret);
1977 		}
1978 	}
1979 
1980 	/* Write the stamp that indicates we've transcribed the block marks. */
1981 	mx23_write_transcription_stamp(this);
1982 	return 0;
1983 }
1984 
1985 static int nand_boot_init(struct gpmi_nand_data  *this)
1986 {
1987 	nand_boot_set_geometry(this);
1988 
1989 	/* This is ROM arch-specific initilization before the BBT scanning. */
1990 	if (GPMI_IS_MX23(this))
1991 		return mx23_boot_init(this);
1992 	return 0;
1993 }
1994 
1995 static int gpmi_set_geometry(struct gpmi_nand_data *this)
1996 {
1997 	int ret;
1998 
1999 	/* Free the temporary DMA memory for reading ID. */
2000 	gpmi_free_dma_buffer(this);
2001 
2002 	/* Set up the NFC geometry which is used by BCH. */
2003 	ret = bch_set_geometry(this);
2004 	if (ret) {
2005 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2006 		return ret;
2007 	}
2008 
2009 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
2010 	return gpmi_alloc_dma_buffer(this);
2011 }
2012 
2013 static int gpmi_init_last(struct gpmi_nand_data *this)
2014 {
2015 	struct nand_chip *chip = &this->nand;
2016 	struct mtd_info *mtd = nand_to_mtd(chip);
2017 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2018 	struct bch_geometry *bch_geo = &this->bch_geometry;
2019 	int ret;
2020 
2021 	/* Set up the medium geometry */
2022 	ret = gpmi_set_geometry(this);
2023 	if (ret)
2024 		return ret;
2025 
2026 	/* Init the nand_ecc_ctrl{} */
2027 	ecc->read_page	= gpmi_ecc_read_page;
2028 	ecc->write_page	= gpmi_ecc_write_page;
2029 	ecc->read_oob	= gpmi_ecc_read_oob;
2030 	ecc->write_oob	= gpmi_ecc_write_oob;
2031 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
2032 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
2033 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2034 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2035 	ecc->mode	= NAND_ECC_HW;
2036 	ecc->size	= bch_geo->ecc_chunk_size;
2037 	ecc->strength	= bch_geo->ecc_strength;
2038 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2039 
2040 	/*
2041 	 * We only enable the subpage read when:
2042 	 *  (1) the chip is imx6, and
2043 	 *  (2) the size of the ECC parity is byte aligned.
2044 	 */
2045 	if (GPMI_IS_MX6(this) &&
2046 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2047 		ecc->read_subpage = gpmi_ecc_read_subpage;
2048 		chip->options |= NAND_SUBPAGE_READ;
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2055 {
2056 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2057 	int ret;
2058 
2059 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2060 		chip->bbt_options |= NAND_BBT_NO_OOB;
2061 
2062 		if (of_property_read_bool(this->dev->of_node,
2063 					  "fsl,no-blockmark-swap"))
2064 			this->swap_block_mark = false;
2065 	}
2066 	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2067 		this->swap_block_mark ? "en" : "dis");
2068 
2069 	ret = gpmi_init_last(this);
2070 	if (ret)
2071 		return ret;
2072 
2073 	chip->options |= NAND_SKIP_BBTSCAN;
2074 
2075 	return 0;
2076 }
2077 
2078 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2079 {
2080 	struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2081 
2082 	this->ntransfers++;
2083 
2084 	if (this->ntransfers == GPMI_MAX_TRANSFERS)
2085 		return NULL;
2086 
2087 	return transfer;
2088 }
2089 
2090 static struct dma_async_tx_descriptor *gpmi_chain_command(
2091 	struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2092 {
2093 	struct dma_chan *channel = get_dma_chan(this);
2094 	struct dma_async_tx_descriptor *desc;
2095 	struct gpmi_transfer *transfer;
2096 	int chip = this->nand.cur_cs;
2097 	u32 pio[3];
2098 
2099 	/* [1] send out the PIO words */
2100 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2101 		| BM_GPMI_CTRL0_WORD_LENGTH
2102 		| BF_GPMI_CTRL0_CS(chip, this)
2103 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2104 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2105 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
2106 		| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2107 	pio[1] = 0;
2108 	pio[2] = 0;
2109 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2110 				      DMA_TRANS_NONE, 0);
2111 	if (!desc)
2112 		return NULL;
2113 
2114 	transfer = get_next_transfer(this);
2115 	if (!transfer)
2116 		return NULL;
2117 
2118 	transfer->cmdbuf[0] = cmd;
2119 	if (naddr)
2120 		memcpy(&transfer->cmdbuf[1], addr, naddr);
2121 
2122 	sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2123 	dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2124 
2125 	transfer->direction = DMA_TO_DEVICE;
2126 
2127 	desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2128 				       MXS_DMA_CTRL_WAIT4END);
2129 	return desc;
2130 }
2131 
2132 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2133 	struct gpmi_nand_data *this)
2134 {
2135 	struct dma_chan *channel = get_dma_chan(this);
2136 	u32 pio[2];
2137 
2138 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2139 		| BM_GPMI_CTRL0_WORD_LENGTH
2140 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2141 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2142 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2143 		| BF_GPMI_CTRL0_XFER_COUNT(0);
2144 	pio[1] = 0;
2145 
2146 	return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2147 				MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2148 }
2149 
2150 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2151 	struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2152 {
2153 	struct dma_async_tx_descriptor *desc;
2154 	struct dma_chan *channel = get_dma_chan(this);
2155 	struct gpmi_transfer *transfer;
2156 	u32 pio[6] = {};
2157 
2158 	transfer = get_next_transfer(this);
2159 	if (!transfer)
2160 		return NULL;
2161 
2162 	transfer->direction = DMA_FROM_DEVICE;
2163 
2164 	*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2165 				   DMA_FROM_DEVICE);
2166 
2167 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2168 		| BM_GPMI_CTRL0_WORD_LENGTH
2169 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2170 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2171 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2172 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2173 
2174 	if (this->bch) {
2175 		pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2176 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2177 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2178 				| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2179 		pio[3] = raw_len;
2180 		pio[4] = transfer->sgl.dma_address;
2181 		pio[5] = this->auxiliary_phys;
2182 	}
2183 
2184 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2185 				      DMA_TRANS_NONE, 0);
2186 	if (!desc)
2187 		return NULL;
2188 
2189 	if (!this->bch)
2190 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2191 					     DMA_DEV_TO_MEM,
2192 					     MXS_DMA_CTRL_WAIT4END);
2193 
2194 	return desc;
2195 }
2196 
2197 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2198 	struct gpmi_nand_data *this, const void *buf, int raw_len)
2199 {
2200 	struct dma_chan *channel = get_dma_chan(this);
2201 	struct dma_async_tx_descriptor *desc;
2202 	struct gpmi_transfer *transfer;
2203 	u32 pio[6] = {};
2204 
2205 	transfer = get_next_transfer(this);
2206 	if (!transfer)
2207 		return NULL;
2208 
2209 	transfer->direction = DMA_TO_DEVICE;
2210 
2211 	prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2212 
2213 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2214 		| BM_GPMI_CTRL0_WORD_LENGTH
2215 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2216 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2217 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2218 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2219 
2220 	if (this->bch) {
2221 		pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2222 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2223 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2224 					BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2225 		pio[3] = raw_len;
2226 		pio[4] = transfer->sgl.dma_address;
2227 		pio[5] = this->auxiliary_phys;
2228 	}
2229 
2230 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2231 				      DMA_TRANS_NONE,
2232 				      (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2233 	if (!desc)
2234 		return NULL;
2235 
2236 	if (!this->bch)
2237 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2238 					       DMA_MEM_TO_DEV,
2239 					       MXS_DMA_CTRL_WAIT4END);
2240 
2241 	return desc;
2242 }
2243 
2244 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2245 			     const struct nand_operation *op,
2246 			     bool check_only)
2247 {
2248 	const struct nand_op_instr *instr;
2249 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2250 	struct dma_async_tx_descriptor *desc = NULL;
2251 	int i, ret, buf_len = 0, nbufs = 0;
2252 	u8 cmd = 0;
2253 	void *buf_read = NULL;
2254 	const void *buf_write = NULL;
2255 	bool direct = false;
2256 	struct completion *completion;
2257 	unsigned long to;
2258 
2259 	if (check_only)
2260 		return 0;
2261 
2262 	this->ntransfers = 0;
2263 	for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2264 		this->transfers[i].direction = DMA_NONE;
2265 
2266 	ret = pm_runtime_get_sync(this->dev);
2267 	if (ret < 0)
2268 		return ret;
2269 
2270 	/*
2271 	 * This driver currently supports only one NAND chip. Plus, dies share
2272 	 * the same configuration. So once timings have been applied on the
2273 	 * controller side, they will not change anymore. When the time will
2274 	 * come, the check on must_apply_timings will have to be dropped.
2275 	 */
2276 	if (this->hw.must_apply_timings) {
2277 		this->hw.must_apply_timings = false;
2278 		gpmi_nfc_apply_timings(this);
2279 	}
2280 
2281 	dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2282 
2283 	for (i = 0; i < op->ninstrs; i++) {
2284 		instr = &op->instrs[i];
2285 
2286 		nand_op_trace("  ", instr);
2287 
2288 		switch (instr->type) {
2289 		case NAND_OP_WAITRDY_INSTR:
2290 			desc = gpmi_chain_wait_ready(this);
2291 			break;
2292 		case NAND_OP_CMD_INSTR:
2293 			cmd = instr->ctx.cmd.opcode;
2294 
2295 			/*
2296 			 * When this command has an address cycle chain it
2297 			 * together with the address cycle
2298 			 */
2299 			if (i + 1 != op->ninstrs &&
2300 			    op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2301 				continue;
2302 
2303 			desc = gpmi_chain_command(this, cmd, NULL, 0);
2304 
2305 			break;
2306 		case NAND_OP_ADDR_INSTR:
2307 			desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2308 						  instr->ctx.addr.naddrs);
2309 			break;
2310 		case NAND_OP_DATA_OUT_INSTR:
2311 			buf_write = instr->ctx.data.buf.out;
2312 			buf_len = instr->ctx.data.len;
2313 			nbufs++;
2314 
2315 			desc = gpmi_chain_data_write(this, buf_write, buf_len);
2316 
2317 			break;
2318 		case NAND_OP_DATA_IN_INSTR:
2319 			if (!instr->ctx.data.len)
2320 				break;
2321 			buf_read = instr->ctx.data.buf.in;
2322 			buf_len = instr->ctx.data.len;
2323 			nbufs++;
2324 
2325 			desc = gpmi_chain_data_read(this, buf_read, buf_len,
2326 						   &direct);
2327 			break;
2328 		}
2329 
2330 		if (!desc) {
2331 			ret = -ENXIO;
2332 			goto unmap;
2333 		}
2334 	}
2335 
2336 	dev_dbg(this->dev, "%s setup done\n", __func__);
2337 
2338 	if (nbufs > 1) {
2339 		dev_err(this->dev, "Multiple data instructions not supported\n");
2340 		ret = -EINVAL;
2341 		goto unmap;
2342 	}
2343 
2344 	if (this->bch) {
2345 		writel(this->bch_flashlayout0,
2346 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2347 		writel(this->bch_flashlayout1,
2348 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2349 	}
2350 
2351 	if (this->bch && buf_read) {
2352 		writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2353 		       this->resources.bch_regs + HW_BCH_CTRL_SET);
2354 		completion = &this->bch_done;
2355 	} else {
2356 		desc->callback = dma_irq_callback;
2357 		desc->callback_param = this;
2358 		completion = &this->dma_done;
2359 	}
2360 
2361 	init_completion(completion);
2362 
2363 	dmaengine_submit(desc);
2364 	dma_async_issue_pending(get_dma_chan(this));
2365 
2366 	to = wait_for_completion_timeout(completion, msecs_to_jiffies(1000));
2367 	if (!to) {
2368 		dev_err(this->dev, "DMA timeout, last DMA\n");
2369 		gpmi_dump_info(this);
2370 		ret = -ETIMEDOUT;
2371 		goto unmap;
2372 	}
2373 
2374 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2375 	       this->resources.bch_regs + HW_BCH_CTRL_CLR);
2376 	gpmi_clear_bch(this);
2377 
2378 	ret = 0;
2379 
2380 unmap:
2381 	for (i = 0; i < this->ntransfers; i++) {
2382 		struct gpmi_transfer *transfer = &this->transfers[i];
2383 
2384 		if (transfer->direction != DMA_NONE)
2385 			dma_unmap_sg(this->dev, &transfer->sgl, 1,
2386 				     transfer->direction);
2387 	}
2388 
2389 	if (!ret && buf_read && !direct)
2390 		memcpy(buf_read, this->data_buffer_dma,
2391 		       gpmi_raw_len_to_len(this, buf_len));
2392 
2393 	this->bch = false;
2394 
2395 	pm_runtime_mark_last_busy(this->dev);
2396 	pm_runtime_put_autosuspend(this->dev);
2397 
2398 	return ret;
2399 }
2400 
2401 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2402 	.attach_chip = gpmi_nand_attach_chip,
2403 	.setup_interface = gpmi_setup_interface,
2404 	.exec_op = gpmi_nfc_exec_op,
2405 };
2406 
2407 static int gpmi_nand_init(struct gpmi_nand_data *this)
2408 {
2409 	struct nand_chip *chip = &this->nand;
2410 	struct mtd_info  *mtd = nand_to_mtd(chip);
2411 	int ret;
2412 
2413 	/* init the MTD data structures */
2414 	mtd->name		= "gpmi-nand";
2415 	mtd->dev.parent		= this->dev;
2416 
2417 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2418 	nand_set_controller_data(chip, this);
2419 	nand_set_flash_node(chip, this->pdev->dev.of_node);
2420 	chip->legacy.block_markbad = gpmi_block_markbad;
2421 	chip->badblock_pattern	= &gpmi_bbt_descr;
2422 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
2423 
2424 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2425 	this->swap_block_mark = !GPMI_IS_MX23(this);
2426 
2427 	/*
2428 	 * Allocate a temporary DMA buffer for reading ID in the
2429 	 * nand_scan_ident().
2430 	 */
2431 	this->bch_geometry.payload_size = 1024;
2432 	this->bch_geometry.auxiliary_size = 128;
2433 	ret = gpmi_alloc_dma_buffer(this);
2434 	if (ret)
2435 		goto err_out;
2436 
2437 	nand_controller_init(&this->base);
2438 	this->base.ops = &gpmi_nand_controller_ops;
2439 	chip->controller = &this->base;
2440 
2441 	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2442 	if (ret)
2443 		goto err_out;
2444 
2445 	ret = nand_boot_init(this);
2446 	if (ret)
2447 		goto err_nand_cleanup;
2448 	ret = nand_create_bbt(chip);
2449 	if (ret)
2450 		goto err_nand_cleanup;
2451 
2452 	ret = mtd_device_register(mtd, NULL, 0);
2453 	if (ret)
2454 		goto err_nand_cleanup;
2455 	return 0;
2456 
2457 err_nand_cleanup:
2458 	nand_cleanup(chip);
2459 err_out:
2460 	gpmi_free_dma_buffer(this);
2461 	return ret;
2462 }
2463 
2464 static const struct of_device_id gpmi_nand_id_table[] = {
2465 	{
2466 		.compatible = "fsl,imx23-gpmi-nand",
2467 		.data = &gpmi_devdata_imx23,
2468 	}, {
2469 		.compatible = "fsl,imx28-gpmi-nand",
2470 		.data = &gpmi_devdata_imx28,
2471 	}, {
2472 		.compatible = "fsl,imx6q-gpmi-nand",
2473 		.data = &gpmi_devdata_imx6q,
2474 	}, {
2475 		.compatible = "fsl,imx6sx-gpmi-nand",
2476 		.data = &gpmi_devdata_imx6sx,
2477 	}, {
2478 		.compatible = "fsl,imx7d-gpmi-nand",
2479 		.data = &gpmi_devdata_imx7d,
2480 	}, {}
2481 };
2482 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2483 
2484 static int gpmi_nand_probe(struct platform_device *pdev)
2485 {
2486 	struct gpmi_nand_data *this;
2487 	const struct of_device_id *of_id;
2488 	int ret;
2489 
2490 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2491 	if (!this)
2492 		return -ENOMEM;
2493 
2494 	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
2495 	if (of_id) {
2496 		this->devdata = of_id->data;
2497 	} else {
2498 		dev_err(&pdev->dev, "Failed to find the right device id.\n");
2499 		return -ENODEV;
2500 	}
2501 
2502 	platform_set_drvdata(pdev, this);
2503 	this->pdev  = pdev;
2504 	this->dev   = &pdev->dev;
2505 
2506 	ret = acquire_resources(this);
2507 	if (ret)
2508 		goto exit_acquire_resources;
2509 
2510 	ret = __gpmi_enable_clk(this, true);
2511 	if (ret)
2512 		goto exit_acquire_resources;
2513 
2514 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2515 	pm_runtime_use_autosuspend(&pdev->dev);
2516 	pm_runtime_set_active(&pdev->dev);
2517 	pm_runtime_enable(&pdev->dev);
2518 	pm_runtime_get_sync(&pdev->dev);
2519 
2520 	ret = gpmi_init(this);
2521 	if (ret)
2522 		goto exit_nfc_init;
2523 
2524 	ret = gpmi_nand_init(this);
2525 	if (ret)
2526 		goto exit_nfc_init;
2527 
2528 	pm_runtime_mark_last_busy(&pdev->dev);
2529 	pm_runtime_put_autosuspend(&pdev->dev);
2530 
2531 	dev_info(this->dev, "driver registered.\n");
2532 
2533 	return 0;
2534 
2535 exit_nfc_init:
2536 	pm_runtime_put(&pdev->dev);
2537 	pm_runtime_disable(&pdev->dev);
2538 	release_resources(this);
2539 exit_acquire_resources:
2540 
2541 	return ret;
2542 }
2543 
2544 static int gpmi_nand_remove(struct platform_device *pdev)
2545 {
2546 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2547 	struct nand_chip *chip = &this->nand;
2548 	int ret;
2549 
2550 	pm_runtime_put_sync(&pdev->dev);
2551 	pm_runtime_disable(&pdev->dev);
2552 
2553 	ret = mtd_device_unregister(nand_to_mtd(chip));
2554 	WARN_ON(ret);
2555 	nand_cleanup(chip);
2556 	gpmi_free_dma_buffer(this);
2557 	release_resources(this);
2558 	return 0;
2559 }
2560 
2561 #ifdef CONFIG_PM_SLEEP
2562 static int gpmi_pm_suspend(struct device *dev)
2563 {
2564 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2565 
2566 	release_dma_channels(this);
2567 	return 0;
2568 }
2569 
2570 static int gpmi_pm_resume(struct device *dev)
2571 {
2572 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2573 	int ret;
2574 
2575 	ret = acquire_dma_channels(this);
2576 	if (ret < 0)
2577 		return ret;
2578 
2579 	/* re-init the GPMI registers */
2580 	ret = gpmi_init(this);
2581 	if (ret) {
2582 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2583 		return ret;
2584 	}
2585 
2586 	/* Set flag to get timing setup restored for next exec_op */
2587 	if (this->hw.clk_rate)
2588 		this->hw.must_apply_timings = true;
2589 
2590 	/* re-init the BCH registers */
2591 	ret = bch_set_geometry(this);
2592 	if (ret) {
2593 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
2594 		return ret;
2595 	}
2596 
2597 	return 0;
2598 }
2599 #endif /* CONFIG_PM_SLEEP */
2600 
2601 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2602 {
2603 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2604 
2605 	return __gpmi_enable_clk(this, false);
2606 }
2607 
2608 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2609 {
2610 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2611 
2612 	return __gpmi_enable_clk(this, true);
2613 }
2614 
2615 static const struct dev_pm_ops gpmi_pm_ops = {
2616 	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2617 	SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2618 };
2619 
2620 static struct platform_driver gpmi_nand_driver = {
2621 	.driver = {
2622 		.name = "gpmi-nand",
2623 		.pm = &gpmi_pm_ops,
2624 		.of_match_table = gpmi_nand_id_table,
2625 	},
2626 	.probe   = gpmi_nand_probe,
2627 	.remove  = gpmi_nand_remove,
2628 };
2629 module_platform_driver(gpmi_nand_driver);
2630 
2631 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2632 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2633 MODULE_LICENSE("GPL");
2634